
Neural Net Controller for a Snake Robot

Eirik Skjeggestad Dale

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Abstract

This project describes a system using an Evolutionary Algorithm to evolve
an artificial Neural Network used to control serpentine robots. Snake robots
have the potential to move much easier than conventional robots with wheels
in cluttered environments. Since many areas of the world, on earth or on
other planets, consist of cluttered or difficult environments, this provide am-
ple motivation to develop snake robots. The project evolves a system taking
the environment and target destination into account through its evolution-
ary algorithm. This allows the system to keep evolving artificial Neural
Networks while the environment changes, and allows the controller to adapt
to changes in the environment and target destination.

Contents

1 Introduction 4
1.1 Motivation . 5
1.2 Problems and Research Questions 6
1.3 The approach . 8

2 Background 9
2.1 Simulation Software and Methodology 9
2.2 Biological snake locomotion 11

2.2.1 Lateral Undulation . 11
2.2.2 Concertina Locomotion 12
2.2.3 Rectilinear Crawling 13
2.2.4 Sidewinding . 14

2.3 Physical Model for the robot snake 15
2.3.1 Complex model . 15
2.3.2 Simplified model . 18

2.4 Literature study . 21
2.4.1 Structured literature review 21
2.4.2 Snake Robots: Modeling, Mechatronics and Control . 25

3 Methodology 27
3.1 The Evolutionary Algorithm 28

3.1.1 Overview and theoretical background for the Evolu-
tionary Algorithm . 28

3.1.2 Genotype and Phenotype Representation 30
3.1.3 Evolutionary Algorithm specifics 32

3.2 The Neural Network . 35
3.3 The simulator . 40

3.3.1 The early version of the Simulator 40
3.3.2 The two dimensional Simulator 41
3.3.3 The final version of the simulator 43

3.4 The system put together . 48

4 Results and Discussion 50

1

4.1 Tests and results . 51
4.1.1 The first test . 53
4.1.2 The second test . 55
4.1.3 The third test . 57
4.1.4 The fourth test . 59
4.1.5 The fifth test . 61

4.2 Analysis of a Neural Network 63
4.3 Further work . 66

5 Conclusion 68
5.1 Summary of the project . 68
5.2 Conclusion for the project . 70

2

List of Figures

2.1 Lateral Undulation Locomotion 12
2.2 Concertina Locomotion . 13
2.3 Rectilinear Crawl . 14
2.4 Sidewinding . 15
2.5 Complex physical model . 17
2.6 Simplified physical model . 19

3.1 The Evolutionary Algorithm 29
3.2 Representation of the Phenotype and Genotype 31
3.3 The Layout of the Evolutionary Algorithm 32
3.4 The Neural Network input source 36
3.5 Comparison of input methods 37
3.6 The Neural Network . 39
3.7 Comparison of simple and final simulator 41
3.8 Flowchart for the two dimensional simulator 42
3.9 Screenshot from the graphical representation 44
3.10 Screenshot of snake drifting apart 46
3.11 Graphic from run with target location 47
3.12 Cell map scheme . 47
3.13 The complete system . 48

4.1 Sample fitness graph from the first test 53
4.2 Graphic example of snake movement during second test . . . 55
4.3 Sample fitness graph from the second test 56
4.4 Illustration of snake distance in third test 57
4.5 Samples from the third test 58
4.6 Illustration of difference between targets 59
4.7 Sample fitness graph from test four 60
4.8 Sample fitness graph from test five 61
4.9 Network used in analysis . 63

3

Chapter 1

Introduction

When we’re talking about the field of robotics, one of the key components
is the controller for the robots. The focus has recently begun shifting away
from the traditional wheeled robots, into biologically inspired robots. Re-
search is being done on walker robots with different numbers of legs, and
also serpentile robots are being worked on. The previous and reasonably
well-established robot controllers for the wheeled robots is generally not
applicable for the new robots, since it is now a much larger focus on the
motorics and how the robot must manipulate its limbs to be able to move.
This opens up a new and more advanced area of research, where both navi-
gation and movement have to be taken into consideration when making the
controllers.

This project will attempt to make a controller for serpentile robots using
an Evolutionary Algorithm to evolve the network on its own, since this has
shown promise in previous projects in the field (See subsection 2.4.1). We
also introduce a simple environment into the system to see how the system
is able to handle and adjust to changes in the terrain. Primarily we will
be looking at changes in elevation, but impassable terrain is also possible
using the scheme we implemented. The snake robot is mainly just trying to
move as far as possible in any direction, but we will also try giving it specific
target destinations.

In this introduction chapter we will first take a look at our motivation for
using this approach as well as the real world motivations to make controllers
for robots of this type. We will assess the problems that may arise and take
a look at the relevant research questions before we briefly introduce the
approach we chose for this project.

4

1.1 Motivation

There are several sources of motivation for this project. As far as the robots
go, the traditional wheeled robots are good for use in flat areas where terrain
can be broken down into passable and non-passable. However, when it comes
to environments where the ground is not flat and there might be shifting
objects, or things like logs blocking the route, these wheeled robots start
to struggle, and the pathing becomes a lot more difficult, sometimes even
impossible. The robots using limbs could then simply step over the log,
or adjust its limb manipulation to account for the change in elevation. In
recent years we have seen more and more research going into the robotics
and controllers for these kinds of robots, and Serpentile or segmented robots
are an interesting challenge with a lot of potential in navigating difficult
terrain. Where vehicles like the mars rovers are prone to getting stuck, and
require careful planning from the controllers, a snake robot could handle the
terrain features online and that way get a much better rate of movement.
Building the actual robot is difficult and requires a lot of work in itself, but
in this project we will focus on the equally difficult task of creating a good
controller. The snake robot has been chosen over other segmented or limbed
robot types because the university has a project going with a snake robot [1].
This means that the project had access to reasonably detailed information
and formulas on snake robots and general snake locomotion, and it was a
good stepping stone for this project.

So we saw that for the robots, a big part of the reason we want to do this is
that they can handle difficult terrain better, and unstable, changing terrain.
It is not only the robots movement abilities that should reflect this, but also
the controller should be adapting to changes in the environment. Coding a
good all-around controller that will handle different environments statically
or with traditional Artificial Intelligence methods is extremely difficult, bor-
derline to impossible with today’s technology. This can be bypassed using
an Evolutionary Algorithm that evolves a network as the snake is moving.
Since using the snake itself to test the different networks in the algorithm is
massively impractical, we need to create a simulator that does this, based
on the observed environment. By evolving the networks directly instead of
training them off-line with training data, we allow for more adaptability to
new environments, which can be very helpful in many scenarios. One exam-
ple scenario is that when exploring a burning build, a part of the building
collapses further, adding a new obstacle for our explorers, and a potential
dangerous zone the robots might want to avoid.

All this put together would allow for robots to operate in a myriad of new
environments, and could be hugely useful in many fields, for example explo-
ration and routine operations in hazardous environments. The project also

5

provides more research into evolving relatively complex neural network con-
trollers for robots, and especially segmented robots. Progress in this type of
robots and controller software could open up a lot of possibilities for future
expansions and possible new technologies, with more focus on biologically
inspired robotics. There are currently several studies into this area as seen
in subsection 2.4.1, but a wider range of studies and more research focused
on biologically inspired robots is necessary before they will be able to be-
come as usual as wheeled robots are today. We also need more research into
practical tasks they can perform to create a commercial marked to further
fund the research and development into biologically inspired robotics and
biologically inspired Artificial Intelligence.

1.2 Problems and Research Questions

Now that we have taken a look at the motivation for the project it is time
to look at the problems the project attempts to tackle, and the research
questions that rises from it. This is closely linked to the motivations, but
there are slight differences and also problems that have little to do the
motivation. Since the goal of the project is to create a system evolving
Artificial Neural Networks used to control serpentile robots, it stands to
reason that the main Research goal of the project is if this is at all possible.
A follow up question could then be how much performance we can get out
of such a system, and what the computation time will be like.

The problem here is getting the right balance in the trade-off between having
a more realistic and that way more computationally expensive simulator and
having the program actually find a new network in a tolerable amount of
time. One can have very heavy algorithms running and calculating mostly all
the physics that would naturally happen in such a system, but doing this for
many systems at each iterations, like we do in an evolutionary algorithm, is
simply too expensive with the current technology and available computation
power. Even if this is not part of this project, another idea could be for the
snake robot itself to run the evolutionary algorithm, making the system
completely independent, but this would massively limit the computation
power and is therefore not part of this project.

In the other end of the scale we have the system executing very fast, but this
will typically not be a very good system either and it runs the risk of the
simulator being inaccurate, or not getting close to a good, let alone optimal
solution. This would be because the evolutionary algorithm is not allowed to
run for long enough, with a big enough gene pool, to avoid local maxima. It
might also simply not have enough time for the genotypes to mutate enough
for a good solution to be found. There is also the concern that a system

6

focused on fast execution will have trouble dealing with obstacles, and the
more variable the environment is, the more trouble it will have finding a
good path and a good movement network for the serpentile robot.

Essentially we need to find a good trade-off between complexity and com-
putation speed that fits well for our project. Since we want the snake to
be able to move in more than one of the possible snake movement patterns
(section 2.2), this system will be leaning more towards complexity than
speed. In chapter 4 we see that we were actually able to generate more than
one movement pattern, specifically during the fourth test conducted in that
chapter.

Another problem the system needs to tackle is how to introduce the environ-
ment into the system. The main concerns are the same, with the trade-off
between complexity and speed. In a real life scenario where the robot is in
a closed environment it would have to gather information about the chang-
ing environment itself, and either upload the information to be processed
remotely, or process it itself, if uploading is difficult. The latter is very time
consuming, and in this case it would be possible to also add more complexity
to the evolutionary algorithm, since the robot will already have to have a
certain amount of processing power to be able to convert the data it gathers
to a useful data model.

In the other case, where the data has to be uploaded, the model either has
to get the next controller fast, or it has very little computation power itself.
In at least the first case we can assume speed is essential, and that the robot
is dependent on continued movement and getting the new version of the
controller quickly. If this were the case we could make abstractions so that
it would be simple enough for our situation, and giving us a fast enough
system that will be able to deliver the new controller to the robot in time
for it to maintain high functionality.

This problem gives rise to our secondary Research question for this project:
identifying if it is possible to incorporate an environmental model into the
system, how advanced the model have to be to achieve decent results, and
exploring different ways to do this. If simple versions of relatively general
environments that can be integrated into the locomotion simulation can give
good results this would be very beneficial, because a separate environment
simulator would slow the system down quite a lot. On the other hand, if
the simple version means the robot does not get a good enough controller
for the environment, the performance will suffer.

7

1.3 The approach

In this section we will briefly explain the approach we have taken to answer
the Research questions stated in the previous section. The approach we took
was, as previously mentioned, using evolutionary computation to evolve an
artificial Neural Network to control the snake robot. The Evolutionary Al-
gorithm we used and the Topology of the evolved Artificial Neural Network
will be looked at in more detail in section 3.1 and section 3.2, respectively.
There was always the possibility to create the Evolutionary algorithm us-
ing a preexisting physics simulation software, but the arguments for and
against coding the simulator ourselves, and the reasoning behind doing just
that over using simulation software can be found in section 2.1.

While a small goal for the project was to actually test an evolved controller
on the snake robot this became too ambitious, and the entire project was
done in the simulated environment. An example Neural Network made by
the evolutionary algorithm is analyzed in detail in section 4.2. We will also
look at the results, including the distance moved by the robots, in chapter 4.
The distance moved is for the largest part of the project used directly as the
fitness score for each genotype, without regards for direction. From there we
will, in section 4.3, discuss further work that can be done as future projects
in this field, with insights to the problems we encountered in this project
and suggestions on how they can be solved by anyone else working on this
type of project. Finally we will summarize the project and conclude with
what we found out in light of the Research questions we started with, all
this in chapter 5.

The main goal throughout the project remained to develop a system giving
a controller for a more dynamic system that would be capable of adapting to
changes in the environment. This means showing that this is both possible
and a good way to go about changing environments, as opposed to manually
having to update the controller whenever the environment changes to be able
to encompass the new information about the environment.

8

Chapter 2

Background

This chapter will encompass the theory and background research behind
the project. We start the chapter off by looking at the simulation software
available to the project, as well as the development methodology we decided
to use for this project. We will then be exploring the dynamics of snake
locomotion in biological snakes, albeit at a simple level, before we move on
to taking a look at the physical models used when constructing serpentile
robots. The abstractions and formulas used in the actual system are also
shown in section 2.3. It is worth noting that we so far in the project have
been considering flat surface locomotion, and will not add to the difficulty of
this chapter by considering cluttered environments. However, we will start
by briefly looking at the considerations made when selecting the simulation
software for this project.

2.1 Simulation Software and Methodology

When we started this project we had the choice of several programs that
can be used to simulate robots in a physical environment. The main two
programs we considered during the project were V-Rep [9] and Webots [10].
The third option, and ultimately the one we decided to go with, is pro-
graming the simulation ourselves. The two programs mentioned previously
is reasonably similar, they both support Python, which is the language the
Evolutionary algorithm is written in, but they differ on the point that We-
bots is commercial merchandise, and V-Rep is open source. This means we
would have had to pay for webots, and v-rep does not have the same level
of support as webots. If it was only between these two, it’s reasonable to
assume we could have started with v-rep, and if it weren’t accurate enough,
we could switch to Webots, and try that instead.

9

The big downside to using a preexisting environment though, and the reason
we chose to implement a simulator ourselves, is that if we hope to implement
an actual evolving network on an actual snake robot, programming some
sort of physical simulation will be necessary. By doing this from the very
start we can also have an easier time understanding results and problems
we encounter later. The basic philosophy here is to work harder in the
beginning so we can have more potential at the end of the project. This
also gives us the freedom to change how complex the simulator is, allowing
for testing of complex versus quick execution. Having full control over the
simulator also allows us to add environmental features at a lower level, and
this is a strong motivation for coding our own simulator, since it makes the
secondary research goal much easier to approach. All in all the arguments for
choosing an existing simulation software were that it would make the entire
project easier, and it was more likely for a good neural network controller to
be developed, at least for a simple environment. The arguments for a self-
coded simulator were that we had full control over it and could test different
approaches and levels of complexity with our system, which coincided nicely
with our research goals. This was the reason we chose to create our own
simulator, although it should be mentioned that this proved a difficult task
and a source of many errors and bugs throughout the project, which is
discussed more in chapter 4.

For the development methodology, I chose to use a spiral development
scheme. The project is focused largely on experimentation and exploring
what the genetic algorithm can get us. Planning and adding more function-
ality at each iteration in the spiral seems appropriate, and the since we don’t
really need any user interaction and feedback on any user interfaces, we did
not want to use an agile development method. This decision was also aided
by the fact that this is a one-man project, and the brainstorming sessions in
agile development methods focusing so much on the group coming up with
ideas together. Even with a group an agile development method would not
be ideal since there is no big system that needs to be delivered to a cus-
tomer. Simpler, older development schemes like the waterfall scheme and
V-scheme is simply not good models, since it was expected from the start
that we would have to go back and look at what we had done before quite
a lot whenever new bugs where discovered, and introducing and trying new
things could require changing big parts of the system. This led to the spiral
development scheme being an easy pick for this project.

In short Spiral Development goes through a series of steps:

• Analysis: Determining objectives, alternatives and constraints for this
iteration.

• Evaluation: Evaluating the objectives and alternatives from the pre-
vious step, and assessing risk.

10

• Development: Develop the planned system for this iteration.

• Planning: Plan the next iteration.

This is a good scheme that allows for most of what the project needs. The
project to begin with is largely focused on research rather than following
a development scheme designed to produce a commercial product. Having
an advanced development model designed to get commercial system out is
simply not a good idea. The spiral development scheme was followed during
this project, but only loosely, with the main focus on figuring out bugs in the
simulator and getting it to work properly. Only big things like introducing
environments into the system or giving it a specific destination to move
towards was actually done using the spiral scheme.

2.2 Biological snake locomotion

Snake locomotion is a complex process that depends on several factors, and
there are several types, each specialized for a certain environment. When
we talk about snake locomotion there are four main types of locomotion
snakes are capable of ([7]). We will go through each of the different types
of locomotion and explain how they work and how they fit into this project,
as well as in which scenarios each type of locomotion is used by real snakes.
The goal for the entire project was of course to be able to generate neural
networks that can display all of these types of locomotion based on the
environment. As we will see in chapter 4, we were not able to generate more
than two of these behaviours, which is good to keep in mind as we go through
them and explain where each of them is used in the real world.

2.2.1 Lateral Undulation

Lateral undulation is the fastest and most common type of serpentine loco-
motion, and is also the type most people will think of when they hear snake
locomotion. The basic idea of lateral undulation is that the snake moves in a
continuous wave that are propagated backwards along the snake body from
head to tail. The sides of the snake push against irregularities in the surface
the snake is moving on, and it uses the resistance from these irregularities to
push the snake forward. Every point of the body touches the same point on
the surface, and there is never any static contact between the ground and
any point of the body. It also uses the friction in the scales of the snake,
making sure it is easier to move forward than to the sides. This type of
locomotion is found both in water and on land, but we will focus on the
land part for this project. It is worth noting that the weight distribution of
the snake during lateral undulation is not uniformly distributed along the

11

ground, but distributed in a way that the peaks of the body wave curves are
slightly lifted from the ground.

Figure 2.1: This figure shows the movement pattern during Lateral Undu-
lation locomotion as well as where the force is generated from.

Although it has no impact on the start of the project, where we will only
be working on a flat surface with friction, we will also have to keep in mind
that on slippery or icy surfaces this type of locomotion has severely reduced
effectiveness, because of the role friction plays in generating a forward push-
ing force. This is the main type of movement we hope to emulate, as well
as sidewinding which we will explain later in this section. The movement
pattern and pushing points can be seen in Figure 2.1.

2.2.2 Concertina Locomotion

Concertina Locomotion is often employed in narrow spaces where the snake
is unable to use lateral undulation to move forward. The locomotion is done
by first extending the front part of the body forward while the back part of
the body is anchored, either by hooking its scales against small irregularities
or using the narrow environment. Once the head and front part of the body
is fully extended, they take on the part of anchor so that the back part of
the body can be drawn up, and the motion is repeated. This means that it
is quite slow going, and it is not efficient in terms of energy consumption,
but it is often necessary when traversing narrow spaces. The motion can
be seen in Figure 2.2. The principle behind the concertina locomotion is
relatively simple; it relies on the difference between the large static friction
of the anchor points, and low kinetic friction forces in the extending parts
of the snake body.

For the model we will be using this is not immediately interesting. With no
way to use the hooks as anchor points, since the robots have no hooks, there
is no way to make use of the principle we just mentioned to move the snake.
However, if we had added cluttered environments to the project, the robot
could use the blocking objects of narrow spaces for anchorage, and this type

12

Figure 2.2: The basic principle of Concertina Locomotion. The black areas
of the snake is the parts that is resting and acting as an anchor for the rest of
the snake, being completely stretched out as in image 4 is not a requirement,
but it does allow for the longest amount of movement at each cycle.

of locomotion instantly becomes more interesting. It is therefore important
to keep this type of locomotion in mind when we develop the environment
model for the simulation.

One way to introduce Concertina Locomotion into the flat surface model is
to add to the robot the inability to slide backwards, i.e. that the friction
backwards is very high, which might make the Concertina Locomotion model
a viable and easy way to move the snake. However, it would still not be as
effective as good Lateral Undulation, so we will not be adding that in this
project.

2.2.3 Rectilinear Crawling

Rectilinear Crawling is a very slow form of locomotion often used by heavy-
bodied snakes like pythons, boas and snakes in the final stages of hunting
to avoid alerting its prey, and can be seen in Figure 2.3. The locomotion
relies on using the scales as anchorage, and two opposing muscle-groups,
namely the Costcutaneous inferior and superior muscle, present on every
rib, connecting the rib to the sin. The snake starts the motion by having
the costcutaneous superior lifting the snakes belly from the ground and
placing it ahead of its former position. The scales are then used to anchor
the snake while the costcutaneous inferior pulls backwards, propelling the
snake forwards. Since alternate parts of the body stretches and pulls at the

13

same time, this looks like a continuous motion when done by real snakes,
and it is almost soundless.

Figure 2.3: The amount the belly is being lifted is being exaggerated to show
how rectilinear crawl works. After each segment is stretched it anchors and
pulls the rest of the body forward.

Since both the motivation and actual mechanics for this type of movement
is quite contradictory to the current technology used in snake robots, we will
not be considering rectilinear crawl for this project. The robot is not going
to be stalking any prey, and it cannot easily change the length of its joints.
Since it also faces the same anchorage-problems as Concertina Locomotion,
we will not be implementing any features supporting this type of movement
for this project.

2.2.4 Sidewinding

Sidewinding is a form of locomotion with dynamics very similar to those of
Lateral Undulation, despite appearances. It is usually used by snakes living
in deserts, but has also been observed in muddy areas. The reason for this
is that it is very effective in areas with slippery terrain, ice or loose sand,
where we argued that Lateral Undulation would have decreased effect. This
type of movement is also similar to Concertina Locomotion, in that it uses
parts of its body as anchor for the rest to follow or move ahead of the rest
of the snake. The snake starts by lifting and throwing the head sideways,
ahead of the body, before using the head and neck as anchorage for the rest
of the body to follow the snake into the new line of movement, giving a very
characteristic trail from this type of movement, as seen in Figure 2.4. The
snake moves at about 45� with respect to its heading.

This is one of basic types of snake movements, and by changing both the
simulation friction constants and the fitness function it was one of the main
hopes for this project that we would be able to generate this type of move-
ment. This was still a secondary goal, and Lateral Undulation was the pri-

14

Figure 2.4: The characteristic trail from a sidewinding snake comes from
the fact that anchoring and moving allows the snake to move in almost a
straight line at each step, before jumping to the next one.

mary snake locomotion we tried to achieve. Lifting and throwing its head
especially is a behavior not easily modeled by a simulator not specifically
targeted towards this type of movement, and it was therefore uncertain
if any evolved neural net will use sidewinding. After the tests done us-
ing a target destination however, we saw signs that the snake was actually
sidewinding.

2.3 Physical Model for the robot snake

In this section we will briefly discuss the physical model underlying the sim-
ulation. The simulation is used to evolve the Neural Networks that will
control the robot snakes. We will start with the complex model, as it is nec-
essary before we can start discussing the simplified model to understand how
it is simplified. The literature where this model can be found is [1].

2.3.1 Complex model

The robot consists of N links, each with length l, connected by motorized
joints. All the links have the same mass m and moment of inertia J � 1

3ml
2.

We assume that the center of mass (CM) of each link is at the middle of
the link, i.e. that the weight is uniformly distributed in each link. All the
parameters used is shown and explained briefly in Table 2.1. In Figure 2.5
we see them represented in an illustration of the model.

The model will from here on assume that the snake is moving on a horizontal,
flat surface and hasN�2 degrees of freedom, one for each link and the planar
position of the robot. The robot has no explicitly defined orientation since

15

Symbol Description Vector
N The number of links
l Length of each link
m Mass of each link
J Moment of inertia of each link
θi Angle between link i and the global x axis θ P RN

φi Angle of joint i φ P RN�1

pxi, yiq Global coordinates of the CM of link i X, Y P RN

ppx, pyq Global coordinates of the CM of robot p P R2

ui Actuator torque on link i from i� 1 u P RN�1

ui�1 Actuator torque on link i from i� 1 u P RN�1

pfR,x,i, fR,x,iq Ground friction force on link i fR,x, fR,y P R
N

phx,i, hx,iq Joint constraint force on link i from i� 1 hx, hy P R
N�1

�phx,i�1, hy,i�1q Joint constraint force on link i from i� 1 hx, hy P R
N�1

Table 2.1: The parameters used in the complex snake robot model

there is an independent link angle associated with each link, θ. The model
then defines the heading of the robot to be the average link angle. The robot
then achieves forward propulsion on a flat surface by continually changing
its body shape to induce ground friction forces, propelling it forward, as
we also saw in section 2.2. The propulsive force from a single link is given
as:

Fprop � �
N°
i�1

ppctcos
2θi � ctsin

2θiq 9xi � pct � cnqsinθicosθi 9yiq

Necessarily the sum of these forces is the force with which the entire snake
propels forward. Also note that 9xi and 9yi here is the linear velocity of link, i
in the global x and y directions. There are several more formulas for this
model, but this is one of the key formulas. Here we will look at the most
important formulas and their impact, but the complete model is available
in [1]. The book also introduces into the model a couple of friction models.
We will try all of these models out when we’re implementing this, to see
which gives the best results, or if they give different types of movements.
Briefly, the friction models give us a value for the fR we saw in Table 2.1.
This is also where the values for ct and cn are found. As an example of a
friction model, and the first model we will implement in this project, is the
Coulomb friction model, given by the formula:

f link,iR,i � �mg

�
µt 0
0 µn

�
sgnpvlink,ii q

fR,i � Rgloballink,i f
link,i
R,i , Rgloballink,i �

�
cosθi �sinθi
sinθi cosθi

�

16

Figure 2.5: (Figure used with permission of Pål Liljebäck) This figure, from
the book "Snake Robots: Modeling, Mechatronics and Control" shows how
the different parameters from Table 2.1 correlate to the actual snake robot.

sgnpq produces a vector containing the sign of each individual element of its
argument, and Rgloballink,i is called the rotation matrix. vlink,ii is the link velocity
in the local link frame, shown in Figure 2.5, and finally g is the gravitational
acceleration constant.

The most important part of the model is still how the snake actually gains
momentum, i.e. the acceleration. Since we will be breaking down the model
into discrete time steps, we can simplify and avoid some of the more complex
formulas, and add the acceleration to the current speed at each time step.
The formula for the global acceleration along the global directions is given
as:

:p �

�
:px
:py

�
� 1

Nm

�
eT fR,x
eT fR,x

�

Where eT is simply used as a summation vector on the form e � r1, ..., 1sT .

Another important part of this model is being able to make reasonable fitness
score for it after running the simulation. For this we will at first be using
the position, both before and after, and the take the difference and use that
as the fitness value. This can be found through the global position for the

17

center of mass of the snake:

p �

�
px
py

�
�

�
���

1
Nm

N°
i�1

mxi

1
Nm

N°
i�1

myi

�
���

2.3.2 Simplified model

Even though the complex model is what we have spent most of our time
working on during this project, and it is the model we will be using later, it
is still worth taking a brief look at the simplified model. The basic simplifi-
cation is done by describing the snake robot not as rotational link displace-
ments, but as linear link displacements transversal to the forward direction
of the motion, and the simplification can be seen in Figure 2.6. The pa-
rameters are still the same as it was for the complex model. Even though
the rotational motion of the links during the body shape changes is disre-
garded in this model, it will still capture the effect of the rotational link
motion.

Since the different expressions was explained in the previous section, we will
therefore only briefly list the formulas used in the simplified version, start-
ing with the formula to be used in the fitness function of our evolutionary
algorithm, namely the snakes Center of Mass position.

pt �
1
N e

T t,
pn � 1

N e
Tn.

Where t and n is vectors with the positions of the individual links, and e is
the same as in the previous section. Also note that the relationships between
the t-n frame position and global frame positions is given as:

pt � pxcosθ � pysinθ,
pn � �pxsinθ � pycosθ.

We also have the relationship between global frame velocity and t-n velocity
which is given by:

9px � vtcosθ � vnsinθ,
9py � vtsinθ � vncosθ.

The friction model has also been simplified, and as long as we keep in mind
the cn and cp values of the Coulomb friction model, we can simplify away
the rest of the friction models. The last equation we need to complete the
simplified model now is a way to find the change in speed within the t-n
frame. This is in the simplified model done as:

9vt � � ct
mvt �

2cp

Nmvnē
Tφ�

cp

Nmφ
TAD̄ 9φ,

18

Figure 2.6: (Figure used with permission of Pål Liljebäck) This figure, from
the book "Snake Robots: Modeling, Mechatronics and Control" shows how
the different parameters from Table 2.1 correlate to the actual snake robot,
using the simplified physical model.

9vn � � cn
m vn �

2cp

Nmvtē
Tφ.

Where φ is the vector of all the link angles, 9φ is the vector of angle changes
and A, D̄ and ē support matrix’ defined as:

A �

�
���

1 1
. .
. .

1 1

�
��� P RpN�1q�N ,

D �

�
���

1 �1
. .

. .
1 �1

�
��� P RpN�1q�N ,

e � r1, ..., 1sT P RN , ē � r1, ..., 1sT P RN�1,

19

D̄ � DT pDDT q�1 P RN�pN�1q.

With all of these formulas in place the simplified version of the model is com-
plete. As previously mentioned this was the model used in the early version
of the system, to get the evolutionary algorithm working before moving on
to the actual simulator and the complex model described above.

20

2.4 Literature study

The literature study done early in this project can be divided into two
parts, where the first part depicted the physical model of robot snakes. The
other part was a structured literature review on the subject of using neural
networks evolved with a genetic algorithm to control robots in general, and
more importantly, control biologically inspired robots.

2.4.1 Structured literature review

We will start off with the structured literature review, which we wanted to
do to make sure we covered the existing papers on this subject well, and
we attempted to find anything we could use or build on for our project. In
this section we will briefly go through the papers we found useful for this
project, and evaluate it within the bounds of a structured literature review
([8]). During the structured literature review many articles were found and
discarded either because of the quality of the paper or because the contents
were not relevant to the project. The papers mentioned in this section are
the papers that actually contributed to our project. What we discovered
during the review was that many papers skirted the lines of what we wanted
to try, meaning that there was many instances of showing a neural net
that can control a robot, but most of these where tuned off-line and then
uploaded. The articles were found in the IEEE Xplore digital library, and
in Table 2.2 we see the search criteria used, as well as number of hits and
how many of these we actually considered. Note that the third search was
a generalization of the second one, and only one more paper was considered
since the others was done during the second search. The Generalization was
done mostly to check that nothing was missed that could be useful, and this
was the only one that would have been missed.

Search Criteria Number of hits Articles after title
consideration

Neural + Network + Robot +
Genetic algorithm

561 5

Neural + Network + Robot +
Controller

1811 14

Neural + Network + Robot 6707 1

Table 2.2: The different search criteria and results

Many of the papers that was looked at after they had passed the title con-
sideration where discarded after a brief glance at the paper and reading

21

the abstract, either because they were too similar to other papers or sim-
ply wasn’t helpful for our project in the way we had hoped after seeing the
title. These papers will not be commented on further or mentioned in the
text or reference list, as they were not an inspiration to any aspect of this
project.

Cellular Neural Network Trainer and Template Optimization for
advanced Robot Locomotion, Based on Genetic Algorithm

The first paper ([2]) we looked at appeared as perhaps the most promising
one. After a quick Internet search we also discovered a video showing the
result of the controller. The paper attempts to describe a learning algorithm
for advanced robot locomotion, by evolving a Cellular Neural Network with
a genetic algorithm. The research goal for the paper is exploring whether
or not this is a valid approach that can achieve reasonable results.

Evaluating the quality of the paper, I started by noticing a lack of falsify-
ing methods and resulting data backing up quite bold claims, like how this
method lets a disjointed walker robot move with the "highest performance".
Since there is mostly textual claims that this was actually the case, and
nothing on how the highest possible performance was actually found, means
that any evaluation of the claims would have to come from a complete re-
construction on the part of the reader, which is not a good way to write a
paper. Another huge area that was missing from this was any information
on simulation software used in this project and therefore any ability for the
reader to detect or evaluate if there might be faults in the simulation giving
the good results the writer claimed to get.

Another piece that was missing was information on the topology of the
network. Some of it was listed, and there I do believe if you actually have
seen this specific network before you will be able to remake it from just
these data, but for a new reader without much pre-existing knowledge on
Cellular Neural Networks this was quite confusing, and it took much more
time than necessary to learn what they were actually talking about. The
physical model is not shown either, or how they handle input and output,
which makes reconstructing their system difficult.

All in all this looked very promising to begin with, but what we found in the
paper had to be taken more as inspiration than proven statements. Since
the projects are so similar, this was influential especially early in the project,
and helped give us a way to evaluate fitness. The further works section also
held some interesting points. As of the quality of the paper, I gave it a score
of 2/10 after reading it.

22

Transfer of Human Skills to Neural Net Robot Controllers

This paper ([3]) attempts to create a neural net controller for robots that
attempts to transfer Human Manipulation skills into the robot. It is worth
noting that this paper is from 1991 and is therefore a little bit outdated,
but the approach and results still made it interesting for this project. The
results in the paper are validated using Lipschitz’s condition, and the results
are documented well.

The paper shows a neural network and its topology, with the weights result-
ing from the training data, and it describes well how they approached it,
how the network works and what the data was.

However, since this paper is reasonably old, it didn’t contain the inspiration
I hoped after reading the abstract, but it shows a network that managed
to transfer biological behavior into a robot, and the network was modified
to fit our project, and used as a basis for our project, earning the paper a
mention in this report. The quality of the paper overall reasonable, so the
score it got was 6/10.

Mobile Robot Navigation Using a Neural Net

The next paper ([4]) explores navigation using a neural network, and whether
or not this is a possible approach for robots in unknown and changing envi-
ronments. It postulates that this approach should be simple to implement
and fast in response, before going on to create a test of this using an actual
robot with a context-sensitive neural net controller.

The question being explored in this question is something to consider in one
of the biggest points in this projects Further works section (section 4.3),
namely how to navigate to a certain target. With that in mind, it is worth
noting that it is not of immediate use, that the primary goal of this project
is the locomotion network.

The paper presents the training data and neural network topology in an
elegant and simple way, making it understandable, without taking up too
much place, or flooding the reader with more formulas and numbers than
necessary. It has chosen a graphical approach to explaining the system
and tests done, and the figures are easily understandable. So long as the
results isn’t fabricated they provide ample documentation of the success the
method had, and it seems they have put quite some time and resources into
testing.

The neural net was developed off-line with specific training data, and it uses
completely blocking objects in its development. This mean it is not directly

23

applicable, as we work more with difficult terrain, instead of impassable
objects, and we also would ideally want to evolve this network aside our
locomotion network. The paper helped us modify the network from the
previous paper, and also lent us a basis scheme for including impassable ob-
jects into our system. The language was good, and the paper was enjoyable
reading, so the paper got a scoring of 9/10 during the review process.

SONCS: Self-Organizing Neural-Net-Controller System for Au-
tonomous Underwater Robots

Another interesting research paper was the one about SONCS ([6]). The pa-
per presents an adaptive control system for autonomous underwater robots
through using a neural network controller. The results are validated through
a small underwater robot and free-swimming tank tests. It is worth noting
the variety of underwater robots is wider that the land-based robots and
the dynamics of actually repositioning and moving the robot is simpler and
well understood. However, this paper deals with angles input to a neural
net in a similar way as we inspire to, and although it is a one-joint system
that doesn’t move by changing this angle, but with a propeller, we can still
learn something from how this has been done.

Instead of an evolutionary algorithm, the adaptability of this system de-
pends on the back-propagation algorithm, and it uses a multi-layered neural
network, called a forward model network.

The paper explains its methods, data and controller setup well and thor-
oughly, making it easy to understand their approach, so even though the
network and development of the network is different from the one we will
end up using, we can easily extract any useful information from the paper.
Mostly this paper was used for writing this report, and it was mainly used
as background for adaptive systems in changing environments. During the
review process I gave the paper a score of 8/10.

Reaction-Diffusion CNN Algorithms to Generate and Control Ar-
tificial Locomotion

[5] takes a look at using a specialized type of Cellular Neural Nets to im-
plement artificial, bio-inspired locomotion. It focuses mainly on hexapod
robots, but attempts to keep the methods more generally applicable, so
this is still useful. This paper was used as a reference for the first paper
we looked at, and we can here see more directly the network and methods
used, described in a more thorough way. It is however, a little older, and is
not directly applicable. The network generates a pattern of states the legs

24

should follow. This might not be the best way to go about it, but we can
still take the network as an inspiration for use in our project, while changing
inputs and outputs up. Another interesting point this paper brings up is
developing hardware specifically designed to run the neural network, and as
we will discuss further later one of the big problems with evolving a neural
net is computation power. The hardware discussed in this paper is a bit
outdated, but served as inspiration and a starting point.

The paper in itself is well written. It backs up claims and it’s methods
and results with a good amount of formulas, tests and their results, as well
as figures and diagrams for both software and hardware solutions discussed
here. If we consider the aims and approach of this paper along with newer
technology, this is quite helpful for our project, and as it was also a good
paper, I gave it a score of 8/10 in my literature review. Even though the
number was already used through the first paper, the Reaction-Diffusion
paper deserves a mention here since a lot of the testing numbers and numbers
for the network was found here.

2.4.2 Snake Robots: Modeling, Mechatronics and Control

The second part of the literature study, and perhaps the most crucial one,
was done on the book "Snake Robots: Modeling, Mechatronics and Control"
([1]). Even though this book focuses on the physical robot, it provides
several formulas, as seen in section 2.3, and was used as a big inspiration
for the actual simulator made during this project.

The book starts off talking a bit about the anatomy of biological snakes,
and the way they move. It also takes a brief look at the motivation for
making and using snake robots and shows examples of applications based
on previous research, specifically from the NTNU and SINTEF cybernetics
department. It focuses on the physical robot implementation, and is divided
into two parts, one for locomotion on a flat surface and one for locomotion
in cluttered environments. We focused on the Locomotion on flat surfaces
in this project since this alone proved quite difficult, with the cluttered
environment discussed more in section 4.3.

At this point the book once again splits into two parts, describing first a com-
plex model and then a simplified model. Both models are implementable,
and the complex model is the one used as a basis for the development of a
mechanical snake robot to be used for motion across a flat surface, and the
book goes through the different mechanical systems needed for this. It also
proposes a ground friction model, which is very important for actual snake
movements, and follows this up with a chapter of analyzing the snake robot
locomotion.

25

The simplified model basically scales the dimensions of the complex model
down to one. It focuses only on the change of joint positions in one direction
and quantifies the joints as levels of a graph, assuming the snakes always
move in the same direction, along the horizontal plane. This is fine for
testing the simulators friction models, and it was the main model being used
for the first part of the implementation phase, before we let the snake go in
any direction later in the project. The friction model can be seen in [1]. It
sums up part one by discussing some guidance strategies and path-following
controls for the snake, before moving on to the second part.

The second part of the book is, as previously mentioned, about snake lo-
comotion in a cluttered environment. This was one of the main sources of
motivation for serpentile robots mentioned in the introduction chapter, and
this chapter was used as a big source of inspiration for section 4.3, even
though it was not implemented during this project, as it quite simply did
not get past very simple environments.

The book always backs up each of the functions and claims with references
to other articles, or provides mathematical proofs to support its claims. It
is enjoyable and easy to read, and it gives a good foundation for any project
centered on snake locomotion and snake robots.

26

Chapter 3

Methodology

In this chapter we will describe the methodology of the project. This in-
cludes a thorough description of the system as it is at the end of the project.
The system has been divided into three parts, each of which will be han-
dled in their own section. The Evolutionary algorithm is the first part of
the system, and the key parts of the algorithm will be explained and de-
scribed in section 3.1. The second part of the system is the actual Artificial
Neural Network that was evolved by the Evolutionary algorithm, and the
topology of the network will be explained. Originally we wanted to test out
more than just one Neural Network topology, but the network shown in sec-
tion 3.2 displayed reasonably good behaviour, and the focus was therefore
more on the simulator, which proved difficult to get working. The last part
of the system is the simulator, and it is also the largest part discussed in this
chapter, since it is the most important one. The basic outline of the sim-
ulator will be described before moving on to the changes made throughout
the project, in terms of introducing new elements into it, like target location
and environmental factors.

After we have looked at the individual parts, we will describe how the differ-
ent parts of the system fits together into the complete system, and look at
why it was done this way, in relation to the research goals for this project.
The programming language used throughout the system is Python. This
was mainly to keep the code as clean as possible, and since we were going to
handle a lot of numbers that might be difficult to troubleshoot, this is quite
important. The argument that python is slow is not as relevant since we are
not implementing the system directly on the snake, and we therefore have
more computation power. The graphics engine is programmed in Tkinter,
the standard GUI interface for python.

27

3.1 The Evolutionary Algorithm

This section will explain the Evolutionary Algorithm (EA) we developed
for the project. We will systematically go through the different key aspects
of the evolutionary algorithm, with a brief explanation of what an evolu-
tionary algorithm is to start things off. It is necessary to mention that if
the EA is to be transferred to an actual robot snake, it will need to be
reworked completely, as it is currently not focused at all on being speedy
and computationally light. Even though this is one of the major research
questions, the focus on performance and complexity have all been centered
on the simulator for this project, so the Evolutionary Algorithm is not made
for direct integration into a robots controller system. It is also written in
python, while C is most likely going to be the language necessary for the
snake. Most of the techniques used and implemented in this chapter can be
found in [11], which was the biggest source of knowledge for the EA.

This section will first go over an overview of the EA and then briefly go over
the theoretical background for creating Evolutionary algorithms, before we
take a look at the representation of the genotypes and the phenotypes, as
well as the conversion between the two. Lastly we will go into more detail
as of how the different parts and mechanisms of the EA work and which
choices were made at the different levels of the EA.

3.1.1 Overview and theoretical background for the Evolu-
tionary Algorithm

Genetic Computation is a relatively new and interesting field in Artificial
Intelligence. It’s inspired from the Darwinian Evolutionary Theory, and it
works much the same as genetic mutation in the biological world. We will
be relating the EA to biological evolution throughout this section, as it is a
good example and makes the EA easy to understand. The workings of the
EA can be seen in Figure 3.1. As we can see from the figure, an Evolution-
ary algorithm work much the same as evolution in the wild, where the well
adapted individuals survive in their respective environments and faulty mu-
tations will have a lower chance of survival. In an Evolutionary Algorithm,
this makes the simulation, or fitness scoring, a very key component, and we
will take a closer look at ours in section 3.3.

The basic idea is that we will be keeping a set of neural net controllers for
our gene pool, where each controller will initially be generated as random
values. Each of this Neural networks will represent one genotype. A subset
of the genotypes from the previous generation will then be paired up and
mixed with the other, before this in term is mutated into a genotype for
the next generation. This is just like when biological animals mate in the

28

Figure 3.1: This is a schematic for the Evolutionary algorithm, showing
the circle completed at each iteration. Some types of EAs allow the older-
generation genotypes to compete with the younger ones for getting back into
the gene pool, others do not.

real world, and produce a new set of genotypes, from which new phenotypes
or offspring is produced. Each of the new offspring is then thrown into
the world, or in the Evolutionary algorithms case, the simulator, an equally
harsh and unforgiving place. If the genotype represents a superior mutation,
both the offspring and the phenotype in the simulation should have a higher-
than-average chance to survive and score well on the fitness test, meaning
this is simply put survival of the fittest. As in the biological world, the
phenotypes that do not do well have a chance to be dropped from the pool
of individuals that gets to go into next round of the EA iteration, this being
the programs way of letting poor mutations "die". The animals that actually
grow up, and the genotypes not dropped from our gene pool, have a chance
to mate. In nature, the strongest animals has a higher chance to mate, and
this is also the case in our EA, and we will look closer at the mechanisms
for this in subsection 3.1.3. When finally two phenotypes have been paired
up, the genotype they carry with them is mutated and crossed over into a
new genotype and the circle of life starts again.

29

During this project we did a lot of testing as to how big the gene pool should
be, and how many generations we needed. This is one of the easiest ways to
influence the computation speed as it is essentially a multiplication of how
many times the simulator will run. Since we have the computation power to
run relatively demanding programs, we tested different values to see how it
affected the results, and the final numbers we arrived at was a gene-pool of
200 genotypes, running for 500 generations. During these generations most
of the runs saw a steady increase in fitness, and most of the runs got up
to a high fitness score, as shown in chapter 4. With a smaller population
or fewer generations we saw the number of runs being successful drop, and
with more generations or bigger gene-pool there was little pay-off, so we
ended up testing most of the system using a population of 200 running for
500 generations.

3.1.2 Genotype and Phenotype Representation

Normally one could think the Genotype and Phenotype representations
would be separated into two different sections, but as they are very similar in
this project there is little point in doing that and this section will encompass
both of them. When we are discussing genotypes and phenotypes we also
need to think about how much of the Artificial Neural Network it should
actually evolve. It is possible to have the EA evolve even the network topol-
ogy, or we can program in a topology and have the EA evolve the weights.
By evolving weights with values near 0 the EA can still to some degree re-
duce the connectiveness of the network, but it cannot add more edges this
way. For this project we decided to evolve only the edges, for two reasons.
The first reason is how letting the EA evolve the network can easily put us
in the dark about how the network works. It would also spread the results
further out and give a wider variety of results, but it would also most likely
require a higher population and more generations to run properly and get
consistent results. Evolved software and hardware have the pro that they
often are very effective. The con is that it can be very hard to explain why
it works so well. With the topology in place we will both avoid too large
networks and they will be easier to analyze and understand the network,
which is an important part of this project. Secondly, if we want to actually
implement this on the robot snake we need to both be able to understand
the network, and for the EA to be quite fast at simulating and creating the
solution, which means just evolving the weights will be a lot easier than to
be creating both the weights and the topology of the network. The con-
cern about having to evolve a bigger population over more generations also
adds to this; since it would drastically increase the execution time the snake
would require to consistently achieve high performance.

30

Figure 3.2: The Representation of the Phenotype and Genotype, a set of
bits in the genotypes is made into a float value in the Phenotype when
the genotypes transform. Note that the numbers in this figure is picked at
random and there is no correlation between any of these numbers, nor are
they accurate.

Now we will move on to the actual representation of the Genotype and
Phenotype. Since we wanted to be able to try out networks with different
topologies, the Genotype and Phenotype representation will be a vector of
weights. This way we can dynamically program the EA to handle variable
length Genotypes and Phenotypes, and it really suits the purpose of this
project. The Difference between the Phenotype and the Genotype is that
the Genotype will be a vector of binary numbers, while the Phenotype will
be actual float values. This of course means that the Genotype will store
many more numbers than the Phenotype, and how many bits in the Geno-
type is dedicated to each number in the Phenotypes decides how accurate
the network will be able to tune it’s weights, and also how long it will take
to evolve it, since longer genotypes means the EA becomes more computa-
tionally heavy. The main reason why we choose to have the genotypes as
a string of binary numbers is so that it is easier to mutate it in ways that
ensure that the mutations are similar to mutations in the wild, and that it
can actually achieve big differences outside of what we ourselves could think
of, as is the main philosophy of an Evolutionary algorithm. The mutations
are then done simply by changing one or more binary numbers to the op-
posite value, regardless of where the binary numbers are in the genotype,
and in that way ensuring that anything can happen. To begin with we have
dedicated twenty bits for each number, but it’s reasonable to go as far down
as eight, or even down to six, should the solution for the actual snake re-
quire it. The Representations of the genotype and phenotype can be seen
in Figure 3.2.

31

3.1.3 Evolutionary Algorithm specifics

There are a few more things that needs to be specified when we are consid-
ering the EA. The fitness test and simulation is one of the most important,
but at this stage it is purely the formulas that was shown in section 2.3,
at the time of writing the simplified model is being used. This leaves some
key traits that we will go through briefly in this section. To do this we will
follow Figure 3.1. The general outline of the Evolutionary algorithm can
be seen in Figure 3.3, illustrating how the different parts of the algorithm
comes together in the implementation.

Figure 3.3: This figure shows a high level layout of the evolutionary algo-
rithm to show where the different pieces explained in this section fits into the
actual implementation, as well as showing how the Evolutionary connects
with the remaining parts of the system.

The first thing that happens when a genotype is converted to a phenotype
is relatively simple, and don’t need to be explained in much detail. The bit
values in the genotype is converted into a number in the tens system, before
it is being moved into the range that the weights are allowed to be in. This
then completes the conversion of a genotype into a phenotype, and we can
move onto the simulation in order to get the fitness value for the phenotype.
The simulation process is explained in more detail in section 3.3, and won’t
be covered here. After the simulation we use the Center of Mass that the
simulated snake had at the end of the simulation to compute the fitness
value:

32

fitness_score �
a
pcmr0sq2 � pcmr1sq2

This gives us the fitness when the snake is only required to move as far as
possible in any direction. To get the fitness when it has a target point to
move towards, the formula to compute the fitness becomes:

target � rtarget_x_value, target_y_values
starting_distance �a

pstarting_cmr0s � targetr0sq2 � pstarting_cmr1s � targetr1sq2

fitness_score �
starting_distance�

a
pcmr0s � targetr0sq2 � pcmr1s � targetr1sq2

This fitness score is then given to the relevant Phenotype. Even though the
fitness function is relatively simple, it is also functioning quite well, since the
simulation only runs for a set amount of time it evaluates both speed and if
impassable objects were to be placed into the system, its ability to handle
these. Now that the phenotypes have received fitness values we are ready
to begin sorting them. The selection protocol comes into play next. In the
example we used earlier, the selection protocol determines which animals
reach adulthood. In the project it simply selects a predetermined number of
phenotypes from the full pool, and each phenotype can be selected multiple
times or not at all. The Phenotypes of the old generation is also allowed
to be selected in our implementation, so the selection protocol follows a
generational mixing scheme. Other schemes were available, but since the
system quite quickly reached decent fitness (see chapter 4) we decided to
go with generational mixing over a full generational replacement scheme or
overproduction scheme.

After this we are ready to cho0se who gets to mate with whom, in the words
of our analogy. The selection mechanism is what is responsible for doing
this. There are several relatively advanced selection mechanisms available,
and several were tested. Common amongst the more advanced selection
mechanisms is that they are computationally heavy, especially for popu-
lations as large as ours, so we decided to go with Sigma Scaling, a scheme
that modifies the selection pressure by using the populations fitness variance
as a scaling factor to determine which phenotypes is chosen. This scheme
gave good results, and is also very fast, especially compared to more ad-
vanced methods that almost gives the same results as sigma scaling. This
mechanism also scales with the fitness value, giving the better phenotypes
better chances to reproduce, but by also taking standard deviation into ac-
count, gives it a more stable performance than simple fitness proportionate
selection, without requiring much more in terms of computation.

Finally it is time for the phenotypes to reproduce and give us the next
generation of genotypes. This is done with two methods, crossover and
mutation. The Mutation is very important in order to be able to move your

33

gene pool out of local minimum in the fitness landscape, and it is classically
done by flipping one or more bits in the genotype. In this EA we first give
each genotype a chance to be mutated, set by default to 0.8, since there
are so many numbers in this system, and such a large population. Only
rarely did the high mutation rate lose the best performing Network due
to mutating all versions of it. If it is chosen to be mutated it changes a
randomized number of bits inside of one number, as it would have been
transformed into a float for the phenotype, also chosen at random. This
is to ensure that mutations are more stable and have more impact, since
we saw in the early stages of testing that the weights didn’t change enough
with mutation. The Crossover is also being done with respect to the float
number representation, meaning that the combined, new genotype gets a
pseudo-random amount of bits from one parent and the rest from the other
one, but still keeping the actual weights intact, because it does not split the
gene outside the float number representations. This means splits can occur
at bit twenty, forty and so forth, since the first twenty bits is one weight,
the next twenty is one weight and so forth, and is in effect so that crossing
two genotypes does not risk ruining both.

34

3.2 The Neural Network

The essential thing that this project seeks to produce is an extensive study
around controllers for serpentine robots, and since we have chosen to use
a Neural Network, this is a very important part of our system. After the
literature study several possibilities have been presented. While ideally we
would have been able to test mostly all of these during the project, this is
not the case, and only a few changes have been made to the network during
the run of the project. This was because the network described in this
section worked rather well, and the trouble implementing the simulator (see
section 3.3) the testing of different topologies was put on hold. A decently
working neural network is in place though, or to be more specific, one neural
network for each joint of the snake is in place. So far the majority of the
effort has been spent on the model, simulation and EA, but if the project had
gone further the next big point of focus would have been the network and its
topology, testing different things and seeing what works best. This chapter
will explain the workings of the current network, and show the topology we
are using at the moment, as well as how this fits in with the rest of the
system.

One of the key points when we’re considering the controller is the fact that
we are not using one single neural network, like we would if the robot we
are making it for where a wheeled robot. Every single joint of the robot
will require its own network, any other way would have meant that it would
have been very difficult to create a good network topology to encapsulate
the state of the entire state, and the network doing that would have been
very large, depending on the size of the snake and how well it is required to
perform. All in all it is simpler and less computation heavy to distribute the
neural network so it is one for each joint. Having multiple networks raise the
issue of what the input should be, where the most reasonable options are
the current state of all the joints, the last output for all the joints, and the
same, but for a neighborhood of joints instead of all. During this project all
was tested, but the one that gave the best results was using the current state
of all the joints as input. Necessarily using all the joints would be better
than a neighborhood, but it is worth mentioning that if the snake is large
enough it might still be best to use a neighborhood, although this is based
on reasoning rather than tests done during this project. The input scheme
can be seen in Figure 3.4. The difference in performance between using the
previous outputs as input and using the state of the joints as input can be
seen in Figure 3.5.

When we are talking about the topology of the neural network, how the
inputs are interpreted and handled is a very crucial aspect to consider. Since
there is one network at each joint, it should not be too complex, but it cannot

35

Figure 3.4: This figure shows where the Neural Network gets its input from.
Each joint has an angle relative to the other joints, kept in radians in our
system, and this is the value that is given as input for the network to use
the next time step of the simulation.

be so simple that the snake is unable to bend its joints from the get-go and
generate movements according to the principles we saw in section 2.2. Since
we don’t have to worry about direction of movement using only the simplified
physical model, I decided to use only seven input nodes for the network, the
previous link angles as input. This means that the snake we did most of the
testing on had eleven joints, but even with only this number the behaviour
we got out of the system was quite good. The reasoning behind this exact
number was that fewer joints might make it difficult to develop the desired
behavior, since it does not have the required number of links to bend to
perform the snake locomotion. More joints would make the network more
complex than necessary, and increase the computation time more than is
necessary. This was especially relevant since we were coding the simulator
ourselves and therefore had to test the system over and over to root out as
many bugs as possible from the simulator. The subject of which inputs to
choose and how to handle them, along with the fitness scoring is especially
important for further work done on projects similar to this one, where more
advanced environments are introduced.

36

(a) Using previous output (b) Using current state

Figure 3.5: The following figure shows the general difference between using
the previous state as input, done in figure [b], and using the previous iter-
ation output as input, done in figure [a]. As we see the highest fitness is
steadily around 5 points higher using the current state as input

The Hidden layer of nodes has two nodes in this system, regardless of how
many input nodes there are. If the number of joints increases the hidden
layer might need more nodes to be able to handle the inputs from all the
nodes. If there was more time, we would have done testing on having more
hidden nodes to handle an increased number of input nodes, but since time
is limited and seven joints gets the desired behaviour out of the system, this
was not a priority. Each node in the input layer sends its input data to
both the hidden layer neurons, as seen in Figure 3.6. This is to allow both
the hidden neurons to encompass all the information available and pass it
on to the output layer of the network. To keep the motion smooth the
hidden layer keeps an internal state that is used to compute output, and
deteriorates over time. During the project a test was run where the internal
state was removed and the results of the simulation plummeted, as each join
would swing the other way a lot faster and the motion never got big enough
to carry the snake any real distance. This test is not included in chapter 4,
because it after a few runs became clear it never got the snake moving much
and that the internal state would have to be reinstated.

The hidden layer then sends its information on to the output layer. The
output layer consists of two nodes, the left node helps the snake bend its
joint to the left, and the right output node lets the snake bend its joint to
the right. In this project this is done by a simple subtraction, so that the
biggest value wins. This was chosen over having a single output node that
would have to go negative to bend the other way, so that each node have a
smaller scale over which they need to activate, and can be more responsive
that way. This means that the difference between the two nodes decides
which way the snake bends, and how much, which in turn means that if

37

the two output nodes has the same value, the snake will not move at all.
These output nodes receive information from all the hidden nodes, since the
information from both ahead and behind the current link on the snake is
important to get into both the output nodes, so it can move smoothly. This
also allows the output nodes to utilize all the information available, which
is important, especially when we’re using so few joints in this project. In
addition, the output nodes has self-edges and edges between each other to
further help the snake move correctly and let information be passed between
the two nodes. Like the hidden layer nodes the output layer also keeps and
internal state.

Each of the Neurons in the hidden layer and the output layer is has a sig-
moidal activation function. The Neurons keeps an internal state that to-
gether with an evolved gain value. This means the input is computed based
on the following two formulas:

State� � p�State� inputs � weightsq
Output � 1

1�e�gain�State

So we see that the state is added to the previous state, giving the network a
bit slower reaction time, but smoother motions, which is ideal for repetitive
tasks such as movement. Note that the state was never allowed to drop
below �125 since this cause the program to crash since the output value
became so small it left the float number range and caused an error.

38

Figure 3.6: The current topology of the network. There are no weights
currently displayed as the simulation has not been tested thoroughly enough
yet.

The topology of the Neural Network used in this project can be seen in
Figure 3.6. One thing worth noting is that we have allowed the neural net
to have a lot of edges. This means that a lot of the information is getting
utilized in the system. This might also have to be decreased if it is actually
tested on a robot, since more edges means more computations to run the
evolution on the networks. As we previously stated, the EA can effectively
remove edges by giving them low weight and very little influence on the
system. A logical step when we are looking to prune the Neural Network
would be to run the simulation more times and see if any edges in the
network is given consistently low weights, and then consider cutting away
those edges.

39

3.3 The simulator

The simulator is the most important part of this system, and it also proved
to be by far the most difficult to implement. Even at the end of the project
it is not working completely correctly, and the current problems will be
explained in subsection 3.3.3. Problems aside, the simulator does fulfill
its purpose even though it still needs work to be bug free, since it does
produce networks that actually makes the snake move forward, using similar
movement patterns as the snake locomotions in section 2.2. This section
will go through the simulator as it was at the different stages of the project,
since this is the actual part of the system that was focused on and heavily
updated at the different points of the project. We will start by the earliest
version of the simulator, when only the simple version was implemented,
before moving on to the more complex version where the simulator started
using two dimensions. Lastly we will take a look at the final system and the
test versions where we tried introducing basic environments and movement
target into the system.

3.3.1 The early version of the Simulator

The earliest version of the simulator was implemented mostly to allow the
Neural Network and Evolutionary algorithm to be tested properly with a
simple simulator, so focus could be on rooting out bugs in these two. At this
point there was no graphical representation implemented, so the results were
interpreted from reading the position of the points and different points of
the simulation, as well as the returned fitness score. The model this version
of the simulator used is shown in subsection 2.3.2. The most important
of the equations for this simulator is the ones that describe the changes in
position and velocity for the snake:

9px � vtcosθ � vnsinθ,
9py � vtsinθ � vncosθ.

Describes the position of the center of mass, and the change in velocity is
given by the formula:

9vt � � ct
mvt �

2cp

Nmvnē
Tφ�

cp

Nmφ
TAD̄ 9φ,

9vn � � cn
m vn �

2cp

Nmvtē
Tφ.

Using these formulas, the support matrix’ and variables defined in subsec-
tion 2.3.2, we used the change of speed to compute the position of the
different links of the snake, as well as the position of the center of mass.
This resulted in a simple model that quite easily ran, but even if it was
quite easy to implement the computation cost was quite high, and the re-

40

(a) The simple simulator (b) The final simulator

Figure 3.7: The following figures shows the general difference using the
simple simulator, as done in figure [a] and the final simulator as done in
figure [b]. As is expected, the performance is quite alot higher in figure [b]

sults were not as good as in the later systems, both in terms of actual fitness
(see Figure 3.7) and in terms of the movements of the snake, that was rea-
sonable slow. This version of the simulator also only managed to achieve
one of the types of snake movement described in section 2.2, but this was
quite expected and reasonable, since the system in reality is working along
a single dimension with no room to play on the breath of the space, like is a
requirement for sidewinding. It also was not able to rectilinear crawl, since
it cannot shorten and extend its joints up from the ground or into itself, like
a real snake.

To sum this up, the simple model was a tool to help test the other parts of
the system so that the simulator alone could have the focus from there on
out, and did its job in that regard. The fitness score from this simulator was
most of the time between 15 and 25, while the fitness for the final simulator
was at a wider range, usually between 20 and 40. The final simulator could
also handle movement towards any target and some terrain features, which
the simple simulator simply could not handle.

3.3.2 The two dimensional Simulator

After we finished the first phase of the project and got the Evolutionary
algorithm and Artificial Neural Network working properly, we moved on
to improve the simulator beyond a single dimensional system. In the end
this improved the results of the system, and this was also where the bugs
started getting out of control in the simulator, and it took a long time to
get it working decently and producing reasonable Neural Networks. In this
section we will focus more on how the final system ended up being, and
we will describe and explain the different bugs we faced in the next section

41

(subsection 3.3.3). Moving to a two dimensional simulator required the
entire system to be scrapped and made fresh, since the formulas used for
the one dimensional system simply did not hold up. In this section we will
start by looking at the general flow of work and information through the
two dimensional simulator. We will then move on to the most important
parts of any simulator, the base formulas that allow the simulator to run
and bring the simulated snakes to life. We will also explain some limitations
that were put in place to avoid certain unwanted behaviors. This might
sound like it would defeat the purpose of an evolutionary algorithm, and to
some extent that is true, but these limitations put into the program where
made to reflect the physical limitations of snakes and serpentile robots, as
for example that the body can only bend so much before the snake hits itself
or the bones can’t bend further.

Figure 3.8: This figure shows the flow of the problem and the order in which
things are done in the simulator.

First we will take a look at the general information flow and work order of

42

the two dimensional simulator. This is shown in the graph in Figure 3.8.
The simulator starts by receiving the output values from the Artificial Neural
Network, before it moves on to updating the snake using these outputs. The
model used for this is given in subsection 2.3.1. The force on the snake from
each individual link is given by the formula:

Fprop � �
N°
i�1

ppctcos
2θi � ctsin

2θiq 9xi � pct � cnqsinθicosθi 9yiq

The last piece the simulator needs to readjust the position of the snake for
the output now is a good friction model, and the one given by this model is
given as:

f link,iR,i � �mg

�
µt 0
0 µn

�
sgnpvlink,ii q

fR,i � Rgloballink,i f
link,i
R,i , Rgloballink,i �

�
cosθi �sinθi
sinθi cosθi

�

Using these formulas the simulator can quite easily find the new positions for
each link and the angles between them. The limitations that we mentioned
in the section introduction also kick in here. The angle of each individual
joint cannot exceed π

2 . This means that it requires two joints for the snake
to reach parallel with itself, which is a reasonable limitation to make, it
could not be a larger angle than that because of the low amount of links,
and larger than this led to reduced results and some weird behaviour where
the snake kept standing relatively still and just clumping its links up.

At this time we also had in place a simple graphical representation of the
system, and both discovering bugs and confirming locomotion patterns. A
screenshot from the graphical representation can be seen in Figure 3.9. With
the graphics in place and the resulting networks described in chapter 4
the simulator does make networks in thread with the first research goal:
an Artificial Neural Network that moves the snake in a snake locomotion
pattern. This is a quite good result, considering that there at this point
there was still relatively heavy bugs in the simulator.

3.3.3 The final version of the simulator

The difference between the final version of the simulator and the two dimen-
sional is not as large as we had hoped it to be, it is mainly bugs being fixed,
but also some testing into having a target destination to move towards, and
different levels of elevation as a very basic type of environmental factors. In
this section we will first take a look at the bugs we found in the previous
version, and the bugs that remained in the final version. The reason bugs
remain at the end of the project is simply that it is difficult to evaluate

43

Figure 3.9: This figure shows the the graphical representation of the simu-
lation. Each dot of the snake represents an end point of a link, since this
makes the movements smoother than using the links center of mass.

where the bugs are in the code, since they don’t cause crashes and there
is a big amount of numbers and equations to evaluate. After this we will
look at how the target direction was implemented and finally how we got
environments into the simulator.

The first and biggest bug we found was a simple bug with big consequences.
The first week of working on this simulator the output values and desired
change of angles was done correctly, but after updating the centers of mass
and endpoints for each links, it was completely off. The reason for this was
that the sine and cosine in the friction model described in subsection 3.3.2
was swapped. This should’ve been caught faster than it were, but it too
several rounds of doing the math on paper before the mistake was spotted.
As soon as this bug was fixed the snake started moving in the desired loco-
motion patterns, but it was not the end of the problems. The next bug we
found was first discovered when the graphics was put in place. As stated

44

before it was difficult to find bugs before this since there was a large amount
of numbers to evaluate at every generation. This bug basically was that
the links in the snake physically started drifting apart after 5-10 iterations
in the simulator. This really boosted the change in the snake’s center of
mass, which was used as the fitness scoring, and therefore happened every
time, since evolutionary algorithms is really good at abusing bugs like this
to get higher fitness scores. It was easily spotted when the graphics was
in place, the snake drifting apart can be seen in Figure 3.10. The bug was
again in how the link positions were updated, and the formulas were fixed.
In addition a failsafe was implemented, that never allowed the end-points of
the links to be separated. After this fix the snake stays gathers and moves
in a correct movement pattern, and these were all the bugs that were fixed
during this project. There still remain bugs in the final simulator, but it is
difficult to say what it is. The effects is that the snake always moves cor-
rectly for 15-20 time steps, and then starts to jump back and forth between
two states. This is most likely the failsafe from the previous bug kicking
in and resetting the state because the points of the snake would otherwise
start drifting.

Now that we’re done with the bugs we will take a look at the parts of
the final simulator that actually worked correctly. The first new part that
we implemented was relatively simple, the target location for the snake
robot. This was done by simply changing the fitness score to be com-
puted as starting_distance_to_target{p1�distance_to_target_locationq.
The snake then moved towards the target location. The snake never quite
reached the target points if it was far away like it typically would be in a
real scenario, due to the last bug described, but it started moving in the
right direction, and if the point was close enough it actually reached the
point and got max fitness. In Figure 3.11 we see two different target points
and the snake moving towards it.

Lastly we will look at the environmental change were we tried introducing
different levels of elevation. This is briefly explained as having variables at
each cell in a discreet cell map for the field, where each cell holds a value for
how high it is in the terrain. The difference in the cell the snake wants to
move to and the cell it is moving from is then added to the friction value,
so it is harder for the snake to move uphill than it is to slide downhill. An
illustration of the cell map scheme and the graphics from a run using that
cell map is shown inFigure 3.12. In terms of performance, understandably
using the cell map scheme decreases the distance the snake moves a little
bit, since it now has to change direction during the run.

All in all the final simulator worked reasonable well, and produced work-
ing Neural Networks, as analyzed further in section 4.2, even if there were
relatively serious bugs even in the final version.

45

Figure 3.10: This figure shows the bug where the snake started drifting apart
after a few generations. Notice from the fitness score that even though the
dots is still relatively close to the middle, the furthest out dots drag the
center of mass out of it and gives this run a relatively good fitness score.

46

(a) First target location (b) Second target location

Figure 3.11: The following figures shows the graphics from two runs with
different target locations. The red lines and the text have been added after
the screenshot was taken.

(a) The cell map scheme (b) The graphics from a run with the cell
map

Figure 3.12: The following figures shows a graphical illustration of the ma-
trix containing the cell map, where the redder the cell is, the higher it is in
the environment. The number of cells is not accurate to the number of cells
in the actual cell map, which is 200x200, but the colors follow the areas in
the actual cell map correctly. The screenshot is from a run with that specific
scheme in place

47

3.4 The system put together

Finally in this chapter we will take a look at the system at a whole, and
how the different parts work together. This does not require a huge amount
of explanation, but it’s still necessary to understand the complete system.
The basic flow and diagram of how the systems works together can be seen
in Figure 3.13.

Figure 3.13: This figure shows how the complete system works together,
where the arrows represents flow of information. The role of each subsystem
have been explained in the previous sections.

The first part of the system to run is the EA. As was explained in section 3.1
the evolutionary algorithm starts evolving an set of Artificial Neural network
with the topology we looked at it section 3.2. These Artificial Neural net-
works is then sent to the simulator where the networks take control of a
snake, and is evaluated based on how close they came to the target point, or
how far away from the starting point they got, based on which simulator is
used. Finally the Evolutionary Algorithm sends the best scoring network to
the graphics generator that runs the simulation again and shows the different

48

stages as dots on the screen. Even though the system had bugs, especially
in the simulator, it still managed to evolve useful networks that showed the
desired behaviour to fulfill both of the research goals we mentioned in the
introduction.

49

Chapter 4

Results and Discussion

In this chapter we will go through the results achieved in the system and
discuss them. While there as mentioned was some hick-ups the system still
managed to evolve a working network, as we will see in more detail when
we actually analyze a network in section 4.2. Before that we will take a look
at the general results from the series of test runs we did with the system
at the different points in time, with selected fitness graphs showing a good
or average run from each of the different levels. It is important to keep in
mind that the bugs discussed in subsection 3.3.3, the results were even out
some, since the best neural networks also got stuck between two states and
didn’t get the chance to build up a high fitness score difference, compared to
the worse neural networks. This means that the fitness score is closer than
it should be, and that the general growth rate of each graph is really slow,
but it became clear from the behaviour of the snake seen in the graphics for
the simulation that some simulations were clearly better than the rest, and
they did also achieve a clear but small fitness score advantage.

After we have looked at the runs and analyzed the network we will have a
discussion about where the project is at the time it is finished, comparing
it to the projects ambitions and the research goals, as well as some insights
into what can be done to improve on the current system, and our views on
where to go next in terms of further development. Since this is a field with
little research this last section will be quite extensive, since there is a lot
of potential in projects like this and it could be a valuable field for future
research and technology.

50

4.1 Tests and results

In this section we will show the results from the actual tests completed in
this project. Since there were different versions of the systems and several
things we tried out, we did a total of 70 tests for this project. We did five
tests in total, with at least ten runs on each test, and we think this is alright
since some of the tests in reality were quite similar. The first two tests were
done on the simple system described in subsection 3.3.1. Since we at this
stage were focusing mostly on the Neural Network and the Evolutionary
Algorithm, this test focused on testing which of the inputs were better for
the Neural Network, current state or previous iterations output. The third
test was on the two dimensional simulator, to see how it measured up to
the simple one. The last two tests were done on the final simulator, to
find out how the system worked when introducing target destination and
environments into it. In this section we will start by seeing the results from
the tests in Table 4.1, before we start discussing and analyzing these numbers
in more detail and showing example graphs from the different tests. Before
we start we should note that the units is not to scale with anything and is
relative to the length of the snake. In the simulation each link of the snake
was 4 units long. Since the snake has 7 joints this means the total length of
the snake is 8 � 4 � 32. This is mentioned so that it is easier to relate the
actual results to something.

Test Number of
runs

Highest
fitness

Average
fitness

Standard
deviation

1 10 20.025 18.391 2.604
2 15 26.852 23.927 3.842
3 15 33.866 31.970 3.407
4 15 13.417 11.613 2.739
5 15 23.718 21.463 2.901

Table 4.1: This table shows the results from the different tests. The values
is the average over all the runs, meaning that the highest fitness denotes the
average fitness score of the best scoring networks from all the runs in that
test, and so on.

As a general note before we move on to look in more detail at the individual
tests, we see some common traits amongst the tests. These will become even
clearer once we start seeing the actual fitness graphs. The main thing we
see that is not very usual when we are looking at Evolutionary algorithms
is how close the average fitness is to the highest fitness, and how low the
standard deviation is across all the runs. This is because of the high number

51

of population and generations we used. Many of the runs the system rapidly
reached the highest fitness value and after that progress was slow, but about
every fifth run needed this high numbers to get to a decent fitness value.
This however means that the runs that doesn’t improve much beyond a
certain point has a lot of time to evolve the entire population, and this
results in a very low standard deviation, and the average score is very close
to the highest score.

52

4.1.1 The first test

As previously stated, the first test was done early in the project, and it used
the simple simulator, while mainly focusing on the network and the Evolu-
tionary Algorithm. Seeing the values from Table 4.1 we see that this test got
the lowest score of the three first tests where it was just the simulator being
tested. This was understandable, seeing as the simulator was the simple one
and wasn’t being the focus of the testing. Based on the values printed out
at each step and also the final network produced by the system, the simu-
lator still worked and produced reasonable networks, but the simplicity of
the simulator didn’t allow it to reach very high fitness values. We see from
the table that the most of the fitness scores lay between 15 and 20, with
a very low standard deviation. Since the simulation was so simple, more
of the runs reached high fitness and this meant that it usually had more
time to get the average score up, and this resulted in a very low standard
deviation.

Figure 4.1: In this figure we see an average graph for the first test that was
conducted during this project. We can see the average score following the
highest fitness value closely, since the highest value doesn’t keep increasing
for long. This also means the standard deviation is very low here.

In Figure 4.1 we see an average fitness graph from the first test we ran
during this project. Most runs got about the same type of graph we see in

53

the example one, reaching the high fitness as fast or even a little bit faster
than the graph we chose to show. Since we did not have the graphics in
place at this point it is very hard to analyze any more from this test, aside
from the network analyzed in section 4.2, which is relatively similar to the
ones evolved by this simulator.

54

4.1.2 The second test

The second test was done on the two dimensional version of the simulator.
After serious round of bug fixes the fitness score finally managed to beat
out the fitness of the first test, but not by as much as we would have liked.
Analyzing the movement pattern we observed with the graphic interface we
could quite easily see the reason for this. As we see in Figure 4.2, the snake
changes direction every run and does not keep heading in a straight line,
so since we are using the distance from the starting point as fitness score
instead of the actual moved distance of the snake. This means the snake
actually moved longer than the fitness score, but it still got better fitness
scores than the first test.

Figure 4.2: This figure shows the graphics during the second run. The red
line represents a typical path for the snake to take, and the red dot is the
ending point for the snakes movement.

Now on to discussing the actual values achieved during the test. This was
the simulator test where we got the highest standard deviation. During this
test the simulator was still pretty bugged, and many of the networks ran into

55

these bugs, and the average fitness could not keep up with the networks that
actually worked well. The average score still follows the highest relatively
well, but relative to the other tests, it’s quite much farther behind. At this
point the snake has also moved almost a whole snake length in the 15 time
steps the simulator runs for, which is already a reasonable good result. An
example fitness graph from these tests is shown in Figure 4.3.

Figure 4.3: In this figure we see an average graph for the second test that
was conducted during this project.

In Figure 4.3 we see that the average fitness value is further away from the
highest fitness value, and the worst fitness score almost always stays at 0
instead of jumping a lot like in Figure 4.1, because of the bugs that were
found and fixed for the third version of the simulator. This also means that
the Standard Deviation is steadily higher than it was during the first test.
Evolutionary Algorithms is quick to abuse bugs if it increases the fitness
value, but once those obvious bugs are found and fixed, the evolutionary
algorithms actually handle bugs in the other end really well, since they
networks that fall prey to these will stay at very low fitness and therefore
not have much of a chance to be picked for the next generation.

56

4.1.3 The third test

Moving on to the third test, the simulator was the same as it is now, not
bug free but a lot less than during the second test. This is also reflect in
the fitness scoring, which is quite clearly a lot higher than the previous two
rounds of tests. This is actually the first time the Highest Fitness score on
average throughout the test was able to move further than the snake is long,
as is illustrated in Figure 4.4, where we also see the typical final orientation
of the snake. It seems to always rotate slightly and not head in a straight
line anywhere, as discussed in subsection 3.3.3 and subsection 4.1.2, and it
means it could have moved a little bit further.

Figure 4.4: This figure shows an illustration of how far the snake is moving
during the third test, and the orientation the snake had at the end of the
simulation. It is an illustration to make it clearer than the dots from the
graphics engine, where the distance can also be difficult to see since the field
is so big.

As mentioned the numbers for the third test was quite a lot higher, and it
was clear from the graphics that the snake was moving better than in the
previous tests. The average fitness score is also closer to the highest one,
and the standard deviation is down, which is very good since the highest
score is considerably higher than the previous test. Both a sample fitness
graph and a zoom-in from the graphics to show the snake moving during
the simulation can be seen in Figure 4.5.

As we see in the figure the highest fitness score is now quite a lot higher
than the previous tests, and it also improves more across the entire run of

57

(a) Zoom-in of the simulation (b) Sample fitness graph

Figure 4.5: The following figures shows the the snake during the simulation
[a] and a sample fitness graph [b] from another run during test three.

the simulation, since it is more room for improving the network when it does
not bug out as fast, and actually is able to move for the entire simulation.
The graphics is a sample showing the snakes state during one of the tests,
and this gives an idea of how it moves even if this is just a still frame from
the simulation and not an animation of it.

58

4.1.4 The fourth test

Now that we are done with the regular tests of the simulator it is time to
move on to the most interesting tests, where we actually test the system in
different situations and to accomplish different tasks. The first we look at
is when we give the system a specific target to move towards. Noticeably
this has by far the lowest fitness scores, and if looked at individually, the
most erratic. The test was done with three different target locations, and
this clearly affected the results. It could have been divided into three tests,
but the difference in highest fitness value is instead shown Figure 4.6. The
fact that it was so different stems mainly from the fact that the snake tried
to turn in most cases and this cost it a lot of time.

Figure 4.6: This figure shows the difference in highest fitness value for the
three different targets used during this test.

This sort of behavior actually brings us back to our research goals. So
far the snake have mainly displayed only one of the desired four kinds of
snake locomotion described in section 2.2, namely the lateral undulation,
since this is the fastest on solid ground with no terrain. With the target
point directly above or below it, we also saw the snake do something similar

59

as sidewinding, where it moved in bigger motions and did not even try to
realign and face the target before moving. Since the main research goal of
this project was to develop a system that made Neural Networks controlling
a snake in correct locomotion patterns, this is a huge victory, bugs in the
simulator aside. That we’re seeing more than one type of behaviour shows
that it is possible for evolutionary algorithms to evolve robust networks that
handle different forms of locomotion.

Happy results aside, the actual fitness values was quite low, and relative
to the other tests the standard deviation is very high. An example fitness
graph is shown in ?? and we can look back to Figure 3.11 for the graphical
example.

Figure 4.7: This figure shows the fitness graph from a run during the fourth
test of this system.

Things to note from this figure is that we see during this test that it actually
took a while for the fitness to reach the higher levels, and displays why we
chose such large numbers in our population and such a large number of
generations.

60

4.1.5 The fifth test

Now that we are done with the direction test, it is time to move on to the
last test done in this project, where we test out the environmental scheme we
explained in subsection 3.3.3. After we saw the fitness scores drop quite dras-
tically for the simulator with targeting, the same is expected here, because
when you add more friction to uphill movement, the snake should ideally
choose other routes, and this requires it to realign, just as in the previous
test. The environment scheme that was used can be seen in Figure 3.12.
With this cell map scheme only the lateral undulation locomotion pattern
was observed, but one can postulate that it would be able to do sidewinding
if the hills were placed differently. The direction the snake moved in still
means that the snake avoided the high grounds and moved through the low
ground, which is what we desired, but the low standard deviation might
mean the cell map was not as good as it might have been. By this I mean
that the upper right low ground might have been too easy to find, and most
of the networks were able to find it too easy. The fitness scores is still down
as is expected when the snake have to turn while it moves, or get the penalty
of the uphill movements.

Figure 4.8: This figure shows the fitness graph from a run during the fifth
and last test of this system.

As we see in Figure 4.8 this is a sample fitness graph from the fifth and

61

last test. We previously mentioned that the low Standard deviation might
hint to that the cell map was too easy for the evolutionary algorithm to
be tested sufficiently, and that the simulator might not have been tested
well enough. One point to note here is that if the cell map was harder to
figure out, we might have had to change the input for the Neural Network
to include information about the friction of the neighboring cells, but this
is purely speculations and possible solutions to problems we did not really
encounter with this test.

If we look at the numbers in the sample fitness graph we notice that as
expected the fitness scores has dropped quite significantly from the third
test that was the pure simulator, but not as much as for the simulation
with a target destination. As we have been over for some time now, the
highest fitness value hits its high ground values relatively fast, faster than
we expected before this test, and related to that we also see that the standard
deviation is not as high as we expected before the test. This concludes the
tests done during this project.

62

4.2 Analysis of a Neural Network

In this section we will analyze one of the networks from the third test.
This was the test done on the final simulator with no additional factors
added in. We will be doing the analysis bottom up, meaning we will start
analyzing the output nodes, and evaluating which values from the hidden
nodes triggers the output nodes. From there we will do the same with
the output neurons, where we evaluate which outputs trigger the hidden
neurons. The network we will be analyzing is shown in Figure 4.9. Before
we begin our analysis we make a note that this is just the network for one
joint. To completely analyze the resulting controller we would need to do
this analysis seven times, but analyzing one network is already a big task,
and the other networks in the controller would also most likely be very
similar to the one we’re analyzing.

Figure 4.9: This figure shows the network from one of the runs from test
number three. The weights are next to the edges, and the gains value is
listed to the left of the network.

Starting on the analysis, we first look at the output nodes. The first and
most obvious difference we see between the two is that the first output
Neuron has a highly negative self-edge, as well as a highly negative edge
to the second output neuron. The second output neuron is the other way

63

around, with strong positive edges to itself and the first output neuron.
Before we start looking at what this means we will also include the hidden
neurons to get the full picture of it. The first hidden neuron has strong
negative edges to both the output neurons. The second hidden neuron has
a strong positive influence on the first output neuron, while the edge to the
second output neuron is practically nulled out. Keeping in mind that the
output of the output neurons will never be negative, but always between
0 and 1. The snake is moved through first_output � second_output, so
we are essentially interested in when one node has a larger value than the
other here. This is relatively simple here, since the only scenario where
the second output neuron will actually get largest is where only the first
hidden output neuron fires. For as long as this happens, the state of the
second output neuron is the one that will deteriorate the slowest, Since its
self-edge is so large. If both or only the second hidden neurons fire the first
output neuron will be bigger than the second one. If none of the hidden
neurons fire, the self-edge for the second output neuron will mean the inner
state here approaches 0. What this means in the big picture, is that if the
second neuron fires the first output neuron will be much bigger than the
second, and the joint will bend to the right. If the first hidden neuron fires
strongest or both neurons does not fire, the second output neuron will be
largest and the joint will bend to the left. This helps explain the behaviour
of the snake, and why it has a tendency to turn before it starts moving,
since the second neuron will be largest at the start, and the snake will keep
bending left for a few time steps, before the first neuron takes over and they
start alternating.

Moving on to the hidden neurons, and the last part of this analysis, we
notice that there is a big number of input neurons, and that looking at them
individually would take a long time and probably not be helpful. Instead we
are going to target patterns that we see from the inputs. In Figure 4.9 the
weight values is a little bit hard to see since there is so many edges, but if
there is not a clearly visible minus sign in front of the number it is positive,
since this is the most important thing to make clear in this analysis. We
see a clear pattern forming, where the first hidden neuron receives negative
input from input nodes 1, 2, 3 and 5, and positive from the remaining. The
fourth and fifth input node contributes with relatively small values; so that
they are reversed in the pattern does not have the biggest impact on the
system. The second hidden neuron receives negative input from input nodes
4, 5 and 6 with positive contributions from the rest. The pattern that forms
this way is that the first hidden neuron is firing when the back part of the
snake gives larger inputs and the second hidden neuron fires when the front
part of the snake gives larger input. Since the beginning of the simulation
is quite interesting, we notice that both hidden neurons will receive highly
negative input. At this point all the angles is set to π, since the snake is

64

fully extended. This means the first hidden neuron gets inputs totaling to
�8.922, and the second neuron gets inputs totaling �10.226. When both
are receiving this much negative input both their firing rates becomes very
low.

Putting the analysis from both the layers together, we can get some sense
out of the observed behaviour where the snake turned at the start and
the numbers of the network. Because both the hidden layer neurons is
firing very little at this stage, the second output neuron will dominate the
first one and the snake will start bending to the left, which is what we
also saw in the simulation. Another point we have yet to touch on is the
gains. Since the gain values is so similar it has not been a big part of this
analysis, but we should still mention that because of the output formula,
Output � 1{p1 � e�gain�Stateq, the high gain values means that the state
values is amplified a lot, and since the state is so negative in the beginning,
this makes the second output neuron dominate the first one even more. This
particular join follows the pattern that it will bend right when the back part
of the snake has biggest angles, since the current angles are used as inputs
to the network. The snake will bend left when the snake is extended or the
front part of the snake has biggest angles. The fitness for this network was
27.154, which was far from the highest of the test, and this is also reflected
in the network. While it does work to some extent this particular network
will have trouble changing from side to side, since the output throughout
the simulation will be relatively low, because of the lack of positive edges to
the output nodes. It also goes to show that the network topology and setup
still needs a lot of work, and should still have high priority second to fixing
the simulator.

65

4.3 Further work

Since this project is very research focused its potential is not close to be
reached yet, and therefore we chose to include a whole section discussing
further works, and possible directions to evolve the project or make similar
projects in the future. There are several things that could be improved on
the current project, and there are several new, interesting areas that we
want to include in this section to give a starting point for future research.
The first priority is to get the simulator working completely and free from
bugs, since we will need an accurate testing environment to be able to test
more advances scenarios for our system, or the possible sources of errors
will become too many, and you cannot quite trust the results you get while
the simulator is running with bugs. It would be a shame if the networks
worked well in the simulator but could not actually handle the advanced
environments when put into a real scenario with an actual snake.

There is one main area of expanding that opens several more options, and
it has already been touched on in the introduction. This is of course getting
the simulation and controller over onto an actual snake robot. This would
take reprogramming the entire system into a quicker language, and tuning it
for the smaller computation power of a robot. The issue of the computation
power also raises another issue with the real world application of this kind
of online tuning of the controller: getting the environment information.
Necessarily the simulator will need some form of knowledge about the layout
of the environment. In the project so far we have been assuming that we
already know this, but for the system to work completely independently it
cannot make such assumptions.

One possibility is for the robot to get this through two or even only one
camera. If it uses only one camera it will of course need to move a measurable
amount to get more than one reference point on the environment, in order
to be able to do the 3d reconstruction and get useful information about the
environment. Unfortunately the algorithms to reconstruct a 3d model of the
environment from 2d images are quite computationally heavy and require a
lot of image processing to detect the edges in the images. Detecting either
edges or the position of a set of reference points is important to be able to
reconstruct the environment in 3d, and this means each snake robot would
require more powerful integrated computers.

Another possibility is for the system to get the images off-line, from a dif-
ferent observer or robot itself, before computing the 3d model on a more
powerful, external computer. From there the model would be uploaded to
the robot with regular intervals so it can keep adjusting its controller to
changes in the environments. This scheme would make use of distributed
computing as well, in the sense that the evolution of the network is still done

66

by the robot, but the model is made by an external source.

Getting a more advanced environment into the simulation is definitely a big
part of what remains. Applications for real robot snakes would lie outside
flat surfaces and tidy environment, so even though tests conducted in such
spaces is still very useful to assess the movement patterns of the robot; it is
still not the major goal when talking about tests on real robots. Getting a
more advanced environment into the simulator like it is now will be difficult,
and redoing it with this purpose in mind might be the fastest and best way
forward. At this point in the further works section we have already started
crossing the artificial intelligence part of the project with areas from image
processing, and it is well worth keeping this in mind as one goes forth and
does more research into the area. With more complex algorithms in image
processing, combined with artificial intelligence we could be able to gather
larger amounts of information from images of the snake’s surroundings, and
this again could greatly improve upon systems evolving controllers for the
robots.

The last that will be mentioned in this chapter, as we do not want to get to
speculative and keep the suggestions within what we see as promising areas
that can actually be improved upon relatively soon, is the navigation of the
snake. During this project this was done relatively simply by changing the
fitness function, but with more advanced environments this will no longer
be a scheme that holds up. One possibility is making more points, either
from a remote operator manually setting rally points for the snake to follow,
or for the system to figure it out itself based on the observed environment.
The snake would then use these points as the single point we have been
using so far, so it basically goes from one point to another. Another idea for
the navigation system is to actually have a different controller that controls
the navigation, maybe combining the locomotion network with a separate
navigation Neural Network.

67

Chapter 5

Conclusion

In this chapter we will take a look at where the project stands at its end
through a brief summary of this paper. We will also make some concluding
remarks and see how we measure up to goals stated in the introduction.
This includes evaluating how well the project is able to answer the research
questions we also introduced at the beginning of the project.

5.1 Summary of the project

We will use this section to briefly summarize this project. The ambitions
for the project was relatively high, but they were scaled back during the run
of the project, as getting the simulator working took longer than expected.
We still managed to complete a system that works to some extent. The
project started out with a large amount of theoretical work, where papers
ranging from real snake locomotion to detailed programming of evolutionary
algorithms and Neural Networks were covered. The research phase revealed
that similar projects had been done before, but without the focus on more
advanced target destination and environmental factors. This opens up a
new path for research in the field to take, and although not a lot was tested
during this project, it still gives us a scheme to do this by, and one that
worked relatively well during the tests.

During the background research phase the biggest slice of time was spent on
reading, understanding and extracting a usable model from the book "Snake
Robots: Modeling, Mechatronics and Controls". The book explains it well
and thoroughly, but the subject is advanced and the models quite complex,
so it was quite time consuming setting up the actual model from it. The
essentials of the models have been extracted and explained in section 2.3,
and this can be a useful starting point for project seeking to duplicate and

68

evolve the results achieved in this project. As we discussed in section 4.3,
there is definitely room for improvements on this project, and there is a lot
of potential for similar projects to get good results and enable a big amount
of new technology and research.

After the theoretical study we chose what software to use, which is simply
Python, and a self-programmed simulator. For the graphical representation
we used Tkinter, the standard graphical user interface used in Python. The
choice was relatively easy to make, as even though the basics goals of the
project is to explore the possibility in a simulated environment, I wanted
to take a more ambitious approach. Python helps us do this through being
an easy to use programming language that will not require much advanced
coding, and is easy to bug fix, as well as being named after a snake, even
though that was not taken into consideration when choosing Python. This
would allow more freedom to make more complex environments and tasks
for the snake, and having full control of the simulator also makes it easier to
find bugs. It was still a project goal to test the networks on an actual robot
snake, but this never happened. The fact that it was written in Python did
make this less likely to happen, but I still think it was the correct choice, so
we were at least able to get a simulator running.

After we were done with this we created an implementable model, so we
would have a basis for the simulator. Then we chose a development method-
ology, spiral development, so we could start focusing on developing the actual
system. From here we started implementing the early version of the simula-
tor, as well as the Evolutionary algorithm and the artificial Neural Network.
While it has not been the focus of this paper, this iteration of the develop-
ment was by far the longest, since it was so much to develop, program and
get working for this. The evolutionary algorithm was relatively simple to
get functional, but it was still time consuming considering it is a relatively
big and complex system, so it takes time to develop. The neural network
was also made as part of the coding for the Evolutionary Algorithm, and
since it got the snake moving in correct patterns it was not changed much
after the first iteration.

What was changed a lot after the first iteration was the simulator. After
the second iteration, when we finally got the graphics in place it became
clear the second version of the simulator had bugs that the evolutionary
algorithm abused really well, and this initiated the great bug fixing phase
of the project, that lasted longer than expected. Since the system is still
not completely bug free this phase was never actually completed, but we
decided that we had to move on and do the planned tests with the system
we had in place.

At the last phase of the project we did testing and writing the thesis. The
tests gave us mostly good results, and these are explained and analyzed in

69

more detail in chapter 4. In section 4.3 we take a look at ways to take this
project if it is resumed, or similar projects is started, and with that the
project was finished, and only the last section remains.

5.2 Conclusion for the project

In this section we will conclude the project that we have worked on for a
year now. We had great ambitions for the project at the start of the year,
but these were scaled back when we realized the scale of the system and
also when we ran into problems with bugs. We have already covered this
really well, so instead of rehashing that, we will move back to the goals for
the project that we stated in the introduction, before we take a look at the
research questions and how well they were answered.

The first goal for the project was to make a controller for serpentile robots
using an evolutionary algorithm to evolve it, and this was technically com-
pleted, but not as well as we would have liked. With the simulator still
containing bugs and the Neural Network not as tested and perfected as we
would like, we would not yet be comfortable presenting this solution as a
fully functional controller for the robot snake. At best the networks are
working well enough to be tested on actual snakes, but not good enough
for much more than that. The analysis of the network confirms that the
snake should display proper snake locomotion, but it would most likely not
be optimal. The other goal set for our system was to introduce a changing
environment into the simulation, and a target destination for the snake to
be implemented, and we had greater success with this goal. The network
evolved is still not the best, but the introduction of the cell map scheme
and the target destination tests were relatively good. The environment still
does not change during the test, but there is no logical reason the cell map
could not be changed halfway through the simulation and the evolutionary
algorithm would be able to handle it. Both the cell map and the directional
schemes is discussed in more detail in both chapter 4 and section 4.3, and
both of them definitely have more potential if worked further on, but this
project still managed to include these as desired.

All in all the project goals were not met as much as we had wanted, and
although that is a bit disappointing, it still shows that this type of systems
have a lot of promise, and there is a lot of possible research to be done here
in the future.

Moving on to the research questions posed in section 1.2 we set the level of
these a little bit lower than the ambitions of the project. The main research
question was if it was at all possible to evolve a Neural Network controller
that can work as well as specialized controllers. Considering the ability of

70

the evolved networks to abuse bugs in the simulator, I believe we can answer
this as yes, you can do this. It definitely requires more testing for us to be
completely sure of this, but it is a good beginning and a definite step in the
right direction.

We also had a secondary research question for the project, which was con-
cerning the environmental scheme. We wanted to explore how terrain fea-
tures and targeted destination could be implemented into the system, and if
it would be possible to do it online for the robot. The fourth and fifth test
conducted in chapter 4, shows how this was solved. With simple schemes
like this it should be possible to evolve it fast enough to do it online and
you can definitely have more advanced schemes if you can do the simulation
off line. This is discussed in more detail in section 4.3, as well as differ-
ent possibilities to make the pathing more advanced to get to the target
destination. This answers the research question we started with relatively
well, that this is both possible and a very good way to go about producing
systems to handle these kinds of changing environments.

In terms of the research questions the secondary one got the most satisfying
answer, but both were answered to some extent. As a concluding remark,
this project was a moderate success. The results were not groundbreaking,
but it shows that the field has a lot of potential to create very well performing
systems, even if the one we have here is only partly working.

71

Bibliography

[1] Pål Liljebäck, Kristin Y. Pettersen, Øivind Stavdahl, Jan Tommy
Gravdahl. Snake Robots: Modeling, Mechatronics and Control. 2011.
Springer-Verlag London 2013.

[2] Alireza Fasih, Jean Chamberlian Chedjou, Kyandoghere Kya-
makya. Cellular Neural Network Trainer and Template Optimiza-
tion for advanced Robot Locomotion, Based on Genetic Algorithm.
December 2008. University of Klagenfurt, Austria. Available at:
<http://ieeexplore.ieee.org/l>

[3] Haruhiko Asada, Sheng Liu. Transfer of Human Skills to Neural Net
Robot Controllers. 1991. Massachusetts Institute of Technology. Avail-
able at: <http://ieeexplore.ieee.org/l>

[4] Prabir K. Pal, Asim Kar. Mobile Robot Navigation Using a Neu-
ral Net. May 1995. Bhabha Atomic Research Centre. Available at:
<http://ieeexplore.ieee.org/l>

[5] Paolo Arena, Luigi Fortuna, Marco Branciforte. The Mecha-
nism of Locomotion In Snakes. February 1999. Available at:
<http://ieeexplore.ieee.org/l>

[6] Teruo Fujii, Tamaki Ura. Soncs: Self-Organizing Neural-Net-Controller
System for Autonomous Underwater Robots. 1991. University of Tokyo,
Japan. Available at: <http://ieeexplore.ieee.org/l>

[7] J. Gray. The Mechanism of Locomotion In Snakes.
May 1946. University of Cambridge. Available at:
<http://jeb.biologists.org/content/23/2/101.full.pdf+html>

[8] Anders Kofod-Petersen. How to do a Structured Literature Re-
view in computer Science. April 16, 2012. NTNU. Available at:
<http://www.idi.ntnu.no/emner/it3708/lectures/notes/SLR_HowTo.pdf>

[9] Coppelia Robotics. V-rep: Virtual Robot Experimentation Platform:
<http://www.coppeliarobotics.com/>

72

http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://jeb.biologists.org/content/23/2/101.full.pdf+html
http://www.idi.ntnu.no/emner/it3708/lectures/notes/SLR_HowTo.pdf
http://www.coppeliarobotics.com/

[10] Cyberbotics. Webots: fast prototyping and simulation of mobile robots:
<http://www.cyberbotics.com/overview>

[11] Dario Floreano, Claudio Mattiussi. Bio-Inspired Artificial Intelligence:
Theories, Methods and Technologies .2008. The MIT press, Cambridge
MA, U.S.A.

[12] Dale Purves, George J. Augustine, David Fitzpatrick, William C. Hall,
Anthony-Samuel LaMantia, Leonard E. White. Neuroscience fifth edi-
tion .2012. Sinauer Associates, Inc. Sunderland, Massachusetts, U.S.A.

73

http://www.cyberbotics.com/overview

	Introduction
	Motivation
	Problems and Research Questions
	The approach

	Background
	Simulation Software and Methodology
	Biological snake locomotion
	Lateral Undulation
	Concertina Locomotion
	Rectilinear Crawling
	Sidewinding

	Physical Model for the robot snake
	Complex model
	Simplified model

	Literature study
	Structured literature review
	Snake Robots: Modeling, Mechatronics and Control

	Methodology
	The Evolutionary Algorithm
	Overview and theoretical background for the Evolutionary Algorithm
	Genotype and Phenotype Representation
	Evolutionary Algorithm specifics

	The Neural Network
	The simulator
	The early version of the Simulator
	The two dimensional Simulator
	The final version of the simulator

	The system put together

	Results and Discussion
	Tests and results
	The first test
	The second test
	The third test
	The fourth test
	The fifth test

	Analysis of a Neural Network
	Further work

	Conclusion
	Summary of the project
	Conclusion for the project

