NTNU - Trondheim
Norwegian University of

Science and Technology

Analyzing the Performance of the
Epiphany Processor

Trygve Aaberge

Master of Science in Computer Science
Submission date: August 2014
Supervisor: Anne Cathrine Elster, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Assignment

The Parallella computer by Adapteva is a new, small and energy efficient
computer, that equips the 16 core co-processor Epiphany, also designed by
Adapteva.

This project will focus on analyzing the performance of the Epiphany
co-processor. Several test cases will be developed. Tests on how well they
perform on the Epiphany in comparison to other processors, will be included.

Abstract

Our need for computational power steadily increases as we strive to solve
more complex problems. As the increase of computational power of central
processing units (CPUs) is slowing down, due to increasingly smaller and
more complex designs, it may be a good idea to look into different processor
designs.

At the same time, the need for low-power processors are increasing. There
is many reasons for this. The desire to reduce costs and produce more en-
vironmentally friendly data centers is one. Another is to reduce the heat
dissipation, which is more important the smaller the processor design is.
Lastly, mobile devices are becoming increasingly popular.

In this project, I will look into the performance of the Epiphany processor
using the Parallella device. This is a new design of a small and low-power
processor. The processor I am testing contains 16 processor cores. There
is also produced a version with with 64 cores, and future versions will have
even more.

I will implement algorithms for suited problems and measure the run
times of these on the Epiphany. To have a reference point for the performance
of the Epiphany, similar implementations are run and measured on the main
processor of the Parallella, a Xilinx Zynq7020.

Sammendrag

Behovet for prosessorkraft er stadig gkende mens vi streber etter & lgse
problemer av stgrre kompleksitet. Na som gkningen i prosessorkraft begynner
a avta, pa grunn av mindre og mer komplekse prosessordesign, kan det veere
en god idé a undersgke forskjellige prosessordesign.

Pa samme tid gker behovet for energieffektive prosessorer. Det er mange
grunner til dette. @nsket om & redusere kostnader og produsere mer miljg-
vennlige datasentere er en grunn. En annen er a redusere varmetapet, som
er viktigere jo mindre prosessoren er. Til sist blir mobile enheter stadig mer
populeert.

I dette prosjektet vil jeg undersgke ytelsen til Epiphany-prosessoren ved a
bruke Parallella-enheten. Dette er et nytt design for en liten og energieffektiv
prosessor. Prosessoren jeg tester inneholder 16 prosessorkjerner. Det er ogsa
produsert en utgave med 64 kjerner, og fremtidige utgaver vil ha enda flere.

Jeg kommer til & implementere algoritmer for egnede problemer og male
kjoretiden av disse pa Epiphany-prosessoren. For a ha et referansepunkt for
ytelsen til Epiphany-prosessoren, vil liknende implementeringer kjores og ma-
les pa hovedprosessoren til Parallella-enheten, en Xilinx Zynq7020.

Acknowledgments

I would like to express my appreciation and gratitude to Dr. Anne C. Elster
for guidance and assistance throughout the project.

I would also like to thank Dr. Malik M. Zaki Khan and Rune E. Jensen
for their help in this project.

Lastly, I would like to thank NTNU for their support of the HPC-lab
directed by Dr. Anne C. Elster.

Contents

1 Introduction

1.1 Motivation

1.2 The Parallella Device

1.3 Problems suited for the Epiphany

1.4 Methods of using the Epiphany

1.5 Outline of Chapters
2 Results

2.1 COPRTHR

2.2 eSDK
3 Discussion

3.1 COPRTHR

3.2 eSDK

3.3 Programming issueso
4 Conclusion and Future work

41 Futurework
Bibliography

A Code implementations

11
11

13

15

Abbreviations

COPRTHR CO-PRocessing THReads
MIMD multiple instruction, multiple data
OpenCL Open Computing Language
SDK software development kit

SIMD single instruction, multiple data

eSDK Epiphany Software Development Kit

Chapter 1

Introduction

1.1 Motivation

There are always interest in creating new methods of computing, and im-
proving on existing ones. However, it may not always be possible to improve
the design of a specific technology further.

This is becoming the case of traditional processor design now. Because
of heat dissipation, it is not possible to increase the clock frequency of the
processors used today.

There is also a change in usage. Mobile devices are becoming increasingly
used, and requires more and more performance. However, improvements in
the battery technology does not increase as fast as the performance.

For these reasons, we need to think in new ways.

1.2 The Parallella Device

The Parallella is a very small computer|8|. It is capable of performing all the
tasks of any kind of computer, but it is especially suited for some tasks. The
size of the device is about the size of a credit card in width and length, and
about one centimeter high. It features a Dual-Core ARM central processing
unit (CPU) and 1 GB of RAM, but its main trait is the co-processor it has.
This co-processor is a special processor called Epiphany, which has many
cores over a very small amount of physical space. It is created by Adapteva,
the same company that created the Parallella. The Parallella is the first
consumer device to equip this processor.

The Epiphany is a processor that is created for parallel tasks|5]|[3]. In con-
trast to standard processors that we find in todays computers, the Epiphany
has many more cores. In this first version of the processor, it has 16 cores.

: LidY
LBOTHTETIIN
UL R
b '

Figure 1.1: The Parallella Board|9].

They have recently finished another version, with 64 cores[10]. In the future,
they will create future versions with even more cores, or combine multiple
64-core Epiphany processors in an array. This way, the platform should
be suited for massively parallel tasks. Adapteva claims that the Epiphany
architecture should support up to 4096 cores, all sharing a single memory
space.

While the Epiphany is very parallel, it has some drawbacks compared to a
traditional processor, which is the main reason that the Parallella uses it as its
co-processor and has another processor as its main processor. The Epiphany
uses a unique instruction set created specifically for this processor, which
means that programs will have to be compiled specifically for this processor.
However, it may still be programmed with ANSI C and it supports pthreads
and Open Computing Language (OpenCL) as well.

The memory architecture of the Epiphany is unusual as it has no local
caches or memory hierarchy. Instead, each core has a small amount of mem-
ory, and it is up to the programmer how it should be used. This is one of the
ways the processor is able to employ so many cores on such a small space.

The cores of the processor uses a multiple instruction, multiple data
(MIMD) architecture. It is therefore possible to assign each core with its
own task, which does not have to be related to the tasks of the other cores.
This is in contrast to a graphics processing unit (GPU), which uses a single
instruction, multiple data (SIMD) architecture, where each core must work

2

on the same task simultaneously with different sets of data.

One of the other remarkable features of the Epiphany, apart from the
many cores relative to its size, is the power consumption of the processor.
Both the version of the processor with 16 cores and the one with 64 cores
has a maximum power consumption of 2 Watts.

1.3 Problems suited for the Epiphany

There are some factors that make some problems well suited for the Epiphany,
and other problems less suited. Of course, the tasks should be parallel, as
the main feature of the Epiphany is its parallel nature. However, since the
architecture is MIMD, it does not have to be a task that is only parallel in
its data, though it very well may be. Another factor is the memory of the
Epiphany. Since the processor has a so little amount of memory it should not
be a task that requires very high amounts of data. Last, the data transfer
between the main processor of the Parallella and the Epiphany is not very
fast. This means that the Epiphany is best suited for generating data, or
processing a small amount of data many times. We would want to transfer
a small amount of data to the Epiphany, then work on this data in many
iterations, and at last transfer the result back to the main processor.

One of the simplest parallel tasks are vector and matrix multiplication.
For each pair of fields of the source vectors or matrices, there is done a
calculation. Each of these calculations can be spread over equally many
Processors.

An interesting problem is the calculation of the Mandelbrot set. This is
a complex calculation which takes some initial values and does iterations of
a particular mathematical operation. Hence, we can do many calculations
on the Epiphany, without transferring much data to it. The calculations
operates independently on a grid of values and is therefore very parallelizable.

I also want to look at Conway’s Game of Life[11]. This consists of a grid
of values that are considered to be either dead or alive. It takes an initial
input, and calculates a new set of values from this. The algorithm can run
for an arbitrary number of frames, and each new frame is calculated from
the past. Each value is calculated only by using its neighbours values, and
it is therefore very parallelizable.

1.4 Methods of using the Epiphany

The Epiphany supports ANSI C with support for pthreads and OpenCL.
There are two SDKs you may use to program for the Epiphany: The
Epiphany Software Development Kit (eSDK) or the CO-PRocessing THReads
(COPRTHR) software development kit (SDK).

The eSDK]|6] is an SDK which enables you to compile C code for the
Epiphany. The implementation provides support for assigning different tasks
to different cores. It also implements pthreads.

The COPRTHR|2| SDK is another SDK which provides an OpenCL im-
plementation. By using this, you may easily port OpenCL applications to
the Epiphany.

1.5 Outline of Chapters
The rest of this report will be organized as follows:

e Chapter 2: Different programs for measuring performance and the re-
sults of running these on the Epiphany compared to the main processor
of the Parallella.

e Chapter 3: Discussion of the results gathered in the previous chapter.

e Chapter 4: Short summary of the work done in this project and the
results of this. Also includes thoughts of what related future projects
may look into.

e Appendix: Includes the code written and used in this project.

Chapter 2

Results

In this chapter I will present what kind of implementations I made, and the
results I got from running these. For comparison of run times relative to
the Epiphany, I have also run similar implementations on the main processor
of the Parallella, a Xilinx Zynq7020[8]. Since the implementations for the
Epiphany uses special libraries to utilize its cores, I could not directly run the
same code on the main processor. Therefore I implemented single threaded
programs in standard C using the same algorithms.
This Chapter is organized as follows:

e Section 2.1: Results gathered using the COPRTHR SDK. This con-
tains implementations of vector multiplication and computation of he
Mandelbrot set.

e Section 2.2: Results gathered using the eSDK. This contains an imple-
mentation of Conway’s Game of Life.

2.1 COPRTHR

Since I had some previous experience with OpenCL, the COPRTHR SDK
seemed like the easiest of the two libraries to use.

One very simple parallel task is to multiply two vectors. We transfer each
of the vectors onto the memory of the co-processor. Then, each processor
handles its own part of the vector and multiplies each element in its part of
one of the vectors with the corresponding element in the other vector. The
result is stored in a third vector.

Unfortunately, the performance of each of the Epiphany cores seems to be
50 to 100 times slower than the core of the main processor of the Parallella.

If we combine all of the cores, it then gives 3 to 6 times worse performance
than one of the cores of the main processor.

Figure 2.1: A visualization of the Mandelbrot set|[1].

Another problem that may be suited for the Epiphany is calculating the
Mandelbrot set. With this problem, we only have to transfer some initial
parameters. We may then do many calculations based on these, and at last
transfer the result back. For each of the values transferred back, we would
have done many iterations on the Epiphany. Unfortunately, so far, the results
I have found is very poor. The calculation on the Epiphany seems to be over
a 1000 times slower than the calculation on the main processor.

2.2 eSDK

Because of the poor results I experienced with the COPRTHR SDK, I de-
cided to test the eSDK. Initially, I had some issues with running code using
this SDK. However, I was directed at an example of a implementation of
computing the Mandelbrot set using it|7]. This code showed how to compile
and run the code.

Since computation of the Mandelbrot set already was implemented, I
decided that I would implement Conway’s Game of Life. I made an imple-
mentation for the Epiphany processor, using the Mandelbrot example as help
on how to implement it. For benchmarking, an implementation for another
processor was also needed. I decided to implement a single threaded version
using standard C. For comparison with the Epiphany, I ran this on the main
processor of the Parallella.

~J

Figure 2.2: A figure of a position in Conway’s Game of Life[12].

In the single threaded implementation in C, I could use arrays to store
values of each of the fields of the board. Since the main goal is to compare
performance with the Epiphany, I also created an implementation that allo-
cated a memory space and used that manually. This is in a similar fashion
to how the implementation for the Epiphany is.

For the benchmarking, I used 180 rows, 180 columns and the same starting
pattern for each run. The results are presented here. The first columns is the
number of frames, or steps, the programs was running for. The rest of the
columns is the results for respectively the parallel Epiphany implementation,
the serial implementation on the main processor using arrays and the serial
implementation on the main processor using an allocated memory space. The
results are running time in seconds.

Frames Epiphany Xilinx, array Xilinx, malloc

100 0.223 3.222 3.917
2000 4.429 59.506 79.031
10000 22.106 291.853 355.537

Chapter 3

Discussion

In this chapter, I will discuss the results presented in the previous chapter.
This Chapter is organized as follows:

e Section 3.1: Discussion of the results gathered using the COPRTHR
SDK. Theories of why the performance using this SDK was poor.

e Section 3.2: Discussion of the results gathered using the eSDK.

e Section 3.3: Notes about potential issues of running code on the Epiphany.

3.1 COPRTHR

The results by using the COPRTHR SDK was fairly disappointing. If we
can manage better performance from a standard ARM CPU that uses about
the same amount of power, the selling point for the Epiphany is lost.

However, since the results using the eSDK is far better, we can see that
the reason for the poor results here are not the CPU itself. The reason for
the slow performance is unknown.

One reason for this may be that the COPRTHR SDK simply does not
perform as well as the eSDK. Another reason may be that I could have used
the COPRTHR SDK in a way that is not the most optimum for performance.

3.2 eSDK

Using the eSDK instead of the COPRTHR SDK yielded far better results. We
can see that the Epiphany managed about 13 times better performance than
a single thread of the Xilinx CPU when using arrays in the single threaded

9

implementation. When allocating a memory space manually for the data in
the single threaded implementation, the Epiphany ran about 17 times faster.

The reason for better performance using arrays than an allocated memory
space is probably because of some optimizations by the C compiler. The im-
plementation using a memory space is the one closest to the implementation
for the Epiphany, so if we want to compare raw computational power, this is
the relevant comparison.

However, in a normal C implementation we would probably use arrays and
then get a bit better performance. This means that if we want to compare the
performance gain of this algorithm, we would want to look at this comparison.

The Xilinx CPU on the Parallella is a fairly powerful processor in this
category[13]. To see that we can gain many times better performance using
the Epiphany, is very good.

Of course, the Xilinx CPU is a general processor, while the Epiphany is
probably best suited for specific tasks. This means that the Epiphany will
not replace the standard CPUs. It could mean that the Epiphany will be
very interesting to use for the tasks that it is suited for.

The 64-core version of the Epiphany will have the same maximum power
consumption as the version with 16-core used in this thesis|[3][4]. In addition
to having four times as many cores, they will also run on a slightly higher
clock frequency. This means that this processor will have much higher per-
formance, with about the same power consumption.

3.3 Programming issues

For the last part of the discussion, I would like to point out some issues I ran
into, and some pointers to what is important to check.

It is very important that your environment is set up correctly. If you
don’t have the correct environment variables set, you may not be able to run
programs on the Epiphany. The error messages received because of this is
not always obvious. All of the necessary environment variables are set up
correctly in the run file provided in A.5.

If you try to read or write from an invalid memory segment on the
Epiphany, for example if you write to an address that is not aligned to a
word, the Epiphany may hang, without any feedback.

10

Chapter 4

Conclusion and Future work

In this project we have made implementations to test the performance of the
Epiphany using the two SDKs available. The algorithms implementation and
used for testing was vector multiplication, computation of the Mandelbrot set
and Conway’s Game of Life. We saw that the performance of the Epiphany
using the COPRTHR SDK was far worse than the main processor of the
Parallella.

However, using the eSDK we saw that the performance of the Epiphany
was 13-17 times better than the main processor. This result is considered
very good. We also noted that there will come a version of the Epiphany
with 64 cores which will have many times the performance of the version
with 16 core, while still consuming about the same amount of power.

4.1 Future work

e As stated, there will come 64-core version of the Epiphany. When
this is available, it would be interesting to test the performance of the
processor compared to the version with 16 cores tested here.

e The power of this processor lies in its parallel nature. For problems that
are far more parallel than for 16 or 64 cores, it would be interesting to
see how the Epiphany would perform in a cluster. Either by network-
ing many Parallella devices together, or even better, to combine many
Epiphany processors on a single board. The goal could be to measure
how this will perform in comparison with a super computer.

e The Epiphany is a processor with a very low power consumption. Max-
imum and typical power consumption are provided by Adapteva, but

11

this is very rough numbers. Another work could check the power con-
sumption in detail for different computations, and compare this to other
Processors.

Unlike GPUs, which has very many cores, each core of the Epiphany
can do an individual computation simultaneously as all of the other
cores. This means that the Epiphany could be well suited for task-
parallel problems, as well as data-parallel problems. In this project,
only data-parallel problems were explored. Another work could mea-
sure the performance of task-parallel problems using the Epiphany.

12

Bibliography

1]

2l

13l

4]

[5]

(6]

17l

8]

19]

Mandel zoom 00 mandelbrot set. https://commons.wikimedia.org/
wiki/File:Mandel_zoom_00_mandelbrot_set. jpg#mediaviewer/
File:Mandel_zoom_00_mandelbrot_set. jpg, August 2014. Licensed
under Creative Commons Attribution-Share Alike 3.0 via Wikimedia
Commons.

Adapteva. Coprthr® api reference. http://www.
browndeertechnology.com/docs/coprthr_api_ref.pdf, August
2014.

Adapteva. FE16g301 epiphany(tm) 16-core microprocessor datasheet.

www.adapteva.com/docs/e16g301_datasheet.pdf, August 2014.

Adapteva. E64g401 epiphany(tm) 64-core microprocessor datasheet.
http://www.adapteva.com/docs/e64g401_datasheet.pdf, August
2014.

Adapteva. Epiphany architecture reference. http://adapteva.com/
docs/epiphany_arch_ref.pdf, August 2014.

Adapteva. Epiphany sdk reference. http://adapteva.com/docs/
epiphany_sdk_ref.pdf, August 2014.

Adapteva. parallella-examples/mandelbrot - github. https://github.
com/parallella/parallella-examples/tree/master/mandelbrot,
August 2014.

Adapteva. Parallella reference manual. http://www.parallella.org/
docs/parallella_manual.pdf, August 2014.

Adapteva Andreas Olofsson. The parallella board has
arrived! http://www.parallella.org/2013/04/16/
hello-world-my-name-is-parallella/, August 2014.

13

[10]

[11]

12]

[13]

Adapteva Andreas Olofsson. Update #53: The 64-core par-
allella is alive! http://www.parallella.org/2014/04/25/
the-64-core-parallella-is-alive/, August 2014.

Martin Gardner. Mathematical games - the fantastic com-
binations of john conway’s new solitaire game "life". http:
//web.archive.org/web/20090603015231/http://ddi.cs.
uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_
gamelife/ConwayScientificAmerican.htm, August 2014.

Kieft. Gospers glider gun. https://commons.wikimedia.
org/wiki/File:Gospers_glider_gun.gif#mediaviewer/File:
Gospers_glider_gun.gif, August 2014. Own work. Licensed un-
der Creative Commons Attribution-Share Alike 3.0 via Wikimedia
Commons.

Xilinx. Unmatched performance and power. http://www.xilinx.com/
products/silicon-devices/soc/zynq-7000/performance.html,
August 2014.

14

03O Ui Wi+

—_ e e e
=W N = OO

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Appendix A

Code implementations

All of the code is also attached in a separate ZIP file.

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <sys/time.h>

#include "coprthr.h"

#define SIZE 1048576
#define SIZE16 "1048576 / 16"

char src[] =\
"#include <coprthr.h>\n" \
"void my kern(float* a, floatx b, float* c¢) {\n" \
" int idx = coprthr get thread index() % " SIZE16
"A\n" o\
" int to = idx+" SIZE16 ";\n" \
" for (int i=idx; i<to; i++) {\n" \
" c[i] = alil«b[i];\n" \
\

n }\nll
U}\nll;
double walltime ()
{
static struct timeval t;
gettimeofday (&t , NULL);
return (t.tv_sec + le—6 % t.tv_usec);
}
int main ()
{

int i;

15

32

33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
a0
o1
52
53

o4

55

56
o7

58

99

60
61
62
63
64
65
66
67
68

69
70

int dd = coprthr dopen (COPRTHR_DEVICE E32,
COPRTHR_O_STREAM) ;

if (dd<0) {
printf("device open failed\n");
exit(—1);

}

coprthr program t prg = coprthr dcompile(dd, src, sizeof(
sre), "", 0);
coprthr kernel t krn = coprthr getsym(prg, "my_ kern");

float+ a = (floatx) malloc(SIZExsizeof (float));
float*x b = (float«*) malloc(SIZExsizeof (float));
float* c (float*) malloc(SIZExsizeof (float));

for (i=0; i<SIZE; i++) {
ali] = 1.0f = 1i;
b[i] = 2.0f % i}
c[i] = 0.0f;
}
coprthr mem t mema = coprthr dmalloc(dd, SIZExsizeof (
float), 0);
coprthr mem t memb = coprthr dmalloc(dd, SIZExsizeof (
float), 0);
coprthr mem t memc = coprthr dmalloc(dd, SIZExsizeof (
float), 0);

coprthr dwrite(dd, mema, 0, a, SIZExsizeof(float),
COPRTHR_E NOWAIT) ;

coprthr dwrite(dd, memb, 0, b, SIZExsizeof(float),
COPRTHR_E_NOWAIT) ;

coprthr dwrite(dd, memc, 0, ¢, SIZExsizeof(float),
COPRTHR,_E NOWAIT) ;

unsigned int nargs = 3;
void* args[] = { &mema, &memb, &memc };
unsigned int nthr = 16;

double runtime;
double start = walltime () ;

coprthr dexec(dd, krn, nargs, args, nthr, 0,
COPRTHR, E_NOWAIT) ;

coprthr dcopy(dd, memc, 0, memb, 0, SIZExsizeof(float),
COPRTHR_E NOWAIT) ;

16

71
72

73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

0 J O Ui Wi

I I N I N T N B S S G O e Sl e S =Y
=W N = OO Ui W E—EOO

coprthr dread(dd, memc, 0, ¢, SIZExsizeof (float),
COPRTHR, E NOWAIT) ;

coprthr dwait(dd);

runtime = walltime () — start;
printf("Runtime: %8.3f ms\n", runtimexle3);

//for (i=0; i<SIZE; i++)
// printf("%f « %f = %f\n", ali], b[i], c[i]);

coprthr dfree(dd, mema);
coprthr dfree(dd, memb);
coprthr dfree(dd, memc);

free(a);
free(b);

free(c);

coprthr dclose(dd);

Listing A.1: Implementation of vector multiplication using COPRTHR

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <sys/time.h>

#define SIZE 1048576

double walltime ()

{
static struct timeval t;
gettimeofday (&t , NULL);
return (t.tv_sec + le—6 % t.tv_usec);
}
int main ()
{

int 1i;

float* a = (floatx*) malloc(SIZExsizeof (float));

float* b = (floatx) malloc(SIZExsizeof (float));
float* ¢ = (floatx) malloc(SIZExsizeof(float));

for (i=0; i<SIZE; i++) {
ali] = 1.0f * i;

)

17

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

[\

bli] = 2.0f * i;
c[i] = 0.0f;
}

double runtime;
double start = walltime () ;

for (i = 0; 1 < SIZE; i++) {
) c[i] = ali] = b[i];

runtime = walltime () — start;
printf ("Runtime: %8.3f ms\n", runtimexle3);

//for (i=0; i<SIZE; i++)
/0 primtCE % = % il bl eli]):

free(a);
free(b);
free(c);

Listing A.2: Serial implementation of vector multiplication

/ %

x Originally created for CUDA by Ruben Spaans for Anne C Elster
and her parallel programming class.

x Modified to COPRTHR for the Parallella device by Trygve
Aaberge.

*
*/
#include <stdio.h>
#include <stdlib .h>
#include <math.h>
#include <sys/time.h>
#include <string.h>
#include "coprthr.h"
#include "coprthr cc.h"

/* Problem size =/
#define XSIZE 16
#define YSIZE 16
#define MAXITER 255
double xleft=-2.01;

double xright=1;
double yupper,ylower;

18

24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45

46
47
48
49
50
o1
92
33

54

%)

56
57
58
99
60
61
62
63

64
65
66

double ycenter=le—6;
double step;

int host pixel [XSIZExYSIZE|;
int device pixel [XSIZExYSIZE |;

typedef struct {
double real ,imag;
} my complex t;

#define PIXEL(i,j) ((i)-+(j)*XSIZE)

/xxxxxxxxxx SUBTASKL: Create kernel device calculate
sk ok ok ok ok ok o K KRR K KKK KR R Rk Rk
char src[] =\
"#include <coprthr.h>\n" \
"#define XSIZE 16\n" \

"typedef struct {\n" \
" double real ,imag;\n" \
"} my complex t;\n" \

"void my kern(intx a, doublex xleft , doublex yupper,
doublex step) {\n" \

int j = coprthr get thread index();\n" \

for (int i = 0; i < XSIZE; i++) {\n" \

my complex t c,z,temp;\n" \

" int iter=0;\n" \
c.real = (xxleft + xstep=*i);\n" \
c.imag = (xyupper — xstep=j);\n" \
" z = C;\n" \

while (z.real*z.real + z.imag+z.imag <

4.0) {\n" \

" temp.real = z.real*z.real — z.
imag*z.imag + c.real;\n" \

" temp.imag = 2.0%z.real*z.imag + ¢
.imag;\n" \

" z = temp;\n" \

" if(++iter==255) break;\n" \

n }\n” \

" a|i+j*XSIZE]=1iter;\n" \

n }\n" \

”}\n";

/xxxxxxxxxx SUBTASKL END

>I<>|<**>|<****************>I<>|<**************************/

void host calculate ()

{

19

67
68
69

70

71
72
73
74
75
76

7

78

79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98

99

100
101
102
103
104
105
106
107

for (int j=0;j<YSIZE;j++) {
for (int 1=0;i<XSIZE;i++) {
/* Calculate the number of iterations
until divergence for each pixel.
If divergence never happens, return
MAXITER x*/
my complex t c¢,z,temp;
int iter=0;
c.real = (xleft + stepxi);
c.imag = (yupper — stepxj);
7z = C;
while(z.real*z.real + z.imagxz.imag <
4.0) {
temp.real = z.real*xz.real — z.
imag*z.imag + c.real;
temp.imag = 2.0%xz.realxz.imag + c¢
.imag;
z = temp;
if(++iter=MAXITER) break;
}
host pixel [PIXEL(i,j)|=iter;

}

typedef unsigned char uchar;

/* save 24—Dbits bmp file , buffer must be in bmp format: upside—
down =/
void savebmp (char sname,uchar xbuffer ,int x,int y)
{
FILE xf=fopen (name,"wb");
if (1f) {
printf("Error writing image to disk.\n");
return;
}
unsigned int size=xxy*x3+454;
uchar header[54|={"'B’,'M’, size &255,(size >>8)&255,(size
>>16)&255,size >>24,0,
0,0,0,54,0,0,0,40,0,0,0,x&255,x> >8,0,0,y&255,y
~~8,0,0,1,0,24,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
fwrite (header,1,54,f);
fwrite (buffer ,1 ,x*xy=3,{);
fclose (f);
}

/* given iteration number, set a colour x/
void fancycolour (uchar *p,int iter)

20

108
109
110
111
112

113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139

140
141
142
143
144
145
146

147
148
149

150

if (iter=—MAXITER) ;

else if(iter <8) { p[0]=128+1iter x16; p[l]=p[2]=0; }

else if(iter <24) { p[0]=255; p[l]=p[2]=(iter —8)x16; }
else if(iter <160) { p[0]=p[l]=255—(iter —24)*2; p[2]=255;

else { p[0]=p[l]=(iter —160)*2; p[2]=255—(iter —160)*2; }

}
/%

x Get system time to microsecond precision (ostensibly , the same
as MPI_Wtime) ,

% returns time in seconds

i/

double walltime ()

{
static struct timeval t;
gettimeofday (&t , NULL) ;
return (t.tv_sec + le—6 % t.tv_usec);

}

int main(int argc,char *xargv)
{
if (arge==1) {
puts (" Usage: MANDEL n") ;
puts("n decides whether image should be written
to disk (l=yes, 0=no)");
return 0;
}
double start;
double hosttime=0;
double devicetime=0;
double memtime=0;

int dd = coprthr dopen (COPRTHR_ DEVICE E32,
COPRTHR, O STREAM) ;

if (dd<o0) {
printf("device open failed\n");
exit(—1);
}
coprthr program t prg = coprthr dcompile(dd,src,sizeof (
src),"",0);

coprthr _kernel t krn = coprthr getsym (prg,"my kern");
/* Calculate the range in the y—axis such that we

preserve the
aspect ratio x/

21

151
152
153
154
155
156
157
158
159
160

161
162

163

164

165

166
167
168

169

170

171

172
173

174
175
176

177
178
179

180
181
182
183
184
185
186

step=(xright —xleft) /XSIZE;
yupper=ycenter+(step*YSIZE) /2;
ylower=ycenter —(step*YSIZE) /2;

/* Host calculates image =/
start=walltime () ;
host calculate () ;
hosttime+=walltime ()—start ;

Jxxxxxxxxxx SUBTASK2: Set up device memory
s ok ok o o o o KK KKK K KKK R R R R R SR R ok R R ok

coprthr mem t mema = coprthr dmalloc(dd, XSIZExYSIZEx
sizeof (int) ,0);

coprthr mem t memxleft = coprthr dmalloc(dd, sizeof(
double) ,0);

coprthr mem t memyupper = coprthr dmalloc(dd, sizeof(
double) ,0);

coprthr _ mem t memstep = coprthr dmalloc(dd, sizeof(double

),0) 5

memset (device pixel, 0, XSIZExYSIZExsizeof (int));

coprthr dwrite (dd,mema,0,device pixel ,XSIZExYSIZExsizeof (
int) ,COPRTHR_E NOWAIT) ;

coprthr dwrite (dd, memxleft ,0,& xleft , sizeof (double),
COPRTHR,_E NOWAIT) ;

coprthr dwrite (dd, memyupper,0,&yupper , sizeof (double)
COPRTHR,_E_NOWAIT) ;

coprthr dwrite (dd, memstep,0,& step , sizeof (double)
COPRTHR,_E NOWAIT) ;

/xxxxxxxxxx SUBTASK2 END

s s ok o o o o K K K KKK KKK KK K R R R R K R o o KKK KKK KRk ok ok /
start=walltime () ;
Jxxxxxxxxxx SUBTASK3: Execute the kermel on the device
ook KKK ok S KKKk KRk K
unsigned int nargs = 4;
void* args[] = { &mema, &memxleft, &memyupper, &memstep
5
unsigned int nthr = YSIZE;
coprthr dexec(dd,krn,nargs,args,nthr ,0,COPRTHR_E NOWAIT) ;
coprthr dwait (dd);

/xxxxxxxxxx SUBTASK3 END

*>|<***>l<***********>l<*******************************/

22

187
188
189
190

191
192

193
194
195
196

197
198
199

200
201
202
203

204
205
206
207
208
209

210
211
212
213
214

215

216
217
218
219
220
221
222
223
224

devicetimet+=walltime ()—start ;

start=walltime () ;
[xxxxxxxxxx SUBTASK4: Transfer the result from device to
device pixel [|[]*/

coprthr dread(dd,mema,0,device pixel ,XSIZExYSIZEx*sizeof (
int) ,COPRTHR E NOWAIT) ;

coprthr dwait(dd);

/xxxxxxxxxx SUBTASK4 END
S o ok o o o K KRR K KKK KK K R R R K R o o R K KRR R R K KKK KK R ok ok ok ok ok
memtimet=walltime ()—start ;

[xxxxxxxxxx SUBTASKS: Free the device memory also
sk ok KoK ok ok KK ROk KKKk o Kk ok

coprthr dfree(dd,mema) ;

[xxxxxxxxxx SUBTASKS END

>(<>I<*>I<>|<***>(<******>|<***************************/

int errors=0;
/* check if result is correct =/
for (int i=0;i<XSIZE;i++) {
for (int j=0;j<YSIZE;j++) {
int diff=host pixel [PIXEL(i,j)]—
device pixel [PIXEL(i,j)];
if (diff <0) diff—diff;
/% allow +—1 difference =/
if (diff>1) {
if (errors <10)
printf("Error on pixel %d
%d: expected %d,
found %d\n",
i,j,host pixel]|
PIXEL(i,j)].
device pixel]
PIXEL (T, j)) ;
else if (errors==10)
puts ("...");
errors-+-+;

}
}
if (errors >0) printf("Found %d errors.\n",errors);
else puts("Device calculations are correct.");

23

225
226
227
228
229
230
231

232
233

234
235
236
237

238
239
240
241
242
243
244

00 O Ui Wi

13
14
15

16
17
18

19

printf("\n");

printf("Host time: %7.3f ms\n" hosttimexle3);
printf (" Device calculation: %7.3f ms\n",devicetimexle3);
printf("Copy result: %7.3f ms\n" ,memtimexle3) ;

if (strtol (argv|[1],NULL,10)!=0) {
/% create mnice image from iteration counts. take
care to create it upside
down (bmp format) x/
unsigned char xbuffer=(unsigned char x)calloc(
XSIZE+YSIZE*3,1) ;
for (int 1=0;i<XSIZE;i++) {
for (int j=0;j<YSIZE;j++) {
int p=((YSIZE—j —1)«XSIZE+1) *3;
fancycolour (buffer+p,device pixel
[PIXEL(i ,j)) ;

}
}
/* write image to disk =/
savebmp ("mandell .bmp" , buffer ,XSIZE,YSIZE) ;

}

return O0;

}

Listing A.3: Serial implementation and implementation using COPRTHR of
mandelbrot

ESDK—$ (EPIPHANY HOME)

ELIBS=$ (ESDK) /tools /host /lib

EINCS=$ (ESDK) / tools /host /include
ELDF=$ (ESDK) /bsps/current /internal . 1df
EXES=main epiphany.srec

OBJS=epiphany . elf

all: $(EXES)

main: host.c shared data.h
gcc —0O3 host.c —o main —I $(EINCS) —L $(ELIBS) —le—hal —
Irt

epiphany. elf: epiphany.c shared data.h
e—gce —03 —funroll—loops —ffast —math —T $(ELDF) epiphany .
¢ —o epiphany.elf —le—lib

epiphany.srec: epiphany.elf

e—objcopy —srec—forceS3 —output—target srec epiphany.
elf epiphany.srec

24

20
21

O © 00O Uk W

[y

ST W N

oo

10
11
12
13
14
15
16
17
18
19
20
21

22

clean:

rm $(EXES) $(OBJS)

Listing A.4: Makefile for implementations using eSDK

#!/bin /bash

set —e

ESDK—$ {EPIPHANY HOME}

ELIBS=${ESDK}/tools /host/lib:${LD LIBRARY PATH}
EHDF-$ {EPIPHANY HDF}

setterm —blank 0 —cursor off
sudo —E LD LIBRARY PATH=${ELIBS} EPIPHANY HDF-=${EHDF} ./main

Listing A.5: Run-file for implementations using eSDK

/%

Copyright (c¢) 2013—2014, Shodruky Rhyammer
Copyright (c¢) 2014, Trygve Aaberge

All rights reserved.

Redistribution and use in source and binary forms, with or
without modification ,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above
copyright notice, this
list of conditions and the following disclaimer .

Redistributions in binary form must reproduce the above

copyright notice, this
list of conditions and the following disclaimer in the
documentation and/or
other materials provided with the distribution.

Neither the name of the copyright holders nor the names

of 1its

contributors may be used to endorse or promote products

derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE

25

23

24

25

26

27

28

29
30
31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
58
59
60
61
62
63

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Originally code for Mandelbrot computation, licenced as stated
above, from:

https://github.com/parallella/parallella —examples/tree/master/
mandelbrot

Used as basis and modified for this Game of Life implementation.

*/

#include <stdio.h>
#include <string.h>
#include <stdlib .h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdint.h>
#include <time.h>
#include <e—hal.h>
#include "shared data.h"

#define BUF OFFSET 0x01000000

static inline void nano wait(uint32 t sec, uint32 t nsec)

{
struct timespec ts;
ts.tv_sec = sec;
ts.tv_mnsec = nsec;
nanosleep(&ts, NULL) ;

}

int main(int argc, char xargv|[])

{

e platform t eplat;
e epiphany t edev;
e_mem_t emem;

26

64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111

static msg block t msg;
memset(&msg, 0, sizeof(msg));
struct timespec time;

double time0O, timel;

e init (NULL) ;

e_reset_system () ;

e get platform info(&eplat);

e alloc(&emem, BUF OFFSET, sizeof(msg block t));

unsigned int xres = XRES;
unsigned int yres = YRES;
msg.info.xres = xres;
msg.info.yres = yres;

unsigned int core = 0;
unsigned int row = 0;
unsigned int col = 0;
volatile unsigned int vepiphany [CORES];
volatile unsigned int vcoreid = 0;
unsigned int vhost [CORES];
for (core = 0; core < CORES; core++) {
vepiphany[core] = 0;
vhost [core] = 0;

}

FILE x«file = fopen("grid.txt", "r");
if (file — NULL) {
fprintf(stderr, "Could not open grid.txt\n");

exit (1) ;
}
int x, y, c;
int eol = 0;

for (row = 0; row < ROWS; row++) {
for (y = 05 y < yres; y++) {
for (col = 0; col < COLS; col++) {
core = row *x COLS + col;
for (x = 0; x < xres; x++) {
it (leol) {
¢ = fgetc(file);
i (c— \n') {
eol = 1;

}

if (¢ = "17) {
msg. pixels[core]|

yIlxl = 1;
} else {

27

112

113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134

135

136

137
138
139
140
141
142

143

144
145
146
147

msg. pixels[core ||
vIlx] = 0;

eol = 0;

}

e_open(&edev, 0, 0, ROWS, COLS);

e write(&emem, 0, 0, 0, &msg, sizeof(msg));

e _reset group(&edev);

e load group("epiphany.srec", &edev, 0, 0, ROWS, COLS,
E TRUE) ;

nano_wait (0, 100000000) ;

clock gettime (CLOCK REALTIME, &time);

time0 = time.tv_sec + time.tv_nsec * 1.0e—-9;

unsigned int frame = 0;
while (1) {
for (row = 0; row < ROWS; row++) {
for (col = 0; col < COLS; col++) {
core = row x COLS + col;
while (1) {
e_read(&emem, 0, 0, (
off t)((char «)&msg.
msg_d2h|[core| — (char
*)&msg) , &msg.
msg_d2h[core|, sizeof
(msg_dev2host _t));
vepiphany[core| = msg.
msg_d2h|core|. value;
if (vhost|[core| —
vepiphany [core] >
((T0u) >> 1)) {
break ;
}

nano_wait (0, 1000000) ;

vhost [core| = vepiphany[core];
vcoreid = msg.msg d2h[core].
coreid;
//printf("%x row:%d col:%d\n",
vepiphany [core], (vcoreid >>
6), (vcoreid & 0x3f));
}
}
for (row = 0; row < ROWS; row++) {
for (col = 0; col < COLS; col++) {

28

148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190

e_resume(&edev, row, col);

}

}

frame-+-+;

if (frame > FRAMES) {

break;
}
}
for (core = 0; core < CORES; core++) {

while (1) {

e _read(&emem, 0, 0, (off t)((char *)&msg.
msg_d2h[core| — (char =*)&msg), &msg.
msg d2h|[core], sizeof(msg dev2host t)
)

if (msg.msg d2h|[core]. finished = 1) {

break ;

}

nano_wait (0, 1000000);

}

e read(&emem, 0, 0, (off t)((char *)&msg.pixels]|
core| — (char *)&msg), &msg.pixels|[core],
sizeof (uint32 t[yres]|[xres]));

}
clock gettime (CLOCK REALTIME, &time)
timel = time.tv_sec + time.tv_nsec * 1.0e—-9;

printf("rows: %d, cols: %d\n", ROWS x yres, COLS x xres);
printf("frames: %d\n", FRAMES) ;

printf("time: %f sec\n", timel — time0);

for (row = 0; row < ROWS; row++) {
for (y = 0; y < yres; y++) {
for (col = 0; col < COLS; col++) {
core = row *x COLS + col;
for (x = 0; x < xres; x++) {
printf("%d ", msg.pixels |
core|[y][x]);

printf("\n");

}

e close(&edev);
e free(&emem) ;
e finalize ();
return 0;

29

S T W N =

o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

Listing A.6: Implementation of Game of Life using eSDK, host.c

/%

Copyright (c¢) 2013—2014, Shodruky Rhyammer
Copyright (c) 2014, Trygve Aaberge

All rights reserved.

Redistribution and use in source and binary forms, with or
without modification ,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above
copyright notice, this
list of conditions and the following disclaimer .

Redistributions in binary form must reproduce the above
copyright notice, this

list of conditions and the following disclaimer in the
documentation and/or

other materials provided with the distribution.

Neither the name of the copyright holders nor the names
of its

contributors may be used to endorse or promote products
derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

30

31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52
33
54
55
56
o7
a8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76

Originally code for Mandelbrot computation, licenced as stated
above, from:

https://github.com/parallella/parallella —examples/tree /master/
mandelbrot

Used as basis and modified for this Game of Life implementation.

*/

#include "e lib.h"

#include "shared data.h"
#define BUF_ ADDRESS 0x8f000000
#define PAGE OFFSET 0x2000
#define PAGE_ SIZE 0x2000

unsigned int row, col, core;
unsigned int xres, yres;

unsigned int fetch node(char *src, int x, int y, int x_ diff, int

y _diff) {
int get global = 0;
int col new = col;
int row_new = row;

int x new = x + x_diff;
if (x_new < 0) {
col new——;
if (col_new < 0) {
return O0;

1
X_new = Xxres — 1;
get global = 1;

} else if (x_new — xres) {

col new-+;

if (col new >= COLS) {
return 0;

}

x_new = 0;
get global = 1;
}
int y new =y + y_diff;
if (y_new < 0) {
row_new——;
if (row_new < 0) {
return O0;

}
y_new = yres — 1;
get global = 1;

} else if (y_new — yres) {

TOW _New-+-+;

31

T
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104

105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121

}

if (row_new >= ROWS) {
return 0;
¥

y_new = 0;
get global = 1;

}

char ssrc2 = src + (y_new % yres + x_new) x* 4;
if (get global) {
src2 = e _get_global address(row_new, col new,
src2);

}

return *src2;

int main(void)

{

e coreid t coreid;

coreid = e _get coreid () ;

e coords from coreid(coreid, &row, &col);

core = row x COLS + col;

unsigned int frame = 1;

unsigned int page = 1;

volatile msg block t xmsg = (msg block t *)BUF_ ADDRESS;
xres = msg—>info .xres;

yres = msg—>info.yres;

// For simplicity , each value is stored in a word. Since
a word is 4 bytes,

// and the only possible values are 0 and 1, it would be
possible to store 32

// values for each word.

char *src[2] = {(char *)(PAGE _OFFSET), (char x)(
PAGE_OFFSET | PAGE_SIZE)};
unsigned int xpixel last = (unsigned int x)src[0];
unsigned int xpixel cur = (unsigned int x)src[1l];
unsigned int x, y;
for (y = 0; y < yres; y++) {
for (x = 0; x < xres; x++) {

xpixel last = msg—>pixels|[core]|[y][x];

xpixel cur = 0;

pixel last++;

pixel cur++;

}

while (1) {
msg—>msg_d2h|[core|. coreid = coreid;

32

122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137

138

139

140

141

142

143

144

145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160

msg—>msg_d2h[core |. value = frame;
asm __ volatile ("trap 4");

pixel cur = (unsigned int x*)src|page];
page = page " 1;

if (frame > FRAMES) {
break ;
}

frame-++;

for (y = 05 y < yres; y++) {
for (x = 0; x < xres; x++) {

int is_live = fetch node(src[page
[, x, vy, 0, 0);
int nr live = 0;

nr_live 4+= fetch node(src[page],
x, vy, —1, =1);

nr_live 4= fetch node(src[page],
X, ¥, 717 0)3

nr_live 4= fetch node(src|page],
X, y, —1, 1);

nr_live += fetch node(src[page],
x, v, 0, —=1);

nr_live 4= fetch node(src[page],
x, y, 0, 1);

nr_live 4= fetch node(src|page],
X, y, 1, =1);

nr_live += fetch node(src[page],

x, vy, 1, 0);
nr_live 4= fetch node(src[page],
X, vy, 1, 1);

if (is_live) {
if (nr_live < 2 ||
nr_live > 3) {
xpixel cur = 0;

} else {

xpixel cur = 1;
} else if (nr live = 3) {
xpixel cur = 1;

} else {
xpixel cur = is_ live;
}

pixel cur+4+;

33

161
162
163
164
165
166
167
168
169
170
171
172
173

S T W N =

0 =

10
11
12
13
14
15
16
17
18
19
20
21
22

23

pixel cur = (unsigned int x)src[page];
for (y = 0; y < yres; y++) {
for (x = 0; x < xres; x++) {

msg—>pixels[core|[y]|[x] = xpixel cur;
pixel cur++;
}
}
msg—>msg_d2h|core]. finished = 1;
return 0;
}
Listing A.7: Implementation of Game of Life using eSDK, epiphany.c
/%

Copyright (c) 2013—2014, Shodruky Rhyammer
Copyright (c) 2014, Trygve Aaberge
All rights reserved.

Redistribution and use in source and binary forms, with or
without modification ,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above
copyright notice, this
list of conditions and the following disclaimer .

Redistributions in binary form must reproduce the above
copyright notice, this

list of conditions and the following disclaimer in the
documentation and/or

other materials provided with the distribution.

Neither the name of the copyright holders nor the names
of its

contributors may be used to endorse or promote products
derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR

34

24

25

26

27

28

29
30
31

32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
33
o4
95
56
o7
a8
99
60
61
62
63
64
65

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Originally code for Mandelbrot computation, licenced as stated
above, from:

https://github.com/parallella/parallella —examples/tree/master/
mandelbrot

Used as basis and modified for this Game of Life implementation.

*/

#include <stdint.h>

#define FRAMES 100
#define ALIGNS 8
#define CORES 16
#define ROWS 4
#define COLS 4
#define XRES 45
#define YRES 45

typedef struct _ attribute ((aligned (ALIGN8))) {
uint32 t value;
uint32 _t coreid;
uint32 t finished;

} msg dev2host t;

typedef struct _ attribute _ ((aligned (ALIGN8))) {
uint32 _t value;

} msg host2dev_t;

typedef struct _ attribute ((aligned (ALIGN8))) {
uint32 t xres;
uint32 _t yres;

} info t;

typedef struct {
msg host2dev_t msg h2d [CORES];
msg _dev2host t msg d2h|[CORES]|;

info t info;

35

66
67

0 O Uik Wi

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

uint32 t pixels [CORES]|[YRES][XRES];
} msg block t;

Listing A.8: Implementation of Game of Life using eSDK, shared data.h

#include <stdio.h>
#include <string.h>
#include <stdlib .h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdint.h>
#include <time.h>

#define FRAMES 100

Zdefine XRES 180
Zdefine YRES 180

unsigned int xres, yres;
unsigned int pixels [2][YRES][XRES];

static inline void nano wait(uint32 t sec, uint32 t nsec)

{
struct timespec ts;
ts.tv_sec = sec;
ts.tv_nsec = nsec;
nanosleep(&ts, NULL) ;
}

unsigned int fetch node(unsigned int page, int x, int y, int
x _diff, int y diff) {

int x new = x + x_diff;

if (x_new < 0 || x_new >= xres) {
return 0;
}
int y new =y + y_diff;
if (y_new < 0 || y_new >= yres) {
return 0;
}
return pixels [page]|[y_new]|[x_new];
}
int main(int argc, char xargv|])
{

struct timespec time;
double time0O, timel;
xres = XRES;
yres = YRES;

36

44
45
46
47
48
49
50
51
92
33
54
55
56
o7
a8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88

89
90

unsigned int row = 0;
unsigned int col = 0;

FILE «file = fopen("grid.txt", "r");

if (file — NULL) {
fprintf(stderr, "Could not open grid.txt\n");
exit (1);

}

int x, y, c;
int eol = 0;
for (y = 0; y < yres; y++) {
for (x = 0; x < xres; x++) {

if (leol) {
¢ = fgetc(file);
i (e — ") {
eol = 1;
}
if (¢ = 1)
pixels [0][y][x] = 1;
} else {
pixels [0][y][x] = 0;
pixels [1][y][x] = 0;
}
eol = 0;
}
clock gettime (CLOCK REALTIME, &time) ;
time0) = time.tv_sec + time.tv_nsec * 1.0e—-9;
unsigned int frame = 1;
unsigned int page last = 0;
unsigned int page cur = 1;
while (1) {
if (frame > FRAMES) {
break ;
}
frame-+-+;

for (y = 0; y < yres; y++) {
for (x = 0; x < xres; x++) {

int is_live = fetch node(
page last, x, y, 0, 0);
int nr_ live = 0;

nr_live 4= fetch node(page last,
X, Y, _17 _1)7

37

91 nr_live += fetch node(page last,
x, vy, —1, 0);
92 nr live += fetch node(page last,
X, Y, 717 1),
93 nr_live += fetch node(page last,
x, y, 0, =1);
94 nr_live += fetch node(page last,
x, vy, 0, 1);
95 nr live += fetch node(page last,
X, Y,]-a _1)7
96 nr_live += fetch node(page last,
X, vy, 1, 0);
97 nr_live += fetch node(page last,
X, vy, 1, 1);
98 if (is_live) {
99 if (nr_live < 2 ||
nr_live > 3) {
100 pixels[page cur]|
vlx] = 0;
101 } else {
102 pixels[page cur]|
vllx] = 1;
103
104 } else if (nr live = 3) {
105 pixels [page cur][y][x] =
1;
106 } else {
107 pixels[page cur][y][x] =
is live;
108 }
109 }
110 }
111
112 page last = page cur;
113 page cur = page_cur = 1;
114 }
115
116 clock gettime (CLOCK REALTIME, &time);
117 timel = time.tv_sec + time.tv_nsec % 1.0e—9;
118 printf("rows: %d, cols: %d\n", yres, xres);
119 printf("frames: %d\n", FRAMES) ;
120 printf("time: %f sec\n", timel — time0);
121
122 for (y = 0; y < yres; y++) {
123 for (x = 0; x < xres; x++) {
124 printf("%d ", pixels|[page last]|[y][x]);
125 }
126 printf("\n");
127 }

38

128
129
130

00 O Uik W N

DO DO DO DD DD N = = o e e e e e
U W N O OO Uk WD = OO

26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41

return 0;

Listing A.9: Serial implementation of Game of Life, using arrays

#include <stdio.h>
#include <string.h>
#include <stdlib .h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <stdint.h>
#include <time.h>

#define FRAMES 100
#define XRES 180
#define YRES 180

unsigned int xres, yres;

static inline void nano_ wait(uint32 t sec, uint32 t nsec)

{
struct timespec ts;
ts.tv_sec = sec;
ts.tv_nsec = nsec;
nanosleep(&ts , NULL) ;

}

unsigned int fetch node(char xsrc, int x, int y, int x_diff, int
y _diff) {
int x new = x + x_diff;
if (x_new < 0 || x_new >= xres) {
return 0;
}

int y new =y + y_ diff;

if (y_new < 0 || y_new >= yres) {
return 0;

}

char *src2 = src + (y_new % yres + x_new) % sizeof(
unsigned int);
return xsrc2;

}

int main(int argec, char xargv|])

{

struct timespec time;
double time0O, timel;

39

42
43
44
45
46
47
48
49
50
o1
52
53
54
95
o6
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

xres — XRES;

yres = YRES;

unsigned int row = O0;
unsigned int col = 0;
char ssrc[2] = {

malloc(xres % yres % sizeof(unsigned int)),
malloc (xres * yres * sizeof (unsigned int))

b

FILE «file = fopen("grid.txt", "r");
if (file — NULL) {
fprintf(stderr, "Could not open grid.txt\n");

exit (1);
}
int x, y, c;
int eol = 0;
unsigned int xpixel last = (unsigned int x)src[0];
unsigned int xpixel cur = (unsigned int x)src[1l];

for (y = 0; y < yres; y++) {
for (x = 0; x < xres; x++) {

it (leol) {
¢ = fgetc(file);
if (¢ = "\n’) {
eol = 1;
}
if (¢ = "17) {
xpixel last = 1;
} else {
*pixel last = 0;
}
xpixel cur = 0;

pixel last++;
pixel cur++;

}
eol = 0;
}
clock gettime (CLOCK REALTIME, &time);
time0) = time.tv_sec + time.tv_nsec * 1.0e—-9;
unsigned int frame = 1;
unsigned int page = 1;
while (1) {
pixel cur = (unsigned int =*)src|[page];

page = page ~ 1;

40

91
92
93
94
95
96
97
98
99

100
101

102

103

104

105

106

107

108

109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

if (frame > FRAMES) {
break ;
}

frame-+-+;

for (y = 0; y < yres; y++) {

for (x = 0; x < xres
int is_live
I, =, y,

int nr_live

;oxt) |

= fetch node(src[page
0, 0);

—0:

nr_live += fetch node(src[page],

X, ¥, -1

nr_live 4= fetch node(src[page],

X, ¥, -1

aO);

nr_live 4= fetch node(src|page],

X, ¥, -1

, 1)

nr_live += fetch node(src[page],

X, ¥, 07

—=1);

nr_live 4= fetch node(src[page],

X, Y, 07

1)

nr_live 4= fetch node(src|page],

X, vy, 1, =1);
nr live += fetch node(src[page],
x, y, 1, 0);
nr_live 4= fetch node(src[page],
x, vy, 1, 1);
if (is_live) {
if (nr_live < 2 ||
nr live > 3) {
xpixel cur = 0;
} oelse {
xpixel cur = 1;
} else if (nr live = 3) {
xpixel cur = 1;
} else {
xpixel cur = is_ live;

}

pixel cur+4+;

41

clock gettime (CLOCK REALTIME, &time);
timel = time.tv_sec + time.tv_mnsec * 1.0e—9;
printf("rows: %d, cols: %d\n", yres,
printf("frames: %d\n", FRAMES) ;

xres);

130 printf("time: %f sec\n", timel — time0);
131
132 pixel cur = (unsigned int x*)src|[page];

133 for (y = 0; y < yres; y++) {

134 for (x = 0; x < xres; x++) {

135 printf("%d ", xpixel cur);
136 pixel cur++;

137 }

138 printf("\n");

139 }

140
141 free(src[0]);
142 free(src[1]);
143
144 return 0;
145 |}

Listing A.10: Serial implementation of Game of Life, using a memory space

42

