NTNU - Trondheim
Norwegian University of

Science and Technology

Evaluation of High Performance
Key-Value Stores

Christian Forfang

Master of Science in Informatics
Submission date: June 2014
Supervisor: Svein Erik Bratsberg, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Summary

Key-value stores have a long history of providing users with a simple to use, yet powerful,
interface to durable data storage. Useful for various purposes in their own right, they are
also often used as storage layers in more complicated systems—such as fully featured
database management systems. For these reasons, it is educational to investigate how such
systems are actually architectured and implemented.

This thesis looks in detail at two recently developed embedded key-value stores, Google
LevelDB and Symas Lightning Memory-Mapped Database (LMDB). Both systems’ over-
arching architecture and lower-level implementation details are considered to provide a
thorough description of how they work.

While exposing largely the same set of features, the systems are shown to take vastly
different approaches to data storage. These techniques are described, and put in context
with regards to existing ideas from the database management systems field. It is also
shown how the designs impact performance in the face of different types of workloads.

Sammendrag

Lagringsystemer med en “’nkkel-verdi” datamodell har en lang historie av tilby brukere et
brukervennlig, men samtidig kraftig og fleksibelt, grensesnitt for langsiktig og sikker data-
larging. I tillegg til vre nyttig i seg selv er slike systemer ogs ofte brukt som lagringskom-
ponent i strre databasesystemer. Med bakgrunn i dette, er det intressant underske hvordan
et slikt system faktisk er utformet og implementert.

Denne rapporten ser i detalj p to slike nkkel-verdi bibliotek, Google LevelDB og Symas
Lightning Memory-Mapped Database (LMDB). Begge systemenes utforming og imple-
mentasjon er sett p og beskrevet, slik at en grundig forstelse av hvordan de fungerer kan

oppns.

Til tross for at de tilbyr mange av de samme funksjonene, er deres Isningener for datala-
gring veldig forskjellige. Disse Isningene er beskrevet, og satt i en bredere kontekst. Det
demonstreres ogs hvordan teknikkene legger grunnlag for varierende ytelses-karakteristikk
i forskjellige bruks-situasjoner.

ii

Preface

This thesis was written as part of a 2-year Master’s degree programme in Informatics at
the Norwegian University of Science and Technology (NTNU), in Trondheim, Norway.

The reader is assumed to be familiar with general database management system terminol-
ogy, concepts, and techniques (such as ACID, B+trees, and write-ahead logging), as well
as the C and C++ programming languages. The text, unless otherwise specified, assumes
the underlying storage medium used is a hard disk drive (HDD), and not flash memory or
similar.

iii

iv

Table of Contents

Summary i
Sammendrag ii
Preface iii
Table of Contents vi
List of Figures vii
1 Problem Definition and Background 1
1.1 Introduction i e e 1

1.2 Embedded Key-Value Stores 2

1.3 Data Storage Performance Tradeoffs 3

1.4 Motivation and Thesis Contents 4

2 Case Study: Google LevelDB 7
2.1 Introduction L 7

22 UsageExample e 9

2.3 Architecture Overviewo 12
23.1 Introduction 12

2.3.2 Memtable and Sstables oL 12

2.3.3 Levelsand Compactions 13

234 WritePath 15

235 ReadPath 16

2.3.6 Snapshots and Iterators 16

2.3.7 Recovery and Durability 18

2.3.8 Tableand Block Caching 19

2.4 TImplementation Highlights 21
24.1 Introduction. 21

2.4.2 Internal Key Representation 21

243 Memtable
2.4.4 The Version and VersionSet Classes
245 Sstable e
246 CONCUITENCY . . . v v v v v v e e et e et e e e e e
247 Reads e
248 WIS v o o
2.4.9 Serialization and Batching of Writes
2.4.10 Atomic Updates
2411 Compactions L
2412 Caching
2.4.13 Snapshots and Iterators,
2414 ReCOVETY . . . v v v i i e e i e e e e e e e e
2.5 Extensions and Related Projects
2.6 Discussion. e e e e e
3 Case Study: Symas Lightning Memory-Mapped Database (LMDB)
3.1 Introduction
32 UsageExample L.
3.3 Architecture OVerview i vt i e
331 Introduction.
3.3.2 Copy-on-Write B+Tree
3.3.3 Page Management,
334 WritePath
335 ReadPath
33.6 Recovery and Durability
3.4 Implementation Highlights
341 Introduction.
342 Memory Mapped DataFile
343 FreePageReclamation
344 Pagelayout
345 B+TreeNavigation
3.4.6 Multi-Versioning and Recovery
35 Discussion.
4 Evaluation
4.1 Introduction
4.2 Feature CompariSOn it
43 Performance
4.4 ConClusions i vt i e e e e e e e
Bibliography

51
51
53
55
55
55
56
57
58
58
59
59
59
60
63
65
66
68

71
71
71
72
78

78

vi

List of Figures

2.1
22
23
24
25
2.6
2.7
2.8
29

3.1
3.2
33
34

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

A single level consisting of sstables with non-overlapping key ranges.

[lustration of three levelsinLevelDB
[lustration of a level-0 to level-1 compaction.
Ilustration of data-movement in LevelDB.
LevelDB Internal-key format
LevelDB skip-listentry format,
Memtable Skip-list
Sstable file format o L
Format of an sstable-block and its record entries.

Copy-on-Write B+tree. Lo o
Identification of freed pages.
LMDB’s disk-page format.
Formatof asinglenode.,

Put Operation Overhead
LevelDBstalls.
Sequential reading of 16B/100B key-value pairs.
Random reading of 16B/100B key-value pairs
Synchronous sequential writes of 16 + 100 byte key-value pairs.
Synchronous sequential writes of 16 + 100 000 byte key-value pairs. . . .
Asynchronous sequential writes of 16 + 100 byte key-value pairs.

Asynchronous random writes of 16 + 100 byte key-value pairs.

13
14
14
15
21
24
26
28
29

56
57
63
64

73
74
75
75
76
76
76
77

vii

Chapter

Problem Definition and
Background

1.1 Introduction

The dictionary problem is a classic problem in computer science. It involves creating a
data structure to store arbitrary values, where each value is associated with a lookup key.
Basic operations are then to find, insert, and delete values associated with a given key.
Such a structure is also referred to as a dictionary, associative array, map, symbol table,
or property list.

The challenge is to provide these operations in an efficient manner. Research in this area
has a long history, and innumerable solutions have been proposed. These often use various
kinds of trees,(Anderson, 1989) or some type of hashing.(Knuth, 1973)

A key-value store is a data storage solution implementing a dictionary data model. One
of the early examples of such a data store is dbm. Created by Ken Thompson and re-
leased in 1979, it was implemented using on-disk hash tables. Being a program library,
users could link their own programs to it and have dbm handle the—otherwise somewhat
complicated—issue of durable and efficient disk-based storage. Supported operations, in
addition to insertions of key-value pairs, included search and retrieval of data through
its key, deletion of a key along with its data, and to sequentially iterate over all stored
key-value pairs (in an order defined by the hashing function). Since its release, many
derivatives have been created implementing a similar API.(Poznyakoff, 2011)

A later key-value store is Berkeley DB. Released in 1991, it began life as a new implemen-
tation of a hash-based access method, intended to replace various existing dbm implemen-
tations. Later it was extended to also include a B+tree access method, and had additional
features added in addition to the minimal dbm API—for example extensions to handle

1

Chapter 1. Problem Definition and Background

concurrent access, and transaction support. To emphasise its use as a program library (as
with dbm), it is billed as an embedded data store. This is to differentiate it from database
server processes—though such a system could easily be built on top of for example Berke-
ley DB.(Michael A. Olson, 1999) More recently, the NoSQL movement has popularized
the term key-value store to refer to a particular type of database server exporting a key-
value data model—often with additional distributed features such as replication—further
necessitating this distinction.(Cattell, 2011)

The problem of efficiently implementing an embedded key-value store is more specialised
than the basic dictionary problem. Users often want the data to be stored to a more durable
storage medium than volatile memory, which has widely different performance charac-
teristics. Much focus has therefore been on creating and evaluating different disk-based
access methods and indexing structures, such as B+trees and different kinds of hashing,
when developing new systems.

Below, the idea of an embedded key-value store is further explained. Then some of the
tradeoffs which can be made when implementing such storage systems is covered. Finally,
motivation for writing the thesis, and the contents of further chapters, are described.

1.2 Embedded Key-Value Stores

The features provided by an embedded key-value store can vary significantly between
different systems. This section will describe some of the more popular ones, and present
some examples of how such storage solutions are used in practice.

Get/Put/Delete API Being able to Get the stored value of a given key, Put a key-value
pair into storage, and Delete a stored key-value pair is the basic capability all key-value
stores will provide.

In-memory only data storage If it is not necessary to store the data durably, a system
could store the data entirely in memory. This would greatly speed up access times, but limit
the total data amount which can be stored—the exact amount depending on the available
memory address space.

Transactions Transactions give users the ability to perform a sequence of changes which
succeeds or fails as a unit. A classic example of why this is desirable is the transfer of
money from one bank account to another. In such a case, a user would like to have a
guarantee that, if the withdrawal-operation succeeds, the deposit-operation will complete
as well—otherwise money could be lost in the event of a crash.

2

1.3 Data Storage Performance Tradeoffs

Ordered iteration A user might find it desirable to iterate over all data in the database
ordered by key-value. This may or may not be easily possible depending on the database
implementation.

Snapshots It is often desirable to be able to have access to a snapshot of the database.
This represents the state of the database as it was at the time of the snapshot’s creation, and
enables users to access all database-contents as they were at that time—even if changes
has been made since.

Concurrency Multi-threaded or multi-process concurrency enables users to access the
database from multiple threads or processes simultaneously, without external synchroniza-
tion.

Use Cases

The general problem an embedded key-value store addresses is that of fast and reliable lo-
cal key-value storage. Here, local storage implies it happens on the computer the software
is running on. To illustrate where this might be useful, it is common for many types of
applications to want to persistently store some kind of information between executions—
and to do this locally, without being reliant on the state of an external server. This can be
simple things like configuration state or any other kind of application-specific data. Em-
bedded key-value stores can fulfill this need by providing a very simple, but also flexible,
data model, allowing the application to focus on more domain-specific tasks unrelated to
durable data storage.

Embedded key-value stores are also frequently used as a storage layer' for more complex
data-storage solutions. Here it handles the more limited scope of durable data-storage
only, allowing other higher-level database components to provide whichever features the
database need to provide. Such features can for example be support for an SQL interface
(or some other data-model), ACID transactions, distributed sharding and/or replication, or
just a simple network interface.(Burd, 2011)

With a many different kinds of embedded key-value stores available to choose from, often
with the same basic set of features, it becomes necessary to look deeper to get a sense of
their relative pros and cons.

1.3 Data Storage Performance Tradeoffs

With any type of dictionary, the implementation of it will determine the efficiency and
performance of a given operation. Considering only inserts and lookups, the structure used

10Or storage engine.

Chapter 1. Problem Definition and Background

will necessarily introduce a tradeoff between the performance of these two operations.
(Walsh, 2011)

Two illustrate this, consider a system where raw insert performance is the only consider-
ation. The best one can do in this case is to fully utilize the bandwidth of the underlying
storage device, for example by logging all data to disk with no additional processing. This
will maximize insert-performance, but make lookups extremely slow as each lookup will,
on average, require half the written data to be examined. Depending on how the system
is used, this may or may not be acceptable from a performance standpoint. If lookups
are sufficiently rare, or if unordered iteration over all the stored data is the only additional
access method needed, the superior write performance might offset this disadvantage. If
not, a user might find the lookup performance unacceptably slow.

The opposite extreme is a read optimized system, where lookup performance is maxi-
mized. What an optimal system is, in this case, will depend heavily on the access pattern
of the lookups. A system which could perform well in most cases is a hash-table where
each insert causes the system to generate a new perfect hash-function—and re-hashes all
existing items in the table. As the number of items grow this becomes an extremely expen-
sive operation, but lookup performance will be excellent. Another alternative could be to
store data multiple times in different formats so that the optimal format is always available
for a given access scenario.

A more general system will want to hit some kind of tradeoff between these extremes; a
system where both insertions and lookups are reasonable efficient. To achieve this, both
the system architecture (including the access methods it uses), and implementation, need
to be carefully considered.

1.4 Motivation and Thesis Contents

When reading published papers or other descriptions of how a given system works, it is
rarely possible to attain anything but a very high-level architectural understanding of it.
This is certainly useful, but such a description will necessarily simplify or gloss over the
more gritty details of how it works—relating to more low-level implementation details—if
for no other reasons that creating such a description can be very time consuming, while
comparatively providing little value to the average reader. However, to fully understand
how a system actually achieved what it does, it is often necessary to look at it at this level
of detail.

For this reason, studying the actual source-code of software can be very useful, as it fully
defines how a system works. For someone unfamiliar with any type of software—be it
data-storage-solutions, operating systems, or video games engines—studying the source-
code of one such system is likely to give the reader great insights into both how both that
specific system works, as well as how other related systems are likely to function. This
goes for both a high-level architectural understanding, as well as more implementation-
focused details.

4

1.4 Motivation and Thesis Contents

Motivated by the above reasoning, the rest of this thesis will look at two existing embedded
key-value stores, Google LevelDB and Symas LMDB. These are both relatively recent
systems, initially released in 2011 and continuously update since. The aim is to provide
a sense for how such systems are actually architectured and implemented, as well as to
compare and contrast the two implementations in terms of the architecture used, features
provided, and performance in different scenarios. Having this level of knowledge is both
useful in itself, also helpful to be able to select between these, and similar, systems when
faced with a given usage scenario.

Chapter 1. Problem Definition and Background

Chapter

Case Study: Google LevelDB

2.1 Introduction

LevelDB describes itself as a fast key-value storage engine written at Google that provides
an ordered mapping from string keys to string values. It is created primarily by Jeff Dean
and Sanjay Ghemawat.(Jeff Dean, 2011) Written in C++, it was first released publicly
in 2011 and has since seen multiple revisions, with the most recent version (1.16) being
released in February 2014. It is licensed under a BSD-style open source license and has, in
addition to seeing much use on its own, also served as the base for multiple other database
projects.(LevelDB, 2014)

As an embedded key-value store it can serve multiple purposes. Among these, Google
highlights using it to “store a cache of recently accessed web pages [in a web browser]”,
“store the list of installed packages and package dependencies [in an operating system]”,
and “store user preference settings [in an application]”. 1t is additionally designed to be
“useful as a building block for higher-level storage systems” .(Jeff Dean, 2011)

Specific example of its usage include inside the Google Chrome web browser, where it is
used to implement the IndexedDB! HTML5 API, in the Riak database where it is available
as a one of its storage backends,(Basho, 2014b), in Apache ActiveMQ as a persistent data
store,(Apache, 2014) and in the Bitcoin (and derivatives) software for storing transaction
and block data.(Bitcoin, 2013)

Features

The following are some of the features of LevelDB, as listed on its project website:(LevelDB,
2014)

Thttp://www.w3.org/TR/IndexedDB/

Chapter 2. Case Study: Google LevelDB

e Keys and values can be arbitrary byte arrays.

e Data is stored sorted by key.

e Callers can provide a custom comparison function to override the sort order.

e The basic operations are Put (key, value), Get (key), and Delete (key).
e Multiple changes can be made in one atomic batch.

e Users can create a transient snapshot to get a consistent view of data.

e Forward and backward iteration over the data is supported.

e Data is automatically compressed using the Snappy compression library.>

e External activity (file system operations and similar) is relayed through a virtual
interface so users can customize the operating system interactions.

e Detailed documentation about how to use the library is included with the source
code.

Chapter contents

The sections in this chapter will contain the following: first LevelDB’s API and how is used
in a C++ application is presented. Then its architecture and implementation is covered in
some detail, followed by a brief look at some projects of which LevelDB has served as a
base. The final section will discuss the various approaches used by LevelDB, and put these
in a broader context.

Zhttps://code.google.com/p/snappy/

O 01N W —

O R N S

—

1

2.2 Usage Example

2.2 Usage Example

This section will describe the API exported by LevelDB, and show some examples of its
usage.

LevelDB presents a reasonably small interface to clients: besides the basic Get, Put, and
Delete operations, it includes methods to create and release a snapshot of the current
state, a method to create a new iterator over the current state, and methods to query data
storage statistics. Below is the complete public C++ interface exposed by LevelDB:

static Status Open(const Options& options, const std::string& name, DBx*xx dbptr);

virtual Status Get(const ReadOptions& options, const Slice& key,
std::string* value) = 0;

virtual Status Put(const WriteOptions& options, const Slice& key,
const Slice& value) = 0;

virtual Status Delete(const WriteOptions& options, const Slice& key) = 0;

virtual Status Write(const WriteOptions& options, WriteBatchx updates) = 0;
virtual Iteratorx NewlIterator(const ReadOptions& options) = 0;

virtual const Snapshot* GetSnapshot() = 0;

virtual void ReleaseSnapshot(const Snapshot* snapshot) = 0;

virtual bool GetProperty(const Slice& property, std::stringx value) = 0;

virtual void GetApproximateSizes(const Range* range, int n, uint64_tx* sizes) = 0;

virtual void CompactRange(const Slicex begin, const Slicex end) = 0;

The basic usage of LevelDB is relatively straightforward: first a database-object is created.
This opens an existing database (and performs recovery if needed), or creates a new one.

leveldb::DBx*x db;
leveldb::Options options;
options.create_if missing = true;

leveldb::Status status = leveldb::DB::Open(options, “testdb”, &db);

The leveldb: : Status class is used throughout LevelDB to return information about
the success or failure of an operation. It can be used as follows:

if (!status.ok())
std::cerr << status.ToString() << std::endl;

To close a database, one simply de letes the database object:

delete db;

Chapter 2. Case Study: Google LevelDB

Reads and writes can be performed using the database ojbect’s Get, Put and Delete
methods:

— O 0NN R W —

std::string keyl
std::string key2
std::string value;

leveldb::Status s = db—>Get(leveldb::ReadOptions(), keyl, &value);

if (s.ok())
s = db—>Put(leveldb::WriteOptions(), key2, value);

if (s.ok())
s = db—>Delete(leveldb::WriteOptions(), keyl);

...and iteration over all key-value pairs can be done through an iterator:

N0 B W=

leveldb::Iteratorx it = db—>Newlterator(leveldb::ReadOptions());

for (it—>SeekToFirst(); it—>Valid(); it—>Next()) {
cout << it—>key().ToString() << ”: 7 << it—>value().ToString() << endl;

delete it;

Finally, creation and use of a snapshot looks like the following:

[RNl I e Y R R S

leveldb::ReadOptions options;
options.snapshot = db—>GetSnapshot () ;

// ... apply some updates to db ...
leveldb::Iterator* iter = db—>NewIterator(options);
// ... read using iter to view the state when the snapshot was created

delete iter;

db—>ReleaseSnapshot (options.snapshot);

From the interface, it is worth noting how the key and value-arguments are of type
leveldb: : S1ice—except for Get which takes a pointer to a std: : string for its
value argument. It is crucial to understand what a S11ice represents as it is also used ex-
tensively internally in LevelDB: it is simply a (non-owning) pointer to a byte-array stored
externally, along with the size of this data.

The S11ice class contains C++ constructors which can take referencestoa std: : string
or char* and then stores a pointer to this data along with the size (extracted using
std::string::size () or strlen(const charx). One can also construct a
Slice by giving it this information directly, for example if it is not contained in a
std::string, oris a char* containing \ 0’ bytes—meaning st rlen will not return
the correct size. Since the S1ice does not own the data it points to, it important the data
is kept alive for the lifetime of the S1ice.

The Get method takes a pointer to a std: : st ring which will be “filled out” by Lev-
elDB (by copying from internal buffers) if the value for the key in question is found. This

10

2.2 Usage Example

string thus takes ownership of the returned data and makes sure the memory is freed on its
destruction.

The leveldb: :WriteOptions argument is used to convey whether or not a change
should be flushed from the operating system buffer cache, through its sync flag. For
reads, the leveldb: : ReadOpt i ons argument conveys options like whether or not file-
checksums should be verified, if the data read should be excluded from internal caching,
and information about which snapshot of the database the read should take place in (if

any).

Calls to the database-object can be performed from multiple threads simultaneously with-
out external locking. Additional details about concurrency in LevelDB can be found in
section 2.4.6.

Another noteworthy operation is the ability to perform a set of updates atomically. This
is covered with examples in section 2.4.10. Other operations, including setup of internal
comparators for keys (to define the ordering among them), and more advanced options like
cache- and filter-setup, is not covered here. The interested reader should instead check out
LevelDB’s own documentation.(LevelDB, 2012)

11

Chapter 2. Case Study: Google LevelDB

2.3 Architecture Overview

2.3.1 Introduction

This section will cover LevelDB’s high-level architecture and its major components. This
should give the reader a general understanding of how LevelDB works, and lays the foun-
dation for later talking about its actual implementation.

First, the central concepts of memtables and sstables are introduced. Then, the levels
structure—from which LevelDB takes its name—and the necessary compaction-process to
maintain it are described. Next, the path a given write- or read-operation takes through the
systems is covered. The remainder of the section will then look at the issues of providing
snapshot-support and iterators for the database-contents, how durability and recovery is
handled, and finally a description of how LevelDB does in-memory caching of data.

2.3.2 Memtable and Sstables

LevelDB uses two kinds of structures to store data internally. These are called “memta-
bles” and “sorted string tables” (sstables) respectively. All data in LevelDB is contained
in one of these two structures.

Memtable

As the name suggests, a memtable is a completely in-memory data structure. It is used
to hold a set of entries in sorted order by the entries’ keys. Entries can either be key-
value pairs, or a deletion marker for the key. While holding this data, the memtable can be
queried to return entries by key, asked to provide an iterator over all entries it contains, and
have new entries inserted into it. Since the memtable is an in-memory data structure, these
operations can all be expected to be fast as no disk IO is involved.> A given memtable is
generally kept small, at maximum a few megabytes in size. Once it reaches a certain size
it is frozen (no more entries are inserted), replaced, and its contents eventually moved to
disk.

Sstable

An sstable—or “sorted string table”—is a custom file format which stores a sequence of
entries sorted by key. Similar to the memtable, each entry can either be a key-value pair or
a deletion marker for that key. LevelDB tries to keep each sstable sized to around 2 MB,
but the exact size depends on the entries contained in it and any compression applied.

3This is a simplification: for durability-reasons an on-disk log of inserts to the memtable is kept—but this is
not handled by the memtable itself.

12

2.3 Architecture Overview

The sstable is structured so that it is possible to tell approximately where in the file a
given entry must be located, if it exists. This is done by first storing all entries in sorted
order—hence the name “sorted string table”—and then including an index at the end of
the file. This is not a complete index of all entries, but rather the location of all “blocks”
in the file—each of which contain a number of entries—and the first and last (equiva-
lently, smallest and largest) entry stored by each block. By having this index available, the
position of the block where a given entry must be located (if it exists in the file) can be
calculated, and then the block retrieved with a single disk-seek. This makes the sstables
very efficient for lookups.

In addition to blocks containing entry-data, the sstable format also allows for blocks with
auxiliary information. This could for example be a bloom-filter over all entries contained
in the file.*

Level X > 1
[A—D} [E-l } [M—S} u-v
AN ‘IP Wl
Sstables

Figure 2.1: A single level consisting of sstables with non-overlapping key ranges.

2.3.3 Levels and Compactions

The sstable files used to hold disk-resident data in LevelDB are organized into a sequence
of levels. The levels number from level-0 to a maximum level, by default 7. Except for the
special level-0, all sstables in a given level have distinct non-overlapping key ranges (see
figure 2.1). This is done so that when an entry is searched for, only one sstable in each
level can possibly contain that key—namely the sstable which has a range overlapping the
searched-for key (if one exist). By maintaining this invariant, lookups can be done very
efficiently: first the one sstable in the level where a sought-after entry must be located
is identified, then the sstable block (potentially) containing the entry itself is directly re-
trieved with a single disk-seek after consulting the sstable index for its location. (This
assumes the sstable index is available, else an additional seek is required to first fetch the
index.) See figure 2.2 for an illustration of the levels structure.

As opposed to the larger-numbered levels, level-0 does not necessarily contain sstables
with overlapping key-ranges. This is done so that once a memtable fills up and is frozen,
is can immediately be converted to an sstable and written to level-0. Had level-0 required
non-overlapping key-ranges, additional work would have to be performed to merge in the
memtable’s content. As a consequence of this, a key-lookup in level-0 need to look at all
files in the level—meaning the read-performance decrease as the number of files increase.

4 A bloom-filter is a data structure which can quickly and efficiently determine if a given element can, or can
not, be a member of a set. By consulting a stored bloom-filter first, some lookups (and subsequent IO operations)
can be avoided if the bloom-filter determines a search-for entry is guaranteed to not exist in the file.

13

Chapter 2. Case Study: Google LevelDB

To counteract this, when the number of files in the level-0 reaches a threshold value Lev-
elDB merges some of the files in level-0 together with overlapping files in the next level
—Ilevel-1—to produce a new sequence of level-1 files. This process lowers the number
of level-0 files while still maintaining the non-overlapping key-range invariant of level-1.
LevelDB refers to this merge as a compaction. See figure 2.3 for an illustration. When
merging the contents of the sstables, LevelDB also identifies instances of entries with the
same key and removes all but the most recent version—with some exceptions to support
snapshots—and also removes tombstone-entries if it can guarantee no entries with that key
exists in higher-numbered levels.

Level-0 (4 files max) I:l I:l

tevel-1 (loms max) [J[J[J[J[]
Levei2 o0 me max) [J{J000O0UOOUOO000

Figure 2.2: Illustration of three levels in LevelDB. Each square is an sstable.

For levels other than level-0 (except the final level), files are compacted to the next level
once the combined size of all files in the level reaches a maximum.® This size is 10~ MB,
where L is the level-number. (In other words, 10 MB for level-1, 100 MB for level-2, and
so on.) This has the effect of gradually migrating updates from lower to higher levels,
while only using bulk read and writes.

N-Q
Level-0 Dr Level-0 |:|
—

vt] ;!u DP%]D

Figure 2.3: Illustration of a level-0 to level-1 compaction. All files in level-1 which overlap the
level-O-file’s range is merged with the level-0 file to form a new sequence of level-1 files.

To get a sense for why this is done, imagine a scenario where only level-O to level-1
compactions are done. Over time, the number of level-1 will then continue to grow as
level-0 sstables are compacted, but because of the non-overlapping range-invariant read-
times will not increase—only a single sstable can possibly contain the entry for a given
key. However, once a new level-0 sstable is to be compacted, the number of level-1 sstables
it overlaps is likely to go up with the actual number of level-1 files. To construct the new
sequence of level-1 files, all the data in these overlapped files will have to be rewritten
(to maintain the sorted order)—a major overhead in terms of disk [0—while only around
2 MB of new data is actually introduced (the contents of the level-0 sstable). By instead

SThere are also some other triggers which can cause such a compaction.

14

2.3 Architecture Overview

maintaining a greater number of levels of exponentially increasing size, this overhead is
kept to a minimum.

2.3.4 Write Path

Both Put and Delete operations are handled by LevelDB by adding new entries to the
database. This is done instead of changing or removing existing entries in order to provide
snapshot support. This section will look at what LevelDB does when such a write (addition
of a list of entries) is requested by a client.

As illustrated by figure 2.4, all entries are initially added to a memtable—of which there
is only one active at a given time (the current memtable). For durability reasons, all writes
are also logged to disk so that the contents can be recovered should the system crash
(which would cause the loss of the memtable as it is located in volatile memory). Once
this is done, the write is considered finished and control returns to the client requesting the
write.

Before being added to the memtable all entries are tagged by LevelDB with a monoton-
ically increasing sequence number. This is the mechanism used by LevelDB to globally
order entries, and enables LevelDB to disambiguate two entries with the same key. (The
entry with the higher sequence number will be the newer version of the two.)

Writes Reads
Memtable + —>

c

ie]

B In-memory
3]

Q.

IS Disk
o

(&}

Levels

0 :
Log I:I I:I I:I I:I <:l Cir?\-;l;ztc):ﬁ)n
Ut

Figure 2.4: Illustration of data-movement in LevelDB. Writes only update the memtable, while
reads combine data from both the memtable and the on-disk levels (containing sstables). Once a
memtable fills up it is compacted to disk, where it is stored as an sstable. Compactions are also done
between levels as they reach their size thresholds.

As writes are done by inserting them in the memtable, the memtable eventually reaches a
configurable maximum size threshold. This triggers a compaction to convert it to a level-0
sstable, illustrated by the arrow pointing from the memtable to the levels structure in fig-
ure 2.4. (Before this is done, a new memtable is set up to serve future write requests.) The

15

Chapter 2. Case Study: Google LevelDB

memtable scheduled for compaction is referred to as an “immutable” memtable, and is
kept available for read operations until its contents are finalized to disk. Once a memtable,
and consequently the data it contains, has been added to disk as part of a level, the im-
mutable memtable can have its memory freed. The log file associated with the memtable
can then also be discarded.

2.3.5 Read Path

When a Get (or lookup/read) operation is requested, LevelDB has to look at both the
memtable and on-disk sstable-contents to try to find the entry for the requested key. This
can be done in order: first by checking the memtable, then possibly the immutable memtable
(if it exists), before finally going to disk where it checks each level in turn.

When going in this order, the search can stop the moment an entry with the searched-for
key is found. This is because any entries with the same key found in any of the subse-
quent locations will necessarily be older (have a lower sequence number) than the found
entry. This gives an advantage to lookups of recently added entries, as they will be found
quickly—possibly even in the in-memory sstable, not requiring any disk 1O at all. By
checking if the found entry is a key-value pair or a tombstone, LevelDB is able to either
return the value or notify the caller that the entry has been deleted.

When the levels structure is considered, the read process looks at each level in turn. For
level-0, this means potentially looking at all sstables in the level—assuming they have a
range which implies it could contain the searched-for key—at worst requiring two disk-
seeks to check each one. For levels greater than 0, only one sstable can potentially contain
the entry so only two disk-seeks, at worst, is need to check each level. As already men-
tioned, once an entry is found subsequent levels does not need to be searched.

Because of sstables are read-only, it is safe for multiple threads to read them simulta-
neously in a lock-free manner. Similarly, the memtable is constructed so that it can be
traversed without acquiring any locks. More details on how this is done can be found in
the implementation section.

2.3.6 Snapshots and Iterators

LevelDB supports the notion of a “snapshot” of the database: a reference to the contents
(state) of the database as it were at a given point in time. A snapshot can be created
explicitly through the Get Snapshot () -method; this returns a handle which can then be
passed to the database Get-method through its ReadOptions parameter. The lookup
operation will then be performed on the database state as it were, content wise, at the time
of snapshot-creation, disregarding any future changes.

Iterators, created through calls toNewIterator (const ReadOptionsé& options),
can be used to iterate over the contents of the database as it were when the iterator was
created, in sorted key order. This feature can additionally be combined with snapshots so
that the iterator is instead over the contents of a given database snapshot.

16

2.3 Architecture Overview

How LevelDB’s architecture allows for these two features is the subject of this section.

Snapshots

For snapshots, the basic requirement is that all entries at the time of the snapshot’s creation
continues to be available, and that new entries, and updates to existing entries, can be
identified as such so that they are not returned. Because LevelDB stores a monotonically
increasing sequence number along with all entries, entries newer than a given snapshot
can easily be identified. As long as sufficiently old entries are kept alive, LevelDB can
then ignore new versions and instead return the newest version still older than the point
in time the snapshot was made. In other words, the “current” entry for a snapshot is the
entry whose sequence number is smaller than or equal to the snapshot’s number while still
larger than any other entries with that key.°

By tracking which snapshots are live at all times, LevelDB can then make sure to keep
alive any entries which, even though they have been superseeded by a new version, might
still be current for any live snapshot. In contrast, if no snapshots are live, a new version of
any key means the old version could be immediately deleted as any lookups would only
be interested in this newer version.

Iterators

To provide iterators, LevelDB needs a way to combine the different data-sources (the
memtables and the sstables in all levels) to provide a global, unified, iterable, and sorted
view of the database. Because levels greater than 0, and all memtables, are already sorted
in key order, this is relatively straightforward: LevelDB simply merges iterators provided
by the memtables (of which there can be a maximum of 2—the current and immutable
memtable), levels 1 to max (of which there can be a maximum of max-levels minus 1),
and all sstables in level-O (of which LevelDB tries to keep to a number no more than
4). By comparing the keys returned by each of these iterators and controlling the iterators’
progression, a “merging” iterator can return the next value in global order. This also makes
it easy to iterate over a snapshot: as with snapshot lookups, the merging iterator can ignore
values with too large sequence numbers, and once a value for a given key is found, skip
over old versions of that key.

The main challenge to this scheme is how to handle changes to the database made after
the iterator is created—in other words changes to the memtable and changes to the levels
introduced by compactions. For the memtable, it is sufficient to skip over any new entries
having been added since the iterator was created (as identified by their sequence numbers).
By then also making sure the memtable itself is not deleted (as it otherwise would be after
being compacted to disk), the iterator can keep using it for as long as it needs. For levels,
LevelDB opts to not try to handle this in any complex way—instead it simply notes the
current state of all levels at the time of iterator creation, and then guarantees the sstables

6In other words, it is the most recent version created before the snapshot’s logical place in time.

17

Chapter 2. Case Study: Google LevelDB

in question will not be deleted (as they otherwise would be after a successful compaction)
until the iterator is. This way, the merging iterator can proceed knowing no changes to
the database (in terms of compactions, or replacements, of memtables and sstables) can
corrupt any of its sub-iterators. Since the iterator is not interested in any future updates
to the database anyway (it works on either an explicit snapshot or an an implicit snapshot
taken at the time of its creation), this is not an issue. A drawback to this approach is that
both disk-space- and memory-usage potentially increases while an iterator is active. This
is because neither the memtables, nor any sstables alive during its creation, can be deleted
before the iterator is, in order to provide the consistent view it requires.

Noting how snapshots work, that is by not deleting certain entries during compactions but
otherwise proceeding “as normal”, its worth questioning if the approach used for iterators
could be used for snapshots as well. In other words, having the creation of a snapshot also
simply store the current set of sstables and memtables and then instruct LevelDB to keep
these alive until the snapshot is deleted. While the answer is that it probably could, the
heavyweight nature of this operation is likely the reason snapshots are handled differently.
The approach used for snapshots does not come without its own set of drawbacks, but this
is only in terms of disk space—not memory-usage—as old versions of entries are alive.
Iterators additionally increases memory usage by forcing memtables to stay alive. (Each
iterator can at worst force two memtables to not be deleted for the iterator’s lifetime.) With
memory likely being the more precious resource, it seems fair to assume this is the reason
LevelDB does not unify the two techniques.

2.3.7 Recovery and Durability

To provide durability in the face of system crashes, a database has to make sure changes
to it are applied in such a manner that they can be recovered should the system fail. In
LevelDB there are two such causes of change: writes (addition of entries, including tomb-
stones) and compactions. It is thus necessary that both of these are done in such a way that
data-loss is not possible should the system crash at an inopportune time.

As illustrated by figure 2.4 on page 15, LevelDB ensured the memtable contents can be re-
covered by recording all updates to it in a log. Because this greatly increases the overhead
of mutating the memtable, it is optionally possible to disable this behaviour—for increased
performance—if data loss in the event of a crash is acceptable. On restart after a crash,
LevelDB will locate all log-files and recover the memtables they represent. By logging
entries in their entirety, as LevelDB does, this is a trivial operation, and by marking all
log-entries with CRC checksums, half-written (incomplete) log-entries at the end of the
file can be ignored.

That covers one part of the system, but still leaves the changes introduced through com-
pactions. This includes both “minor” compactions (memtable to sstable) and “major”
compactions (merging of sstables across levels). A key insight in this instance is that ssta-
bles are immutable. This allows the current database state to be represented completely
by a list of sstable-files at each level together with the memtable log files (of which there
can be two—the current memtable’s log, and the immutable memtable’s log). Because the

18

2.3 Architecture Overview

compaction process only creates new files, the current state of the database will never be
corrupted by it—only by deleting in-use files can one run into problems. The compaction
process is thus free to construct a new database state in the background in whatever man-
ner it wants. Once this new state is created, likely consisting of many of the same files
as the previous state but with some sstables merged (compacted) to new files, this new
state can atomically be swapped in to become the current state. By logging this process,
and not deleting any of the old state’s files before this new state and its files are deemed
durable (through being written to disk), the current state can always be recovered should
the construction of the new state fail at any point. The current active memtable (rather,
its log) is adopted by the new state so that no updates are lost when moving to a new
(post-compaction) state.

To illustrate this process in the case of immutable-memtable (minor) compaction, consider
the following:

1. The current state of the database is this: a current and immutable memtable exist—
their contents are reflected by log files—and a list of sstables at each level is some-
how stored. The compaction-process wants to compact the immutable memtable to
an sstable. It creates a copy of the current state which it can freely modify.

2. The compaction-process creates an sstable from the immutable memtable, and places
it in the appropriate level (the list of sstables at each level is updated). It registers
that the immutable memtable’s log file is not part of the new state.

3. The new state is this (compare with point 1): a current memtable represented by its
log file, and a list of sstables at each level.

4. After a representation of the new state is durably written to disk, so that it can be
recovered in the event of a crash, the current state can safely be replaced by this new
state.

Note how no data is lost in this transition:” the current memtable is not changed (it is

shared between the states), and the immutable memtable’s content is not lost but rather
converted to an sstable where it can still be found. Since the new state does not contain
an immutable memtable the current memtable can later be replaced (and become an im-
mutable memtable awaiting compaction) once it is full. “Major” compaction (sstable to
sstable) progress in the same way, but only the list of files in each level is changed.

The new state is subsequently used to serve new requests, but the old state might still be
kept around—for instance if it is used by a live iterator. Once it is no longer needed, any
files it references which is not part of any newer states can be deleted to free up disk space.

2.3.8 Table and Block Caching

As sstables are immutable, it is easy for LevelDB to cache their contents in memory with-
out having deal with a complex buffer management scheme. The focus can be purely

7No needed data. The compaction process will discard as much unneeded, old, data as possible.

19

Chapter 2. Case Study: Google LevelDB

on speeding up reads by caching as much of the database’s working-set in memory at all
times. To this end, LevelDB includes both a table- and block-cache:

e The table-cache is used to keep the sstables’ index-blocks in-memory so that candi-
date blocks in these sstables can be located directly. By default, LevelDB creates a
table-cache with space for 1000 tables. This can hold index-blocks for around 2 GB
of on disk data.®

e The block cache is used to hold full sstable blocks to avoid reading them from disk
on subsequent accesses. The block cache is fully user configurable, but unless spec-
ified LevelDB creates an 8 MB cache by default.

More details in how the two caches work can be found in the implementation section
below.

8 Assuming sstable sizes of 2 MB.

20

O 0NN W=

2.4 Implementation Highlights

2.4 Implementation Highlights

2.4.1 Introduction

Having looked at the general high-level architecture of LevelDB in the previous section,
the focus here will be on the actual implementation of some of the concepts mentioned.

First, the the internal format used by LevelDB for keys is described. Then, the imple-
mentation of the memtable is covered, and the Version and VersionSet classes and their
purpose is described. Next, the details of the sstable file format is covered, before the
issues of concurrency and how reads and writes are done at the implementation-level is
described. Finally, details on the compaction-process, caching, snapshots and iterators,
and finally recovery, is discussed.

2.4.2 Internal Key Representation

Since there can exist multiple entries for a given key in the database—older and new ver-
sions, where both are kept around either awaiting deletion on compaction or for snapshot
support—the internal key for an entry in LevelDB includes a sequence number as well as
a type-specifier to indicate tombstones. This internal key has the form illustrated by fig-
ure 2.5: it consists of the actual user-specified key (an array of bytes) followed by a 64-bits
number encoding the sequence number of the key along with its type (stored in the lower 8
bits). The type is used to mark the entry as either a normal key-value pair or a tombstone.

InternalKey Format
Fixed64

UserKey : Byte-array ’ ‘ | Sequence Number : 7 bytes ’ | Type : 1 byte

Figure 2.5: LevelDB Internal-key format

To order these internal keys, LevelDB uses an comparator implemented as follows:

int InternalKeyComparator::Compare(const Slice& akey, const Slice& bkey) const {

// Order by:

// increasing user key (according to user—supplied comparator)

// decreasing sequence number

// decreasing type (though sequence# should be enough to disambiguate)

int r = user_comparator_—>Compare(ExtractUserKey(akey), ExtractUserKey(bkey));
if (r == 0) {
const uint64_t anum = DecodeFixed64(akey.data() + akey.size() — 8);
const uint64_t bnum = DecodeFixedé64(bkey.data() + bkey.size() — 8);
if (anum > bnum) {
r = —1;
} else if (anum < bnum) {
r = +1;

21

16
17

O 00NN BN~

Chapter 2. Case Study: Google LevelDB

return r;

}

This orders the keys first by by increasing user key (as specified by a potentially client-
provided custom comparator), then decreasing sequence number. The end result is that,
when iterating keys in sorted order, the different versions of a given key will appear by
decreasing age—newest version first, then progressively older versions. This makes it
easy to ignore specific versions of keys, be that older versions (for example when iterating
the current state), or newer versions (when doing snapshot-lookups).

The internal key itself does not contain any information on the length of the key. This is
instead stored by the structure in which the key is contained, for example a memtable or
sstable block.

2.4.3 Memtable

The memtable can be considered in relative isolation, as it does not itself interact with
any other parts of LevelDB. Below is a look at the interface it exports, as well as how it
implements this functionality.

Interface

The memtable exports the following public interface:

explicit MemTable(const InternalKeyComparator& comparator);

void Ref();

void Unref();

Iterator* NewlIterator();

void Add(SequenceNumber seq, ValueType type, const Slice& key, const Slice& value);
bool Get(const LookupKey& key, std::string*x value, Statusx s);

size_t ApproximateMemoryUsage() ;

The Ref ()- and Unref ()-functions are used to implement reference counting. This
is used to control the lifetime of the memtable so that it can be kept alive while needed,
without regard to why or who keeps it alive. NewIterator (), unsurprisingly, returns
an iterator over key-value pairs stored by the memtable.

The two primary operations on the memtable are Add (. ..) and Get (.. .). These are
used to respectively insert and performs lookups of key-value entries. There is no deletion-
method: any entries added to the memtable are guaranteed to persist. Deletions are instead
done by adding deletion-marking tombstones.

22

O 001w —

2.4 Implementation Highlights

To be able to construct the internal database key (section 2.4.2), the memtable’s Add (. . .)
method does not only take a user-key-value pair, but also a SequenceNumber and a
ValueType. The Get (...) method similarly takes a LookupKey as a parameter.
This is an object containing a representation of the searched-for key directly comparable
to the memtable’s own internal representation, as well as internal- and user-key represen-
tations.

A request for a key through the Get (...) method can return three possible results:
value found (in which case it is returned through the value parameter), key has been
deleted (indicated through the status parameter), or entry not found. The first two cases
are indicated by Get (.. .) returning true and the latter by it returning false.

Implementation

With an understanding of what operations the memtable needs to support, the following
covers its implementation.

The private variables of the class are the following:

struct KeyComparator {
const InternalKeyComparator comparator;
explicit KeyComparator(const InternalKeyComparator& c) : comparator(c) { }
int operator() (const charx a, const charx b) const;

}s

KeyComparator comparator_;

int refs_;
Arena arena_ ;

typedef SkipList<const charx*, KeyComparator> Table;
Table table_;

The KeyComparator is used to order entries in the memtable: it extracts an internal-key
from the memtable’s internal representation (see below) and passes it on to the
InternalKeyComparator assigned to the memtable on its construction.

The refs_variable is used to keep the reference count of the memtable, while the arena_
is the memory-arena used to allocate space for the memtable. This is used, instead of
allocating memory through new or malloc directly, to provide a degree of locality for
data in the memtable. Once the memtable is deleted all memory allocated by the arena is
automatically freed.

Finally, the implementation contains a skip-list of const char« entries. This is the
central data structure used by the memtable to store the added key-value pairs. It supports
both efficient (on average O(log N)) insertions and lookups, and also has the important
property that it can support concurrent reads while a writer-thread is changing the list—
without the need for locks.® This fact is a notable advantage the skip-list has over other
candidate data-structures, and a very likely reason for why it was chosen.

Some atomic operations are required however, for instance when updating pointers.

23

O 00NN R W —

Chapter 2. Case Study: Google LevelDB

How the skip-list itself works is described in section 2.4.3 below. For now, it is sufficient
to consider it a type of linked list.

Skip-List Entry Format

[[KeyLength : Varint32] [Key : InternalKey] [ValueSize : Varint32] [Value : Byte-array]]

Figure 2.6: LevelDB skip-list entry format

The entries in the skip-list contains pointers to a textual representation of a single key-
value pair. It has the format depicted in figure 2.6: the key and value is stored sequentially,
but prefixed by their length. This representation is created in Memtable: :Add (.. .):

void MemTable::Add(SequenceNumber s, ValueType type,
const Slice& key,
const Slice& value) {
// Format of an entry is concatenation of:

/! key_size : varint32 of internal_key.size()

// key bytes : char[internal_key.size()]

// value_size : varint32 of value.size ()

// value bytes : char[value.size()]

uint32_t key_size = static_cast<uint32_t>(key.size());
uint32_t val_size = static_cast<uint32_t>(value.size());
uint32_t internal_key_size = key_size + §;

const size_t encoded_len =
VarintLength(internal_key_size) + internal_key_size +
VarintLength(val_size) + val_size;

char* buf = arena_.Allocate(encoded_len);

charx p = EncodeVarint32(buf, internal_key_size);

memcpy (p, key.data(), key_size);

p += key_size;

EncodeFixed64(p, (s << 8) | type);

p += 8;

p = EncodeVarint32(p, val_size);

memcpy (p, value.data(), val_size);

assert(static_cast<size_t>((p + val_size) — buf) == encoded_len);

table_.Insert(buf);

As can be seen, the full length of the representation in bytes is computed (lines 9-14), then
space allocated in the memory area (line 15), before the data is copied into the allocated
buffer (lines 17-22). Finally, the skip-list is asked to store the pointer to the buffer (line
24). This adds the new entry to the correct place in the linked list, as defined by internal-
key ordering. (The skip-list is set up with a custom comparator able to parse the byte-
representation created by Add (. . .) and order entries based on the keys.)

When Get (.. .) is called, to search the memtable for a given key, the skip-list searches
through its entries and compares the stored keys to the searched-for key. This is done
through an Tterator interface provided by the skip-list. Once an entry is found, Get (. . .
verifies the found entry is valid by extracting and comparing the key from it. If it is, the
type is extracted from the internal-key to determine if the entry is a valid key-value entry
or a tombstone. This all looks like the following:

24

O 00NN WN =

2.4 Implementation Highlights

bool MemTable::Get(const LookupKey& key, std::string* value, Status* s) {
Slice memkey = key.memtable_key();
Table::Iterator iter(&table_);
iter.Seek(memkey.data());
if (iter.valid()) {
// entry format is:
// klength varint32
// userkey char[klength]
// tag uint64
// vlength varint32
// value char[vlength]
// Check that it belongs to same user key. We do not check the
// sequence number since the Seek() call above should have skipped
// all entries with overly large sequence numbers
const charx entry = iter.key();
uint32_t key_length;
const char* key_ptr = GetVarint32Ptr(entry, entry+5, &key_length);
if (comparator_.comparator.user_comparator ()—>Compare (
Slice(key_ptr, key_length — 8),
key.user_key()) == 0) {
// Correct user key
const uint64_t tag = DecodeFixed64(key_ptr + key_length — 8);
switch (static_cast<ValueType>(tag & Oxff)) {
case kTypeValue: {
Slice v = GetlLengthPrefixedSlice(key_ptr + key_length);
value—>assign(v.data(), v.size());
return true;

case kTypeDeletion:
*s = Status::NotFound(Slice());
return true;

}
}
}
return false;

}

Line 17 reads the Varint32 to retrieve the internal-key length, and sets key_ptr to
point to the data following the Varint 32—in other words, the actual internal-key. Lines
18-20 compares the user-key portion of this internal-key to the searched-for key by exclud-
ing the last 8 bytes of the internal-key (refer to section 2.4.2 on internal-key format). If
these match, the type-specifier encoded in the last byte of the internal-key sequence num-
ber is recovered (lines 22 and 23), and used to determine the type of value (lines 23-32).
If it is a valid key-value pair (not a tombstone), a pointer to, and the size of, the value-part
of the memtable-stored entry is calculated (line 25), and used to copy this data to the string
passed to Get (. ..) for this purpose (line 26).

In summary, neither Add (. ..) nor Get (...) are particularly complicated methods:
they primarily deal with serializing key-value data to a byte-array, and then defers efficient
ordering of key-value pairs to the the skip-list. While the implementation is simple, the
memtable as a whole makes up a very central part of LevelDB by being the primary in-
memory storage structure.

25

Chapter 2. Case Study: Google LevelDB

Skip-List

A skip-list is a probabilistic data structure, storing an ordered sequence of elements. It is
designed to allow search-, insert-, and delete-operations in O(log N) average time.(Pugh,
1990)

SkipList

Head Node Entry Node Entry Node Entry Node Entry Node Entry Node
> >
o N N » Null
> u J J
- > | > > | >
[} |] [
> | > | > L LL L L,
[} I W] W] [[
\ 4 A 4 \ 4 h 4 v

KV-pair KV-pair KV-pair KV-pair KV-pair
charf] char(] charf] char(] charf]

Figure 2.7: Memtable Skip-list

In terms of structure, it can be considered a type of ordered linked list—but where a hi-
erarchy of subsequence links—each skipping over fewer elements—are stored instead of
just one. This allows for uninteresting elements to be jumped over quickly when looking
for a node. Figure 2.7 illustrates a skip-list as used by the LevelDB memtable.

During lookup, by considering the hierarchy of links from highest to lowest and knowing
that the nodes in the skip-list are ordered, any pointer to a node less than the searched-for
node can be immediately followed. For example, if the last node in figure 2.7 is the target
node, the first non-null link in the start node (head) is in the second highest layer. The node
it points to will then be found to be /ess than the target node, so the link can be immediately
followed—skipping over nodes 1-3. Starting the process over from the linked-to node, the
link in the bottom layers is eventually followed resulting in the target node being found.

When creating the skip-list structure, the number of links above the bottom layer (which is
an ordinary linked list of all elements), is chosen probabilistically—the manner of which
determines the skip-list’s actual average-case time complexity. Once the number has been
determined, the nodes preceding the added node has their links updated to point to this
new node.

Average O(log N) lookups and insertions, along with straightforward ordered iteration,
makes the skip-list structure particularly appropriate for the memtable. It is additionally
both easy and efficient to support concurrent operations on the skip-list, something Lev-
elDB takes advantage of to allow readers to operate on it without having to acquire any

26

2.4 Implementation Highlights

locks. Section 2.6 contains some additional reflections regarding this.

2.4.4 The Version and VersionSet Classes

To manage the set of on-disk sstables, LevelDB uses a Version class which maintains
information about which sstables exists at each level along with compaction-supporting
metadata. To illustrate this, the following is the relevant portion of its private data mem-
bers (members used for reference counting, parent VersionSet, and membership in an
intrusive linked list omitted):

O 00NN B W —

// List of files per level
std::vector<FileMetaDatax> files_[config::kNumLevels];

// Next file to compact based on seek stats.
FileMetaDatax file_to_compact_;
int file_to_compact_level_;

// Level that should be compacted next and its compaction score.
// Score < 1 means compaction is not strictly needed. These fields
// are initialized by Finalize().

double compaction_score_;

int compaction_level_;

A Version also has methods used to determine compaction-relevant information, such
as which files in a level a given key-range overlaps. This is can be used to determine
which files must be part of a compaction such that the non-overlapping invariant can be
maintained. A Version is also responsible for performing lookups (Get operations) and
creating iterators on the sstable-files it is responsible for:

SOOI N B W~

—

// Append to xiters a sequence of iterators that will

// yield the contents of this Version when merged together.

// REQUIRES: This version has been saved (see VersionSet::SaveTo)
void AddIterators(const ReadOptions&, std::vector<Iteratorx>% iters);

// Lookup the value for key. If found, store it in *val and

// return OK. Else return a non—OK status. Fills xstats.

// REQUIRES: lock is not held

Status Get(const ReadOptions&, const LookupKey& key, std::stringx val,
GetStats* stats);

Each Version is owned and managed by a VersionSet, which is a top-level compo-
nent of LevelDB. This is necessary since each Version is meant to be immutable once
created; if changes to underlying data-files are performed a new Version is created and
then becomes the new “current” Version as part of the VersionSet. This is part of
the implementation details on how LevelDB internally handles the process described in
section 2.3.7 on durability and recovery. The VersionSet also maintains information
on which files-numbers to use for new files (for example log-files), so that the numbering
is monotonically increasing, and what is the current maximum sequence number. Also
among its responsibilities is tracking which Versions are still “live” even after having
been superseeded—for instance because an iterator was created on it. Using this informa-

27

Chapter 2. Case Study: Google LevelDB

tion it it can produce a report of all still “active” files—files referenced by any Version
still live. This is used to find and delete orphaned sstables.

2.4.5 Sstable

Having already described the purpose of sstables, and some of the type of operations they
allow for, this section will look in more detail on how a single sstable is structured.

The sstable file format depicted in figure 2.8. Each sstable contains a number of blocks,
most of which are used to store the actual key-value entry data, along with block-type and a
CRC32-number used to detect block-corruption. By partitioning the data into blocks, each
block becomes an unit of fault-tolerance; data-corruption inside a block will only affect
that block leaving others in the clear. The block-size is a configurable parameter,'° but this
is not a strict limit—only the cutoff where, once above it, LevelDB puts subsequent data
in a new block. Each block can also optionally be compressed, further reducing its size
from the block-size parameter. Whether or not a block is compressed is indicated by the
type-byte following each block. (A compressed block is decompressed when loaded in
to memory by LevelDB, so that its contents can be read.)

SSTable SSTable footer
-
Index
Block
[loc] [Type (18)] [Block CRCBZJ [BlockHandle]
Metalndex
Block
[loc] [Type (18)] [Block CRC32] [BlockHandle]
[Block] [Type (13)] [Blook CR032] Magic
Number
L y,
[Block] [Type (13)] [Block CRCSZ] BlockHandle
(varint32: offset)
SSTable footer
(Varint32: size)
§

Figure 2.8: Sstable file format. The size and offset of each non-index-block is described in the
index-blocks referenced from the footer.

The sstable footer is always the starting-point for lookups into an sstable: it contains both
a magic-number indicating the file is indeed an sstable, and block-handles pointing to the
block’s index- and meta-index-blocks. These are ordinary blocks in terms of structure, but
instead of containing database key-value entries they contain one key-value pair for each
block in the sstable. A block’s entry in the index has a key which is greater than or equal
to the last key in the block while still smaller than the first key in the following block.
The index-block can therefore be used to locate in which block a given database key-value

10LevelDB::Options::block _size

28

2.4 Implementation Highlights

must be located if it exists in the sstable. The meta-index block works similarly, but is
used to located meta-blocks containing information such as bloom-filters.

Block Record

Record
Varint32: shared_bytes

Record
Varint32: unshared_bytes

Fixed32: RestartPoint[0]

Fixed32: RestartPoint]...]

char[unshared_bytes]: key_delta

Fixed32: RestartPoint[N]

Varint32: value_length }

— N N M M

char[unshared_bytes]: value

Fixed32: num_restarts

Figure 2.9: Format of an sstable-block and its record entries.

Figure 2.9 shows the format of each block. Each record in the block is a length-prefixed
key-value pair, with additional fields to support prefix-compression of keys within the
block. shared_bytes denote how many bytes the current key shared with the previous
key, while unshared bytes is the number of remaining non-shared bytes which is
actually stored as part of the key. When iterating over records, LevelDB will use this
information to decode the full key. The value size is stored in the value_length field.
Should the value be of interest it can then be read, or else easily skipped over to located
the next record.

To avoid having to always process the full block to locate a key (to resolve the prefix-
compression), a number of restart-points are stored. These are records storing a complete
non-prefix-compressed key. A restart point is created after a configurable number of keys
(16 by default),'! and there are direct pointer to them at the end of the block. A lookup
can take advantage of this by binary-searching the restarts-points-list to locate the position
of a given key. (This is possible since all records in both the sstable as a whole, and each
block, are stored in sorted order.)

Given this fixed structure of both sstables and blocks, LevelDB includes iterator-classes
which know how to navigate them to locate the record key-value pairs they store. These
include an sstable-block-iterator which navigate the sstable’s index-block to locate offsets
and sizes for each block, and block-record-iterators which can navigate a block to locate
its records. Combining these to form a TwoLevelIterator—named so because if
goes through two levels of indirection to locate records: first the index-block to locate
blocks, then the iterator returned from the block (a leveldb:Block: : Iter) to locate

11 eveldB::Options::block _restart_interval

29

Chapter 2. Case Study: Google LevelDB

records—this iterator can then be used to directly get the key-value entries located in
block-records without any knowledge of how the underlying storage is actually structured.

2.4.6 Concurrency

While LevelDB does not support multi-process concurrency—this is enforced through a
lock-file which can only be held by one process at a time—the database object itself can
safely be shared between multiple concurrent threads without any external synchroniza-
tion.(LevelDB, 2012)

The way this is implemented is by requiring the member-variable mutex DBImpl: :mutex_
to be held when mutating most database-state. This is a rather coarse-grained level of
synchronization, but the implementation attempts to hold this mutex for as short time as
possible, and to release it during IO operations. If a long-running operation is started,
additional synchronization might be set up so that DBImpl: :mutex_ can be released,
but this is rarely needed. An example is described in section 2.4.9, on serialization of
write-operations, where DBImpl : :mutex_ is released but new writer-operations are still
blocked until the current write finishes. Some components also perform its own inter-
nal synchronization, for example the caches. This can be considered an example of
finer-grained synchronization, and takes effect on read operations. As an example, af-
ter some initial coarse-grained synchronization when a read is started (see section 2.4.7),
DBImpl: :mutex_is released which allows operations from other threads to start. Since
multiple read-operations can be in progress at once, the caches (which are used by all read-
operations) need to perform synchronization outside of that provided by the DBImpl: :mutex._.
How this is done specifically is briefly covered in section 2.4.12 on cache-implementation,
but boils down to simply locking the cache while modifications (such as updating a least-
recently-used list) are done. Afterwards, while the data is actually processed, no locks are
hold.

2.4.7 Reads

The implementation of read-operations involve performing lookups in three places: the
current memtable, the immutable memtable, and the current Ver sion (which maintains
information about each level’s sstables). It is therefore necessary these structures all stay
alive for the duration of the lookup. LevelDB ensures this by using reference counting.
The following is an excerpt from the start of the DBImpl : : Get method:

SO0 I B W=

MutexLock 1l(&mutex_);
SequenceNumber snapshot;

if (options.snapshot != NULL) {

snapshot = reinterpret_cast<const SnapshotImpl*>(options.snapshot)—>number_;
} else {

snapshot = versions_—>LastSequence();

MemTable* mem
MemTable* imm

mem_;
imm_;

30

O 0NN W —

2.4 Implementation Highlights

Versionx current = versions_—>current();
mem—>Ref () ;

if (imm != NULL) imm—>Ref();
current—>Ref () ;

On line 9-14, local pointers to these three structures are stored, and their reference count
incremented. This creates the guarantee they will all be available until the reference count
is decremented at the end of the function (when the lookup is complete). By storing local
pointers, LevelDB is free to replace the original pointers while the read progresses—for
instance by having the current memtable become the immutable memtable, or by having
the current Version replaced by a new Version after compaction. The read-operation
is allowed to be completely oblivious of this because it is only interested in the state as it
was when the read started. The mutex locked on line 1 guarantees that the structures are in
a consistent state when the function takes the references; if a memtable is currently being
replaced, the mutex will block until everything is again consistent.

Since all reads are on a snapshot of the database, lines 2—7 either fetch the snapshot se-
quence number from the passed ReadOpt ions, or use the version number most recently
used for any operation, as stored by the database’s VersionSet.

This completes the read-preparation, and it subsequently progresses as follows:

// Unlock while reading from files and memtables

mutex_.Unlock();

// First look in the memtable, then in the immutable memtable (if any).
LookupKey lkey(key, snapshot);

if (mem—>Get(lkey, value, &s)) {

// Done

} else if (imm != NULL && imm—>Get (lkey, value, &s)) {
// Done

} else {
s = current—>Get (options, lkey, value, &stats);
have_stat_update = true;

mutex_.Lock () ;

First, the database-wide state-protecting mutex is released (line 3). Then each of the
memtables (line 6 and 8), and finally the Version (line 11), are in turn given a chance to
return a result. Should one of them do so is guaranteed to be newer than what any of the
others could return, so the operation is done.

When Version: : Get is called on line 11 to search the levels structure for data, it pro-
gresses as follows:

1. For each level:

(a) Find all sstables in level which has a key-range containing the lookup-key.
(Max 1 for all levels greater than level-0.)

(b) For each candidate sstable, fetch it and look for an entry. (See section 2.4.5 on
sstable structure.)

31

O 0NN W —

Chapter 2. Case Study: Google LevelDB

(c) If entry was found, or found to have been deleted, return this. If not, try next
level.

2. All levels have been looked at: return entry not found.

Once the lookup finishes, all structures which had their reference count incremented at the
beginning of the read has their counts decremented. Depending on what has happened in
other parts of the system while the read was in-progress, this can cause the final reference
to any of them to be dropped, and the item finally deleted. The critical point to note here
is how the read-operation, through reference counting, is able to force structures to stay
alive while needed without this causing any inconsistencies in other parts of the database.

2.4.8 Writes

When a write is requested by the client, LevelDB first performs synchronization be-
tween it and other concurrent requests, so that they are serialized. This is the subject of
section 2.4.9. Once a write is ready to be performed it is prepared, optionally logged,
and finally written to the memtable. Below is the relevant source-code snippet from
DBImpl: :Write which does this:

// May temporarily unlock and wait.
Status status = MakeRoomForWrite(my_batch == NULL);
uint64_t last_sequence = versions_—>LastSequence();
Writer* last_writer = &w;
if (status.ok() && my_batch != NULL) { // NULL batch is for compactions
WriteBatch* updates = BuildBatchGroup(&last_writer);
WriteBatchInternal :: SetSequence(updates, last_sequence + 1);
last_sequence += WriteBatchInternal::Count(updates);
{
mutex_.Unlock(); // Safe to unlock during 10 since writers are serialized
status = log_—>AddRecord(WriteBatchInternal::Contents(updates));
bool sync_error = false;
if (status.ok() && options.sync) {
status = logfile_—>Sync();
if (!status.ok()) {
sync_error = true;
}
}

if (status.ok()) {
status = WriteBatchInternal::InsertInto(updates, mem_);

}

mutex_.Lock();
if (sync_error) {
RecordBackgroundError(status);

if (updates == tmp_batch_) tmp_batch_—>Clear();

versions_—>SetLastSequence(last_sequence);

}

Before a write is handed to the memtable, LevelDB first checks whether or not the memtable
has enough free space to accept the write (line 2). This is done through a call to
leveldb: :DBImpl: :MakeRoomForWrite. It works in the following way:

32

2.4 Implementation Highlights

1. If the number of level-0 files is getting large (in other words if the write-volume is so
large that the compaction-process is not keeping up), wait 1 millisecond and check
again. This delaying of writes is done to give the compaction process wall-clock
time, as well as possibly CPU time, to catch up.

2. If the memtable reports a size below its configured maximum threshold, it has free
space, so the function returns.

3. By getting to this step, the memtable must not have free space. It is then checked if
an immutable memtable exists. If it does, there is nothing to do except wait until it
has been compacted. A wait on a conditional variable triggered on compaction end
is set up. Once it signals, LevelDB starts again from step 1.

4. If the number of level-0 files is above a configurable maximum, LevelDB waits
until it has gone down. The wait in item 1 is an attempt to mitigate this eventual
complete stop by delaying each write, but by getting here this has been shown to be
insufficient—so LevelDB stops all writes temporarily until the compaction process
has caught up. Once it does, it starts again from step 1.

5. By getting here, there is no immutable memtable, there is space in level-0, and the
current memtable does not have enough space to accept the write. LevelDB thus
makes the memtable an immutable memtable, creates a new memtable, and sets
it up to service writes. Since an immutable memtable was created it is then also
scheduled for compaction. The function returns now that the current memtable can
receive the write.

At this point, the memtable is ready to receive the write. LevelDB looks up the current
sequence number so that the new changes can have their own number calculated. It then
builds a final WriteBatch through a call to BuildBatchGround (line 6). This can
combine multiple write-requests into the current write, as described in section 2.4.9. Then
the batch is updated with sequence number through a call to

WriteBatchInternal: :SetSequence (line 7). Finally, the number of changes is
counted so that the next available sequence number, after the write is performed, can be
calculated (line 8). On lines 10 to 17, the change is logged by simply serializing the tex-
tual representation of the WriteBatch (this includes all information including key- and
value-data). The log is optionally synced to disk for durability (lines 13—18). As long as no
errors are encountered, WriteBatchInternal: :InsertInto is called to insert all
changes in the memtable (line 20). Lastly, the database’s next available sequence-number
is updated through a call to VersionSet: : SetLast Sequence (line 29).

Once this process finishes, awaiting writers are signaled so that the next scheduled writer
(if there is one) might proceed, and the process starts over again.

2.4.9 Serialization and Batching of Writes

LevelDB only allows a single writer to proceed at a time. This is implemented by keeping
a list of to-be-performed writes, and having the requesting threads sleep until either the

33

O 0NN W —

Chapter 2. Case Study: Google LevelDB

write is picked up by a thread preceding it in the list, or the requesting thread reached the
front of the list. The first sections of DBImp: : Write implements this logic:

Status DBImpl::Write(const WriteOptions& options, WriteBatchx my_batch)

{
Writer w(&mutex_);
w.batch = my_batch;
w.sync = options.sync;
w.done = false;

MutexLock 1(&mutex_);

writers_.push_back(&w);

while (!w.done && &w != writers_.front()) {
w.cv.Wait () ;

if (w.done) {
return w.status;

¥
[...]

First, a Writer object is created to represent the to-be-performed operation (lines 3—
6) and DBImpl: :mutex., the mutex protecting most of the database’s internal state—
including the DBImpl: :writers_ list—is locked (line 8). This allows the current
thread to append itself to the list (line 9). What happens next depends on whether or
not another write is already in progress: if one is, the current operations is not the first el-
ement in the list (the “current” or “active” writer), so it releases the mutex and waits (lines
10-11). Otherwise, it is free to proceed. Waiting writers are notified through a conditional
variable on changes to the list, at which points it again checks if it should become the
active writer (though only after first acquiring DBImpl: :mutex_).

Once a writer is ready to proceed, it continues as described in section 2.4.8.

Write Batching

One optimization LevelDB does with this list of writers is to, when certain conditions
are met, combine waiting write-operations into the current write. This is the purpose of
checks regarding w. done when waking up from waiting: a waiting writer’s changes can
have been picked up by a writer preceding it in the list. By batching writes LevelDB is
able to decrease the resulting overhead from having to process a larger number of separate
write-operations.

The logic for writer-combining is performed by the line

WriteBatchx updates = BuildBatchGroup (&last_writer) ; executed shortly

after a writer becomes the current active writer. The function will append changes re-
quested by other writers to the current write as long as 1) the other write operation is set
to be synchronous'? while the active one is not, and 2) the combined operations are below
a maximum size (measured in the internal textual representation of the WriteBatch)."?

12Meaning it performs logging of the changes to the memtable.
13Maximum size is set to around 8 MB, unless the current operations is below 1 MB, in which case the
maximum is set to around current_size + 1MB. This is to not slow down small writes too much by combining it

34

AW -

O R S

2.4 Implementation Highlights

No matter if the current write-operations ended up picking up more changes or not, it
subsequently proceeds as a normal write as covered by section 2.4.8.

2.4.10 Atomic Updates

Users of LevelDB are able to atomically apply a set of updates by creating and passing a
WriteBatch objectto DB: :Write. An example of this is the following:

leveldb::WriteBatch batch;

batch.Delete(keyl);

batch.Put(key2, value);

leveldb::Status s = db—>Write(leveldb::WriteOptions (), &batch);

The criteria for atomicity in this context is that, to concurrent LevelDB clients, all changes
in the batch will appear to be applied at the same time or all not be applied at all. How this
is implemented is explained next.

As shown in section 2.4.8, a WriteBatch is already used internally by LevelDB for all
write-operations (for example Put and Delete). Toillustrate, DB: : Put is implemented
as follows:

Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) {
WriteBatch batch;
batch.Put(key, value);
return Write(opt, &batch);

}

...in other words, by creating a WriteBat ch consisting of a single operation. This batch
is then processed internally and fails or succeeds as a unit.

By having Get operations implicitly work on a snapshot of the current state—as defined
by the maximum sequence number when it started—and Write operations (i.e. the pro-
cessing of a single WriteBat ch) not incrementing this sequence number before the write
is complete, the end result is all operations on a single WriteBatch all become visible as
an unit the moment the write finishes. Applying a set of updates atomically are therefore
not a “special case” for LevelDB—it is rather the default mode of operations, and single-
item updates simply use this framework. This can be contrasted with other systems where
single updates might be considered the default, and transactions are used to make a num-
ber of these appear atomic. It is worth noting how this is very much an implementation
detail; the LevelDB API differentiates between the two cases (by providing separate API
calls for Put and Delete) whereas they are all handled identically as “writes” internally.

with large writes.

35

O 0NN WN =

Chapter 2. Case Study: Google LevelDB

2.4.11 Compactions

When LevelDB detects a compaction might be necessary (or beneficial), for example after
creating an immutable memtable or due to the actions of a completing compaction, it calls
DBImpl: :MaybeScheduleCompaction (). This method check whether or not a
compaction is necessary, and if so schedules it to be done in a separate thread:

void DBImpl::MaybeScheduleCompaction() {
mutex_ .AssertHeld();
if (bg_compaction_scheduled_) {
// Already scheduled
} else if (shutting_down_.Acquire_Load()) {
// DB is being deleted; no more background compactions
} else if (!bg_error_.ok()) {
// Already got an error; no more changes
} else if (imm_ == NULL &&
manual_compaction_ == NULL &&
lversions_—>NeedsCompaction()) {
// No work to be done

} else {
bg_compaction_scheduled_ = true;
env_—>Schedule(&DBImpl ::BGWork, this);
}

Once the thread starts, it eventually calls DBImpl: : BackgroundCompaction ().
From here, either CompactMemTable () is called—if there is an immutable memtable
awaiting compaction—or sstable compaction is prepared. Both cases are covered below.

Memtable Compaction

Memtable compactions are always prioritised to avoid the current memtable filling up
while the immutable memtable is still awaiting compaction (which will stall LevelDB).
The process itself is a relatively straightforward:

1. Write the immutable memtable’s contents to an sstable.

2. Create a new Version object which includes this sstable in level-0 and does not
include the immutable memtable’s log.

3. Install this Version as the current Version object.

4. Unref () the immutable memtable (potentially deleting it), and set DBImpl : : imm_
to NULL indicating it has been compacted.

5. Delete the immutable memtable’s now obsolete log file.

Step 1 is handled by WriteLevelOTable (). It involves extracting key-value pairs
from the immutable memtable (by iterating over it) and then creating an sstable from these
entries.

Steps 2 and 3 are relatively straightforward, but includes some complexities with making
sure the new Version is durably logged to disk so that no data loss is possible. (If

36

2.4 Implementation Highlights

the new Version is not durably written, but the memtable’s log file deleted, LevelDB
could end up crashing, recovering the old Version on startup, but then not finding the
memtable’s log.) One additional optimization LevelDB tries here is to place the sstable in
a level lower than 0 if this can be done without invalidating any of the levels-structure’s
invariants.

In step 4, changing DBImpl : : imm_directly is safe as Level DB makes sure DBImpl : :mutex_
is held before doing so. (It is actually held during the entire process, except for the rela-
tively expensive creation of the sstable in step 1.) Step 5 frees the disk-space taken up by

the log; it is no longer needed as the memtable’s contents are now durably on disk.

Sstable Compaction

Sstable compaction is the more complicated compaction-type, as it has to handle removal
of superseded key-value entries and entry deletions, while still keeping the necessary old
versions for snapshot support.

To identify which sstables are to be merged, DBImpl : : BackgroundCompaction ()
calls VersionSet: :PickCompaction (). This method determines which sstables
to merge in the following way:

1. If a level has gone above its threshold size, this will have been recorded by the
Version class when the sstables which made it go above the threshold were added
to it. If there is such a level, an initial sstable is chosen by looking at the key stored
in VersionSet: :compact_pointer_[levell], or the first file if this is not
set or no matching sstable is found.

2. Otherwise, if an sstable has been pointed out as a compaction candidate—for exam-
ple by being the first considered sstable for many entry lookups without returning a
result— Version: :file_to_compact_is non-NULL, and this sstable is select
as the initial sstable.

3. If the to-be-compacted sstable is in level-0, other level-0 sstables which overlap its
key-range are also added to the list of to-be-compacted sstables.

4. The overlapping sstables in the compacted-to level is identified. Based on the key-
range of these files, additional files in the from-level is added if this do not increase
the number of files to merge with in the compacted-to level.

5. VersionSet: :compact_pointer_[level] is updated so a different range
is considered the next time the level is to be compacted.

The eventually result is a list of files at level-X and level-X+1 to merge, along with some
additional information, in a Compact ion object.

Once all input-files are gathered, the actual compaction is done in DBImpl : : DoCompact ionWork.
Here the lowest snapshot sequence number is found, and a merging iterator—pulling key-
value pairs from all input-files—is created. Each pair, in order determined by the internal-

37

O 001N B W —

Chapter 2. Case Study: Google LevelDB

key representation (section 2.4.2), are looked at, and the decision whether to keep or drop
the pair is done as follows:

1. The first seen entry with a given user-key is kept. (This is the most recent entry
with that key.) An exception is deletion-markers, which can be deleted if there is
guaranteed to not be any entries with the same key in higher-numbered levels.

2. The next entry with an already seen user-key is deleted, unless it needs to be kept
for snapshot-support reasons (see section 2.4.13 for details).

A non-dropped entry is added to the sstable currently being constructed:

if (!drop) {
// Open output file if necessary
if (compact—>builder == NULL) {
status = OpenCompactionOutputFile(compact);
if (!status.ok()) {

break;
if (compact—>builder—>NumEntries() == 0) {
compact—>current_output ()—>smallest.DecodeFrom(key);

}
compact—>current_output ()—>largest.DecodeFrom(key) ;
compact—>builder—>Add(key, input—>value());

// Close output file if it is big enough
if (compact—>builder—>FileSize() >=
compact—>compaction—>MaxOutputFileSize()) {
status = FinishCompactionOutputFile(compact, input);
if (!status.ok()) {
break;

A leveldb: :TableBuilder is used to construct the sstables themselves, and once
the table reaches a threshold size a new sstable is started.

Eventually this process finishes, and the changes made by the compaction is registred by
producing a new Version object. To do this, the sstables used as inputs to the compaction
are removed from the levels where they were located, and the outputs (the newly produced
sequence of sstables) are added to the compacting-to-level. This new Version is then
logged and installed in the usual way.

2.4.12 Caching

LevelDB has two caches internally; an (ss)table-cache and a block-cache. Both have a
configurable size; the table-cache can contain a number of open files (default 1000), while
the block-cache has a given maximum size (8§ MB by default).

38

O 00NN BN~

2.4 Implementation Highlights

Table Cache

The table-cache is structured as a layer abstracting away all direct access to sstables. This
is so it can retain full control over their access. The cache provides three public methods:

Iterator* Newlterator(const ReadOptions& options,
uint64_t file_number,
uint64_t file_size,

Table**x tableptr = NULL);

Status Get(const ReadOptions& options,
uint64_t file_number,
uint64_t file_size,
const Slice& k,
voidx* arg,
void (*xhandle_result)(void#*, const Slice&, const Slice&));

void Evict(uint64_t file_number);

In other words, the creation of an iterator for a table, a get-operation on a table, and the
eviction of a table from the cache. The first two are rather self-explanatory. The latter is
used when a table is orphaned, for example after having its content compacted to a new
file, and scheduled for deletion.

The methods identifies tables by using a numbered identifier, stored as an uint 64_t. The
information about what each file contains, and its identifier, is stored by the Version
objects. When a request for information in an sstable is to be done, the table-cache Get
method is called with the file-number as part of its arguments. The requested sstable is
then loaded if it is not already in the cache, and the table-cache handles lookups in it. The
final two parameters to Get are a callback function pointer and an associated callback
user-pointer used to potentially return a found key-value pair to the caller.

Both the table-cache and block cache use the same underlying cache-implementation, but
the difference is in what that cache stores. In both cases, a void«* (void-pointer) is re-
turned, and for the table-cache this points to a TableAndFile-structure which itself
contains pointers to both a Table-object and a RandomAccessFile-object (which
can be used to read the sstable-file directly).

Block Cache

The block-cache, as opposed to the table-cache, is entirely client-configurable. Part of the
leveldb: :Opt ions-argument passed to leveldb: : Open when creating the database,
it is used to cache and retrieve single sstable blocks. By default, if the user does not pass
a custom cache, a 8MB least-recently-used cache is created.!*

The block-cache is internally only used by Table objects when a block is requested
from it (either directly or through an iterator). The following source code extract from
Table: :BlockReader shows how it is used:

45anitizeOptions in db_impl.cc

39

O 00NN WN =

Chapter 2. Case Study: Google LevelDB

BlockContents contents;

if (block_cache != NULL) {
char cache_key_buffer[16];
EncodeFixed64 (cache_key_buffer, table—>rep_—>cache_id);
EncodeFixed64 (cache_key_buffer+8, handle.offset());
Slice key(cache_key_buffer, sizeof(cache_key_buffer));
cache_handle = block_cache—>Lookup(key);

if (cache_handle != NULL) {
block = reinterpret_cast<Block*x>(block_cache—>Value(cache_handle));
} else {

s = ReadBlock(table—>rep_—>file, options, handle, &contents);
if (s.ok()) {
block = new Block(contents);
if (contents.cachable && options.fill_cache) {
cache_handle = block_cache—>Insert(
key, block, block—>size(), &DeleteCachedBlock);

First, on lines 3-6, an unique 16-byte representation of the block is constructed. This
includes an id for the table it is part of, as well as the offset the block has in the sstable.
This is then used as lookup-key in the cache (line 7). A successful lookup will return a
handle from the cache, which can subsequently be used to also get the actual value. On
line 9, a pointer to the block in question is found in this way. Should the cache not contain
the block, a NULL handle is returned. In this case the block is manually read in from
disk and a Block object is constructed to represent it (lines 11-13). Unless the block
is marked as non-cacheable,!’ or if the read is marked as a non-cache-filling read,'® the
block is inserted into the cache (line 15).

LRU-cache implementation

LevelDB uses an implementation of a sharded'” least-recently-used (LRU) cache for the
table- and block-cache, by default. This section will describe how this cache is imple-
mented.

As mentioned in section 2.4.6 on concurrency in LevelDB, the caches provide their own
synchronization. Because multiple operations can potentially be in-progress at the same
time, this makes the caches potential hotspots in the case of, for example, many simultane-
ous read-operations. For likely this reason, LevelDB opts to not use a single LRU cache,
but rather partition the key-space into a number of separate LRU caches. By default, each
such “sharded LRU cache” consists of 16 individual LRU-caches, where the actual LRU
cache to use is selected by hashing the lookup-key and looking at the 4 most significant
bits. Because the LRU caches themselves simply lock a mutex before each operation, this
helps avoid the complete serialization of cache-operations one would experience should a
single LRU-cache be used for all operations instead of this sharded scheme.

I5This can happen if the block-data is returned as a direct pointer to some data (e.g, a memory-mapped area),
rather than memory allocated by LevelDB specifically to hold the block-contents.

16This is a client-specified option, which can for example be set on an iterator-driven bulk read.

Note: sharded, not shared.

40

SOOI R WN—

—

AN BN —

2.4 Implementation Highlights

The LRU cache itself is implemented by maintaining an internal hash-table for fast lookups
by key, and a doubly-linked-list of all items to maintain the least-recently-used order. On
a successful lookup the item it simply removed from its place in the list, and inserted in
front:

Cache::Handle*x LRUCache::Lookup(const Slice& key, uint32_t hash) {
MutexLock 1l(&mutex_);
LRUHandlex e = table_.Lookup(key, hash);
if (e != NULL) {
e—>refs++;
LRU_Remove(e);
LRU_Append(e);

return reinterpret_cast<Cache::Handlex>(e);

}

Each item inserted “charges” the cache by a given number: for the table-cache the charge
is 1, while for the block-cache it is the byte-size of the block. After an insert which takes
the cache’s charged usage above its capacity, the LRU-list is iterated over in least-recently-
used order and items removed until the charged usage drops to below the capacity—or the
list wraps:

while (usage_ > capacity_ && lru_.next != &lru_) {
LRUHandlex old = lru_.next;
LRU_Remove(old);
table_.Remove(old—>key (), old—>hash);
Unref(old);

}

What is worth nothing from the above code is that no changes to the usage_ variable
is done directly. This happens in the Unre f-method, but only when the item is actually
deleted—meaning when its reference count drops to zero. This is a consequence of the
cache not being able to forcefully delete an item, as a positive reference-count indicates
the item is still being used somewhere else in the system. Once the usage is finished, the
caller having fetched the item from the cache, is expected to call the cache’s Release-
method so that the reference count is decremented. When this happens on an item still in
the LRU-list, the reference count stays positive (because it is referenced by the list) and the
item stays in the cache and is not deleted. If the item should be removed from the cache
(because it has been removed from the LRU-list), the reference count will eventually hit
zero as it is released by all users—and the item is then deleted. Only then is the charged
usage of the item decremented from the cache.

The “capacity” of the cache is therefore not an upper bound on usage, but rather the point
where the cache stops trying to artificially keep items alive even though they are not cur-
rently used. So for example, if the system need more blocks in memory than the cache has
capacity for, the cache can not stop it—it can only decline to keep these blocks alive after
they are finished being used.

41

O 0NN W —

O 00N B W —

Chapter 2. Case Study: Google LevelDB

2.4.13 Snapshots and Iterators

The implementation of snapshots is, as the description in the architecture section 2.3.6
might cause one to suspect, not particularly complex. Since a snapshot is simply a se-
quence number indicating where it takes place in the database’s timeline, the creation and
deletion of snapshots only amount to the following:

const Snapshot* DBImpl::GetSnapshot () {
MutexLock 1(&mutex_);
return snapshots_.New(versions_—>LastSequence());

void DBImpl::ReleaseSnapshot(const Snapshotk s) {
MutexLock 1(&mutex_);
snapshots_.Delete(reinterpret_cast<const SnapshotImpl*x>(s));

}

...where the New method is used to add the current sequence number to the end of a
doubly linked snapshots_ list, and the Delete method removes the number from the
list. This way—given that the current sequence number is monotonically increasing—
the oldest snapshot is always at the beginning of the list, and for snapshot-support it is
sufficient to only keep alive the first entry of a key with a sequence number less than this
number, as well as newer entries, while all older entries can be deleted without issue. The
logic for this when performing compaction looks like the following: '8

if (last_sequence_for_key <= compact—>smallest_snapshot) {
// Hidden by an newer entry for same user key
drop = true; // (A)
} else if (ikey.type == kTypeDeletion &&
ikey.sequence <= compact—>smallest_snapshot &&
compact—>compaction—>IsBaselevelForKey(ikey.user_key)) {
// For this user key:
// (1) there is no data in higher levels
// (2) data in lower levels will have larger sequence numbers
// (3) data in layers that are being compacted here and have
// smaller sequence numbers will be dropped in the next
// few iterations of this loop (by rule (A) above).
// Therefore this deletion marker is obsolete and can be dropped.
drop = true;

last_sequence_for_key is a valid number if an entry with the same key has already
been processed,'” and compact->smallest_snapshot is the smallest number from
the snapshots_-list above. If there is no snapshots, smallest_snapshot will be set
to the next free sequence number so that entries are artificially kept alive.

For iterators, the primary requirement is that memtables and sstables are kept alive for the
duration of the iterator. This is done by using reference counting. From
DBImpl: :NewInternalIterator:

18poCcompactionWork in file db_impl. cc
90therwise it is a large number, so the initial test fails.

42

O 00NN WN =

2.4 Implementation Highlights

// Collect together all needed child iterators
std::vector<Iteratorx> list;
list.push_back(mem_—>NewIterator());
mem_—>Ref () ;
if (imm_ != NULL) {
list.push_back(imm_—>NewIterator());
imm_—>Ref () ;
}
versions_—>current ()—>AddIterators(options, &list);
Iterator* internal_iter =
NewMergingIterator(&internal_comparator_, &list[0], list.size());
versions_—>current ()—>Ref () ;

cleanup—>mu = &mutex_;

cleanup—>mem mem_ ;

cleanup—>imm imm_;

cleanup—>version = versions_—>current();
internal_iter—>RegisterCleanup(CleanuplteratorState, cleanup, NULL);

Iterators which the to-be-created global iterator will merge data from are collected from
the current memtable, the immutable memtable and the current Version (line 3-9). All
these are then Ref () ’d so that they are kept alive for the lifetime of the iterator. The
created iterator, internal_iter, is then set up with cleanup-information so that all
necessary Unref () s are called once it is deleted (lines 14—18).

This has the effect that neither of the memtables, nor any sstable-files managed by the
Version (by virtue of the Version object itself staying alive) will be deleted as long
as the iterator is alive. This enables it to provide a consistent view of the database contents
as it were when the iterator was created, even as the current state of the database changes.

2.4.14 Recovery

In section 2.3.7, it was described how LevelDB makes sure all changes are done in such a
way as to be recoverable in the event of crash or system failure.

The two reasons for change were additions to the memtables and the addition of a new
Version (after compaction). Both of these are handled by logging the changes to disk
before applying them. This section will look at how recovery is done for both these cases.

After the database is opened, DBImpl: : Recover () is called to restore it to a valid
state. This is done in two steps: first recover the current Version, then the memtables.

Version
Recovery of the current Version is done by VersionSet: :Recover (). It does the
following:

1. Reads the file named CURRENT; this contains the name of the file used to log
changes to the Versions.

43

Chapter 2. Case Study: Google LevelDB

2. Parses the log file, applying logged edits as they are found. The log will always start
with all necessary information from the Version which was current when the log
was created, while after this only subsequent changes are logged. This eventually
recovers the Version as it was after the last successfully written log-entry.

The main workhorse during this operation is the the leveldb: :log: :Reader class,
which decodes records from the log file. These records are arbitrary byte-arrays, but in this
case they represents serialized versions of the changes made to the Version in the form
of a VersionEdit object. The edits are eventually combined to the final Version by
a Builder class made specifically for this purpose.

Memtables

With the latest Version recovered, it is possible to discover which on-disk memtable
log files were live at the time of a shutdown or crash. (As opposed to log files which are
orphaned, but not yet deleted.) This is done by assigning logfiles monotonically increasing
identifiers, and storing the identifiers of the last memtable-log successfully converted to an
sstable. Any memtable log files with identifiers greater than this number therefore needs
to have their contents recovered.

By considering all files in the database folder, identifying which ones are log files by their
name, and then looking at the identification number, all to-be-recovered log files are lo-
cated. Each are then passed to DBImpl: : RecoverLogFile () in order of increasing
identifier number. This method, similarly to when the Version is recovered, use the
leveldb: :1log: :Reader class to parse record out of the log file. Each record is a
write-operation previously applied to the memtable the log file represents, and this opera-
tions is simply replayed to a newly created memtable. This eventually recovers the entire
memtable as it was after the last successfully written log record.

As the memtables are recovered, they are subsequently written to level-O sstables by
WriteLevelOTable (), and the successful recovery of it (and the addition of the new
sstable) is recorded in the current Version.

Final Steps

After successfully recovering both the current Version and the memtables, this recov-
ered database state is finally itself durably written to disk to avoid having to redo the same
recovery operations later. This involves creating a new Version log file, and updating
the CURRENT file to point to this file. Once this is done, the old log files are deleted by
calling DeleteObsoleteFiles ().

This concludes the description of how LevelDB does recovery, and shows how it is able
to successfully recover in-memory content (Version state and memtables), by logging
changes to these to disk.

44

2.5 Extensions and Related Projects

2.5 Extensions and Related Projects

LevelDB’s open-source nature has allowed for it to be extended and improved by third
parties unrelated to Google. Three of these are briefly covered below.

HyperDex HyperLevelDB

HyperDex is a NoSQL key-value store. It lists a “rich API, strong consistency, and fault
tolerance” as its key features.(HyperDex, 2014) For its data storage engine it uses Hyper-
LevelDB, an open-source fork of LevelDB. HyperLevelDB aims to improve on LevelDB
in two primary ways:(HyperDex, 2013)

Parallelism: HyperLevelDB removes the complete serialization of writer threads by
having them first agree on the ordering, and then independently apply the writes in a
manner consistent with this order. This helps improve both write-throughput and multi-
threaded utilization.

Compaction: LevelDB’s approach to compaction does not take into account the ratio
of data in the receiving-level which must be rewritten because of the compaction to data
actually moved across levels. HyperLevelDB tries to minimize this overhead by selecting
what data to compact using this as a metric, instead of progressively moving through the
level key-space as LevelDB does by default. By reducing the amount of data written, this
enables the system to perform additional compactions—increasing total throughput.

Baso LevelDB

Basho Technologies, developers of the Riak NoSQL database, maintains their own Lev-
elDB fork and provides it as one of the available storage backends for Riak.(Basho, 2014a)
The branch is, as of May 2014, in active development. It has integrated a number of
changes deemed to improve performance. This includes both larger architectural changes,
such as increasing the number of concurrent compaction threads and the number of levels
allowed to contain overlapping sstable-ranges, as well as more low-level changes such as
utilizing hardware features to calculate CRC checksums.?02!22

Facebook RocksDB

RocksDB is a project started at Facebook which forks LevelDB with the aim to create a
database especially suitable for running on flash storage. RocksDB additionally extends

2Ohttps://github.com/basho/leveldb/wiki/mv-hot-threads
21 https://github.com/basho/leveldb/wiki/mv-level-work3
22https://github.com/basho/leveldb/wiki/mv-verify-compactions

45

Chapter 2. Case Study: Google LevelDB

LevelDB with a number of features, including the ability to take full backups, and a repli-
cation system.(Jin, 2014)

46

2.6 Discussion

2.6 Discussion

Relation to Google Bigtable and LSM Trees

Many of the concepts used by LevelDB, including memtables and sstables, were intro-
duced by Google in their Bigtable paper in 2006.(Chang et al., 2006) In Bigtable, the
combination of a memtable and multiple sstables (all in a single level) is used to form a
“tablet”. This table is then subsequently used to store consecutive rows of a Bigtable ta-
ble. Merging compactions are performed between sstables in the background, here based
on their size (smaller sstables are merged together first). This is to limit the total number
of sstable-files a read-operation has to look at to find a result, while still keeping each
compaction relatively cheap.

As acknowledged in the Bigtable paper, this usage of memtables and sstables is analo-
gous to how updates to index data is done in a Log-Structured Merge (LSM) Tree.(Chang
et al., 2006)(O’Neil et al., 1996) In LSM-parlance, the memtable can be considered the
in-memory Cy component, while the set of sstables forms the on-disk C; component. The
similarities quickly end however, and it is primarily the ideas of buffering data in memory
in a sorted manner before writing it to disk sequentially, and how on-disk and in-memory
data is merged on reads, which is borrowed from the LSM tree by Bigtable.

LevelDB extends the ideas from Bigtable by adding subsequent layers—or levels—of ssta-
bles below the initial level. Merging between these layers is done in in a manner similar to
a multi-component (2+) LSM-tree. This has the effect of long-lived key-value pairs being
migrated to lower levels over time, increasing the lookup-time for such a key as all levels
preceding its location are checked before it is found. LevelDB therefore performs best
if most lookups are for recently added, rather than old, data. By limiting the number of
possible level-0 sstables, the maximum number of disk seeks needed to locate an arbitrary
entry still has a well-defined upper bound however.

Both of these approaches to compaction, the Bigtable-inspired single-level size-tiered ap-
proach, and LevelDB’s “leveled compaction”-approach, are available as selectable options
in the Apache Cassandra database.>> Comparing the two, they found that the size-tiered
approach has multiple problems with regards to fragmentation of related data over multi-
ple sstables (requiring a seek in each to acquire the complete set—this is analogous to how
all level-0 sstable files must be considered on reads in LevelDB), and substantial amounts
of disk space wastage. The leveled approach was found to solve these issues, but at the
cost of roughly twice as much IO as the size-tiered approach. The preferred option was
therefore found to depend on database usage, especially the ratio of inserts compared to
reads.(Ellis, 2011)(Hobbs, 2012)

Similarly to an LSM-tree, both LevelDB and Bigtable incurs little IO-cost on inserts.?* An-
ticipating more detailed benchmark-comparisons in chapter 4, both random and sequential

23Cassandra borrows many ideas from Bigtable, and similarly to LevelDB also use the concepts of memtables
and sstables in its implementation.
24None if memtable-changes are not logged for durability.

47

Chapter 2. Case Study: Google LevelDB

writes are likely to perform well for this reason. Random reads is by far the slowest op-
eration LevelDB can perform, as the majority of data in a large database is going to be
located in higher-numbered levels—which are not looked at before lower-numbered levels
are first checked. Sequential reads will receive an advantage from the sorted nature of
sstables, meaning read X+1 is likely to have its target block located in the block-cache,
saving IO costs.

Choice of Skip-List to implement Memtable

While the Bigtable paper doesn’t specify which structure is used to maintain the infor-
mation in its memtable, the LSM-tree paper suggests a 2-3 tree or AVL-tree structure for
the analogous C component. LevelDB forgoes such a balanced tree entirely and instead
opts to use a skip list. Invented by William Pugh, his 1990 article compares the skip list
favorably to such balanced trees, and also references an algorithm allowing multiple pro-
cessors to concurrently update a skip list in shared memory.(Pugh, 1990) This algorithm
is additionally referenced to as “much simpler” than algorithms for concurrent balanced
trees. More recent papers have also introduced efficient concurrent implementations, both
lock-free and otherwise.(Fraser, 2004)(Maurice Herlihy, 2012) The LevelDB implemen-
tation only allow the memtable to be updated by one thread concurrently (using locks),
but it does allow read-operations to progress concurrently in a lock-free manner. This ease
of allowing this, along with the skip-list’s general performance characteristics, is a likely
reason for why a skip-list was chosen over some kind of balanced binary tree.

Logging

When maintaining a write-ahead-log for memtable durability, LevelDB logs the full key-
value data in its entirety. Parallels can be drawn between this and the idea of “physical
logging”.(Gray, 1993) While some kind of delta encoding when values for the same key
is changed is conceivably possible—which could form the base for more “logical’-style
logging—this is likely to be both very expensive (as old values need to be looked up
during writes) and hard to integrate. Not being able to do this has notable performance
implications, however, especially if large values are used, as all key-value pairs are always
written twice—first to the log, then later to an sstable. Still, the benefit such physical-style
logging is that recovery is greatly simplified.

Stalls

One major issue LevelDB is seen to run into, and something forks of it often try to address
with different, but related, approaches, is intermittent spikes in latency during write oper-
ations. This happens if both memtables (current and immutable memtable) fill up while
the background thread is busy with a long-running compaction. In such a case, LevelDB
simply stalls until the compaction process catches up. Most forks tries to handle this by
increasing the number of compaction threads, and possibly also by dedicating a small set

48

2.6 Discussion

of threads exclusively to flushing memtables once they fill up.(Jin, 2014)% Since “stock”
LevelDB only use a single compaction thread, write-heavy use cases is likely to see vary-
ing response-times and stalls (for writes) should the compaction process be unable to keep

up.

Zhttps://github.com/basho/leveldb/wiki/mv-hot-threads

49

Chapter 2. Case Study: Google LevelDB

50

Chapter

Case Study: Symas Lightning
Memory-Mapped Database
(LMDB)

3.1 Introduction

Lightning Memory-Mapped Database (LMDB)! is an embedded key-value data store de-
veloped by Symas, written in C.(Symas, 2014) It was developed for the OpenLDAP-
project? with the aim of replacing BerkeleyDB (BDB)® as its storage backend. For this
reason, LMDB’s API is inspired by BerkeleyDB, but otherwise the design and implemen-
tation is such as to perform much better in read-heavy situations.

Background

OpenLDAP started using BDB as part of its storage backend in 2002.(Chu, 2012) To
achieve sufficient performance they found it necessary to add multiple levels of caches
on top of BDB. This ended up being a complex process: the caches themselves required
careful tuning and the backend code became difficult to improve and maintain as locks had
to be introduced to maintain coherency between the caches and BDB itself. Though the
caches improved performance by an order of magnitude in general,(Chu, 2013b) they were
sometimes not beneficial depending on configuration properties—in the worst cases they

IPreviously MDB, but renamed to avoid confusion with other software.
2http://www.openldap.org/
3http://www.oracle.com/us/products/database/berkeley-db/overview/index.html

51

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

were completely inefficient, thus only wasting memory and processing effort by duplicat-
ing data.(Chu, 2013b) Summed up, the developers found the system “difficult to configure,
difficult to optimize, and extremely labor intensive to maintain”.(Chu, 2012)

To improve the situation, they seeked a solution where no complex cache management was
necessary—they expected the filesystem cache to be sufficient—and used multi-version
concurrency control (MVCC) to avoid the need to perform any locking when reading data.
Surveying the database library landscape, they found no solution with the desired charac-
teristics and thus decided to write their own.(Chu, 2013b)

Features
Symas highlights the following as some of LMDB’s major features:(Chu, 2013b)(Symas,
2014)

o Key/Value store implemented using B+trees: ordered-map interface with sorted
keys; support for range lookups.

e Fully transactional: ACID semantics with MVCC. Readers never blocking writers,
and writers never blocking readers. Write transactions fully serialized, meaning also
deadlock-free.*

e Support for multi-thread and multi-process concurrency.

e Use of memory-mapped files allowing zero-copy lookup and iteration.
e Design supporting recovery-free restart.

e No background cleanup or compaction process required.

More advanced features include support for storage of multiple databases in a single file,
nested transactions, and storage of multiple values for a single key.

With LMDB’s genesis as a backend for OpenLLDAP, it aims to provide a heavily read-
optimized data storage solution. How these features are achieved and implemented, and
what drawbacks and tradeoffs are made in pursuit of this, will be covered in subsequent
sections.

4Whether or not being “deadlock-free” can be considered a feature, when it is achieved through complete
serialization of write transactions, is a decision left up to the reader. In any case, having such single-writer-at-a-
time semantics is common for embedded key-value store.

52

BN =

AW =

O 0NN AW =

[
BPLWN—=OOVINWN B W —

3.2 Usage Example

3.2 Usage Example

This section illustrates the basic usage of LMDB. Note that error handling is not shown;

normally rc would be checked after each operation where it appears.

for the API can be found online.’

First a database environment is created:

Full documentation

int rc; // return code
MDB_env xenv;
rc mdb_env_create(&env) ;

rc mdb_env_open(env, 7 ./testdb” /xpathx/, 0, 0664)

Next a transaction is created, and a database opened as part of the transaction:

MDB_txn *txn;
rc = mdb_txn_begin(env, NULL /xparent
MDB_dbi dbi;
rc = mdb_open(txn, NULL /xdatabase namex/,

transaction=/, 0, &txn);

0, &dbi);

To insert an item into the database, mdb_put (.. .) can be used as follows:

int key_num = 123;

char data[] = {”"Data to put”};

MDB_val key, data;

key.mv_size = sizeof(int);

key.mv_data = &key_num;

data.mv_size = sizeof(data);

data.mv_data = data;

rc mdb_put (txn, dbi, &key, &data, 0 /xflags=*/);

rc mdb_txn_commit (txn);

To lookup data, one can either use mdb_get (.. .) or do so through a cursor. A cursor

can also be used for put- and delete-operations, but this is not shown.

MDB_cursor *Ccursor;
rc mdb_txn_begin(env, NULL, MDB_RDONLY, &txn);
rc = mdb_cursor_open(txn, dbi, &cursor);
while ((rc =
printf(’key: %p %.xs, data: %p %.xs\n”,
key.mv_data,
(int) key.mv_size,
(char *) key.mv_data,
data.mv_data,
(int) data.mv_size,
(char %) data.mv_data);

}

mdb_cursor_close(cursor);
mdb_txn_abort(txn);

mdb_cursor_get (cursor, &key, &data, MDB_NEXT)) == 0) {

Finally, the database and environment is closed.

Shttp://symas.com/mdb/doc/

53

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

B W=

mdb_close(env, dbi);
mdb_env_close(env);
return rc;

54

3.3 Architecture Overview

3.3 Architecture Overview

3.3.1 Introduction

LMDB stores data in a copy-on-write B+tree. B+trees have been used in database sys-
tems for decades, and is well-suited for efficient data storage and retrieval.(Comer, 1979)
By implementing a copy-on-write variant of B+trees, LMDB is able to provide a form of
multi-version concurrency control (MVCC), allowing write- and read-transactions to oper-
ate concurrently, without a complicated locking-scheme protecting readers from changes
introduced by writers.

The rest of this section will contain the following: first a look at how the copy-on-write
B+tree works, and how disk-pages are managed during copy-on-write operations. Then, a
description of how writes and reads are performed on the database. Finally, issues regard-
ing durability and recovery are covered.

3.3.2 Copy-on-Write B+Tree

Classical implementations of B+trees usually update pages in the tree in-place. This is
very efficient, as the necessary changes are made directly in the tree, but creates issues
when it comes to concurrent access by other transactions. Usually complicated locking-
schemes are introduced so that other transactions are unable to access the change parts of
the tree until the modifying transaction either commits or aborts.

LMDB avoids this kind of locking in favour of a multi-versioning system. The idea is to
have write-transactions create a completely new version of the tree, leaving the old version
intact, so that in-process read-transactions can—unobstructedly—continue to read the data
from it until it is finished.

This is the origins of the copy-on-write approach used by LMDB. By never modifying
parts of the tree in-place, but instead copying each page and then modifying this copy, a
new version of the B+tree can be created by a write-transaction in complete isolation. If
the transaction decides to commit, the new tree becomes the “current” tree—and thus the
starting point for new read-transactions so that they will find the newly applied changes.
Should the transaction instead abort, its changed tree is simply dropped meaning none of
its changes ever take effect.

Figure 3.1 illustrated this approach. One can imagine a new data-item is to be placed in
the rightmost leaf-page of the tree. Since this necessarily modifies the page, it is copied
and the change is instead made to the copy. Because a copy was made, the root must be
updated to point to this new page—requiring modification of the root itself. Therefore the
root is also copied. In general, it is necessary to copy all pages on the path from the root
to any modified page when creating a new version of the tree.

Once a new version of the tree is created and the creating transaction has committed, any
new requests to the database can be directed to the new tree. However, since the old root

55

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

Copied and modified
Root New root
/
|— References existing page
(not modified)
Leaf Leaf » New leaf
J Copied and modified
Current version New version

Figure 3.1: Copy-on-Write B+tree operations. Pages are copied on modifications, while any non-
modified pages of the old version can be shared with the old version.

and its pages are still available and unmodified, existing read transactions can continue to
access data in the old tree.

By handling all updates in this manner, LMDB archives its advertised ACID semantics.
Since any changes does not become visible until a write-transaction commits, and the new
tree becomes the current tree, atomicity of the changes is achieved. By maintaining any
consistency-guarantees while creating the new tree, consistency is maintained. Isolation is
trivial since only one write-transaction is active at a given time and all its changes are done
to separate copies of pages. Finally, durability is guaranteed by making sure all changed
pages are fully written to disk before the transaction is allowed to commit.

3.3.3 Page Management

Because each new version of the B+tree consumes a number of new pages (for new or
copies of existing pages), it is important that there is also a system in place to reclaim
pages once they are no longer needed.

The first consideration for such a system is to define when a given page is no longer used,
so that it can be a candidate for re-use. In LMDB, old trees (and its pages) need to be
available as long as they are referenced by any still-live transactions or the current version
of the tree. Figure 3.2 illustrates this situation. The marked pages on the left side can be
re-used once no live transactions reference this old version of the tree. The leftmost leaf
can not be re-used however, since it is also referenced by the current version of the tree
(right side of the figure).

There are many techniques once could use to identify such re-usable pages.® LMDB
opts to record all pages freed by each write-transaction, and store this information in a
sub-database. For the situation in figure 3.1, LMDB would record that—as part of the
transaction—the old root and the old rightmost leaf was freed. (This is because they were

SThis is essentially a garbage-collection problem.

56

3.3 Architecture Overview

Old root Root

Leaf Old leaf Leaf

Old version Current version

Figure 3.2: Identification of freed pages. Continuation of figure 3.1. Once the right-side version has
become the current version, the marked pages on the left side can be freed once the old root is not
referenced by any live transactions.

replaced by copies in the new tree.) The leftmost leaf was not recorded as freed, however,
as no copy was made.

When a write transaction need a free page, the recorded free-page information can then be
searched. By identifying the oldest version any active read-transaction is reading, all pages
freed before or during the creation of that version are available for re-use. For example, if
version 5 is the oldest version of the tree operated on by any read-transaction, and pages
freed during the creation of versions 1, 2, 3, 4, and 5, is eligible. Any pages freed by
the creation of version 6 would not be eligible, however. This is because such a page is
necessarily referenced by the version-5 tree, which is currently in-use.

By checking for re-usable pages before possibly allocating new ones on-disk, disk-space
usage can be kept to a minimum. This is a good policy, as once the database file reaches
a given size it can not trivially be shrinked—as used pages will be fragmented through the
file. This is also has consequences for page reads and writes, as the on-disk locations of
pages can start to vary significantly.

3.3.4 Write Path

Once a write is to be performed, first a write-transaction’ is started. This prompts LMDB
to prepare the necessary information so that the current version of the B+tree can be read
and a new version created. Once all changes have been made, the transaction is committed.
This writes all changed pages to disk, records all pages freed during the transaction, and
updates the database so that new transactions will work on the newly created tree.

The main challenges during this process are: finding pages to reuse, do operations on the

"More accurately, a read-write-transaction, as it can do both.

57

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

B+tree (adding and removing data, handling page-splits, updating page-pointers, and so
on.), keeping track of freed pages, and to successfully patching the current state of the
database to point to the new version of the database on commit.

3.3.5 Read Path

Reads during read-transactions does not involve much complexity, as once the read-transaction
is started and set to point to the current version of the database—as well as registered as

an active-reader, for page-reclamation reasons—Ilookups are generally a straightforward
case of B+tree-lookups. Once the transaction completes, it unregisters itself from the list

of active readers.

Write-transactions (or rather, non-read-only transactions) are not much more complicated,
but care has to be taken so that when pages are copied and updated old pages aren’t acci-
dentally read instead of these newer copies.

3.3.6 Recovery and Durability

Durability in LMDB is achieved by flushing and syncing changed disk-pages on transac-
tion commit. This means it is always more efficient to have many changes applied in one
transaction, rather than many transactions with fewer changes, since this carries a signifi-
cant cost—especially since not only changed leaf-pages, but all internal branch-pages on
the root-leaf-path need to be written. Because of the page-reclamation technique used,
the flushed pages are also unlikely to be located at sequential locations on disk, further
increasing this cost.

On the other hand, recovery in LMDB extremely simple and straightforward as a conse-
quence of the copy-on-write approach. Any failures during the creation or writing to disk
of a new version is guaranteed to still leave the old version intact, meaning normal opera-
tion can resume immediately on startup—no special recovery steps are needed. The only
requirement is that information about this “old” or “current” version is easily located on
startup, and that replacing it with a new version is done in an atomic manner.

58

3.4 Implementation Highlights

3.4 Implementation Highlights

3.4.1 Introduction

This section will look at some of the more interesting implementation details of LMDB,
so that it is possible to gain a more detailed understanding of how it works.

While doing this, some of LMDB’s more advanced features and toggleable behaviour
are ignored. This is so focus can be kept squarely on how the basic key-value storage
functionality is implemented without being overwhelmed by special cases used to support
additional functionality or behavior. Some examples of features whose implementations
are ignored are: nested transactions, multiple databases in a single file, multiple values
for each key, and multi-process concurrency. Some toggleable behaviour which is ignored
includes: the possibility of performing writes directly to the memory map, not syncing
meta-pages, and allowing a single thread to have multiple active read-transactions by not
using thread-local storage.

Below, details regarding LMDB’s use of memory-mapping is covered. Then comes a
look at how LMDB does free-page reclamation, the format of its on-disk pages, and how
navigation through its copy-on-write B+tree is done. Finally implementation details in
regards to supporting multi-versioning and recovery is covered.

3.4.2 Memory Mapped Data File

One of the initial goals of the LMDB project was to create a system where no buffer-
and cache-configuration and management is necessary. LMDB achieves this by using the
operation system’s memory-mapping capability to access on-disk data, leaving caching
and buffer-management up to the filesystem and OS instead of LMDB itself. This has a
number of advantages:(Chu, 2012)

e No copying has to be done when returning data to the client: instead a pointer to
the data’s location in the memory mapped area can be returned. (Data integrity
optionally can be protected by mapping the memory-area as read-only so the user
does not accidentally change it.) This reduces the amount of work which has to be
done in terms of memory allocation and copying before data is returned to the user,
which has the potential to greatly speed up data-access.

e Data is not cached redundantly within the application in addition to the OS or file
system caches. This reduces complexity inside LMDB, and also frees up memory
with would otherwise be used for such an application-level cache. However, you
rely on the OS’ semantics regarding this.

For this approach to be viable, it forces a number of requirements and responsibilities on
the operating system LMDB is running on. One is that the memory address space must be
large enough to contain the expected data volume. For 32 bit systems, this sets a hard limit
on 4 GB—but is likely to be less than this in practice. In recent years, 64 bit systems have

59

1

NN —

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

become more common, which ups the limit to between hundreds of terabytes and multiple
exabytes. This makes the scheme much more viable for more realistic database sizes.
A second requirement is that the operating system and file system manages its buffers
efficiently, else the approach becomes too slow to be usable in practice. Finally, when not
doing writes to the memory map itself, LMDB requires that the operating system uses an
unified buffer cache, meaning that changes to the data file through OS file-write calls is
immediately visible through the map.(Chu, 2012)

Initially, LMDB did not handle writes by changing the memory map directly. Instead, they
were performed using OS file-writing functions. This was so LMDB retained complete
control of the ordering of writes to disk, when the write-back actually happen, as well
as more easily being able to flush changes to disk. Eventually, support for memory map
writing added, speeding up write-operations in the process. However, this carries a risk
of corrupting the database through wild pointer writes and other bad updates, and requires
that the operating systems provides some degree of control of as to when data is actually
written back to disk.

3.4.3 Free Page Reclamation

When new pages need to be allocated, possibly because it is needed to make a copy of an
existing page or because a page split, the function:

int mdb_page_alloc(MDB_cursor *mc, int num, MDB_page **mp)

...is called. The arguments are a cursor—identifying the current transaction and environment—

the number of sequential pages to allocate, and a location to place the first of the ready-
to-be-used pages (the remaining pages can be identified by looking at this page’s page-
number).

To locate pages eligible for re-use, the function first identifies the oldest currently running
read-transaction by calling the function mdb_find_oldest. How this function works is
covered in section 3.4.3 below.

Once the oldest running read-transaction’s transaction ID is known, all pages freed by
transactions older than it can safely be re-claimed. LMDB identifies such pages by storing
all freed pages in internal database, where the freeing transaction’s transaction ID is used
as the key. By starting at the lowest transaction ID (key) in the free-page database, and
looping until the ID is greater than or equal to the oldest transaction ID, all eligible pages
are located. By keeping all eligible pages in a sorted list, a continuous range of pages can
then be found. To logic for this search is as follows:

/* Seek a big enough contiguous page range. Prefer
* pages at the tail , just truncating the list.
*/
if (mop_len > n2) {
i = mop_len;
do {

60

—_
W= OO oo

OO0 I N B W=

—_

e e R

3.4 Implementation Highlights

pgno = mop[i];
if (mop[i—n2] == pgno+n2)
goto search_done;
} while (—i > n2);
if (Max_retries < INT_MAX && —retry < 0)
break;

mop-len is the length of the mop (old-pages) list, and n2 is the number of contiguous
pages requested minus 1. The mop list is sorted by decreasing page-numbers, so once the
if on line 8 passes the range starting at page-number pgno and including pgno+n2 is
found to be free.

If the request can not be satisfied by reclaimed pages, new pages are allocated by growing
the data-file (as long as the maximum size is not exceeded):

/% Use new pages from the map when nothing suitable in the freeDB =/
i=0;
pgno = txn—>mt_next_pgno;
if (pgno + num >= env—>me_maxpg) {

DPUTS(”DB size maxed out”);

rc = MDB_MAP_FULL;

goto fail;
}
[...]

txn—>mt_next_pgno = pgno + num;

When a write-transaction is committed or aborted, the necessary changes to the free-page
database is applied and committed and aborted with it. This keeps the register of free-
pages consistent.

Active Readers Table

LMDB maintains a table of active read-transactions. The first time a thread starts a read-
transaction, it is allocated a slot in this table. This requires a mutex to protect the table
from concurrent changes:

LOCK_MUTEX_R(env) ;

nr = ti—>mti_numreaders;

for (i=0; i<nr; i++)
if (ti—>mti_readers[i].mr_pid == 0)

break;

if (i == env—>me_maxreaders) {
UNLOCK_MUTEX_R(env) ;
return MDB_READERS_FULL;

}
ti—>mti_readers[i].mr_pid = pid;
ti—>mti_readers[i].mr_tid = tid;
if (i == nr)

ti—>mti_numreaders = ++nr;
/% Save numreaders for un—mutexed mdb_env_close () */
env—>me_numreaders = nr;

UNLOCK_MUTEX_R(env) ;

61

o R e S

SOOI WNBWN—

—

O 0NN W —

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

A slot with mr_pid == 0 is free (line 4). Once a free slot is found, this is stored in
thread-local storage so that the slot can be re-used as long as the thread is live (last part of
line 3):8

r = &ti—>mti_readers[i];

new_notls = (env—>me_flags & MDB_NOTLS);

if (!new_notls && (rc=pthread_setspecific(env—>me_txkey, r))) {
r—>mr_pid = 0;
return rc;

}

Once the thread exits, the slot will be freed:

[...]
pthread_key_create(&env—>me_txkey, mdb_env_reader_dest);

[...]

static void

mdb_env_reader_dest(void xptr)

{
MDB_reader *reader = ptr;
reader—>mr_pid = 0;

}

By acquiring a slot once, instead for example at the start of every transaction, lock-
contention between threads performing reads is minimized.

With this structure in place, the oldest read transaction can be located as follows:

static txnid_t
mdb_find_oldest (MDB_txn *txn)
{
int 1i;
txnid_t mr, oldest = txn—>mt_txnid — 1;
if (txn—>mt_env—me_txns) {
MDB_reader *xr = txn—>mt_env—me_txns—>mti_readers;

for (i = txn—>mt_env—>me_txns—>mti_numreaders; —i >= 0;){
if (r[i].mr_pid) {
mr = r[i].mr_txnid;

if (oldest > mr)
oldest = mr;
}

}

return oldest;

No locks or other synchronization is used here, so read-transactions will never block write-
transactions. A consequence of this is that somewhat stale data can be returned, however
this matters little in practice.

8While the code shows pthread-specific calls, these are actually #defineed to OS-specific functions on
non-POSIX systems, such as Windows.

62

3.4 Implementation Highlights

3.4.4 Page Layout

When storing pages in the data-file, the format illustrated in figure 3.3 is used. A header
is included on every page (except for overflow-pages, where only the first page in such a
sequence has a header), and the rest is used according to the type of page—examples of
which include meta-pages, branch pages, and leaf pages.

LMDB Page Format Page Header Branch and Leaf Page Contents
(N\ N\ A

[Page Header] [Page Number : size_t] [Node offsets array : [uint16_t]]

s ~ [Padding / Misc : uint16_t] »

5

(O]

(Flags : uint16_t)
Upper and Lower Free-space Offsets : 2x uint16_t Free space
or
Number of Overflow Pages : uint32_t

SMoI9

Contents - J 1 |>

Node-array: [Node]

Figure 3.3: LMDB’s disk-page format. A page has a header of fixed size, and the rest is filled
with page-type specific contents. The header includes the page-number of the page (location where
it belongs in the data-file), flags indicating the contents of the page, as well as information about
available free-space (or if the page is the first page of a sequence of overflow-pages, the number of
such pages are stored in these bits). For leaf and branch-pages, the contents of the page is a number
of nodes.

For branch and leaf pages, the remaining space after the header is used to store a number
of nodes. Each node is used to hold a single key-value pair, which either stores downwards
tree-pointers (in branch-pages) or user-data (in leaf-pages). Immediately after the header,
an array of uint16_ts is placed denoting offset of each stored node—in order sorted by
the node-key’s value. This array grows downwards in the file as new nodes are added.
After this list comes all free space in the file, before the actual array of nodes starts. This
array consequently grows upwards in the file—towards the free space. To calculate if a
page has the necessary available space for a new node, the sum of a node-offset-pointer
and the node itself is calculated and compared to the available free space. If a node is
removed, the node-offset-pointer is removed and all nodes after it moved to fill the freed
space, and the same is done for the actual node data. All free space is therefore always
located in the middle of the file.

To track where the free space starts and ends (alternatively, where the node-offset-array
ends and later where the node-array begins), the page-header stores offsets into the file
to where these cutoffs are located (upper and lower free-space offsets). By storing node-
offsets first, and in sorted-by-key order, this list can be binary-searched to quickly locate a
node with a given key or insertion point in the offsets-list for a new node.

63

0NN B W=

NelN-CREN e Y R R

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

The nodes themselves has the format illustrated in figure 3.4. First, two unsigned
shorts are stored, which together denotes the size of the key-value pair’s value (for
leaf-pages) or the page-number the node points to (for branch-page). (It is stored as two
unsigned shorts for micro-optimization reasons.) Next is a field used to store ad-
ditional information about the node (used for some of LMDB’s advanced features, for
example keys with multiple values), then the length of the key-value pair’s key. Finally
comes a variable-length array used to store the actual key- and value-data..

Node

(

N
unsigned short)
(Flags : unsigned short)

(Key Size : unsigned short

[Data Size / Page Number : 2x

Data : [char]

Figure 3.4: Format of a single node, used to store key-value data in branch- and leaf-nodes.

To access a given node’s key and value, the following C macros can therefore defined:

/xx Address of the key for the node =/

#define NODEKEY(node) (void #)((node)—>mn_data)

/xx The size of a key in a node x/

#define NODEKSZ(node) ((node)—>mn_ksize)

/xx Address of the data for a node %/

#define NODEDATA(node) (void =*)((char *)(node)—>mn_data + (node)—>mn_ksize)
/xx Get the size of the data in a leaf node x/

#define NODEDSZ(node) ((node)—>mn_lo | ((unsigned)(node)—>mn_hi << 16))

Given all this, a page can be binary-searched for a node with a specified key in this way:

while (low <= high) {
i = (low + high) >> 1;

node = NODEPTR(mp, 1i);
nodekey.mv_size NODEKSZ(node) ;
nodekey.mv_data NODEKEY (node) ;

rc = cmp(key, &nodekey);

if (rc == 0)
break;

if (rc > 0)
low = i + 1;

else
high =1 — 1;

64

—_

OO0 IONBR W=

3.4 Implementation Highlights

...where cmp (...) is the (possibly client-specified) key-comparator function, used
to determine ordering among different keys, and NODEPTR (page, i) uses the node-
offsets-array to calculate the location of node i in the page.

By using this kind of structure, LMDB is able to quickly locate where a key-value pair is
stored in a page, as well as to add a new key-value pair without having to move around
a large amount of data (only the node-offsets-list need to be changed). Deletions are the
most costly operation, as first the hole left by the node is filled by moving nodes above it
in the file, and then the offsets of these nodes are updated.

3.4.5 B+Tree Navigation

When using a B+tree, it is necessary to have some way to navigate through it. The inte-
rior nodes always include downwards pointers, but it is also often necessary to perform
upwards or sideways traversal. Examples of sideways navigation is to locate the left or
right sibling of a leaf-node when performing a range-scan of the stored data, or to locate a
leaf-page’s parent when splitting a page.

Including such pointers in the nodes themselves introduce additional layers of complexity
in order to maintain them. For a copy-on-write B+tree approach, such as LMDB’s, it is
additionally not even a viable solution to store neither sibling-pointers nor parent-pointers.
To see why this is so, consider that the root-page always have to be changed when any leaf
is changed.” This necessitates update of all its child-pages so that they point to this new
root-location. Recursively all pages in the tree need to be updated as well—resulting in
the entire tree being copied. The same reasoning goes for sibling-pointers, as the change
of a leaf required all its siblings to be updated (as well as that sibling’s parent)—further
requiring their siblings (and parents) to be updated. Storing such pointers is therefore
simply not a viable option for a copy-on-write B-+tree.

To handle B+tree traversal, LMDB instead maintains a data-structure to keep track of its
location in the tree at run-time. The MDB_cursor struct includes a stack where page-
pointers are pushed as the cursor descends from the root of the tree.

#define CURSOR_STACK 32

struct MDB_cursor {
[...1]
unsigned short mc_snum;/**< number of pushed pages =/
unsigned short mc_top; /*x< index of top page, normally mc_snum—I1 =/
[...]
MDB_page *mc_pg[CURSOR_STACK]; /x%< stack of pushed pages =/
indx_t mc_ki[CURSOR_STACK]; /%< stack of page indices x/

The page a cursor is located at will therefor be cursor.mc_pg[cursor.mc_top],
and the parent of that page will be cursor.mc_pg[cursor.mc_top-1]. Since it is
also often necessary to know which pointer on a branch-page was followed (to be able to

9Because the leaf’s parent, and recursively this page’s parent, need to be updated to point to the new version.

65

AW -

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

identify siblings), the on-page index of followed pointers are stored in the mc_k i stack. A
page’s right sibling can thus be located by following the mc_ki [m_top]+1th pointer (if
it exists) in the parent page.

3.4.6 Multi-Versioning and Recovery

Instead of explicitly maintaining all previous versions of the database, LMDB instead only
preserves the last two—the current and previous version. These are each represented by a
meta page, located at respectively page number 0 and 1 in the database file. A committing
write-transaction will have started by reading the current version’s meta-page, and will
overwrite the previous version’s meta-page with a new page representing the new state of
the database. This new version then becomes the current version to which new transactions
are directed. A meta-page includes information such as the last allocated page in the data-
file, transaction ID of the transaction writing the meta-file, free-page- and main-database
information (for example their root pages), and size of the memory-mapped region.

By maintaining this information in a fixed location on disk, and synchronously flushing
changes to it before each transaction is deemed to have successfully committed, recovery
becomes extremely simple: read the two meta-pages, and compare their transaction ID
to identify the newest version. Once this is done, normal operations can resume with
no additional recovery steps. The reason this works is because the writing of the meta-
page is the final step of the commit-process; all other changes are guaranteed to have
been successfully written to disk. If anything goes wrong before the meta-page is written,
recovery works because it is the last version that is being overwritten—the current version
will remain unchanged and intact. Once a new meta-page has been successfully written
(overwriting the last version), this version will persist until it is successfully replaced.

Implementing this simply means writing the meta-page last during transaction commit.
This is handled by mdb_txn_commit:

if ((rc mdb_page_flush(txn, 0)) ||
(rc mdb_env_sync(env, 0)) ||
(rc mdb_env_write_meta(txn)))

goto fail;

... which first writes then flushes all changed pages to disk, before then writing and flush-
ing the meta-page. On startup, as part of mdb_env_open(...),
mdb_env_read_header (...) is called which reads the two stored meta-pages and
returns the most recent meta-page (the one with the highest stored transaction ID).

By only explicitly maintaining two versions, this still leaves the issue of how to retain the
needed information about older versions needed by long-running read-transactions. (Start-
ing a read-transaction, and then committing two write-transactions will necessarily over-
write information that was current when the read-transaction started.) LMDB solves this
by having transactions copy database-information from the current meta-page on transac-
tion start (from mdb_txn_renew0 (...)):

66

—_

3.4 Implementation Highlights

// Copy the DB info and flags
memcpy (txn—>mt_dbs, meta—>mm_dbs, 2 * sizeof(MDB_db));

The database-information (MDB_db) includes data such as the location of B+tree root
pages, so that a search can be started from it. With this information always available,
the remaining necessary condition is that the pages this version references are never over-
written by newer pages—as was the subject of section 3.4.3.

67

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

3.5 Discussion

Recovery Method

This recovery mechanism of LMDB is reminiscent of IBM System R’s “shadowed, no-
log” file option, where the content of a file after a crash is whatever a shadow file con-
tains.'” As noted by the System R developers, this works well as long as only a sin-
gle write-transaction is in-progress at a given time, but they were unable to “architect a
transaction mechanism based solely on shadows which supported multiple users and save
points”.(Gray et al., 1981) Instead, they found it necessary to implement logging of UNDO
and REDO records to support this—at which point the shadows themselves become re-
dundant, since one is essentially doing write-ahead-logging. Since LMDB abandons the
support for multiple concurrent write-transactions, however, it is is able to use this shadow-
page technique to provide a very simple, fast, and robust recovery mechanism—though at
the cost of forgoing in-place modification for a copy-on-write approach.

When using this technique, committing a write-transactions requires writing all changed
leafs as well as all pages on the path from the root to these leaves—plus the meta-page. A
single changed leaf therefore require a number of disk IO-operations equal to the height
of the B+tree plus one. These writes, at non-sequential locations on disk, has to be per-
formed and then synchronously flushed to disk before the commiit is finalized. This can be
contrasted to write-ahead-logging systems where only the log has to be flushed before a
transaction can commit.

Page Fragmentation

A consequence of LMDB’s page reclamation technique is that the location of logically
sequential pages in the leaves of the B+tree is rarely logically sequential on disk. This
means a disk seek if often necessary to locate B+tree sibling pages in a range query. This
issue was also noted in System R’s use of shadow pages: “When a page is updated for the
first time, it moves. Unless one is careful, and the RSS"" is not careful about this, getting
the next page frequently involves a disk seek”.(Gray et al., 1981) It is possible to mitigate
this by making the effort to locate adjacent free pages, however LMDB takes the stance
that this fragmentation is an acceptable tradeoff compared to the effort of doing this.(Chu,
2013a)

Copy-on-Write B+Tree

A variant of LMDB’s copy-on-write B+tree (using free-page reclamation) is to do copy-
on-write but never actually re-use old pages—instead only appending new ones to the back

10A shadow file is a copy of the file taken before modifications were done to it—in other words, the old,
pre-modifications, version.
1System R’s Research Storage System.

68

3.5 Discussion

of the database file.!”> One database which implements this append-only variant is Apache
CouchDB.(J. Chris Anderson, 2013)

This approach will give very different performance characteristics because it is allowed to
always write sequential pages on disk. (Compare this to LMDB, where each page-write
potentially involves a disk-seek.) However, because the file is only ever growing (new
pages are always appended), there is likely going to be a need to reclaim old pages at some
point—or face running out of disk space.'?

CouchDB facilitates this by running a compaction process, which goes through the database
file and identifies and deletes unneeded pages.(CouchDB, 2014) This can either be re-
quested manually, or be automatically triggered based on various criteria. A consequence
of this, however, is that once the compaction process is running database performance is
likely to be impacted from the additional load. This, along with the additional complexi-
ties of implementing such a process, is one of the cited reasons for why LMDB wanted to
avoid it—instead opting for its free-page management approach and accepting the random
writes as a consequence.(Chu, 2013b)

Single Level Storage

As covered in section 3.4.2, LMDB uses memory-mapping functionality to avoid having
to deal with application-level caching and configuration challenges related to this. They
attribute this idea to the concept of a single-level store.(Gray, 1993) While the single-
level storage-concept usually refers to having all available storage on a computer is in a
single address space, LMDB use it to refer to how the entire database is accessed through
this single memory-mapped area.(Chu, 2012) While this is an old concept, it has recently
become more viable because of the availability of computers with larger memory address
space. As has always been the case, it can work well but depends heavily on how well
the underlying systems handles maintaining the abstraction. In LMDB’s case, it also does
not allow for additional optimizations where LMDB can take advantage of the additional
information it has when it comes to expected access patterns.

12The recovery mechanism for an append-only B+tree will be a little different from what LMDB does: instead
of locating meta-pages at fixed locations in the file, a scan backwards from the end of the file is done until the
first meta-page/root-page is located.

131 MDB cite how their initial attempt at a append-only design had a test-run grow the DB-file to 1027 pages,
where only 10 pages containing current data—i.e. 99% of the total space “wasted”.(Chu, 2012)

69

Chapter 3. Case Study: Symas Lightning Memory-Mapped Database (LMDB)

70

Chapter

Evaluation

4.1

Introduction

The sections in this chapter will compare LevelDB and LMDB, first in terms of features,
and then performance, to give a sense of in which scenarios one might be appropriate over
the other.

4.2

Feature Comparison

Both systems have a very similar featureset:

Both support get, put and delete operations.
Both support sorted iteration of entries.

Both support arbitrary byte-arrays as both key and value, although LMDB has a
maximum key-length (512).

Both support custom key-comparators, so that the user is able to define a custom
order among keys.

Both allow for multithreaded concurrency: a single concurrent writer for both (au-
tomatically enforced), and N (128 by default) readers for LMDB, while LevelDB
has no limit on readers.

The main difference in terms of features is LMDB’s support for transactions. LevelDB
does not have this, but does offer a more limited alternative in the form of atomic batches.

71

Chapter 4. Evaluation

This does not help—for example—in the event a user want to safely (in terms of main-
taining database consistency) read a value, and then make a change based on this value,
however, so if this is required LMDB is the obvious choice.

LMDB also offers additional features, such as multi-valued keys, and sub-databases. The
latter means changes to multiple named sub-databases can be made during a single trans-
action. Users should therefore consider is such features are useful to them, and consider
LMDB if so.

LevelDB makes it possible to create and delete transient snapshots, so that these can be
stored and shared at runtime. In LMDB, a read-transaction works on a snapshot of the
database, but once it closes the snapshot is gone. It is conceivable for a user to want to
manually create a snapshot so that this can be referred back to over time, and is only pro-
vided by LevelDB. Snapshot-lifetimes being limited to the application run-time (meaning
they are gone after a crash or application restart) lowers the general usefulness of this
feature, however.

LevelDB can also automatically compress the database contents, something not done by
LMDB. LevelDB was additionally found to have more efficient disk-space usage, even
without compression enabled. So if disk-space usage is at a premium LevelDB is likely
the preferred choice.(Symas, 2012)

4.3 Performance

This section will present the results of microbenchmarks to illustrate the relative perfor-
mance of LevelDB and LMDB. First, two consequences of their different architecture
with regards to write-latency is presented. Next, more comprehensive microbenchmarks
are presented to show how the two systems compare more in general.

Cost of a Single Write

It is instructive to compare the overhead involved in a single synchronous put-operation.
For LevelDB, a single write—while there is space in the memtable—involves adding it
to the memtable, as well as appending it to the on-disk log file. For LMDB, a sin-
gle transaction-wrapped put-operation will place the entry in the correct leaf, then syn-
chronously write this leaf and all pages on the root—leaf-path, as well as the meta-page to
disk.

Figure 4.1 shows the relative costs of these operations. It displays the time taken by each
put-operation after starting from an empty database. The key-value pairs consists of a 4-
byte key and 1-byte value so that the majority of time spent will be overhead of adding the
entry, not writing the entry itself.

For comparison, LevelDB’s asynchronous mode is also shown. It does not do, or wait
on, any IO as long as there is space in the memtable, so each put-operation is extremely

72

4.3 Performance

1,000 ‘ : : :
—e— LevelDB synch.
2 800 - —m— LevelDB async.
=)
§ 600 | - LMDB
é 400 |
= 200 - N

0 10 20 30 40 50 60 70 8 90 100
Put#

Figure 4.1: The duration of Put-operations with a 4-byte key and 1 byte value. No compactions
were running or started for the duration.

cheap—only taking 2 microseconds on average. When turning on synchronous writes,
however, LevelDB is forced to append the written entry to the log-file. This increases the
duration to around 280 microseconds on average. LMDB takes around twice as long as
LevelDB for each put-operation, averaging around 590. This makes sense, as it has to
write at least 2 pages—the changed leaf as well as the meta-page.'

Writes Over Time

LevelDB’s architecture allows it to handle most of the incoming writes by appending it to
the memtable and log. However, once the memtable fills up and is replaced (and scheduled
for compaction), a single write can expect to see a significant spike in latency.

This is illustrated in figure 4.2, where both systems have key-value pairs consisting of
a 4 bytes key and 256 KB value added to them over time. While LMDB consistently
takes around 3300 microseconds to handle each transaction, LevelDB is significantly faster
(around 500 microseconds) most of the time, but sees a spike after each 4 MB of written
data, as the memtable is replaced—at which point a single write takes around 77 millisec-
onds to complete. This is an example of the varying write-latency of LevelDB as com-
pactions are triggered, and projects extending LevelDB often introduce changes aimed at
remove or reducing these kinds of spikes (refer to section 2.5).

Microbenchmarks

Symas has produced a set of microbenchmarks comparing LMDB and LevelDB, as well
as some other systems not covered here.(Symas, 2012) The benchmark code is based on

"However, it is worth noting how these durations are extremely short—much shorter than the expected time
for data to actually hit the hard drive platter. The likely culprits are caches located between the drive and file
system, so the durations themselves should not be given much weight. As an illustration of the relative difference
between the two systems’ approach, the comparison can still be said to have some value however.

73

Chapter 4. Evaluation

5 T ‘ ‘
10 —e— LevelDB

-—a— LMDB

104

Microseconds

103

|
0 10 20 30 40 50 60 70 8 90 100
Put#

Figure 4.2: The duration of each Put-operation, starting from an empty database, with 4-byte
keys and 256 KB values. At regular interval, after about 4 MB of data written, LevelDB incurs a
stall (taking around 77 milliseconds—note how this is a log-lin plot) as memtable compaction is
initiated. Each non-stalled write takes about 500 microseconds. LMDB consistently stays at around
3300 microsecond.

Google’s own code released with LevelDB in 2011, but updated to fixed problems with
regards to random-number generation.

The set of benchmarks is very comprehensive, and test the systems on multiple file systems
as well as with different workloads. Examples include an in-memory file system, a 7200
rpm hard drive, an SSD, and some of the configurations are sequential and random reads
and writes, batched writes, with large or small key-value pairs, using additional memory
for caching, and in synchronous or asynchronous write-modes.

Below, some of the results for reading and writing to a 7200 rpm notebook hard drive,
running the EXT?2 file system, are presented. This is chosen because it can be considered
reasonably representative for the kinds of systems the average user is likely to run LevelDB
or LMDB on. They are also fairly illustrative of the workloads each system generally
performs well on. Except for the synchronous sequential writes benchmark, where the
magnitude was different but relative performance-difference the same, results are more-
or-less identical to what was seen on an SSD.

Reads

Figure 4.3 (sequential) and figure 4.4 (random) shows the results of reading key-value
pairs consisting of 16 byte keys and 100 byte values. LMDB has a significant advantage
in this area, and this can be traced back to how it is able to return data to the caller without
first having to create a separate copy. Increasing the value-size (not shown) only magnifies
LMDB’s advantage, showing how copying quickly ends up dominating the runtime in such
cases.

Random reads are generally much more expensive, and LMDB maintains it advantage here
as well. LevelDB takes the highest impact compared to sequential reads; this makes sense

74

4.3 Performance

LevelDB HDD 4.385

LMDB HDD 14.084

1

0 15
Units are in 1 000 000 operations/second

Figure 4.3: Sequential reading of 16B/100B key-value pairs.

LevelDB HDD || 0.135925
LMDB HDD | |0.746826

I 1

0 15
Units are in 1 000 000 opserations/second.

Figure 4.4: Random reading of 16B/100B key-value pairs

as random reads are likely to have to be served from the higher-numbered levels (where
the majority of the data is located), which are never checked before both the memtables
and all lower-numbered levels have been examined first. LMDB’s B+tree does not suffer
from similar issues.

Writes

Figure 4.5 shows the results for synchronous sequential writes of 16+100 byte key-value
pairs. The results for random writes (not shown) are similar for LevelDB, but sees LMDB
drop by around 18

Here LevelDB’s LSM-style design comes into its own, as it is able to service each write
using only a single synchronous IO-operation—writing the log—and defers (and batches)
additional disk-writes for later. LMDB’s design, requiring at least least two pages (at
different locations) to be written, means the cost of synchronous writes has a large impact
on overall performance.

By increasing the value-sizes (figure 4.6), however, the gap closes. A probable reason
for this is that, with larger values, the memtable fills up more quickly, and the LSM-
style design becomes a burden as each key-value pair has to be written twice in relatively
quick succession (first to the log, then during memtable compaction)—wiping out the
advantages otherwise provided by the defer-and-batch design when faced with smaller
values. LMDB only write each key-value pair once, so it only incurs the additional cost of
having to transfer somewhat larger values, but otherwise does largely the same amount of
processing.

75

Chapter 4. Evaluation

LevelDB HDD 1260

LMDB HDD 364

0 1500
Units are in operations/second

Figure 4.5: Synchronous sequential writes of 16 + 100 byte key-value pairs.

LevelDBHDD | | 119
LMDBHDD | | 119

0 1500
Units are in operations/second

Figure 4.6: Synchronous sequential writes of 16 + 100 000 byte key-value pairs.

Figure 4.7 shows what happens if synchronous writes are disabled, meaning the potential
of data-loss is introduced should the system crash. (Note that the values in the figure
are in 1000 ops./sec., not ops./sec.) Compared to figure 4.5, LevelDB’s advantage has
essentially disappeared. This is to be expected however, as the goal of the LSM-style
design is to work around the relatively high cost of synchronous 10-writes. Taking this
cost out of the equation entirely means alternative designs, such as LMDB’s is likely to
be preferable. Indeed, doing random writes in this situation (figure 4.8) sees LMDB pull
ahead.

LevelDB HDD | 497
LMDB HDD | 488
0 500

1000 ops/sec

Figure 4.7: Asynchronous sequential writes of 16 + 100 byte key-value pairs.

76

4.3 Performance

LevelDB HDD
LMDB HDD

172

233

250

Units are in 1000 operations/second

Figure 4.8: Asynchronous random writes of 16 + 100 byte key-value pairs.

77

4.4 Conclusions

In conclusion, Level DB and LMDB both solves the general problem of key-value storage,
but does so in very different ways.

LMDB, through its use of a memory-map and copy-on-write B+tree, emphasises read-
performance—as was the initial goal—and is far superior to LevelDB in this regard. Lev-
elDB, on the other hand, is shown—through its use of memtables, sstables, and compactions—
to lay a groundwork allowing for a large degree of sequential, rather than random, disk IO
operations. This is seen to pay off when writing data as long as entries are not too large—at
which point the cost of facilitating this appears to outweigh the benefits.

On the LMDB website, the following is noted about its performance:

It is a read-optimized design and performs reads several times faster than
other DB engines, several orders of magnitude faster in many cases. It is
not a write-optimized design; for heavy random write workloads other DB
designs may be more suitable.(Symas, 2014)

Google does not make any similar statements about LevelDB, but the LSM-inspired design
informs its priorities. The abstract of the LSM-paper notes the following:

The Log-Structured Merge-tree (LSM-tree) is a disk-based data structure de-
signed to provide low-cost indexing for a file experiencing a high rate of
record inserts (and deletes) over an extended period. [...] the LSM-tree is
most useful in applications where index inserts are more common than finds
that retrieve the entries. This seems to be a common property for History
tables and log files, for example.(O’Neil et al., 1996)

As such, a user looking to chose between LevelDB and LMDB should carefully consider
both which features are needed, and the kind of workload is likely to be presented to the
storage system. As with most areas in computer science, there is unlikely to exist any kind
of silver bullet appropriate for all use cases, so the different tradeoffs presented by each
system have to be considered depending on the exact situation at hand.

Future Work

While LMDB uses a B+tree in its implementation, and LevelDB employs very similar
structure to LSM-trees, this thesis does not look at any hashing based systems. Examining
such a system, and comparing both its implementation and performance characteristics to
these alternative approaches, would therefore be an interesting exercise. An example of
such an embedded key-value store is Kyoto Cabinet.?

Zhttp://fallabs.com/kyotocabinet/

78

Bibliography

Anderson, A., 1989. Optimal bounds on the dictionary problem. In: Proceedings of the
International Symposium on Optimal Algorithms. Springer-Verlag New York, Inc., New
York, NY, USA, pp. 106-114.

URL http://dl.acm.org/citation.cfm?id=91896.91913

Apache, 2014. Apache activemq — leveldb store.
URL http://activemqg.apache.org/leveldb-store.html

Basho, 2014a. Basho technologies: Leveldb.
URL http://docs.basho.com/riak/latest/ops/advanced/
backends/leveldb/

Basho, 2014b. Riak docs — backends: Leveldb.
URL http://docs.basho.com/riak/latest/ops/advanced/
backends/leveldb/

Bitcoin, 2013. Bitcoin 0.8 release notes.
URL https://github.com/bitcoin/bitcoin/blob/v0.8.0/doc/
release—notes.txt

Burd, G., January 2011. Is berkeley db a nosql solution?
URL https://blogs.oracle.com/berkeleydb/entry/is_berkeley_
db_a_nosqgl_solutio

Cattell, R., 2011. Scalable sql and nosql data stores.
URL http://cattell.net/datastores/Datastores.pdf

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra,
T., Fikes, A., Gruber, R. E., 2006. Bigtable: A distributed storage system for structured
data. In: IN PROCEEDINGS OF THE 7TH CONFERENCE ON USENIX SYMPO-
SIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION - VOLUME
7. pp. 205-218.

79

http://dl.acm.org/citation.cfm?id=91896.91913
http://activemq.apache.org/leveldb-store.html
http://docs.basho.com/riak/latest/ops/advanced/backends/leveldb/
http://docs.basho.com/riak/latest/ops/advanced/backends/leveldb/
http://docs.basho.com/riak/latest/ops/advanced/backends/leveldb/
http://docs.basho.com/riak/latest/ops/advanced/backends/leveldb/
https://github.com/bitcoin/bitcoin/blob/v0.8.0/doc/release-notes.txt
https://github.com/bitcoin/bitcoin/blob/v0.8.0/doc/release-notes.txt
https://blogs.oracle.com/berkeleydb/entry/is_berkeley_db_a_nosql_solutio
https://blogs.oracle.com/berkeleydb/entry/is_berkeley_db_a_nosql_solutio
http://cattell.net/datastores/Datastores.pdf

Chu, H., 2012. Life after berkeleydb: Openldap’s memory-mapped database.
URL http://symas.com/mdb/20120829-LinuxCon-MDB-txt .pdf

Chu, H., August 2013a. Is Imdb a leveldb killer?
URL https://symas.com/is—1mdb-a-leveldb-killer/

Chu, H., April 2013b. The lightning memory-mapped database (Imdb).
URL http://symas.com/mdb/20130406-L0OADays—LMDB.pdf

Comer, D., 1979. The ubiquitous b-tree. ACM Computing Surveys 11, 121-137.

CouchDB, 2014. Couchdb wiki: Compaction.
URL https://wiki.apache.org/couchdb/Compaction

Ellis, J., 2011. Leveled compaction in apache cassandra.
URL http://www.datastax.com/dev/blog/
leveled-compaction—-in—-apache-cassandra

Fraser, K., 2004. Practical lock-freedom. Ph.D. thesis, University of Cambridge.
URL http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf

Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F., Traiger,
L., Jun. 1981. The recovery manager of the system r database manager. ACM Comput.
Surv. 13 (2), 223-242.

URL http://doi.acm.org/10.1145/356842.356847

Gray, R., 1993. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers.

Hobbs, T., 2012. When to use leveled compaction.
URL http://www.datastax.com/dev/blog/
when-to-use-leveled-compaction

HyperDex, 2013. Hyperleveldb performance benchmarks.
URL http://hyperdex.org/performance/leveldb/

HyperDex, 2014. Hyperdex homepage.
URL http://hyperdex.org

J. Chris Anderson, Jan Lehnardt, N. S., 2013. Couchdb: The definitive guide.
URL http://guide.couchdb.org/editions/1/en/btree.html

Jeff Dean, Sanjay Ghemawat, S. T., 07 2011. Leveldb: A fast persistent key-value store.
URL http://google-opensource.blogspot.no/2011/07/
leveldb-fast-persistent-key-value-store.html

Jin, L., 2014. Rocksdb architecture guide.
URL https://github.com/facebook/rocksdb/wiki/
Rocksdb—-Architecture—-Guide

80

http://symas.com/mdb/20120829-LinuxCon-MDB-txt.pdf
https://symas.com/is-lmdb-a-leveldb-killer/
http://symas.com/mdb/20130406-LOADays-LMDB.pdf
https://wiki.apache.org/couchdb/Compaction
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf
http://doi.acm.org/10.1145/356842.356847
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://www.datastax.com/dev/blog/when-to-use-leveled-compaction
http://hyperdex.org/performance/leveldb/
http://hyperdex.org
http://guide.couchdb.org/editions/1/en/btree.html
http://google-opensource.blogspot.no/2011/07/leveldb-fast-persistent-key-value-store.html
http://google-opensource.blogspot.no/2011/07/leveldb-fast-persistent-key-value-store.html
https://github.com/facebook/rocksdb/wiki/Rocksdb-Architecture-Guide
https://github.com/facebook/rocksdb/wiki/Rocksdb-Architecture-Guide

Knuth, D. E., 1973. The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley.

LevelDB, 2012. Leveldb documentation.
URL http://leveldb.googlecode.com/svn/trunk/doc/index.html

LevelDB, 2014. Leveldb - google project hosting.
URL https://code.google.com/p/leveldb/

Maurice Herlihy, Yossi Lev, V. L. N. S., 2012. A provably correct scalable concurrent skip
list.

Michael A. Olson, Keith Bostic, M. S., 1999. Berkeley db. Proceedings of the FREENIX
Track: 1999 USENIX Annual Technical Conference.
URL https://www.usenix.org/legacy/events/usenix99/full_
papers/olson/olson.pdf

O’Neil, P, Cheng, E., Gawlick, D., O’Neil, E., Jun. 1996. The log-structured merge-tree
(Ism-tree). Acta Inf. 33 (4), 351-385.
URL http://dx.doi.org/10.1007/s002360050048

Poznyakoft, S., 2011. Gnu dbm.
URL http://www.gnu.org.ua/software/gdbm/

Pugh, W., Jun. 1990. Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM 33 (6), 668—676.
URL http://doi.acm.org/10.1145/78973.78977

Symas, September 2012. Database microbenchmarks.
URL http://symas.com/mdb/microbench/

Symas, 2014. Symas lightning memory-mapped database (Imdb).
URL http://symas.com/mdb/

Walsh, L., September 2011. Write optimization: Myths, comparison, clarifications.
URL http://www.tokutek.com/2011/09/write-optimization-myths—-comparison

81

http://leveldb.googlecode.com/svn/trunk/doc/index.html
https://code.google.com/p/leveldb/
https://www.usenix.org/legacy/events/usenix99/full_papers/olson/olson.pdf
https://www.usenix.org/legacy/events/usenix99/full_papers/olson/olson.pdf
http://dx.doi.org/10.1007/s002360050048
http://www.gnu.org.ua/software/gdbm/
http://doi.acm.org/10.1145/78973.78977
http://symas.com/mdb/microbench/
http://symas.com/mdb/
http://www.tokutek.com/2011/09/write-optimization-myths-comparison-clarifications

82

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	Problem Definition and Background
	Introduction
	Embedded Key-Value Stores
	Data Storage Performance Tradeoffs
	Motivation and Thesis Contents

	Case Study: Google LevelDB
	Introduction
	Usage Example
	Architecture Overview
	Introduction
	Memtable and Sstables
	Levels and Compactions
	Write Path
	Read Path
	Snapshots and Iterators
	Recovery and Durability
	Table and Block Caching

	Implementation Highlights
	Introduction
	Internal Key Representation
	Memtable
	The Version and VersionSet Classes
	Sstable
	Concurrency
	Reads
	Writes
	Serialization and Batching of Writes
	Atomic Updates
	Compactions
	Caching
	Snapshots and Iterators
	Recovery

	Extensions and Related Projects
	Discussion

	Case Study: Symas Lightning Memory-Mapped Database (LMDB)
	Introduction
	Usage Example
	Architecture Overview
	Introduction
	Copy-on-Write B+Tree
	Page Management
	Write Path
	Read Path
	Recovery and Durability

	Implementation Highlights
	Introduction
	Memory Mapped Data File
	Free Page Reclamation
	Page Layout
	B+Tree Navigation
	Multi-Versioning and Recovery

	Discussion

	Evaluation
	Introduction
	Feature Comparison
	Performance
	Conclusions

	Bibliography

