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Abstract

The Faculty of Natural Sciences and Technology
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Automated annotation of events related to central venous catheterisation in

Norwegian clinical notes

by Ingrid And̊as Berg

Health personnel are required to use Electronic Health records for documentation and commu-

nication. Clinical notes from such records contain valuable information, but unfortunately this

is often in narrative form, making it difficult to retrieve and extract information from them.

One such problem is to get an overview of the number of patient days for patients with central

venous catheter (CVC). The risk of infections increase with an increasing number of patient

days. The present study examines the utility of applying NER to extract CVC related events

from clinical notes. No studies have previously examined this application for Norwegian Clinical

notes. Conditional random fields are used to make models based on different feature sets. The

feature sets are combinations of word window, stem, synonymous and International classification

for Nursing Practice (ICNP) axis. A corpus manually annotated with CVC event types was

used for training and testing different models using three-fold cross-validation. Sixteen different

combinations of features were tested. A factorial analysis using the three cross-fold runs as blocks

was conducted to determine which features had the greatest effect on performance. Word window,

ICNP axis and an interaction effect between these were found to affect performance significantly.

Stem had an effect on recall, whereas no such effect was found for precision. An interaction effect

between synonymous and ICNP-axis was found to effect precision. Accumulative scores of the

different label types gave a precision of 56.29 %, a recall of 39.4 % and a f-measure of 46.33 for

the best feature combination. Overlapping labels, errors in corpus and manual annotation are

sources of error in the study. Thus, further research is necessary to draw certain conclusions

about the present findings.

https://www.ntnu.no/
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Preface

This research represents my Master thesis written in 2013 at the Department of Computer and

Information Science (IDI) at the Norwegian University of Science and Technology (NTNU). The

project is part of the Evicare project [1], Evidence-based care processes: Integrating knowledge

in clinical information systems. The National Knowledge Center for Healthcare is responsible

for the project, and the project is led by the director of the center, Geir Bukholm. The project

is also supported by The Research Council of Norway, DIPS ASA, Datakvalitet AS, Innlandet

Hospital Trust, Akershus University Hospital, Oslo University Hospital, The National Health

Library and NTNU. At NTNU, the project is led by Associate Professor Øystein Nytrø from the

Department of Computer and Information Sciences.

As part of integrating clinical records and clinical guidelines, this thesis will focus on Named

Entity Recognition of clinical records, with a particular focus on catheter related events.
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Chapter 1

Introduction

1.1 The current study

The main purpose of this thesis was to investigate the potential of an automatic classifier on

classification of words from clinical notes that deal with Central venous catheter (CVC) events.

Recognizing events related to CVC can contribute to providing clinical decision support.

1.2 Problem formulation

This thesis is part of the Evicare project. The main objective of the Evicare project is “to

develop methods and technology for providing “Evidence-Based Medicine” (EBM) at the point

of care, integrated with an electronic health record (EHR) or other health information systems

directly involved in the clinical process, resulting in higher quality of care and a more detailed,

transparent documentation of care processes” [1].

Clinical records are the foundation of healthcare documentation and communication. According

to the Act of 2 July 1999 relating to health personnel [2], all people with patient responsibility

are required to document their work for the purposes of patient care, reporting and registration.

The majority of information is in narrative form, roughly organized according to care provider

(physician, nurse, physiotherapist etc.), phase of treatment and formal role of the note (discharge,

order, prescription, referral etc.). The unstructured nature makes it challenging to retrieve and

extract relevant information about a patient.

The purpose of this thesis is to:

1. Evaluate the utility of Named-entity recognition for automatic annotation of Norwegian

clinical notes mentioning events related to central venous catheterization (CVC).

2. Find factors that may contribute to classify CVC events

3. Provide an overview of similar, previous studies.

1
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1.3 Motivation

Central venous catheter patients are dependent on a CVC for different medical purposes [3, 4].

According to our collaborators at Ahus there is a lack of knowledge about the prevalence and

duration of CVC for Norwegian patients. Identifying the number of patient days with CVC

of patients that probably or certainly have had CVC inserted is important information to the

hospital. Sub-goals in achieving this is to identify starting and end dates, CVC days and days

where it seems that CVCs are not present.

A possible first step to achieve information about the number of CVC days is to automatically

annotate phrases of clinical notes that indicate certain events. The events may include CVC

insertion and CVC removal. Identifying this information can contribute to give a faster and more

accessible overview of the occurrence and duration of CVC usage. This can help monitoring the

number of CVC related bloodstream infections. Also annotating placement of CVC, care of CVC

and equipment that have been used can contribute to performing risk evaluations.

Increased amounts of electronically stored data and the need to efficiently extract information

from these data have made researchers look in the direction of natural language processing

(NLP) to solve challenges within the healthcare sector [5]. Using NER for automatic annotation

of Norwegian clinical notes related to CVC has not previously been undertaken. Automatic

annotation of CVC events can be utilized to provide clinical decision support by using it as an

input for classifying clinical notes as CVC positive or negative, as keywords for searching clinical

guidelines and literature, to index records and for tagging of guidelines. In addition, it can

be used to reveal overlaps and inconsistencies in guidelines, and thus improve decisions. This

project will be part of a larger pipeline providing decision support for CVC. CVC events are

annotated because they may help identifying critical patients. CVC patients have an increased

risk of blood infection (sepsis) that may be life-threatening without treatment. Previous studies

have investigated semi-automated methods for detecting CVC related events in records and these

concluded a need for further work on the theme [6].
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Medical Background

Electronic records are in the process of replacing paper records. Scandinavian countries have

been leaders in the implementation of EHRs [7]. In Norway almost all the hospitals and general

practitioners (GPs) use an EHR system on a daily basis [8]. The usage is presently estimated

to be more than 90% [9, 10] among hospitals and GPs. This advance has occurred rapidly. In

a study from 2001, none of the largest hospitals in Norway had completed implementing EHR

systems [11]. This chapter contains medical aspects regarding CVC and associated challenges,

as well as information about the structure of medical records.

2.1 Central venous catheter

CVC consists a tube inserted into one of the central veins of a patient in order to provide

nutrition, medication, other fluids or for measuring central venous pressure [3, 4].

How long a patient is in need of a CVC varies from a couple of days to permanent use. Catheter-

related bloodstream infection (CRBSI) is a blood infection caused by bacteria from a catheter.

It is one of the most severe complications of CVC usage and also the most common reason

for hospital acquired sepsis. The risk is low the first days of CVC usage, but increases with

increasing number of CVC usage days. The surface of the CVC becomes covered by plasma

proteins and bacteria after insertion. It is important to keep the amount of bacteria below a

certain threshold to prevent CRBSI. CRBSI may cause different symptoms and complications

such as fever, septic shock, organ failure and in worst case death [12].

CRBSI is often diagnosed by the presence of symptoms, growth of bacteria from the catheter

and positive blood cultures which discloses the presence of bacteria in the blood above a certain

threshold. CRBSI or suspected CRBSI most often causes removal of the CVC. In some cases, if

an insertion cite for a new CVC is unavailable, medical treatment might be induced. Removal of

the CVC may be costly, painful and cause complications for the patient. Thus, efforts are made

to prevent removal of the CVC [12].

3
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In order to prevent CRBSI strict guidelines are followed. These guidelines encompass selection

of catheter type, insertion site, hygiene and aseptic technique, care and replacement of catheter,

but also a number of other matters. Other efforts to prevent CRBSI is to reduce the access to

the catheter to a minimum and to limit the amount of persons nursing the patient [3, 12].

2.1.1 Patients dependent of CVC for parenteral nutrition

The results of multiple studies have indicated that CVC related bloodstream infections represents

one of the most common and severe complications in patients receiving long-term parenteral

nutrition (PN). Parenteral nutrition (PN) is often necessary in cases of intestinal failure. For

some patients parenteral nutrition is necessary for a short period of time, while other patients

need parenteral nutrition permanently and thus receive home parenteral nutrition (HPN) [3].

In a retrospective study by Hojsak et al. [3], the occurrence of sepsis was recorded over a period

of 21 years among children (n=62) getting long-term parenteral, hospital or home parenteral

nutrition. Catheter related sepsis were discovered through positive blood culture samples of

patients with suspected sepsis. CVC was removed when the parenteral nutrition was terminated

and replaced in cases of sepsis, occlusion, accidental removal, local infection and death. The

results showed that there were 1.7 septic episodes / 1000 days of parenteral nutrition and 0,93

deaths / 10 000 days. 12.8% of the CVCs were removed because of septic episodes. For hospital

parenteral nutrition the average number of PN days for each patient was 149,7 whereas this

number was 1415.3 days for HPN.

Of the CVC related sepsis episodes, 33.3% occurred in home parenteral nutrition. The occurrence

of sepsis was significantly lower at home (0.94 / 1000 days of HPN) than in the hospital (2.75 /

1000 days of PN).

The rate of sepsis and deaths in the study was considered to be very low compared to other

studies. Some of the explanation for their low rate of sepsis was that guidelines were strictly

followed and documentation was implemented for all long-term CVCs. Also, the hospital under

study had the largest pediatric PN program in Croatia [3].

2.2 Clinical text

In an EHR all texts are clinical. Clinical texts may be challenging because they often contain

short phrases that are not necessarily grammatically correct [5]. Accordingly, clinical texts may

differ from those used in other domains. They are often written directly as free text in narrative

form [13] or transcribed or dictated [5].

Medical records consist both of structured and unstructured fields. Structured fields are easier

to understand for a computer since these are well defined and often consist of a predefined set of

possible choices. However, valuable information is often documented in unstructured fields and

in fact approximately 40% of a medical record consist of unstructured information [14]. Clinical

notes contain many domain specific terms, they are heterogeneous and often do not conform to
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regular grammar and abbreviations. Spelling mistakes are also common [15]. Several synonyms

for diagnoses and drugs exist, as well as Latin expressions. Different pre-processing steps can

be taken to increase a program’s ability to understand the text. Dictionaries and standardized

classification systems are helpful in this regard. Extracting information from clinical texts often

includes naming entities and mapping these to vocabularies [15] - named entity recognition.





Chapter 3

Technical Background

This chapter covers natural language processing - including pre-processing of text, annotation

of text (Part-of-speech tagging and named entity recognition), dictionaries and lexical resources

used for matching medical terms, medical annotated corpora used for training and for mak-

ing gold standards, machine learning methods and evaluation measures used to evaluate NLP

systems.

The next sections will introduce topics relevant to NER systems.

3.1 Natural language processing

Natural language processing (NLP) is the process of making computers able to understand

and manipulate natural languages [5]. This can be useful in the clinical domain where both

documentation, guidelines and clinical descriptions are represented by a free text format, with

various degree of grammatical formality and content [16]. The use of EHRs has increased, which

contributes to make it easier to use natural language processing for information extraction [5].

Several tools for doing NLP exist, and often combinations of tools are applied. Common NLP

steps for clinical notes are described by Jensen [15] as:

� Boundary detection - splitting text into sentences

� Tokenization - splitting sentences into meaningful units (often words)

� Normalization - converting words to base forms

� Part-of-speech tagging - tagging tokens with a grammatical information such as whether a

word is a verb or a noun

� Shallow parsing - identifying syntactical units such as noun phrases

� Entity recognition - recognizing entities, mapping these to vocabularies and identify whether

the entity is negated or not

7
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3.1.1 Information Retrieval

Natural language processing can be used for information retrieval. Information retrieval may

refer to retrieval of different types of information. Normally, it refers to the process of retrieving

text documents from a database that are relevant to some search queries [17]. An example is

a Google search hit. Different algorithms are applied in information retrieval. One of the most

successfully applied is the vector space model (VSM) described below.

3.1.1.1 The Vector Space Model

The VSM was proposed by Salton, Wong and Yang [18]. It represents each document, Di, as

a vector in a document space. The document vectors consists of term weights, di which are in

most cases weights of the words in a document. A document vector representation is shown in

3.1. The equations regarding VSM are taken from [18].

Di = (di1, di2, dit....) (3.1)

Each vector consists of a set of index terms that have different weights according to their im-

portance. The number of dimensions of the vectors depend on the number of terms in the

documents. The index terms may be boolean or the terms may be weighted. Documents that

are high in similarity are close to each other in the document space. The similarity between doc-

uments can be found by the inverse function of the angle between two document vectors. If the

angle is zero, the documents are equal. Thus, documents represented by vectors far from each

other in the vector space have a low similarity. The distribution of the vectors in the document

space depends on which terms the document contains and how these are weighted. The vectors

lengths may be normalized to one so that only the positioning of the vectors is kept and each

of the vectors may be represented as a dot. Thus, dots clustered together represent documents

similar to each other. The similarity between documents can be calculated by equation 3.2.

F =

n∑
i=1

n∑
j=1

s(Di, Dj), i 6= j (3.2)

The purpose of this sort of indexing is to be able to return a relevant set of documents when

a user query is posed. However, without knowledge about which search queries that may be

posed, it is difficult to index the documents so that only relevant documents to a search query is

returned. Another option is to minimize the similarity function between the documents so that

the distance between document vectors is as large as possible. This increases precision because

it decreases the risk of retrieving non-relevant documents to a search query. If more than one

document should be retrieved, this can be obtained by discarding non-relevant documents. This

increases recall. Minimizing the similarity function is however not considered a good solution

because it requires n2 vector comparisons. Salton, Wong and Yang, [18], found that the best

solution is a clustered vector space where each cluster has a centroid. A centroid represents all

of the documents in one cluster, cj . It is calculated as seen in 3.3.
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cj = (1/m)

m∑
i=1

dij (3.3)

Similarly, a centroid for the complete vector space may be calculated from the cluster centroids.

Comparing document vectors to the main centroid can then reduce the complexity of the com-

putation of density in the document space to n, see equation 3.4.

F =

n∑
i=1

s(C∗, Di), (3.4)

C∗ represents the main centroid. The different clusters ideally contain similar documents. An

example is that it is likely that documents containing information about CVC are clustered

together, as are documents containing information about breast cancer. Documents containing

information about CVC are automatically clustered together because they contain many of the

same index terms / words, making their document vectors similar. As described above, similarity

between documents can be maximized, increasing recall or minimized, increasing precision. In a

clustered vector space with centroids, these properties can be combined. Minimizing similarity

between centroids make the different clusters distant from each other, increasing the risk of

returning documents only from the relevant category. At the same time, recall can be maintained

by minimizing the similarity between documents inside a specific cluster. Space density is affected

by weighting scheme [18].

The study by Salton et al., [18], tried to find which weighting scheme that returned the optimal

retrieval. Term frequency weighting is based on the frequency of a term in a document. Terms

frequently occurring in a document are weighted more than terms seldom occurring. However,

words occurring often in a document may be common words that occurs often in almost all of the

documents. To improve performance, Salton et al. found that a promising weighting scheme was

to multiply the term frequency with the inverse document frequency. The document frequency

is a measure of how many documents that contains a term, t. The inverse document frequency

can be found by the equation in 3.5. This is called tf-idf weighting.

(IDF )k = (log2n)− (log2dk) + 1 (3.5)

The IDF is relevant because it gives information on whether a term is rare or common across

all documents. A word that occurs in many documents may be irrelevant to a search query.

An example is the word ”‘it”’ or ”‘was”’. The term frequency ensures that terms occurring

frequently in individual documents are weighted more. The tf-idf weighting scheme was tested on

two different cluster organizations varying in overlap. Comparing tf-weighting to tf-idf weighting,

it was found that including IDF decreased density in the document space and improved retrieval

performance. The average improvement was about 14 %. They also tested whether increased

density would result in decreased performance by applying the df instead of the idf and therefore

weighting more the terms that occurred in many documents. This hypothesis could be confirmed

as the retrieval performance decreased by about 10 %. The researchers also examined the effect
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of alternating the space density so that documents inside clusters became tighter together and

clusters more separated from each other. This alteration produced the expected effect so that

performance was further enhanced. These results supported the ”‘term discrimination”’ model.

The term discrimination model weights terms according to their discriminative value. That is,

to what extent an index term makes a collection of documents more equal or more different from

each other. To figure whether a term is a good discriminator equation 3.4 can be calculated with

and without the term included in all documents. If the document space density is decreased when

the term is included, it is a good discriminative term. The researchers investigated discriminative

scores of terms in a collection of 450 medical documents. The documents contained 4726 terms,

and these were ranked from 1 to 4726 according to their discriminative value, 1 being the most

discriminative and 4726 being the least discriminative term.

The worst discriminators had a score of more than 4000 and were found for terms with a docu-

ment frequency higher than 25. Terms with a very low document frequency (1-3) also had a poor

discriminative score, 3000. The best discriminative scores were found for terms with a document

frequency between n/100 and n/10 for n documents. If these results can be generalized, it has

been concluded that a good indexing strategy would be that terms with moderate document

frequency should be used for content identification directly, terms with a high document fre-

quency could be converted to terms of lower document frequency by using them as components

of indexing phrases, terms with a low document frequency could be converted to terms of higher

document frequency by finding a more general term for several low frequency terms with a sim-

ilar meaning. These transformations were tested on three different textual collections, one of

which was a medical collection. The overall improvement in precision and recall was found to

be from 18 to 50 percent, where 50 percent was for the medical collection.

3.1.1.2 Word space models

A review by Sahlgren, [19], describes word space models (WSM) as follows; The word space

model is an implementation of the vector space model that also takes into account semantic

similarity between words. Words that often occur close to the same words or in the same

context are assumed to be similar to each other. Thus, words are represented as context vectors

and words that often occur in the same context produce similar context vectors. It is most often

implemented as a co-occurrence matrix where the rows corresponds to words and the columns

corresponds to context, which is most often either documents or word segments.

Latent semantic indexing (LSA) is such an implementation, where the context corresponds to

documents. A cell in such a matrix represents the number of times the word in rowi co-occur in

the document or word segment in coli. Thus, the columns correspond to context and the number

of columns correspond to the number of dimensions of the word space. The frequencies of co-

occurrences are often weighted to avoid common words to receive a too high weight and to account

for different document sizes. Word space models have the advantages that they make semantic

similarity measurable and make it possible to look at semantic similarity in mathematical terms.

However, word space models pose some problems; the number of dimensions of the context

vectors increases with increased size of a textual collection since the vector dimensions correspond
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to the number of documents or word segments in the collection. Also, since many words only

co-occur in a small set of documents, all the documents where the word does not co-occur will

have blank cells. Having a large matrix with a lot of blank cells is inefficient. Techniques for

dimension reduction exist, but disadvantages of these are that the complete co-occurrence matrix

has to be made before the reduction can take place, and every time new data have to be added,

the complete co-occurrence matrix has to be reconstructed, which is costly both in terms of

execution time and memory usage.

3.1.1.3 Random Indexing

Random Indexing (RI) is a model developed by Kanerva, Kristoferson & Holst, [20], which aims

at solving the problem of large co-occurrence matrices in WSM. In RI each document is assigned

a unique, high-dimensional random index vector consisting of a few -1 and 1 and the rest 0. Each

time a word is found in one of the documents in the collection, the index vector corresponding

to that document is added to the word’s context vector in the co-occurrence matrix. Thus, the

value of the elements in the context vector is edited. The dimension of the context vectors is

set, so the co-occurrence matrix does not increase as the number of documents in the collection

increases.

The co-occurrence matrix made by random indexing is an approximation of the original co-

occurrence matrix so that the differences between context vectors will be the same as for the

original co-occurence matrix. Other advantages of Random indexing is that the co-occurrence

matrix does not have to be remade when new data are added, and that it can be applied to

any context; also to other materials than words and documents. Random indexing is faster than

doing LSA followed by dimension reduction. RI has been proved effective in several empirical

studies [19, 20].

3.1.1.4 Combining Random Indexing and Random Permutation

A study by Sahlgren, Holst & Kanerva [21] showed that it is possible to capture word order

information in word spaces by combining random Index vectors and permutations of vector

coordinates. A recent study by Henriksson, Moen, Skeppstedt, Eklund, Daudaravicius & Hassel

[22] shows how the combination of RI models and random permutation (RP) models enhances

synonym extraction in clinical notes. They measured the ability to find synonym pairs, the

ability to find abbreviations from the extended form and the ability to find the extended form

from an abbreviation. The best results were obtained when RI and RP were combined.

3.1.2 Information Extraction

Information extraction (IE) is a way of extracting and structuring relevant information from

a text. The information that is considered relevant depends on the purpose and domain [23,

24]. Information extraction aims to extract predefined specific types of information. It differs

from information retrieval which retrieves documents and text mining, the purpose of which is
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generating new knowledge. Automatic information extraction requires either a rule-based system

or the use of machine learning approaches [5].

Identifying features such as negations, temporality and events are important when working

with information extraction. Pattern matching, rule based methods, statistics and machine

learning are common techniques used to extract relevant features from text. After identifying

such features, terminologies can be applied to help classifying tokens into different categories [5].

A review by Meystre et al. [5] has summarized results from studies on IE from EHRs from 1995-

2008. They describe the relationships between IR, IE, and text mining as follows; IR involves

retrieving documents, whereas information extraction is about extracting information. Text

mining is about generating knowledge from text and often requires several steps, including IR

and IE. After IR and IE, data mining can be applied. This entails finding relationships among

pieces of information [5].

Increased amounts of data, a stronger focus on quality of care, reduction of errors and use of

electronic records instead of paper records motivates to using information extraction in EHRs

[5].

3.2 Medical language processing

3.3 Pre-processing

Pre-processing in the form of tokenization, spell checking, document structure analysis, sentence

splitting, word disambiguation, part-of-speech (POS) tagging and parsing are common steps

when working with NLP and IE.

3.3.1 Tokenization

This step consists of partitioning sequences of input, such as text, into meaningful subunits, such

as words [25].

3.3.2 Lemmatization

To normalize tokens, lemmatization and stemming are common techniques. Lemmatization and

stemming both aim to find a base form for different inflections of words. Having a base form

for inflected words that have the same underlying meaning facilitates differentiation of words.

Lemmatization often use vocabularies to find the citation form of words [17, 26, 27].
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3.3.3 Stemming

The difference between stemming and lemmatization is that when stemming is applied, a simple

heuristic is used to make the base form of words. Ends of words are chopped off to make a

common base form rather than applying vocabularies to find the base form [17]

3.4 Part-of-speech tagging

Part-of-speech (POS) tagging is an important sub task in NLP systems where tokens are as-

signed tags from a predefined tag-set. The tags are often word classes such as verbs, nouns and

adjectives. The tags give linguistic information about a token or word and its function in a

sentence. Once a text has been tagged with word classes, these can be used for further NLP,

such as phrase chunking, named entity recognition (NER) and parsing [24, 28].

3.4.1 Norwegian POS-taggers - The Oslo-Bergen tagger

The Oslo-Bergen tagger is a morphological and syntactical tagger developed for bokmål and

nynorsk (the two Norwegian languages). It consists of a pre-processing module with a multi

tagger and a compound analyser, a grammar module for syntactical and morphological dis-

ambiguation and a statistical module that removes remaining morphological ambiguities. The

pre-processing module contains functionality for finding sentence limits and it supports several

types of grammatical tags. The Oslo-Bergen tagger uses norsk ordbank for multitagging. Norsk

ordbank consists of words both in conjugated and dictionary form of words from large dictionaries

in nynorsk and bokm̊al. [29]

3.5 Named Entity Recognition

Named entity recognition (NER) is to some extent similar to part-of-speech tagging. It is the

process of recognizing and categorizing expressions into some predefined classes. A named entity

is a token or expression categorized into a set of defined categories in a manner that benefits a

particular purpose. What categories that are relevant depends on the purpose of the information

extraction. One example of NER is to define categories such as drug, diagnose and symptom

and categorize tokens and phrases accordingly. An example of a named entity category applied

in the current study is CareCVC, denoting all phrases referring to care of CVC:

”‘ <CareCVC >CVC care <CareCVC >was performed at three.”‘

NER was first coined by the message understanding conference (MUC) number 6. MUC started

as a conference to foster research on automated analysis of military texts. One of the main

goals of MUC-6 was to find information extraction functions that were of practical use, domain

independent and automated. Named entity recognition was therefore defined as a task involving

“identifying the names of all the people, organizations and geographic locations in a text” [30].
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An example category used at the MUC was the tag ENAMEX for entity name expression. An

example tag used for NER is < ENAMEX TYPE=”PERSON” > Jim < /ENAMEX >. For

numerical expressions, NUMEX was applied as tag. [30].

The NER applied in the MUC-6 was on test sets from the Wall Street Journal, and the results

were very good, over 90 percent recall and precision.

Word-by-word sequence labelling is a common approach of how to do NER. Words that fulfil

the requirements of entity tags are labelled sequentially. IOB encoding is used to indicate the

boundaries of an entity chunk. B is used for the beginning token, while I is used for tokens inside

a chunk. O is used for tokens outside the entity.

3.5.1 Features

Features are applied for recognition of entities. Different features can be applied to find and

classify Named Entities (NE). This commonly includes word-level features. Common features

are lexical items, stemmed lexical items, shape, character affixes, parts of speech, syntactic chunk

labels, list look-up features (gazetteers), predictive tokens and bags of words/bag of n-grams.

Surrounding or predictive words and n-grams can also be applied as features since context is

useful for recognising entities. Shape features are the orthographic pattern of a word such as

whether the word is capitalized, lower cased, mixed case or written in caps. When applying

list look-up features, stemming and lemmatization are often used in addition in order to include

inflected words as matches to the dictionary. Edit-distance/fuzzy-matching can also be used to

decide if two similar words should be counted as matches. Document and corpus features such

as multiple occurrences of words and meta-information in a document can also be used. When

a set of features has been selected, it is common to use these for annotating a corpus that can

be used as a training set for a classifier [24, 31].

3.5.2 Relationships between entities

Another part of the NLP process can be to assign, or find, relations between entities. An example

of such a relation could be ”‘part of”’ to indicate that a blood test is part of an examination.

Supervised learning can be applied to detect such relations. Annotations on training sets are

used to detect new relations. Different algorithms to detect new relations exist. The simplest

one consists of two steps; Step one is to figure out if a relation exists between an entity pair.

Step two is to label the relation. Techniques for detecting relations are Decision trees, Naive

Bayes and Maximum entropy. Disease-treatment relations have been specifically studied, and

hidden Markov models and discriminative neural network models have been applied successfully

[24]

When NER has been performed, two types of ambiguities arise. Two equal words labelled with

the same entity label may refer to two different entities of the same type. An example is two

persons with the same name. The other ambiguity that may arise is when a word may refer to
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two different entity types. An example is that a word may be the same for a location and an

organization [24].

Sekine [31] surveyed research on NER from 1991 to 2006. The survey indicated that the first NER

systems used handcrafted rule-based algorithms to recognize entities, while for newer systems,

supervised learning is most commonly used. One drawback of supervised learning is that it

requires an annotated corpus for training.

Unsupervised learning applies unannotated data and performs NER based on clustering, lexical

resources, lexical patterns and statistics. [31].

A combination of supervised and unsupervised learning can also be applied. This is called

semi-supervised learning because it is partly supervised using bootstrapping, meaning that the

application of some seeds start the learning process. The seeds can be lexical features, patterns,

seed entity examples, syntactic relationships and existing NER systems. According to Sekine

Semi-supervised learning seems to be equally effective as supervised learning in some cases [31].

The survey by Sekine [31] indicated that a great amount of research on NER exists in different

languages and with different entity types, but the research on different genres and domains

is limited. NER has been successful in the domain of molecular biology and specifically for

detecting genes.

Making NER general has been an unsuccessful approach since NER made for one domain pro-

duces poor results in another domain. Thus, making a domain specific NER for clinical texts,

taking into consideration medical knowledge is an important task in the domain of healthcare

informatics.

3.6 Dictionaries and lexical resources

Dictionaries and lexical resources are relevant as these can be applied as features that contribute

to classification of phrases.

3.6.1 Wordnet

Wordnet is a dictionary in English. Words are grouped on meaning and synonyms are clustered.

Also relationships between concepts are expressed at wordnet. In addition words in Wordnet are

grouped according to their part-of-speech so that adjectives are grouped together and so on.

3.6.2 ICD-10

ICD-10 is an international coding system for classifying diseases. The classification system can

be used for statistical purposes. It was originally used as a registration system used to register

causes of death and was expanded later to include diseases and other health problems [32]. In

ICD-10, diseases are named and encoded. Each disease contains a name, an ICD-10 code and
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relationships to other diseases. Diseases are classified into seventeen different classes of diseases

[33]. ICD-10 codes contain a letter that describes the class of diseases and a number that

describes its sub-category more specifically, and then a second letter that indicates the specific

disease [33]. The classification system is managed by the WHO [34]. Contrary to many other

lexical resources, ICD-10 has been translated into Norwegian and is applied daily in Norwegian

hospitals. It is used by the Norwegian Central Bureau of Statistics. The Norwegian version is

available online [35].

3.6.3 SNOMED CT

SNOMED CT is a standardized terminology containing medical concepts organized as a hier-

archical way. Each concept is assigned a semantic class and a name. SNOMED CT has been

translated to Swedish, but the Swedish version does not contain synonyms for concepts.

3.6.4 MeSH

Medical Subject Headings (MeSH) is a vocabulary of medical concepts developed by the National

Library of Medicine. MeSH started at the National Library of Medicine in the USA and has

now been translated into most European languages. One of its main purposes is to be used to

index medical literature [36]. Synonymous concepts are given a common id number and one

common concept term. The vocabulary is often used for indexing of literature databases such

as PubMed and SveMed+ since the MeSH terms ensures searches for synonyms, thus provides

better retrieval. The MeSH also contains hierarchies and relationships between concepts, and

can therefore also be considered an ontology [37]

MeSH facilitates communication between medical and non-medical personnel. MeSH has also

contributed both to better indexing and retrieval of literature as educational institutions apply

MeSH terms when registering books and literature in their databases and also students and

health personnel are trained in the use of MeSH terms for searches. Norwegian educational

institutions have benefited from the Swedish MeSH as the Swedish terms are often more similar

to Norwegian than the English ones. However, the use of the Swedish MeSH for Norwegian

educational purposes suggests a need for a Norwegian translation of the MeSH. Thus, in 2010

the Norwegian Health library, Helsebiblioteket, started a Norwegian translation of the MeSH.

Its first release is planned to be completed in 2013. The Norwegian MeSH has already been

integrated into the European Health terminology/Ontology Portal (EHTOP) and in the Swedish

literature database SveMed+ [37]. The Norwegian version of MeSH will be available through

SveMed+ advanced search from January 2013. Svemed+ is a Swedish database, but since it is

also extensively used by Norwegians, 17 000 Norwegian MeSH terms have been included in the

advanced search version of the database.

Another advantage of the MeSH is the possibility of translating terms into different languages.

MeSH also has the possibility of being linked with other encoding systems such as the ICD-10

[37].
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3.7 Machine learning techniques and classifiers

Machine learning techniques are useful to detect statistical patterns in data and to predict new

data based on previous ones. Machine learning techniques are either supervised or unsupervised.

Supervised learning are based on labelled data whereas unsupervised learning are based on

unlabelled data. That means that unsupervised learning tries to detect patterns in data without

any predefined properties to look for [15].

3.7.1 Supervised learning techniques:

Supervised machine learning techniques are based on a data set for training the algorithm. The

data set is labelled with a set of features and the algorithm is trained to label entities with the

given feature set. Feature vectors are often applied so that each token can be assigned a set of

features that contribute to the NER [15].

Some common supervised learning algorithms are Naive Bayes; Artificial Neural Networks; Sup-

port Vector Machines and random forests [15].

Advantages of supervised learning is its robustness to random errors in features or labels when

applied on large data sets and that a model can be reused for new data sets. However, it is poor

in recognizing systematic biases in the data and it is prone to over-fitting.

3.7.2 Statistical vs. deterministic models

Deterministic models make models of observations by using known properties of observations.

Once the known properties are found the model can be defined. Given an input, the deterministic

model will always produce the same output. Statistical models on the other hand are constructed

from statistical variables [38].

3.7.3 Generative models

Generative models typically maximize the joint probability of observation and label sequences

when training models for predictions. They are also typically poor at accounting for multiple

interacting features and dependencies of observations. Observations are assumed to be indepen-

dent of each other [39].

3.7.3.1 Markov Models

MM are used to predict states given observable states. Given observable events, a matrix for

state transitions can be made. An example is whether the weather is sunny, cloudy or rainy.

Based on observations of these states, we can make a model to predict states in the future. In

a Markov model for this example, the prediction of a next weather state would be based on

the previous state and transition probabilities. Given a sunny day, the transitions to the next
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possible states, sunny, cloudy and rainy have known probabilities. So, to find a next state one

can look solely on what the current state is and the probability of transitions [40].

3.7.3.2 Markov chains

A Markov chain (MC) is a chain consisting of a fixed number of states of a process. The process

starts in one state and proceeds from state to state. Each state, si has a set of possible next

states. The transition from a state, si to each possible next state has a transition probability.

The transition probability, from state si to state si+1 is independent of the previous states si-1,

si-2, ..., si-n. The next state only depends on the current state. A probability distribution for

start states is also found to define a start state for the process [41].

Given a MC with transition probabilities, a transition matrix can be made for the chain. Each

element of the transition matrix represents the probability of going from one state to another

state. The possible states of a process is given as rows, and for each row there are columns of

possible next states. Thus, a future state depends on the current state, but none of the other

states. To find the probability of a state that is several steps into the future, one can summarize

the conditional probabilities. So, state si+1 depends on state si and state si+2 depends on state

si+1. This gives two conditional probabilities; P(si+1 | si) and P(si+2 | si+1). By summarizing

these two conditional probabilities it is possible to find the probability of state si+2 after two

steps [41].

The dependencies in a Markov chain form a linear structure [42].

3.7.3.3 Hidden Markov Models

HMM are stochastic models of observations. When HMM is used to find correct labels of words,

the joint probability of paired observation and label sequences is maximized. Thus, the basis for

HMM is the equation for joint probability, (3.6). In the equation, s refers to states or labels and

x refers to observations or words. In a first order HMM two simple assumptions are made;

1. a state si depends only on the previous state si-1

2. an observation, xi depends solely on the current state, si . . .

The first assumption is the Markov assumption. The first order Markov assumption is that a

state of a process is conditioned only on the previous state, si-1. For the second order Markov

assumption, the two previous states are taken into account, si-1 and si-2. This way, the Markov

assumption can be extended to higher-order Markov assumptions. [42, 43].

Given these assumptions, the equation (3.6) can be rewritten to (3.7). Second order, third order

and higher order HMM are also possible, meaning that the number of previous states that a

state si is dependent on is increased with the order number. See equation (3.8) for an example

of the formula for a second order HMM [43]. The equations below are taken from Ponomareva

et al. [43].
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P (s, x) = P (x|s)P (s) (3.6)

P (s, x) =

n∏
i=1

P (xi|si)P (si|si − 1) (3.7)

P (s, x) =

n∏
i=1

P (xi|si)P (si|si − 1, si − 2) (3.8)

HMM assumes that observations are independent of context, an assumption that does not hold

true for sequences of words [43].

State machines where each state is hidden, but the transitions between states are visible can be

applied to describe HMM. An example is given in figure 3.1 For HMM the output of each state

is visible, but states are hidden [40].

Figure 3.1: A HMM consists of a number of states, S1...SN and transitions between states.
The process of the states is hidden, whereas the output of each state is known.

A HMM consists of

1. A number of states, N 2. The number of distinct outputs at each state, M 3. The probability

of a transition from one state to another. 4. The probability distribution for the distinct outputs

at each state. 5. The probability of starting at a state.

[40]

To make a HMM the elements above have to be specified. Then, the HMM can be applied

to generate a sequence of observations and also to explain how a sequence of observations was

generated [40].

A HMM has to take into account the following problems:

1. Finding a way to estimate how well a model explains a sequence of observations. 2. Finding

the state sequence that best explains the observations. This means trying to find the sequence

of the hidden states. Some optimality criterion often based on the intended use of the model

is applied to find this. 3. Finding a way to adjust the elements of the model to maximize the

probability of an observation sequence given the model. Elements of the model are adjusted

based on training sequences to the model. Thus a model can be adjusted for observations from

a specific domain. [40]
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3.7.4 Conditional models

Conditional models predict sequences of labels given sequences of observations. An advantage

of conditional models is that they do not assume independence of observations, they can handle

correlated features and allow features of observations at different levels of granularity. Past and

future observations can also be accounted for [39].

3.7.4.1 Maximum Entropy Markov Models

Maximum Entropy Markov Models (MEMM) are conditional. For MEMM an exponential model

is applied to find sequences of labels given sequences of observations. A disadvantage of MEMM

is the Label bias problem. [39].

3.7.4.2 Conditional Random Fields

Conditional random fields predict sequences of states/labels given sequences of observations,

P (y|x) [39, 43]. CRFs share several properties of HMM. The main difference between CRF

and HMM is that CRF maximizes a conditional probability whereas HMM maximizes a joint

probability [43]. Other differences are that CRF is discriminative, undirected and allows non-

probabilistic sub models [42]. CRFs are based on Markov random fields (MRFs). MRFs are

similar to MC, but in contrast to MC, the dependencies of MRF do not form a linear structure.

The dependencies of MRF can have any structure and be represented by an undirected graph.

Majoros [42] provides a list of the components of MRF:

1. an alphabet of possible labels

2. a set of variables that can be assigned values from the alphabet

3. a probability distribution for assignment of labels to variables, PM

4. an undirected graph representing dependencies between variables . . .

For the assignment of labels to variables, PM, the dependency graph given in point four must

always hold true. Each variable depends on its direct neighbours, except itself [42]. This is

similar to MC where predictions of next variables depend only on the current variable.

The Hammersley-Clifford theorem is useful to MRF. It states that the likelihood of an assign-

ment, x, of a label to a variable X (under model M) is given by

PM (x) =
1

Z
eQ(x) (3.9)

The equation above, 3.9, as well as the equations 3.10 and 3.11 are taken from Majoros, [42].

The formula presumes that no assignment has a probability less than zero. In the formula, Z is

a normalization factor that can be written as:
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∑
x′

eQ(x′) (3.10)

‘Q(x) can be expanded to:

Q(x0, x1...xn−1) =
∑

0<=i<n

xiΦi(xi) +
∑

0<=i<j<n

xixjΦi,j(xi, xj) + ...

+x0x1...xn−1Φ0,1...,n−1(x0, x1, ..., xn−1)

(3.11)

The Φ functions are called potential functions and represent cliques of the undirected dependency

graph of MRF. A clique is either a singleton (one vertex) or a sub graph where an edge exists

between all vertices in the graph. Φ functions that do not represent a clique are set to zero. Since

a clique can be any sub graph, overlapping cliques may occur. The Hammersley-Clifford theorem

makes it possible to calculate probabilities based on Φ functions. This means that training a

MRF can be subdivided into training on potential functions [42].

CRF extends MRF. CRF contains both observable and unobservable variables and its formula is

based on MRF and the Hammersley-Clifford theorem. Like MRF, CRF consists of an alphabet

of labels, a set of variables, potential functions and an undirected graph describing dependen-

cies between variables. One of the main differences is that CRF contains both observable and

unobservable variables;

”‘ A CRF may be described as a MRF plus a set of “external” (observable) variables X, which are

not considered variables of the MRF but are globally visible (as fixed constants) to the MRF’s

potential functions, Φc [42]. ”‘

Since the observable variables of the CRF are external to the MRF, only the cliques of the

unobservable variables (u-cliques) are used in the Hammersley-Clifford theorem. It is assumed

that observable variables are given.

CRF is conditional because only the cliques of the unobservable variables are applied in the

Hammersley-Clifford potential functions, when computing P (y|x), whereas the observable vari-

ables are assumed given.

”‘Since the observables X are fixed, the conditional probability P (y|x) of the unobservable given

the observables is:

PM (y|x) =
1

Z(x)
eQ(y,x) =

1∑
y′ e

Q(y′,x)
eQ(y,x) (3.12)

where Q(y,x) is evaluated via the potential functions—one per u-clique in the dependency graph:

Q(y, x) =
∑
c∈C

Φc(yc, x) (3.13)



Chapter 3. Technical Background 22

”‘ In the formula above, the Φc(yc, x) is a function of a u-clique. X is included because the X’s

can be considered constants and the y′cs are vertices included in the clique. Since the X’s are

included in the formula, the CRF model is not available until after the X’s are inputted. This is

in contrast to generative models where the model is available prior to input.”’ [42]

Simplifications can be made to the CRF formula.

”‘In practice the potential functions Φc are very often decomposed into a weighted sum of “feature

sensors” fk , producing:

P (y|x) =
1

Z
e
∑

c∈C

∑
i∈F λifi(c,x) (3.14)

where F is a family of feature sensors, which are specific to individual cliques [42].”‘

3.7.5 CRF vs. SVM

A study by Li et al. [44] compared CRF and SVM for NER in clinical notes. They used a

standardized set of named entities so that the two machine learning methods could be compared.

They found that CRF gave the best results with an average f-measure=0,86 compared to SVM

which gave an average f-measure of 0,64.

3.7.6 Brat rapid annotation tool

Different tools assisting the process of making annotated corpora exist. One of them is the Brat

rapid annotation tool [45] that was applied in the current study. The Brat rapid annotation tool

[45] provides a graphical interface that facilitates the annotation process. Phrases or entities from

data files can easily be marked, and annotations attached to them. Once the annotation process

is ended, Brat makes an annotation file that contains all annotations made for a specific file.

Thus, each data file has a corresponding annotation file. Brat annotation files are based on the

Standoff format, which is a way of specifying annotations. An annotation in the Standoff format

consists of an annotation identifier such as ”‘T1”’ for tag number one, an Offset start number -

defining at which character number the annotation starts, an offset end number - defining where

the annotation stops and the phrase that has been annotated. An example annotation is given

below:

”‘T1 Carecvc 0 44 Care of central venous catheter was provided”’

3.8 Evaluation methods and measures

NER systems are often compared to gold standards. A gold standard corpus is a collection of

texts that have been annotated by humans. The gold standard represents the desired output

of the automatic classification system. Thus, it can be used to evaluate the performance of a
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classification system. For gold standard corpora it is common to calculate annotator agreement

to ensure reliability of the corpus. Annotator agreement means that two annotators annotate

the corpus equally according to decided classification classes. If the differences in annotations

are large, the reliability is low.

It is also common to make a baseline class, a random assignment, that can be used to compare

with the results of other classification classes. [46].

When evaluating NER systems, precision/positive predictive value, recall/sensitivity and F-score

are commonly reported. Relevant to these measures are

� true positives (TP)

� false positives (FP)

� true negatives (TN)

� false negatives (FN)

Entities labelled with a given class/label by the classification system are called positives. These

can be either true or false. True positives are entities that were correctly assigned the given class,

meaning that the classifier imparted the same class as the gold standard. False positives are

entities that were assigned to the given class even though this assignment was not in accordance

with the gold standard. Negatives are the entities not assigned to a given class. These can also

be true or false. True negatives are entities that are predicted not to belong to a class both by

the classification system and by the gold standard. False negatives on the other hand are entities

that were predicted to not belong to a class by the classification system, but which according to

the gold standard, should have been assigned the given class [47] .

Recall/Sensitivity (R) is the proportion of correctly classified instances of all positive instances,

R=TP/(TP+FN) or R=true positives (TP) / real positives (RP). Precision/Confidence is the

proportion of predicted positives (PP) that are true positives (TP), P=TP/(TP+FP) or P= TP

/ predicted positives (PP). Increasing recall will result in a decrease of precision. Therefore, the

harmonic mean, F, which accounts for both by adding a weight for precision and recall, is used

to measure overall performance. [31, 46–48].

Sekine [31] summarizes evaluation techniques applied for the largest NER conferences; MUC,

IREX, CONLL and ACE. A common evaluation technique is to compare the performance of the

NER system output to the result of a human linguist. Sekine et al. describes three different sort

of evaluation techniques, MUC evaluation, Exact-match evaluations (IREX and CONLL) and

ACE evaluations. MUC evaluation credits partially correct matches found by the classification

algorithm. This is performed by evaluating on two axes, one for the correct type, such as

”‘PERSON”’ and one for selecting the correct text and its text boundaries. Both precision and

recall are accounted for when calculating the final MUC score, the harmonic mean of precision

and recall. The advantage of this evaluation is that partial correct recognitions are credited and

that all types of errors are included.
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In contrast, IREX and CONLL require exact matches. These evaluation methods are too strict

for some systems. ACE evaluation includes a weight for each entity type that contributes to a

total maximum value. Costs for errors and missed entities are included. For the total evaluation,

the contributions of the different entities are calculated and the costs of errors are subtracted.

ACE is the most powerful evaluation method, but the drawback is that it is also the most

complex one, which makes error analysis more difficult. Sekine [31] indicated that evaluation

results are highly dependent on the choice of evaluation method.

3.8.1 Cross-validation

Cross-validation is a statistical method used to train and estimate the performance of a model.

It is highly accepted and used for learning algorithms. Refaeilzadeh, Tang & Liu, [49], have made

a literature survey of Cross-validation and its usages. In cross-validation the data are divided

into training data that are used to train a model, and testing data that are used to test the

model. It is called cross-validation because the training and test data will somehow cross over,

being substituted by each other, in different test rounds. The simplest form of cross-validation

is resubstitute validation where the same data are used both to train the model and to test

the model. Quite obviously, this method easily leads to over-fitting. Over-fitting is comparable

to giving a medical student all the exam questions in advance when the goal is to test his/her

performance in medicine. The student is trained on the exam questions and thus performs well

when tested on the exam questions. This may lead to the false assumption that the student’s

performance in medicine is very good in general. However, when he/she is given unseen questions,

he/she performs poorly. When testing a trained algorithm the goal is to test how well the model

would perform on unseen data. Thus, over-fitting should be avoided. [49]

Another simple form of cross-validation is hold-out cross-validation which is better than re-

substitution cross-validation. The data are divided into two sets, one used for training and one

for testing. The model is trained on the former and subsequently tested on the latter, unseen

data set. Thus, over-fitting is prevented. However, a drawback with this method is that less

data are available for training, since one set has to be reserved for testing. Another drawback

is that the results are highly dependent on an even distribution of data within training and test

sets. If the distribution of data is skewed, the results would be poor [49].

K-fold cross-validation solves the problems with hold-out cross-validation and is the most com-

monly used and accepted type of cross-validation to evaluate and compare learning algorithms.

In K-fold cross-validation, the data are partitioned into k folds, most commonly k = 10 is used.

One of the folds is held out for testing, while the remaining k-1 folds are used for training. This

procedure is repeated k times. Each time, the test fold is changed to a new fold so that after

k rounds each fold has been the test fold once. Each round gives a result, and after k rounds,

the k results are averaged. K-fold cross-validation ensures that in each round, the training is

performed only on the k-1 folds and the test fold remains unseen to the model. At the same

time, all of the available data are used once for testing and k-1 times for training. Thus, as

opposed to hold-out cross-validation, no data are ”‘wasted”’ for training and since all data are

included in training in one of the rounds, the way the partitioning is made matters less than in



Chapter 3. Technical Background 25

hold-out cross-validation. A drawback of a high k is that the overlap in the different training sets

increases. As an example, the overlap in the training folds is 8/9 with 10-fold cross-validation,

whereas it is only 1/2 with 3-fold cross-validation. Also, a higher k gives a lower amount of

data for testing in each round, 1/10 with 10-fold cross-validation and 1/3 for testing with 3-fold

cross-validation. Ten-fold cross-validation has been found to be a good compromise in the text

mining domain. Stratification to ensure equal amount of different data types in each folder is

often used in combination with k-fold cross-validation. The drawback of k-fold cross-validation

is that it may underestimate the variance in performance in the different rounds because the

training sets have overlap. This may lead to an increased risk of type-1 error. However, k-fold

cross-validation is still considered the preferred method because the test sets are kept indepen-

dent and the amount of training data is kept as large as possible. Several values of k may be

chosen, and the authors also discuss which number for k is the optimal. The benefit of a large k

is that the amount of training data is kept high. As an example, with 10-fold cross validation,

only 1/10 of the data are held out in each round, whereas with 3-fold cross-validation, 1/3 of

the data are held out for training in each round. Another benefit of a large k is that the number

of estimates for the model’s performance is higher than for a lower k. Ten-fold cross-validation

produces 10 estimates of the performance of the model whereas 3-fold cross-validation produces

only 3 estimates. [49]

A special version of K-fold cross-validation is leave-one-out cross-validation. This is k-fold cross-

validation where k is equal to the number of data instances, k=n. In each round, the test set

contains only one instance. As can be expected, this is a very time-consuming method. An

example related to the current study would be that for 4500 clinical notes, 4500 folds would be

used and the experiment would have to be repeated 4500 times. It can be useful if n is very

small. [49]

Different applications of cross-validation are also discussed by the authors [49]. In addition to

being used for performance estimation, cross-validation can also be used to compare algorithms

and to tune parameters of a model. When comparing algorithms, pair-wise comparisons have

been found to give good results. Also, it is better to perform pair-wise t-tests applying k as

samples of each algorithm than to compare the average scores between the models directly.





Chapter 4

Previous studies

4.1 Medical corpora

As described in chapter 3.7.1, an annotated corpus is necessary for supervised learning. Auto-

matic annotation by a system can be compared to human annotations.

Some medical corpora, such as the i2b2 corpus, are available for English, but Scandinavian

corpora are almost non-existent [48, 50]. Such corpora are important for progress in research -

to evaluate and/or train new NLP systems in the medical domain. This thesis will focus mostly

on corpora developed for Scandinavian since the goal of this research is to do NER for Norwegian

medical records.

4.1.1 i2b2

i2b2, ”‘Informatics for integrating Biology & the bedside”’, is a National center for biomedi-

cal computing [51]. Their goal is to improve healthcare systems. They therefore propose i2b2

challenges and make available clinical data (the i2b2 corpus) for research purposes. Many re-

searchers apply these data to test their systems. An example is the master thesis by Bruce [50].

Unfortunately, these resources are available in English only and the domains in which they are

relevant may be limited.

4.1.2 Swedish medical corpora

Kokkinakis [48] describes how a large medical corpus, MEDLEX, of Swedish texts were prepared

for bio-medical text mining. Annotations were performed by applying a generic entity recognizer

in combination with a terminology recognizer. The generic NER categorized the named entities in

eight categories and sixty subtype categories. The NER system had previously been thoroughly

tested and evaluated for performance for each single entity.

27
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An annotator based on MeSH was applied to recognize medical terms. Words from the original

MeSH were converted and normalized to fulfill the purpose of the annotator. The annotator

was improved by adding symptoms, names of pharmaceutical products, drugs, Greek and Latin

terms. These features were added by adding sources for pharmaceutical products and Greek and

Latin terms and by finding a self-made way of making entities for symptoms.

To add grammatical annotations a parsing module based on Cascaded analysis of syntactic

structure (Cass) was applied. Cass annotate the data with grammatical labels such as multiword-

expressions and conjoined compounds.

The system gave good results on recall and precision when tested on articles from the weekly edi-

tion of “The Swedish Medical Association’s magazine”. Annotations made on these articles were

manually checked for correctness against the online MeSH. They also found that unambiguous

terms could contribute to finding the meaning of ambiguous neighboring terms.

The authors pointed out the need for more research on the following areas; considering the need

of a human evaluator in the process loop, the need for a larger number of texts for evaluation

and the need to investigate the impact of processing step order, such as trying doing parsing

before annotation. Using unambiguous terms to help disambiguating neighbouring terms should

also be further investigated.

4.1.3 Norwegian medical corpora

Available resources for testing Norwegian NLP systems for medicine are very limited. Huseth &

Røst [52] have been working on making such resources available. They made a semi-automated

tool for annotation. The collection of data was based on patient histories from general practice.

Initially, these were annotated with base forms, POS tags and phrasal tags. Five phrasal tags

were used, NP (Noun phrase), VP (Verb phrase), PP (Prepositional phrase), AP and AdvP

(Adverb phrase). The IOB format was used to annotate if a word was in the beginning, inside

or outside a phrase. An example of a phrase tag was NP-B. Words could also be annotated as

sensitive for later de-identification or as unsure if the annotator was unsure.

A previously developed POS-tagger was integrated with the annotation system so that tags were

suggested for each word and the human annotator could check suggested tags for errors. The

POS tagger was based on trigram Hidden Markov Models which estimates the most probable

tag sequence (T) given a word sequence (W), P(T | W). According to Bayes theorem this can

be rewritten as P(T)P(W | T). P(T) was estimated using trigrams, meaning that the proba-

bility of a tag was estimated based on the three previous tags. Then linear interpolation was

used for smoothing. Huseth & Røst handled compounding by using the last word for tagging

because making a dictionary of compounded words in Norwegian is difficult due to the many

occurrences of such words in Norwegian. Human and machine annotation benefited from each

other by incrementally training the POS tagger. Human annotation speed increased because the

suggestions by the automated annotations improved.

Similarly, the POS tagger benefited from training on human annotated data. The text was also

automatically split into sentences, tokens, tags for base form and phrase tags were automatically
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selected. NorKompleks computational lexicon was used to find base forms of words. If the word

was not in the lexicon, the word itself was used as base form. Phrase tags were based on POS

tags and assigned based on static rules. Tokenization was based on white spaces. Some medical

constructs could not be handled by the standardized tokenizer. Exceptions were made to handle

these. Abbreviations were annotated by the human annotator. The annotation tool was made

by using the Python language and the Django web framework. The annotation tool had three

major components, a module for sentence and tokenization review (to add missing punctuations

and other necessary modifications), an interface with the text and base form words listed with

drop-down selections for POS tags, phrase tags, sensitivity and a module for cases where the

annotator was unsure. The results were promising as a tagger trained on the medical corpus

became better for medical documents than a tagger trained on a more general corpus [52].

4.2 Previous studies

Several previous studies on NLP in the medical domain exist. However, the medical domains

investigated in each study vary and are not always comparable. A recurrent problem in the

medical domain is the lack of available data sources [15]. EHRs are generally strictly treated

and special permissions are required to access them. Huseth & Røst [52] have made one annotated

medical corpus available for Norwegian, but otherwise, the availability of such resources seems

to be non-existent for the Norwegian language. The lack of available resources has caused some

researchers to try to find alternative resources such as web pages like PatientsLikeMe where

patients share detailed information about themselves.

4.3 Medical entity recognition

A study by Abacha & Zweigenbaum, [53], compared three different approaches to Medical entity

recognition (MER). Three categories were used in the study, ”‘Problem”’, ”‘Treatment”’ and

”‘Test”’. The different approaches used for MER were the following:

1. MetaMap - a mapping tool used to map terms to UMLS concepts

2. MetaMap with rules used for categorization

3. TreeTagger for noun phrase chunking and SVM for categorization

4. CRF with BIO tags to annotate beginning (B), inside (I) and outside (O) of a phrase

5. CRF with BIO tags and MetaMap to use UMLS concepts as features for terms

The different approaches were tested on data from the i2b2 2010 corpus which consisted in

discharge summaries and progress notes. Precision, recall and f-measure were measured. The

results showed that approach number five gave the best results (f-measure=77,55), followed by

approach number four (76,17), number two (52,28), number three (45,33) and number one (15,8).
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This order was the same when looking at precision and recall individually as well. For each of the

three categories, approach number five gave the highest f-scores for all of them. The five different

approaches were also compared when applied to another corpus, consisting of scientific abstracts

rather then clinical notes. The order of which approach was best remained the same, but the

differences were lower. Secondly, approach number five was tested with a combination of the two

corpora as training data. This gave better results then using only one of the corpora for training.

They discussed the pros and cons of using rule-based methods compared to statistical methods.

Advantages of rule based method were that these do not require a learning step and that the

mapping to UMLS concepts is more available. However, rule-based methods were dependent

on a good chunker to find correct boundaries of phrases. The CRF algorithm were tested with

different features. It was found that also for the statistical approaches, the entity boundaries

were important. Adding UMLS concepts as features to the algorithm without using the BIO tags

decreased performance, while using CRF with BIO-tags and semantic features (UMLS concepts)

gave the best performance.

4.3.1 Automatic detection of adverse events in clinical texts

NLP has been applied with promising results for detection of adverse events (AE) in clinical

notes [54–56]. An adverse event is an unwanted effect of a medical intervention [57, 58]. As

mentioned in the medical background chapter, 2.1, adverse events such as CRBSI is related to

the usage of CVC. A study by Penz et al. [6] compared natural language processing and phrase

matching for semi-automated detection of adverse events related to CVC. A combination of the

two methods was also evaluated.

In the latter study, CVC was chosen for the study because the number of adverse events related

to CVC was limited. Thus, the number of ways that these events could be described in clinical

notes was limited. Regular expressions (a way to specify a search pattern) was used for phrase

matching. A local lexicon used by nurses and doctors at the hospital, UMLS synonym phrases as

well as phrases reported as common for CVC AEs by three surgeons were used to make regular

expressions for the phrase matching algorithm. Simulated CVC related AEs and a scoring

system were used to test and improve the phrase matching algorithm. The regular expressions

were improved step by step each time errors were made on simulated CVC related AEs. The

word distance between a CVC expression and an AE was used as a measure of how probable it

was that the AE was related to the CVC expression.

A natural language processing program, MedLEE, was compared to the phrase matching. Some

pre-processing of the notes was necessary because MedLEE required the input to be in a specific

format. The pre-processing module was iteratively improved in a similar way as the phrase

matching algorithm. Records containing different types of clinical notes (physician progress

notes, consultation notes, nursing notes, procedure notes, operative records and discharge sum-

maries) were used in the study. A selection criterion for records was that they contained at least

one CVC placement. CPT and ICD-9 procedure codes indicated whether a note contained CVC,

and these were used for the selection. Records were selected from a five years period, which
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resulted in 365 CVC records. Each record was converted to a large text file where the temporal

order of notes were kept to be able to investigate causality of AEs and CVCs.

Fourty of the records were manually reviewed by two surgically trained physicians to form a

reference standard. The physicians manually read the records in order to decide if the records

contained CVC related AEs. The collection contained 30 records that had a high probability of

containing AEs (distance between AE and CVC was 6-13) based on the scoring system and 10

records that were very unlikely to contain AEs (score 0). This ensured that both records with a

high probability of including CVC related AEs and records with a low probability of having CVC

related AEs were included in the standard. The manual review showed that certain information

such as blood culture results was seldom present in the clinical notes. Thus, it could be difficult to

decide with certainty if a record contained CVC related AEs. The physicians rated the probability

that the records contained CVC related AEs using a scale with the values ”‘possible”’, ”‘highly

likely”’, ”‘likely”’ and ”‘certain”’. A board certified surgeon did an evaluation for records where

the two physicians disagreed.

The two semi-automated methods were compared to the manually made reference standard. To

decide if CVC related AEs identified by one of the semi-automated methods were true positives,

the findings were correlated to the manual reference standard and considered a true positive

if the manual rating was at least ”‘possible”’. MedLEE was found to be better at specificity

then sensitivity, while the opposite result was found for the phrase matching algorithm. Thus,

a third experiment combining records with a high score at the phrase matching with the results

of MedLEEs predictions of AEs was performed.

It was found that one of the commonest reasons for failure of a semi-automated method to detect

a CVC related AE or falsely reporting a CVC related AE was spelling errors and abbreviations

even though usual abbreviations were included as part of the pre-processing of both methods.

Suggested methods to handle spelling errors were to use dictation, professional transcription, au-

tomated spelling check including suggestions for abbreviations and an additional pre-processing

module able to handle abbreviations and spelling errors that their methods did not handle.

Spelling errors were a greater problem in this study than in previous studies, and this was ex-

plained by the type of clinical notes included in the study. The authors argued that physician

entered notes probably have a much higher rate of spelling errors than discharge summaries.

Phrases in which physicians had documented that information about risks was given to the

patient was often falsely detected as positive findings of CVC related AEs by the phrase matching

algorithm. Phrases often related to CVC AE that occurred closely to CVC synonyms lead to

similar problems for MedLEE.

The number of CVC records seemed low and a crosscheck was performed to check the reliability

of the selection. Cardiac and aortic procedures (always involving CVC) documentation could be

checked against the administrative selection method, and it was expected that the patients that

went through these procedures would be present both by the administrative selection method and

by the surgical documentation. However, of 1423 surgical procedures, only 163 were captured

by the administrative selection method.
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The study indicated that detection of CVC related AEs by the semi-automated methods was

lower, but comparable to detection of such events by humans. The results also revealed that

in some cases the physicians making the reference standard overlooked CVC-related events if

these were mentioned very briefly. In these cases, the semiautomatic methods performed better.

The combination of the phrase-matching algorithm and MedLEE gave the best results with a

sensitivity of 72 %, a specificity of 80.1 % and a predictive value of 64.3 %. The estimated

rate of CVC AEs for a life of a catheter in the complete set of records was calculated using the

results for the 316 records and their PPV. The estimate for the phrase matching was 6.4 %, for

MedLEE, 6.2 % and for the combined method, 10.4 %. NLP was better at specificity, but not

on sensitivity, whereas phrase matching was better at sensitivity, but worse at specificity. The

best results were obtained when the two methods were combined. Combining the two methods

gave a sensitivity score of 72% and a specificity score of 80,1 %. The positive predictive value of

AEs found in the 316 records by each method was 41 % for the phrase matching method, 70.5

% for the MedLee and 64.3 % for the combined method. The specificity, sensitivity and PPV

were considered high enough to be useful for surveillance purposes since it would highly reduce

the number of negative charts to process.

Another conclusion of the study was that text-based methods to find CVC patients may be more

valid than using administrative methods and that this should be studied further.

MedLEE was also applied in a study by Melton & Hripcsak,[13] for detection of 45 types of AEs

in discharge summaries. The AEs were predefined in New York Patient Occurrence Reporting

and Tracking System (NYPORTS), an adverse event reporting system used in New York. The

authors pointed out that an advantage of using MedLEE rather than specific trigger words to

detect events was that MedLEE converts the text into a coded format that yields information

about negation, uncertainty, timing, synonyms and abbreviations. In the experiment, MedLEE

was used to code discharge summaries and in addition queries were made to extract events as

a list from the coded discharge summaries. These queries were improved iteratively. 100 charts

were initially read by two reviewers, a physician and a informatician. The inter-rater reliability

was found to be very high, a chance-corrected agreement of 0.94. Thus, it was decided that the

physician alone was sufficient to do the manual review of the remaining charts. Also, reliability

between different data sources was evaluated; 1000 discharge summaries and 1000 electronic

charts were manually reviewed and compared to figure out whether discharge summaries was a

valid source to find adverse events. The agreement was found to be 0.96 and it was concluded

that discharge summaries could be used to detect adverse events [13].

The system was initially tested on 1000 discharge summaries and the results were compared to

a human review. Then the system was tested for all discharge summaries of a period of four

years, 57452 cases. The results were reviewed by the physician. Detection of both cases and

event types was reported. The manual review by the physician was used to decide true positives

for events and cases. For both cases and events, sensitivity was only fair (event sensitivity=0.25,

case sensitivity=0.28), while specificity was very high for both (event specificity=0.9996 case

specificity=0.982). However, the sensitivity was much higher than the traditional detection

system which had a sensitivity of 0.086. The automated system missed some of the events

reported by the traditional system (110/322), but detected 594 new events that the traditional
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system had missed. Thus, in total, the number of events detected was increased. The system

performed better than several previous studies that had applied simple search strings rather than

NLP. The system’s ability to detect both events and event types was also considered new and

unique. Other findings in the study was that it was hard to make queries with respect to time

when these were more complicated than figuring that one event happened before another. Also,

looking at the different event types, the results for each event type was highly variable. This was

explained by the number of each event type being variable and by some queries being harder

to implement than others. Events that were not explicitly described were also hard to detect.

Possible biases in the study was that only electronic records were included and that patients

staying shorter than 48 hours were excluded from the study. Including events of these patients

could potentially lead to another result. The authors points out several potential areas of use for

their system such as national screenings, adverse event prevention, automated diagnosis coding,

real-time clinical guidance, computer-assisted documentation and feedback to clinicians [13].

Gurulingappa et al. [59] developed a system for detection of adverse events related sentences in

medical case reports. The system combined a maximum entropy based classifier and dictionary-

based NER. The classifier applied morphological and syntactic features to classify sentences

as positive or negative. Sentences classified as positive were those that contained drug-related

adverse effects, whereas negatives did not. The dictionary-based NER was used on the posi-

tive sentences to normalize words such as names of drugs. A corpus, ADE, consisting of 2972

Pubmed case reports was partitioned into a training (80 %)and a test set (20%). Annota-

tions were made for drugs, adverse effects, doses and relationships between them. Annotator

agreement had been calculated between three different annotators. Different sets of features

and different supervised learning algorithms were tested. The combinations of features con-

sisted in words, lemmatized tokens, lexicon-token-matches; Drugbank and MedDRA single word

lexicon matches, lemmatized-token-bigrams, lemmatized-token trigrams, noun-character-affixes,

preceding and succeeding lemmatized verbs of drug- or condition matches, lemmatized-tokens-

in-window; window of +-5 lemmatized tokens of drug- and condition matches, Standford-token-

dependencies; a parser finding dependencies among words.

The researchers started with only the words as features and then sub sequentially extended

the feature set by adding features one by one. For each additional feature that was added, the

performance was tested by cross-validation on the training set for all of the algorithms used in the

experiments. F-scores were used as metric. If the addition of a feature lead to worsened results,

the feature was removed before adding additional features. All features except lemmatized-

token-trigrams lead to improved F-scores. The maximum entropy classifier gave the highest

F-score during the comparison of the algorithms. It was therefore decided to use this algorithm

in further tests. The maximum entropy algorithm was tested with the ADE test set. The results

of this test were compared to a baseline consisting of only words as features. Scores for precision,

recall, f-score and macro-averaged f-scores of both positively and negatively classified sentences

of the maximum entropy algorithm were compared to base line scores.

To reveal possible sources of errors in the classification system, a manual analysis of false positives

and false negatives was performed. Three sources of false positives were mentioned;
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1. Adverse events referring to drug type and not to the corresponding specific drugs.

2. Adverse effects of a drug mentioned in general terms, without specifying what the adverse

event consisted in

3. Adverse effects associated with various forms of medical treatment such as adverse effects

associated with the removal of the thyroid gland (thymus)

Similarly, erroneously classified negative sentences were manually reviewed. Three reasons are

also mentioned for false negatives;

1. The adverse effects were not described in the dictionaries applied

2. Long sentences where adverse effects were hidden in the text

3. The relationship between drug and adverse effect was incompletely described

The NER system was also analysed. A test was performed to check if co-occurrence of drug and

adverse effect could be used as a basis to decide if a sentence was positive. The co-occurrence of

drug and adverse effect was not enough to classify the sentence. Words missing in the dictionaries

applied by the NER system was the most common reason for false negative entities. Words that

were missing were often abbreviations.

To evaluate the trained maximum entropy classifier on unseen data, an exam corpus was applied.

The classifier was found to be helpful in identifying relationships between drugs and adverse

effects. It was concluded that the system was promising in terms of detecting new cases of

adverse effects and knowledge extraction from medical texts

4.4 Named entity recognition system for Scandinavian lan-

guages

In the large Nomen Nescio NER project several different strategies to make NER systems for

Norwegian, Swedish and Danish were investigated. The data sets were not medical, but their

results are interesting because they use NER with a main focus on how NER can perform

efficiently for Scandinavian languages. These are considered as dialects of the same language

and are therefore comparable since similar corpora were used for the systems. Six different

strategies were tested and compared. Three of the systems were made for Norwegian, two for

Danish and one for Swedish. Some of the systems were based on statistical methods and some

of them on rule-based methods [60].

Six different named entities were applied in the project; person (PRS), location (LOC), organiza-

tion (ORG), event (EVT), work of art (WRK) and other (OTH). These categories were selected

because they were considered as being of possible use for information retrieval (IR) at the World

wide web. It was found that selecting correct semantic category of a word was more difficult than

expected. For instance, country names might represent political organizations, sports teams or
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locations. To deal with the categorization problems, two annotation strategies called ”‘Function

over form”’ and ”‘Form over function”’ were applied and compared [60].

The ”‘Form over function”’ strategy entailed that words of a specific name form were always

treated the same way, independent of setting. This strategy was dependent on word lists/entity

dictionaries (gazetteers), which causes inaccuracies when words are not found in the gazetteers.

In cases where the word is not found in the gazetteers, the context is used to categorize the word,

which might lead to inconsistencies in the labelling. An example of the ”‘Form over function”’

strategy is that Israel is tagged as a location even though in a specific sentence it may refer to

the Israelian army, which is an ORG and not a LOC. This strategy was applied for the Danish

and Swedish systems [60].

The ”‘Function over form”’ strategy prioritized the function of the word for categorization. This

means that the same word could be given the LOC tag in a sentence where the function of

the word was a location, and the ORG tag in another sentence where it had the function of

a political organization. The ”‘Function over form”’ strategy was applied for the Norwegian

systems. For this strategy errors in labelling also occurred when the context was insufficient to

correctly decide the function of the word [60].

The Danish and one of the Norwegian systems in the project were rule based and used constraint

grammar (CG) and CG tags. The Swedish system applied another rule based method, shallow

parsing with context sensitive finite state grammars (FS). For two of the Norwegian systems,

statistical methods were applied; one of them applied maximum entropy and the other used

memory-based learning. Gazetteers of some form was applied for all the systems [60].

A small scale manual method and a larger scale automatic method were used for evaluation

of the systems. The small scale method aimed at adjusting evaluation criteria for each system

to make the systems comparable despite that they were made for different languages and with

different strategies. An example is that tags were made differently for ”‘Function over form”’

systems than for ”‘Form over function systems”’. Thus, the number of correctly identified tags

had to be counted taking the strategy into consideration. This evaluation showed largest recall

(91 %) and precision (93%) for the Swedish FS system [60].

For the larger scale evaluation, the systems were tested separately on larger corpora. For this

evaluation, the Danish CG system performed best (95% recall and 95% precision) [60].

The results indicated that the number of items in the gazetteers and the way the gazetteers were

used affected the success of the systems. It was hypothesized that the systems would perform

worse when removing gazetteers and that the reduction in performance would be largest for the

”‘Form over function”’ systems since these applied larger gazetteers than the ”‘Function over

form”’ systems. The Swedish FS system was compared to the Norwegian CG system and their

hypothesis could be confirmed. The Swedish system dropped from a recall of 91% to a recall of

53% while the Norwegian system increased recall from 72% to 83% [60].

The results also showed that whether the system was rule-based or statistical did not affect

performance systematically [60].
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4.5 Annotation and classification of Swedish Medical Records

Annotation and classification of medical records in Scandinavian languages have also been per-

formed at Stockholm University. These researchers de-identified medical records and collected

them as a corpus so that it could also be applied by other researchers. They studied how af-

firmed, negated and speculated information is expressed in Swedish medical records and looked

at annotation and classification of these data.

Three different corpora were made, one consisting of records annotated with identifiable informa-

tion, one annotated for sentence level uncertainty expressions and one annotated for diagnostic

statement level uncertainty [46].

The Stockholm Electronic Patient Record (EPR) corpus was used to develop the different gold

standards. The Stockholm EPR consists of EHRs from the Stockholm county council from

2006-2008 [46].

For the sentence level certainty annotation the researchers chose assessment (bedømning) fields

from some of the records in the Stockholm ERP corpus. Assessment fields were chosen as

these fields contain the largest amount of reasoning and it is probable that fields containing

reasoning might contain expressions of doubt and uncertainty. The goal was to find out how

uncertainties were expressed in these fields. Three persons manually annotated the data with

the following annotation classes; certain expression, uncertain expression, negation, speculative

words, undefined expression, undefined speculative words. Inter-annotator agreement (IAA)

between annotators were calculated. IAA was found to be high for certain expressions and

negations and considerably lower for uncertain expressions and speculative words [61].

Skeppstedt et al. [36], used named entity recognition for assessment data from a Swedish emer-

gency unit from the Stockholm EPR. Annotated data were used to test a rule- and terminology-

based entity recognition system. Body structure, disorder, and finding, all corresponding to

semantic classes from the SNOMED CT were used as entities. An experienced physician per-

formed the annotations.

The authors tested the possibility that SNOMED CT could be used as a resource for automatic

retrieval of medical entities and to what extent the SNOMED CT covers clinical expressions from

clinical records. Rule-based lexical look up in one to five different terminologies were applied to

recognize the three entities in the clinical records. The preannotated corpus was used as gold

standard. Different kinds of preprocessing were applied to investigate how that influenced the

results. Different experimental conditions were tested. Some included lemmatization, removal of

stop words, including words with a levenshtein distance of 1, including the terminology ICD-10,

the MeSH, Wikipedia: Project Medicin, Medical abbreviations and acronyms.

Words from the clinical notes could be looked up in the SNOMED CT (and for some of the ex-

periments also including other terminologies) and then the SNOMED CT semantic class (body

part, finding, disorder) for the looked up word could be found and used to annotate the data.

When ICD-10 was included as terminology, chapter 1-17 and 19, except T357-T629 were used for

disorder, chapter 18 was used to match findings. When MeSH was included, category F03 and
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C were used for disorder, A01-A10 were used for body structure. Also, a list of diseases from the

Wikipedia Projekt Medicin was included as terminology used to match disorder Medical abbre-

viations and acronyms were included to also include abbreviated terms. Lists of abbreviations

for disorders, body structure and findings were made. For evaluation of the results, a script from

the CoNLL shared tasks was applied. This calculated precision, recall and F-score for exact

matches.

The results showed that the total F-score was best for body structures (0.77), which improved

recall when stop word filtering was applied to SNOMED CT terms for body structures, as body

structures can also be included in descriptive expressions. For disorder, it was 0.63 and for

finding, it was 0.41. Also, body structure was most influenced by pre-processing.

Disorder was most influenced by adding terminologies. Compared to other studies, the re-

searchers found the results to be low, but they point out that a possible explanation could be

that the texts they applied may be less formal than for example discharge summaries as applied

in some other studies. The researchers suggest that the results indicate a limited coverage by the

SNOMED CT for clinical terms in the records applied in the study. Long expressions were not

always discovered by the system as entities and many of the false negatives were abbreviations.

They also found that body structures were most often annotated as one-token expressions. Disor-

ders were often annotated as two-token expressions. Findings were often annotated as two-token

or three-token expressions. The system did not correctly recognize expressions longer than two

tokens. Almost none of the correctly recognized terms were abbreviations. Which of the classes

finding and disorder that a word was assigned was found to be context dependent.

For future work, the researchers recommend measurement of IAA, testing of the system on other

clinical texts, usage of machine learning methods to recognize entities in the clinical texts, and

usage of the output from the rule-based systems as a feature of a machine learning based system.

They also conclude that a rule-based system that applies existing terminologies is insufficient to

do NER for clinical texts with good results in terms of precision and recall [36].

Velupillai [62] studied automatic classification of factuality levels for Swedish diagnostic state-

ments. They applied machine learning techniques with an automatic classifier using conditional

random fields (CRF) which had been trained on a corpus of assessment fields from the Stock-

holm EPR corpus. They used local context features, word, lemma and part of speech tags for

classification. A general POS-tagger for Swedish was applied. Positive and negative factuality

levels were applied for classes, and these were graded as certain, probable and possible. F-score,

recall and precision were calculated using the CoNLL shared task script. The word itself was

used to calculate baseline levels. Certainly positive received the highest results (F-score 0,742).

The best results were obtained when words, lemma and POS-information were used with a con-

text window of +-4, meaning that the four preceding and posterior words were used as features.

They found that preceding context gives valuable information. POS information was also found

to be most useful as a feature when used in combination with words and lemmas.

A recent study by Skeppstedt, [63], used CRF for NER of the entities disorder, finding, body

structure and pharmaceutial drug in clinical notes. This study was different from others by
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using Swedish texts and also by separating disorder and finding instead of combining them in

the entity ”‘Problem”’ which had been done in several other studies. They applied CRF++ with

IOB-tags. The clinical notes were from the Stockholm EPR Corpus. Only parts of the notes

were applied in the study, namely ”‘Assessment”’ texts as these contained information about

disorders and findings.

Manual annotation guidelines were developed by a physician with annotation experience and

a computer linguist. As an example phrases to be annotated were made as short as possible,

excluding severity. Compound words were not splitted. A second phycisian was used to validate

the annotation guidelines. The features used to classify terms were terminologies; MeSH, ICD-

10, SNOMED-CT and FASS. Compound words were splitted in two parts if one gave a match in

any of the terminologies. Lemmas, POS-tags and ortographic features were also applied in the

study. The features were added one by one, and only features that improved performance were

kept in each iteration.

They used 30-fold crossvalidation and argued that the advantage of this compared to 10-fold

crossvalidation was that more data can be used for training. The optimal feature set included,

lemma with a window of -1, POS tag including two previous and one posterior POS tag, ter-

minology match including the previous terminology match, compound splitting features and

orthographic features without window. This feature set gave a recall of 0,759, precision of 0,832

and an f-score of 0,794. A separate evaluation set was used for a final evaluation of the op-

timal feature set. To figure out to which extent the different features improved the results,

features were removed one at a time to see how much the performance decreased. The current

lemma followed by terminology were the features that had the greatest effect. The results for

the evaluation set were similar to those obtained during development.

Common errors were ambiguity in categories, spelling errors, jargon, phrases where too much or

too little had been included, abbreviations, compound words and errors in the manual annotation.

The authors concluded that NER approaches applied for English are transferable to Swedish.

However, compound words are common in Swedish and poses an extra challenge compared to

English. Contrary to other studies it was found that small word windows yielded the best results.

The authors explained that this may be because the set of features were too large relative to the

size of the corpus. Another source of error was that the lemmatiser was not properly adapted

for the medical domain. Inter-annotator agreement results were lower for finding and disorder

then for the other categories, indicating that these were harder to separate from each other and

that the question of whether these should be merged or not depended on the use of the NER

system.

4.6 Synonym handling in Norwegian Clinical notes

A study by Henriksson et al. [22] used word space models based on random indexing and random

permutations to find synonym pairs in clinical text. Random indexing and random permutations

were applied to reveal semantic relationships between words. Abbreviations could be mapped

to the full form of the word in the same way.
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4.7 NER in the clinical domain

Bruce [50] experimented on ontology-based information extraction in the clinical domain. The

ontologies SNOMED CT and RxNorms were used to find entities in clinical texts. The results

were compared to the results of the i2b2 shared tasks.

The cTakes framework was applied, and two home-made modules were developed. The research

indicated that ontologies may be used to identify named entities in clinical texts.

With a medical corpus available, supervised learning could be applied.

4.8 Concept normalization

Bashyam & Taira (2009) [64] studied how to compare lengthy medical concepts that are ortho-

graphically different, but which have the same meaning (e.g. heart attack and cardiac attack).

Phrases were transformed from free text to a normalized dependency vector space representation.

Phrases were firstly tokenized. After tokenization, syntactic parsing was performed. Syntactic

parsing involved making a syntactic dependency tree which contained syntactic relations between

words. In a relation, one word is head and the other is modifier. A word can be the modifier

only once, but it can be the head several times in a phrase. One relation is represented as a link

between the words involved.

After syntactic parsing, link reduction was performed. The links between words could be bi-

lexical or tri-lexical, where a bilexical link was a strong dependency link between two words,

whereas a tri-lexical link was a link between three words where a mediator word was often in

between the two related words (e.g. nucleus-of-thalamus, where of was the mediator word).

Link reduction involved removing mediator words when possible to reduce a tri-lexical link to a

bi-lexical link (nucleus-thalamus). When a tri-lexical link was converted to a bi-lexical link, the

new link was tagged with the mediator word that was removed.

The tokens in the reduced dependency tree was then normalized to their base form such that

for example thalmic was normalized to thalamus. ”‘The normalized dependency parse tree is

represented as in a vector space as a bag-of-links.”’. When these steps were performed both for a

phrase from a clinical text and for a phrase from a taxonomy, it was possible to correctly match

phrases from clinical notes to phrases from taxonomies even though the phrases were differently

before doing the normalization.
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Methods

5.1 Data

Twenty-eight EHRs, consisting of 4533 clinical notes, were selected from the Dips EHR database

of the Akershus University hospital (Ahus). Since a patient could have stayed at the hospital

for different periods of time, each record contained multiple periods of care. Each period of care

contained several clinical notes, including nursing notes, surgical notes, medical notes written by

physicians and laboratory examinations. The relationships between patient records, periods of

care and clinical notes is illustrated by figure 5.1.

Figure 5.1: Each patient has a patient Id. One patient can have multiple periods of care,
each of which also has an Id. Each period of care contains several clinical notes. Each clinical

note has a unique serial number.

5.1.1 Permissions and storage of data

The study was approved by the Norwegian Regional Committees of Medical Research Ethics

(REK). Unique personal acquaintance characters were removed from the data, but an exception

from confidentiality was approved because the researchers could potentially recognize persons

known to them privately. Use of data was only permitted to members of the Evicare project. A

non-disclosure agreement was signed by all members of the project.

The data were kept and stored confidentially in a secure zone. Three machines disconnected from

the Internet could be used to remotely access a server with an external hard drive containing

data.

41
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5.1.2 Selection criteria

The study population was selected from a prevalence survey from September 2011, in which some

medical attributes of the hospital’s patients were examined and reported on a specific date. The

selection was based on this survey and not on the EHR system. On this specific day the survey

identified 28 patients with CVC, which constitute the present study population.

Patients where the CVC had been removed before the prevalence survey or had CVC inserted

after the prevalence survey, were not included in the study population. The 28 records included

all the clinical notes on a patient during his/her stay at the hospital. They therefore contained

much information other than that pertaining to CVC. In fact, the 28 records contained 4533

clinical notes. This number was considered adequate for research purposes, and was also possible

to explore within the time limitations of the project.

The large amount of clinical notes for each patient ensured that notes containing as well as

not containing CVC-related events were included in the study. Figure 5.2 illustrates the inter-

relationship between CVC during a period of care and a prevalence survey. Figure 5.3 gives

an example of a patient who has clinical notes containing CVC information, but who was not

registered with CVC in a prevalence survey.

A patient could also have CVC inserted after the prevalence survey. In that case, the patient’s

clinical notes from after the survey would probably contain information about CVC, but the

patient would have a negative result for CVC at the prevalence survey. Notes that could possibly

contain CVC information were not read if the patient did not have CVC at the prevalence survey

(see 5.3). A requirement for selection of records was a care period of more than three days for

each patient.

Figure 5.2: The line on top of the figure illustrates a time line. The first arrow marks the
start date of a care period (1). The second arrow (2) illustrates CVC insertion. The third
arrow (3) illustrates a prevalence survey. The fourth arrow (4) illustrates removal of CVC and
the fifth arrow illustrates discharge of the patient. Figure taken and modified from Christine

Tvedt’s presentation.
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Figure 5.3: The line on top of the figure illustrates a time line. The first arrow marks the
start date of a care period (1). The second arrow (2) illustrates CVC insertion. The third
arrow (3) illustrates removal of CVC. The fourth arrow (4) illustrates the day of a prevalence
survey. The fifth arrow (5) illustrates discharge of the patient. Figure taken and modified

from Christine Tvedt’s presentation.

5.1.3 Manual annotation

Human-performed reading and annotation of clinical notes was performed in order to make a

corpus of data annotated with CVC events available for the study. This was performed by

PHD student Christine Tvedt, employee at Kunnskapssenteret [65]. She has a background as a

nurse with a special competence in infection control and thus has domain knowledge necessary

to perform annotation of CVC related events. Brat rapid annotation tool [45] was applied for

the human-performed annotation. Table 5.1 shows and explains annotations applied in the

annotation process. Tvedt, in cooperation with Laura Slaughter, a domain expert in natural

language processing, defined the set of annotations that were used to annotate CVC-related

events. By applying Brat annotation tool, one annotation file was produced for each clinical

note. The annotation file was named by the same file name as its corresponding clinical note

and contained all annotations belonging to that clinical note. The format of the annotation file

is called ann-format or stand off format.

5.2 Training a classifier to automatic annotate journals

5.2.1 Preparing clinical notes for learning

The data were sent to NTNU in text format, converted from rich text format by Haldor Husby in

cooperation with DIPS [66]. Clinical notes were identified by a serial number, a patient number,

a care period number, document type and the date when the document was made. Serial number

could be used as a unique identifier for a clinical note. Annotation files were provided separately

to the clinical notes.
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Table 5.1: Annotations

Annotation Description

Carecvc Care, observation or assessment of CVC
PlanCarecvc Care of CVC has not been performed, but has

been booked or planned
PlanInscvc Admission of CVC not performed, but

planned, desired or ordered for the future
Inscvc CVC has been inserted
Remcvc CVC has been removed
PlanRemvcvc Removal of CVC has been planned
Symptom statements indicating that there may be a

blood system infection (BSI) contains the
words ”blood culture”, ”infection” coupled
with ”CVC” and the like

Sepsis Sentence containing the word sepsis
Device: CVC, Hickmann, VAP, other Type of CVC
Site: Jugular, subclavian, femoralis Site of the vein for CVC insertion
Possiblecvc Sentences in which CVC is discussed with-

out mentioning the word ”CVC”. Information
possibly relevant to CVC

A C++ implementation of CRF, CRF++, [67] was used as training algorithm in the current

study. CRF++ required training and test files to be represented in CONLL format, see [68] for

an example. Each token had to be on a single line with its features and label on the same line

separated by tab. The tokens represented words to be labelled, the features belonged to the

tokens and helped finding the correct label of a token. Words from the clinical notes were used

as tokens. For training files, the correct label of a token was known and assigned to the token

prior to running the algorithm.

For testing files, an attempt was made to predict labels. Sentences were separated by vertical

space/empty lines. A phrase given a specific label caused all the words of that phrase to be

assigned with that label. Word level tagging was applied and IOB/BIO tags were used to define

boundaries of start and end of a phrase. This was made by assigning a letter, I, O or B to

each label that were attached to a token. This indicated whether a token of a phrase was in the

beginning (B) or inside (I) the phrase. Words that were not part of any phrase were labelled O

for outside. The CONLL format and the BIO tags are exemplified in table 5.2.

A template file had to be specified before training. The template file denoted features and context

to be applied in training and testing. Each element in the template file consisted of a row and

column number that informed the algorithm that the feature in that position of the input files

should be included as a feature during training. An example template file for the Conll file in 5.2

is shown in 5.3. Each line have a unique identifier, ”‘UXX”’, a row and a column. [0,1] means

that when training on the files given in conll format, row 0, column 1 should be included as one

of the features.

In this case this is the stem of a token. [-1,1] still means column number one. The -1 means that

we are using the row that is prior to the current token. Thus, [-1,1] means the stem of the token
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Table 5.2: Conll format

Token Stem Synonymous ICNP axis Label

Stell stell 0 J B-Carecvc
av av inaktiv DS I-Carecvc
CVK cvk CVC J I-Carecvc
ble ble fremkomme J I-Carecvc
utført utfør avholde J I-Carecvc

Pasienten pasient behandlingstrengende J O

Table 5.3: Template file example

U01:%x[0,1]
U02:%x[-1,1]
U03:%x[0,2]
U04:%x[0,3]
B

before the current token. The B in the end of the template file tells the CRF algorithm that

the template is a bigram template, meaning that output of the current token and the previous

token is applied when predicting the label of the current token.

A tool for NLP-assisted text Annotation, called AnnToConll, [69], was applied for converting

clinical notes and annotation files into CONLL format. In the CONLL format, words are printed

as a vertical column and sentences are split by adding a space between the words. Columns are

also generated for offset numbers, and labels from the ann-files are added in the file as a separate

column. The tool had to be slightly modified in order to be applicable for Norwegian language

and in the format required by CRF++. The tool with modifications is included on the DVD

attached to this thesis. The modified anntoconll tool converted tokens and labels to CONLL

format. A separate module was made to select files for conversion and to run the script for

all files. A module was also made to add stemming, synonyms and ICNP codes as features

for training. The stemming was based on a standard snowball stemmer for Norwegian. The

synonym matching was performed by Hans Moen using the code applied for synonym extraction

in the work by Henriksson et al. [22]. Here three semantic vector space models were trained.

As mentioned previously, Velupillai [62] used different terminologies as features for tokens. In

that study sentences were used to do look-ups in the terminologies and then assigned the best

matching terminology term to each of the tokens in the sentence. The same strategy was applied

in the current experiment. Sentences were stemmed and matched against terms from ICNP by

applying a sentence similarity method. For this we used the code by Hans Moen that previously

had been used to generate the Random Indexing based features used in Marsi et.al [70] and Moen

et.al [71]. Sentence vectors were created by summing normalized term context vectors for the

constituent terms. In addition to TF-IDF weights, double weight was given to context vectors

of terms matching a dictionary of medical terms. This dictionary contained a collection of terms
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derived from ICD-9, ICD-10, NCSP, NIS treatment codes and DRG codes. For sentences that

matched ICNP terms, the ICNP axis corresponding to the ICNP term was returned. ICNP axis

was later applied as features of tokens to the CRF algorithm.

The data files were separated into training files and test files. A small program was made

to make a randomized selection of files from the total amount of clinical notes available (see

attached DVD). The partitioning of files into training and test files was done similar to other

studies applying CRF++ [62, 72], dividing the files into 20 % for testing and 80 % for training.

Training required use of the training files and a CRF template. A template containing all features

was tested once with Unigram template and once with Bigram template to decide which of these

templates should be used for further experiments. Bigram template gave clearly the best results

and was therefore used for further experiments. The template defined features to be included in

an experiment, as well as whether bigrams and context windows of words should be included.

Including a context window of for example +-2 words implied that two tokens prior and two

tokens posterior to a token were included as context features of a token.

The CONLL format, including token, features and labels, was also applied for test data, but

for test data the label input was used merely as a comparator to the label predicted by the

algorithm. After a test run, CRF++ provided a list of results including precision and recall for

the sum of all labels, as well as precision and recall for each label separately.

5.2.2 Design and statistical method

A full factorial design, a 24 experiment, was applied to investigate the effect of features possibly

relevant to annotation of CVC related events. This type of design was appropriate since it

requires few experimental runs to indicate the effect of various factors on the response variable.

A full factorial design includes all combinations of features on/off and allows the possibility to

investigate both the effect of each feature alone, as well as interactions between features [73].

The text files were randomly divided into three equal sized partitions so that three-fold cross

validation could be applied (see code attached on DVD). These three partitions were used for

all the different templates/feature combinations so that each partition was used as test set once

and training set twice. Minitab 16.0 [73] was used for statistical analysis. Three blocks were

used in the factorial analysis, one for each of the three cross validation data sets so that each

block consisted of the sixteen feature combinations.

The CRF algorithm was trained and tested for each of the sixteen feature combinations. One

feature combination run resulted in recall-, precision and F-scores for each of the named entity

categories. Also, cumulative recall-, precision- and f-measure score were returned for each feature

combination run. The cumulative f-measures were used as response variables in the factorial

design so that each of the sixteen feature combinations were assigned one f-measure, resulting in

forty-eight responses, sixteen for each cross validation data set.

CRF returned f-measure, recall and precision for each model trained using different feature sets.

Result scores were obtained for each annotation label as well as an overall result score for all



Chapter 5. Methods 47

Table 5.4: Features included in the experiment

+ −
Word window +/− Four words +/− No words
Stem Included Not included
ICNP axis Included Not included
Synonym Included Not included

annotation labels. The accumulative scores for the sixteen feature combinations were analyzed

using a factorial analysis in Minitab 16. Three factorial analysis were performed; for recall,

precision and f-measure. Three blocks were applied, one for each cross-validation run. Terms

in the model up to second order was included. Third and fourth order interactions are often

results of random noise and were therefore excluded. An F-test (denoted by F, but different from

f-measure) compares differences in variance and can reveal whether some of the factors have a

significant effect on the overall result scores. The α-level for significance was set to 0.05 in all

tests. In cases of large residuals, an Anderson Darling test was performed to check if residuals

were normally distributed.

5.2.3 Features

Features considered relevant to annotation of CVC related events were the word itself, word

window of +/− four words, the stem, possible ICNP matches and synonymous of tokens, see 5.4

for an overview of feature combinations included. The word itself always has to be part of the

NER process and is therefore not analysed as a separate feature.

A word window of +-4 words were applied. The stemmer was based on a Snowball stemmer.

For synonyms, all words were converted to lowercase. The top ranked word from the combined

models was used as synonym for query words. When combining the word similarity scores

from each model, these were averaged and normalized. Minimum term frequency of synonym

candidates was set to 50. Words with a synonym value larger than 2 were not included and the

token was given the synonym ”‘-”’.

Search for ICNP matches was performed sentence by sentence so that a possible ICNP match

was returned for a whole sentence. All words of a sentence were then given the same ICNP axis

in the CRF template file. The match value for the ICNP axis had to be >0.35. Axes with a

lower value were not included, and these tokens were given the axis ”‘-”’.

Experiments were performed with bigram features (taking the previous output into account).
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Results

A search in the annotation files yielded information about the match frequency of each annotation

label in the 4533 clinical notes, shown in table 6.1.

The factorial analysis of f-measures indicated significant effects of ”‘word window”’ (F=963.38,

p<0.001), ”‘ICNP axis”’ (F=199.30, p<0.001) and an interaction effect between these (F=

176.61, p<0.001), see pareto chart in figure 6.1. Also, the effect of blocks was significant

(F=31.57, p<0.001), indicating that there were significant differences between the three cross

validation runs. Main effects plots, see figure 6.2 illustrate the differences in f-measures between

presence and absence of the different features. Interaction plots illustrate interactions between

factors, see 6.3. Parallel lines illustrate no interaction. A Difference between lines in an inter-

action plot illustrates interaction. Thus, an interaction between word window and ICNP axis is

present.

Large residuals were found for two of the observations, indicating that these were lower than

expected by the regression model. These two were observation number 2 (f-measure=18.43,

residual=-4.42) and 14 (f-measure=17.21, residual=-4.61). An Anderson-Darling test on stored

Table 6.1: Frequency of each label in the clinical notes

Label Frequency

Carecvc 392 matches in 341 files
PlanCarecvc 58 matches in 52 files
PlanInscvc 96 matches in 77 files
Inscvc 86 matches in 73 files
Remcvc 65 matches in 54 files
PlanRemvcvc 28 matches in 21 files
Symptom 143 matches in 105 files
Sepsis 78 matches in 38 files
Device: CVC, Hickmann, VAP, other 0 matches in 0 files
Site: Jugular, subclavian, femoralis 0 matches in 0 files
Possiblecvc 55 matches in 36 files.
CVC 44 matches in 40 files.

49
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residuals indicated that the residuals were not significantly different from a normal distribution

(AD = 0.458, p = 0.253).

Figure 6.1: The chart displays the absolute values of the effects. Effects passing the reference
line are significant.

Figure 6.2: The figure displays how the presence of the four main effects, word window,
stem, synonym and ICNP axis effect the f-measures when they are either on (1) or off (-1).
Word window has the steepest slope between being present and not to being present and thus

constitutes the greatest effect on the f-measure. Also ICNP axis has a significant effect.

A corresponding analysis regarding recall indicated significant effects of word window (F=761,85,

p=0,000), ICNP axis (F=85,21, p=0,000), stem (F=4,79, p=0,035) and the interaction between

word window and ICNP axis (F= 76,02, p=0,000), see pareto plot in figure 6.4. Blocks were

significantly different from each other (F=40,65, p=0,000). For main effects plot and interaction
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Figure 6.3: The figure displays interactions between features. An interaction effect exists
between word window and ICNP axis.

plots, see figure 6.5 and figure 6.6. Three observations were a bit lower than expected by the

regression model, but an Anderson darling test indicated that the data were not significantly

different from a normal distribution (AD=0,634, p=0,093).

Figure 6.4: The chart displays the absolute values of the effects.

The analysis of precision indicated significant effects of word window (F=1093.73, p<0.001)

and ICNP axis (F=459.29, p<0.001). Two interaction effects were also found, between word

window and ICNP axis (F=405.88, p<0.001) and between synonymous and ICNP axis (F=5.43,

p=0.026). Also for the precision analysis the effect of blocks was significant (F=19.59, p<0.001).

Pareto chart for precision is shown in figure 6.7, main effects plot in figure 6.8 and interaction
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Figure 6.5: The figure displays how the presence of the four main effects, word window,
stem, synonym and ICNP axis effect recall when they are either on (1) or off (-1). As for
the f-measure analysis, word window and ICNP axis had a significant effect. Stem also has
a significant effect in this analysis and the slope for stem is therefore steeper in this analysis

then in the f-measure analysis.

Figure 6.6: The figure displays interactions between features. An interaction effect exists
between word window and ICNP axis.
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plots in figure 6.9. Two observations were lower than predicted by the regression model, but an

Anderson Darling test indicated that also for this analysis, the residuals were not significantly

different from a normal distribution (AD=0.652, p=0.139).

Figure 6.7: The chart displays the absolute values of the effects. Effects passing the reference
line are significant. Differently from the analysis of recall is that the interaction between
synonymous and ICNP axis is significant, and that the other significant effects apparently

have a greater effect on precision then on recall.

Figure 6.8: The figure displays how the presence of the four main effects, word window,
stem, synonym and ICNP axis effect precision when they are either on (1) or off (-1). Stem

and synonymous seem to have no main effect on precision.

The lowest result scores were the scores of the baseline feature set where none of the four features

were on. Only the token itself was used as input for the algorithm in these experiment runs.
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Figure 6.9: An interaction effect exists between word window and ICNP axis. Also, an
interaction effect exist between synonymous and ICNP axis.

Table 6.2: Results for each category - baseline

Category Precision Recall Fβ=1

CVC 0.00% 0.00% 0.00
CareCVC 25.10% 27.96% 26.38
Hickman 0.00% 0.00% 0.00
Inscvc 27.63% 23.99% 24.83
PlanCarecvc 6.94% 3.30% 4.37
PlanInscvc 29.43% 21.71% 24.44
PlanRemcvc 0.00% 0.00% 0.00
PossibleCVC 14.14% 3.97% 6.00
Remcvc 13.47% 6.11% 8.34
Sepsis 28.93% 10.36% 14.54
Symptom 19.51% 10.74% 13.21
Overall 20.21% 18.47 % 19.27

The baseline result set is shown in table 6.2. The best F-score was obtained when all features

were included. Table 6.3 shows the results for each annotation category for the template where

all features were included. Table 6.2 and table 6.3 show the average values of the three cross-

validation runs. After finding the best feature set some experimentation was performed by

editing the word window. It was found that decreasing the word window to +-2 had no effect

on the results; precision 56.51, recall 39.44 and F-score=46.44.
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Table 6.3: Results for each category when all of the four features were included

Category Precision Recall Fβ=1

CVC 0.00% 0.00% 0.00
CareCVC 57.26% 61.54% 59.29
Hickman 100.00% 100.00% 100.00
Inscvc 47.16% 29.39% 35.85
PlanCarecvc 48.33% 12.87% 20.17
PlanInscvc 62.03% 48.06% 54.14
PlanRemcvc 38.89% 13.89% 20.45
PossibleCVC 63.33% 18.76% 28.78
Remcvc 25.72% 8.40% 12.62
Sepsis 35.56% 8.30% 13.46
Symptom 64.68% 24.53% 35.55
Overall 56.29% 39.4% 46.33
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Discussion

7.1 Clinical relevance of the study

The current study is relevant because no previous studies have investigated the possibility of

using NER to detect CVC events on Norwegian clinical notes. Successfully detecting such events

can contribute to making decision support based on already existing data. Detecting adverse

events related to CVC may be both time-saving and economic. Also, real-time detection of

potential risks may prevent AEs [6]. A corpus with annotations of CVC related events was made

by Tvedt, since no such corpus existed previously for the Norwegian language.

Having a Norwegian corpus was important because Norwegian differs in many respects from

English. The study can be compared to similar studies for Swedish since the Scandinavian

languages may be considered dialects of the same language [60]. As in Swedish, compound

words are very common in Norwegian. Other specialties of Norwegian clinical notes are that

there are two written languages that are only slightly different from each other; they often

contain self-made abbreviations and incomplete sentences.

7.2 Methods

7.2.1 Data selection

Identification of the number of patient days with CVC was important to Ahus. To identify this,

all types of clinical notes were considered important for the study because all of these could

contain information about CVC and CRBSI. As an example, care during CVC is probably noted

in the nurse’s notes, while infections and blood culture test results may be noted in physician’s

notes or laboratory notes.

An advantage of applying all types of clinical notes was that the amount of training and test

data was increased. This may be positive because it increases the amount of training data. A

possible drawback is that the variation in the data may also increase. Thus, the ambiguity in

57
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the data may increase and the effect may be that even more data would be required in order to

compensate for the variation.

The effect of including or excluding some types of clinical notes in the study could not be

predicted in advance. Another possibility could have been to include only nurse’s notes since

nurses often do both the insertion, care and the removal of CVC. However, information about

CRBSI and blood cultures could also be of importance if for instance removal of CVC was not

properly documented. Once CRBSI is suspected or blood cultures are tested, laboratory and

physician’s notes could also be of relevance. It was therefore decided to include all types of notes

so that no information possibly relevant to the study was missed.

As described in the method section 5.1, records from patients not registered with CVC were

excluded from the study. In future studies it might be interesting to include additional records

from such patients. The records from patients that did not have CVC had not been manually

read at the time when the present study had started.

Since the present study is focused on understanding sentences and words, thus not focusing on

separating clinical notes from each other, it is unlikely that excluding non-CVC patients would

affect the study in any way. If the amount of clinical notes had been greater, the percentage of

CVC related words would be lower and therefore less relevant to the CRF algorithm. Applying

notes from CVC patients only is therefore reasonable in the present study to ensure a large

enough amount of CVC related words to discover how different features effect the named entity

recognition.

Ideally, the sample should have been larger, but because the clinical notes had to be manually

read and annotated, the sample size was limited by the time interval of the project. The selection

of data was based on a prevalence survey rather than on a search in records. Advantages of

selecting the data based on the prevalence survey was that with the clinical notes, it is more

difficult to ascertain which patients that had CVC if the documentation was unstructured. There

is a risk that even though a patient is registered with CVC in the prevalence survey, he/she may

have no trace of CVC related events in the clinical notes. However, the risk that none of his/her

clinical notes contains CVC related events seems unlikely. Thus, selection of data based on

prevalence surveys seems like a good approach when the goal is to have some control of whether

the notes are from CVC patients.

Another possible weakness of the selection method was that manually annotated records were

selected based on a prevalence survey that is independent of the EHR system. That implies

that even if a patient was registered as a CVC patient in the prevalence survey, this does not

guarantee that CVC events are documented in the patient’s record.

7.2.2 Evaluation of Method

At the start of the project an annotated corpus was not available, and therefore both unsuper-

vised, semi- and supervised learning algorithms were considered. However, during the project
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4533 clinical notes were annotated (by Tvedt), and it was therefore decided to utilize this anno-

tated corpus. With an annotated corpus available, a supervised learning algorithm was a natural

choice since these types of algorithms utilize annotated data for training.

Different methods for sampling and evaluation were considered for the study. Hold-out validation

such as selecting 20% of the data for testing and 80% of the data for training, has been used by

several authors in the literature and seemed like a time efficient and simple evaluation algorithm.

With 16 different experiments time efficiency was considered important in order to make the

experiment runs achievable.

Some initial experiments were performed, applying the above-mentioned evaluation method. 20

% of the data were randomly selected from the whole data set and spared for testing, while the

remaining 80 % were used for training. The results of these test runs indicated that the number

of different label types became very sparse in the test set.

Thus, to decrease the risk of a non-representative training and test sample, cross-validation was

considered. Replications of experimental runs also contribute to increase the statistical power

of the design. As mentioned in the background chapter, 10-fold cross validation is one of the

standard evaluation methods used in text mining. Having 10 iterations for each experiment would

increase the amount of data used for training, as well as increasing the number of estimates of

the model’s performance.

However, each experiment iteration took about half an hour. Consequently, running 10-fold

cross-validation for one single experiment would require 5 hours in the laboratory. With 16

different experiments, this was considered too time-consuming. 10-fold cross-validation would

also, as mentioned in the background chapter, lead to a lot of overlap in the training data

and small test-sets. 3-fold cross-validation was considered a satisfactory compromise in order

to utilize the benefits of cross-validation and at the same time make each experiment iteration

achievable within a reasonable time.

Thus, a 3-fold cross-validation was chosen. The next challenge was to decide whether the same

3 folds should be used for each experiment or if the random sampling into the three different

segments should be rerun for each experiment. Since an important goal of running different

experiments was to decide which parameters that were best suited for event detection, it was

considered important that other variables than the feature sets were kept static. Thus, the same

three folds were used for each experiment. Another risk was that the results of the different

experiments could be dependent on how the three fold partitioning was performed. However,

this risk was minimized by applying a randomized selection method.

7.3 Choice of annotation labels

As mentioned in the section about motivation for the project 1.3, one of the goals of Ahus was

to obtain a better overview of the number of patient days with CVC. It was therefore important

to annotate insertion, removal and care of CVC. Symptoms and specific CVC types were also of

importance because insertion and removal were sometimes not registered in the journals.
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However, the results of the manual annotation indicated that some of the annotation labels, such

as insertion site, were too specific as these were not applied to any of the phrases in the medical

collection. Also, the ”‘CVC”’ annotation label had very few matches and partly overlapped with

some of the other annotation labels. Planning a removal of CVC had only 28 matches. In cases

of overlapping labels, the anntoconll tool chose the annotation label that contained the largest

proportion of characters and discarded the other.

As expected, CareCVC had a higher number of matches than the other annotation labels since

care is performed and documented every day, while for instance planning a removal of CVC

occurs less frequently. Some of the annotation labels, such as planning a removal of CVC had

few matches. This may have influenced training and testing if the number of an annotation label

was partitioned in such a way that the number of training or testing entities was too low, or if

the partitioning of each annotation label to the three cross folds was skewed. The distribution of

files to the three folders used in the three fold cross-validation was performed randomly, because

this decreases the risk of a skewed partitioning.

Ambiguous annotation labels may have influenced the results negatively. The number of anno-

tation labels was 11, which is much higher than in similar studies. For instance, the studies by

Skeppstedt [36, 63] contained only three and four categories respectively, and the study by Penz,

[6], contained four categories. Also, the studies by Skeppstedt defined categories corresponding

to the SNOMED CT; disorder, finding, body structure and pharmaceutical drug.

Even though they found some ambiguity between disorder and finding, these categories seemed

less overlapping than the categories presently applied. As an example it seems reasonable to be-

lieve that some ambiguity may exist between the categories PossibleCVC and Symptom. Tests

for overlap have not been developed, but some overlapping annotations (<10) were discovered

when the anntoconll script was run. This script chose the annotation that covered the largest

amount of characters in the clinical notes. Skeppstedt [63] developed clear guidelines for annota-

tions for each category. The guidelines were controlled by two physicians. Also, two annotators

were applied and inter-annotator agreement was calculated. Such controls decrease the risk of

ambiguous and overlapping categories, as well as decreasing the risk of erroneous annotations.

Since several annotators were not available for the present study, such controls could not be

made. However, a strength in the selection of categories is that they cover a large spectre of

CVC events and that they have been made in cooperation with a domain expert in NLP, with a

wide experience in making categorization and ontologies. A possibility for future studies is to use

the CVC event labels as features rather than as labels to a classifier. That is, making broader

and more general classification categories, such as ”‘CVC”’ and ”‘not CVC”’, and applying the

present annotation labels as features of tokens to be classified into the broader categories.

Discussions with Haldor Husby from Ahus 3 weeks ago revealed that unfortunately errors may

exist in the manual annotation. In the corpus generated at Akershus University Hospital, which

has provided the data for the present study, the predefined definitions for the annotation labels

had not been followed. CVC and Hickmann were both sub categories of Device according to

the definitions of the annotation labels, but both Device, Hickmann and CVC had been used

as labels in the manual annotation. As an example, a phrase containing ”‘Hickmann”’ could be
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annotated as ”‘Hickmann”’ in some cases and as ”‘Device”’ in other cases. It was also discovered

a note containing a phrase that should have been tagged with ”‘Hickmann”’ but erroneously had

been tagged with ”‘CVC”’.

Furthermore, some of the clinical notes seemed to be summary notes, as they contained a large

amount of annotations regarding both insertion, care and removal of CVC. Somatic supervisory

notes (Tilsynsnotat somatikk) were examples of such a type of note. Such summary notes should

perhaps be excluded in future research as they may contain repetition of other notes. Repetitive

text may cause the model to be trained too much on some word sequences.

However summary notes may summarize all types of CVC events, such that each event type will

be repeated an equal number of times. Therefore it might not influence the probability of the

different event types for the model. Future researchers should be cautioned that label types such

as PossibleCVC may not be mentioned in the summary notes. Accordingly, it seems preferable

to exclude summary notes altogether.

Another important source of error regarding the data generated at Ahus was discovered at the

same time. Some of the 4533 clinical notes looked like duplicates. It was discovered that every

time a clinical note is reopened, a new clinical note is generated. Therefore, some of the 4533

files are different versions of the same clinical note. This may have effected training so that

words or sentences that are present in the start of a clinical note is read several times by the

CRF algorithm since these are present in all the different versions of a clinical note.

Because of time limitations of the present study it has not been possible to investigate how

widespread this problem is. However, it seems unlikely that it was very widespread as it was not

discovered until the end of the project, it was not detected even after looking through several

notes during conversion of data to conll format at an earlier stage. Also, nurses rarely edit

clinical notes (personal communication by nurse and Phd student Tvedt with expertise in this

field).

However, 4533 clinical notes may seem a lot for 28 patients, even though each patient has several

notes for each care period. Accordingly, it cannot be precluded that the large amount of notes

may be caused by the fact that several versions of the same file may exist. An educated guess may

indicate that 15-25 % of the clinical notes have more than one version (personal communication

by Tvedt). Further discussion will be made on the assumption that the results are still valid.

7.4 Features

The features applied to classify words were word window, stem, synonymous and ICNP axis.

Other features were also considered, such as POS-tags. Velupialli [46] applied POS-tags and

lemmas as features. In the present study, stemming was applied instead of lemmatization because

the clinical notes contained multiple spelling mistakes, unusual/self-made abbreviations and

possibly some notes in other languages such as Swedish. The use of a synonym handler based

on RI and RP consider words often used in similar contexts synonyms. Thus, it may be able to

recognize that such words have the same semantic meaning. POS-tags were not included because
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it seemed unlikely that knowing the grammatical function of words would contribute much to

finding the CVC event type of a word.

Word window had been successfully used in similar studies and it seemed reasonable that the con-

text of a word would contribute in finding its label since the labels annotated phrases. Velupillai

[46] performed a similar study and found that a word window of +-4 words gave the best results.

Thus, a context window of +-4 was also applied in this study.

ICNP was applied to find generalized terms for medical words. Other medical collections, such

as SNOMED CT, have been applied successfully in other studies[36]. The reason that ICNP was

chosen in the current study, was that it consists of nursing terms, and CVC related events are

typically performed by nurses.

The four chosen features were considered to be those that would have the greatest effect on

detection of CVC related events.

7.5 Models

The resultant scores of the present study are lower than in other studies, such as the study by

Abacha & Zweigenbaum, [53], where the f-measure was 77,55. The overall recall was 39.4% and

the precision was 56.29% for the best feature set. This results in an overall f-score of 46.33.

Several factors may have affected the results negatively. One reason may be that 28 records

were insufficient to capture a representative sample of each CVC event type. In comparison,

the previously mentioned study by Penz et al., [6], used 365 records that according to CPT and

ICD-9 procedure codes contained CVC related events. Fourty-nine of these did not include any

note about CVC, even though they were supposed to do so according to the CPT and ICD-9

procedure codes. They were therefore excluded.

Only 56 of the CVC records in their study contained procedure notes describing the placement

of CVC. Since so many records lacked notes describing CVC events in that study, it is probable

that this problem may also exist in the present study, since in this the selection of records also

relied on information outside the EHR system, namely the prevalence survey. Throughout this

study, Tvedt has been working on increasing the corpus, so it should be easy to repeat the study

with a larger corpus.

The synonym handler could also be a source of error because it was not properly tested in

advance. Examples of obvious erroneously synonyms detected was; cardiology for gastro and

necrotic for skin. Such errors are probably caused by the use of RI and RP in the synonym

handler. Words co-occurring with the same words are assumed similar by these models [20].

The reason for the chosen synonym handler was that it was easily available and that synonym

handling based on RI and RP had been successfully applied in other studies; Kanerva et al., [20],

used RI for solving the synonym part of the ”‘Test of English as a Foreign Language”’ (TOEFL).

The threshold for whether a word should be considered a synonym of a query had to be set by

trial and error because no experiments existed for finding the optimal threshold. Finding the

optimal threshold for the synonym handler could improve classification. Future studies should
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also consider trying other synonym handlers. However, a strength of the synonym handler is

that the correct form of a word is considered a synonym of a misspelled word. As an example,

”‘sykepleier”’, meaning nurse was noted as the synonym of ”‘sykepleoer”’ which is a misspelled

version of ”‘sykepleier.

Even though the performance of the best feature set was not as high as for other studies, signif-

icant differences were found between the sixteen different feature combinations. In accordance

with several other studies [62, 74], context significantly improved classification performance.

ICNP axis also had a significant effect on performance. ICNP axis has not previously been tested

as a feature for Norwegian clinical notes. This feature provides the algorithm with semantic and

general general information such as whether a term is a judgment or an action. Providing the

algorithm with a feature that specifies generally what a term refers to may help building a model

that connects two more specific phrases to the same action, such as care of CVC. The results

are similar to the results of Abacha & Zweigenbaum, [53], mentioned in chapter 4.3. They also

found satisfactory results when CRF was combined with IOB tags and semantic information.

An interaction effect was also found between word window and ICNP axis, meaning that when

these features were applied together the performance was increased more than the sum of both

of them alone.

Stem had an effect on recall, but not on precision. The reason for that may be that normalizing

words make them more general, making it easier to recognize that two slightly different words

should be assigned the same label. However, normalizing the words make them less precise. The

different effect of stem on recall and precision can be envisioned by comparing the main effects

graphs for stem between recall and precision.

Synonymous apparently had a greater effect for precision then for recall as an interaction effect

was found between ICNP axis and synonymous. This also seems reasonable because synonymous

make information more detailed and less general.

A significant effect of blocks indicate that the three cross-fold runs were significantly different

from each other. The reason for the difference is that each of the three cross-fold runs applied

different folder for testing. A skewed partitioning of the different annotation labels to the three

cross-folds may be another reason for this result.

There is a great variation in performance for the different annotation labels. Hickmann has

an f-score of 100% while CVC has a f-score of 0%. These two extreme values seem a bit odd,

perhaps because there were too few phrases annotated with Hickmann. As an example, if there

is one phrase annotated with Hickmann in the test set and the model recognizes this one phrase

correctly, the scores will be 100%. It seems reasonable that CareCVC obtains a higher f-score

than the other categories since this is probably the most often used annotation label and therefore

one of the labels that the model have the most training in recognizing.

Further research should include compound handling. As mentioned in chapter 4.1.3, Huseth &

Røst, [52], applied the last word in cases of compound words.
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7.5.1 Conclusion

This thesis is a study NER for automatic annotation of Norwegian clinical notes mentioning

events related to CVC. CRF was applied to train models where different combinations of the

features word window, stem, synonymous and ICNP axis were used as input. The results indicate

that context and ICNP axis had a significant effect on classification performance. Stem had an

effect on recall, but not on precision. Recall, precision and F-score of the best feature set were

lower than for similar studies which may be due ambiguous annotation guidelines, errors in

the corpus and overlapping annotation labels. Improvements in annotation guidelines and less

overlapping annotation labels may improve performance in future studies. Future studies should

study the effect of including context of features, improve compound handling and applying less

overlapping categories. The categories applied in the present study may also be used as input

to a classifier that use broader classification categories such as ”‘CVC”’ and ”‘not CVC”’.
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