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Abstract

A salient image region is defined as an image part that is clearly different from
its surround in terms of a number of attributes. In bottom-up processing, these
attributes are defined as: contrast, color difference, brightness, and orientation.
By measuring these attributes, visual saliency algorithms aim to predict the
regions in an image that would attract our attention under free viewing condi-
tions, i.e., when the observer is viewing an image without a specific task such
as searching for an object. To quantify the interesting locations in a scene,
the output of the visual saliency algorithms is usually expressed as a two di-
mensional gray scale map where the brighter regions correspond to the highly
salient regions in the original image. In addition to advancing our understand-
ing of human visual system, visual saliency models can be used for a number of
computer vision applications. These applications include: image compression,
computer graphics, image matching & recognition, design, and human-computer
interaction.

In this thesis the main contributions can be outlined as: first, we present
a method to inspect the performance of Itti’s classic saliency algorithm in sep-
arating the salient and non-salient image locations. Based on our results we
observed that, although the saliency model can provide a good discrimination
for the highly salient and non-salient regions, there is a large overlap between
the locations that lie in the middle range of saliency. Second, we propose a
new bottom-up visual saliency model for static two-dimensional images. In our
model, we calculate saliency by using the transformations associated with the
dihedral group D4. Our results suggest that the proposed saliency model out-
performs many state-of-the-art saliency models. By using the proposed method-
ology, our algorithm can be extended to calculate saliency in three-dimensional
scenes, which we intend to implement in the future. Third, we propose a way
to perform statistical analysis of the fixations data from different observers and
different images. Based on the analysis, we present a robust metric for judging
the performance of the visual saliency algorithms. Our results show that the
proposed metric can indeed be used to alleviate the problems pertaining to the
evaluation of saliency models. Four, we introduce a new approach to compress
an image based on the salient locations predicted by the saliency models. Our
results show that the compressed images do not exhibit visual artifacts and ap-
pear to be very similar to the originals. Five, we outline a method to estimate
depth from eye fixations in three-dimensional virtual scenes that can be used

i



for creating so-called gaze maps for three-dimensional scenes. In the future, this
can be used as ground truth for judging the performance of saliency algorithms
for three-dimensional images.

We believe that our contributions can lead to a better understanding of
saliency, address the major issues associated with the evaluation of saliency
models, highlight on the contribution of top-down and bottom-up processing
based on the analysis of a comprehensive eye tracking dataset, promote use
of human vision steered image processing applications, and pave the way for
calculating saliency in three-dimensional scenes.
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Chapter 1
Introduction

1.1 Motivation

Our visual system is selective, i.e., we concentrate on certain aspects of a
scene while neglecting other things. This is evident from studies on change
blindness (Rensink, O’Regan, & Clark, 1997; Simons & Levin, 1998; O’Regan,
Rensink, & Clark, 1999), that show that large changes can be made in a visual
scene which can remain unnoticed. The reason our visual system is selective is
because our brains do not process all the visual information in a scene. In fact,
while the optic nerve receives information at the rate of approximately 3× 106

bits/sec, the brain processes less than 104 bits/sec of this information (Ander-
son, Essen, & Olshausen, 2005). In other words, the brain uses a tiny fraction
(less than 1 percent) of the collected information to build a representation of
the scene, a representation that is good enough to perform a number of complex
activities in the environment such as walking, aiming at objects, and detecting
objects. Based on this, we ask what mechanisms are responsible for building
this representation of the scene?

In the literature, two main attention mechanisms are discussed: bottom-
up and top-down (Braun & Sagi, 1990; Desimone & Duncan, 1995; Steinman
& Steinman, 1998; Mozer & Sitton, 1998; Suder & Worgotter, 2000; Itti &
Koch, 2001; Navalpakkam & Itti, 2006). Bottom-up factors, also mentioned as
visual saliency, are fast, involuntary, and driven by the properties of a visual
scene that pop-out. These properties include: color, intensity, orientation, and
motion (Koch & Ullman, 1985; Itti, Koch, & Niebur, 1998). For example, a
yellow ball on a green background or a flashing light bulb would instantly capture
our attention. Top-down factors on the other hand, are voluntary, slower than
bottom-up, and driven by task. They involve cognitive aspects such as memory,
thought, and reasoning. As an example of top-down, we might consider the
problem of locating an item such as the room keys on a table. Here we would
be trying to browse the scene in search of an object that best fits the mental
description of a key and disregarding other properties of the scene.

In the past two decades, modeling visual saliency has generated a lot of
interest in the research community. In addition to contributing towards the un-
derstanding of human vision, it has also paved the way for a number of computer
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vision applications. These applications include: target detection (Itti & Koch,
2000), image and video compression (Itti, 2004; Yu & Lisin, 2009), image seg-
mentation (Achanta, Estrada, Wils, & Süsstrunk, 2008), robot localization (Sia-
gian & Itti, 2007; Frintrop, Jensfelt, & Christensen, 2006), image retrieval (Kadir
& Brady, 2001), image and video quality assessment (Feng, Liu, Yang, & Wang,
2008; Ma & Zhang, 2008), dynamic lighting (El-Nasr, Vasilakos, Rao, & Zupko,
2009), advertisement (Rosenholtz, Dorai, & Freeman, 2011), artistic image ren-
dering (Judd, Ehinger, Durand, & Torralba, 2009) and human-robot interac-
tion (Breazeal & Scassellati, 1999; Ajallooeian, Borji, Araabi, Ahmadabadi, &
Moradi, 2009). Furthermore, saliency algorithms can used to identify the image
locations that are robust to affine transformations (Lowe, 2004). This is useful
for applications such as: image matching and recognition (Lowe, 2004).

A number of visual saliency models are based on the feature integration
theory (FIT) proposed by (Treisman & Gelade, 1980). The FIT based models
such as (Koch & Ullman, 1985; Itti, Koch, & Niebur, 1998; Itti & Koch, 2000,
2001; Frintrop, 2006a; Walther & Koch, 2006; Harel, Koch, & Perona, 2006),
suggest that regions in a scene that are different from their surround with respect
to properties such as color, brightness, and orientation, are salient, and these are
calculated in parallel. For an image scene this is accomplished by calculating
these differences and storing the results in so-called feature maps which are
then combined in a saliency map. Thus, the resultant saliency map is a two-
dimensional gray-scale map where the brighter regions represent higher saliency.

Although there are a number of visual saliency models in the literature, none
of them can fully account for the viewing pattern of observers. In fact, it is well
known that the observers agree best with the viewing patterns of other observers.
This raises several questions, such as, are visual saliency models good classifiers
of so-called salient and non salient regions? Given that the visual saliency
models calculate image features such as orienting gradients, color difference and
brightness, can we then find a mathematical unified metric that groups these
expressions in a mathematical description? Given that such a metric exists, how
does it perform as compared to other visual saliency models? Is this metric fast
as compared to other visual saliency models? Can this metric be extended to
calculate visual saliency of a three-dimensional scene? What are the challenges
associated with calculating visual saliency of a three-dimensional scene? This
thesis is an attempt to answer such issues.

1.2 Outline of the thesis

The dissertation is organized as follows:

Chapter 1 This chapter describes the motivation behind the thesis.

Chapter 2 This chapter gives an overview of attention and the relevant mech-
anisms associated with attention. In addition, we examine the state-of-
the-art saliency models and the metrics used for judging the performance
of the saliency algorithms.

Chapter 3 This chapter elaborates on the research issues, the answers found
from our analysis, and the future research directions associated with the
research papers. Based on this, the main research questions and contri-
butions are outlined.
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Chapter 4 This chapter introduces the research methodology employed for the
research effort.

Chapter 5 This chapter gives an overview of the results from the research
papers and highlights the main direction for future work.

Appendix A This chapter contains the complete research papers.
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Chapter 2
Background

2.1 Attention

2.1.1 Psychological and philosophical perspective

In psychology and prior disciplines, attention has been described in different
ways. For instance, Hobbes (1655) suggested (Itti, Rees, & Tsotsos, 2005):
“While the sense organs are occupied with one object, they cannot simultaneously
be moved by another so that an image of both arises. There cannot therefore
be two images of two objects but one put together from the action of both.” In
contrast to this view, Hamilton (1788-1856) argued that people can attend to
more than one object at a time (Johnson & Proctor, 2004). Hamilton’s view was
supported by the findings of Jevons (1871), who estimated the number of objects
to be four. James (1890) suggested a plain language definition of attention as:
“Everybody knows what attention is. It is taking possession by the mind, in
clear and vivid form, of one out of what seem several simultaneously possible
objects or trains of thought.” In contrast, Groos (1896), believed that: “To the
question, what is attention, there is not only no generally recognized answer, but
the different attempts at a solution even diverge in the most disturbing manner.”
For a complete overview of various definitions, one can refer to (Itti, Rees, &
Tsotsos, 2005). Thus from this perspective, it is safe to say that attention is
not a unitary concept, but, a collection of different mechanisms which enable us
to understand and interact with the environment (Styles, 2005). Although, we
have a vague notion of what we mean when we attend to something, what we
attend to in one situation can vastly differ in another situation (Styles, 2005).

2.1.2 Computational perspective

It is well established that the brain does not process all the visual information
in the environment. In this way, it is comparable to an information processing
unit with limited capacity, i.e., less than 104 bits/sec. While viewing an image,
each part of the scene can be matched to many different objects or scenes in
the memory, and the number of these part-to-object combinations can exceed
the processing capacity of the brain (Tsotsos, 2011). This can be illustrated by
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the picture of “Dalmatian sniffing at leaves” (credited to Richard Gregory). As
shown in figure 2.1, the picture is reasonably complex such that each part of the
image is either strongly or weakly related to a number of other possible objects,
thus, leading to a large number of possible interpretations for the brain to choose
from. This raises the question, how does the brain manages to successfully in-
terpret such a vast amount of visual information? According to (Tsotsos, 2011),
this can be explained by employing a computational approach to visual atten-
tion. In this approach, it is assumed that while looking the brain is not solving a
generic viewing problem, but, instead the problem is reshaped through approx-
imations such that it can be solved by using the available processing power for
vision. Although, the term computational can be used to describe any computer
simulated mathematical model that uses equations to solve the problem, Marr
(2010) proposed that a computational model should be described at three levels
of analysis defined as: computational, algorithmic, and implementation. At the
computational level, the system should explain what problem is solved by it
and why does it solve that problem. At the algorithmic level, the system should
describe how the problem is solved, and what mathematical or machine learn-
ing methods are employed to solve the problem. Finally, at the implementation
level, the system should define the physical mechanism used to perform these
calculations and its structure.

Figure 2.1: The picture of Dalmatian sniffing at leaves (credited to Richard
Gregory).

2.2 Attention mechanisms

2.2.1 Selective attention

Selective attention is defined as the ability to focus on a specific aspect of a
scene while ignoring other factors. It is often compared to the spotlight model
of attention (Posner, Snyder, & Davidson, 1980; Eriksen & St. James, 1986),
which suggests that the information from a scene is extracted in the form of
a spotlight of arbitrary radius, which can shift from one location to another
either involuntarily or voluntarily. In addition to this, it is assumed that the
information is acquired by the spotlight shifts in a serial manner. Selective
attention enables us engage with our surroundings in an intelligent manner to
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perform activities that use visual information. The activities range from reading,
walking, aiming to safely driving a car on the road.

2.2.2 Overt and covert attention

In overt attention mechanism, the information from a scene is selected by ex-
plicit movement of the sensory organs (Geisler & Cormack, 2011; Johnson &
Proctor, 2004). For instance, our visual system can dynamically focus on a
region of interest by moving the eyes. Here, it is natural to assume that at-
tention is linked to the center of the focus. However, this assumption is not
always valid, as covert attention does not involve explicit movement of the sen-
sory organs (Geisler & Cormack, 2011). Covert attention is often compared to
observing something out of the corner of the eye without focusing at it. This
mechanism was introduced in the study by (von Helmholtz, 1860 / 1962), which
suggested that it is possible to attend to different regions of an image on the
retina without eye movements. For example, while holding our focus steady on
a word in the text such as “this”, we can read the words on different spatial
locations like on the lines above and below. The mechanisms associated with
the overt and covert attentions normally work together (Frintrop, 2006b). In
fact in most cases, prior to eye movement on a target location, the covert at-
tention shifts to this location (Tsotsos, 2011). Studies have shown that covert
attention enhances the visual information at a particular location in the scene,
which leads to faster discrimination of objects (Carrasco, 2011). While covert
attention can be measured by using reaction times in target detection or neuro-
biological methods such as changes in firing rates of single cells, overt attention
is usually measured by employing eye trackers (Frintrop, 2006b).

2.2.3 Bottom-up and top-down attention

Visual attention can be classified as: top-down, and bottom-up. Top-down, is
voluntary, goal-driven, and slow, i.e., typically in the range between 100 mil-
liseconds to several seconds (Suder & Worgotter, 2000). It is assumed that
the top-down attention is closely linked with cognitive aspects such as memory,
thought, and reasoning. For example, by employing top-down mechanisms, we
can attend to a person sitting next to us in a busy restaurant and neglect other
people and visual information in the background. In contrast, bottom-up atten-
tion also known as visual saliency is associated with attributes of a scene that
draw our attention to a particular location. These attributes include: motion,
contrast, orientation, brightness, and color (Koch & Ullman, 1985). Bottom-
up mechanisms are involuntary, and faster as compared to top-down (Suder &
Worgotter, 2000). For instance, flickering lights, a yellow target among green
objects, and a horizontal target among vertical objects are some stimuli that
would automatically capture our attention in the environment. Studies (Chun &
Wolfe, 2001; Wolfe, Butcher, Lee, & Hyle, 2003) show that in search tasks, such
as looking for a target object among distractors both bottom-up and top-down
mechanisms work together to guide our attention. While bottom-up attention
is based on elementary attributes of a scene, top-down is quite complex and
strongly influenced by task demands (Jasso & Triesch, 2008). For example,
studies by (Land, Mennie, & Rusted, 1999; Pelz, Hayhoe, & Loeber, 2001)
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suggest that for tasks such as picking up and placing objects by hand in the
environment, attention is mainly driven by top-down mechanisms.

The differences between the top-down and bottom-up mechanisms are sum-
marized in table 2.1.

Table 2.1: top-down versus bottom-up (adapted from (Suder & Worgotter,
2000))

top-down bottom-up
driven by task or cognition visual stimuli
controlled by conscious, volun-

tary
unconscious, invol-
untary

time scale sustained ( 100 ms
to several seconds)

transient ( 0 to 300
ms)

responsible for searching and high-
lighting

pop-out effects
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2.3 Attention and eye movements

Visual attention can be studied by analyzing eye movements. This can be
explained by the classic example from (Yarbus, 1967), where an image depicting
an unexpected visitor arriving in a Victorian living room is shown to an observer
under free viewing conditions, and for six different tasks. The tasks given to
the observer were:

1. Estimate the economic status of the family.

2. Estimate the ages of the people.

3. Infer what the family was doing before the arrival of the visitor.

4. Remember the clothes worn by the people.

5. Remember the locations of people and objects in the room.

6. Estimate how long has the unexpected visitor been away from the family.

As shown in figure 2.2, the eye movements associated with different tasks
were different, suggesting that eye movements reflect the observers thought pro-
cess, i.e., the reason for looking at an image strongly influences the parts or
the objects the observer looks at (Tsotsos, 2011). Similar observations were
made in the study by (Just & Carpenter, 1976) leading to the formulation of
eye-mind hypothesis. The eye-mind hypothesis suggests that where an observer
is looking in the scene indicates what he or she is processing and the duration
of this reflects how much processing effort is needed.

The eye movements can be broadly classified as fixations and saccades. Fix-
ation is defined as the momentary pause of the eye on a location in the scene,
while saccade is the rapid eye movement that usually occurs in between fixations.
It is assumed that by using eye fixations the brain acquires most of the visual
information and no useful information is taken in during saccades (Henderson,
2003).
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(a) Picture (b) Free viewing

(c) Estimate the economic status of the
family.

(d) Estimate the ages of the people.

(e) Infer what the family was doing before
the arrival of the visitor.

(f) Remember the clothes worn by the peo-
ple.

(g) Remember the locations of people and
objects in the room.

(h) Estimate how long has the unexpected
visitor been away from the family.

Figure 2.2: The eye movements for an observer under free viewing conditions,
and for six different tasks (Yarbus, 1967). In each case, the observers’ viewed
the image for a period of 3 minutes.
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2.4 State-of-the-art in modeling visual attention

In this section, the computer models for predicting eye fixations in still images
are discussed. The models are presented in a chronological order.

Figure 2.3: The general architecture of the saliency model by (Itti, Koch, &
Niebur, 1998).

The classic model of visual saliency proposed by (Itti, Koch, & Niebur,
1998), calculates salient regions by decomposing the input image in three dif-
ferent channels namely, color, intensity, and orientation as shown in figure 2.3.
The color channel consists of two maps: red/green and blue/yellow color op-
ponencies, the intensity channel consists of a gray scale representation of the
input image, and the orientation channel contains four local orientation maps
associated with angles 0, 45, 90, and 135 degrees. For each channel map nine
spatial scales are created by repeatedly low pass filtering and sub-sampling the
input channel. After that, feature maps are computed by using center-surround
operations, which are inspired by vision studies such as (Treisman & Gelade,
1980; Koch & Ullman, 1985). The center-surround operations are defined as the
difference between fine and coarse scales. For example, if the center is a pixel at
scale c ∈ {2, 3, 4}, the surround is the corresponding pixel at scale s = c+d, with
d ∈ {2, 3}, and � denotes the across scale difference, then the center-surround
feature maps for a channel I are represented as:

I(c, s) = |I(c)� I(s)|.

These operations generate 42 features maps: six for intensity, 12 for color oppo-
nencies, and 24 for orientation. Finally, the resulting feature maps from different
channels are normalized and combined linearly to get the so-called saliency map.
The VOCUS model proposed by (Frintrop, 2006b), and the saliency toolbox im-
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plemented by (Walther, 2006; Walther, Itti, Riesenhuber, Poggio, & Koch, 2002)
are based on this saliency model.

Lee & Yu (2000) proposed a theoretical model based on the assumption that
our visual system operates on the principle of information maximization, i.e., we
fixate at a location in the image that provides maximum amount of information.
They proposed that mutual information among cortical representations of the
retinal image, the priors constructed from our long term visual experience, and
a dynamic short term internal representation constructed from recent saccades,
provides the map for the guidance of eye movements. Based on this approach, a
similar model was defined by (Renninger, Coughlan, Verghese, & Malik, 2005).

Rao et al. (2002) introduced a model that uses a top-down search template
matching approach to locate the salient regions. In their model, first, a saliency
map is obtained from the input image by employing oriented spatiochromatic
filters. After that, a template of the desired target object is moved across
different regions of the saliency map, and the similarity between a selected region
and the target is measured by calculating their euclidean distance. Finally, the
N most similar regions are represented as salient.

Torralba (2003) and Oliva et al. (2003) defined a model that combines
three factors: bottom-up saliency, object likelihood, and contextual prior. The
local saliency is calculated as: S(x) = 1

p(vL/vC) , where vL encodes local fea-

tures in the neighborhood of a location which is represented by the outputs
of multi-scale oriented bandpass filters, and vC represents the contextual prop-
erties of the scene or background which include: global image statistics, color
histograms, and wavelet histograms. In the object likelihood factor, the loca-
tions corresponding to features different from the target object are suppressed,
and the locations with similar features are maintained. The contextual prior
stage uses the past search experience from similar images and the strategies that
were successful in finding the target.

Bruce & Tsotsos (2005) introduced a saliency model based on the principle
of maximizing information that uses Shannon’s self information measure. The
saliency is defined by the self information associated with each local image
region. The self information is given by: I(X) = −log(p(X)), where X is
a n-dimensional feature vector extracted from an image region, and p(X) is
the probability of observing X based on its surround. The authors state that
there is insufficient data in a single image to provide a reasonable estimate of
the probability distribution. To address this issue, they employ independent
component analysis (ICA) in order to learn the bases from a large database
of natural images. After that, the probability of observing an image region
is calculated for each basis coefficient. Finally, for a given image region the
likelihood of observing it is represented by the product of corresponding ICA
basis probabilities for that region.

Harel et al. (2006) proposed a bottom-up model that uses graph algorithms
for saliency computations. In their model, the first step comprises of calculating
feature maps using a procedure similar to (Itti, Koch, & Niebur, 1998). After
that, a fully connected graph for the locations of the feature maps is build. A
graph comprises of nodes or vertices connected by links or edges. The weights
between two nodes are calculated based on their dissimilarity and their closeness.
Given two locations (i, j) and (p, q) in the feature map M , the dissimilarity
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between their respective nodes M(i, j),M(p, q) is defined as:

d((i, j)‖(p, q)) � |log M(i, j)

M(p, q)
|.

Next, the graphs obtained are treated as Markov chains, and the equilibrium
distribution of these chains are adopted as the activation maps. Finally, these
activation maps are normalized using another Markovian algorithm to highlight
the conspicuity, and admitting their combination to form the saliency map.

Meur et al. (2006) presented a saliency model inspired by various properties
of human visual system such as: contrast sensitivity function, visual masking,
and perceptual grouping. This model is based on the saliency framework pro-
posed by (Koch & Ullman, 1985), and the saliency map is build by linearly
combining the different feature maps. The authors showed that their model
outperforms the saliency model proposed by (Itti, Koch, & Niebur, 1998).

Navalpakkam & Itti (2006) introduced a model that combines top-down
and bottom-up aspects of attention. The bottom-up component is calculated
by using the saliency model by (Itti, Koch, & Niebur, 1998), and the top-down
component uses the information about the target and the background objects
to maximize the ratio between the saliency values of the targets to that of the
background objects. This model was evaluated using a search task, i.e., the
observers were instructed to search for a specific object in the scene. Their
results showed that a combined top-down and bottom-up model yields faster
search than a bottom-up model.

Hou & Zhang (2007) proposed a saliency model based on analyzing the log
spectrum of the input image. First, the log spectrum is defined as: L(f) =
log(A(f)), where A(f) is the amplitude of the Fourier spectrum of the image.
After computing the log spectrum, the spectral residue is calculated as: R(f) =
L(f) − A(f). Finally, the spectral residue is transformed to spatial domain to
get the saliency map. The results from the authors suggested that their model
predicts the fixations better than the saliency model by (Itti, Koch, & Niebur,
1998).

Mancas (2007) defined saliency as a measure of two components: contrast,
and rarity, i.e., rare features in an image are interesting.. To account for contrast
two methods are proposed: global and local. Global contrast is measured using
histogram, and local contrast is calculated using center-surround operations
similar to that of (Itti, Koch, & Niebur, 1998). The rarity is quantified by
employing Shannon’s self-information measure. First, a low level saliency map
is calculated by describing each location by the mean and the variance of its
neighborhood. After that, rarity is measured based on the features such as size
and orientation, where smaller areas and lines corresponding to the orientations
get higher saliency values on the saliency map. Finally, high-level methods such
as Gestalt laws of grouping are employed to find the salient regions.

Cerf et al. (2007) proposed a model that combined the bottom-up feature
channels of color, intensity, and orientation, from (Itti, Koch, & Niebur, 1998),
with a face-detection channel, based on the algorithm by (Viola & Jones, 2001).
Their results showed that the combined model improves the correspondence
between the fixated and the salient image regions.

The SUN model by (Zhang, Tong, Marks, Shan, & Cottrell, 2008), defined
saliency as a combination of three components: the first contains self infor-
mation, which depends only on the visual features at a location. Here, rarer
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features are considered more informative. In the second, top-down information
such as the knowledge about the attributes of the target is used to obtain a
log likelihood. The third component, consists of the probability associated with
the knowledge of the location of the target. In their algorithm, the saliency
map was calculated using difference of Gaussians and independent component
analysis derived features.

Rajashekar et al. (2008) proposed a bottom-up model that calculates salient
image regions based on four foveated low-level image features, namely, lumi-
nance, contrast, luminance-bandpass, and contrast-bandpass. The input image
is divided into uniform regions, and the feature maps associated with the four
low level features are calculated. Finally, the four maps are linearly combined
using a weighted average to get the saliency map. For evaluation, they used 101
static gray-scale images that contained no high level features such as animals,
faces, and other items of high-level semantic interest.

Figure 2.4: (a) Contrast detection filter showing inner square region R1 and
outer square region R2. (b) The width (w) of R1 remains constant while that
of R2 ranges from w/2 to w/8. (c) The image is filtered at one of the scales in
a raster scan fashion (Achanta, Estrada, Wils, & Süsstrunk, 2008).

Achanta et al. (2008) presented a model that represents saliency as the local
contrast of an image pixel with respect to its neighborhood at different scales.
For a given scale, the saliency value at a pixel (i, j) is calculated as the distance
D between the mean vectors of pixel features of the inner region R1 and the
outer region R2 as:

ci,j = D

[(
1

N1

N1∑
p=1

vp

)
,

(
1

N2

N2∑
p=1

vq

)]
,

where N1, and N2 are the number of pixels associated with the regions R1 and
R2 as depicted in figure 2.4. In their model CIELAB color space is used to
generate feature vectors for color and luminance. The final saliency map is
obtained by summing the saliency values across the different scales.

Guo et al. (2008) calculated saliency in a manner similar to the spectral
residue approach by (Hou & Zhang, 2007), with the exception that this model
excludes the computation of spectral residue in the amplitude spectrum. They
state that by excluding the amplitude computation the saliency map is obtained
faster. For a given image I(x, y), the saliency map is defined as:

sM(x, y) = g(x, y) ∗ ‖F−1[ei.p(x,y)]‖2,
such that f(x, y) = F (I(x, y)) and p(x, y) = P (f(x, y)), where F and F−1

represent Fourier Transform and Inverse Fourier Transform respectively. P (f)
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denotes the phase spectrum of the image, and g(x, y) is a two-dimensional Gaus-
sian filter.

Gao et al. (2009) defined saliency as equivalent to discrimination, i.e., they
state that the most salient features are the ones that best separate the target
class from all others. In their model saliency is represented by two components:
feature selection and saliency detection. The best feature subset is selected by
computing the marginal mutual informations as:

I(X;Y ) =
∑
i

PY (i)DKL(PX|Y (x|i)||PX(x)),

where X is a set of features, and Y is a class label with prior probabilities PY (i),
such that the probability density of Xk given class i is PXk|Y (x|i), and DKL is
the Kullback-Leibler divergence (Wilming, Betz, Kietzmann, & Konig, 2011).
In the saliency detection, the features that are considered highly non-salient are
eliminated by employing Barlows principle of inference (Barlow, 1987).

Judd et al. (2009) used a machine learning approach to train a combined
bottom-up, top-down model based on low, mid, and high-level image features.
In their model, the low level features are described by models such as (Itti,
Koch, & Niebur, 1998; Rosenholtz, 1999; Oliva & Torralba, 2001), the mid level
features are represented by a horizon line detector, and the high level features
consist of people and face detectors. The authors collected eye fixations of
15 observers from a comprehensive dataset (with 1003 images) which was also
used for evaluation. The model proposed by the authors showed better corre-
spondence with the fixations than several other models such as (Itti, Koch, &
Niebur, 1998; Rosenholtz, 1999; Oliva & Torralba, 2001; Cerf, Harel, Einhauser,
& Koch, 2007).

Seo & Milanfar (2009) introduced a bottom-up model based on self resem-
blance measure. In their model, image features are obtained by using local
regression kernels, which are quite robust to noise and efficient at capturing the
underlying structure of the image. After that, matrix cosine similarity is used
to compute the resemblance of each location to its surroundings. The saliency
for a given location i is represented as:

Si =
1∑N

j=1 exp(
−1+ρ(Fi,Fj)

σ2

,

where σ is a weight parameter, and ρ(Fi, Fj) is the matrix cosine similarity
between two feature maps Fi, and Fj . Here the matrix cosine similarity is
defined as Frobenius inner product between two normalized matrices Fi, and
Fj . The authors showed that their model predicts fixations better than the
models by (Bruce & Tsotsos, 2005; Zhang, Tong, Marks, Shan, & Cottrell,
2008).

Bian & Zhang (2009) adopted a spectral approach similar to (Guo, Ma, &
Zhang, 2008) for calculating salient image regions. In their model, the input
image is resized to a fixed scale, and a windowed Fourier transform of the
image is calculated to get a spectral response. The spectral response denoted
by f(u, v) is then normalized as: n(u, v) = f(u, v)/‖f(u, v)‖. After that, n(u, v)
is transformed to spatial domain by using inverse Fourier transform followed by
squaring to promote the salient regions. The resultant saliency map is convolved
with a Gaussian filter g to model the spatial pooling operations of complex

15



cells as: S(x, y) = g(u, v) ∗ ‖F−1[n(u, v)]‖, where F−1 denotes inverse Fourier
transform.

Kienzle et al. (2009) proposed a non-linear machine learning approach for
calculating saliency. In their model, the intensities pertaining to local image re-
gions are used as feature vectors. The authors employ support vector machine
to train the feature vectors of fixated regions to yield positive values and the
feature vectors of randomly selected regions to negative values. The resultant
saliency is modeled with four perceptive fields, two most likely image struc-
tures and two least likely patterns for driving fixations. For the training and
evaluation a dataset of 200 gray scale images was used.

Chikkerur et al. (2010) presented a Bayesian model of attention based on
the concept that the task of the visual system is to recognize what is where
and this is archived by localizing sequentially, i.e, one object at a time. Their
model extends the template based approach used in the model by Rao et al.
(2002), in the following ways: first, both feature and object priors are included,
which allows to combine top-down feature-based attention and spatial attention.
Second, this model allows a combination ofN feature vectors that share common
spatial modulation. Third, in the spatial attention, scale/size information is
used in addition to the location information. The authors state that their model
combines bottom-up, feature-based, and context-based attention mechanisms,
and in so doing it is able to explain part of the basic functional anatomy of
attention.

Li et al. (2010) introduced a model that measures saliency as minimum
conditional entropy. In their model, the minimum conditional entropy represents
the uncertainty of the center-surround local region, when the surrounding area
is given and the perceptional distortion is considered. The authors state that
the larger the uncertainty the more salient the center is, and vice verse. The
minimum conditional entropy is approximated by the lossy coding length of
Gaussian data. Finally, the saliency map is segmented by thresholding to detect
the salient objects. In their results it was shown that their model outperforms
the saliency model by (Itti, Koch, & Niebur, 1998).

Goferman et al. (2010) proposed a context aware saliency model based on
four principles of visual attention: first, low level attributes such as contrast,
and color. Second, global considerations, which suppress frequently occurring
features, while maintaining features that deviate from the norm. Third, visual
organization rules, which state that visual forms may possess one or several
centers of gravity about which the form is organized. Four, high-level factors,
such as human faces. Their results showed that the context aware saliency
model performs better than the models by (Walther & Koch, 2006; Hou &
Zhang, 2007).

Avraham & Lindenbaum (2010) presented a stochastic model of visual
saliency. In their model, first, the input image is segmented into regions which
are considered as candidates for attention. An initial probability for each can-
didate is set using preferences such as small number of expected targets. After
that each candidate is represented by a feature vector, and visual similarity
between every two candidates is evaluated using Pearson correlation coefficient.
Next, a tree based Bayesian network is employed for clustering the candidates.
Finally, the saliency map is obtained by selecting the most likely candidates.

Liu et al. (2011) introduced a supervised approach to calculating salient
image regions. The salient object detection is formulated as an image segmen-
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tation problem, where the objective is to separate the salient object from the
image background. To do this in their model, ground truth salient objects are
obtained from the regions labeled by the observers as salient. After that, a set
of features including multi-scale contrast, center-surround histogram, and color
spatial distribution are used to describe a salient object locally, regionally, and
globally. Finally, these features are optimally combined through Conditional
Random Field (CRF) learning. The CRF was trained and evaluated for a large
dataset containing 20,840 labeled images by multiple users.

Kootstra et al. (2011) proposed a model that calculates saliency on the basis
of symmetry. In their model, three local symmetry operators namely, isotropic
symmetry (Reisfeld, Wolfson, & Yeshurun, 1995), radial symmetry (Reisfeld,
Wolfson, & Yeshurun, 1995), and color symmetry (Heidemann, 2004) are de-
fined. These three symmetry features are calculated at five image scales. The
resulting saliency map is obtained by normalizing and combining the feature
maps. For the evaluation of this model, the authors used a dataset containing
99 images belonging to different categories such as natural symmetries, animals,
street scenes, buildings, and natural environments. The authors showed that
their symmetry model outperforms the saliency model by (Itti, Koch, & Niebur,
1998) in predicting the eye fixations.

Murray et al. (2011) calculated salient image regions in three steps: first,
the input image is processed according to operations consistent with early vi-
sual pathway (color-opponent and luminance channels, followed by a multi-scale
decomposition). Second, a simulation of the inhibition mechanisms present in
cells of the visual cortex is performed, this step effectively normalizes their re-
sponse to stimulus contrast. Third, the model integrates information at multiple
scales by performing an inverse wavelet transform directly on weights computed
from the non-linearization of the cortical outputs. Their saliency model showed
better correspondence with the fixations than the saliency models by (Bruce &
Tsotsos, 2005; Seo & Milanfar, 2009).

Wang et al. (2011) proposed a computational model based on the principle
of information maximization. Their model considers three key factors, namely,
reference sensory responses, fovea-periphery resolution discrepancy, and visual
working memory. In their model, first, three multi-band filter response maps
are calculated as a coherent representation for the three factors. After that,
the three filter response maps are combined into multi-band residual filter re-
sponse maps. Finally, the saliency map is obtained by calculating the residual
perceptual information at each location. The results from the authors showed
that their model performs significantly better than the saliency model by (Itti,
Koch, & Niebur, 1998).

Garcia-Diaz et al. (2012) introduced a saliency model based on adaptive
whitening of color image and feature maps. First the input image is trans-
formed from (r, g, b) to (z1, z2, z3), a whitened representation. The whitening is
done through de-correlation by employing principal component analysis. The
feature maps are calculated for (z1, z2, z3) using a bank of log-Gabor filters for
orientations (0◦, 45◦, 90◦, 135◦), and seven scales are calculated for z1 and only
five for z2, and z3. Next, for each chromatic component the feature maps are
whitened and contrast normalization is performed in several steps in a hierar-
chical manner. Saliency is computed as the square of the vector norm in the
resulting representation. The authors showed that their model outperforms the
state-of-the-art models in predicting fixations. These results were confirmed in
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an independent study by (Borji, Sihite, & Itti, 2013), which concluded that the
saliency model by (Garcia-Diaz, Fdez-Vidal, Pardo, & Dosil, 2012) is the top
performing model for natural images.

Table 2.2: The various visual attention models and their categories according
to the study by (Borji & Itti, 2013).

Bayesian models Torralba (2003), Oliva et al. (2003),
and Zhang et al. (2008)

Cognitive models Itti et al. (1998), Walther
(2006), Walther et al. (2002), Frintrop
(2006b), Meur et al. (2006), Rajashekar
et al. (2008), and Cerf et al. (2007)

Decision theoretic models Gao & Vasconcelos (2004), Gao et al.
(2009), Li et al. (2010), and Wang et al.
(2011)

Graphical models Harel et al. (2006), Achanta et al.
(2008), Avraham & Lindenbaum
(2010), Chikkerur et al. (2010),
and Liu et al. (2011)

Information theoretic models Bruce & Tsotsos (2005), Mancas
(2007), and Seo & Milanfar (2009)

Pattern classification models Judd et al. (2009), and Kienzle et al.
(2009)

Spectral analysis models Hou & Zhang (2007), Guo et al.
(2008), Achanta et al. (2008), and Bian
& Zhang (2009)

Other models Rao et al. (2002), Goferman et al.
(2010), and Garcia-Diaz et al. (2012)

In the study by (Borji & Itti, 2013), the authors state that the visual at-
tention models in the literature can be divided into eight classes: bayesian,
cognitive, decision theoretic, graphical, information theoretic, pattern classifi-
cation, spectral analysis, and others. The different classes and the attention
models associated with these classes are shown in table 2.2. In bayesian models,
prior knowledge about the scene, and sensory information such as target fea-
tures are employed to calculate salient image regions. For instance, the models
such as Torralba (2003), Oliva et al. (2003), and Zhang et al. (2008) fall in this
category. Cognitive models are the ones that are strongly based on psychologi-
cal and neurophysiological findings. This category includes models such as Itti
et al. (1998), Walther (2006), Walther et al. (2002), Frintrop (2006b), Meur
et al. (2006), Rajashekar et al. (2008), and Cerf et al. (2007). Decision theoretic
models are based on the concept of identifying the optimal factors based on
which people make decisions. For instance, models such as Gao & Vasconcelos
(2004), Gao et al. (2009), Li et al. (2010), and Wang et al. (2011) are classified
under this category. A graphical model is a probabilistic model in which graphs
are used to represent probabilistic relationships between different variables. For
example, models such as Harel et al. (2006), Achanta et al. (2008), Avraham
& Lindenbaum (2010), Chikkerur et al. (2010), and Liu et al. (2011) belong to
this class. Information theoretic models are based on the concept that localized
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saliency computation serves to maximize information sampled from one’s envi-
ronment. In other words, these models select the most informative parts of the
image and discard the rest. This class consists of models such as Bruce & Tsot-
sos (2005), Mancas (2007), and Seo & Milanfar (2009). In pattern classification
models, a machine learning procedure is employed to model visual attention.
For the learning, typically eye fixations data or labeled salient regions are used.
For instance, models such as Judd et al. (2009), and Kienzle et al. (2009) are
classified under this category. Spectral analysis models calculate saliency in
the frequency domain. This category consists of models such as Hou & Zhang
(2007), Guo et al. (2008), Achanta et al. (2008), and Bian & Zhang (2009).
The models that do not conform to the above categories are classified as other
models. This class includes models such as Rao et al. (2002), Goferman et al.
(2010), and Garcia-Diaz et al. (2012).

2.5 Summary

In a comprehensive study by (Borji, Sihite, & Itti, 2013), 35 state-of-the-art
visual saliency models were evaluated for 54 challenging synthetic patterns,
three natural image datasets, and two video datasets. For the evaluation the
authors employed three metrics namely, correlation coefficient, normalized scan-
path saliency, and shuffled AUC. Their results suggest: first, all existing
databases are highly center-biased and there is a need to develop datasets that
are less center-biased. Second, the correlation coefficient and normalized scan-
path saliency metrics suffer from the influences of the center-bias and the authors
discourage their use in future model evaluations. Third, the feature integra-
tion theory based models such as the classic saliency model by (Itti, Koch, &
Niebur, 1998), the saliency toolbox implemented by (Walther, 2006; Walther,
Itti, Riesenhuber, Poggio, & Koch, 2002), the GBVS model proposed by (Harel,
Koch, & Perona, 2006), the saliency model proposed by (Bian & Zhang, 2009),
the VOCUS model by (Frintrop, 2006a) and the AWS model by (Garcia-Diaz,
Fdez-Vidal, Pardo, & Dosil, 2012) work better in locating a target over synthetic
images. Four, the best model for static and dynamic images is the AWS model
proposed by (Garcia-Diaz, Fdez-Vidal, Pardo, & Dosil, 2012). In addition to
this, the AWS model performed second best with synthetic patterns. Five,
models such as those proposed by (Itti, Koch, & Niebur, 1998; Torralba, 2003;
Hou & Zhang, 2007; Bian & Zhang, 2009; Garcia-Diaz, Fdez-Vidal, Pardo, &
Dosil, 2012) are fast and effective in predicting fixations. In fact their results
suggest that among the models implemented by using Matlab, the model in-
troduced by (Hou & Zhang, 2007) is the fastest (0.30 sec.), while the model
proposed by (Judd, Ehinger, Durand, & Torralba, 2009) is the slowest (98.58
sec.). Six, there is still a gap between current saliency algorithms and inter-
observer performance, where inter-observer performance is defined as the level
of agreement between the fixations of an observer viewing an image and the
fixations of other observers viewing the same image. The authors suggest that
the performance of the saliency models can be improved by the addition of
top-down factors such as task and semantic cues (i.e., faces, people, and text).
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2.6 Evaluation metrics

In the literature, various metrics have been employed to measure the perfor-
mance of saliency models. In this section, these metrics are briefly discussed.

Area under the receiver-operating-characteristic curve (AUC)

AUC (Fawcett, 2004; Borji & Itti, 2013) is commonly employed in vision studies
to evaluate the correspondence between fixated regions and salient image regions
predicted by visual saliency models. For this, the fixations pertaining to a given
image are averaged into a single two dimensional map which is then convolved
with a two dimensional Gaussian filter. The resultant fixations map is then
thresholded to yield a binary map with two classes–the positive class consisting
of fixated regions, and the negative class consisting of non-fixated regions. Next,
from the two dimensional saliency map, we obtain the saliency values associated
with the positive and negative classes. Using the saliency values, a receiver-
operating-characteristic (ROC) curve is drawn that plots the true positive rate
against the false positive rate. The area under the ROC curve gives us a measure
of the performance of the classifier. AUC gives a scalar value in the interval [0,1].
If AUC is 1 then it indicates that the saliency model is perfect in predicting
fixations. An AUC of 0.5 implies that the performance of the saliency model
is not better than a random classifier or by chance prediction. For a detailed
description of AUC, see the study by (Fawcett, 2004).

Chance adjusted salience

Chance adjusted salience (Kienzle, Franz, Schlkopf, & Wichmann, 2009; Wilm-
ing, Betz, Kietzmann, & Konig, 2011) is calculated by the difference between
the mean saliency values of two sets of image regions, the first set consists of
parts that are fixated by an observer and the second consists of non-fixated
parts. The non-fixated parts are selected from the fixations of the observer for
an unrelated image. If the difference value obtained is greater than zero then it
suggests that the saliency model is better than a random classifier. The range of
this metric is governed by the interval of saliency values which can be arbitrary.

Eightieth percentile measure

To calculate eightieth percentile measure the saliency maps are thresholded to
top 20 percent of the salient image locations (Torralba, Castelhano, Oliva, &
Henderson, 2006; Wilming, Betz, Kietzmann, & Konig, 2011). After that, the
percentage of fixations falling inside these locations are calculated. In this way,
this measure calculates the true positive rate of a classifier that uses eightieth
percentile as threshold for the saliency values (Wilming, Betz, Kietzmann, &
Konig, 2011). This evaluation metric gives a scalar value in the range [0,100].

Kullback Leibler divergence (DKL)

DKL (Itti & Baldi, 2009; Wilming, Betz, Kietzmann, & Konig, 2011) is a mea-
sure of logarithmic distance between two probability distributions. For evaluat-
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ing saliency models, it is calculated as:

DKL(P‖Q) =
∑
i

P (i) ln

(
P (i)

Q(i)

)
,

where P is the fixations probability distribution, i.e., the fixations map normal-
ized in the interval [0,1] and Q refers to the normalized saliency map. As DKL

is not a symmetric measure, i.e., DKL �= DKL, a symmetric version of DKL is
calculated as:

KL = DKL(P‖Q) +DKL(Q‖P ).

A KL value of zero indicates that the saliency model is perfect in predicting
fixations. The KL metric does not have a well defined upper bound, thus its
interval is [0,∞).

Normalized scan-path saliency (NSS)

NSS (Peters, Iyer, Itti, & Koch, 2005; Wilming, Betz, Kietzmann, & Konig,
2011) is calculated by normalizing the saliency maps such that the saliency
values have zero mean and unit standard deviation. After that, the mean of
the saliency values for the fixated regions is calculated. A NSS value greater
than zero suggests that the saliency model shows better correspondence with
the fixations than a random classifier. If NSS is less than or equal to zero then
it implies that the prediction by the saliency model is not better than chance
prediction. For a detailed insight on the NSS metric, see the study by (Peters,
Iyer, Itti, & Koch, 2005).

Pearson correlation coefficient

Pearson correlation coefficient (Hwang, Higgins, & Pomplun, 2009; Wilming,
Betz, Kietzmann, & Konig, 2011) is a measure of linear dependence between
two variables. It is calculated as:

r =

∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2
√∑N

i=1(Yi − Ȳ )2
,

where X, and Y are the two variables, X̄, and Ȳ are the sample means, and
r is the correlation coefficient. r returns a value in the range [-1,1]. If r is 1
then it suggests a perfect prediction of the fixated regions by the saliency model,
while a value of -1 implies that the predicted regions are the exact opposite of
the fixations. A value of 0 suggests that there is no linear relation between the
salient image regions and the fixated regions.

Ratio of medians

To calculate ratio of medians (Parikh, Itti, & Weiland, 2010; Wilming, Betz,
Kietzmann, & Konig, 2011), two sets of saliency values are selected, the first
set consists of the saliency values of the fixated regions and second pertains to
the saliency values of regions chosen from random points on the image. The
saliency value for a fixation point is calculated as the maximum of the saliency
values within in a circular area of diameter 5.6 degree with the fixation point as
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the center. The saliency values for the random points are computed in the same
manner as that of the fixation points. Next, for a given image the median of
the saliency values for the fixated regions and the median of the saliency values
for the randomly selected regions are calculated. The ratio of the two medians
is used for the evaluation of saliency model. A higher ratio implies that the
prediction of fixations by the saliency model is better than the prediction by
chance.

String editing distance

To calculate the string editing distance (Brandt & Stark, 1997; Privitera &
Stark, 2000; Borji & Itti, 2013) for a given image, the fixations and the saliency
values are clustered using methods such as k-means. After that, regions of in-
terest (ROIs) are defined around these clusters which are labeled by alphabetic
characters. Next, the ROIs are ordered based on the values assigned by the
saliency model or the time sequence in which the ROIs were fixated on by
the observer. The character strings obtained after ordering the ROIs for the
saliency model and the fixations are then compared by using a string editing
similarity index Ss, which is defined by the cost associated with performing op-
erations such as deletion, insertion, and substitution on the strings. A Ss value
of zero implies that the saliency model perfectly predicts the fixated regions and
their temporal sequence. For a detailed description of string editing distance,
see the study by (Privitera & Stark, 2000).

2.7 Suitable candidate for evaluating the saliency
algorithms

While viewing images, observers tend to look at the center regions more as
compared to peripheral regions. As a result of that a majority of fixations fall
at the image center. This effect is known as center bias and is well documented in
vision studies (Tatler, Baddeley, & Gilchrist, 2005; Tatler, 2007). The two main
reasons for this are: first, the tendency of photographers to place the objects at
the center of the image. Second, the viewing strategy employed by observers,
i.e., to look at center locations more in order to acquire the most information
about a scene (Tseng, Carmi, Cameron, Munoz, & Itti, 2009). The presence of
center bias in fixations makes it difficult to analyze the correspondence between
the fixated regions and the salient image regions. This can be explained by the
fact in a study by (Judd, Ehinger, Durand, & Torralba, 2009), it was observed
that a dummy classifier consisting of a two-dimensional Gaussian shape drawn
at the center of the image outperformed all saliency models. The center bias is
implicitly linked with a so-called edge effect discussed by (Zhang, Tong, Marks,
Shan, & Cottrell, 2008). Edge effect (Borji, Sihite, & Itti, 2013) is defined as
adding a varied image border of zeros to a saliency map as a result of which it
can yield different values from evaluation metrics. For example, in the study
by (Zhang, Tong, Marks, Shan, & Cottrell, 2008), it was observed that a dummy
saliency map consisting of all ones with a four-pixel image border consisting of
zeros gave an AUC value of 0.62. Meanwhile, an AUC of 0.73 was obtained with
a dummy saliency map using eight-pixel border. In the presence of center bias
and edge effect, a fair comparison of the performance of the saliency algorithms
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becomes a challenging task. To alleviate the influence of the center bias and the
edge effect, a shuffled AUC metric was employed in the study by (Zhang, Tong,
Marks, Shan, & Cottrell, 2008).

To calculate the shuffled AUC metric for a given image and one observer, the
regions fixated by the observer are associated with the positive class, however,
the regions corresponding to the negative class are defined differently. The
regions for the negative class are selected randomly from the fixated regions of
the rest of the images, such that they do not coincide with the regions from
the positive class. Finally, recent studies by (Borji, Sihite, & Itti, 2013; Zhang,
Tong, Marks, Shan, & Cottrell, 2008), have suggested that the shuffled AUC
metric is quite robust as compared to other evaluation metrics and the most
suitable candidate for judging the performance of saliency models.
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Chapter 3
Research and contributions

3.1 Publications

This thesis is based on eleven papers that are published or under review in
national and international peer-reviewed conference proceedings and journals.

Paper 1 Alsam, A., & Sharma, P. (2011). Analysis of eye fixations data. In Pro-
ceedings of the IASTED International Conference, Signal and Image Pro-
cessing (SIP 2011), (pp. 342–349)

Paper 2 Sharma, P., & Alsam, A. (2014 (accepted)). A robust metric for the evalu-
ation of visual saliency models. In International Conference on Computer
Vision Theory and Applications (VISAPP 2014)

Paper 3 Alsam, A., & Sharma, P. (2014). Robust metric for the evaluation of visual
saliency algorithms. Journal of the Optical Society of America A (JOSA
A), 31 (3), 1–9

Paper 4 Alsam, A., & Sharma, P. (2013). Validating the visual saliency model. In
SCIA 2013, Lecture Notes in Computer Science (LNCS), vol. 7944, (pp.
153–161). Springer-Verlag Berlin Heidelberg

Paper 5 Alsam, A., Sharma, P., & Wr̊alsen, A. (2013b). Asymmetry as a measure
of visual saliency. In SCIA 2013, Lecture Notes in Computer Science
(LNCS), vol. 7944, (pp. 591–600). Springer-Verlag Berlin Heidelberg

Paper 6 Alsam, A., Sharma, P., & Wr̊alsen, A. (2014). Calculating saliency using
the dihedral group d4. Journal of Imaging Science & Technology , accepted

Paper 7 Alsam, A., Rivertz, H. J., & Sharma, P. (2012). What the eye did not see
– a fusion approach to image coding. In G. Bebis, R. Boyle, B. Parvin,
D. Koracin, C. Fowlkes, S. Wang, M.-H. Choi, S. Mantler, J. Schulze,
D. Acevedo, K. Mueller, & M. Papka (Eds.) Advances in Visual Com-
puting , vol. 7432 of Lecture Notes in Computer Science, (pp. 199–208).
Springer
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Paper 8 Alsam, A., Rivertz, H. J., & Sharma, P. (2013a). What the eye did not
see–a fusion approach to image coding. International Journal on Artificial
Intelligence Tools, 22 (6), 13

Paper 9 Sharma, P., Nilsen, J. H., Skramstad, T., & Cheikh, F. A. (2010). Eval-
uation of geometric depth estimation model for virtual environment. In
Norsk informatikkonferanse (NIK-2010)

Paper 10 Sharma, P., & Alsam, A. (2012a). Estimating the depth in three-dimensional
virtual environment with feedback. In Proceedings of the IASTED Inter-
national Conference Signal and Image Processing ( SIP 2012), (pp. 9–17)

Paper 11 Sharma, P., & Alsam, A. (2012b). Estimating the depth uncertainty in
three-dimensional virtual environment. In Proceedings of the IASTED
International Conference Signal and Image Processing ( SIP 2012), (pp.
18–25)

3.2 Research issues, answers, and future work

In this section, we discuss the research issues addressed in each paper and the
answers found from the analyses associated with the given paper.

3.2.1 Proposed robust metric for the evaluation of saliency
models

Based on the research work in Paper 1, Paper 2, and Paper 3, we discuss
the research issues, and answers.

Research issues

1. For an observer viewing a selection of different images obtained from a
database, are the fixations random, i.e., there exists no intelligible pattern
while viewing different images? On the other hand, if the fixations are not
random then the data contains one or more patterns. In that case, we ask
are the patterns repeated over different images with different content, or
are they indeed image dependent? The visual saliency model suggests that
the viewing patterns are image dependent (Itti & Koch, 2001), nevertheless
if there is a pattern that is repeated in a mechanical fashion then that
would mean that the visual saliency model is not underlying the process
of fixations, thus, leading us to ask what mechanisms are responsible for
driving the fixations?

2. Given a large number of different images, different observers and a varied
number of fixations, how can we perform a meaningful statistical analysis
of the data?

3. Given that a certain percentage of the fixations data is common across
different images–that is to say, some fixations are not driven by image
content, how can we compare the performance of different saliency models
such that the effect of content independent fixations is neglected?
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Answers

1. To analyze the fixations data, we superimpose a grid on the image and
then create a spatial histogram of locations where the fixations are falling.
Using the spatial histogram, we were able to group the fixations from
different images and different observers into histograms of the same size,
the histograms were represented in the form of vectors. Once the vectors
are obtained, the relation between those vectors can be analyzed by using
any statistical method.

2. We did not find a clear answer to the question regarding the mechanisms
driving the fixations. It was observed that about 23 percent of the data
was common across different images. This pattern is repeating spatially
to some intensity variation.

When the vectors from the histograms were grouped and we looked at the
agreement between different observers on one image, we found a higher
agreement than across images with a single observer. The agreement be-
tween different observers suggested that part of the viewing mechanism
is indeed image dependent. Next, we looked at the images that showed
large correspondence between observers that comes from image features.
From the results, we observed that the images with clear top-down fea-
tures such as faces, people, and text ranked higher in correspondence
between observers. Images that were more complex, ranked lower in cor-
respondence between viewers. However, some images lay between the two
ranks. In addition to this, there were no images where there was a 100
percent agreement between observers. This analysis suggested that there
was a stronger agreement on images with so-called top-down features and
a weaker agreement on complex images such as landscapes, buildings, and
street views.

3. To mitigate the influence of content independent fixations in the perfor-
mance evaluation of saliency models, we proposed a robust AUC (area
under the receiver operating characteristic curve) metric based on the sta-
tistical analysis of the fixations data. The proposed metric for a given
image is calculated as follows: first, the locations fixated by the observer
are associated with the positive class in a manner similar to regular AUC.
Next, the locations for the negative class are selected from the fixations
associated with high probability in the repeated viewing pattern. In other
words, the negative class locations are chosen from the part of the fixa-
tions that are most likely image content independent. The results suggest
that the proposed metric is a good candidate for ranking the performance
of saliency models.

3.2.2 Validating the visual saliency model

Based on the research work in Paper 4 and Paper 6, we discuss the research
issue, answer, and future work.
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Research issue

1. Assuming that the visual saliency model by (Itti, Koch, & Niebur, 1998)
is a good classifier of salient and non-salient regions, can we use linear
discrimination methods to separate the parts that are salient from those
that are not salient?

Answer

1. For a given image, we selected parts of the image that received fixations
and those that received no fixations. After this, we grouped the two parts
into matrices of the same dimensions. On the given matrices A and B, one
that pertains to data in image parts that received fixations and the other
that encapsulates data from image parts that received no fixations, we used
linear discrimination to separate the data of these two matrices. Here the
data is the values returned by the visual saliency algorithm by (Itti, Koch,
& Niebur, 1998). We found that, we got good discrimination for the parts
of the images that were returned by the visual saliency algorithm as highly
salient, and the parts that were returned as highly non-salient. However,
we found a large overlap in the middle region.

Future work

1. As a part of our future work, we would like combine the knowledge gained
from Paper 1 with Paper 4, and ask if the parts that are in the middle
range of saliency are responsible for the seemingly repeated pattern, and
if the parts that are highly salient and highly non-salient are responsible
for the agreement between different observers?

3.2.3 Proposed group based asymmetry algorithm

Based on the research work in Paper 5 and Paper 6, we discuss the research
issues, answers, and future work.

Research issues

1. Given that the visual saliency model is represented by image features such
as gradients, contrasts, and lightness across different scales, can we find
a unified metric that groups these expressions in a rigorous description?
Given that such a metric exists, what might we deduce from that as to
the nature of how vision works? Working under the assumption that the
D4 group transformations are a good representation of saliency, we asked
whether we need to use the center-surround operations that constitute the
core of the visual saliency model?

Answers

1. We found that the transformations pertaining to the dihedral groupD4 are
a good unified metric, and they give better results than the visual saliency
model by (Itti, Koch, & Niebur, 1998). Hence, the D4 group transforma-
tions were employed to give us an estimation of saliency. Performing the
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same validation on the group model as that performed on the saliency
model in Paper 4, we found a better discrimination between the salient
and non-salient regions detected by using the group model as compared
to the visual saliency model by (Itti, Koch, & Niebur, 1998). We chose
to implement our model without the center-surround operations, however,
we represented this group metric in three different scales. The proposed
algorithm can be implemented much faster than the visual saliency model.

Future work

1. As a part of our future work, we would like to look into how to imple-
ment the proposed group model faster. To this end, we might employ the
representation theory.

3.2.4 Proposed saliency based image compression algo-
rithm

Based on the research work in Paper 7 and Paper 8, we discuss the research
issues, answers and future work.

Research issues

1. Given the knowledge that as the eye browses a scene, it is not fixating
everywhere in the image and where the eye fixates is the only part that
returns high frequency information, can we then use the information from
the fixations data to steer image compression?

2. Given that we get a number of regions that are said to be salient or a
number of regions that have received fixations, how can we then use this
information to compress an image?

Answers

1. We propose an algorithm that allows us to compress an image based on
the fixations data obtained from an eye tracker or predicted by the visual
saliency model.

2. An algorithm that is fast, works in Fourier domain to extract the gradients
that have received fixations, disregards the gradients that did not receive
any fixations, and then integrates those gradients with the constraint that
the resultant is similar to the original. In this way, we maintain the gra-
dients at regions that received fixations, while dampening the gradient
information in the regions that did not receive fixations. In so doing, we
get a smoothing effect away from the fixated image regions, while main-
taining the original sharpness in the regions that received fixations. The
resultant image is seamless, does not exhibit visual artifacts and appears
to be very similar to the original.
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Future work

1. As a part of future work, we would like to perform a pairwise comparison of
the original image and the compressed image, whereby we ask the viewers
if they can detect any changes, and to what level we can compress an
image before the observer detects changes.

3.2.5 Depth estimation in three-dimensional scenes

Based on the research work in Paper 9, Paper 10, and Paper 11, we discuss
the research issues, answers and future work.

Research issues

1. Can we estimate depth in a three-dimensional virtual scene using an eye
tracker?

2. What is the uncertainty surrounding depth estimation? In the presence
of noise, slight head movements, and error in the eye tracker, how can we
incorporate the uncertainty of the depth estimation?

3. Studies (Duchowski, Shivashankaraiah, Rawls, Gramopadhye, Melloy, &
Kanki, 2000; Duchowski, Medlin, Cournia, Murphy, Gramopadhye, Nair,
Vorah, & Melloy, 2002; Essig, Pomplin, & Ritter, 2006; Pfeiffer, Latoschik,
& Wachsmuth, 2008) have shown that interaction in the virtual environ-
ment is difficult as result of the uncertainty recovered in depth estimation.
Based on this, we ask can we improve depth estimation, i.e., improve the
interaction with the virtual environment if we were to provide a clue to
the observer?

Answers

1. To answer the question of whether we can accurately estimate depth in
a three-dimensional virtual scene using an eye tracker, we replicated an
experiment based on the study by (Pfeiffer, Latoschik, & Wachsmuth,
2008). Our results suggest that depth estimation for a three-dimensional
virtual scene is possible, given that the virtual scene is designed within
the range of the personal space(< 1 meter). However, the resultant depth
estimates are not always accurate which can be attributed to noise, slight
head movements, and error in the eye tracker.

2. To estimate the the uncertainty in the depth estimation the points recorded
by the eye tracker are defined as circles of confusion, instead of points on
the plane. Thus from both eyes we get two circles of confusion. Using the
two circles as bases and the actual eye locations as vertices, we define two
cones. After that, these two cones are extended beyond the plane to a
fixed distance (within the range of the personal space). The two extended
cones intersect in a region of confusion which gives us a depth estimation
with uncertainty measure.

3. By using an audible feedback, we were able to able to clearly improve on
the interaction between the user and the object at a certain depth.

30



Future work

1. Based on the knowledge gained from Paper 4, Paper 5, Paper 6, Pa-
per 9, Paper 10, and Paper 11, we ask how can we encode visual
saliency in three-dimensional scenes such as computer generated scenes
or those taken by binocular cameras? We know that using the visual
saliency model by (Itti, Koch, & Niebur, 1998), for coding visual saliency
in three-dimensional scenes would lead to large computational problems.
This is because, the concept of center-surround operations for a three-
dimensional scene is not clear. As a part of future work for estimating
saliency in three-dimensions, we can employ the symmetry groups for a
cube. A cube has 48 different arrangements that can be represented by
the transformations of the product of groups S4 and S2 This would pro-
vide the link between the work on depth estimation discussed in Paper
9, Paper 10, and Paper 11 and the saliency estimation discussed in Pa-
per 5, and Paper 6. There we envisage using the same operations as
employed in the two-dimensional space using the D4 transformations, but
instead perform them in the three-dimensional space using the S4 × S2

transformations. We would be rotating and reflecting a cube in the three-
dimensional scene and recording the values and combining them to give
us a representation of visual saliency for the three-dimensional scene. In
this case, the operations are simple, because we can resize each of the
three planes, i.e., X-Y, Y-Z, Z-X, and repeat the S4 × S2 transformations
and encode those in a three-dimensional map. This is left as future work,
and we hope that the knowledge gained from this research can act as the
bridge to go from two-dimensional saliency using D4 to three-dimensional
saliency using S4 × S2.

3.3 Research questions and contributions

Based on the discussion in the previous section, the main objectives of this thesis
can be summarized in the form of five main research questions as:

R1 Is the classic visual saliency algorithm by (Itti, Koch, & Niebur, 1998) a
good classifier for salient and non-salient image regions?

R2 Can salient image regions be calculated in a novel way? How can we
calculate saliency for a three-dimensional scene?

R3 How can we perform a meaningful statistical analysis of the fixations data
from different images and observers? Can we use the statistical informa-
tion obtained from the analysis to create a robust metric for judging the
performance of the saliency models?

R4 How can we use the salient image locations to design an algorithm that
compresses an image such that the compressed image is nearly identical
to the original?

R5 How can we estimate depth from the fixations in a three-dimensional vir-
tual scene? How is the depth information useful in the context of three-
dimensional visual saliency?
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The relations between the research questions and research papers are shown
in table 3.1.

Table 3.1: Relations between research papers and research questions.
R1 R2 R3 R4 R5

Paper 1 •
Paper 2 •
Paper 3 •
Paper 4 •
Paper 5 •
Paper 6 • •
Paper 7 •
Paper 8 •
Paper 9 •
Paper 10 •
Paper 11 •

The major contributions of this research effort are:

C1 A novel method to inspect the performance of the classic visual saliency
algorithm by (Itti, Koch, & Niebur, 1998) in separating the salient and
non-salient image regions.

C2 A visual saliency model that calculates salient image regions in a novel
way, i.e., by using the transformations pertaining to the dihedral group
D4. The proposed model performs better than the saliency model by (Itti,
Koch, & Niebur, 1998), and it is among one of the four best models in the
literature. In addition, the proposed model can be extended to calculate
saliency in three-dimensional virtual scenes.

C3 A new method for the statistical analysis of the eye fixations data from
different images and different observers. Based on the analysis, a new
robust metric is proposed that can be used for the evaluation of the visual
saliency algorithms.

C4 A novel algorithm that compresses an image based on the salient locations
predicted by the visual saliency algorithm. The compressed images do not
exhibit visual artifacts and they appear to be very similar to the originals.

C5 A new method for estimating the depth in a three-dimensional virtual
scene by using the fixations from both eyes. As a part of future work, we
intend to use the depth information obtained by showing the observer a
virtual scene to create a three-dimensional fixations map, which can be
used as the ground truth for the evaluation of three-dimensional saliency
algorithms.

The research contributions C1 to C5 and the research questions R1 to R5
have one-to-one correspondence.
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Chapter 4
Research methodology

For the research work in this thesis, we employed the methodology of design
science research. According to (Iivari, 2007), design science research has been
practiced in the disciplines such as Computer Science, Software Engineering
and Information Technology for decades without explicitly naming it. Studies
by (Iivari, 2007; Hevner & Chatterjee, 2010) suggest that by using the method-
ology of design science research computer scientists have developed new ar-
chitectures for computers, new programming languages, new compilers, new
algorithms, new data and file structures, new data models, new database man-
agement systems, and more.

Design science research as discussed by (Hevner, March, Park, & Ram, 2004),
consists of creating novel artifacts, i.e., something new that does not exits in
nature, and using it to understand a natural or man-made phenomenon (Vaish-
navi & Kuechler, 2004). In this way, it is quite useful for vision studies, where
new algorithms or statistical methods are frequently used to analyze different
aspects of human vision. In the general methodology of design science research
as shown in figure 4.1, the process begins with the Awareness of Problem and
terminates with Conclusion. We discuss the various steps of the design science
research methodology and how they were used for this research.

Awareness of problem

The first step in this process is the awareness of an interesting problem in the
given field. This can come from developing an understanding of the relevant field
by using sources such as scientific literature or new industrial developments.

The output of this stage is a proposal for a new research project, and in our
case this PhD project.

Suggestion

In this step, to analyze the problem and provide possible solutions, either new
methods are created or methods are employed from existing literature in a new
way. Based on the employed methods, a tentative design is suggested. In this
thesis, the formulation of the research questions associated with all the papers
and the proposed methods suggested to investigate them, constituted this step.
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Figure 4.1: The general research methodology of design science research, from
(Vaishnavi & Kuechler, 2004).

Development

During the development step, the tentative design is evolved to completion. This
is achieved by using techniques relevant to the construction of an artifact. In our
case, the technique used was algorithm development and a number of algorithms
were developed using Matlab/C++ to answer the research questions.

Evaluation

The artifact created from the previous step is expected to behave in a cer-
tain way. In this step, the deviation from the expected behavior is measured
using quantitative or qualitative methods and the results are analyzed to con-
firm or contradict the hypothesis. In case the initial hypothesis is too broad,
the knowledge gained here is fed back to the first step as depicted by circum-
scription arrow, such that the hypothesis is modified based on an improved
understanding of the problem. In this thesis, the algorithms developed were
evaluated using well known methods from the literature, for example, linear
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discrimination analysis, singular value decomposition, and receiver operating
characteristic curve. As shown in table 4.1, Paper 1 to Paper 8 were eval-
uated using a publicly available dataset by (Judd et al., 2009). Paper 9 to
Paper 11 were evaluated by recording the data from the eye tracking exper-
iments performed at Sør-Trøndelag University College (HiST). Five observers
took part in the experiments.

Research papers Eye tracking data
Paper 1

publicly available dataset by (Judd et al., 2009)

Paper 2
Paper 3
Paper 4
Paper 5
Paper 6
Paper 7
Paper 8
Paper 9

eye tracking experiments performed at HiSTPaper 10
Paper 11

Table 4.1: Research papers and eye tracking datasets.

Conclusion

This is the final step of the research effort. Even though the results obtained
might still stray from the expected behavior, but they are considered good
enough for improving the understanding of the problem. The knowledge gained
here is expected to contribute towards future research projects. In our case, this
is highlighted by the contributions from the research papers and this thesis.
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Chapter 5
Summaries of research papers

5.1 Paper 1: Analysis of eye fixations data

5.1.1 Synopsis

In this paper, we analyzed eye fixations data obtained from 15 observers and
1003 images. When studying the correlation matrix constructed based on the
fixations data of one observer viewing all images, it was observed that 23 percent
of the data can be accounted for by one eigenvector. This finding implies a
repeated viewing pattern that is independent of image content. The examination
of this pattern revealed that it was highly correlated with the center region of
the image. Next, we analyzed the correlation matrix based on the fixations
data across different observers viewing the same image. We found a higher
agreement across different observers than across different images with a single
observer. The agreement between different observers suggested that part of
the viewing mechanism is indeed image dependent. We looked at the images
that showed large correspondence between observers that comes from image
features. From the results, we observed that the images with clear top-down
features such as faces, people, and text ranked higher in correspondence between
observers. Images that were more complex, ranked lower in correspondence
between viewers. This analysis suggested that there was a stronger agreement
on images with so-called top-down features and a weaker agreement on complex
images such as landscapes, buildings, and street views. The main contribution
of this paper can be outlined as a new method to perform the statistical analysis
of the fixations data. This is strongly linked to the first part of the research
contribution C3.

5.2 Paper 2: A robust metric for the evaluation
of visual saliency models

5.2.1 Synopsis

Finding a robust metric for evaluating the visual saliency algorithms has been
the subject of research for decades. Motivated by the shuffled AUCmetric in this
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paper, we propose a robust AUC metric that uses the statistical analysis of the
fixations data to better judge the goodness of the different saliency algorithms.
To calculate the robust AUC metric, we use the first eigenvector obtained from
the statistical analysis to define the area from which non-fixations are selected
thus mitigating the effect of the repeated viewing pattern also known as the
center bias. Our results show that the proposed metric results in similar per-
formance when compared with the shuffled AUC metric, but given that the
proposed metric is derived from the statistics for the data set, we believe that it
is more robust. The main contribution of this paper is a new robust metric that
can be used for evaluating the performance of the saliency algorithms. This is
most relevant to the second part of the research contribution C3.

5.3 Paper 3: A robust metric for the evaluation
of visual saliency algorithms (extended)

5.3.1 Synopsis

This paper combines the research work done in Paper 1 and Paper 2 and is
strongly linked with both the first and second parts of the research contribu-
tion C3.

5.4 Paper 4: Validating the visual saliency model

5.4.1 Synopsis

Bottom up attention models suggest that human eye movements can be pre-
dicted by means of algorithms that calculate the difference between a region
and its surround at different image scales where it is suggested that the more
different a region is from its surround the more salient it is and hence the more it
will attract fixations. Recent studies have however demonstrated that a dummy
classifier which assigns more weight to the center region of the image out per-
forms the best saliency algorithm calling into doubt the validity of the saliency
algorithms and their associated bottom up attention models. In this paper, we
performed an experiment using linear discrimination analysis to try to separate
between the values obtained from the saliency algorithm for regions that have
been fixated and others that haven’t. Our working hypothesis was that being
able to separate the regions would constitute a proof as to the validity of the
saliency model. Our results show that the saliency model performs well in pre-
dicting non-salient regions and highly salient regions but that it performs no
better than a random classifier in the middle range of saliency. The main con-
tribution of this paper is the validation that the classic saliency model is good
at discriminating between the parts of the images that are returned as highly
salient, and the parts that are returned as highly non-salient. This is strongly
linked to the research contribution C1.
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5.5 Paper 5: Asymmetry as a measure of visual
saliency

5.5.1 Synopsis

A salient feature is a part of the scene that stands out relative to neighboring
items. By that we mean that a human observer would experience a salient
feature as being more prominent. It is, however, important to quantify saliency
in terms of a mathematical quantity that lends itself to measurements. Different
metrics have been shown to correlate with human fixations data. These include
contrast, brightness and orienting gradients calculated at different image scales.
In this paper, we show that these metrics can be grouped under operations
pertaining to the dihedral group D4, which is the symmetry group of the square
image grid. Our results show that salient features can be defined as the image
features that are most asymmetric in their surrounds. The main contribution of
this paper is that the transformations pertaining to dihedral groupD4 are a good
representation of saliency. This is most relevant to the research contributionC2.

5.6 Paper 6: Calculating saliency using the di-
hedral group D4

5.6.1 Synopsis

This paper combines the research work inPaper 4 andPaper 5 and is explicitly
linked with the research contributions C1 and C2.

5.7 Paper 7: What the eye did not see–a fusion
approach to image coding

5.7.1 Synopsis

The concentration of the cones and ganglion cells is much higher in the fovea
than the rest of the retina. This non-uniform sampling results in a retinal image
that is sharp at the fixation point, where a person is looking, and blurred away
from it. This difference between the sampling rates at the different spatial
locations presents us with the question of whether we can employ this biological
characteristic to achieve better image compression. This can be achieved by
compressing an image less at the fixation point and more away from it. It
is, however, known that the vision system employs more that one fixation to
look at a single scene which presents us with the problem of combining images
pertaining to the same scene but exhibiting different spatial contrasts. This
article presents an algorithm to combine such a series of images by using image
fusion in the gradient domain. The advantage of the algorithm is that unlike
other algorithms that compress the image in the spatial domain our algorithm
results in no visual artifacts. The algorithm is based on two steps, in the first we
modify the gradients of an image based on a limited number of fixations and in
the second we integrate the modified gradient. Results based on measured and
predicted fixations verify our approach. The main contribution of this paper is
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a new method to compress an image based on the salient locations predicted by
the saliency algorithms or the fixation data obtained from an eye tracker. This
is most relevant to the research contribution C4.

5.8 Paper 8: What the eye did not see–a fusion
approach to image coding (extended)

5.8.1 Synopsis

This paper is an extended version of Paper 7 with more results and is strongly
linked to the research contribution C4.

5.9 Paper 9: Evaluation of geometric depth es-
timation model for virtual environment

5.9.1 Synopsis

Three-dimensional virtual environment is a computer generated experience which
gives us a feeling of presence in the environment. Objects displayed in virtual
environment unlike the real world have no physical depth. Due to the distance
between the eyes, the images formed on the retina are different, this facilitates
our perception of depth. In the range of personal space, eyes converge at dif-
ferent angles to look at objects in different depth planes, known as convergence
angle. Since we cannot get images of the scene viewed by the two eyes, the
convergence angle cannot be calculated by standard photogrammetry principles
such as triangulation. However, we can measure the point of focus(fixations)
of the eyes on two-dimensional display plane, by using eye tracker. Each eye
gets a different view of the virtual scene. Knowing the physical location of both
eyes and their corresponding fixations, we can calculate the estimated depth
using geometry. In this paper, we replicate an experiment based on the study
by (Pfeiffer, Latoschik, & Wachsmuth, 2008). Our results suggest that depth
estimation for a three-dimensional virtual scene is possible given that the virtual
scene is designed within the range of the personal space. The main contribution
of this paper is recreating the experiment setup necessary to estimate depth in
a virtual environment. This is most relevant to the research contribution C5.

5.10 Paper 10: Estimating the depth in three-
dimensional virtual environment with feed-
back

5.10.1 Synopsis

Visual interaction in three-dimensional virtual space can be achieved by esti-
mating objects depth from the fixations of the left and right eyes. Training a
PSOM neural network to estimate depth, from eye fixations, has been shown
to result in good level of accuracy. Instead of training a neural network we

40



postulate that it is possible to improve the accuracy of the fixation data by pro-
viding the observer with feedback. In order to test this hypothesis we introduce
a closed-loop feedback in the environment. When the user’s visual axes inter-
sect, within a range of the correct depth, a sound is produced. This mechanism
trains the users to correct their fixations in a fashion that results in improved
depth estimation. Our results show that indeed the accuracy of depth estima-
tion improves in the presence of feedback. The main contribution of this paper
is a method to improve the depth estimation in a virtual environment. This is
implicitly linked to the research contribution C5.

5.11 Paper 11: Estimating the depth uncertainty
in three-dimensional virtual environment.

5.11.1 Synopsis

Visual interaction in three-dimensional virtual space can be achieved by esti-
mating objects depth from the fixations of the left and right eyes. The current
depth estimation methods, however do not account for the presence of noise in
the data. To address this problem we note that any measured fixation point is a
member of a statistical distribution defined by the level of noise in the measure-
ment. We thus propose a new numerical method that provides a range of depth
values based on the uncertainty in the measured data. The main contribution
of this paper is a new method to estimate the depth uncertainty in a virtual
environment. This is explicitly linked to the research contribution C5.
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Chapter 6
Discussion

This chapter concludes the dissertation with an overview of the results obtained
from the research papers, and the main research direction for future work.

6.1 Validating the visual saliency model
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Figure 6.1: Probability histograms and relative probabilities for the fixated and
non-fixated regions for an average observer. X-axis shows the saliency values
obtained by using the visual saliency algorithm (Itti, Koch, & Niebur, 1998).

In papers 4 and 6, we performed an experiment using linear discrimina-
tion analysis to try to separate between the saliency values obtained from the
model by (Itti, Koch, & Niebur, 1998) for locations that received fixations and
those that received no fixations. The data was based on a subset of the images
and corresponding fixations obtained by (Judd, Ehinger, Durand, & Torralba,
2009), where we used 200 landscape images and all the fifteen observers. In
the experiment, we defined a fixated area as a square region of dimensions 100
by 100 pixels where the center was located at the fixation point. Non-fixated
areas were chosen randomly from parts of the image that had a region of a 100
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by 100 pixels without any fixations By collecting the values returned by the
saliency algorithm local to those regions into two matrices we were able to use
discrimination analysis to determine whether the data of the two matrices is
separable. In figure 6.1(a), we show the probability histograms of the fixated
and non-fixated regions for all the observers. Here, the histogram is normalized
such that the area under the curve is one. We note that the separation between
the two sets is not ideal but rather we find a considerable overlap between the
two histograms specifically in the middle range. We further note that there is a
clear separation between the two sets for regions of the images that received no
fixations indicating that the method is good at predicting non-salient regions
of the images. At a value of 0.3 the classification of the two sets is random.
To gain better insight into the ability of the algorithm to separate the image
regions into fixated and non-fixated, we plotted the relative probabilities of the
histograms. For the non-fixated histogram, the relative probabilities were ob-
tained by dividing the area under the non-fixated probability histogram curve
of a specific bin i of the histogram by the area under the fixated histogram
curve for the same bin. For the relative probability of the fixated histogram
the reciprocal value was calculated. This curve is plotted in figure 6.1(b) where
we observe that for low salience values the separation of non-fixated regions is
ideal and that the extent of the separation declines to a level that is random.
We also note that the separation of the highly salient regions, is nearly ideal.
Based on this we can conclude that the saliency algorithm by (Itti, Koch, &
Niebur, 1998) is good in predicting non-salient and highly salient regions but
its performance drops in the middle range.

6.2 Proposed group based asymmetry algorithm

In papers 5 and 6, we set about unifying the mathematical description of saliency
in a single metric. Based on the knowledge gained from research in image
processing where it has been shown that the dihedral group D4 can be used to
encode edges and contrast which are the main current descriptions of saliency,
we chose to devise an algorithm that represents the level of saliency in an image
region by virtue of the transformations of D4. In our experiment, we used
a receiver operating characteristic (ROC) curve to compare the performance
of the proposed method with that of (Itti, Koch, & Niebur, 1998). For the
analysis, we used fixations data from 200 images and fifteen observers. We
found that the proposed group based asymmetry (GBA) algorithm results in an
AUC value of 0.81 which is better than that achieved with the visual saliency
algorithm by (Itti, Koch, & Niebur, 1998) which gives AUC of 0.77. Based
on the results, we conclude that the transformations pertaining to the dihedral
group D4 are a good metric to estimate salient image regions. In figure 6.2,
we offer a visual comparison between the two algorithms, we show the fixations
map, and the saliency maps obtained from the proposed GBA algorithm and
the visual saliency algorithm by (Itti, Koch, & Niebur, 1998) for an example
image. We can see that the maps from both the algorithms are quite similar.
In fact both of them return the region containing the boat at the center as
salient, which is also in agreement with the fixations map. The performance of
the proposed GBA algorithm is compared with other state-of-the-art saliency
models in the next section.
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(a) Image from the database by (Judd,
Ehinger, Durand, & Torralba, 2009)

(b) Fixations Map

(c) Saliency Map (Itti, Koch, &
Niebur, 1998)

(d) Group based Asymmetry
Map(GBA)

Figure 6.2: Comparison of visual saliency algorithms, both algorithms return
the region containing the boat at the center as salient, which is also in agreement
with the fixations map obtained from the eye fixations data.

6.3 Proposed robust metric for the evaluation
of saliency models

In papers 1, 2, and 3, we analyzed the fixations data from 15 observers and
1003 images collected as a part of the study by (Judd, Ehinger, Durand, &
Torralba, 2009). The database consisted of portrait and landscape images. For
our analysis we chose 463 landscape images of size 768 by 1024 pixels. When
studying the eigen-decomposition of the correlation matrix constructed based
on the fixations data of one observer viewing all images, it was observed that 23
percent of the data can be accounted for by one eigenvector. This finding implies
a repeated viewing pattern that is independent of image content. Figure 6.3
shows the repeated viewing pattern, i.e., the first eigenvector for all observers
and images. We note that it depicts a concentration of fixations in the center
region of the image. This center bias in the fixations has been observed in other
studies (Meur, Callet, Barba, & Thoreau, 2006; Tatler, 2007; Judd, Ehinger,
Durand, & Torralba, 2009) and it is likely responsible for the high correlation of
fixations data with a dummy Gaussian classifier as noted in the study by Judd
et al. (Judd, Ehinger, Durand, & Torralba, 2009).

Guided by recent studies on the creation of a metric that normalizes for the
influence on the center region, we studied the work by (Zhang, Tong, Marks,
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Figure 6.3: Eigenvector for an average observer. It shows a concentration of
fixations in the center region of the image.

Shan, & Cottrell, 2008), in which a shuffled AUC (area under the receiver-
operating-characteristic curve) metric was used by the authors to abate the
effect of center-bias in fixations. Instead of selecting non-fixated regions from
single image as is the case in the shuffled metric by (Zhang, Tong, Marks, Shan,
& Cottrell, 2008), we decided to use the repeated viewing pattern obtained from
the statistical analysis of the fixations data. We reasoned that for a given image
the repeated pattern is the part which is most likely to be fixated upon, thus
choosing a non-fixated region from within it for the analysis by the AUC metric
would indeed counteract the influence of the repeated fixations pattern. The
results obtained by employing the shuffled AUC metric are shown in figure 6.4.
We note that, AIM by (Bruce & Tsotsos, 2005), Hou by (Hou & Zhang, 2007),
our proposed group based asymmetry (GBA) model, and AWS by (Garcia-
Diaz, Fdez-Vidal, Pardo, & Dosil, 2012) are the four best models. In-line with
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Figure 6.4: Ranking of visual saliency models using the shuffled AUC metric.
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Figure 6.5: Ranking of visual saliency models using the robust AUC metric.

the study by (Borji, Sihite, & Itti, 2013), our results show that the AWS model
is the best among all. Figure 6.5 shows the ranking of saliency models obtained
by using the proposed robust AUC metric. We observe that the ranking is
almost the same as the shuffled AUC metric, with the AWS model performing
the best and the Gauss model performing the worst. We note that the robust
AUC metric gives a lower value for the Gauss model, and the saliency models
are closer to the inter-observer (IO) model. Based on the results, we conclude
that the robust AUC metric a good candidate for the evaluation of saliency
algorithms.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Figure 6.6: In the left column the foveated images for three fixations are shown.
Here, the fixation points are represented as red dots. The images in the right
column show the original image, the result obtained by combining the foveated
images using the proposed method, and the difference between the result and
the original image.

6.4 Proposed saliency based image compression
algorithm

In papers 7 and 8, we proposed an algorithm to compress an image based on the
eye fixations from an eye tracker or the salient image locations predicted by the
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saliency models. This is achieved by using image fusion in the gradient domain.
The algorithm is based on two steps, in the first we modify the gradients of an
image based on a limited number of fixations and in the second we integrate
the modified gradient. The use of human vision steered compression is seen by
researchers as the most promising path toward further improvements. In this
regard, the proposed algorithm can be used as part of an image compression
pipeline with very promising results. From our initial tests, we have noticed
that the algorithm results in reduced storage requirements without the added
artifacts associated with frequency based compressions in the wavelets domain.
The results for an example images and the associated fixations are shown in
figure 6.6. In the left column the foveated images for three fixations are shown.
Here, the fixation points are represented as red dots. In agreement with the
predicted results for the application of the contrast function by (Wang & Bovik,
2001), we notice that the regions around the fixation points are sharper than
the rest. The images in the right column show the original image, the result
obtained by combining the foveated images using the proposed method, and
the difference between the result and the original image. We notice that the
result image is sharp in the regions corresponding to the three fixation points,
we further notice that the image represents a good approximation of the original
with greater differences in the parts that the observer deemed to be less salient.

6.5 Depth estimation in three-dimensional scenes

In papers 9, 10, and 11, we presented two main contributions.

The first is the hypothesis that the introduction of a closed loop feedback
in the form of a compensatory cue improves the estimation of perceived depth
in virtual environments. To test our hypothesis we designed a simple three-
dimensional virtual environment which included a checkerboard background and
spherical objects appearing at different depth values. The depth range used
in the experiment varied from 50 to 300 mm behind the screen. This range
corresponds to the users personal space which is believed to be the range in
which convergence is a significant cue. Furthermore, we included an audible
cue into the design of the environment. The audible cue was provoked when
the fixation-data obtained from the eye tracker resulted in a depth estimate
that was within a predefined error value. Here the calculations were based on
a line-intersection method. To examine the local variations in the data we sub-
sampled the distribution into twenty regions. For each sub-sample we calculated
the average values of the depth obtained by employing the line-intersection
method. Figure 6.7(a) shows the variation over time of the local average values
for a depth of 150 mm. We note that the introduction of the compensatory cue is
indeed improving the estimated depth over time. Further, the comparison of the
histograms, figure 6.7b, for the two experiments reflects that the introduction
of the compensatory cue results in a higher frequency of depth estimates that
are in the vicinity of the actual depth.

The second contribution is the introduction of a new method that allows
designers of virtual environments to estimate the uncertainty in the measured
depth value. The proposed method is based on the principle of intersection of
convex sets where two sets are defined. The first set is defined by the statistical
distribution of the left eye fixations together with the center of the eye. A
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(a) Distributions of depth estimates for the sub-sampled data of two experiments over
twenty samples of the total time. In the experiment with compensatory cue we see a clear
convergence towards the actual depth of the object, that is 150 mm behind the screen.
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(b) Histograms of the sub-sampled data for two experiments.

Figure 6.7: Distributions and histograms of depth estimates for two experiments:
without compensatory cue, and with compensatory cue. Depth estimates were
calculated using the line-intersection method.

corresponding set is defined for the right eye. In an ideal situation i.e., when no
noise is present in the data these two sets are reduced to the visual lines and
the method is identical to the line-intersection method. When noise is present,
however, the sets represent conical volumes and their intersection is the feasible
solution space where any point is equally likely to be the actual depth. Based on
that we represented the uncertainty in the estimate by means of three standard
deviations from the average value. Figure 6.8 shows the results obtained based
on a depth value of 150 mm behind the screen. We note that the result obtained
with the compensatory cue represents a clear improvement over that achieved
without. We also note that while the average values of the cone intersection
region are a fair representation of the actual depth, the uncertainty depicted
by the error-bars offers a more comprehensive view into the estimation. We
observe that the real depth is almost always within the uncertainty range.
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we notice that the actual depth is almost always within the uncertainty range.
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(b) Histograms of the sub-sampled data for two experiments.

Figure 6.8: Distributions and histograms of depth estimates for two experiments:
without compensatory cue, and with compensatory cue. Depth estimates were
calculated using the cone-intersection method.

6.6 Towards three-dimensional visual saliency

In order to calculate saliency in three-dimensional virtual scenes, we can use the
symmetry groups for a cube. A cube has 48 symmetries that can be represented
by the transformations of products of the groups S4 and S2. S2 is the symmetric
group of degree 2 and has two elements: the identity, and the permutation
interchanging the two points (Dummit & Foote, 2004). S4 is a symmetric group
of degree 4, i.e., all permutations on a set of size four (Dummit & Foote, 2004).
This group has 24 elements that are obtained by rotations about opposite faces,
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Figure 6.9: Number of axes with opposite diagonals like this = 4. We can rotate
by 120 or 240 degrees around these axes. These operations give 8 elements.

r

Figure 6.10: Number of axes with opposite faces like this = 3. We can either
rotate by 90, 180 or 270 degrees around these axes. These operations give 9
elements.

r

Figure 6.11: Number of axes with opposite edges like this = 6. We can rotate
by 180 degrees around these axes. These operations give 6 elements.

opposite diagonals and opposite edges of the cube. For instance, figures 6.9
to 6.11 show the different rotational symmetries of the cube. We note that
from the rotations along opposite diagonals, faces, and edges we get 8, 9, and
6 elements respectively. These elements along with the identity form the 24
elements of the S4 group.

Saliency in a three-dimensional virtual scene can be calculated by employing
the same procedure as discussed in papers 5 and 6, but instead of computing in
two-dimensional space using theD4 group, we can calculate in three-dimensional
space using the S4 ×S2 transformations. For example, after dividing the three-
dimensional scene into uniform size cubes, we can rotate and reflect a cube and
record the values associated with the transformations. The recorded values can
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be collected in a matrix and rescaled along each of the three planes, i.e., X-Y,
Y-Z, Z-X to get a three-dimensional feature map. The resulting feature maps
corresponding to the 48 elements can be combined to get a representation of
saliency for the three-dimensional scene. Similar to the implementation dis-
cussed in papers 5 and 6, different cube sizes can be used to capture both the
local and global salient details. This is left as future work and we hope that
this will help future researchers to venture towards three-dimensional saliency.
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ABSTRACT
In this paper, we analyzed eye fixations data obtained from
15 observers and 1003 images. When studying the correla-
tion matrix constructed based on the fixations data of one
observer viewing all images, it was observed that 23 per-
cent of the data can be accounted for by one eigenvector.
This finding implies a repeated viewing pattern that is inde-
pendent of image content. The examination of this pattern
revealed that it was highly correlated with the center re-
gion of the image. The presence of a repeated viewing pat-
tern raised the following question: Is our visual attention
driven by salient image content? In order to answer this
question, we analyzed the data across different observers
viewing the same image. Our analysis showed that there
was good agreement among observers for images contain-
ing people, faces, and text while poor agreement was ob-
served for complex images such as landscapes, buildings,
and street views. Our findings suggest that strong agree-
ment between observers was due to top-down features of
the image, i.e., context driven rather than bottom up fea-
tures associated with low level image attributes.

KEY WORDS
Eye Fixations, Saliency

1 Introduction

A salient image region is defined as an image part that is
clearly different from its surround [1]. This difference is
measured in terms of a number of attributes, namely, con-
trast, brightness and orientation [2, 3, 4]. By measuring
these attributes, visual saliency algorithms aim to predict
the regions in an image that would attract our attention un-
der free viewing conditions [2], i.e., when the observer is
viewing an image without a specific task such as searching
for an object. Finally, the output of the visual saliency al-
gorithms is a so called saliency map which is a two dimen-
sional gray scale map where the brighter regions represent
higher saliency.

To evaluate the performance of visual saliency al-
gorithms, the two dimensional saliency maps are com-
pared with the image regions that attract observers’ atten-
tion [5, 6, 7, 8, 9]. This is done by displaying to the ob-
servers a set of images and using an eye tracker to record
their eye fixations. Further, it is thought that a higher num-

ber of fixations correspond to salient image regions. The
recorded fixations are thus compared with the associated
visual saliency maps in a pair wise manner [10, 11, 12].
Unfortunately, most studies have shown that while the
saliency algorithms do predict a certain percentage of fix-
ations they are far from being able to fully account for ob-
serves‘ visual attention [13]. In fact, in a recent compre-
hensive eye tracking study by Judd et al. [14], it was shown
that a dummy classifier defined by a Gaussian blob at the
center of the image was better at predicting the eye fixa-
tions than any of the visual saliency models [1, 15, 6]. In
other words, assuming that the eye fixations fall at the cen-
ter of the image results in better prediction than an analysis
of the image content. This finding is surprising and raises
the question of whether our attention is indeed guided by
salient image features.

As part of the Judd et al. [14] study, a large database of
1003 images and the associated fixations data from 15 in-
dependent observers was made public to researchers in the
field. This database represents the largest set of available
data to date. Thus to address the issue of whether eye fixa-
tions are guided by salient image features we performed a
statistical analysis of these fixations data. In this analysis,
we examined the fixations data independent of the asso-
ciated images. Given that a Gaussian blob was shown to
predict fixations better than saliency algorithms [14], we
started our examination by the assumption that fixations
data are independent of image features. In order to exam-
ine the truthfulness of this assumption, we represented the
fixations data from each image in terms of a k dimensional
probability histogram. Representing fixations using proba-
bility histograms allowed us to compare fixations from dif-
ferent observers and images. Given that each histogram
can be represented as a vector in a k dimensional space,
we grouped all the 1003 vectors from each observer into a
data matrix. Knowing that the images used in the Judd et
al. [14] study were carefully chosen to be as different from
each other as possible, we would expect an analysis of the
associated fixations to reveal that the fixations in turn are
different. This difference was analyzed by performing an
eigen-decomposition of the k × k correlation matrix ob-
tained from the probability histograms. It is well known
that the eigen-analysis of a data matrix whose vectors are
linearly independent, results in a set of eigenvalues which
are comparable in magnitude. On the other hand, analyz-
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ing a matrix whose columns are linearly dependent results
in a limited number of non-zero eigenvalues. Such matrices
are known as rank deficient where the number of non-zero
eigenvalues corresponds to the actual rank, r, of the matrix
where r is smaller or much smaller than the dimension of
the matrix.

By analyzing the correlation matrices obtained from
the fixations data of the 15 observers, we found that the
matrices are strongly rank deficient. Specifically, we found
that the first dimension of the matrix accounts for approx-
imately 23 percent of the data and over 93 percent is cap-
tured in the first thirty five dimensions (k = 80 in our ex-
periment). The fact that 23 percent of the data is accounted
for in the first dimension can explain the high correlation
between the fixations data and a Gaussian blob observed
in the Judd et al. [14] study. In fact, by examining the first
eigenvector of the correlation matrices we found that it rep-
resented a center like filter.

The finding that 23 percent of the data is captured by
the first dimension indicates that eye fixations are image
feature independent. To examine the level of independence
we carried out a different experiment. In this case, we ex-
amined the correlation matrix whose vectors are the proba-
bility histograms of the 15 fixations data obtained from dif-
ferent observers viewing a single image. We worked under
the assumption that if the first eigenvector of the correlation
matrix accounts for the same data percentage as that ob-
tained from the fixations data of one observer and different
images then the fixations data can be said to be image fea-
ture independent. We found, however, that the correlation
between the 15 observers viewing a single image is gener-
ally higher than that of a single observer viewing different
images. This finding is again in keeping with the results ob-
tained in the Judd et al. [14] study where it was found that
the agreement among observers is higher than the Gaus-
sian blob filter. Furthermore, this finding indicates that a
certain percentage of fixations cannot be said to be image
feature independent. However, by performing a visual in-
spection, we found that the correlation between observers
is highest for images containing faces, people and text and
lowest for images containing street views and landscapes.
Indeed for the latter category the order of correlation was
similar to that obtained based on the analysis of fixations
data from a single observer viewing different images. This
leads us to conclude that, based on the current data, vi-
sual attention is guided by top-down rather than bottom up
image features. Further, the correspondence observed be-
tween different observers viewing complex images seems
to be better explained by a common viewing mechanism
rather than salient image features. Finally, the main contri-
bution of this paper is the idea of grouping fixations data
from different images which allows us to analyze the fixa-
tions independent of the corresponding images.

2 Method

In this section, we discuss the procedure used for the statis-
tical analysis of the data. To allow us to compare fixations
data of different durations and counts, we represented the
data from each image in terms of an 8 by 10 probability
histogram. For instance, figure 1 represents a typical his-
togram obtained by overlapping the 8 by 10 grid over the
fixations data. This operation generated an 80 dimensional
vector Vi for each image in the dataset. Second, the vectors
V1, V2, .., Vn for all the images were normalized by their
sum and grouped in a matrix A along the rows as,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

..

..
Vn

⎤
⎥⎥⎥⎥⎥⎥⎦

, where the size of A is n by 80, and n is the number of
images in the database. Third, we calculated the correlation
matrix C of A as,

C = ATA, (1)

where the size of C is 80 by 80. Finally, we employed the
singular value decomposition(SVD) for the analysis of the
correlation matrix. For a matrix C, the SVD is defined as
follows:

C = USV T , (2)

where U and V are orthogonal matrices of size m by m and
n by n respectively, and S is a diagonal matrix of the same
size as C [16]. The diagonal elements of S are arranged
in decreasing order. Since C is a symmetric matrix the
singular value decomposition of C is identical to its eigen
decomposition [17].

3 Results

3.1 Step 1: SVD Analysis of One Observer and Differ-
ent Images

The database [14] consisted of portrait and landscape im-
ages. For our analysis we chose 463 landscape images of
size 768 by 1024 pixels. We started the analysis by group-
ing the probability histograms based on one observer and
the fixations obtained from all the images into a data ma-
trix. As a second step, the corresponding correlation matrix
was constructed and its SVD was computed using the stan-
dard matlab svd algorithm. The eigenvalues were normal-
ized by dividing them by the sum of all the eigen values. As
depicted in figure 2, the eigenvalues of the correlation ma-
trix show that the first dimension accounts for 25 percent of
the data for observer no. 1. Similar trends were observed
for all the other observers, as an example, see figures 3
to 5, where we note that the first dimension represents 17
percent of the data for observer no. 2, 20 percent of the
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Figure 1. Histogram obtained from the fixations data.

data for observer no. 3, and 31 percent of the data for ob-
server no. 4. To analyze the overall distribution of eigen-
values across all the observers we grouped the fixations’
histograms from all the observers and images into a single
data matrix and calculated its svd. Here the idea was to
estimate the information captured in the first dimension for
an average observer. The distribution of eigenvalues for an
average observer is shown in figure 6. We observe that 23
percent of the data is accounted for by the first dimension.
Considering that the images chosen in the dataset were dif-
ferent from each other. The fact that 23 percent of the data
is represented by the first vector implies the presence of a
repeated viewing pattern shared between all the observers.

Figure 7 shows the first eigenvector for the average
observer. We note that it depicts a concentration of fixa-
tions in the center region of the image. This center bias in
the fixations has been observed in other studies [18, 13, 14]
as well. It can be responsible for the high correlation of fix-
ations data with a dummy Gaussian classifier as observed
in the study by Judd et al. [14].

3.2 Step 2: SVD Analysis of Different Observers and
One Image

To examine the common fixations among different ob-
servers, we grouped the fixations’ histograms correspond-
ing to a single image and the 15 observers into a data ma-
trix and computed the singular value decomposition based
on the correlation matrix. The SVD of the correlation ma-
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Figure 2. Distribution of eigenvalues for Observer No 1 and
different images. First dimension represents 25 percent of
the data.
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Figure 3. Distribution of eigenvalues for Observer No 2 and
different images. First dimension represents 17 percent of
the data.

trices, of the different images, show that depending on the
image the agreement between observers’ varies from 25 to
92 percent. Figure 8 shows the histogram distribution of
the eigenvalues of all the images.

Our assumption is that if the fixations data are driven
by image content then the first eigenvector of the correla-
tion matrix should account for a higher percentage of the
data than the fixations data of one observer and different
images. As shown in figure 9, the distribution of eigenval-
ues for an average image shows that the first vector cap-
tures 50 percent of the data. This is clearly more than the
percentage of data captured by one observer and different
images discussed in the previous section. Based on this
analysis we might assume that the content driven mecha-
nisms between different observers play a significant role in
the observed pattern of viewing.
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Figure 4. Distribution of eigenvalues for Observer No 3 and
different images. First dimension represents 20 percent of
the data.
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Figure 5. Distribution of eigenvalues for Observer No 4 and
different images. First dimension represents 31 percent of
the data.

Based on the fact that for an average image the first
vector captures 50 percent of the data, we classified the fix-
ations data into two categories. Category I consisted of the
fixations data for which the first vector accounted for more
than 70 percent of the data. In other words it represented
the fixations where the observers were in good agreement.
Category II consisted of the fixations data for which first
vector accounted for less than 30 percent of the data, i.e. in
the order obtained based on one observer viewing different
images. In other words it represented the fixations where
observers were in poor agreement. Figure 10 shows the
images and the probability histograms obtained from their
first vectors for the fixations where observers were in good
agreement. We note that observers show good agreement
for images containing people, faces, and text which has also
been observed in other eye tracking studies [7, 19, 14]. Fig-
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Figure 6. Distribution of eigenvalues for an average ob-
server. 23 percent of the data is captured by the first di-
mension.
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(a) Eigenvector for an average observer.

(b) Probability histogram for the shared eigenvector.

Figure 7. Eigenvector for an average observer. It shows a
concentration of fixations in the center region of the image.
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Figure 8. Histogram of first eigenvalues for all the im-
ages where mean, minimum, and maximum values of the
distribution are 0.50, 0.25, and 0.92 respectively. It rep-
resents that the degree of agreement between observers’
varies from image to image.
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Figure 9. Distribution of eigenvalues for an average image.
50 percent of the data is captured by the first dimension. 90
percent of the data is captured by the first 5 dimensions.

ure 11 shows the images and the probability histograms of
first vectors for the fixations where observers strongly dis-
agree. Observers show poor agreement for complex images
which contain a lot of objects such as landscapes, buildings,
and street views. Further, the dispersion of the first vector
is more for this category of images.

4 Conclusions

In this paper, we analyzed the comprehensive eye fixations
database by Judd et al. [14]. To allow us to compare fix-
ations from different images and observers, the data were
represented in the form of probability histograms. We ob-
served that for an average observer, approximately 23 per-

cent of the fixation data can be represented by one eigen-
vector. Since the images in the database were carefully cho-
sen to be different from each other, this indicated the pres-
ence of a repeated viewing pattern. Analysis of this pattern
revealed that it represents fixations at the center of the im-
age. This finding along with the fact that a center Gaussian
blob performs better than the visual saliency models for
predicting eye fixations raised the question whether visual
attention is driven by the image content or by a mechanism
that is unique to the observer. In order to address this issue,
we analyzed the data for the cases where individual images
were viewed by different observers. Results show that de-
pending on the image the correlation between different ob-
servers varied from 25 to 92 percent. It was observed that
observers were in good agreement for images containing
faces, people, and text while there was poor agreement on
complex images such as landscapes, buildings, and street
views. Thus, for this dataset, we conclude that observers
attention is driven by two different mechanisms the first is a
general pattern of viewing an arbitrary image while the sec-
ond is top-down attention driven by the existence of faces,
people and text.
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Figure 10. Category I: Images together with their first vectors. Observers show good agreement on people, faces, and text.
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Figure 11. Category II: Images together with their first vectors. Observers show poor agreement for complex images such as
landscapes, buildings, and street views.
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Abstract. Finding a robust metric for evaluating the visual saliency al-

gorithms has been the subject of research for decades. Motivated by the

shuffled AUC metric in this paper, we propose a robust AUC metric that

uses the statistical analysis of the fixations data to better judge the good-

ness of the different saliency algorithms. To calculate the robust AUC

metric, we use the first eigenvector obtained from the statistical analysis

to define the area from which non-fixations are selected thus mitigating

the effect of the center bias. Our results show that the proposed metric

results in similar performance when compared with the shuffled AUC

metric, but given that the proposed metric is derived from the statistics

for the data set, we believe that it is more robust.

Keywords: Saliency evaluation, saliency models, fixations

1 Introduction

A salient image region is defined as an image part that is clearly different from

its surround [1]. This difference is measured in terms of a number of attributes,

namely, contrast, brightness, and orientation. By measuring these attributes,

visual saliency algorithms aim to predict the regions in an image that would

attract our attention under free viewing conditions [2, 1, 3, 4], i.e., when the ob-

server is viewing an image without a specific task such as searching for an object.

The output of the visual saliency algorithms is a so–called saliency map, which

is a two dimensional gray scale map where the brighter regions represent higher

saliency.

In the past two decades, modeling visual saliency has generated a lot of in-

terest in the research community. In addition to contributing towards the under-
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standing of human vision, it has also paved the way for a number of multimedia

applications. These applications include: image and video compression [5, 6], im-

age segmentation [7], image retrieval [8], image and video quality assessment [9,

10], and artistic image rendering [11].

To evaluate the performance of visual saliency algorithms, the two dimen-

sional saliency maps are compared with the image regions that attract observers’

attention [12–14]. This is done by displaying to the observers a set of images and

using an eye tracker to record their eye fixations. Further, it is thought that a

higher number of fixations correspond to salient image regions. The recorded

fixations are thus compared with the associated visual saliency maps in a pair

wise manner [4, 15, 16]. Unfortunately, studies [17, 11, 18] have shown that while

viewing images observers tend to fixate on the center of the image more than the

peripheral regions. This effect is known as center bias and is well documented in

vision studies [19, 17]. The two main reasons behind this are: first, the tendency

of photographers to place the objects at the center of the image. Second, the

viewing strategy employed by observers, i.e., to look at center locations more in

order to acquire the most information about a scene [20]. The presence of center

bias in fixations makes it difficult to evaluate the correspondence between the

fixated regions and the salient image regions. This can be explained by the fact

that in a comprehensive eye tracking study by Judd et al. [11], it was shown that

a dummy classifier defined by a Gaussian blob at the center of the image was

better at predicting the eye fixations than any of the visual saliency models [1,

21, 12].

Guided by recent studies on the creation of a metric that normalizes for the

influence on the center region, we studied the work by Zhang et al. [22], in which

a so called shuffled AUC (area under the receiver-operating-characteristic curve)

metric was used by the authors to mitigate the effect of center-bias in fixations.

Instead of selecting non-fixated regions from single image as is the case in

the shuffled metric by Zhang et al. [22], we decided to use the repeated viewing

pattern obtained from the statistical analysis of the fixations data done in the

study by [18]. In their study, the repeated pattern represents the fixations that

are image feature independent and is calculated as follows: first, the fixations

are represented as probability histograms and each histogram is defined as a k

dimensional vector. Second, the vectors for all observers and images are grouped

together into a data matrix. Finally, an eigen-decomposition is performed on the

k by k correlation matrix obtained from the data matrix and the first eigenvector,
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i.e., the eigenvector with the highest eigenvalue is used to represent the repeated

viewing pattern. We reasoned that for a given image the repeated pattern is the

part which is most likely to be fixated upon, thus choosing a non-fixated region

from within it for the analysis by the AUC metric would indeed counteract the

influence of the repeated fixations pattern.

The steps in our implementation were as follows–first, the probability his-

togram of the repeated viewing pattern defined by the first eigenvector, is cal-

culated and represented as a two dimensional map, second, the locations for the

negative class, i.e., non-fixated are chosen from the locations where the intensity

is high.

Thus the contribution of this paper is the introduction of a robust AUC

metric that is based on the statistical analysis of fixations data and isolating

that part that is common among images and observers. This metric unlike the

shuffled version is not based on choosing non-fixated regions from parts that

have been fixated upon in other images but rather on the whole data set making

it more robust.

Finally, when we compared the performance of the new robust metric with

the shuffled AUC, we found that the two metrics returned a similar order of best

and worst algorithms with some variations that we elaborate on in the results

section.

2 Method

In this section, we review the procedure used for the statistical analysis of the

data. For the analysis 463 landscape images of size 768 by 1024 pixels are used.

To allow us to compare fixations data of different durations and counts, we rep-

resented the data from each image in terms of an 8 by 10 probability histogram.

For instance, figure 1 represents a typical histogram obtained by overlapping the

8 by 10 grid over the fixations data.

This operation generated an 80 dimensional vector Vi for each image in the

dataset. Second, the vectors V1, V2, .., Vn for all the images were normalized by
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Fig. 1: Histogram obtained from the fixations data.

their sum and grouped in a matrix A along the rows as,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

..

..

Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the size of A is n by 80, and n is the number of images in the database.

Third, we calculated the correlation matrix C of A as,

C = ATA, (1)

where the size of C is 80 by 80. Finally, we employed the singular value decom-

position (SVD) for the analysis of the correlation matrix. For a matrix C, the
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SVD is defined as follows:

C = USV T , (2)

where U and V are orthonormal matrices of size m by m and n by n respectively,

and S is a diagonal matrix of the same size as C [23]. The diagonal elements of

S are arranged in decreasing order. Since C is a symmetric matrix the singular

value decomposition of C is identical to its eigen decomposition [24].

2.1 Evaluation metrics

To evaluate the saliency models, an area under the receiver-operating-characteristic

curve (AUC) metric is normally employed.

In order to calculate the AUC [25, 26], the fixations pertaining to a given im-

age are averaged into a single two dimensional map which is then convolved with

a two-dimensional Gaussian filter. The resultant fixations map is then thresh-

olded to yield a binary map with two classes–the positive class consisting of fix-

ated locations, and the negative class consisting of non-fixated locations. Next,

from the two dimensional saliency map, we obtain the saliency values associated

with the positive and the negative classes. Using the saliency values, a receiver-

operating-characteristic (ROC) curve is drawn that plots the true positive rate

against the false positive rate. For a detailed description of ROC, see the study

by [25]. The area under the ROC curve gives us a measure of the performance

of the classifier. AUC gives a scalar value in the interval [0,1]. If AUC is 1 then

it indicates that the saliency model is perfect in predicting fixations. An AUC

of 0.5 implies that the performance of the saliency model is not better than a

random classifier or by chance prediction.

As stated previously, the shuffled AUC metric was used by Zhang et al. [22]

to mitigate the effect of center-bias in fixations. To calculate the shuffled AUC

metric for a given image and one observer, the locations fixated by the observer

are associated with the positive class in a manner similar to the regular AUC,

however, the locations for the negative class are selected randomly from the

fixated locations of other unrelated images, such that they do not coincide with

the locations from the positive class.

It is well known that the choice of locations for the negative class can influence

the robustness of an AUC metric. To improve the robustness, we propose a

modified AUC metric in which the negative class locations are chosen from the

regions associated with high probability as described by the repeated viewing

pattern (defined by the first eigenvector of the correlation matrix C). In other
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words, the locations for the negative class are selected from within the image

regions that are likely to attract fixations.

3 Results

3.1 Repeated viewing pattern
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(a) First eigenvector for all images and observers.

(b) Probability histogram for the shared eigenvec-
tor.

Fig. 2: The first eigenvector for all images and observers. It shows a concentration
of fixations in the center region of the image.
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Figure 2 shows the repeated viewing pattern, i.e., the first eigenvector for

all observers and images obtained in the study by [18]. We note that it depicts

a concentration of fixations in the center region of the image. This center bias

in the fixations has been observed in other studies [27, 17, 11] and it is likely

responsible for the high correlation of fixations data with a dummy Gaussian

classifier as noted in the study by Judd et al. [11].

3.2 Evaluating the visual saliency models

For evaluation, we chose eight state of the art saliency models, namely, AIM

by Bruce & Tsotsos [28], AWS by Garcia-Diaz et al. [29], SUN by Zhang et

al. [22], Hou by Hou & Zhang [30], GBA by Alsam et al. [31], GBVS by Harel

et al. [12], Itti by Itti et al. [1], Judd by Judd et al. [11]. Figure 3 illustrates a

given image and the associated saliency maps obtained from the different saliency

models. In line with the study by Borji et al. [32], we used two models to provide

a baseline for the evaluation. Gauss is defined as a two-dimensional Gaussian

blob at the center of the image. This model corresponds well with the fixations

falling at the image center. IO model is based on the fact that an observer’s

fixations can be predicted best by the fixations of other observers viewing the

same image. In this model the map for an observer is calculated as follows: first,

the fixations corresponding to a given image from all the observers except the

one under consideration are averaged into a single two-dimensional map. Having

done that the fixations are spread by smoothing the map using a Gaussian

filter. The IO model gives us an upper bound on level of correspondence that is

expected between the saliency models and the fixations.

Figure 4 shows the ranking of the visual saliency models obtained by using

the ordinary AUC metric. We observer that all saliency models used in this

paper perform above chance. We also observer that SUN, GBA, AWS, Hou,

AIM, and Itti perform worse than the Gauss model, with GBVS, and Judd

being the two best models. This finding can be explained by the fact that the

center regions are weighted more in both the GBVS, and Judd models.

The results obtained by employing the shuffled AUC metric are shown in

figure 5. We note that as compared to the ordinary AUC, this metric changes

the ranking of the saliency models significantly. As an example, the Gauss

classifier changes from being one of the best to being clearly the worst. Further,

the GBVS, and Judd models drop significantly in the rankings. In fact in this

case, AIM, Hou, GBA, and AWS models are the four best models. In-line
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Image from database [11] AIM AWS

SUN Hou GBVS

Itti Judd GBA

Fig. 3: Figure shows a given image and the associated saliency maps obtained
from the different saliency models used in this paper.

with the study by Borji et al. [32], our results show that the AWS model is

the best among all. The results imply that the shuffled AUC metric is robust

to the influence of the fixations associated with the center-bias compared to the

ordinary AUC metric.

Finally, in figure 6 we show the ranking of saliency models obtained by using

the proposed robust AUC metric. We observe that the ranking is almost the

same as the shuffled AUC metric, with the AWS model performing the best

and the Gauss model performing the worst. We note that the robust AUC

metric gives a lower value for the Gauss model, and the saliency models are

closer to the IO model, thus, making the robust AUC metric a good candidate

for the evaluation of saliency algorithms.
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Fig. 4: Ranking of visual saliency models using the ordinary AUC metric.
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Fig. 5: Ranking of visual saliency models using the shuffled AUC metric.

4 Conclusions

Inspired by the shuffled AUC metric in this paper, we present a robust AUC

metric that uses the statistical analysis of the fixations data to evaluate the

performance of the different saliency algorithms. In order to calculate the robust

AUC metric, we use the first eigenvector obtained from the statistical analysis to

define the area from which non-fixations are selected thus abating the influence

of fixations associated with the center bias. Our results show that the proposed

metric results in similar performance when compared with the shuffled AUC but
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Fig. 6: Ranking of visual saliency models using the robust AUC metric.

given that the proposed metric is derived from the statistics for the data set, we

believe that it is more robust.
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In this paper, we analyzed eye fixation data obtained from 15 observers and 1003 images.When studying the eigen-
decomposition of the correlation matrix constructed based on the fixation data of one observer viewing all images,
it was observed that 23% of the data can be accounted for by one eigenvector. This finding implies a repeated
viewing pattern that is independent of image content. Examination of this pattern revealed that it was highly
correlated with the center region of the image. The presence of a repeated viewing pattern raised the following
question: can we use the statistical information contained in the first eigenvector to filter out the fixations
that were part of the pattern from those that are image feature dependent? To answer this question we
designed a robust AUC metric that uses statistical analysis to better judge the goodness of the different saliency
algorithms. © 2014 Optical Society of America
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1. INTRODUCTION
A salient image region is defined as an image part that is
clearly different from its surround [1,2]. This difference is
measured in terms of a number of attributes, namely, contrast,
brightness, and orientation [3–5]. By measuring these attrib-
utes, visual saliency algorithms aim to predict the regions
in an image that would attract our attention under free view-
ing conditions [4], i.e., when the observer is viewing an image
without a specific task such as searching for an object. Finally,
the output of the visual saliency algorithms is a so-called
saliency map, which is a two-dimensional gray scale map in
which the brighter regions represent higher saliency.
To evaluate the performance of visual saliency algorithms,

the two-dimensional saliency maps are compared with the im-
age regions that attract observers’ attention [6–10]. This is
done by displaying to the observers a set of images and using
an eye tracker to record their eye fixations. Further, it is
thought that a higher number of fixations correspond to
salient image regions. The recorded fixations are thus com-
pared with the associated visual saliency maps in a pair wise
manner [11–13]. Unfortunately, most studies have shown that
while the saliency algorithms do predict a certain percentage
of fixations, they are far from being able to fully account for
observers’ visual attention [14,15]. In fact, in a recent compre-
hensive eye tracking study by Judd et al. [16], it was shown
that a dummy classifier defined by a Gaussian blob at the
center of the image was better at predicting the eye fixations
than any of the visual saliency models [7,1,17]. In other words,
assuming that the eye fixations fall at the center of the image
results in better prediction than an analysis of the image con-
tent. This finding is surprising and raises the question of
whether our attention is indeed guided by salient image
features.

As part of the Judd et al. [16] study, a large database of 1003
images and the associated fixation data from 15 independent
observers were made public to researchers in the field. This
database represents the largest set of available data to date.
Thus to address the issue of whether eye fixations are guided
by salient image features we performed a statistical analysis
of these fixation data. In this analysis, we examined the fix-
ation data independent of the associated images. Given that
a Gaussian blob was shown to predict fixations better than
saliency algorithms [16], we started our examination by the
assumption that fixation data are independent of image fea-
tures. In order to examine the truthfulness of this assumption,
we represented the fixation data from each image in terms of a
k-dimensional probability histogram. Representing fixations
using probability histograms allowed us to compare fixations
from different observers and images. Given that each histo-
gram can be represented as a vector in a k-dimensional space,
we grouped all the 1003 vectors from each observer into a
data matrix. Knowing that the images used in the Judd et al.
[16] study were carefully chosen to be as different from
each other as possible, we would expect an analysis of the
associated fixations to reveal that the fixations in turn are dif-
ferent. This difference was analyzed by performing an eigen-
decomposition of the k × k correlation matrix obtained from
the probability histograms. It is well known that eigen-analysis
of a data matrix whose vectors are linearly independent re-
sults in a set of eigenvalues that are comparable in magnitude.
On the other hand, analyzing a matrix whose columns are lin-
early dependent results in a limited number of nonzero eigen-
values. Such matrices are known as rank deficient where the
number of nonzero eigenvalues corresponds to the actual
rank, r, of the matrix where r is smaller or much smaller than
the dimension of the matrix.
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By analyzing the correlation matrices obtained from the fix-
ation data of the 15 observers, we found that the matrices are
strongly rank deficient. Specifically, we found that the first
dimension of the matrix accounts for approximately 23% of
the data and more than 93% is captured in the first 35 dimen-
sions (k � 80 in our experiment). The fact that 23% of the data
is accounted for in the first dimension can explain the high
correlation between the fixation data and a Gaussian blob
observed in the Judd et al. [16] study. In fact, by examining
the first eigenvector of the correlation matrices we found that
it represented a center like filter.
The finding that 23% of the data is captured by the first

dimension indicates that eye fixations are image feature inde-
pendent. To examine the level of independence we carried out
a different experiment. In this case, we examined the corre-
lation matrix whose vectors are the probability histograms of
the 15 fixation data obtained from different observers viewing
a single image. We worked under the assumption that if the
first eigenvector of the correlation matrix accounts for the
same data percentage as that obtained from the fixation data
of one observer and different images, then the fixation data
can be said to be image feature independent. We found, how-
ever, that the correlation between the 15 observers viewing a
single image is generally higher than that of a single observer
viewing different images. This finding is again in keeping with
the results obtained in the Judd et al. [16] study, where it was
found that the agreement among observers is higher than the
Gaussian blob filter. Furthermore, this finding indicates that a
certain percentage of fixations cannot be said to be image fea-
ture independent. However, by performing a visual inspection,
we found that the correlation between observers is highest for
images containing faces, people, and text and lowest for im-
ages containing street views and landscapes. Indeed for some
images in the latter category the order of correlation was sim-
ilar to that obtained based on the analysis of fixation data from
a single observer viewing different images. This might lead us
to conclude that visual attention is guided by top-down rather
than bottom-up image features; however, separating the
implicit spatial bias represented by top-down features from
stimulus-dependent and scene-dependent fixations would re-
quire a detailed forensic analysis. Given that these different
mechanisms, and perhaps others, are at play and cannot be
disentangled from one another nor from the scene composi-
tion, it is challenging to make assertions about their relative
contributions.
The first contribution of this paper is the idea of grouping

fixation data from different images, which allows us to analyze
the fixations independent of the corresponding images.
Visual inspection of a number of images cannot be said to

qualify as a reliable metric of the performance of visual
saliency algorithms and is thus short of enabling us to claim
that salient image regions have no influence on our visual
attention.
Guided by recent studies on the creation of a metric that

normalizes for the influence on the center region, we studied
the work by Tatler et al. [15], in which a so-called shuffled area
under the receiver-operating-characteristic curve (AUC) met-
ric was used by the authors to mitigate the effect of center bias
in fixations.
To calculate the shuffled AUC metric for a given image and

one observer, the locations fixated on by the observer are

associated with the positive class in a manner similar to
the regular AUC; however, the locations for the negative class
are selected randomly from the fixated locations of other
unrelated images, such that they do not coincide with the
locations from the positive class.
Instead of selecting nonfixated regions from a single image

as is the case in the shuffled metric by Tatler et al. [15], we
decided to use the values returned by the first eigenvector
of the correlation matrix as a filter from which we can choose
nonfixated regions. We reasoned that the common pattern
found in the first part of the experiment is the part that is most
likely to be fixated upon; thus choosing a nonfixated region
fromwithin it for the analysis by theAUCmetric would indeed
counteract the influence of the repeated fixations pattern.
Here, it is important to state that by choosing the first eigen-
vector we are not claiming that there is no commonality cap-
tured by the second or indeed higher frequency components.
That said, principle component analysis returns orthogonal
vectors, and combining two or more features to represent
commonality requires an in-depth study with strong reason-
ing. We thus disregard any influence of the second component
on the common viewing pattern based on the evidence that
the second eigenvalue captures 7% of the data compared to
the 23% captured by the first.
The steps in our implementation were as follows: first, the

probability histogram of the repeated viewing pattern defined
by the first eigenvector is calculated and represented as a two-
dimensional map. Second, the locations for the negative class,
i.e., nonfixated, are chosen from the locations where the in-
tensity is high.
The second contribution of this paper is the introduction of

a robust AUC metric that is based on statistical analysis of
fixation data and isolating that part that is common among
images and observers. This metric, unlike the shuffled version,
is not based on choosing nonfixated regions from parts that
have been fixated upon in other images, but rather on the
whole dataset, making it more robust.
Finally, when we compared the performance of the new ro-

bust metric with the shuffled AUC, we found that the two
metrics returned a similar order of best and worst algo-
rithms with some variations that we elaborate on in the results
section.

2. METHOD
In this section, we discuss the procedure used for statistical
analysis of the data. To allow us to compare fixation data of
different durations and counts, we represented the data from
each image in terms of an 8-by-10 probability histogram. For
instance, Fig. 1 represents a typical histogram obtained by
overlapping the 8-by-10 grid over the fixation data. This oper-
ation generated an 80-dimensional vector Vi for each image in
the dataset. Second, the vectors V1; V2;…; Vn for all the im-
ages were normalized by their sum and grouped in a matrix A
along the rows as

A �

2
6666664

V1

V2

V3

‥

‥

Vn

3
7777775
;
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where the size of A is n by 80, and n is the number of images
in the database. Third, we calculated the correlation matrix
C of A as

C � ATA; (1)

where the size of C is 80 by 80. Finally, we employed the sin-
gular value decomposition (SVD) for analysis of the correla-
tion matrix. For a matrix C, the SVD is defined as follows:

C � USVT ; (2)

where U and V are orthonormal matrices of sizem bym and n
by n, respectively, and S is a diagonal matrix of the same size
as C [18]. The diagonal elements of S are arranged in decreas-
ing order. Since C is a symmetric matrix, the SVD of C is iden-
tical to its eigen-decomposition [19].

A. Evaluation Metrics
To evaluate the saliency models, an AUC metric is normally
employed.
In order to calculate the AUC [20,21], the fixations pertain-

ing to a given image are averaged into a single two-
dimensional map, which is then convolved with a two-
dimensional Gaussian filter. The resultant fixations map is
then thresholded to yield a binary map with two classes—
the positive class consisting of fixated locations, and the
negative class consisting of nonfixated locations. Next, from
the two-dimensional saliency map, we obtain the saliency
values associated with the positive and the negative classes.
Using the saliency values, a receiver-operating-characteristic
(ROC) curve is drawn that plots the true positive rate against
the false positive rate. For a detailed description of ROC, see
the study by [21]. The area under the ROC curve gives us a
measure of the performance of the classifier. AUC gives a

scalar value in the interval [0,1]. If AUC is 1, then it indicates
that the saliency model is perfect in predicting fixations.
An AUC of 0.5 implies that the performance of the saliency
model is not better than a random classifier or by chance
prediction.
To improve the robustness of the shuffled AUC metric, we

propose a modified AUC metric in which the negative class
locations are chosen from the regions associated with high
probability as described by the repeated viewing pattern
(defined by the first eigenvector of the correlation matrix C).
In other words, the locations for the negative class are se-
lected from within the image regions that are likely to attract
fixations.

3. RESULTS
A. Step 1: SVD Analysis of One Observer and Different
Images
The database [16] consisted of portrait and landscape images.
For our analysis we chose 463 landscape images of size 768 by
1024 pixels. We did not use the whole database due to the dif-
ficulty in combining the histograms of the landscape images
with portraits. Further, the portrait images were of different
sizes. We thus limited the analysis to the landscape images to
avoid any influence of rotating and resizing the rest of the
data. We started the analysis by grouping the probability histo-
grams based on one observer and the fixations obtained from
all the images into a data matrix. As a second step, the cor-
responding correlation matrix was constructed, and its SVD
was computed using the standard MATLAB SVD algorithm.
The eigenvalues were normalized by dividing them by their
sum. As depicted in Fig. 2, the eigenvalues of the correlation
matrix show that the first dimension accounts for 25% of the
data for observer No. 1. Similar trends were observed for all
the other observers; as an example, see Figs. 3–5, where we
note that the first dimension represents 17% of the data for
observer No. 2, 20% of the data for observer No. 3, and
31% of the data for observer No. 4. To analyze the overall dis-
tribution of eigenvalues across all the observers we grouped
the fixations’ histograms from all the observers and images
into a single data matrix and calculated its SVD. Here the idea
was to estimate the information captured in the first dimen-
sion for an average observer. The distribution of eigenvalues

(a)

(b)

Fig. 1. Histogram obtained from the fixation data. (a) Distribution of
fixations and (b) histogram of fixations.
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Fig. 2. Distribution of eigenvalues for observer No. 1 and different
images. First dimension represents 25% of the data.
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for an average observer is shown in Fig. 6. We observe that
23% of the data is accounted for by the first dimension, con-
sidering that the images chosen in the dataset were different
from each other. The fact that 23% of the data is represented

by the first vector implies the presence of a repeated viewing
pattern shared between all the observers.
Figure 7 shows the first eigenvector for the average

observer. We note that it depicts a concentration of fixations
in the center region of the image. This center bias in the fix-
ations has been observed in other studies [16,22,14], and it is
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Fig. 3. Distribution of eigenvalues for observer No. 2 and different
images. First dimension represents 17% of the data.
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Fig. 4. Distribution of eigenvalues for observer No. 3 and different
images. First dimension represents 20% of the data.
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Fig. 5. Distribution of eigenvalues for observer No. 4 and different
images. First dimension represents 31% of the data.
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Fig. 6. Distribution of eigenvalues for an average observer. 23% of
the data is captured by the first dimension.
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Fig. 7. Eigenvector for an average observer. It shows a concentra-
tion of fixations in the center region of the image. (a) Eigenvector
for an average observer. (b) Probability histogram for the shared
eigenvector.
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likely responsible for the high correlation of fixation data with
a dummy Gaussian classifier as observed in the study by Judd
et al. [16].

B. Step 2: SVD Analysis of Different Observers and One
Image
To examine the common fixations among different observers,
we grouped the fixations’ histograms corresponding to a sin-
gle image and the 15 observers into a data matrix. The SVDs of
the correlation matrices, of the different images, show that
depending on the image the agreement between observers
varies from 25% to 92%. Figure 8 shows the histogram distri-
bution of the first eigenvalues of all the images, where the
average value is approximately 50%. Figure 9 shows the aver-
age eigenvalues based on all observers viewing a single image.
We note that the average agreement between different observ-
ers viewing a single image, 50%, is double that obtained when
a single observer views different images, 23%. We can thus
state that the difference between the commonality observed

in the viewing pattern when one observer views different
images and that observed in the case of all observers viewing
a single image is due to the image-dependent features, includ-
ing, i.e., implicit spatial bias represented by top-down fea-
tures, and stimulus-dependent and scene-dependent fixations.
Based on the finding that for an average image the first

vector captures 50% of the data, we classified the fixations
into two categories. Category I consisted of the fixation data
for which the first vector accounted for more than 70% of
the data. In other words it represented the fixations where
the observers were in good agreement. Category II consisted
of the fixation data for which the first vector accounted for
less than 30% of the data, i.e., in the order obtained based on
one observer viewing different images. Figure 10 shows
the images and the probability histograms obtained for the
image where observers were in good agreement. We note
that observers show good agreement for images containing
people, faces, and text, something that has also been ob-
served in other eye tracking studies [24,6,16]. Figure 11
shows the images and the probability histograms for images
where observers disagree. Observers show poor agreement
for complex images that contain a lot of objects such as
landscapes, buildings, and street views. Further, the
dispersion of the first vector is more for this category of
images.

C. Evaluating the Visual Saliency Models
For evaluation, we chose 11 state-of-the-art saliency models,
namely, AIM by Bruce and Tsotsos [25], AWS by Garcia-Diaz
et al. [26], Erdem by Erdem and Erdem [27], Hou by Hou and
Zhang [28], Spectral by Schauerte and Stiefelhagen [29], SUN
by Zhang et al. [30], GBA by Alsam et al. [31], GBVS by Harel
et al. [7], Itti by Itti et al. [1], Judd by Judd et al. [16], and LG
by Borji and Itti [32]. In line with the study by Borji et al. [33],
we used two models to provide a baseline for the evaluation.
Gauss is defined as a two-dimensional Gaussian blob at the
center of the image. This model corresponds well with the
fixations falling at the image center. The IO model is based
on the fact that an observer’s fixations can be predicted best
by the fixations of other observers viewing the same image.
In this model the map for an observer is calculated as fol-
lows: first, the fixations corresponding to a given image from
all the observers except the one under consideration are
averaged into a single two-dimensional map. Having done
that the fixations are spread by smoothing the map using
a Gaussian filter. The size of the Gaussian filter as well as
the level of smoothing are two factors known to influence
the performance of the models. To avoid introducing too
many variables, we used the fixation maps from the Judd
et al. [16] study without varying the level of smoothing.
The IO model gives us an upper bound on the level of cor-
respondence that is expected between the saliency models
and the fixations.
Figure 12 shows the ranking of the visual saliency models

obtained by using the ordinary AUC metric. We observed that
all saliency models used in this paper perform above chance.
We also observed that SUN, Spectral, GBA, LG, AWS, Hou,
AIM, and Itti performworse than the Gauss model, with GBVS,
Erdem, and Judd being the three best models. This finding can
be explained by the fact that the center regions are weighted
more in the GBVS, Erdem, and Judd models.
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Fig. 8. Histogram of first eigenvalues for all the images where the
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The results obtained by employing the shuffled AUCmetric
are shown in Fig. 13. We note that as compared to the ordinary
AUC, this metric changes the ranking of the saliency models
significantly. As an example, the Gauss classifier changes
from being one of the best to being clearly the worst. Further,
the GBVS, Erdem, and Judd models drop significantly in the

rankings. In fact in this case, the LG and AWS models are the
two best models. In line with the study by Borji et al. [33], our
results show that the AWS model is the best among all. The
results imply that the shuffled AUC metric is robust to the in-
fluence of the fixations associated with the center bias com-
pared to the ordinary AUC metric.

Fig. 10. Category I: images together with their first vectors. Observers show good agreement on people, faces, and text. Img 1–16 used from the
database by Judd et al. [16], and the LabelMe dataset by Russell et al. [23].
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Next, in Fig. 14 we show the ranking of saliency models
obtained by using the proposed robust AUC metric. We ob-
serve that the ranking is almost the same as the shuffled AUC
metric, with the AWS model performing the best and the
Gauss model performing the worst. We note that the robust
AUC metric gives a lower value for the Gauss model, and the
saliency models are closer to the IO model, thus making the
robust AUC metric a good candidate for the evaluation of
saliency algorithms.

Finally, in Figs. 13 and 14, we can see that there is a gap
between the performance of visual saliency models and that
of human performance represented by the IO model; further,
this difference is less when we use the proposed AUC metric.
Although some recent models such as AWS, and LG, have re-
duced this disparity, adding top-down features in the saliency
models is seen as the next step toward bridging this gap. To
this end, researchers [16,24,33] have suggested features such
as faces, people, text, and objects of interest [16], such as cars,
human body parts, and animals.

Fig. 11. Category II: images together with their first vectors. Observers show poor agreement for complex images such as landscapes, buildings,
and street views. Img 1–8 used from the database by Judd et al. [16], and the LabelMe dataset by Russell et al. [23].
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Fig. 12. Ranking of visual saliency models using the ordinary AUC
metric.
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Fig. 13. Ranking of visual saliency models using the shuffled AUC
metric.
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4. CONCLUSIONS
In this paper, we analyzed the comprehensive eye fixations
database by Judd et al. [16]. To allow us to compare fixa-
tions from different images and observers, the data were
represented in the form of probability histograms. We ob-
served that for an average observer, approximately 23%
of the fixation data can be represented by one eigenvector.
Since the images in the database were carefully chosen to
be different from each other, this indicated the presence of
a repeated viewing pattern. Analysis of this pattern
revealed that it represents fixations at the center of the
image. This finding along with the fact that a center
Gaussian blob performs better than the visual saliency
models for predicting eye fixations raised the question of
whether visual attention is driven by the image content
or by a mechanism that is unique to the observer. In
order to address this issue, we analyzed the data for
the cases in which individual images were viewed by
different observers. Results show that depending on the
image the correlation between different observers varied
from 25% to 92%. It was observed that observers were in
good agreement for images containing faces, people,
and text, while there was poor agreement on complex
images such as landscapes, buildings, and street views.
Thus, for this dataset, we conclude that observers’ atten-
tion is driven by two different mechanisms: the first is a
general pattern of viewing an arbitrary image, while the
second is driven by a mixture of top-down and bottom-up
attention.
Knowing that the repeated pattern described by the first

eigenvector represents fixations at the center region of
the image we decided to investigate its usefulness in design-
ing a variant of the AUC metric. Inspired by the shuffled
AUC metric, we used the first eigenvector obtained from
the statistical analysis to define the area from which nonfix-
ations are selected, thus mitigating the effect of the center
region.
Our results show that the proposed metric results in

similar performance when compared with the shuffled
AUC but given that the proposed metric is derived from

the statistics for the dataset, we believe that it is more
robust.
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Abstract. Bottom up attention models suggest that human eye move-
ments can be predicted by means of algorithms that calculate the differ-
ence between a region and its surround at different image scales where
it is suggested that the more different a region is from its surround the
more salient it is and hence the more it will attract fixations. Recent
studies have however demonstrated that a dummy classifier which as-
signs more weight to the center region of the image out performs the
best saliency algorithm calling into doubt the validity of the saliency
algorithms and their associated bottom up attention models. In this pa-
per, we performed an experiment using linear discrimination analysis to
try to separate between the values obtained from the saliency algorithm
for regions that have been fixated and others that haven’t. Our working
hypothesis was that being able to separate the regions would constitute
a proof as to the validity of the saliency model. Our results show that the
saliency model performs well in predicting non-salient regions and highly
salient regions but that it performs no better than a random classifier in
the middle range of saliency.

Keywords: Saliency, fixations.

1 Introduction

A salient image region is defined as an image part that is clearly different
from its surround [1]. This difference is measured in terms of a number of at-
tributes, namely, contrast, brightness and orientation [2–6]. By measuring these
attributes, visual saliency algorithms aim to predict the regions in an image that
would attract our attention under free viewing conditions [4], i.e., when the ob-
server is viewing an image without a specific task such as searching for an object.
Finally, the output of the visual saliency algorithms is a so called saliency map
which is a two dimensional gray scale map where the brighter regions represent
higher saliency.

To evaluate the performance of visual saliency algorithms, the two dimensional
saliency maps are compared with the image regions that attract observers’ at-
tention [7–14]. This is done by displaying to the observers a set of images and
using an eye tracker to record their eye fixations. Further, it is thought that a
higher number of fixations correspond to salient image regions. The recorded
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fixations are thus compared with the associated visual saliency maps in a pair
wise manner [8, 15–17]. Unfortunately, most studies have shown that while the
saliency algorithms do predict a certain percentage of fixations they are far from
being able to fully account for observers’ visual attention [18, 19]. In fact, in a
recent comprehensive eye tracking study by Judd et al. [20], it was shown that a
dummy classifier defined by a Gaussian blob at the center of the image was better
at predicting the eye fixations than any of the visual saliency models [1, 21, 22].
In other words, assuming that the eye fixations fall at the center of the image
results in better prediction than an analysis of the image content. This finding
is surprising and raises the question of whether our attention is indeed guided
by salient image features.

In this paper we set about validating the saliency algorithm by means of an
experiment in which we divided 200 images into regions which have received fix-
ations and others that didn’t. By collecting the values returned by the saliency
algorithm local to those regions into two matrices we were able to use discrimi-
nation analysis to determine whether the data of the two matrices is separable.
Our working hypothesis was that being able to separate the data using linear
discrimination analysis would constitute a proof that the saliency algorithm is
indeed in good correspondence with the eye fixations while failing to separate
the data would constitute a proof that the saliency algorithm is a poor predictor
of eye fixations.

In our experiment we found that the saliency algorithm predicts eye fixations
almost perfectly in regions that don’t attract any fixations and also in regions
that attract many fixations. It is, however, a poor estimator of fixations in regions
with middle saliency where the algorithm performs as a random classifier.

2 Brief Description of the Saliency Algorithm

Input to the algorithm is provided in the form of static color images. Three
early features: color, intensity, and orientation are calculated from the input im-
age. From these features several spatial scales are created using dyadic Gaussian
pyramids [1]. Salient features are detected by using center-surround differences
which are grounded in vision studies. The center-surround differences are cal-
culated between the fine and the coarse scales followed by normalization. For
details see [1]. Finally the resultant feature maps are combined linearly to form
a so-called saliency map.

3 Experiments and Results

3.1 Data Set

The images and the associated fixations data used in the analysis were obtained
from the comprehensive study by Judd et al. [20]. The data-set [20] includes 1003
images which were shown to 15 different observers with normal vision under free
viewing conditions, i.e., the observers viewed the images without a specific task
such as searching for an object.
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Validating the Saliency Theory. In this experiment we set about validating
the claim that the eye fixates on regions in the image that are salient or different
with respect to their surround. To achieve an objective validation we chose to
divide each image into two different sets of regions, in the first we have image
regions which have attracted observers fixations and in the second set we have
image regions that didn’t attract fixations. The data was based on a subset of
the images and corresponding fixations obtained by Judd et al. [20] where we
used 200 landscape images and all the fifteen observers. The images were 1024
by 768 pixels in dimension and a fixated area was defined as a square region of
dimensions 100 by 100 pixels where the center was located at the fixation point.
Non-fixated areas were chosen randomly from parts of the image that had a
region of a 100 by 100 pixels without any fixations. As an example, the fixated
and the non-fixated regions for an image and the corresponding feature maps
obtained by the saliency algorithm [1] are shown in figure 1.

By dividing the image into square regions that are classed as either fixated or
not fixated we were able to assign a value to each square part that corresponds
to the average of the intensity of the corresponding pixels in the saliency map
obtained by Itti et al. [1]. In so doing we obtained two matrices, F and Nf

where the elements in the vectors of F were the values of the averages of the
feature maps based on the square regions centered at the fixation points while
the vectors of Nf were the average values for non-fixated areas. Further we chose
the number of non-fixated areas to be equal to that of the fixated regions, thus,
the size of F was n× k were n was the number of fixations in all the 200 images
and k was the number of feature maps was defined by the algorithm to be three
maps pertaining to intensity, color and orientation.

Our main objective with the creation of the matrices F and Nf was to de-
termine whether we can separate between the data of the two matrices using
discrimination analysis or not. The basic idea was that being able to separate
the data would constitute a proof that the fixations are indeed driven by low level
features such as contrast and lightness as is the claim by researchers supporting
the bottom up attention model. We further believe that the level of separation
achieved between the fixated and non-fixated regions would offer us a clear view
as to the goodness of the saliency algorithm in predicting the fixations. Thus if
the prediction is random we can conclude, based on the available data set, that
the idea that salient regions attract attention is false while a perfect separation
would indicate that salient image regions dictate our visual attention.

We chose a simple discrimination method which involves calculating the dif-
ference vector between the averages of F and Nf and then projecting the vectors
of F and Nf onto the difference vector to judge whether the data is separated
along that vector or in other words whether F and Nf are significantly different.
Mathematically, the operation are:

w = μF − μNf
, (1)

where the size w corresponds to the number of feature maps (3 for the saliency
algorithm), and μF and μNf

are the means along the columns of F and Nf .
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Image from database [20] Fixations and non-fixations

Color Intensity

Orientation

Fig. 1. Figure shows the fixated and the non-fixated regions for an image and the
corresponding feature maps obtained by the saliency algorithm [1]. The fixated regions
are marked as blue and the non-fixated regions are marked as red
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(b) Relative probabilities

Fig. 2. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 1. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].
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(b) Relative probabilities

Fig. 3. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 2. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].

pF = wF (2)

pNf
= wNf , (3)

where the number of elements of the vectors pF and pNF are 1 by k. The dis-
tribution of pF and pNF provides a mathematical description of whether the
fixated and non-fixated regions are indeed different as predicted by the saliency
algorithm.
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(b) Relative probabilities

Fig. 4. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 3. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].
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Fig. 5. Probability histograms and relative probabilities for the fixated and non-fixated
regions for observer no 4. X-axis shows the saliency values obtained by using the visual
saliency algorithm [1].

In figure 2, we plotted the probability histograms of pF and pNf
. Here, the

histogramwas normalized such that the area under the curve is one. We note that
the separation between the two sets is not ideal but rather we find a considerable
overlap between the two histograms specifically in the middle range. We further
note that there is a clear separation between the two sets for regions of the images
that received no fixations indicating that the method is good at predicting non-
salient regions of the images. At a value of 0.3 the classification of the two sets
is random.
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Fig. 6. Probability histograms and relative probabilities for the fixated and non-fixated
regions for an average observer. X-axis shows the saliency values obtained by using the
visual saliency algorithm [1].

To gain better insight into the ability of the algorithm to separate the image
regions into fixated and non-fixated, we plotted the relative probabilities of the
histograms. For the non-fixated histogram, the relative probabilities were ob-
tained by dividing the area under the non-fixated probability histogram curve
of a specific bin i by the area under the fixated histogram curve for the same
bin. For the relative probability of the fixated histogram the reciprocal value
was calculated. Based on the fixation data of observer number one, this curve is
plotted in figure 2 where we observe that for low salience values the separation
of non-fixated regions is ideal and that the goodness of the separation declines
to a level that is random. We also note that the separation of the highly salient
regions, is nearly ideal. Based on this we can conclude that the algorithm is good
in predicting non-salient and highly salient regions but its performance drops in
the middle range. Assuming that the algorithm is a good representation of the
way in which the human vision system functions we can state that flat regions
which are almost never fixated while middle range contrast attracts fixations
though not in every part and regions with very high saliency almost always at-
tract fixations. This interpretation is of course dependent on the total number
of fixations and the spatial distribution of the salient regions.

To generalize the analysis for the other observers, we performed the same
calculations for all the observers and found similar trends in all cases. The results
for observers two, three, and four shown in figures 3, and 5 respectively; and
similar results were obtained for the fifteen individual observers. The results for
the average observer based on all fifteen observers are shown in figure 6.

4 Discussion

In this paper, we performed a study to validate the claim that human eye fix-
ations correspond to salient image features. We divided the image into regions
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which attracted fixations and others that were deemed by the observers as non-
salient. By grouping the associated values for the feature maps obtained from
the saliency algorithm by Itti et al. [1] into two matrices one pertaining to the
fixated regions and an other to the non-fixated areas we were able to use linear
discrimination to separate the regions optimally. Our working hypothesis was
that being able to distinguish between the local values of the feature maps at
fixated and non-fixated regions would indicate that the algorithm is indeed use-
ful in predicting eye fixations. Our findings indicate that saliency algorithm by
Itti et al. [1] is nearly ideal at predicting non-salient and highly salient regions
with a considerable confusion in the mid saliency region.
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Abstract. A salient feature is a part of the scene that stands out rel-
ative to neighboring items. By that we mean that a human observer
would experience a salient feature as being more prominent. It is, how-
ever, important to quantify saliency in terms of a mathematical quantity
that lends itself to measurements. Different metrics have been shown to
correlate with human fixations data. These include contrast, brightness
and orienting gradients calculated at different image scales.

In this paper, we show that these metrics can be grouped under trans-
formations pertaining to the dihedral group D4, which is the symmetry
group of the square image grid. Our results show that salient features
can be defined as the image features that are most asymmetric in their
surrounds.

Keywords: Saliency, dihedral group D4, asymmetry.

1 Introduction

We are frequently surprised by the difference between what we observe in our
visual world and the observations of others around us. Commonly, we think of
these differences as a product of our varying personalities or interests, i.e., we
notice what we think of or like. The fact that we observe different visual reali-
ties can, however, be explained in a different manner—we are selective because
our brains are limited. In other words, we are selective because our brains do
not process all the visual information that surrounds us. In this view, which is
supported by psychophysical experiments [1–4], visual selection, or attention, is
an information reduction method.

Mathematically, information reduction methods start with a process of iden-
tifying the most important aspects of the data, i.e., the parts of the data that
cannot be disregarded. As an example both factor analysis and principal com-
ponent analysis are based on the idea that multi-dimensional data can be repre-
sented with a set of limited bases that account for them with limited information
loss [5, 6]. Based on this mathematical analogy we might wonder how the reduc-
tion of visual information is achieved.

In the literature, two main methods have been proposed: Top-down, also
know as attention, and bottom-up or pre-attention visual information reduction
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[1, 7–13]. As an example of top-down we might consider the problem of locating
an item such as the red book on the bookshelf. Here our visual system would be
trying to quickly browse the scene, disregarding any other color. As such, top-
down visual reduction is task-driven and voluntary, where we would be looking
for an aspect in the scene that matches a mental representation. Bottom-up
methods on the other hand are involuntary, faster than top-down and not task-
driven. Instead they are driven by the identification of a new, unknown, visual
experience. The question that arises in bottom-up approaches is: How do we
reduce the visual data of an arbitrary scene?

Most of the bottom-up, pre-attention models share the same basic elements.
The basic assumption is that the different regions of the visual information field
differ in their visual content. Based on that, an area of the scene that is clearly
different from its surround, salient, is thought to represent an anchor point for
data reduction. In other words, the visual reduction task is similar to statistical
methods such as principal component analysis, where the most salient features
of the scene represent the set of bases around which the rest of the scene is
arranged. To measure the difference between a center and its surround, a number
of stimulus characteristics have been proposed. These include color difference,
contrast and orientation. For a given scene, these differences are measured and
the results stored in so-called feature maps which are then combined in a so-
called saliency map.

While salient feature detection algorithms are progressively more efficient at
predicting where a person might look under free viewing conditions, the actual
definition of a salient feature and thereby the mechanism of selecting such regions
is still debatable. Generally, a salient feature is defined as a region in the scene
that is different from its surround. The nature of this difference is, however,
loosely defined. As previously mentioned, the difference is measured in terms of a
number of metrics pertaining to contrast and gradients or orientation at different
spatial scales commonly implemented by means of image pyramid decomposition.

The question addressed in this paper is mathematical, namely, we ask if the
differences used in estimating the level of saliency at a given scene location can
be grouped in a unified mathematical definition. By examining the metrics used
to construct the feature maps, we observe that all can be accounted for by trans-
formations described by the dihedral group D4. This is the symmetry group of
the square image grid and includes two types of symmetries, i.e., rotation and
reflection. The transformations defined by D4 have exhibited immense power in
image processing operations including image compression, denoising, and index-
ing [14–18].

To test the usefulness of the dihedral group in describing salient image fea-
tures, we constructed a saliency map based on seven elements of D4, namely,
rotation by 90, 180 and 270 degrees and reflection about the horizontal, vertical
and two diagonal axes. These transformations were performed on the blocks ob-
tained by decomposing the image into square regions. The results at the higher
and lower scales of image were calculated and stored in separate feature maps
(details in the theory section). Finally, the feature maps were grouped into a
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saliency map in linear manner, i.e., without the use of center surround opera-
tions. Having done that, we evaluated the correspondence between the proposed
saliency map and human fixations data. Our results show that a saliency map
derived based on the transformations of the dihedral group D4 matches well
with human fixation data, and has very high correspondence with the existing
saliency map.

Based on these results and the knowledge that the D4 transformations rep-
resent a mathematical measure of symmetry, we conclude with the hypothesis
that a salient image feature is a part of the scene that is highly asymmetric
compared to its surround and the more asymmetric a feature is the more salient
it is. This hypothesis is strengthened by the knowledge that the transformations
of D4 are extremely fast. This latter aspect of the operations is in agreement
with the knowledge that bottom-up operations are fast, in the order of 25 to 50
ms [10].

The rest of this article is organized as follows: In Section 2, we discuss the
theory behind the dihedral group D4 and the implementation of the proposed
algorithm, in detail. In section, we examine the results obtained from the eval-
uation of saliency algorithms.

2 Theory

2.1 Mathematical Background

Mathematically, the symmetries of geometric objects can be defined by group
theory, and in particular the symmetries of the square are encoded in the dihedral
group D4. In this section we briefly define and describe this group and then show
how it can be applied to detect asymmetry in an image.

The Group D4. A group is a set G together with a binary operation ∗ on its
elements. This operation ∗ must behave in a very specific way:

i) G must be closed under ∗, that is, for every pair of elements g1, g2 in G we
must have that g1 ∗ g2 is again an element in G.

ii) The operation ∗ must be associative, that is, for all elements g1, g2, g3 in G
we must have that

g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3.
iii) There is an element e in G, called the identity element, such that for all

g ∈ G we have that
e ∗ g = g = g ∗ e.

iv) For every element g in G there is an element g−1 in G, called the inverse of
g, such that

g ∗ g−1 = e = g−1 ∗ g.
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Groups appear in many places in mathematics. For instance, the integers form
a group with the operation +, and the real numbers become a group under
multiplication. We see that a group has just enough structure that every equation
of the form g1 ∗x = g2, where g1 and g2 are elements of G, has a unique solution
x = g2 ∗ g−1

1 in G. For a good introduction to group theory, see [19].
In this paper we are interested in D4, the symmetry group of the square.

This group has eight elements, four rotational symmetries and four reflection
symmetries. The rotations are 0◦, 90◦, 180◦ and 270◦, and the reflections are
defined along the four axes shown in Figure 1. We refer to these elements as
σ0, σ1, . . . , σ7. Note that the identity element is rotation by 0◦, and that for
each element there is another element that has the opposite effect on the square,
as required in the definition of a group. The group operation is composition of
two such transformations. As an example of one of the group elements, consider
Figure 2, where we demonstrate rotation by 90◦ counterclockwise on a square
with labeled corners.

Fig. 1. The four axes of reflection symmetries of the square

A B

CD

B C

DA

Fig. 2. Rotation of the square by 90◦ counterclockwise

The Average Asymmetry Matrix. The elements of D4 can be viewed as
transformations that act on a square. Such an action on a set which respects
the group operation is called a group action on the set. We will not define this
formally here, just note that this means that we can define the action of D4 on
the entries of a real square matrix in a natural way by letting the group elements
rotate or reflect the entries according to the corresponding group elements. We
will denote such an action by σiM , where σi is the element of D4 acting on a
square matrix M .

LetM be an n×n-matrix and σi some element ofD4. We define the asymmetry
of M by σi, denoted by Ai(M), to be the matrix

Ai(M) = |M − σiM |. (1)
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We note that if M has a strong degree of the symmetry preserved by σi, the
entries of this matrix will be close to zero.

Now we are ready to define the average asymmetry of M , denoted by A(M).
Let M be an n× n matrix. Then we define the average asymmetry matrix A of
M , denoted A(M), as the matrix

A(M) =
1

8

7∑
i=0

Ai(M). (2)

The more symmetries a matrix has, the smaller the entries of A(M) will be,
and in this way we can say that A(M) provides a way to measure the degree of
asymmetry of M .

2.2 Proposed Group Based Asymmetry Algorithm

In this section, we outline the implementation of the proposed group based asym-
metry algorithm. From the color image, we calculate three channels, i.e., lumi-
nance channel, red-green and blue-yellow color opponency channels as described
by Walther and Koch [20]. In order to calculate a feature map, we decompose
the channel into square blocks. In the general case when the image dimensions
are not perfectly divisible by the selected block size we padd the image borders
with neighboring pixels. For example, in our experiments we used a block size
of 20 by 20 pixels for an image of size 1024 by 768 pixels, thus after padding the
image size becomes 1040 by 780 pixels. For each block, we calculate the absolute
difference between the block itself and the result of the D4 group element acting
on the block. We take the mean of the absolute difference for each block, which is
taken as a measure of asymmetry for the block and has a scalar value in the range
[0,1]. The asymmetry values for all the blocks are then collected in an image ma-
trix and scaled up to the size of original image using bilinear-interpolation. In
the resultant feature map the saliency of a location is represented by its scalar
value, where a greater value represents a higher saliency. From the the D4 group
elements i.e., rotations by 90, 180 and 270 degrees, and reflections along the
four axes of a square, we get seven feature maps. In order to capture both the
local and the global salient details in a channel, we use three scales: the original,
1/2 and 1/4. This gives three scales which combined with the seven D4 group
elements give 21 feature maps, i.e., from the three channels we get a total of 63
feature maps which are combined linearly to get a single saliency map.

2.3 Analysis Using ROC

Approach. In this section, we discuss the approach taken for evaluating the
performance of the visual saliency models. In keeping with published meth-
ods [21–23], we average all the fixations from different observers pertaining to a
given image into a single two dimensional map, which is then convolved with a
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two dimensional Gaussian filter. In the resultant fixations map, the intensity at a
given location represents the density of fixations [24], where the more fixations a
region receives the more salient its said to be. For example, figure 3(b) shows the
fixations map for an image. Similar to the previous experiment, we calculated
the fixations maps from the fixations data of 200 images and 15 observers.

(a) Image from database [26].

(b) Fixations map.

(c) Binary map.

Fig. 3. From the fixations map and the image, we can see that the region containing
the road sign received a significant number of fixations. Figure 3(c) shows the binary
map obtained by thresholding the fixations map by 20 percent.
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In order to evaluate, how well the visual saliency models predict the fixa-
tions maps for different images, we use a receiver operating characteristic(ROC)
curve [25] which requires that a fixations map is thresholded to yield a binary
map with two classes – the positive class consisting of fixated regions, and the
negative class consisting of non-fixated regions. As an example, figure 3 shows
the binary map obtained by thresholding the fixations map by 20 percent. This
procedure is in keeping with the study by Judd et al. [26]. The ROC curve
evaluates how well the visual saliency algorithm predicts the two classes [25].
For plotting the ROC curve we randomly select 500 pixels from the positive
class and an equal number of pixels from the negative class. The area under
the ROC curve (AUC) is used as a measure of the performance of a classifier.
AUC gives a scalar value in the interval [0,1] where larger the area, better is the
performance [25].

Results. We plot the ROC curves for the visual saliency algorithm proposed
by Itti et al. [3], and the proposed group based asymmetry algorithm(GBA).
Results in figure 4 show that the GBA algorithm results in an AUC value of
0.81 which is better than that achieved with the visual saliency algorithm by
Itti et al. [3] which gives AUC of 0. 77.

In order to measure the similarity between the proposed group based asym-
metry algorithm and the visual saliency algorithm by Itti et al. [3] we calculated
another ROC curve. In this case, we use the saliency maps from the visual
saliency algorithm [3] as the ground truth maps. By following the procedure de-
scribed in section 2.3, we evaluated how well the maps obtained from the GBA
algorithm predict the maps obtained from the visual saliency algorithm [3]. Fig-
ure 5 shows the ROC curve for the proposed GBA algorithm which gives an
AUC of 0.88 indicating that the prediction of the saliency values obtained by
the proposed algorithm is indeed close to that of the visual saliency model.

Fig. 4. Figure shows the ROC curves for the visual saliency(VS) model by Itti
et al. [3](AUC = 0.77), and the proposed group based asymmetry (GBA) model (AUC
= 0.81). The x-axis shows the false positive rate(FPR) and the y-axis shows the true
positive rate(TPR).
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Fig. 5. Figure shows the ROC curves for the proposed group based asymmetry (GBA)
model, AUC = 0.88. The x-axis shows the false positive rate(FPR) and the y-axis
shows the true positive rate(TPR). Here we use the maps from the visual saliency
algorithm [3] as the ground truth.

(a) Image from database [26] (b) Fixations Map

(c) Saliency Map [3] (d) Group based Asymmetry
Map(GBA)

Fig. 6. Comparison of visual saliency algorithms, both algorithms return the region
containing the boat at the center as salient, which is also in agreement with the fixations
map obtained from the eye fixations data
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To offer a visual comparison between the two methods we show the fixations
map, and the saliency maps obtained from the GBA algorithm and the visual
saliency algorithm [3] for an example image. In figure 6, we can see that the
maps from both the algorithms are quite similar. In fact both of them return
the region containing the boat at the center as salient, which is also in agreement
with the fixations map.

3 Discussion

In this study, we set about unifying the mathematical description of saliency in a
single metric. Backed by the knowledge gained from research in image processing
where it has been shown that the dihedral group D4 can be used to encode edges
and contrast which are the main current descriptions of saliency we chose to
devise an algorithm that represents the level of saliency in an image region by
virtue of the transformations of D4. D4 is the symmetry group of the square
image grid and includes two types of symmetries, i.e., rotation and reflection.

In our implementation, we chose to describe the symmetry of an image region
at three different scale, however, we didn’t perform any center surround oper-
ations by taking the differences between the scales. In this view, what we have
presented in this study is a new unified metric together with a new description of
saliency where we define saliency as the combined level of asymmetry at different
image scales.

In our experiment, we a used a receiver operating characteristic(ROC) curve
to compare the performance of the proposed method with that of Itti et al. [3] .
Here we used 200 images and fifteen observers and found that the new method
results in a predication of fixations that is better than that achieved with the
saliency algorithm. We thus concluded that the transformations of the dihedral
group D4 are a good metric to estimate salient image regions which if backed by
further studies can represent a mathematically sound method to define a salient
image region.
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A salient image region is a part of the scene that stands out relative to neighboring regions. By that we mean
that a human observer would experience a salient region as being more prominent. It is, however, important
to quantify saliency in terms of a mathematical quantity that lends itself to measurements. Different metrics
have been shown to correlate with human fixation data. These include contrast, brightness and orienting
gradients calculated at different image scales.

In this paper, we show that saliency can be measured by the transformations pertaining to the dihedral
group D4, which is the symmetry group of the square image grid. Our results show that salient features can
be defined as the image features that are most asymmetric in their surrounds.

Keywords: Saliency, eye fixations, visual attention

I. INTRODUCTION

From psychophysical experiments16,19,26, it is well es-
tablished that our visual system is selective, i.e. we only
see parts of the visual scene where the eyes fixate. In
other words, we are selective because our brains do not
process all the visual information that surrounds us but
rather integrates a seamless sensation from a smaller set
of regions. In this view, visual selection, or attention, is
an information reduction method that builds a continu-
ous image of the world based on fragments.

Mathematically, information reduction methods start
with a process of identifying the most important aspects
of the data, i.e., the parts of the data that cannot be
disregarded. As an example both factor analysis and
principal component analysis are based on the idea that
multi-dimensional data can be represented with a set of
limited bases that account for them with limited infor-
mation loss12,17. Based on this mathematical analogy we
might wonder how the reduction of visual information is
achieved.

In the literature, two main methods have been pro-
posed: Top-down, also know as attention, and bottom-up
or pre-attention visual information reduction4,7,15,23–26.
As an example of top-down we might consider the prob-
lem of locating an item such as the red book on the book-
shelf. Here our visual system would be trying to quickly
browse the scene, disregarding any other color. As such,
top-down visual reduction is task-driven and voluntary26,
where we would be looking for an aspect in the scene that
matches a mental representation. Bottom-up methods
on the other hand are involuntary, faster than top-down
and not task-driven26. Instead they are driven by the
identification of a new, unknown, visual experience. The
question that arises in bottom-up approaches is: How do
we reduce the visual data of an arbitrary scene?

a)Electronic mail: er.puneetsharma@gmail.com

Most of the bottom-up, pre-attention models share the
same basic elements. The basic assumption is that the
different regions of the visual information field differ in
their visual content19. Based on that, an area of the
scene that is clearly different from its surround, salient, is
thought to represent an anchor point for data reduction.
In other words, the visual reduction task is similar to
statistical methods such as principal component analysis,
where the most salient features of the scene represent
the set of bases around which the rest of the scene is
arranged. To measure the difference between a center and
its surround, a number of stimulus characteristics have
been proposed. These include color difference, contrast
and orientation16. For a given scene, these differences are
measured and the results stored in so-called feature maps
which are then combined in a so-called saliency map16.

While salient feature detection algorithms are progres-
sively more efficient at predicting where a person might
look under free viewing conditions, the actual definition
of a salient feature and thereby the mechanism of select-
ing such regions is still debatable. Generally, a salient
feature is defined as a region in the scene that is differ-
ent from its surround16. The nature of this difference
is, however, loosely defined. As previously mentioned,
the difference is measured in terms of a number of met-
rics pertaining to contrast and gradients or orientation at
different spatial scales commonly implemented by means
of image pyramid decomposition.

The question addressed in this paper is mathematical,
namely, we ask if the differences used in estimating the
level of saliency at a given scene location can be grouped
in a unified mathematical definition. By examining the
metrics used to construct the feature maps, we observe
that this can be accounted for by transformations de-
scribed by the dihedral group D4. This is the symmetry
group of the square image grid and includes two types
of symmetries- rotation and reflection. The transforma-
tions based on the elements of D4 have exhibited im-
mense power in image processing operations including
image compression, denoising, and indexing6,10,20–22.
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To test the usefulness of the dihedral group in describ-
ing salient image features, we constructed a saliency map
based on the elements of D4, namely, rotation by 90, 180
and 270 degrees (excluding rotation by 0 degrees) and
reflection about the horizontal, vertical and two diago-
nal axes. These transformations were performed on the
blocks obtained by decomposing the image into square
regions. The results at different image resolutions were
calculated and stored in separate feature maps (details
in the theory section).

Finally, the feature maps were grouped into a saliency
map in a linear manner without the use of center sur-
round operations. We then evaluated the correspondence
between the proposed saliency map and human fixation
data. Our results show that a saliency map derived based
on the transformations of the dihedral group D4 matches
well with human fixation data, and has very high corre-
spondence with the existing saliency maps. We further
performed an experiment where we attempted to validate
the claim that eye fixations correspond to salient image
regions, here we divided images from a large database
into regions which have received fixations and others that
did not. We then collected the associated saliency values
from the feature maps corresponding to the saliency al-
gorithm and the proposed metric into two matrices and
used linear discrimination analysis to find a dimension
which separates the two sets optimally. Our findings in-
dicate that both the proposed method and the saliency
algorithm by Itti et al.16 are efficient at predicting re-
gions which human observers deem as non-salient and
also regions which are highly salient, i.e., receiving many
fixations. We, however, found that regions in the middle
range of saliency are less predictable by the two algo-
rithms. Furthermore, when compared with a large set
of algorithms using a large database of images and as-
sociated fixations, we found that the proposed method
ranked as the second best algorithm for predicting hu-
man fixations.

Based on these results and the knowledge that the
D4 transformations represent a mathematical measure of
symmetry, we conclude with the hypothesis that a salient
image feature is a part of the scene that is highly asym-
metric compared to its surround, and the more asym-
metric a feature is the more salient it is. This hypothesis
is strengthened by the knowledge that the transforma-
tions of D4 are extremely fast. The latter aspect of the
transformations is in agreement with the knowledge that
bottom-up operations are fast, in the order of 25 to 50
ms15.

The rest of this article is organized as follows: In Sec-
tion II, we discuss the theory behind the dihedral group
D4 and the implementation of the proposed algorithm in
detail. In Section III, we examine the results obtained
from the evaluation of saliency algorithms.

FIG. 1: The four axes of reflection symmetries of the
square.

II. THEORY

A. Mathematical background

Mathematically, the symmetries of geometric objects
can be defined by group theory, and in particular the
symmetries of the square are encoded in the dihedral
group D4. In this section we briefly define and describe
this group and then show how it can be applied to detect
asymmetry in an image.

1. The group D4

One of the most basic structures studied in abstract
algebra is groups. A group is a set G together with a
binary operation ∗ on its elements. This operation ∗
must behave in a very specific way:

i) G must be closed under ∗, that is, for every pair
of elements g1, g2 in G we must have that g1 ∗ g2 is
again an element in G.

ii) The operation ∗ must be associative, that is, for all
elements g1, g2, g3 in G we must have that

g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3.

iii) There is an element e in G, called the identity ele-
ment, such that for all g ∈ G we have that

e ∗ g = g = g ∗ e.

iv) For every element g in G there is an element g−1

in G, called the inverse of g, such that

g ∗ g−1 = e = g−1 ∗ g.

Groups appear in many places in mathematics. For
instance, the integers form a group with the operation
+, and the real numbers become a group under multipli-
cation. For a good introduction to group theory, see8.
One of the origins of group theory was the study of

symmetry in various settings. In particular we can ex-
press the symmetries on a geometric object as a group.
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FIG. 2: Rotation of the square by 90◦ counterclockwise.

If the geometric object is a regular polygon with n sides,
i.e., all its sides are of equal length and all its angles
are the same, its symmetry group is called the dihedral
group Dn. In this paper we are interested in D4, the
symmetry group of the square. The ease of computa-
tional complexity associated with dividing an image grid
into square regions, and the fact that the D4 group has
shown promising results in various computer vision ap-
plications6,10,20–22, motivated us to use this group for our
proposed algorithm.

Th group D4 has eight elements, four rotational sym-
metries and four reflection symmetries. The rotations are
0◦, 90◦, 180◦ and 270◦, and the reflections are defined
along the four axes shown in Figure 1. We refer to these
elements as σ0, σ1, . . . , σ7. Note that the identity element
is rotation by 0◦, and that for each element there is an-
other element that has the opposite effect on the square,
as required in the definition of a group. The group oper-
ation is composition of two such transformations. As an
example of one of the group elements, consider Figure 2,
where we demonstrate rotation by 90◦ counterclockwise
on a square with labeled corners.

2. The average asymmetry matrix

The elements of D4 can be viewed as transformations
that act on a square. Such an action on a set which
respects the group operation is called a group action on
the set. We will not define this formally here, just note
that this means that we can define the action of D4 on
the entries of a real square matrix in a natural way by
letting the group elements rotate or reflect the entries
according to the corresponding group elements. We will
denote such an action by σiM , where σi is the element
of D4 acting on a square matrix M .
Let M be an n×n-matrix and σi some element of D4.

We define the asymmetry of M by σi, denoted by Ai(M),
to be the matrix

Ai(M) = |M − σiM |. (1)

We note that if M has a strong degree of the symmetry
preserved by σi, the entries of this matrix will be close
to zero.

Now we are ready to define the average asymmetry of
M , denoted by A(M). Let M be an n× n matrix. Then
we define the average asymmetry matrix A ofM , denoted

A(M), as the matrix

A(M) =
1

8

7∑
i=0

Ai(M). (2)

The more symmetries a matrix has, the smaller the
entries of A(M) will be, and in this way we can say that
A(M) provides a way to measure the degree of asymme-
try of M .

We demonstrate the results of calculating the average
asymmetry matrix for a number of example images. Con-
sider Figure 3. Note how the asymmetries of the images
are detected in different ways, depending on the image.
For instance, we note thatM4, which has a mixed edge re-
sults in the strongest (highest in intensity) average asym-
metry matrix A(M4). The calculated intensities of M1

and M3 are ranked second in strength. Thus by calcu-
lating the asymmetry of the matrix we seem to be able
to detect gradients in different orientations. We further
note that the intensity encoded in the average asymmetry
matrix is a function of the contrast between the image
pixels. As an example, the intensity of A(M1) would be
reduced should the contrast between the top and bottom
of the image be dampened. The only example image
which gives zero average asymmetry is M5—it is com-
pletely symmetric around its center.

FIG. 3: Images together with the images representing
their average asymmetries.

We note, however, that if we further divide M5 into
four equally sized squares the asymmetry is detected. As
an example, we consider M6 of Figure 3 which is a rep-
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resentation of the third quadrant of M6. Here, we note
that the average asymmetry matrix A(M6) is non-zero.

B. Proposed group based asymmetry algorithm

In this section, we outline the implementation of
the proposed group based asymmetry algorithm. From
the color image, we calculate three channels i.e., lumi-
nance channel, red-green and blue-yellow color oppo-
nency channels as described by30. In order to calculate
a feature map, we decompose the channel into square
blocks. In the general case when the image dimensions
are not perfectly divisible by the selected block size we
padded the image borders with neighboring pixels. For
example, in our experiments we used a block size of 24
by 24 pixels for an image of size 1024 by 768 pixels, thus
after padding the image size become 1032 by 768 pix-
els. For each block, we calculate the absolute difference
between the block itself and the result of the D4 group
element acting on the block. We take the mean of the
absolute difference for each block, which is taken as a
measure of asymmetry for the block and has a scalar
value in the range [0,1]. The asymmetry values for all
the blocks are then collected in an image matrix and
scaled up to the size of the original image using bilinear-
interpolation. In the resultant feature map the saliency
of a location is represented by its scalar value, where a
greater value represents a higher saliency. From the D4
group elements i.e., rotations by 90, 180 and 270 degrees,
and reflections along the four axes of a square, we get
seven feature maps. In order to capture both the local
and the global salient details in a channel, we use three
scales: the original, 1/2 and 1/4. This gives three scales
which, combined with the seven D4 group elements, give
21 feature maps, i.e., from the three channels we get a
total of 63 feature maps which are combined linearly to
get a single saliency map.

As an example, an image and the associated feature
maps for its blue-yellow channel are shown in Figure 4.
The columns 1 to 3 show the feature maps for the D4
group rotation elements i.e., 90, 180, and 270 degrees.
The columns 4 to 7 show the feature maps for the reflec-
tion elements i.e., horizontal, vertical, and the two diag-
onals. Here, we can see the different gradients detected
by the different group elements. The rows show the dif-
ferent scales of the image where the first is calculated
based on the original image resolution, the second at 1/2
of the original and third at 1/4. As the saliency map
is calculated based on both the local and global image
gradients, therefore, a smaller block size would capture
local gradients more, and vice versa. In principle, the
saliency map can be calculated by combining the feature
maps obtained by using either different block sizes, or,
a fixed block size and different image scales. For our
implementation, we used a fixed block size and three dif-
ferent image scales. The block size and the number of
scales were determined based on an initial evaluation of

the algorithm on 50 test images by using the AUC metric
discussed in Section III C 2.

III. EXPERIMENTS AND RESULTS

A. Data set

The images and the associated fixations data used in
the analysis were obtained from the comprehensive study
by Judd et al.18. The data-set18 includes 1003 images
which were shown to 15 different observers with normal
vision under free viewing conditions, i.e., the observers
viewed the images without a specific task such as search-
ing for an object. The images were viewed by the ob-
servers for a period of 3 seconds each.

B. Validating the saliency theory

In this experiment we set about validating the claim
that the eye fixates on regions in the image that are
salient or different with respect to their surround. To
achieve an objective validation we chose to divide each
image into two different sets of regions, in the first we
have image regions which have attracted observers fixa-
tions and in the second set we have image regions that
did not attract fixations. The data were based on a sub-
set of the images and corresponding fixations obtained
by18 where we used 200 landscape images and all fifteen
observers. The images were 1024 by 768 pixels in dimen-
sion and a fixated area was defined as a square region
of dimensions 100 by 100 pixels where the center was
located at the fixation point. Non fixated areas were
chosen randomly from parts of the image that had a re-
gion of a 100 by 100 pixels without any fixations. As
an example, the fixated and the non-fixated regions for
an image and the corresponding feature map obtained
by the proposed group algorithm are shown in Figure 4.
The fixated regions for an observer are marked as blue
and the non-fixated regions are marked as red. For each
observer, the fixated and non-fixated regions were calcu-
lated separately. In order to simplify the calculations, we
represent the fixated and non-fixated locations as square
regions.

By dividing the image into square regions that are
classed as either fixated or not fixated we were able to
assign a value to each square part that corresponds to the
average of the intensity of the corresponding pixels in the
saliency map obtained by16 and the proposed group algo-
rithm. In so doing we obtained two matrices, F and Nf

where the elements in the vectors of F were the values
of the averages of the feature maps (from the saliency
algorithm or the proposed group method) based on the
square regions centered at the fixation points while the
vectors of Nf were the average values for non-fixated ar-
eas. Further we chose the number of non-fixated areas to
be equal to that of the fixated regions, thus, the size of
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Image from database18 Fixated (blue) and non-fixated (red) regions

Feature maps

FIG. 4: An image and the associated feature maps for its blue-yellow channel are shown. The columns 1 to 3 show
the feature maps for the D4 group rotation elements i.e., 90, 180, and 270 degrees. The columns 4 to 7 show the
feature maps for the reflection elements i.e., horizontal, vertical, and the two diagonals. Here, we can see the

different gradients detected by the different group elements. The rows show the different scales of the image where
the first is calculated based on the original image resolution, the second at 1/2 of the original and third at 1/4.

F was n×k were n was the number of fixations in all the
200 images and k was the number of feature maps which,
in case of the saliency algorithm proposed by16 was de-
fined to be three maps pertaining to intensity, color and
orientation, while in the group based method the num-
ber of channels was defined by three channels and three
scales, this combined with seven group elements give 63
feature maps.

Our main objective with the creation of the matrices
F and Nf was to determine whether or not we can sep-
arate the data of the two matrices using discrimination
analysis. The basic idea was that being able to separate
the data would constitute a proof that the fixations are
indeed driven by low level features such as contrast and
lightness as is the claim by researchers supporting the
bottom up attention model. We further believe that the
level of separation achieved between the fixated and non-
fixated regions would offer us a clear view of the efficacy
the saliency and the group based algorithms in predicting
the fixations. Thus if the prediction is random we can
conclude, based on the available data set, that the idea
that salient regions attract attention is false while a per-

fect separation would indicate that salient image regions
dictate our visual attention.

As a by product of the examination using linear dis-
crimination, we can find the optimal weights, given the
technique, to combine the feature maps into a unified
saliency map. We chose a simple discrimination method
which involves calculating the difference vector between
the averages of F and Nf and then projecting the vec-
tors of F and Nf onto the difference vector to judge
whether the data is separated along that vector, or, in
other words, whether F and Nf are significantly differ-
ent. Mathematically, the operations are:

w = μF − μNf
, (3)

where the size w corresponds to the number of feature
maps (63 for the group method and 3 for the saliency
algorithm), and μF and μNf

are the means along the
columns of F and Nf .

pF = wF (4)
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FIG. 5: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 1. X-axis shows the saliency values
obtained by using the the proposed group algorithm.

pNf
= wNf , (5)

where the number of elements of the vectors pF and pNF

are 1 by k. The distribution of pF and pNF
provides

a mathematical description of whether the fixated and
non-fixated regions are indeed different as predicted by
the saliency and group based algorithms.

In figures 5 and 6, we plotted the probability his-
tograms of pF and pNf

for the proposed group method
and the saliency algorithm, respectively. The histograms
were normalized such that the area under the curve is
one. We note that the separation between the two sets
is not ideal in either method where we find a consider-
able overlap between the two histograms specifically in
the middle range. We further note that there is a clear
separation between the two sets for regions of the images
that received no fixations indicating that the methods
are good at predicting non-salient regions of the images.
At a value of 0.5 the classification of the two sets based
on the proposed method is random. This value is lower
i.e., 0.3, for the saliency algorithm.

To gain better insight into the performance of the
two methods and their ability to separate the image re-
gions into fixated and non-fixated, we plotted the relative
probabilities of the histograms. For the non-fixated his-
togram, the relative probabilities were obtained by divid-
ing the area under the non-fixated probability histogram
curve of a specific bin i by the area under the fixated
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FIG. 6: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 1. X-axis shows the saliency values
obtained by using the visual saliency algorithm16.

histogram curve for the same bin. For the relative prob-
ability of the fixated histogram the reciprocal value was
calculated. Based on the fixation data of observer num-
ber one, these curves are plotted in the second columns
of figures 5 and 6 where we observe that for low saliency
values from the proposed group algorithm, the separa-
tion of non-fixated regions is ideal and that the goodness
of the separation declines to a level that is random in the
middle range of the saliency value. We also note that the
separation of the highly salient regions, i.e., high saliency
value, is nearly ideal. Based on this we can conclude that
both algorithms are good in predicting non-salient and
highly salient regions and their performance drops in the
middle range. Assuming that the algorithms are a good
representation of the way in which the human vision sys-
tem functions we can state that flat regions which are
almost never fixated while middle range contrast attracts
fixations though not in every part and regions with very
high saliency almost always attract fixations. This in-
terpretation is of course dependent on the total number
of fixations and the spatial distribution of the salient re-
gions. Finally, figures 5 and 6 indicate that the proposed
group based asymmetry algorithm performs better than
the well established saliency method.

To generalize the analysis for the other observers, we
performed the same calculations for all the observers and
found similar trends in all cases. The results for observers
two, three and four and shown in figures 7, 8, 9, 10, 11,
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FIG. 7: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 2. X-axis shows the saliency values
obtained by using the proposed group algorithm.

and 12 respectively; and similar results were obtained
for the fifteen individual observers. The results for the
average observer based on all fifteen observers are shown
in figures 13, and 14.

To gain deeper insight into the correspondence between
the value returned by the group transformations as a
measure of saliency and the fixations we looked at the
histogram of the group values for the 200 images. The
results are shown in Figure 15. Here we note that around
10% of the values are in the region 0.65 to 1 where 1 is
the highest value and most of those are predicted cor-
rectly by the algorithm. We also note that around 33%
of the values are between 0 and 0.19 and those are also
predicted well by the group algorithm. In the region
between 0.19 and 0.65 we have nearly 57% of the image
regions and that is the region where we have most overlap
between the histograms of the fixated and non-fixated re-
gions. We thus remark, that both the saliency algorithm
and the proposed group method offer good prediction of
the low saliency and high saliency regions while the pre-
diction of the middle saliency region is more ambiguous.
This in turn can be explained by the fact that the number
of regions in the middle range is higher than that in the
low and high ends of the histograms and that the number
of fixations is always less than the number of regions in
that range.

Finally, in figures 16-17 we plotted the elements of the
discrimination vector w for both the proposed algorithm
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FIG. 8: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 2. X-axis shows the saliency values
obtained by using the visual saliency algorithm16.

and the saliency maps described by16. Here we observe
that the values are higher for the luminance channel and
the third resolution indicating that most of the discrim-
ination is based on the luminance rather than the oppo-
nent color channels and that the distinction between the
fixated and non-fixated regions is determined to a large
degree by the low resolution image, a finding which is in
keeping with the results published by18. For the group
algorithm we find that the transformations pertaining to
rotation by 90 and 270 degrees are slightly but consis-
tently more significant than those associated with the
other transformations.

C. Comparing the proposed group algorithm with
state-of-the-art saliency algorithms

1. Saliency models

The performance of the proposed GBA model is com-
pared with seven state of the art saliency models, namely,
AIM by Bruce & Tsotsos5, AWS by Garcia-Diaz et
al.11, SUN by Zhang et al.31, Hou by Hou & Zhang14,
1, GBVS by Harel et al.13, Itti by Itti et al.16, Judd
by Judd et al.18. Figure 18 illustrates the saliency maps
obtained from the different saliency models used in this
paper. The saliency maps are normalized in the range
[0,1]. In line with the study by Borji et al.3, we used
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FIG. 9: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 3. X-axis shows the saliency values
obtained by using the proposed group algorithm.

Gauss and IO to provide a baseline for the evaluation.
Gauss is defined as a two-dimensional Gaussian blob at
the center of the image. This model corresponds well
with the fixations falling at the image center. IO model
is based on the fact that an observer’s fixations can be
predicted best by the fixations of other observers viewing
the same image. In this model the map for an observer
is calculated as follows: first, the fixations correspond-
ing to a given image from all the observers except the
one under consideration are averaged into a single two-
dimensional map. Having done that the fixations are
spread by smoothing the map using a Gaussian filter.
The IO model gives us an upper bound on level of corre-
spondence that is expected between the saliency models
and the fixations.

2. Evaluation metrics

To evaluate the saliency models, we employed two met-
rics: an area under the receiver-operating-characteristic
curve (AUC), and a shuffled AUC discussed by31.

AUC metric

In order to calculate the AUC2,9, the fixations per-
taining to a given image are averaged into a single two
dimensional map which is then convolved with a two-
dimensional Gaussian filter. The resultant fixations map
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FIG. 10: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 3. X-axis shows the saliency values
obtained by using the visual saliency algorithm16.

is then thresholded to yield a binary map with two
classes–the positive class consisting of fixated locations,
and the negative class consisting of non-fixated locations.
Next, from the two dimensional saliency map, we obtain
the saliency values associated with the positive and the
negative classes. Using the saliency values, a receiver-
operating-characteristic (ROC) curve is drawn that plots
the true positive rate against the false positive rate. For
a detailed description of ROC, see the study by9. The
area under the ROC curve gives us a measure of the
performance of the classifier. AUC gives a scalar value
in the interval [0,1]. If AUC is 1 then it indicates that
the saliency model is perfect in predicting fixations. An
AUC of 0.5 implies that the performance of the saliency
model is not better than a random classifier or by chance
prediction.

Challenges associated with using the AUC metric

While viewing images, observers tend to look at the
center regions more as compared to peripheral regions.
As a result of that a majority of fixations fall at the im-
age center. This effect is known as center bias and is well
documented in vision studies27,28. The two main rea-
sons for this are: first, the tendency of photographers to
place the objects at the center of the image. Second, the
viewing strategy employed by observers, i.e., to look at
center locations more in order to acquire the most infor-
mation about a scene29. The presence of center bias in
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FIG. 11: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 4. X-axis shows the saliency values
obtained by using the proposed group algorithm.

fixations makes it difficult to analyze the correspondence
between the fixated regions and the salient image regions.
In a study by18, it was observed that a dummy classifier
consisting of a two-dimensional Gaussian shape drawn at
the center of the image outperformed all saliency models.
The center bias is implicitly linked with a so-called edge
effect3. Edge effect31 is defined as adding a varied image
border of zeros to a saliency map, as a result of which
it can yield different values from the evaluation metrics.
For instance, in the study by31, it was observed that a
dummy saliency map consisting of all ones with a four-
pixel image border consisting of zeros gave an AUC value
of 0.62. Meanwhile, an AUC of 0.73 was obtained with
a dummy saliency map using eight-pixel border. In the
presence of center bias and edge effect, a fair comparison
of the performance of the saliency algorithms becomes a
challenging task. To alleviate the influence of the cen-
ter bias and the edge effect, a shuffled AUC metric was
employed in the study by31.

Shuffled AUC metric

To calculate the shuffled AUC metric for a given image
and one observer, the locations fixated by the observer
are associated with the positive class in a manner sim-
ilar to the regular AUC, however, the locations for the
negative class are selected randomly from the fixated lo-
cations of other unrelated images, such that they do not
coincide with the locations from the positive class.
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FIG. 12: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for observer no 4. X-axis shows the saliency values
obtained by using the visual saliency algorithm16.

3. Analysis using the AUC metric

Figure 19 shows the ranking of the visual saliency mod-
els obtained by using the ordinary AUC metric. We ob-
served that all saliency models used in this paper perform
above chance. We also observer that SUN,GBA,AWS,
Hou, AIM, and Itti perform worse than the Gauss
model, with GBVS, and Judd being the two best mod-
els. This finding can be explained by the fact that the
center regions are weighted more in both theGBVS, and
Judd models.

4. Analysis using the shuffled AUC metric

The results obtained by employing the shuffled AUC
metric are shown in Figure 20. We note that as compared
to the ordinary AUC, this metric changes the ranking of
the saliency models significantly. As an example, the
Gauss classifier changes from being one of the best to
being clearly the worst. Further, the GBVS, and Judd
models drop significantly in the rankings. In fact in this
case, AIM, Hou, GBA, and AWS models are the four
best models. In-line with the study by Borji et al.3, our
results show that the AWS model is the best among all.
The results suggest that, first, the shuffled AUC metric
is robust to the influence of the fixations associated with
the center-bias compared to the ordinary AUC metric.
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FIG. 13: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for an average observer. X-axis shows the saliency
values obtained by using the proposed group algorithm.

Second, the proposed GBA model is among the four
best saliency models.

IV. DISCUSSION

In this study, we set about unifying the mathemati-
cal description of saliency in a single metric. Backed by
the knowledge gained from research in image processing
where it has been shown that the dihedral group D4 can
be used to encode edges and contrast which are the main
current descriptions of saliency we chose to devise an al-
gorithm that represents the level of saliency in an image
region by virtue of the transformations induced by the
dihedral group D4. The dihedral group D4 is the sym-
metry group of the square image grid and includes two
types of symmetries, i.e., rotation and reflection.

In our implementation, we chose to describe the sym-
metry of an image region at three different scales, how-
ever, we did not perform any center surround operations
by taking the differences between the scales. In this view,
what we have presented in this study is a new unified
metric together with a new description of saliency where
we define saliency as the combined level of asymmetry at
different image scales.

To test the usefulness of the proposed method we con-
structed two experiments: in the first, we performed a
study to validate the claim that human eye fixations cor-
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FIG. 14: Probability histograms and relative
probabilities for the fixated and the non-fixated regions

for an average observer. X-axis shows the saliency
values obtained by using the visual saliency algorithm16.
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FIG. 15: Figure shows the probability histogram for the
saliency values obtained from the proposed group

algorithm for the 200 images. We note that nearly 10
percent of the saliency values lie between 0.65 and 1,
approximately 33 percent of the saliency values lie in
the range between 0 and 0.19, and nearly 57 percent of
all the saliency coefficients lie in the range between 0.19

and 0.65.

respond to salient image features. In this study, we di-
vided the image into regions which attracted fixations
and others that were deemed by the observers as non-
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FIG. 16: The elements of the discrimination vector w
for the 63 feature maps obtained from the proposed
group algorithm. Here we observe that the values are

higher for the luminance channel and the third
resolution indicating that most of the discrimination is
based on the luminance rather than the opponent color
channels and that the distinction between the fixated
and non-fixated regions is determined to a large degree
by the low resolution image a finding which is in keeping
with the results published by18. Further, we find that
the transformations pertaining to rotation by 90 and

270 degrees are slightly but consistently more significant
than those associated with the other transformations.
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FIG. 17: The discrimination vector w for the visual
saliency algorithm by16. The three features are: color,

intensity, and orientation respectively. Here the
orientation feature is more significant.

salient. By grouping the associated values for the feature
maps obtained from the visual saliency algorithm by16

and the proposed method into two matrices one pertain-
ing to the fixated regions and the other to the non-fixated
areas we were able to use linear discrimination to sepa-
rate the regions optimally. Our working hypothesis was
that being able to distinguish between the local values of

the feature maps at fixated and non-fixated regions would
indicate that the algorithms are indeed useful in predict-
ing eye fixations. Our findings indicate that both the vi-
sual saliency algorithm by16 and the proposed group met-
ric are nearly ideal at predicting non-salient and highly
salient regions with a considerable confusion in the mid
saliency region. Further more, test results on 200 images
and fifteen observers indicate that the proposed metric is
better at separating salient and non-salient regions than
the saliency algorithm by16. Here we emphasize that in
the case of the group algorithm we did not make use of
the center surround aspect of the saliency algorithm but
rather added the feature maps obtained at different scales
linearly. Thus, our first experiments shows that salient
image features can be predicted by the proposed dihedral
group D4 transformations.

In the second experiment, we compared the proposed
algorithm with the best current methods and found that
it ranked as second best for the given data. We thus con-
cluded that the transformations of the dihedral group D4

are a good metric to estimate salient image regions which
if backed by further studies can represent a mathemati-
cally sound method to define a salient image region.
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Abstract. The concentration of the cones and ganglion cells is much
higher in the fovea than the rest of the retina. This non-uniform sampling
results in a retinal image that is sharp at the fixation point, where a
person is looking, and blurred away from it. This difference between
the sampling rates at the different spatial locations presents us with
the question of whether we can employ this biological characteristic to
achieve better image compression. This can be achieved by compressing
an image less at the fixation point and more away from it. It is, however,
known that the vision system employs more that one fixation to look at
a single scene which presents us with the problem of combining images
pertaining to the same scene but exhibiting different spatial contrasts.
This article presents an algorithm to combine such a series of images
by using image fusion in the gradient domain. The advantage of the
algorithm is that unlike other algorithms that compress the image in
the spatial domain our algorithm results in no artifacts. The algorithm
is based on two steps, in the first we modify the gradients of an image
based on a limited number of fixations and in the second we integrate
the modified gradient. Results based on measured and predicted fixations
verify our approach.

1 Introduction

From the very beginning of photography, cameras were designed and iteratively
improved with the aim of mimicking the human visual system. From this per-
spective, a camera is thought of as a machined eye–a device that is sensitive to il-
lumination. Equally, we normally think of algorithms such as white-balancing [1],
adaptation [2] and tone mapping [3] as being similar to the biological processes
of the vision system.

A camera is of course not a human visual system. The two are different
in a number ways some of which are relevant to the work presented in this
article. Primarily, while digital camera manufacturers are striving to produce
devices with progressively higher resolution, the human brain has evolved to be
efficient, i.e. use less information to reach greater conclusions. Thus while the
camera sensor has a uniform number of pixels per unit area, the human eye has
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a much higher resolution in the fovea which is the center part of the retina [4]. It
is well known that the fovea is responsible for our central, sharpest vision while
the cone distribution in the rest of the retina results in blurred vision [4].

In the process of exploring a scene, the brain directs the eyes to different
spatial locations. At those locations, known as fixations the eyes pause and
gather the visual information [5]. Due to the concentration of photo-receptors
at the fovea, we can think of each pause as the time taken to capture an image
that is sharp at the fixation point and blurred away from it. Given that the
average distribution per unit area and spatial location of the cones in the retina
is known, it is possible to model the spatial contrast of the retinal image at each
fixation.

For a given scene, the number of fixations and their locations vary. The
question of whether fixations are guided by image features has been addressed
extensively in vision research; and some conclusions are widely accepted. Specif-
ically, experiments have shown that for a given image, people tend to look at the
same regions [6, 7], they tend to look at the central part [8, 7] and that certain
image attributes such as luminance and colour contrasts tend to attract fixa-
tions [9, 10]. Furthermore, fixations can be measured using eye trackers and the
experimental data shows conclusively that for a general image the human visual
system employs more than one fixation [6].

Based on a given digital image and a number of measured or predicted fixa-
tions, we can model the foveation effect, i.e a sharp region at the fixation point
and blurring away from it. The result of such a model would be a number of
images with different spatial contrast. As an example, see figure 1 where we have
modeled the foveation effect based on 3 different fixations. Given such an image
series we might wonder how the vision system integrates the different foveation
results into a seamless visual experience; and subsequently how we can design
signal processing algorithms that offer such functionality.

In this article, we present an algorithm which integrates a number of differ-
ently foveated images in the gradient domain. The algorithm starts by calculating
the gradients of the input image. Having done that a number of fixation loca-
tions are used to calculate the corresponding foveated gradients. Here we use
the foveation function described by Geisler and Perry [11]. As a second step,
the gradients are combined using the fast colour to gray algorithm by Alsam
and Drew [12]. The Alsam and Drew algorithm [12] combines the gradients from
n channels into a single gradient by arguing that the maximum horizontal and
vertical differences over all the channels result in the maximum contrast. Thus
the gradient fusion step is guaranteed to result in a gradient where the maxi-
mum differences pertaining to the fixations locations are maintained. As a final
step the resultant gradient is integrated using the modified Frankot-Chellappa-
algorithm [13] proposed by Alsam and Rivertz [14].

The need for a fast algorithm to combine foveated images is best motivated in
the image compression domain where improvements in statistically based image
compression, i.e. methods that are based on data analysis have long slowed
down. The use of human vision steered compression is seen by researchers as the
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most promising path toward further improvements. In this regard, the algorithm
presented in this article can be used as part of an image compression pipeline
with very promising results. From our initial tests, we have noticed that the
algorithm results in reduced storage requirements without the added artifacts
associated with frequency based compressions in the wavelets domain.

Like other foveation driven algorithms, our method is dependent on accurate
estimation of the fixation points. Thus in our experimental section, we present
results based on measured fixation data as well as predictions based on the visual
saliency algorithm by Itti et al. [15].

(a) Foveated image 1 (b) Foveated image 2 (c) Foveated image 3

Fig. 1. Figures show the foveated images for three fixations, here the fixation points
are represented as red dots.

2 The filter and the integration.

Experiments for measuring the contrast sensitivity of the human eye have been
carried out [16, 17]. Based on these experiments, the contrast threshold has been
modeled through the function

CT (f, θ) = CT0 exp

(
α f

θ + θ2
θ2

)
.

Here, f is the spatial frequency measured in degrees, θ is the retinal eccentric-
ity. CT0 is the minimal contrast threshold, θ2 is the half-resolution eccentricity
constant, and α is the spatial frequency decay constant. The values used in [18]
are α = 0.106, θ2 = 2.3, and CT0 = 1/64.

Given a normalized gray scale image z0 : Ω → [0, 1]. Denote its width by w,
measured in pixels. An observer views the image from a distance d, measured in
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pixels. The maximal spatial frequency of the image is given by fd = w
4 arctan w

2d
. If

r is the distance measured in pixels from a fixation point, then θ(r) = arctan r
d .

The gradient ∇z0 is modified by setting the its magnitude to zero if its is
less than CT (fd, θ) for some of the fixation points.

We make a new contrast threshold function based on f = fd and the fixation
points, (x1, y1), (x2, y2), . . . , (xn, yn).

CT (x, y) = min(CT1(x, y), CT2(x, y), . . . , CTn(x, y)),

where CTk(x, y) = CT
(
fd, θ

(√
(x− xk)2 + (y − yk)2

))
, k = 1, 2, . . . , n. This

step is equivalent to the Alsam and Drew method [12].
The direction of the original and modified gradients are û = ∇z0/ |∇z0|.

The length of the new gradient is |∇z| = |∇z0| if CT (x, y) < |∇z0|, otherwise
|∇z| = 0. We now reconstruct the contrast by using the integration method of
Alsam and Rivertz [14] where we minimize the functional:

W (z) = λ

∫
Ω

|z − z0|2 dx dy +

∫
Ω

(
|zx − p|2 + |zy − q|2

)
dx dy.

This minimization results in an image whose gradients are as close as possible
to (p, q), under the constraint that the luminance is close to the original image.
The image z in the Fourier domain can be taken as

Z(u, v) =
λZ0 − i(uP + vQ)

λ+ u2 + v2
,

where P and Q correspond to the Fourier transforms of p, and q.

3 Results

To test the proposed method, we used images and corresponding fixations data
from the study by Judd et al. [6]. The results for two images and the associated
fixations are shown in figures 2 to 3. In the left column the foveated images for
three fixations are shown. Here, the fixation points are represented as red dots. In
agreement with the predicted results for the application of the contrast function
by Wang and Bovik [18], we notice that the regions around the fixation points
are sharper than the rest. The images in the right column show the original
image, the result obtained by combining the foveated images using the proposed
method, and the difference between the result and the original image. We notice
that the result image is sharp in the regions corresponding to the three fixation
points, we further notice that the image represents a good approximation of the
original with greater differences in the parts that the observer deemed to be less
salient. Here we remark that the difference between the original and the result
can be optimized by controlling the λ parameter defined in the previous section.

In figure 4, the left column contains the foveated images obtained by using
the first three salient points from the visual saliency algorithm by Itti et al. [15]
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and the right column contains the original image, the result obtained by using
the proposed method, and the difference between the result and the original
image. For this experiment, we notice that the results are very similar to those
obtained for the first test image. We underline, however, that the choice of
fixation locations and the number of salient regions is clearly related to the
results that we obtain, where the higher the number of fixations and the more
spread they are in the image plane the closer the result is going to resemble the
original.

Finally, in figures 5(a) to 5(f), we show the bitrates obtained by saving the
original image and corresponding result image in JPEG format with different
quality values, ranging from 10 to 100 based on six different images. Here we no-
tice that for the same compression quality the new images require lower storage
space. Given that the foveation function reduces the high frequency elements of
the original image, we can argue that this result is not surprising. The advan-
tages of this approach are, however, more subtle than a simple removal of high
frequency elements- we have removed high frequencies locally- in regions where
the foveation function predicts that the observer couldn’t see with the sharp part
of their vision.

4 Conclusion

This article presents an algorithm to combine a series of differently foveated
images pertaining to an identical scene. This is achieved by using image fusion
in the gradient domain. The advantage of the algorithm is that unlike other
algorithms that compress the image in the spatial domain our algorithm results
in no artifacts. The algorithm is based on two steps, in the first we modify the
gradients of an image based on a limited number of fixations and in the second
we integrate the modified gradient. Results based on measured and predicted
fixations verify our approach. The need for a fast algorithm to combine foveated
images is best motivated in the image compression domain where improvements
in statistically based image compression, i.e. methods that are based on data
analysis have long slowed down. The use of human vision steered compression is
seen by researchers as the most promising path toward further improvements. In
this regard, the algorithm presented in this article can be used as part of an image
compression pipeline with very promising results. From our initial tests, we have
noticed that the algorithm results in reduced storage requirements without the
added artifacts associated with frequency based compressions in the wavelets
domain.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 2. In the left column the foveated images for three fixations are shown. Here,
the fixation points are represented as red dots. The images in the right column show
the original image, the result obtained by combining the foveated images using the
proposed method, and the difference between the result and the original image. We
notice that the result image is sharp in the regions corresponding to the three fixation
points, we further notice that the image represents a good approximation of the original
with greater differences in the parts that the observer deemed to be less salient. In
the difference image, the dark regions indicate the locations where the differences are
higher.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 3. In the left column the foveated images for three fixations are shown. Here,
the fixation points are represented as red dots. The images in the right column show
the original image, the result obtained by combining the foveated images using the
proposed method, and the difference between the result and the original image. We
notice that the result image is sharp in the regions corresponding to the three fixation
points, we further notice that the image represents a good approximation of the original
with greater differences in the parts that the observer deemed to be less salient. In
the difference image, the dark regions indicate the locations where the differences are
higher.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 4. In the left column the foveated images obtained by using first three salient
points from the visual saliency algorithm by Itti et al. [15] are shown. Here, the fix-
ation points are represented as red dots. The images in the right column show the
original image, the result obtained by combining the foveated images using the pro-
posed method, and the difference between the result and the original image. We notice
that the result image is sharp in the regions corresponding to the three fixation points,
we further notice that the image represents a good approximation of the original with
greater differences in the parts that the observer deemed to be less salient. In the dif-
ference image, the dark regions indicate the locations where the differences are higher.
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(a) image 1 (b) image 2

(c) image 3 (d) image 4

(e) image 5 (f) image 6

Fig. 5. Figures show the bitrates for saving the original image and corresponding result
image in JPEG format with different quality values, ranging from 10 to 100 based on
six different images. Here we notice that for the same compression quality the new
images require lower storage space.

142



A.8 What the eye did not see–a fusion approach
to image coding (extended)

Authors: Ali Alsam, Hans Jakob Rivertz, and Puneet Sharma.

Full title: What the eye did not see–a fusion approach to image coding.

Published in: International Journal on Artificial Intelligence Tools.

143



International Journal on Artificial Intelligence Tools

Vol. 22, No. 6 (2013) 1360014 (13 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0218213013600142

WHAT THE EYE DID NOT SEE A FUSION APPROACH TO

IMAGE CODING

ALI ALSAM, HANS JAKOB RIVERTZ and PUNEET SHARMA∗

Department of Informatics & e-Learning (AITeL)

Sør-Trøndelag University College (HiST )

Trondheim, Norway
∗er.puneetsharma@gmail.com

Received 15 January 2013
Accepted 14 July 2013

Published 20 December 2013

The concentration of the cones and ganglion cells is much higher in the fovea than
the rest of the retina. This non-uniform sampling results in a retinal image that is
sharp at the fixation point, where a person is looking, and blurred away from it. This
difference between the sampling rates at the different spatial locations presents us with
the question of whether we can employ this biological characteristic to achieve better
image compression. This can be achieved by compressing an image less at the fixation
point and more away from it. It is, however, known that the vision system employs
more that one fixation to look at a single scene which presents us with the problem of
combining images pertaining to the same scene but exhibiting different spatial contrasts.
This article presents an algorithm to combine such a series of images by using image
fusion in the gradient domain. The advantage of the algorithm is that unlike other
algorithms that compress the image in the spatial domain our algorithm results in no

artifacts. The algorithm is based on two steps, in the first we modify the gradients of an
image based on a limited number of fixations and in the second we integrate the modified
gradient. Results based on measured and predicted fixations verify our approach.

Keywords: Foveation; image compression; eye fixations.

1. Introduction

From the very beginning of photography, cameras were designed and iteratively im-

proved with the aim of mimicking the human visual system. From this perspective,

a camera is thought of as a machined eye — a device that is sensitive to illumina-

tion. Equally, we normally think of algorithms such as white-balancing,7 adapta-

tion11 and tone mapping17 as being similar to the biological processes of the vision

system.
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A camera is of course not a human visual system. The two are different in

a number ways some of which are relevant to the work presented in this article.

Primarily, while digital camera manufacturers are striving to produce devices with

progressively higher resolution, the human brain has evolved to be efficient, i.e., use

less information to reach greater conclusions. Thus while the camera sensor has a

uniform number of pixels per unit area, the human eye has a much higher resolution

in the fovea which is the center part of the retina.8 It is well known that the fovea

is responsible for our central, sharpest vision while the cone distribution in the rest

of the retina results in blurred vision.8

In the process of exploring a scene, the brain directs the eyes to different spatial

locations. At those locations, known as fixations the eyes pause and gather the

visual information.18 Due to the concentration of photo-receptors at the fovea, we

can think of each pause as the time taken to capture an image that is sharp at the

fixation point and blurred away from it. Given that the average distribution per

unit area and spatial location of the cones in the retina is known, it is possible to

model the spatial contrast of the retinal image at each fixation.

For a given scene, the number of fixations and their locations vary. The question

of whether fixations are guided by image features has been addressed extensively in

vision research; and some conclusions are widely accepted. Specifically, experiments

have shown that for a given image, people tend to look at the same regions,14,3 they

tend to look at the central part21,20,3 and that certain image attributes such as

luminance and colour contrasts tend to attract fixations.22,15,19,12,16,4 Furthermore,

fixations can be measured using eye trackers and the experimental data shows con-

clusively that for a general image the human visual system employs more than one

fixation.14

Based on a given digital image and a number of measured or predicted fixations,

we can model the foveation effect, i.e., a sharp region at the fixation point and

blurring away from it. The result of such a model would be a number of images

with different spatial contrast. As an example, see Fig. 1 where we have modeled

the foveation effect based on 3 different fixations. Given such an image series we

might wonder how the vision system integrates the different foveation results into

a seamless visual experience; and subsequently how we can design signal processing

algorithms that offer such functionality.

In this article, we present an algorithm which integrates a number of differently

foveated images in the gradient domain. The algorithm starts by calculating the

gradients of the input image. Having done that a number of fixation locations are

used to calculate the corresponding foveated gradients. Here we use the foveation

function described by Geisler and Perry.10 As a second step, the gradients are com-

bined using the fast colour to gray algorithm by Alsam and Drew.1 The Alsam and

Drew algorithm1 combines the gradients from n channels into a single gradient by

arguing that the maximum horizontal and vertical differences over all the chan-

nels result in the maximum contrast. Thus the gradient fusion step is guaranteed

to result in a gradient where the maximum differences pertaining to the fixations
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(a) Foveated image 1 (b) Foveated image 2 (c) Foveated image 3

Fig. 1. (Color online) Figures show the foveated images for three fixations, here the fixation
points are represented as red dots.

locations are maintained. As a final step the resultant gradient is integrated using

the modified Frankot-Chellappa-algorithm9 proposed by Alsam and Rivertz.2

The need for a fast algorithm to combine foveated images is best motivated

in the image compression domain where improvements in statistically based im-

age compression, i.e., methods that are based on data analysis have long slowed

down. The use of human vision steered compression is seen by researchers as the

most promising path toward further improvements. In this regard, the algorithm

presented in this article can be used as part of an image compression pipeline with

very promising results. From our initial tests, we have noticed that the algorithm

results in reduced storage requirements without the added artifacts associated with

frequency based compressions in the wavelets domain.

Like other foveation driven algorithms, our method is dependent on accurate

estimation of the fixation points. Thus in our experimental section, we present

results based on measured fixation data as well as predictions based on the visual

saliency algorithm by Itti et al.13

2. The Filter and the Integration

Experiments for measuring the contrast sensitivity of the human eye have been

carried out.6,5 Based on these experiments, the contrast threshold has been modeled

through the function

CT (f, θ) = CT0 exp

(
αf

θ + θ2
θ2

)
.

Here, f is the spatial frequency measured in cycles per degrees, θ is the retinal

eccentricity. CT0 is the minimal contrast threshold, θ2 is the half-resolution eccen-

tricity constant, and α is the spatial frequency decay constant. We use α = 0.106,
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θ2 = 2.3, and CT0 = 1/64 obtained from the experiments done by Geisler and

Perry in Ref. 10. Other experiments give slightly different values. This is discussed

in Ref. 23.

Given a normalized gray scale image z0 : Ω → [0, 1]. Denote its width by w,

measured in pixels. An observer views the image from a distance d, measured in

pixels. The maximal spatial frequency of the image is given by fd = w
4 arctan w

2d
. If r

is the distance measured in pixels from a fixation point, then θ(r) = arctan r
d .

We make a new contrast threshold function based on f = fd and the fixation

points, (x1, y1), (x2, y2), . . . , (xn, yn).

CT (x, y) = min(CT1(x, y), CT2(x, y), . . . , CTn(x, y)) ,

where CTk(x, y) = CT
(
fd, θ

(√
(x − xk)2 + (y − yk)2

))
, k = 1, 2, . . . , n . This step

is equivalent to the Alsam and Drew method.1

The gradient ∇z0 is modified by setting its magnitude to zero if it is less than

CT (x, y) for a fixation point. The new gradient is ∇z = ∇z0 if CT (x, y) < |∇z0|,
otherwise ∇z = 0. This step removes high and low frequency contrasts away from

a fixation point. The low frequency contrast should, however, be preserved.

We now reconstruct the low frequency contrast by using the integration method

of Alsam and Rivertz2 where we minimize the functional:

W (z) = λ

∫
Ω

|z − z0|2 dx dy +

∫
Ω

(|zx − p|2 + |zy − q|2) dx dy .
This minimization results in an image whose gradients are as close as possible to

(p, q), under the constraint that the luminance is close to the original image. The λ

parameter controls how close the pixel values are to the original image. This value

of λ is set by the observer such that the resultant image and the original image are

visually the same when viewed from the same distance and using the same fixation

points.

The image z in the Fourier domain can be taken as

Z(u, v) =
λZ0 − i(uP + vQ)

λ+ u2 + v2
,

where P and Q correspond to the Fourier transforms of p, and q.

3. Results

To test the proposed method, we used images and corresponding fixations data from

the study by Judd et al.14 The results for four images and the associated fixations

are shown in Figs. 2–5. In the left column the foveated images for three fixations

are shown. Here, the fixation points are represented as red dots. In agreement with

the predicted results for the application of the contrast function by Wang and

Bovik,23 we notice that the regions around the fixation points are sharper than the

rest. The images in the right column show the original image, the result obtained

by combining the foveated images using the proposed method, and the difference

1360014-4
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 2. (Color online) In the left column the foveated images for three fixations are shown. Here,

the fixation points are represented as red dots. The images in the right column show the original
image, the result obtained by combining the foveated images using the proposed method, and the

difference between the result and the original image. For the result λ = 0.50 is used. We notice

that the result image is sharp in the regions corresponding to the three fixation points, we further

notice that the image represents a good approximation of the original with greater differences in

the parts that the observer deemed to be less salient. In the difference image, the dark regions
indicate the locations where the differences are higher.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 3. (Color online) In the left column the foveated images for three fixations are shown. Here,

the fixation points are represented as red dots. The images in the right column show the original
image, the result obtained by combining the foveated images using the proposed method, and the

difference between the result and the original image. For the result λ = 0.55 is used. We notice

that the result image is sharp in the regions corresponding to the three fixation points, we further

notice that the image represents a good approximation of the original with greater differences in

the parts that the observer deemed to be less salient. In the difference image, the dark regions
indicate the locations where the differences are higher.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 4. (Color online) In the left column the foveated images for three fixations are shown. Here,

the fixation points are represented as red dots. The images in the right column show the original
image, the result obtained by combining the foveated images using the proposed method, and the

difference between the result and the original image. For the result λ = 0.45 is used. We notice

that the result image is sharp in the regions corresponding to the three fixation points, we further

notice that the image represents a good approximation of the original with greater differences in

the parts that the observer deemed to be less salient. In the difference image, the dark regions
indicate the locations where the differences are higher.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 5. (Color online) In the left column the foveated images for three fixations are shown. Here,

the fixation points are represented as red dots. The images in the right column show the original
image, the result obtained by combining the foveated images using the proposed method, and the

difference between the result and the original image. For the result λ = 0.50 is used. We notice

that the result image is sharp in the regions corresponding to the three fixation points, we further

notice that the image represents a good approximation of the original with greater differences in

the parts that the observer deemed to be less salient. In the difference image, the dark regions
indicate the locations where the differences are higher.
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(a) Foveated image 1

(b) Foveated image 2

(c) Foveated image 3

(d) Original image

(e) Result

(f) Difference

Fig. 6. (Color online) In the left column the foveated images obtained by using first three salient

points from the visual saliency algorithm by Itti et al.13 are shown. Here, the fixation points
are represented as red dots. The images in the right column show the original image, the result

obtained by combining the foveated images using the proposed method, and the difference between

the result and the original image. For the result λ = 0.50 is used. We notice that the result image

is sharp in the regions corresponding to the three fixation points, we further notice that the image

represents a good approximation of the original with greater differences in the parts that the
observer deemed to be less salient. In the difference image, the dark regions indicate the locations

where the differences are higher.
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between the result and the original image. We notice that the result image is sharp

in the regions corresponding to the three fixation points, we further notice that

the image represents a good approximation of the original with greater differences

in the parts that the observer deemed to be less salient. Here we remark that the

difference between the original and the result can be optimized by controlling the

λ parameter defined in the previous section.

In Figs. 6 and 7, the left column contains the foveated images obtained by

using the first three salient points from the visual saliency algorithm by Itti et al.13

(a) Foveated image 1 (b) Foveated image 2

(c) Foveated image 3 (d) Original image

Fig. 7. (Color online) In the left column the foveated images obtained by using first three salient
points from the visual saliency algorithm by Itti et al.13 are shown. Here, the fixation points

are represented as red dots. The images in the right column show the original image, the result

obtained by combining the foveated images using the proposed method, and the difference between

the result and the original image. For the result λ = 0.55 is used. We notice that the result image

is sharp in the regions corresponding to the three fixation points, we further notice that the image
represents a good approximation of the original with greater differences in the parts that the

observer deemed to be less salient. In the difference image, the dark regions indicate the locations

where the differences are higher.
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(e) Result (f) Difference

Fig. 7. (Continued)
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Fig. 8. (Color online) Figure shows the average bitrates for 200 different images obtained by
saving the original image and corresponding result image in JPEG format with different quality
values, ranging from 10 to 100. Here we notice that for the same compression quality the new

images require lower storage space.

and the right column contains the original image, the result obtained by using the

proposed method, and the difference between the result and the original image. For

this experiment, we notice that the results are very similar to those obtained for

the first test image. We underline, however, that the choice of fixation locations and

the number of salient regions is clearly related to the results that we obtain, where

the higher the number of fixations and the more spread they are in the image plane

the closer the result is going to resemble the original.
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Finally, in Fig. 8, we show the average bitrates for 200 different images obtained

by saving the original image and corresponding result image in JPEG format with

different quality values, ranging from 10 to 100. Here we notice that for the same

compression quality the new images require lower storage space. Given that the

foveation function reduces the high frequency elements of the original image, we

can argue that this result is not surprising. The advantages of this approach are,

however, more subtle than a simple removal of high frequency elements — we have

removed high frequencies locally — in regions where the foveation function predicts

that the observer could not see with the sharp part of their vision.

4. Conclusion

This article presents an algorithm to combine a series of differently foveated im-

ages pertaining to an identical scene. This is achieved by using image fusion in the

gradient domain. The advantage of the algorithm is that unlike other algorithms

that compress the image in the spatial domain our algorithm results in no artifacts.

The algorithm is based on two steps, in the first we modify the gradients of an

image based on a limited number of fixations and in the second we integrate the

modified gradient. Results based on measured and predicted fixations verify our

approach. The need for a fast algorithm to combine foveated images is best moti-

vated in the image compression domain where improvements in statistically based

image compression, i.e., methods that are based on data analysis have long slowed

down. The use of human vision steered compression is seen by researchers as the

most promising path toward further improvements. In this regard, the algorithm

presented in this article can be used as part of an image compression pipeline with

very promising results. From our initial tests, we have noticed that the algorithm

results in reduced storage requirements without the added artifacts associated with

frequency based compressions in the wavelets domain.

References

1. Ali Alsam and Mark S. Drew, Fast colour2grey in 16th Color Imaging Conference:
Color, Science, Systems and Applications, Society for Imaging Science & Technology
(IS&T )/Society for Information Display (SID) Joint Conference (2008), pp. 342–346.

2. Ali Alsam and Hans Jakob Rivertz, Constrained gradient integration for improved
image contrast, in Proc. of the IASTED Int. Conf. on Signal and Image Processing
(SIP 2011) (2011), pp. 13–18.

3. Ali Alsam and Puneet Sharma, Analysis of eye fixations data, in Proc. of the IASTED
Int. Conf. on Signal and Image Processing (SIP 2011) (2011), pp. 342–349.

4. Ali Alsam and Puneet Sharma, Validating the visual saliency model, in SCIA 2013,
Lecture Notes in Computer Science (LNCS), Vol. 7944 (Springer-Verlag Berlin Hei-
delberg, 2013), pp. 153–161.

5. Thomas L. Arnow and Wilson S. Geisler, Visual detection following retinal damage:
Predictions of an inhomogeneous retino-cortical model, in Human Vision and Elec-
tronic Imaging. Proc. of SPIE, Vol. 2674 (1996).

1360014-12

155



What the Eye Did Not See — A Fusion Approach to Image Coding

6. M. Banks, A. Sekuler and S. Anderson, Peripheral spatial vision: Limits imposed by
optics, photoreceptors, and receptor pooling, J. Opt. Soc. Am. A 8 (1991) 1775–1787.

7. Varsha Chikane and Chiou-Shann Fuh, Automatic white balance for digital still cam-
eras, Journal of Information Science and Engineering 22 (2006) 497–509.

8. Lawrence K. Cormack, Computational models of early human vision, Handbook of
Image and Video Processing (Elsevier Academic Press, 2005), pp. 325–345.

9. Robert T. Frankot and Rama Chellappa, A method for enforcing integrability in
shape from shading algorithms, IEEE Transactions on Pattern Analysis and Machine
Intelligence 10(4) (1988) 439–451.

10. Wilson S. Geisler and Jeffrey S. Perry, A real-time foveated multiresolution system
for low-bandwidth video communication, in SPIE Proc., Vol. 3299 (1998), pp. 1–13.

11. James B. Hurley, Shedding light on adaptation, Journal of General Physiology 119
(2002) 125–128.

12. Laurent Itti and Christof Koch, Computational modelling of visual attention, Nature
Reviews Neuroscience 2 (2001) 194–203.

13. Laurent Itti, Christof Koch and Ernst Niebur, A model of saliency-based visual at-
tention for rapid scene analysis, IEEE Transactions on Pattern Analysis and Machine
Intelligence 20(11) (1998) 1254–1259.

14. Tilke Judd, Krista Ehinger, Fredo Durand and Antonio Torralba, Learning to predict
where humans look, in Int. Conf. on Computer Vision (ICCV ) (2009).

15. C. Koch and S. Ullman, Shifts in selective visual attention: towards the underlying
neural circuitry, Human Neurobiology 4 (1985) 219–227.

16. Olivier Le Meur, Patrick Le Callet, Dominique Barba and Dominique Thoreau, A
coherent computational approach to model bottom-up visual attention, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 28(5) (2006) 802–817.

17. Guoping Qiu, Jian Guan, Jian Duan and Min Chen, Tone mapping for HDR image us-
ing optimization a new closed form solution, in 18th Int. Conf. on Pattern Recognition
(ICPR 2006 ), Vol. 1 (2006), pp. 996–999.

18. Umesh Rajashekar, Ian van der Linde, Alan C. Bovik and Lawrence K. Cormack,
Gaffe: A gaze-attentive fixation finding engine, IEEE Transactions on Image Process-
ing 17(4) (2008) 564–573.

19. Katrin Suder and Florentin Worgotter, The control of low-level information flow in
the visual system, Reviews in the Neurosciences 11 (2000) 127–146.

20. Benjamin W. Tatler, The central fixation bias in scene viewing: Selecting an opti-
mal viewing position independently of motor biases and image feature distributions,
Journal of Vision 7(1) (2007) 17.

21. Benjamin W. Tatler, Roland J. Baddeley and Iain D. Gilchrist, Visual correlates of
fixation selection: effects of scale and time, Vision Research 45 (2005) 643–659.

22. Anne Treisman and Garry Gelade, A feature-integration theory of attention, Cognitive
Psychology 12(1) (1980) 97–136.

23. Zhou Wang and Alan C. Bovik, Embedded foveation image coding, IEEE Transactions
on Image Processing 10(10) (2001) 1397–1410.

1360014-13

156



A.9 Evaluation of geometric depth estimation
model for virtual environment.

Authors: Puneet Sharma, Jan H. Nilsen, Torbjørn Skramstad and Faouzi A.
Cheikh.

Full title: Evaluation of geometric depth estimation model for virtual envi-
ronment.

Published in: NIK-2010, Tapir Academic Press.

157



Evaluation of Geometric Depth Estimation Model
for Virtual Environment

Puneet Sharma1, Jan H. Nilsen1,

Torbjørn Skramstad2, Faouzi A. Cheikh3

1Department of Informatics & E-Learning (AITeL),

Sør Trøndelag University College(HiST), Trondheim, Norway

2Department of Computer & Information Science (IDI),

Norwegian University of Science and Technology (NTNU), Trondheim, Norway

3Faculty of Computer Science and Media Technology,

Gjøvik University College(HiG), Gjøvik, Norway

Abstract

3-D virtual environment is a computer generated experience which gives
us a feeling of presence in the environment. Objects displayed in virtual
environment unlike the real world have no physical depth. Due to
the distance between the eyes, the images formed on the retina are
different, this facilitates our perception of depth. In the range of
personal space, eyes converge at different angles to look at objects in
different depth planes, known as convergence angle. Since we cannot
get images of the scene viewed by the two eyes, the convergence angle
cannot be calculated by standard photogrammetry principles such as
triangulation. However, we can measure the point of focus(fixations)
of the eyes on 2-D display plane, by using eye tracker. Each eye gets a
different view of the virtual scene. Knowing the physical location of both
eyes and their corresponding fixations, we can calculate the estimated
depth using geometry. In this paper, first, we discuss the experiment
setup and 3-D virtual scene used for depth estimation. Second, we
evaluate the performance of the geometric model for depth estimation.
Third, we discuss a histogram based filtering approach, for improving
the performance of the geometric model. Results show that histogram
based filtering improves the performance of the geometric model.

1 Introduction
A Virtual environment is a computer-generated three-dimensional visual experience
displayed either on a computer screen or a stereoscopic display. Due to their low cost
and the ability to simulate any real or imagined scenario, virtual environments have
assumed a leading role in training personnel such as pilots and fire-fighters to tackle
hazardous situations without risking their safety. Though the rendition of virtual

This paper was presented at the NIK-2010 conference; see http://www.nik.no/.
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environments can be highly realistic, objects displayed in virtual environment are
different from their real world counterparts i.e., objects in 3-D virtual environments
have no physical depth. When optimizing virtual environments it is important to
be able to measure the user’s perceived depth of an object and correct for any
discrepancy between the measured value and that specified by the environment’s
designers. This need presents us with the challenge of measuring a non-physical
quantity namely: perceived depth.

In real or 3-D virtual environments, the two eyes view two different images of the
same scene and the brain fuses these images to give a perception of depth. Depth
perceived in virtual environment can be reported by the observer verbally. The
experimental evidence provided by Waller [11] states that verbal feedback from the
observer improves the accuracy of the depth in virtual environments. However, in
the absence of verbal feedback, we can estimate depth by other means, for instance,
eye tracking.

In personal space(see section 2), eyes converge to focus on the object at a certain
depth plane. It can be compared to a two camera system viewing a real world scene,
giving us two images, where a point in the first image has a corresponding point in
the second image. In photogrammetry the 3-D location of the correspondence point
can be calculated from orientation, focal length and location of the cameras. The
solution relies on the concepts of epipolar correspondence, for details on epipolar
geometry see Zhang [12], for details on triangulation see Hartley & Sturm [2].

Unlike the two camera system we cannot get the images captured by the two
eyes for correspondence. However, we can measure the point of focus of the eye on
the 2-D display, that is called fixation, using an eye tracker. Knowing the physical
location of eyes, the intersection of lines connecting the left and right eyes to their
fixations, extended behind the display can give us the estimated depth.

Estimated depth is calculated by intersection of two lines in 3-D. However,
experimental data shows that these lines do not intersect. In this paper, the method
used to resolve this issue is elaborated and its performance is measured.

The cues that influence our depth perception in both real and virtual world
can be classified as binocular and monocular. Binocular cues are: accommodation,
disparity and vergence. Monocular cues are: shading, shadow, linear perspective,
relative height, relative size, texture gradient, and motion perspective [9, 4, 1].

2 Depth Perception Cues
Table 1 gives definitions of cues for depth perception. The effectiveness of the above
mentioned cues varies with space. The space around the observer can be divided into
three egocentric regions: personal space, action space, and vista space [1]. Personal
space is the zone surrounding the observer’s head, within an arms reach(≈ 1 m).
Action space is the circular region beyond the personal space and extending upto 30
meter. Vista space is the region beyond 30 meter. Cues that are effective in personal
space are: occlusion, binocular disparity, relative size, vergence, accommodation,
and motion perspective [1].

Depth Estimation using Vergence
Vergence, the simultaneous movement of eyes in opposite directions gives us precise
depth perception. In virtual environment we cannot track the 3-D gaze behind the
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Table 1: Cues for depth perception
Cue Definition

Accommodation Ciliary muscles adjust the curvature of the lens, and
hence its refractive power, to bring images of objects
at a particular distance into clear focus [4, 3].

Aerial Perspective It is determined by the relative amount of moisture,
pollutants, or both in atmosphere through which one
looks at a scene. When air contains high degree
of either, objects in the distance becomes bluer,
decreased in contrast, or both with respect to objects
in foreground [1].

Binocular Disparity Eyes are about 6.5 cm apart, which gives two vantage
points. This causes the optic arrays and images of 3-D
object to differ in two eyes [5].

Linear Perspective It combines different cues like relative size, relative
height, and texture gradient, Parallel lines that recede
into the distance appear to converge [1].

Motion Perspective Relative motion of images of the object points at
different distances that is caused by motion of the
observer or of the object points [5].

Occlusion When one object hides, or partially hides, another
from the view. This cue offers information on depth
order but not about the amount of depth [1, 3].

Relative Size Size of any 2-D or 3-D object lying at a fixed angle to
line of sight varies inversely with distance of the object
along that line of sight [5].

Relative Height Objects farther from the ground appear to be far as
compared to objects near the ground [5].

Shading Variations in the irradiance from surface due to
changes in the orientation of the surface to incident
light or variations in specularity [5].

Shadow Variations in the irradiance from surface caused by
obstruction by an opaque or semi-opaque object [5].

Texture Gradient Images of textured elements become more densely
spaced with increasing distance along the surface [5].

Vergence Movement of eyes through equal angles in opposite
directions to produce a disjunctive movement. Hori-
zontal vergence occurs when a person changes fixation
from an object in one depth plane to one in another
depth plane [4].

display, so the problem becomes estimation of 3-D fixations based on the geometry
of two 2-D images of the virtual environment. 3-D fixation can be calculated if the
observer is looking at the virtual object in the scene. Observer was instructed to
look at the object during the experiment.

Figure 1 shows the scheme for estimation of depth based on vergence. In
symmetrical convergence, the angle of horizontal vergence, ø is related to the
interocular distance, a, and distance of the point of fixation, d, as in the following
expression [4],

tan(ø/2) =
a

2d
(1)
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Figure 1: Vergence

Fixation marked by cross correspond to the left eye and fixation marked by circle
correspond to the right eye. Eye tracking cameras measure the fixations with respect
to the display screen. The lines from left and right eyes passing through the fixations
are extended behind the display. The intersection obtained by these lines is the 3-D
fixation [8]. The intersection of two lines in space is a trivial problem, However,
in the presence of noise these lines do not intersect. Therefore, we should find a
solution to intersect the lines.

Assuming two 3-D line segments P1P2 and P3P4 are joined by the shortest line
segment PaPb. Pm is the mid point of the shortest line between two lines, as shown
in figure 2. A point Pa on the line P1P2 and point Pb on the line P3P4 is given by
the following line equations:

Pa = P1 + μ(P2 − P1) (2)

Pb = P3 + η(P4 − P3) (3)

Truong et al. [10] states that the shortest line between the two lines can be found
by minimizing |Pb − Pa|. η and μ can be arbitrary real numbers.

Pb − Pa = P3 − P1 + η(P4 − P3)− μ(P2 − P1) (4)

PaPb is the shortest line segment between two lines, so it should be perpendicular
to the two lines P1P2 and P3P4. Hence their dot product is zero.

(Pb − Pa).(P2 − P1) = 0 (5)

(Pb − Pa).(P4 − P3) = 0 (6)

Using equations 4- 6 we get

[P3 − P1 + η(P4 − P3)− μ(P2 − P1)](P2 − P1) = 0 (7)

[P3 − P1 + η(P4 − P3)− μ(P2 − P1)](P4 − P3) = 0 (8)

Expanding equations 7, 8 in (x,y,z) gives μ and η. After calculating Pa and Pb. We
get Pm, the mid point of shortest line by the following equation,

Pm = (Pa + Pb)/2 (9)
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Pm is the estimated 3-D fixation and the z-component of euclidean point Pm gives
us the estimated depth.

An experiment was designed for testing the personal space, the details of which
are discussed in section 3.

Figure 2: 3-D Intersection

3 Experiment
Figure 3(a) shows the 3-D virtual scene created by using Coin3d [6] library.
Figure 3(b) shows side view of the same scene. The dimensions of the scene are
472*296*400 millimeters (width*height*depth). In each virtual scene a spherical
object is displayed at a specific location in front of the checkerboard pattern. The
pattern is 400 mm behind the display. Sphere is moved to different locations in 3-D
to give 27 virtual scenes. These virtual scenes are shown to the observer, one at a
time. Observer is at a distance of 600 mm from the display. Since, the majority of
a person’s normal range of vergence is used with in one meter from the eyes [4],
the sum of distance from the eye and maximum extent of virtual scene is fixed at
(600+400) 1000 mm.

A real world model similar to the virtual scene was created and digital camera
was placed at a distance of 600 mm from the model. Digital images of the real
world model were used as a reference to accurately position the spheres in the
virtual environment similar to Pfeiffer et al. [8].

Figure 4(a) shows the observer wearing NVidia 3D Glasses, Arrington Research’s
eye tracking cameras are mounted below the glasses. Figure 4(b) shows the
experiment setup, head of the observer is fixed by using a chin rest. Samsung 2233RZ
3d display and NVidia Quadro FX 3800 graphics card are used for presenting the
3-D virtual scene.

5 Observers with no prior experience of 3-D environments performed the
experiment. Mean age of the group was 38 years, written consent was taken for
using the eye data. The experiment was performed in the following steps: First, the
observer’s head is fixed by using a chin rest such that the distance of the eyes from
display is 600 mm and the distance between the eyes is measured. Second, the eyes
of the observer are calibrated to the display using a standard calibration procedure.
In this procedure, the observer looks at a series of 16 points and eye tracker records
the value that corresponds to each gaze point. Third, observer is shown the virtual
scene and after viewing the scene, observer reports the depth of the sphere. This
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procedure is followed for all 27 virtual scenes. As a reference measure, the depth
of the first sphere is told to the observer. Observer controls the switching of the
virtual scenes by pressing a key. The task of finding depth of the object forces the
observer to maintain the gaze on virtual object and thus maximizing the number
of fixations on the virtual object. The results from the experiment are discussed in
the next section.

(a) Front View (b) Side View

Figure 3: Virtual Scene

(a) Front View (b) Side View

Figure 4: Experiment Setup

4 Results
27 virtual scenes were shown to 5 observers. Mean estimated depth(MED) for an
observer and a virtual scene is calculated by the following expression,

MEDS =

∑N
j=1 G(j)S

N
(10)
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N is the number of estimated fixations, G is the 3-D estimated fixation for a virtual
scene, S is virtual scene number.

Figure 5(a) shows the estimated 3-D fixations obtained by the geometric method
discussed in section 2. The actual location of the object is represented by the red
sphere, estimated gaze is represented by asterisk. Vergence eye movements result
in a number of depth estimates. The histogram of the depth estimates (in figure
5(b)) shows that mean value of depth estimates lies around -61 mm. Object is at
a depth of -100 mm, as specified by the design of virtual environment. So, there is
difference of 39 mm in the mean of estimated depth and actual position of depth.
Figure 5(a) shows the volume of data over which the mean is calculated. Noise
in the data can be contributed by a number of factors: inaccurate measurement of
distance between the eyes, device errors, slight head movements, inaccurate design
of environment. In addition to noise there are external factors, for instance, when
observer looks at parts of the scene, which do not contain the spherical object. A
filter is implemented to reduce such isolated 3-D fixations, as a result of noise and
external factors. It is assumed that observer spends most of the time looking at the
virtual object. Considering this, the region with maximum number of the estimated
fixations corresponds to the location of virtual object.

The filter operates as follows: First, the filter divides the virtual space into
cuboids of equal size and records the population of data for each cuboid region.
Second, the cuboid region with maximum population size is selected. Third, the
cuboid regions with size more than half the maximum size are selected and their
mean is calculated which gives us the estimated depth. Figure 6(a) shows the
distribution of the estimated gaze after filtering. Histogram of the filtered data
now lies around -64 mm. It represents one of the typical cases, the improvement in
accuracy is considerable as discussed in next section.

Comparison of Performance of Geometric Depth Estimates
The performance of the estimated depth can be measured by comparing it with the
depth specified by the virtual environment. Mean absolute depth error(MDE) is
calculated by subtracting the depth of the object specified by the design of virtual
environment from the mean of the estimated depth as follows,

DES = MEDS − ADS (11)

S is the virtual scene number, AD is the euclidean Z value of virtual object defined
by the environment. Depth errors(DE) corresponding to all the virtual scenes
are calculated. Small depth error indicates a good correspondence between the
estimated depth and the depth specified by the design of the virtual environment,
whereas, a large depth error indicates otherwise.

Figure 7- 11 show the absolute depth errors for filtered data and unfiltered data.
The x-axis represents the virtual scene number. Clearly on the average, the depth
errors are reduced for the filtered data as compared to the unfiltered data. Thus,
histogram based filtering reduces the depth errors.

MDE =

∑27
S=1 |(DE)S|

27
(12)

MDE gives the absolute error between the actual z position of the object and
estimated z position for all 27 scenes. Table 2 shows the mean depth errors for 5
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(a) Estimated Gaze

(b) Histogram of Depth(Z)

Figure 5: Estimated Depth

observers. Histogram filtered data clearly reduces the depth errors, hence improving
the depth estimates for vergence.

Table 2: Comparison of Mean Depth Errors
Observer MDE(in mm) of Complete Data MDE(in mm) of Histogram Filtered Data

1 127.4 107.9
2 224.7 102.9
3 114.6 69.4
4 154.7 127.1
5 131.6 104.8

5 Conclusions
Depth estimation via vergence for a virtual environment is possible, given that
the virtual environment is designed within the range of the personal space. The
depth estimate is calculated by taking the mean of estimated 3-D fixations. The
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(a) Estimated Gaze

(b) Histogram of Depth(Z)

Figure 6: Estimated Depth after filtering

Figure 7: Absolute Depth Error for Observer 1

results obtained from the evaluation of the geometric depth estimation algorithm
are discussed in section 4, Results in table 2 show that histogram based filtering
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Figure 8: Absolute Depth Error for Observer 2

Figure 9: Absolute Depth Error for Observer 3

Figure 10: Absolute Depth Error for Observer 4

improves the performance of the depth estimates. Mon-Williams et al. [7] suggests
that stereoscopic depth can be estimated by a combined signal provided by disparity
and vergence with weighting attached to either varying as a function of availability.
In future, we intend to investigate this issue.
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Figure 11: Absolute Depth Error for Observer 5
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ABSTRACT
Visual interaction in 3-D virtual space can be achieved by
estimating objects depth from the fixations of the left and
right eyes. Training a PSOM neural network to estimate
depth, from eye fixations, has been shown to result in good
level of accuracy. Instead of training a neural network we
postulate that it is possible to improve the accuracy of the
fixation data by providing the observer with feedback. In
order to test this hypothesis we introduce a closed-loop
feedback in the environment. When the user’s visual axes
intersect, within a range of the correct depth, a sound is
produced. This mechanism trains the users to correct their
fixations in a fashion that results in improved depth estima-
tion. Our results show that indeed the accuracy of depth
estimation improves in the presence of feedback.

KEY WORDS
Eye fixations, depth estimation, virtual environment

1 Introduction

Our perception of the layout of the world around is three-
dimensional. The eyes represent the centroid of our per-
ceived world with objects scattered to their left, right,
nearer or farther away from them. From a computer vi-
sion point of view, the mechanism which enables us to see
in three-dimensions can be explained by means of stereo-
vision [9]. The basic idea is that the images formed on
the retinas of the left and right eyes represent two differ-
ent three-dimensional planes that are merged into a three-
dimensional scene based on the principles of epipolar ge-
ometry [17, 6, 2].

Research in human vision shows, however, that the
explanation provided by the epipolar geometry is only part
of a more complex perception-mechanism. Indeed we can
simply verify that the world appears three dimensional even
when one eye is shut—a fact that is readily used in fine
art and visual illusions [9]. Extensive research in layout
perception indicates that our vision system makes use of
a wealth of information sources which are fused to ren-
der the final perception. Among these sources, or cues,
are: accommodation, aerial perspective, binocular dispar-
ity, convergence, height in visual field, motion perspective,
occlusion, shading, shadow, relative size, and relative den-

sity [8, 9, 3, 13, 16].
When designing a three-dimensional virtual environ-

ment, it’s important that the resultant layout is realistic. It
is, however, implausible to incorporate all the visual cues
into the design. Assuming that there are fifteen cues [3],
there would be 105 possible pairs of information sources
to take into account, 455 possible triples and 1365 possible
quadruples, not to mention higher order combinations [3].
Clearly, no realistic design process can take such a high
order of variables into account.

Accurate depth perception in virtual environments
would enable users to visually interact with objects em-
bedded therein [14]. By visual interaction we mean that a
match between the three-dimensional coordinates of a hu-
man fixation point and those of an object in the environ-
ment would trigger a predefined action. Here, we envisage
a scenario where the user’s eye movements are recorded us-
ing a calibrated high frequency eye-tracker. The question
that we need to answer is whether the perceived depth can
accurately be estimated from the user’s eye locations. A
number of researchers [4, 5, 11, 12, 1] have endeavored to
answer this question. The basic method employed is based
on the assumption that the lines emerging from the cen-
ters of the two eyes to the fixation points on the screen,
as recorded by the eye-tracker, intersect at the perceived
depth. In other words, it is assumed that convergence is
sufficient to estimate depth. Unfortunately, this assumption
suffers from a number of drawbacks. Firstly, the empiri-
cal lines defined by the centers of the eyes and the fixa-
tion points almost never intersect, thus, some optimization
method such as the shortest distance between the lines is
normally employed [15]. The second problem is more fun-
damental in that the assumption that the intersection pro-
vides an accurate depth does not incorporate any of the
aforementioned visual cues. Some level of accuracy has
been achieved by employing a POSM neural network that
is trained to the individual user [5].

In this paper, we take a novel approach to the estima-
tion of perceived depth in virtual environments. Specifi-
cally, we postulate that users can be trained to move their
eyes in a fashion that would result in an accurate depth esti-
mation based on the line-intersection method [15]. This is
done by providing the user with a compensatory cue which
is assumed to compensate for the lack of visual cues avail-
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able in natural settings. To test the effectiveness of the com-
pensatory cue we constructed a simple three-dimensional
virtual environment with a checkerboard background and
a spherical object that was located at different depth val-
ues ranging from 50 to 300mm behind the screen. Users
were provided with shutter glasses and their eye move-
ments were recorded with an eye-tracker. Furthermore,
we calculated the depth estimated by the intersecting lines
method in real-time. When the correct depth was estimated
by the model, a sound was played by the system. Thus, in
this experiment, the compensatory cue was audible rather
than visual. The choice of an audible cue is motivated by
the thought that providing a visual cue such as a change in
the color or intensity of the object would alter the settings
of the environment in an unpredictable fashion. Our exper-
iments show that incorporating a compensatory cue does
indeed result in a significantly improved depth estimation.
In fact, we observed that even when slight head movements
were allowed users could quickly train their eyes to fixate
on the region of the scene associated with the sound cue.

2 Theory

2.1 Line-intersection method

In the line-intersection method, three-dimensional fixation
is estimated using triangulation [7]. Two lines are defined
as originating from the left and right eyes, passing through
their respective fixation points, and extending into infin-
ity. The intersection of two lines in space is a well defined
problem where the solution is obtained by solving the si-
multaneous equations that describe the lines. Due to noise,
however, the lines defined based on real data do not inter-
sect. Thus, to estimate a representation of the intersection
point, a cost function is defined and the estimation is ob-
tained by optimization. In previous studies [5, 12], the op-
timization problem was defined as the search for a point
with minimum Euclidian distance to the two fixation lines.
Geometrically, there is a unique shortest line segment that
joins two lines in three dimensions [15]. Thus the mid-
point of the shortest line is assumed to represent the best
estimate of the three-dimensional fixation.

Figure 1 represents the top and side views of a sce-
nario where the lines do not intersect. Assuming that the
shortest line segment that joins the two lines in three di-
mensions is

−−−→
GlGr, as shown in figure 1(b). A point �Gl on

line
−−→
PlFl and a point �Gr on line

−−−→
PrFr can be defined by

the following line equations:

�Gl = �Pl + μ(�Fl − �Pl) (1)

�Gr = �Pr + η( �Fr − �Pr) (2)

where �Pl and �Pr are left and right eye locations, �Fl and �Fr

are left and right eye fixations on the display, and η and μ
are arbitrary real numbers. The shortest distance between

the two lines can be calculated by minimizing |−→Gl− �Gr| as,

| �Gl − �Gr| = |�Pl − �Pr − η( �Fr − �Pr) + μ(�Fl − �Pl)| (3)

The equations 1- 3 can be solved for �Gl and �Gr, the points
on both visual axes. Mid-point of the line segment

−−−→
GlGr is

assumed as the three-dimensional fixation �F .

(a) Top view.

(b) Side view.

Figure 1. When the two lines do not intersect mid-point of
the shortest line is assumed to represent the best estimate
of 3-D fixation; �F is the mid-point of shortest line segment
between the two visual axes.

3 Experiment

In this study, observer’s left and right eye fixations were
recorded by using Arrington Research’s eye-tracker. Shut-
ter glasses for viewing the three-dimensional scene, were
mounted above the eye tracker as shown in figure 2(a). Fig-
ure 2(b) shows the side view of the experiment setup. Head
movements were minimized using a chin rest. Samsung
2233RZ 3D display and NVidia Quadro FX 3800 graphics
card were used for presenting the three-dimensional virtual
scene.

3.1 Three-dimensional virtual scene

The three dimensional scene was created by using
Coin3d [10] graphics library. The dimensions of the scene
were 472*296*400 millimeters (width*height*depth). Fig-
ure 3 shows the front and side views of the three-
dimensional virtual scene. In the virtual scene, a spherical
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(a) Eye tracker with shutter
glasses.

(b) Side view of the setup with stereo display
and chin rest.

Figure 2. Experiment setup with eye tracker, stereo-
display, and chin rest.

object was displayed at different depths(-200,-100,-300,-
50,-150,-250 mm) with a checkerboard background. The
checkerboard background was 400 mm behind the display.

To create a realistic virtual scene, an identical real
world model was constructed and a digital camera was used
to image a spherical object at different depth values. The
camera was placed at a distance of 600 mm, which is the
same distance as that of the observer in the experiment
setup. Using the digital images of the real world model,
a scale measure was computed and later used in the design
of virtual scene. The procedure followed in this study is in
keeping with the method described by Pfeiffer et al. [12].

4 Results

To test our hypothesis that the introduction of a compen-
satory cue improves observers’ estimated depth perception
two experiments were performed. In the first, the observers
viewed the scene without a compensatory cue. In the sec-
ond experiment, the audible cue was included into the en-
vironment. The observers who performed the first experi-
ment were instructed to fixate on the spherical objects. In
the second experiment, the observers were presented with
an identical scene. The instructions were, however, dif-
ferent. In this case, the observers were informed that ma-
neuvering their eyes, as they gaze at the object, could pro-
duce a sound. They were, further, instructed to try and pro-
long the duration of the sound. As mentioned in the in-
troduction section, the sound was produced when the cor-
rect depth, within some error range, was estimated by the

(a) Front View

(b) Side View

Figure 3. Front and side view of the virtual scene with the
checkerboard background. The dimensions of the scene are
472x296x400 mm3. Distance between the observer and the
display is 600 mm.

line-intersection method based on the eye fixation data ob-
tained by the eye-tracking system. In keeping with Cutting
& Vishton [3] we define accurate perceived depth as being
within 15 percent of the actual depth. Three observers took
part in the experiments which were separated by a period of
two weeks. The two weeks period was introduced to avoid
the possibility of observer’s adaptability to the virtual envi-
ronment.

4.1 Average depth for line-intersection

For each object in the environment, the fixation-data ob-
tained from an observer were used to estimate the asso-
ciated depth values. Given that our eyes are in constant
movement, the estimated depth values represent a distri-
bution that varies in time. An example of the depth dis-
tribution for a single object is shown in figure 4. In this
case, the actual depth of the object, as specified in the en-
vironment, is 150mm behind the screen. We notice, how-
ever, that the depth obtained from the fixation data varies
from zero, which is the plane of the screen to 300mm be-
hind it indicating that the observer is continuously brows-
ing the scene. Knowing that this browsing mechanism is
a natural aspect of the our vision system we expect that
the depth perception data obtained from any given method
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would exhibit variations. Thus, to judge the goodness of a
method compared to another we need to examine the local
rather than the global statistics of the distribution. Having
said that, we start our comparisons by considering the av-
erage values obtained from the estimated depth data with
and without the compensatory cue based on the whole dis-
tribution. Tables 1- 3 show the results of the two experi-
ments for three different observers. In case of the exper-
iment performed without compensatory cue, the average
values of the distribution for the line-intersection method
exhibit little accuracy. In case of data obtained with com-
pensatory cue we notice, however, that the average values
of the distributions offer clearer discrimination making it
better suited for visual interaction.

Table 1. Average depths for the first observer obtained from
line-intersection(LI) method for two experiments: without
compensatory cue, and with compensatory cue. All units
are in millimeters

Object
no.

Actual
depth

Without com-
pensatory cue

With compen-
satory cue

1 -200 -81 -162
2 -100 -151 -99
3 -300 -50 -194
4 -50 -61 -87
5 -150 -56 -151
6 -250 -66 -136

Table 2. Average depth for the second observer obtained
from line-intersection(LI) method for two experiments:
without compensatory cue, and with compensatory cue.
All units are in millimeters

Object
no.

Actual
depth

Without com-
pensatory cue

With compen-
satory cue

1 -200 -212 -239
2 -100 -264 -220
3 -300 -292 -219
4 -50 -297 -95
5 -150 -291 -139
6 -250 -275 -174

Table 3. Average depth for the third observer obtained from
line-intersection(LI) method for two experiments: without
compensatory cue, and with compensatory cue. All units
are in millimeters

Object
no.

Actual
depth

Without com-
pensatory cue

With compen-
satory cue

1 -200 -162 -179
2 -100 -170 -133
3 -300 -158 -162
4 -50 -97 -69
5 -150 -82 -159
6 -250 -69 -204

4.2 Variation of local means over time for line-
intersection method

To examine the local variations in the data we sub-sampled
the distribution into twenty regions. For each sub-sample
we calculated the average values of the depth obtained by
employing the line-intersection method. Figures 5- 7 show
the variation over time of the local average values for dif-
ferent depths -50, -200 and -150mm. From these figures we
notice that the introduction of the compensatory cue is in-
deed improving the estimated depth over time. Further, the
comparison of the histograms, figures 5b- 7b, for the two
experiments reflects that the introduction of the compen-
satory cue results in a higher frequency of depth estimates
that are in the vicinity of the actual depth. Similar results
were obtained for the other depth values.

5 Conclusion

In this paper, we show that the introduction of a closed
loop feedback in the form of a compensatory cue improves
the estimation of perceived depth in virtual environments.
The depth range used in the experiment varied from 50 to
300mm behind the screen. This range corresponds to the
users personal space which is believed to be the range in
which convergence is a significant cue. Furthermore, we
included an audible cue into the design of the environment.
The audible cue was provoked when the fixation-data ob-
tained from the eye tracker resulted in a depth estimate that
was within a predefined error value. Here the calculations
were based on the line-intersection method. Our intuition
in the design of the experiment was that providing the ob-
servers with feedback would stimulate them to correct their
fixations in a manner that improves the obtained depth val-
ues. Our results show that indeed the estimated depth in the
presence of the compensatory cue represents a clear im-
provement. Here we underline that improving the depth
estimation allows visual interaction with the virtual envi-
ronment. Thus our goal in the experiment was not to im-
prove perceived depth but rather to improve the estimation
of depth in a fashion that results in improved interaction.
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(a) Depth estimates obtained from left and right eye fixations by line-intersection method for an
object 150mm behind the screen. The distribution of estimated depth varies from zero, which is
the plane of the screen to 300mm behind it indicating that the observer is continuously browsing
the scene.
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(b) Distribution of depth estimates for the sub-sampled data over twenty samples of the total time.

Figure 4. Distributions of estimated depth for raw data and sub-sampled data using line-intersection method.
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(a) Distributions of depth estimates for the sub-sampled data of two experiments over twenty samples of
the total time. In the experiment with compensatory cue we see a clear convergence towards the actual
depth of the object, that is 150 mm behind the screen.
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(b) Histograms of the sub-sampled data for two experiments.

Figure 5. Distributions and histograms of depth estimates for two experiments: without compensatory cue, and with compen-
satory cue. Depth estimates were calculated using the line-intersection method.
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(a) Distributions of depth estimates for the sub-sampled data of two experiments over twenty
samples of the total time. In the experiment with compensatory cue we see a clear convergence
towards the actual depth of the object, that is 250 mm behind the screen.
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(b) Histograms of the sub-sampled data for two experiments.

Figure 6. Distributions and histograms of depth estimates for two experiments: without compensatory cue, and with compen-
satory cue. Depth estimates were calculated using the line-intersection method.
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(a) Distributions of depth estimates for the sub-sampled data of two experiments over twenty
samples of the total time. In the experiment with compensatory cue we see a clear convergence
towards actual depth of the object, that is 200 mm behind the screen.
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(b) Histograms of the sub-sampled data for two experiments.

Figure 7. Distributions and histograms of depth estimates for two experiments: without compensatory cue, and with compen-
satory cue. Depth estimates were calculated using the line-intersection method.
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ABSTRACT
Visual interaction in 3-D virtual space can be achieved by
estimating objects depth from the fixations of the left and
right eyes. The current depth estimation methods, however
do not account for the presence of noise in the data. To ad-
dress this problem we note that any measured fixation point
is a member of a statistical distribution defined by the level
of noise in the measurement. We thus propose a new nu-
merical method that provides a range of depth values based
on the uncertainty in the measured data.

KEY WORDS
Eye fixations, depth estimation, virtual environment

1 Introduction

Our perception of the layout of the world around is three-
dimensional. The eyes represent the centroid of our per-
ceived world with objects scattered to their left, right,
nearer or farther away from them. From a computer vi-
sion point of view, the mechanism which enables us to see
in three-dimensions can be explained by means of stereo-
vision [9]. The basic idea is that the images formed on
the retinas of the left and right eyes represent two differ-
ent three-dimensional planes that are merged into a three-
dimensional scene based on the principles of epipolar ge-
ometry [15, 6].

Research in human vision shows, however, that the
explanation provided by the epipolar geometry is only part
of a more complex perception-mechanism. Indeed we can
simply verify that the world appears three dimensional even
when one eye is shut—a fact that is readily used in fine
art and visual illusions [9]. Extensive research in layout
perception indicates that our vision system makes use of
a wealth of information sources which are fused to ren-
der the final perception. Among these sources, or cues,
are: accommodation, aerial perspective, binocular dispar-
ity, convergence, height in visual field, motion perspective,
occlusion, shading, shadow, relative size, and relative den-
sity [9, 3, 11, 7].

When designing a three-dimensional virtual environ-
ment, it’s important that the resultant layout is realistic. It
is, however, implausible to incorporate all the visual cues
into the design. Assuming that there are fifteen cues [3],

there would be 105 possible pairs of information sources
to take into account, 455 possible triples and 1365 possible
quadruples, not to mention higher order combinations [3].
Clearly, no realistic design process can take such a high
order of variables into account.

Accurate depth perception in virtual environments
would enable users to visually interact with objects em-
bedded therein [13]. By visual interaction we mean that a
match between the three-dimensional coordinates of a hu-
man fixation point and those of an object in the environ-
ment would trigger a predefined action. Here, we envisage
a scenario where the user’s eye movements are recorded us-
ing a calibrated high frequency eye-tracker. The question
that we need to answer is whether the perceived depth can
accurately be estimated from the user’s eye locations. A
number of researchers [4, 5, 10, 12, 2] have endeavored to
answer this question. The basic method employed is based
on the assumption that the lines emerging from the cen-
ters of the two eyes to the fixation points on the screen,
as recorded by the eye-tracker, intersect at the perceived
depth. In other words, it is assumed that convergence is
sufficient to estimate depth. Unfortunately, this assumption
suffers from a number of drawbacks. Firstly, the empiri-
cal lines defined by the centers of the eyes and the fixation
points almost never intersect see figure 1, thus, some opti-
mization method such as the shortest distance between the
lines is normally employed [14]. The second problem is
more fundamental in that the assumption that the intersec-
tion provides an accurate depth does not incorporate any
of the aforementioned visual cues. Some level of accuracy
has been achieved by employing a PSOM neural network
that is trained to the individual user [5].

In this paper, we propose a definition of a new nu-
merical method which allows us to estimate the depth un-
certainty that arises from non-intersecting visual lines. The
lines emerging from the centers of the eyes to the fixation
points on the screen define the normal vectors of the vi-
sual planes. Theoretically, these lines intersect at the depth
of the fixation point [8]. Due to the presence of noise the
lines obtained from real data do not intersect. Among the
sources of noise in the measurements are: the accuracy
of the measuring device, slight head movements, errors in
measuring the exact distance between the eyes as well as bi-
ological factors such as adaptation. The existence of noise
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in the measurements means that any optimization method
would result in an approximation of the real fixation point
rather than its exact location. In this paper we take a dif-
ferent approach–instead of estimating a unique point we
estimate the depth range or uncertainty in the depth esti-
mation. We start by considering a number of consecutive
fixations, for each eye, these fixations define a distribution,
of points, on the plane. Given that these points are close to
each other, we assume that the distribution measured cor-
responds to noise in the data. This distribution together
with the center of the eye, defines a volume in space. We
note that assuming that there is no noise in the data, these
volumes would converge to the visual lines. For real data,
however, these volumes represent two cones. By intersect-
ing the two cones, we arrive at an intersection region rather
than a unique point. Thus we define the depth uncertainty
as the length of the intersection volume in the z-direction.
This approach offers a number of advantages: Firstly, given
that the method incorporates a noise distribution it is more
robust. Secondly, the depth uncertainty is a measure of the
goodness of the estimate where the more uncertainty the
less we would trust the depth value. Thirdly, in terms of
optimization methods, the intersection volume represents
the feasible solution space where any point is likely to be
the actual depth. Thus the method allows us to study which
statistical representation is most likely to represent the ac-
tual depth.

(a) Top view.

(b) Side view.

Figure 1. When the two lines do not intersect mid-point of
the shortest line is assumed to represent the best estimate
of 3-D fixation; �F is the mid-point of shortest line segment
between the two visual axes.

2 Theory

2.1 Cone-intersection method

The estimation of uncertainty in measurements is of con-
siderable importance in all engineering disciplines. In
the case of perceived depth estimation, we wish to know
the level of uncertainty associated with our estimate. To
achieve this goal, we need to remember that the measure-
ment obtained from the eye-tracker is an element in a sta-
tistical distribution. That is to say that if the measurement
is repeated several times then the location of the fixation
point will not be the same but rather it will form a cloud
of points. This basic statistical knowledge is at the heart of
the method proposed in this section.

We start with an assumption that the two fixation
points obtained from the eye tracker are accurate–in this
case the lines result in perfect intersection. On the other
hand, if we were to consider that each point is a member
of a statistical distribution, then the result is not two lines
but rather a distribution of lines. The question that arises
is: How can we intersect a distribution of lines?

The solution proposed in this paper is based on the
assumption that the statistical distribution of the fixation
points is convex. This assumption is motivated by the ob-
servation that noise distributions can be modeled using a
Gaussian function. Thus, if we were to consider the center
of the eye together with the corresponding set of fixation
points then the result is a convex volume. Convex sets can
be represented in two distinct ways. The first is based on
the extreme points. In this case the fixation distribution
plus the center of the eye. The second method is to repre-
sent the convex set using a set of half-planes that enclose
the convex solid. A half-plane is plane which is defined by
three extreme points and has the form ax ≤ b. Based on
this, we define two sets:

CLE = {x ∈ X : ALEx ≤ bLE} (1)

and
CRE = {x ∈ X : AREx ≤ bRE} (2)

where ALEx ≤ bLE and AREx ≤ bRE are the half-planes
that enclose the convex solids obtained from the left and
right eye respectively. A point x is in both sets if and only
if it is in the intersection region, i.e.,

C = CLE ∩ CRE (3)

To solve for the set of all three-dimensional points x that
would satisfy the system in Equation (3), we note that each
inequality in Equations (1) and (2) defines a hyperplane.
A hyper-plane, defined by an inequality of the form ax ≤
b, divides the space into three parts: the first contains the
vectors x that satisfy the inequality, i.e., ax < b; the second
is the space of all the weights that violate the inequality, i.e.,
ax > b; and the third satisfies the equality, i.e., ax = b.
For a linear system of equalities and inequalities, such as
the one defined in Equations (1) and (2), intersecting all the
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hyper-planes results in a closed and convex region, which is
the space of all feasible solutions, depth values, that satisfy
the system. Using computational algorithms such as quick
hull [1], it is possible to solve for the region of all feasible
solutions.

Finally, Figure 2 shows a two-dimensional schematic
representation of the cone-intersection method.

Figure 2. A schematic representation of the cone-intersection method.
We note that the area of triangles emerging from the eyes is defined by the
size of the statistical distribution of the fixation points. The intersection
area, represented in gray, is the region defined by the intersection of the
two convex sets where the larger this area is the more uncertain we are of
the estimated depth value.

2.2 Note on practical implementation

The fixation points are extended along the lines that go
from the center of the eye to the respective fixation point on
the screen. Theoretically, the points are extended to infin-
ity, for practical reasons the points are, however, extended
to 50m behind the screen. Having done that we use the
points together with the location of the eye as the input to
quick hull algorithm. The output of the algorithm is a set
of extreme points and the half-planes Ax ≤ b that enclose
the extremes. The process is repeated for both eyes and the
set of half-planes are intersected to arrive at the intersec-
tion region which defines the feasible space of all the likely
depth values.

3 Results

In this section, we discuss the results obtained from the pro-
posed cone-intersection method. As previously discussed,
the method is designed to estimate the uncertainty in the
predicted depth. This uncertainty can be represented in a
number of different ways such as the volume of the inter-
section region or maximum and minimum values. To con-
strain the values to the most likely region we have, how-
ever, chosen to represent the depth uncertainty using three
standard deviations.

In order to test our method the fixations data are gen-
erated as follows: first, it is assumed that the observer is at
400 mm in front of the display screen and the virtual ob-
ject is at depth d mm behind the screen. In the absence of
noise for a given depth d, each of the left and right eye fix-
ations have only one unique value. Second, random noise
is added in horizontal and vertical directions to the left and
the right eye fixations. This generates a distribution of left
and right eye fixations for a given depth.

Figures 3 to 6 show the results obtained based on four
depth values, namely, 100, 150, 200, and 300mm behind
the screen. For all these depth values we note that the av-
erage values of the cone intersection region are a fair rep-
resentation of the actual depth, the uncertainty depicted by
the error-bars offers a more comprehensive view into the
estimation. We observe that the real depth is almost always
within the uncertainty region.

4 Conclusion

The contribution of this paper is the introduction of a nu-
merical method that allows designers of virtual environ-
ments to estimate the uncertainty in the measured depth
value. The proposed method is based on the principle of
intersection of convex sets where two sets are defined. The
first set is defined by the statistical distribution of the left
eye fixations together with the center of the eye. A corre-
sponding set is defined for the right eye. In an ideal sit-
uation i.e., when no noise is present in the data these two
sets are reduced to the visual lines and the method is identi-
cal to the line-intersection method. When noise is present,
however, the sets represent conical volumes and their in-
tersection is the feasible solution space where any point is
likely to be the actual depth. Based on that we represented
the uncertainty in the estimate by means of three standard
deviations from the average value. Our results show that
the actual depth as specified in the environment is almost
always within the uncertainty range.
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(a) Depth estimates obtained from left and right eye fixations by cone-intersection method. The average of depth
estimates is 115 mm when the actual depth is 100 mm behind the screen. We notice that the actual depth is almost
always within the uncertainty range.
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(b) Difference between actual and estimated values of X.
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(c) Difference between actual and estimated values of Y.
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(d) Difference between actual and estimated values of Z.

Figure 3. Depth estimates obtained from left and right eye fixations by cone-intersection method. Differences in actual and
estimated values of X, Y, and Z.
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(a) Depth estimates obtained from left and right eye fixations by cone-intersection method. The average of depth
estimates is 164 mm when the actual depth is 150 mm behind the screen. We notice that the actual depth is almost
always within the uncertainty range.
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(b) Difference between actual and estimated values of X.
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(c) Difference between actual and estimated values of Y.
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(d) Difference between actual and estimated values of Z.

Figure 4. Depth estimates obtained from left and right eye fixations by cone-intersection method. Differences in actual and
estimated values of X, Y, and Z.
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(a) Depth estimates obtained from left and right eye fixations by cone-intersection method. The average of depth
estimates is 219 mm when the actual depth is 200 mm behind the screen. We notice that the actual depth is almost
always within the uncertainty range.
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(b) Difference between actual and estimated values of X.
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(c) Difference between actual and estimated values of Y.
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(d) Difference between actual and estimated values of Z.

Figure 5. Depth estimates obtained from left and right eye fixations by cone-intersection method. Differences in actual and
estimated values of X, Y, and Z.
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(a) Depth estimates obtained from left and right eye fixations by cone-intersection method. The average of depth
estimates is 329 mm when the actual depth is 300 mm behind the screen. We notice that the actual depth is almost
always within the uncertainty range.
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(b) Difference between actual and estimated values of X.
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(c) Difference between actual and estimated values of Y.
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(d) Difference between actual and estimated values of Z.

Figure 6. Depth estimates obtained from left and right eye fixations by cone-intersection method. Differences in actual and
estimated values of X, Y, and Z.
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Appendix B
Statements of co-authorship

Statements of co-authorship from:

1. Ali Alsam

2. Anette Wr̊alsen

3. Faouzi Alaya Cheikh

4. Hans Jakob Rivertz

5. Jan Harald Nilsen

6. Torbjørn Skramstad
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