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Problem description
3D Ultrasound Reconstruction is used to generate 3-dimensional volumes
from a set of 2-dimensional ultrasound slices and the positions of these slices.
Used in an intra-operative setting, this can complement existing CT and
MRI images acquired pre-operatively, since the ultrasound images can be
obtained during surgery.

Earlier efforts have achieved fast GPU-based reconstruction using voxel-
based distance-weighted methods. However, they currently have issues with
complex probe movement patterns as well as poor reconstruction quality,
especially with regards to intersecting planes. The goal of this thesis is to
devise a GPU-based reconstruction algorithm which

1. handles complex probe movement patterns

2. generally gives higher-quality reconstructions

3. does not consume significantly more time reconstruction than existing
GPU-based distance-weighted methods.

The algorithm will be described and evaluated both in terms of reconstruc-
tion quality and reconstruction speed. Technical issues concerning the im-
plementation, such as GPU architecture and memory management will also
be addressed.
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Abstract
Ultrasound is a flexible medical imaging modality with many uses, one of
them being intra-operative imaging for use in navigation. In order to obtain
the highest possible spatial resolution and avoiding big, clunky 3D ultra-
sound probes, reconstruction of many 2D ultrasound images obtained by a
conventional 2D ultrasound probe with a tracking system attached has been
employed.

Earlier work in this field has yielded fast Graphical Processing Unit(GPU)-
based implementations of voxel-based reconstruction algorithms such as Voxel
Nearest Neighbor(VNN), Pixel Nearest Neighbor(PNN), VNN2 and Dis-
tance Weighted(DW) reconstruction. However, it is desirable to improve
upon the reconstruction quality of the methods mentioned above. To do
so, we propose in this thesis an adaptive algorithm called VGDW, which
tries to intelligently smooth away speckles and noise, yet retains detail in
high-frequency regions, while being not being much slower than the above
mentioned algorithms. It also has a tunable weight function enabling value
collisions to be handled gracefully.

Using our novel adaptive algorithm, we are able to produce very high-quality
reconstructions, which are unanimously preferred over the output of the
above mentioned algorithms by both a group of medical personnel and a
group of technologists working with ultrasound, while having comparable
computation time to VNN2 and DW, i.e. 16%, 10% and 5% difference from
DW when computing a volume with 128 millions of voxels from a small,
medium-sized and very large input data set using an AMD Radeon 6470M
GPU. The algorithm also performs especially well with complex scanning
patterns with overlapping data when using a customized weight function. As
for future work, there are some aspects of the weight function that can benefit
from improvement. Also, turning the problem upside down and looking at
it from a pixel-based perspective could potentially give huge benefits both
in terms of probe movement robustness and performance.
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Chapter 1

Introduction

The 3D Ultrasound Reconstruction for intra-operative applications problem
can be formulated as:

Given a set of images I that have been sampled from a real-world
volume V , as well as the positions of the images P and other
obtainable data (for instance timestamps for each image plane),
one wants to compute a 3D image of the volume V , V ′, that is
of as much use to a physician as possible, without spending too
much time doing it.

This definition is intentionally vague and has an important human compo-
nent: the physician. There are many ways to argue that some reconstruction
may be better than another, but in the end, if the physician is able to make a
correct decision based on one reconstruction, and a faulty decision based on
another, the first reconstruction is clearly best. Therefore, things like noise
suppression, contrast, and geometrical accuracy is important – we want to
present the physician with the information he needs in an as accessible as
possible fashion without distracting noise and artifacts. Also, we want the
information to be available as fast as possible, meaning that the time con-
sumption should be kept as low as possible. This rules out options that may
produce very high-quality results, but spend too much time computing.

This is the problem for which we propose an approach in this thesis. We will
leverage the computing power of modern GPU-s, as well as employ advanced
image filtering techniques to perform the reconstruction, while making trade-
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CHAPTER 1. INTRODUCTION

offs to ensure the computation time stays low. We will draw inspiration from
previous work in the field, most importantly from Huang et. al-s AGDW
algorithm[Huang et al., 2009].

We will see an adaptive reconstruction algorithm that adjusts its “smooth-
ness” depending on whether there is much detail in a region.

1.1 Goals

The goals of this thesis are to

• Examine the problem of reconstruction quality in distance-weighted
methods in 3D Ultrasound Reconstruction, especially in the context of
complex scanning patterns.

• Describe a new 3D Ultrasound Reconstruction algorithm addressing
reconstruction quality while keeping computation time in check.

• Implement the algorithm on a GPU.

• Evaluate implementation, primarily in terms of reconstruction quality
but also in terms of computational speed.

1.2 Contributions

The main contributions of this thesis are

• A novel, dynamic 3D Ultrasound Reconstruction weighting scheme
called Varying Gaussian Distance Weighing(VGDW) which tries to
find a trade-off between sharp detail and noise suppression, as well as
using weight functions to emphasize certain elements in the input data.

• A GPU implementation of this algorithm as well as other reconstruc-
tion algorithms, fully integrated into the existing system CustusX de-
veloped by SINTEF Medical Technology.

• Two novel evaluation techniques based on synthetic and simulated ul-
trasound acquisition.

2



1.3. THESIS OUTLINE

1.3 Thesis outline

The rest of this thesis is outlined as follows

Chapter 2: Background contains useful background theory such as lin-
ear algebra, local image statistics, weight functions, interpolation techniques,
and also investigates Ultrasonic Imaging and earlier efforts in 3D Ultrasound
Imaging, from which we draw inspiration. It gives a brief introduction to
GPU Computing and OpenCL.

Chapter 3: Method delves into the details of VGDW and its sub-
problems, including the problem of finding the closest image planes, and the
interpolation once the image planes are known. It also describes the methods
employed to evaluate the algorithm against other known algorithms.

Chapter 4: Results presents the results of our five image quality eval-
uation methods, where one is synthetic and four deal with real-world data.
It also presents the results of performance evaluation.

Chapter 5: Discussion interprets and discusses the findings from Chap-
ter 4, as well as some general thoughts on the subject of VGDW and 3D
Ultrasound Reconstruction in general.

Chapter 6: Conclusion draws conclusions from the discussion in Chap-
ter 5, and presents some avenues for future work in this direction.
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Chapter 2

Background

In this chapter we will review some background theory related to the work
of this thesis. First, we will give a brief overview of how ultrasound imaging
works, and some earlier work in the realm of 3D Ultrasound Reconstruction,
and we will say a few words about an important piece in the puzzle: the
tracking system. Further, we will see some basics concerning GPU comput-
ing, and we will review some of the relevant mathematical tools. Finally,
we will briefly discuss the system CustusX, the framework within which the
work of this thesis was done.
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CHAPTER 2. BACKGROUND

2.1 Ultrasound imaging

The ultrasonic imaging modality is a powerful imaging technique that en-
ables a physician to visualize tissues inside a patient in real time. A typical
ultrasonic imaging system is composed of a probe and a screen, as well
as a control panel to adjust the image acquisition parameters. There are
two basic things that one can visualize using ultrasonic imaging: tissue (B-
mode)[Havlice and Taenzer, 1979] and flow (Doppler)[Strandness Jr. et al.,
1967]. I will now very briefly present the very basic principle of ultrasonic
imaging.

2.1.1 How does ultrasound work

Ultrasound consists of sound waves at a high frequency (typically 2-18 MHz
for imaging). As we know, sound waves are longitudinal waves, i.e. they
traverse the medium in the same direction as the motion of the waves. The
speed of travel of sound waves (and thus also ultrasonic waves) are dependent
on the medium in which it travels. When the sound wave is traveling in a
medium 1 and meets a medium 2, which has a different speed of sound from
medium 1, parts of the sound wave will be reflected off the interface between
the two media. This “echo” is what is exploited in ultrasonic imaging. In
1D US imaging (A-mode), a transducer transmit an ultrasonic pulse, and
then switches over to listening for echoes. When an echo comes back, A-mode
ultrasound displays an intensity relative to the intensity received back, using
the time difference from the pulse was transmitted until the echo was received
to estimate the depth of the interface. This is illustrated in Figure 2.1.

This can be extended to 2D by using several transducer elements arranged in
some form of array (linear array, phased array). 2D ultrasound tissue imag-
ing is usually called B-mode imaging, where the “B” stands for “Brightness”.
In other words, the intensity of the echoes are translated into the brightness
on the image. An example of a B-scan can be seen in Figure 2.2.

2.1.2 Speckle

B-mode images usually have a grainy appearance. This is caused by a
phenomenon called “speckle”, which is a form of multiplicative, locally-
correlated noise, as seen in Figure 2.3. There have been many approaches to

6



2.1. ULTRASOUND IMAGING

Figure 2.1: An illustration of Ultrasonic imaging. Illustration originally by
G. Wiora[Wiora, 2005].

Figure 2.2: A B-scan of the phantom “Kaisa”
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CHAPTER 2. BACKGROUND

Figure 2.3: Enlarged speckle region from Figure 2.2

reduce speckle in ultrasound images, including adaptive median filters[Loupas
et al., 1989], and variations on anisotropic diffusion [Yu and Acton, 2002],
which show good results in reducing speckle in ultrasound images.

2.1.3 3D ultrasound

In the recent years, 3D ultrasound has become a viable imaging modality.
At the moment, there are two principal methods for obtaining 3D ultrasound
Images – using 3D ultrasound probes, or using a 2D probe in conjunction
with a tracking system and reconstruct a 3D volume, often called Freehand
3D ultrasound. Different kinds of dedicated 3D ultrasound probes exist and
have been discussed by Fenster et.al.[Fenster et al., 2001]. One variant is a
mechanical probe which consists of an 1D or a 2D probe and a motor to sweep
it over the volume. This has the disadvantage of being quite bulky and/or
inflexible, and thus unusable in many clinical settings. Another variant, often
called 4D ultrasound, has a 2D array of transducer elements, can obtain real-
time images at the cost of some spatial resolution, which is undesirable in
many clinical settings. These probes are also quite expensive.

That leaves us with Freehand 3D Ultrasound, where one uses a 2D ultrasound
probe and a tracking system to obtain the image data(see Figure 2.4, and
then reconstruct it into a regular 3D voxel grid. This has the advantage of
being relatively inexpensive and flexible, and allows leveraging existing high-
resolution 2D ultrasound probes. We will now investigate some principles
and previous approaches to Freehand 3D Ultrasound Reconstruction. O.

8
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Reference frame

Tracked ultrasound probe

Ultrasound slices

Tracking system

Computer running reconstruction software

Figure 2.4: Illustration of a Freehand 3D Ultrasound system

Solberg did a summary of the research in this field[Solberg et al., 2007], as
did D. Miller et. al[Miller et al., 2012] and we will reiterate some of the
algorithms here, as well as some more.

Pixel Nearest Neighbor (PNN)

Pixel Nearest Neighbor is a simple reconstruction algorithm, and works by
iterating over each image plane, and transforming it into the voxel space.
In essence, it asks the question “I have this data, where should it go?”. In
concrete words, for each pixel on the image plane, the nearest voxel in the
voxel grid is found, and the pixel value is put into that voxel. If the voxel
already has a value, different approaches are possible: Taking the average,
taking the maximum, taking the most recent value, or taking the first value.
Usually this is followed by a Hole Filling Step, where the voxels that have
no value get a value from the neighboring voxels.

Voxel Nearest Neighbor (VNN)

VNN is another simple algorithm, which asks the opposite question of PNN:
“Where should this voxel get its data from?”. Concretely, it iterates over
the output volume voxels and for each voxel, it finds the image plane that
is closest to that voxel, and then the pixel on that plane that is closest to
the voxel. Usually, there is a maximum distance D involved, where if there
is no image plane closer to the voxel than D, the voxel gets no value.

9
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VNN2

VNN2 is a slightly more complex variant of VNN, where instead of sim-
ply taking the closest pixel, all the image planes that are closer than D is
obtained, and a distance-weighted average of the closest pixel from each of
these planes is computed.

Distance Weighted Reconstruction (DW)

There appears to be some confusion about what DW really is: The original
article by Barry et. al.[Barry et al., 1997] suggests that every pixel inside the
sphere with radius D is included and a distance-weighed sum is computed.
Other authors, such as Coupé et. al[Coupé et al., 2005] and D. Miller et.
al. [Miller et al., 2012] take it to mean almost the same as VNN2, with the
exception that instead of taking the closest pixel on each image plane, one
performs bi-linear interpolation on each image plane. In this thesis, we will
generally refer to the variant described by Coupé et. al. and D. Miller et.
al, unless otherwise is stated.

Probe Trajectory (PT)

Coupé et.al.[Coupé et al., 2005] proposes an alternative to the orthogonal
projection used by VNN2 and DW, as it uses cubic interpolation on the
timing data to estimate the trajectory of the probe, and thus getting a more
“correct” position on the image plane. This method has shown very good
results in terms of reconstruction quality, and a fast GPU implementation
already exists [Ludvigsen, 2010].

Weighted Median Reconstruction

Weighted Median Reconstruction is a more sophisticated reconstruction tech-
nique, where a distance-weighted median value of the nearby pixels are com-
puted. This was proposed by Huang et.al[Huang and Zheng, 2008], and is
good at suppressing speckles, but is a rather slow reconstruction technique.
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Adaptive Distance-Weighted Gaussian Reconstruction

Huang et.al has also proposed an Adaptive Distance-Weighed Gaussian Re-
construction [Huang et al., 2009], which is based on recursively computing
some local statistics (mean and variance) on progressively smaller neigh-
borhoods. If the variance to mean ratio becomes very small, the voxel is
considered to be located in a homogeneous region, and a trimmed mean fil-
ter is applied. If the variance to mean ratio never becomes small, the voxel
is considered to be located in an inhomogeneous region, and a Gaussian con-
volution kernel is applied. The paper does not state the computational time
required, but our instinct is that it is quite computationally demanding.

All these earlier approaches have a critical part in common; the tracking
system, which we will now briefly investigate.

2.2 Tracking systems

A tracking, or a positioning system is some system that keeps track of the
position and orientation of some objects. In the context of Freehand 3D
Ultrasound Imaging, the position of the probe is what’s of interest. Of
course, if navigation is also required, one needs to also keep track of the
position of the patient, as well as some tool.

There are many types of tracking systems (see [Cinquin et al., 1995] for an
overview), but in this thesis we will treat the tracking system as some opaque
system that provides us with the transformation from some known reference
to the position of some tool. More precisely, the affine transformation matrix
that takes us from from World space to Image space, WMI such that
WP = WMI

IP, where WP is some point P in World space, and IP is
the same point in Image space.

Naturally, tracking systems are not perfect, and may introduce noise. The
tracking system used in this thesis, NDI Polaris Spectra, has a RMS error of
0.25 millimeters[NDI, 2014]. This noise has not been further modelled in this
thesis, we assume that the tracking system produces adequate positioning
for our purposes.

We have now seen how to obtain the necessary data to perform 3D Ultra-
sound Reconstruction. We now investigate a platform upon which we can
compute the reconstruction – the GPU.
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2.3 GPU computing

Most modern personal computers are equipped with at least one GPU (Graph-
ics Processing Unit). A GPU is a specialized hardware unit that historically
has been dedicated to rendering 2D and 3D graphics. Over the last years,
GPUs have become increasingly powerful. While that is to expect, they have
had a much steeper performance improvement than CPU-s[nVidia, 2009].

In order to leverage this computational power for other purposes than com-
puter graphics, the concept of General Purpose GPU-computing (GPGPU)
has arrived, along with a set of standards and programming API-s.

The most notable standards are OpenCL[Khronos OpenCL Working Group,
2012], CUDA[nVidia, 2013] and the recent OpenAAC[OpenAAC, 2013] stan-
dard. Out of these, OpenCL is the most widely adopted – CUDA is devel-
oped by nVidia for nVidia hardware only, and OpenAAC is a fairly recent
standard yet to be adopted by most. OpenCL on the other hand is supported
by GPUs from Intel, nVidia, AMD, ARM, Imagination and Qualcomm to
mention some, and is supported on Microsoft Windows, Apple Mac OS X
and Linux, of course provided appropriate drivers are installed. This the-
sis will therefore restrict itself to utilizing the OpenCL standard for GPU
computing.

2.3.1 OpenCL

OpenCL is a standard for parallel computing backed by The Khronos Group.
It describes an execution model where there is two sides to an application:
the host side, and the device side. A typical application has some native
code running on the CPU, which is considered to be on the host side. This
code may call functions inside the host-side runtime libary, which includes
a compiler for the OpenCL C Language, as well as functions to set up data
transfers to and from the GPU memory, and, of course, execute the compiled
OpenCL C code on the GPU. The function that is to be executed on the
GPU is called a kernel. A kernel is a function written in the OpenCL C code
that is exposed to the host-side via the host-side runtime library. It should
be noted that the OpenCL standard is not restricted to GPUs – multiple
types of accelerators are supported. DSPs, CPUs and even FPGAs may be
targeted by OpenCL. For our application, GPUs is what we will focus on.
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Host-side runtime library

The host-side runtime library exposes functions to perform the following
tasks:

• Enumerate available OpenCL devices, and query them for properties

• Compile OpenCL C code into binary code executable by the chosen
OpenCL device, i.e. compile the kernel

• Transfer data from and to the GPU

• Enqueue calls to kernels

• Synchronization

• Coordination with OpenGL

The host-side runtime library maintains a Command Queue, to which one
can enqueue GPU operations. One can enqueue data transfers and kernel
executions. The queue can be un-ordered, if supported by the implementa-
tion, in which case one has to specify dependencies between the operations
– but that is not of relevance in this thesis.

For a typical application, the use of the host-side runtime library is restricted
to finding a suitable OpenCL device, compiling the OpenCL C kernel for that
device, setting up the data transfers for the inputs to the kernel, enqueuing
the kernel and a data transfer to read the data back, and then waiting for
the data transfer to be finished.

Device-side programming language

The OpenCL C Language is a language very similar to C99, with a few
exceptions:

• The kernel keyword, marking a function as an entry point (i.e. it
can be called by the host-side application)

• The memory space qualifiers, global, constant, local and
private designating which memory space a variable or array should

be stored in (see Section 2.3.2)

• Vector data types, such as float4, float16, allowing vector operations
to be written explicitly in the code.

13
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Local work size

Global work size

Single work item with global id 5, local id 1

Figure 2.5: An illustration of work sizes: Global work size is 8 and local
work size is 4.

• A set of library functions for vector operations on the vector data types,
various mathematical functions, and data transfers between the mem-
ory spaces, synchronization and very importantly getting the work-
item ID (see Section 2.3.1).

Execution model

The purpose of OpenCL is to allow exploitation of parallelism. When the
execution of a kernel is enqueued, two important parameters dictate the
parallelism of the execution: the global work size and the local work size.
The global work size is the size of the work altogether – in other words, how
many threads will be executed. The local work size describes how many
of these threads will be grouped together into a work group. The threads
in a work group can be synchronized with each other, access the same local
memory and enforce consistency on that local memory. Naturally, the global
work size has to be a multiple of the local work size. Each thread is assigned
two ID-s: its global ID and its local ID. The global ID refers to the thread
ID respective to the global work size, and the local ID refers to the thread
ID respective to the work group. This is illustrated in Figure 2.5.

2.3.2 Memory model

OpenCL distinguishes between 4 different memories: the global memory, the
constant memory, the local memory and the private memory. A concep-
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Figure 2.6: A conceptual illustration of a device in the OpenCL abstraction.

tual drawing is shown in Figure 2.6, and we will now describe the different
memories.

Global memory The global memory is readable and writable by all threads,
and it’s large. As usual with memory hierarchies, the largest memory is also
the slowest one in most implementations1. The global memory is also where
the input data to the kernel is stored, and where the output data is read
from (the host-side library cannot access any other memory space). An im-
portant thing to notice is that it is not possible to synchronize accesses to
global memory, at least not from inside the kernel. As of OpenCL 1.2, im-
ages are also available. This allows a programmer to use features such as
bi-linear interpolation in hardware, as well as exploiting any texture caches
available on the GPU.

Constant memory The constant memory is a small, fast read-only mem-
ory suitable for storing parameters and small structures that remain constant
during execution.

1Some GPU’s do not have different memories in hardware, so local memory is imple-
mented using the same memory as global memory
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Local memory The local memory is readable and writable by all threads
in the same work group. In other words, there is a fixed amount of local
memory available for each work group. This memory is very fast, and should
be used whenever possible. It is also quite small, which results in the need
to prioritize what to use it for. Within a local work group, it is possible to
enforce memory consistency with the local memory, as barriers and memory
fences are available for local work groups.

Private memory Finally, the private memory is a very small memory
that is local to each thread. This corresponds to the register space in each
GPU processing core. This memory is typically very small, and its size is
not transparent to the programmer. Most commonly this causes register
spilling, which means that the data has to be written out to memory and
accessed from there. Typically registers spill to global memory, so there is
a severe performance penalty associated with having large data structures
in private memory as opposed to having them in local memory. On many
implementations it is also limited in terms of addressing flexibility. Using
arrays in the private memory space may therefore lead to the array being
spilled to global memory to accommodate indirect addressing.

2.3.3 3D Ultrasound Reconstruction using OpenCL

H. Ludvigsen et.al.[Ludvigsen, 2010] has shown successful implementation of
PNN, VNN, DW and PT, with quite impressive results in terms of speedup
compared to standard CPU implementations. T.K. Valderhaug et.al [Valder-
haug, 2010] improved upon Ludvigsens work and achieved even better per-
formance by leveraging OpenCL 1.2-s image samplers and some general op-
timizations.

2.4 Basic linear algebra and geometry

Since we will be dealing with points, lines and planes in a 3D setting, we
have to establish some basic knowledge of geometry and linear algebra[Hearn,
2011]. Since the required knowledge is very similar to that in my specializa-
tion project[Øygard, 2013], much of this section is repeated from that.
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Figure 2.7: A right handed coordinate system

2.4.1 Coordinate frames

A coordinate frame is a frame of reference in which one can specify points.
As we will see Section 2.8.1, we may have more than one frame of reference
and thus we need to provide ways to move between them. A (Cartesian)
coordinate frame is uniquely determined relative to a world reference system
by two things: the position of the origin and the orientation of the axes. For
3D Cartesian coordinate frames, there exists many different representations,
but the most commonly used is to describe them using three unit vectors, all
of them perpendicular to each other, one per axis, pointing in the direction
of that axis. This still leaves ambiguity - if the X axis points to the right,
and the Y axis points up, where does the Z axis point? In or out? We
adopt the convention of right handed coordinates, so named because if you
use your right hand thumb and index finger to point along the X and Y axes
respectively, the the Z axis points along the middle finger (see Figure 2.7).

2.4.2 Homogeneous coordinates and transformation ma-
trices

Homogeneous coordinates in 3D are coordinates that have an extra compo-
nent used for scaling. However, for all the transformations we will consider
here, the extra component will remain the constant 1. So, to represent the
point P = (Px, Py, Pz) in homogeneous coordinates, we write

P = [Px, Py, Pz, 1]T
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The main advantage of using homogeneous coordinates is the fact that one
can then represent affine transformations (such as translation and rotation)
as a single 4x4 matrix. As mentioned earlier, a coordinate frame is uniquely
determined relative to a world reference system by exactly the position of
the origin (translation), and the orientation of the axes(rotation). Thus,
we can use a homogeneous transformation matrix to transform points from
one coordinate system to another. These transformations are written on the
form

jP = jMi
iP

where jP is the point P in the coordinate system j, and iP is the same
point P in the coordinate system i, jMi is a the transformation matrix
transforming from coordinate system i to j, on the form

jMi =


rx1 rx2 rx3 tx
ry1 ry2 ry3 ty
rz1 rz2 rz3 tz
0 0 0 1

 (2.1)

where the rkj-s are the unit vectors pointing in the direction of the x, y
and z axes in coordinate system j as seen from coordinate system i , and
the tk-s are the translation offsets from the origin of coordinate system i to
coordinates system j as seen from coordinate system i.

2.4.3 The plane equation

We will also be dealing with planes in 3 dimensions, since the tracking system
gives us the position of the image planes. To represent the image planes we
will use the plane equation, which is given as

ax+ by + cz + d = 0 (2.2)

such that for every point P = [x y z]T that is on the plane, the equation
holds. Thus, a plane is determined by the four coefficients a, b, c and d. Now,
given that one has a transformation matrix iMj that transforms from some
coordinate system j to i, and we want to find the coefficients a, b, c and d such
that the plane equation represents the XY plane of the coordinate system j
in coordinate system i, we interpret the plane equation as follows: a, b and
c represents an unit vector that is normal to the plane, and d represents
the distance along that vector which the plane is translated from the origin.
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Then, we can determine theXY plane by using the unit vector corresponding
to the Z axis as a, b and c:

a = rx3 (2.3)
b = ry3 (2.4)
c = rz3 (2.5)

Lastly, we need to determine d, which is given as:
d = −aTx − bTy − cTz (2.6)

This method produces a normalized plane method (i.e.
√
a2 + b2 + c2 = 1,

which is a requirement for the coefficients we selected in the rotation matrix),
and is the only method used in this project. We will therefore from here on
assume that plane equations are normalized.

2.4.4 Finding the distance between a point and a plane

If one has computed a plane equation as described in the previous section,
finding the distance between a point and a plane is trivial. Recalling that
the plane equation can be viewed as a vector ~n = [a, b, c]T and a distance
traveled along that vector d, if we take some point x = [x, y, z]T and insert
in into the plane equation, what we are computing is “How much too far
has this point traveled along the normal vector to be on the plane?”. This
is illustrated in Figure 2.8, and can be expressed as

dist(x,P) = ~n • x + d (2.7)
where x the point, P is the plane with plane equation coefficients a, b, c, d,
and ~n = [a, b, c]T .

Further, if one represents the plane equation as a vector P = [a, b, c, d]T ,
and the point x with homogeneous coordinates x = [x, y, z, 1]T we observe
that Equation 2.7 becomes

dist(x,P) = x •P = x · a+ y · b+ z · c+ 1 · d (2.8)

Finally, one important thing to notice about the function dist(x,P) is that it
is signed – if the point x lies on the side of the plane that the vector ~n points
away from, meaning that the point would have to travel further along the
vector, the distance will be negative. Conversely, if the point has “traveled
too far” along the normal vector in to be on the plane, the distance will be
positive.
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~n

P

P ′

D · ~n

Figure 2.8: Illustration of the distance of a point P to a plane. The point P ′
is the point P projected orthogonally onto the plane. As we see, the point
P is translated by D along the normal unit vector ~n.

2.4.5 Orthogonal projection onto a plane

When dealing with 3D, it happens that one has to make 3D points correspond
to some points on a 2D surface. For instance, in computer graphics one needs
to display the 3D scenes to a 2D screen. This process is called “projection”.
There are many conceivable ways to do this, but the two most common are
the perspective projection, and the orthogonal projection. The perspective
projection is useful for realistic visualization, and we will not go into it
here. The orthogonal projection is so named because each projected point is
projected along a line that is orthogonal to the plane it is projected to. Thus,
the orthogonal projection of a point x onto a plane P can be computed as

xP = projectOrthogonallyOnto(x,P) = x− dist(x,P) · ~n (2.9)

where xP is the projected point, dist(x,P) is the distance between the point
and the plane (as computed using Equation 2.8), and ~n is the unit vector
normal to the plane.

Finally, we observe that for a plane represented by Equation 2.2, assum-
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ing that the coefficients are normalized, the vector ~n = [a, b, c]T is a unit
vector orthogonal to the plane, meaning that we do not need any further
information than the plane equation to project points onto a plane.

2.5 Image statistics

Some local statistics are useful when performing operations on images. But
as important as the statistics one computes, is what input data one uses to
compute the statistics. For example, one may compute the variance over the
pixels in a 3x3 region on a 2D image. The resulting value tells us something
about how different the pixels in that region is – if the variance is big, it
may indicate a noisy region, or that there is an edge in the picture.

One may also compute the variance over all pixels from image planes that
are closer to a specific point than some radius. If that variance is high, it
may indicate that some of the image planes have shadows in them, or that
the data is noisy, or even that this is a region in which there is detail, giving
a hint that this region should not be smoothed too much. With that said,
we will formally describe some concepts. Note that we will restrict ourselves
to the discrete variants - the continuous statistics are not of interest in this
thesis.

Arithmetic mean

The arithmetic mean µ of a set of N values x = (x0, x1, · · ·xN−1) is com-
puted as

µ = E(x) = 1
N

N−1∑
i=0

xi (2.10)

Weighted average

The weighted average µ∗ of a set of N values x = (x0, x1, · · ·xN−1) with N
weights w = (w0, w1, · · ·wN−1) is computed as

µ∗ = 1∑N−1
i=0 wi

N−1∑
i=0

wixi (2.11)
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The weighted average is the premise for algorithms such as VNN2 and DW,
a weighted average of pixels from nearby planes are computed, with a weight
function increasing in distance. We will discuss weight functions closer in
Section 2.6.

Trimmed mean

The trimmed mean µ′ of a set of N values x = (x0, x1, · · ·xN−1) with some
cutoff value K is computed by making a new set of N ′ values

x′ = {x | x ∈ x ∧ |x− E(x)| < K}

and then computing µ′ = E(x′). The trimmed mean is useful for computing
a mean that isn’t too sensitive to outliers, as these will be ignored. A good
value for K is K =

√
σ2 = σ.

Variance

The variance σ2 of a set of N values x = (x0, x1, · · ·xN−1) is computed as

σ2 = V ar(x) = 1
N − 1

N−1∑
i=0

(µ− xi)2 (2.12)

2.6 Weight functions

When computing a weighted average, the result is very much dependent on
what weights are being used. Weight functions allow a way to give higher
priority to elements that has some desired property. In the context of 3D
Ultrasound Reconstruction, the most commonly used property is being close
in distance, but even those functions may be different. We will now present
some distance functions suitable for use with algorithms similar to DW.

Inverse distance functions

For purely distance-weighted methods, functions on the form

wx = 1/dist(x)
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Figure 2.9: Inverse distance functions

where wx is the weight of pixel value x, and dist(x) is the distance from the
pixel x on its image plane to the target voxel, are proposed by [Barry et al.,
1997]. One may even consider introducing a parameter P , such that

Pwx = 1/dist(x)P (2.13)

As we may see in Figure 2.9, the weight function becomes steeper with
increasing P, meaning that with for any two distances d1 and d2, with d1 <
d2, if we use the different P-s p1 and p2 with p1 < p2, we have

p1w1
p1w2

<
p2w1
p2w2

,
meaning that p1w gives a relatively higher weight to the closer value. One
practical consideration when dealing with inverse distance functions is that
the weight values become very high when approaching dist(x) = 0. This
may cause inaccuracies in floating point calculations in a computer, and also
makes it harder to extend the weight function to account for other properties
than distance.

Linear distance functions

Another weight function one can consider is a simple linear distance function,
on the form

R,Pwx = RP − dist(x)P (2.14)
where R is the radius – i.e. the maximum distance for which any value will be
considered. As we may see in Figure 2.10, the linear functions are not nearly
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Figure 2.10: Linear distance functions

as steep as the inverse functions, and an increased smoothing effect is to be
expected. However, the linear distance functions do not suffer from having
very high values in any condition, and are thus very suitable for computer
evaluation.

Gaussian distance functions

Yet another very interesting weight function is a Gaussian distance function,
which is a function on the form

σwx = 1
σ
√

2π
e−

dist(x)2

2σ2 (2.15)

where σ determines the steepness.

We notice in Figure 2.11 that with small σ, these functions can become very
steep, while not becoming large enough to cause a problem for floating point
systems, or “overshadow” additional terms in the weight function.

2.7 Simple interpolation techniques

What do we do if a voxel in our volume cannot be mapped exactly to a pixel
in the input images? This is a problem we can solve using interpolation
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Figure 2.11: Gaussian distance functions

techniques. Interpolation is a set of techniques that solves an interpolation
problem. An interpolation problem may be defined as follows:

Given a function f(x) that is only defined at some set of points
Pf , we want to estimate the function F (x) which is defined over
some interval I with Pf ⊂ I, and furthermore for any x′ ∈ Pf ,
f(x′) = F (x′).

There are many approaches to this, some more complicated than others, but
for this thesis we will present two options: Nearest-neighbor interpolation
and (bi)linear interpolation.

Nearest-neighbor interpolation

Nearest neighbor interpolation can be defined as follows:

Fnearest(x) = nearestNeighborInterpolation(x, f)
= f(argminx′(|x− x′|))

(2.16)

Informally, this means simply returning closest defined value.

(Bi)linear interpolation

Linear interpolation is an interpolation scheme where one observes that the
point x lies between some set of points X ⊂ Pf , and then blend the sur-
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rounding points according to their distance to the point we are interpolating
for. Formally, in one dimension:

Flinear(x) = linearInterpolation(x, f) =
x− xi

xi+1 − xi
f(xi) + xi+1 − x

xi+1 − xi
f(xi+1)

(2.17)

where xi, xi+1 are the two points on opposite sides of x, and xi, xi+1 ∈ Pf .

Extending this to 2D, it becomes

Fbi−linear(x, y) = bilinearInterpolation(x, y, f) =
x− xi

xi+1 − xi
y − yi

yi+1 − yi
f(xi, yi)

+ xi+1 − x
xi+1 − xi

y − yi
yi+1 − yi

f(xi+1, yi)

+ x− xi
xi+1 − xi

yi+1 − y
yi+1 − yi

f(xi, yi+1)

+ xi+1 − x
xi+1 − xi

yi+1 − y
yi+1 − yi

f(xi+1, yi+1)

(2.18)

where (xi, yi), (xi, yi+1), (xi+1, yi) and (xi+1, yi+1) are the four points sur-
rounding (x, y), and (xi, yi), (xi, yi+1), (xi+1, yi), (xi+1, yi+1) ∈ Pf .

2.8 CustusX

CustusX is an image processing and navigation software system developed
by SINTEF Medical Technology, Health Research, Trondheim, Norway. It
is aimed at physicians for use in both pre-operational planning, and intra-
operational imaging and navigation. To that end, it features visualization of
medical images (MRI, CT and ultrasound), acquisition of ultrasound data,
and spatial tracking of objects, most importantly for this thesis tracking of
ultrasound probes.

Most importantly for this thesis, it has routines for acquisition of ultra-
sound data, tracking data and time stamps together, as well as calibration
of the tracking system. Time skews between the data from the different data
sources are accounted for – the position data are interpolated such that they
match exactly with the ultrasound images.
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World
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Volume

Figure 2.12: CustusX coordinate frames. The pixel space is shown as grid
lines on the image.

This project uses CustusX as a framework in which the 3D Ultrasound Re-
construction algorithms are implemented. CustusX provides an easy-to-use
interface for writing 3D Ultrasound Reconstruction algorithms and is thus
very suitable for this thesis.

2.8.1 Coordinate frames

Since CustusX features both tracking and imaging, we have to introduce
the coordinate systems that are of relevance for this project. In all essence,
there are three coordinate frames that are of interest: the world coordinate
system, the Volume coordinate system, and the Image coordinate system,
visualized in Figure 2.12.

The World coordinate frame is based on the fact that the tracking
system uses a reference frame which is physically attached to the patient. All
the other coordinate systems are defined relative to this coordinate system.
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The Volume coordinate frame is provided by CustusX, and oriented
such that the volume extends from (0,0,0) to (Sx, Sy, Sz). The reconstruc-
tion algorithms work within this coordinate frame.

The Image coordinate frame is also provided by the tracking system.
By Image space, we mean the space of each ultrasound image, meaning
there are as many Image spaces as there are images. The ultrasound probe
has a tracker attached to it which enables the tracking system to provide
the transformation from the Image coordinate system to the World coordi-
nate system, WMI . CustusX pre-processes these transformations prior to
reconstruction, and provides the transformation from the Image coordinate
system to the Volume coordinate system, V MI , to the reconstruction algo-
rithm. The image space is oriented such that the origin is at the lower left
of the image, and the axes are oriented as follows:

• The X axis points towards the right of the image

• The Y axis points downwards (away from the probe)

• The Z axis points out of the image

To transform from Image space to Pixel space we need to know the
size of the pixels from the scanner. The scanner provides us with this data,
Sx and Sy. So, for a point IP in Image space, in order to transform it to
the same point PP in pixel space, we take the X and Y (the Z coordinate
is zero for any point in the image space that is actually part of the image)
coordinates and scale them such that PPx =I Px/Sx, and PPy =I Py/Sy.

We have now seen the background knowledge required to understand the
problem of 3D Ultrasound Reconstruction well enough to embark on the
task of designing a new algorithm, which we will do in the next chapter.
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Chapter 3

Method

This chapter describes the work that has been done for this thesis, and is
divided into two sections: The first section describes the VGDW algorithm
and its sub-algorithms, and the second section describes the evaluation tech-
niques employed for this thesis.

29



CHAPTER 3. METHOD

3.1 3D Reconstruction algorithm

We will now present the VGDW algorithm. We will first see an overview of
the algorithm, in which we will describe the sub-problems it consists of, and
we will then inspect how the algorithm solves those sub-problems.

3.1.1 Overview

The algorithm is voxel-based according to the classification made by [Solberg
et al., 2007], meaning that it asks the question “What data should go in this
voxel?” for every voxel in the target volume. The first problem one needs to
solve to answer that question is “What input data do I have that is relevant
to that voxel?” – or more formally: Find the set of Image Planes RIv such
that

RIv = {I | I ∈ IMAGES ∧ dist(I, v) < R} (3.1)

where R is the maximum allowed distance, v is the target voxel, IMAGES
is the set of all image planes, and dist(I, v) denotes the distance between the
voxel v and the image plane I as described in Section 2.4.4.

Once the set RIv is known, one needs to find the set of pixel values RPIXELSv
relevant to the voxel. Different approaches are possible here. One approach
as described by [Barry et al., 1997] is to take all pixel values closer than the
radius R, giving:

RPIXELSv =
{PIXEL | PIXEL ∈ I ∧ I ∈ RIv ∧ dist(PIXEL, v) < R}

(3.2)

where RPIXELSv is the set of pixels relevant to the voxel v, I represent
a single image plane, RIv is the set of relevant image planes as described
above, R is the radius as above, and dist(PIXEL, v) denotes the distance
between the pixel PIXEL and the voxel v. This is illustrated in Figure 3.1a.
A problem with this approach is that |RPIXELSv| becomes quite large,
eating at both memory and computational resources.

Thankfully, a trade-off exists. [Coupé et al., 2005] and [Miller et al., 2012],
among others, assumes that the 2D images are quite nicely defined already,
so no little to no interpolation is required in the directions perpendicular to
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3.1. 3D RECONSTRUCTION ALGORITHM

(a) Include all pixels inside radius. (b) Include one pixel per image plane
inside radius.

Figure 3.1: Illustration of pixel inclusion strategies

the plane. Under that assumption, it makes sense to only include one value
from each image. There are different approaches to determining which value
to take. The simplest approach is to simply take the closest pixel – this
is what is done in the VNN2 algorithm summarized by Miller et.al. This
approach is illustrated in Figure 3.1b. Another approach is to project the
voxel orthogonally onto the image plane and perform bi-linear interpolation
to determine the value – this is what is done in the variant of DW summa-
rized by Miller et.al. Finally, Coupé et al. proposes a method called Probe
Trajectory – where one attempts to estimate the position of the probe at the
voxel, and perform bi-linear interpolation from there.

Out of these three method, the DW variant summarized by Miller et.al. was
chosen due to the low complexity while still giving good results. A future
project may investigate the use of probe trajectory estimation in the context
of this algorithm. Remembering that we are discussing how to find the set
RPIXELSv, we can define this variant formally as

RPIXELSv = {x′ | x′ = bilinearInterpolation(IPv, I)} (3.3)

where
IPv = IMV projectOrthogonallyOnto(v, I)

and
I ∈ RIv
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where bilinearInterpolation(IPv, I) is the value returned from bi-linear in-
terpolation(Equation 2.18), IMV is the transformation matrix transform-
ing from voxel space to image space as discussed in Section 2.8.1, and
projectOrthogonallyOnto(v, I) is the orthogonal projection of v onto the
image plane I as described in Equation 2.9 (this implies that IPv.z = 0).
This results in a small |RPIXELSv|, in fact |RPIXELSv| = |RIv|.

The final step of the algorithm is to compute some voxel value based on
RPIXELSv. A very common approach to this is to compute some weighted
average (see Section 2.5), using some weight function (see Section 2.6)

We have now seen an overview of the sub-problems, as well as hinted at some
possible solutions to them. We will now proceed to describe in detail how
the sub-problems are solved by the algorithm.

3.1.2 Finding the closest image planes: Restricted multi-
start local search

Determining the set RPIXELSv accurately depends very strongly on deter-
mining the set RIv accurately. Determining the set RIv may seem a simple
problem – one can simply perform a linear search to find the set of planes
that have a distance to the voxel v smaller than R. This approach has two
problems: Firstly, it has no upper limit on how many image planes are in-
cluded, potentially leading to a very large set of image planes, which is a
problem with regards to memory consumption. Secondly, it is very slow.
In a data set with 1000 image planes, surely not all 1000 image planes are
relevant to a given voxel, but in this approach they would still have to be
evaluated.

[Ludvigsen, 2010] used a scheme in which one keeps track of which plane was
the closest for the previous voxel computed, and searches for close planes that
are close to the previous plane in the plane array. The problem with this is
that it will stay inside a local minimum – this fails if multiple sweeps has
been performed.

[Wein et al., 2006] proposes a sophisticated scheme where one traverses the
volume in a way such that the any voxel vi+1 is at most some distance Dmax

away from the previous voxel, vi, and keeps track of the planes that may be
relevant for that voxel using a rotation queue. This scheme can be proved to
always find the set of slices with the shortest distance, but it is quite costly
in terms of computation time and memory usage.
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Figure 3.2: Distance function for actual data acquired by a single sweep. A
voxel in the middle of the volume was selected as v

Assuming the image planes are given in the same order as they are acquired,
a set of image planes acquired by a single, simple sweep can be expected to
yield a distance function that looks something like Figure 3.2.

We observe from Figure 3.2 that the data is relatively nicely structured form-
ing a ’V’ with a clearly defined minimum. From this it is easy to deduce that
once one has found the minimum for some voxel v, some voxel v′ neighboring
voxel v is going to have its minimum located close by due to the nature of
the distance function, as suggested by [Ludvigsen, 2010]. This holds true
for any set of image planes which has been acquired by only a simple image
sweep. However, if the image planes has been acquired by a more complex
sweeping pattern, the data may look more like it does in Figure 3.3. In that
case, the voxel v was passed more than one time, leading to multiple minima
being available for the voxel. The above mentioned method will not be able
to find more than one minima.

Again we make a trade-off to gain performance, and propose using the
method used by Ludvigsen et.al, but keeping multiple guesses – and thus
not limiting ourselves to one local minimum. We draw some inspiration
from Wein et.al as keeping locality between the voxels being traversed is a
good idea.

We will now proceed to describe the employed algorithm, which is in three
parts. We divide the volume into cubes, and for each cube we find a set
of initial guesses. The cubes are the units of parallelization for the GPU
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Figure 3.3: Distance function for actual data acquired by U-turn scanning.
A voxel in the middle of the volume was selected as v

implementation, meaning that this scheme will be applied for all cubes in
the volume.

Algorithm 1 is designed to find a suitable set of initial guesses for the initial
voxel in the given cube. Algorithm 2 is designed to find the closest set of
planes close to the given guess, and finally Algorithm 3 applies Algorithm 2
to each of the guesses found by Algorithm 1, and updates the guesses.
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Algorithm 1 Finding the initial guesses for the multi-start local search
findStartGuesses(v, IMAGES, Dmax):
Input: v The initial voxel

IMAGES The set of image planes
Dmax The threshold for declaring a local minimum
Gmax The maximum number of guesses

Output: GUESSES A set of guesses for multi-start local search
1: procedure findStartGuesses(v, IMAGES, Dmax)
2: GUESSES[0]← 0
3: hasHighSinceLastTaken← true
4: iprev ← 0
5: N ← 1
6: for i ∈ [0, |IMAGES| − 1] do
7: Di ← |dist(v, IMAGES[i])|
8: if Di < Dmax then
9: if ¬hasHighSinceLastTaken then

10: if Di < |dist(v, IMAGES[GUESSES[iprev]])| then
11: GUESSES[iprev]← i
12: hasHighSinceLastTaken← false
13: else if N < Gmax then
14: GUESSES[N ]← i
15: iprev ← N
16: hasHighSinceLastTaken← false
17: N ← N + 1
18: else
19: hasHighSinceLastTaken← false
20: Gbiggest = argmaxj∈[0,Gmax−1](

dist(v, IMAGES[GUESSES[j]]))
21: if |dist(v, IMAGES[Gbiggest])| > Di then
22: GUESSES[Gbiggest]← i
23: iprev ← Gbiggest
24: end if
25: end if
26: end if
27: else
28: hasHighSinceLastTaken← true
29: end if
30: end for
31: return GUESSES
32: end procedure
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Algorithm 1 is an algorithm that finds a set GUESSES that are all located
in different “valleys” in the search space. A valley in this case is detected as
follows: For each distance value Vi with index i, we have

V ALLEY =
{Vi | Vi < Dmax

∧∃istart, istop : ∀i ∈ INDICESv : i ∈ [istart, istop]
∧∀j ∈ [istart, istop] : j ∈ INDICESv}

where INDICESv is the set of indices included in the valley. In other
words, an uninterrupted stretch of values in the array where all the values
are smaller than Dmax. Further, the guess that is stored for a valley will be
the smallest value inside the value, i.e.

guessV ALLEY = argmini(Vi ∈ V ALLEY )

The algorithm keeps four helper variables:

• hasHighSinceLastTaken is true if there was a value Vj > Dmax after
the previous time a minimum was included.

• iprev is the index into the GUESSES array of the previously taken
minimum

• N is the number of minima that has been taken, i.e. |GUESSES|

• Di is the distance from the current image plane to the voxel.

The algorithm works as follows: it iterates over all the image planes, and
when it finds a value Vi < Dmax, there are three possible cases:

1. The previous index considered was also smaller than Dmax, i.e. Vi−1 <
Dmax (line 9) In that case, we are inside the same valley as for index
i− 1, and we simply need to determine if this guess is better than the
previously stored guess. If so, we store it.

2. The previous index was bigger than Dmax, meaning we have encoun-
tered a new valley, and we have enough room for at least one more
minimum (line 13). In this case, we store i into the next position in
the GUESSES array, set iprev to N and then increment N .

3. The previous index was bigger than Dmax, meaning we have encoun-
tered a new valley, but there is no more room in the GUESSES
array(line 18). In this case, we toss out the worst minimum – the one
with the longest distance, and include this one instead, but only if it
is smaller than the one with the longest distance.
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Figure 3.4: Figure to illustrate Algorithm 1. IDXI refers to the index of
image I.

The algorithm may also be explained in terms of Figure 3.4: The algorithm
starts at IDXI = 0 and follows the red line towards the right. Around
IDXI = 22 − 23, the distance function crosses the green line, Dmax, and
the algorithm starts recording a minimum. The stored minimum will be
overwritten all the way until IDXI = 30, where the distance function is
at its lowest. The algorithm then continues to move to the right, but no
minima better than the one found are found within this valley. Eventually,
the distance becomes greater than Dmax around IDXI = 37 − 38. At this
point, hasHighSinceLastTaken becomes true, so that when the distance
function at IDXI = 55 and the distance function once more becomes smaller
than Dmax, a new minimum is stored. This minimum is overwritten all the
way until IDXI = 60, at which point the distance function starts increasing
again. However, at IDXI it starts decreasing again, before hitting Dmax.
Thus, the minimum at IDXI = 80 will eventually overwrite the minimum
at IDXI = 60. The reason for this behavior is to consistently select the best
minimum in a noisy data set.

Having a set GUESSES of good guesses, we may now proceed to the
plane selection algorithm. We will describe the algorithm in the context of
having just a single guess – observing that a variant for multiple guesses can
be described in terms of an algorithm with a single guess.
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Algorithm 2 Find close planes that are close to the guess, single start
findClosestPlanesSingle(v, IMAGES, radius,Nmax, guess,RIv):
Input: v The voxel to find close planes for

IMAGES The set of image planes definitions
radius The maximum distance between voxel and plane
Nmax The maximum number of image planes to return
guess Index into IMAGES of the guessed image plane
RIv Set of close planes in which to store results, may

already contain other close planes, or dummy
planes with dist(v, plane) =∞

Output: RIv The set of close planes found
Nfound The number of close planes found
ismallest The index of the closest found plane (i.e. the

next guess)
1: procedure findClosestPlanesSingle(v, IMAGES, radius, Nmax,
guess, RIv)

2: found← 0
3: doneup ← false
4: donedown ← false
5: ismallest ← guess
6: Nfound ← 0
7: Dterm ← clamp(|dist(v, IMAGES[guess]), radius, 3 ∗ radius)
8: imax ← argmaxi(|dist(v,RIv[i])|)
9: Dmax ← min(|dist(v, IMAGES[imax])|, radius)

10: i← 0
11: while ¬doneup ∨ ¬donedown do
12: iup = min(guess+ i, |IMAGES| − 1)
13: idown = max(guess− i− 1, 0)
14: if ¬donedown ∧ |dist(v, IMAGES[idown])| < Dmax then
15: V Pv ← projectOrthotonallyOnto(v, IMAGES[idown])
16: IPv ← toImageCoord(V Pv, IMAGES[idown])
17: if isV alidP ixel(IPv, IMAGES[idown]) then
18: RIv[imax]← IMAGES[idown]
19: imax ← argmaxi(|dist(v,RIv[i])|)
20: Dmax ← min(|dist(v, IMAGES[imax])|, radius)
21: Nfound ← Nfound + 1
22: if |dist(v, IMAGES[idown])| <
23: |dist(v, IMAGES[ismallest])| then
24: ismallest ← idown
25: end if
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Algorithm 2 Find close planes that are close to the guess (continued)
26: end if
27: end if
28: if ¬doneup ∧ |dist(v, IMAGES[iup])| < Dmax then
29: V Pv ← projectOrthotonallyOnto(v, IMAGES[iup])
30: IPv ← toImageCoord(V Pv, IMAGES[iup])
31: if isV alidP ixel(IPv, IMAGES[iup]) then
32: RIv[imax]← IMAGES[iup]
33: imax ← argmaxi(|dist(v,RIv[i])|)
34: Dmax ← min(|dist(v, IMAGES[imax])|, radius)
35: Nfound ← Nfound + 1
36: if |dist(v, IMAGES[iup])| <
37: |dist(v, IMAGES[ismallest])| then
38: ismallest ← iup
39: end if
40: end if
41: end if
42: doneup ← doneup ∨ |dist(v, IMAGES[iup])| > Dterm ∨ iup =
|IMAGES|

43: donedown ← donedown ∨ |dist(v, IMAGES[idown])| > Dterm ∨
idown = 0

44: end while
45: return RIv, Nfound, ismallest
46: end procedure

Algorithm 2 works by starting at the guess and searching the array in both
directions for a closer plane. If one is found, it is inserted into RIv in the
place of the plane in RIv with the largest distance to the voxel. Note that
this works even if RIv already contains a set of planes – that set will just be
improved upon. The algorithm also keeps track of the index of the closest
plane overall – this is in order to give feedback so that the guess may be
updated for the next voxel.

There are two things that can cause the algorithm to stop searching in a
specific direction:

1. It hits the end or beginning of the plane array.

2. It hits a plane that is too far away to be of further interest, i.e. the
distance from the voxel to the plane is greater than Dterm
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In the interest of performance, it is vital to keep Dterm as low as possible.
Though, it cannot be too small. We therefore use the distance of the guess
to the voxel to determine it, but we clamp it to [radius, 3 ∗ radius] so that
it never gets too small to find any nearby planes that are inside the radius.
The upper limit, 3 ∗ radius is there to avoid searching for a long time from
a bad guess, but must be high enough to accommodate for noisy data.

We also make sure that the voxel maps to a pixel actually on the image plane
in question – the mathematical definition of a plane is infinitely stretched,
but an image plane has limits.

Having seen the single start search variant, we will now define the multi-start
search, Algorithm 3 in terms of Algorithm 2.
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Algorithm 3 Find close planes that are close to guesses, multi-start
findClosestPlanesMulti(v, IMAGES, radius,Nmax,GUESSESv):
Input: v The voxel to find close planes for

IMAGES The set of image planes definitions
radius The maximum distance between voxel and

plane
Nmax The maximum number of image planes to re-

turn
GUESSESv Indices into IMAGES of the guessed image

planes close planes.
Output: RIv The set of close planes found

Nfound The number of close planes found
1: procedure FindClosestPlanesMulti(v, IMAGES, radius, Nmax,

GUESSESv):
2: RIv ← Nmax dummy planes with dist(v, dummy) =∞
3: Nfound ← 0
4: for i ∈ [0, |GUESSESv| − 1] do
5: RIv, Ni, ismallest = findClosestP lanesSingle(v, IMAGES,

radius,Nmax,GUESSESv[i],RIv)
6: if Nfound > 0 then
7: GUESSESv[i]← ismallest
8: end if
9: Nfound ← Nfound +Ni

10: end for
11: return RIv,min(Nfound, Nmax)
12: end procedure

As we see, Algorithm 3 simply applies Algorithm 2 once for each guess,
keeping the same RIv between the applications, while updating the guesses.
Thus, at the end, RIv contains the closest Nmax image planes found from all
the guesses, provided that there exists at least Nmax planes with distance
smaller than radius that is reachable from the guesses.

We have now seen an efficient way to select the image planes without sac-
rificing too much flexibility in terms of probe movement patterns. We now
proceed to describe how the algorithm determines the voxel value given RIv.
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3.1.3 Determining the voxel value: VGDW

This section describes the process of determining a voxel value from the
image planes located by the algorithms described in the previous section.
The algorithm described here is what constitutes the VGDW method; the
adaptive reconstruction method that adjusts its smoothness according to the
variance of the input data, drawing inspiration from AGDW[Huang et al.,
2009] and anisotropic diffusion.

We must first find the RPIXELSv, recalling that this is the set of pixels
relevant to the voxel v from the set RIv. We do this using bi-linear equation,
which we have already defined in Equation 3.3.

(a) High variance between image
planes

(b) Low variance between image
planes

Figure 3.5: High and low variance between image planes

Now, once RPIXELSv is determined, we want to find some appropriate
voxel value. We do this by computing a weighted average as described in
Section 2.5. Remembering that it is of interest to keep important detail but
blur noise, we use a Gaussian weight function with respect to the distance
of the pixel to the voxel, as described as Section 2.6, and vary the parameter
σ with the variance of RPIXELSv. With high variance, we want a narrow
Gaussian to preserve detail, illustrated in Figure 3.5a, meaning we want a
small σ. With low variance as illustrated in Figure 3.5b, we want a wide
Gaussian to smooth out noise. The weight function then becomes

Wdist(x) = 1
σG
√

2π
e
− dist(v,x)2

2σ2
G (3.4)

with σG = clamp(K/
√
V ar(RPIXELSv), σmin, σmax), and K is some ex-

perimentally determined constant – higher K giving more smoothing. Through-
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out this thesis, K was set to K = 32 – exactly how this parameter behaves
remains to be investigated.

We also desire good behavior in the case of value conflicts from multiple
sweeps. Taking inspiration from earlier approaches for dealing with value
collisions in PNN(see Section 2.1.3); we expand our weight function to con-
sider two more properties: how “late” the ultrasound image was taken (i.e.
its position in the IMAGES array, and the brightness of the pixel. Equa-
tion 3.5 shows the brightness term, and Equation 3.6 shows the lateness
term.

Wbrightness(x) =
{
B if intensity(x) > E(intensity(RPIXELSv))
0 otherwise

(3.5)

where B is a parameter determining how heavy to weigh intensity, x is a
pixel, intensity(x) is the intensity value of pixel x, and E(intensity(RPIXELSv)
is the average intensity of the pixels in RPIXELSv.

Wlateness(x) =
{
L if index(x) > E(index(RPIXELSv))
0 otherwise

(3.6)

where L is a parameter determining how heavy to weigh “lateness”, x is
a pixel, index(x) is the index of the image plane containing the pixel x in
IMAGES , and E(index(RPIXELSv)) is the average index into IMAGES
of the pixels in RPIXELSv.

The complete weight function then becomes

W (x) = Wdist(x) +Wbrightness(x) +Wlateness(x)

= 1
σG
√

2π
e
− dist(v,x)2

2σ2
G

+
{
B if intensity(x) > E(intensity(RPIXELSv))
0 otherwise

+
{
L if index(x) > E(index(RPIXELSv))
0 otherwise

(3.7)
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and finally, the voxel value becomes

V =
( ∑
x∈RPIXELSv

W (x)
)−1 ∑

x∈RPIXELSv

W (x)intensity(x) (3.8)

In total, this leaves us with 5 parameters concerning the computation of a
voxel value: K, σmin, σmax, B and L.

3.1.4 OpenCL Implementation

We have seen the techniques used to compute a single voxel value, but we
are of course required to compute an entire volume. This is where the
parallelism is exposed. As mentioned, the OpenCL implementation uses
cubes in the target volume as units of parallelization. The choice of using
cubes is to ensure an upper bound on the distance between any two voxels
computed by the same thread, meaning we can find a small value for Dmax

for Algorithm 1. A set of guesses is computed for each thread. The threads
iterate over the voxels in the cube in a zig-zag-scheme, ensuring that the
next voxel always is a neighbor of the previous voxel, as suggested by [Wein
et al., 2006].

We keep plane equations in local memory, as well as the planes found by
Algorithm 3, as these are data that are accessed frequently throughout the
algorithm. We also use image objects for the image data, allowing us to
leverage bi-linear interpolation in hardware, as well as the texture cache.
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3.2 Evaluation

In this section we will investigate the evaluation techniques employed in this
thesis. Since the VGDW algorithm is new, we need a thorough evaluation
of its reconstruction quality and computational speed to see how it com-
pares to VNN, VNN2, DW, and in some cases PNN. VNN, VNN2 and DW
were implemented in OpenCL similarly to VGDW, sharing the plane search
algorithm.

This section is organized as follows: First we will describe the data sets
we have used in the evaluation, since they will be referred to during the
description of the evaluation methods themselves. Then we will proceed to
describe the evaluation techniques employed – 4 image quality evaluations,
and a computational performance evaluation.

3.2.1 The data sets

Five data sets of varying character was used for the evaluation. We will
proceed to describe them here.

Phantom The “Phantom” data set is a small data set obtained by linearly
scanning a phantom filled with water. The phantom consists of a single rod.
This data set has a total of 85 recorded slices. The data set was obtained
using a NDI Polaris Spectra tracking system, and an Ultrasonix L14-5 probe.

Angio The “Angio” data set is a medium sized data set obtained by a
linear scan on a real patient. The data set contains both angio- and B-mode
data. The visual quality of this data set is quite low, so the data set has
been used only for performance measurements. This data set has a total of
623 recorded slices. The data set was obtained using a NDI Polaris Spectra
tracking system, and a GE Vingmed 11L probe.

Tumor The “Tumor” data set is a large data set depicting a tumor from a
real patient. The images were obtained using an U-turn scan pattern, such
that many slices overlap. This data set has a total of 932 recorded slices.
The data set was obtained using a NDI Polaris Spectra tracking system, and
a GE Vingmed 11L probe.
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Simulated from ultrasound This data set was obtained by simulating
an ultrasound acquisition over an existing ultrasound volume. Real tracking
data was used to generate the positions of the image slices, and the slices
were obtained by tri-linear interpolation from the volume. The tracking
system used was NDI Polaris Spectra. The volume itself was generated by
tracked freehand ultrasound acquisition and reconstructed using PNN.

Simulated from MRI The data set simulated from ultrasound was gen-
erated exactly in the same way as the “Simulated from ultrasound” data
set mentioned above, but the original data was in this case an MRI volume.
Since this volume was obtained from MRI data, there is very little noise
present in the volume. The tracking system used was NDI Polaris Spectra.

3.2.2 Reconstruction from existing volume

An US acquisition was simulated using real tracking data from an existing
volume, and reconstruction was performed on this simulation. The existing
volume was then cropped and aligned to the reconstructed volume using
tri-linear interpolation, and RMS error was computed across the whole vol-
ume. Figure 3.6 depicts this process. Aligned slices were extracted from the
volumes and visualized. This was done using two data sets; one ultrasound
volume and one MRI volume, i.e. the two “simulated” volumes mentioned
above. The parameters used may be seen in Table 3.1 and Table 3.2.

This is a novel evaluation technique, and the idea behind it is that a good
reconstruction algorithm should be able to approximate the original volume
as closely as possible, and the error can be measured since the original volume
the slices are sampled from is known. An important component in this
technique is that positions of the slices come from real tracking data – an
algorithm that handles the problem of tracking noise well gets rewarded in
this evaluation technique. Still, one important thing to note is that the
tracking noise behaves slightly differently in this evaluation than in usual
contexts: since the tracking data determines the position of the slices to
sample, there is no error between the tracking data and the slices – the
position of the sampled slices match the tracking data perfectly, which is
not the case in actual acquisition.
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Parameter Value
Input pixel spacing 0.0478
Output voxel spacing 0.123
Volume dimensions 374x320x278
Radius (All methods except
PNN)

1.0

Distance in voxels (PNN
Only)

5

Number of input slices 228
Gmax 1
σmax (VGDW only) 32.0
σmin (VGDW only) 3.2 · 10−6

K (VGDW only) 32.0
B (VGDW only) 0.0
L (VGDW only) 0.0

Table 3.1: Parameters for reconstruction from existing ultrasound volume
evaluation.

Parameter Value
Input pixel spacing 0.0810
Output voxel spacing 0.154
Volume dimensions 303x390x282
Radius (All methods except
PNN)

1.0

Distance in voxels (PNN
Only)

3

Number of input slices 272
Gmax 1
σmax (VGDW only) 32.0
σmin (VGDW only) 3.2 · 10−6

K (VGDW only) 32.0
B (VGDW only) 0.0
L (VGDW only) 0.0

Table 3.2: Parameters for reconstruction from existing MRI volume evalua-
tion.
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Figure 3.6: An illustration of the process used in the “simulated ultrasound
from existing volume” evaluation
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Figure 3.7: 3D rendering of the synthetic volume. Rendered by CustusX.

3.2.3 Synthetic volume

A volume was defined programatically. US acquisition was simulated with a
linear scan pattern, tilted scan pattern with a total of 30 degrees of rotation
through the scan, and linear scan pattern with additive Gaussian noise with
σ = 5 and µ = 0. The voxel spacing was twice that of the sample spacing.
RMS error was computed across the whole volumes, and slices were extracted
for visual inspection. The volume has a background color value of 10, and
has lines in X, Y and Z dimensions with value 255 with three thicknesses.
It also has a large cube in the middle of the volume. Figure 3.7 shows a 3D
rendering of the volume.

The idea of this novel evaluation technique is similar to the idea of the
simulated ultrasound from existing volume evaluation technique – extracting
slices from a known volume, and comparing the resulting reconstruction
with the original volume. This technique, however, is entirely synthetic, and
allows the volume to be designed in such a way that it demonstrates different
aspects of the different algorithms. Especially the scan with additive noise
is designed to demonstrate the noise suppression capabilities of VGDW.

The reconstruction parameters may be seen in Table 3.3.
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Parameter Value
Input pixel spacing 0.05
Output voxel spacing 0.10
Volume dimensions 300x300x300
Radius (All methods except
PNN)

1.0

Distance in voxels (PNN
Only)

3

Number of input slices 100
Gmax 1
σmax (VGDW only) 32.0
σmin (VGDW only) 3.2 · 10−6

K (VGDW only) 32.0
B (VGDW only) 0.0
L (VGDW only) 0.0

Table 3.3: Parameters for Synthetic volume evaluation.

3.2.4 Slice removal

The data set “Phantom” was used for this evaluation. The volume was re-
constructed with 0, 1, 3 and 5 input slices removed in the middle of the
data, with the voxel grid aligned such that the middle slice falls exactly onto
voxels. The RMS Error of the reconstructed middle slice and the middle
slice of the input was computed. The middle slice was extracted for visual-
ization (no interpolation required since the voxels are aligned to the pixels
of that particular input frame). The reconstruction parameters used for this
is summarized in Table 3.4.

This is a classical evaluation technique, and the idea is that a good recon-
struction algorithm should be good at approximating data that’s missing.
When a slice is removed, the gold standard is known at the position of that
slice, making it possible to compute the error. We choose to also see what
happens with zero slices removed – how the algorithms perform when the
data is actually in place is also interesting, as it may tell us something about
smoothing or noise removal.
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Parameter Value
Input pixel spacing 0.064
Output voxel spacing 0.064
Volume dimensions 638x638x328
Radius (All methods except
PNN)

3.0

Distance in voxels (PNN
Only)

3

Number of input slices 85
Gmax 1
σmax (VGDW only) 32.0
σmin (VGDW only) 3.2 · 10−6

K (VGDW only) 32.0
B (VGDW only) 0.0
L (VGDW only) 0.0

Table 3.4: Parameters for slice skipping evaluation.

3.2.5 Visual evaluation on real data

The data set “Tumor” was used for this evaluation. Slices from all three
axes were presented to 3 technologists and 3 medical practitioners working
with ultrasound, and they were asked to rank the reconstructions according
to diagnostic value. The participants were blind to the method used to
reconstruct any given slice. The reconstruction parameters are given in
Table 3.5.

This evaluation technique may be the most important one, especially fol-
lowing the definition of the reconstruction problem in Section 1. In many
cases1, humans are the ones who will be looking at the reconstructions and
making decisions based on them. The idea of this evaluation is therefore to
evaluate exactly that – good reconstructions make it easy for practitioners
to see what is in the volume.

1If one wants to perform some automated segmentation algorithm on the volume, a
computer algorithm will appreciate other aspects than humans will.
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Parameter Value
Input pixel spacing 0.089
Output voxel spacing 0.123
Volume dimensions 532x429x584
Radius (All methods except
PNN)

1.0

Distance in voxels (PNN
Only)

3

Number of input slices 932
Gmax 8
σmax (VGDW only) 32.0
σmin (VGDW only) 3.2 · 10−6

K (VGDW only) 32.0
B (VGDW only) 0 and 5(indicated in results)
L (VGDW only) 0 and 5(indicated in results)

Table 3.5: Parameters for visual evaluation.

3.2.6 Performance evaluation

Performance evaluation was performed for the data sets “Phantom”, “An-
gio”, and “Tumor”. Two different volume sizes were also used – 128M voxels
and 32M voxels. For each data set and each method and each volume size,
the following steps were taken:

1. Reboot the computer

2. Start CustusX with an empty patient

3. Reconstruct the volume using the given method

4. Record the “Reconstruction core time” reported by CustusX – i.e. the
time spent performing the reconstruction algorithm, excluding any pre-
processing.

5. Delete the reconstructed volume

6. Perform steps 2-5 a total of 10 times per data set per method.

For each of the 10 iterations, the lowest value was used. The specification of
the computer used for performance evaluation is listed in Table 3.6.
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3.2. EVALUATION

Model HP EliteBook 8460p
CPU Intel(R) Core(TM) i7-2620M CPU

@ 2.70GHz
Memory 4 GiB DDR3 1333 MHz
GPU AMD Radeon 6470M w/1GiB

DDR3
O/S Ubuntu Linux 13.04 64-bit, Linux

version 3.13.0-rc2
GPU Driver version AMD Catalyst 13.11-beta-v9.4
OpenCL SDK version AMD APP SDK v2.9

Table 3.6: Specifications of computer used for performance evaluation

The radius was set to 1.0 for all the voxel-based methods, and the maximum
hole-filling distance was set to 3 voxels for the PNN algorithm. The PNN
implementation was the existing single-threaded CPU implementation in
CustusX. Gmax was set to 1 for the two data sets “Phantom” and “Angio”,
and 8 for “Tumor”.

This evaluation technique is related to the second aspect of the definition
in Section 1 – that the reconstruction should not take too long to generate.
However, the results of this evaluation should be seen in light of the results
of the visual evaluation – a slower algorithm may be worth waiting for if the
image quality is significantly better.

53





Chapter 4

Results

In this chapter we will present the results of the 4 image quality evaluations
and the performance evaluation. The results will be presented with numeri-
cal values and graphs for RMS scores, as well as selected, aligned slices from
the different reconstructions side-by-side.

The performance evaluation will be presented as time consumed in seconds,
both numerically and graphically.
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Before we present the results, we have to clarify what the X, Y and Z axis
refers to in the image slices. The slices will be labeled as coming from the
X, Y and Z axis. What we mean by this, is that the dumped slice number
N in the X direction is the N-th slice in the X direction, in other words the
YZ plane at X=N. This notation stems from the X, Y and Z axes in volume
space of the volume they were extracted from. CustusX aligns the volume
so that the middle slice of the input data is aligned to the volume. For a
perfect, linear scan, this means that the ultrasound slice will fall perfectly
into the XY plane. For this reason, we will typically see much higher quality
in the Z direction, since they are (approximately) aligned with the input
data.

Without further ado, we present the results.
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4.1 Reconstruction from existing volume

In this section we will present the results of the evaluation technique “Re-
construction from existing volume”, described in Section 3.2.2.

4.1.1 Reconstruction from existing ultrasound volume

We will now present the results of the “reconstruction from existing volume”
with the data set “Simulated from ultrasound”.

Results

Method #P RMS
Error

% of
lowest

PNN N/A 28.10 100.00%
VNN N/A 28.78 102.43%
VNN2 4 28.33 100.81%
VNN2 8 28.15 100.16%
DW 4 28.30 100.70%
DW 8 28.12 100.06%
VGDW 4 28.18 100.28%
VGDW 8 28.22 100.44%

Table 4.1: Results from the reconstruction from existing ultrasound volume
evaluation described in Section 3.2.2
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Figure 4.1: The RMS Errors for the reconstruction from existing ultrasound
volume evaluation
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Images

Figure 4.2: Images from the reconstruction from existing ultrasound volume
evaluation in the X direction
Top row: Original US, PNN, VNN
Middle row: VNN2 with 4 planes, VNN2 with 8 planes, DW with 4 planes
Bottom row: DW with 8 planes, VGDW with 4 planes, VGDW with 8 planes
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Figure 4.3: Images from the reconstruction from existing ultrasound volume
evaluation in the Y direction
Top row: Original US, PNN, VNN
Middle row: VNN2 with 4 planes, VNN2 with 8 planes, DW with 4 planes
Bottom row: DW with 8 planes, VGDW with 4 planes, VGDW with 8 planes
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Figure 4.4: Images from the reconstruction from existing ultrasound volume
evaluation in the Z direction
Top row: Original US, PNN, VNN
Middle row: VNN2 with 4 planes, VNN2 with 8 planes, DW with 4 planes
Bottom row: DW with 8 planes, VGDW with 4 planes, VGDW with 8 planes
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4.1.2 Reconstruction from existing MRI volume

We will now present the results of the “reconstruction from existing volume”
evaluation with the data set “Simulated from MRI”.

Results

Method #P RMS
Error

% of
lowest

PNN N/A 9.05 114%
VNN N/A 9.26 116%
VNN2 4 8.64 108%
VNN2 8 8.19 103%
DW 4 8.63 108%
DW 8 8.17 103%
VGDW 4 8.35 105%
VGDW 8 7.97 100%

Table 4.2: Results from the reconstruction from existing MRI volume eval-
uation test described in Section 3.2.2

0
1
2
3
4
5
6
7
8
9

10

PNN VNN VNN2
P = 4

VNN2
P = 8

DW
P = 4

DW
P = 8

VGDW
P = 4

VGDW
P = 8

R
M

S
Er

ro
r

Figure 4.5: The RMS Errors for the reconstruction from existing MRI vol-
ume evaluation
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Images

Figure 4.6: Images from the Reconstruction from existing MRI volume eval-
uation in the X direction
Top row: Original MRI, PNN, VNN
Middle row: VNN2 with 4 planes, VNN2 with 8 planes, DW with 4 planes
Bottom row: DW with 8 planes, VGDW with 4 planes, VGDW with 8 planes
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Figure 4.7: Images from the reconstruction from existing MRI volume eval-
uation in the Y direction
Top row: Original MRI, PNN, VNN
Middle row: VNN2 with 4 planes, VNN2 with 8 planes, DW with 4 planes
Bottom row: DW with 8 planes, VGDW with 4 planes, VGDW with 8 planes
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Figure 4.8: Images from the reconstruction from existing MRI volume eval-
uation in the Z direction
Top row: Original MR, PNN, VNN
Middle row: VNN2 with 4 planes, VNN2 with 8 planes, DW with 4 planes
Bottom row: DW with 8 planes, VGDW with 4 planes, VGDW with 8 planes
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4.2 Synthetic volume

We will now present the results of the synthetic volume evaluation, described
in Section 3.2.3.

4.2.1 Results

Method # P RMS Error % of lowest
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

VNN N/A 8.45 13.18 9.69 106% 114% 115%
VNN2 4 8.61 11.60 9.39 108% 100% 112 %
VNN2 8 9.04 11.68 9.72 114% 101% 116%
DW 4 8.61 11.58 9.39 108% 100% 112%
DW 8 9.04 11.66 9.72 114% 101% 116%
VGDW 4 7.96 11.72 8.40 100% 101% 100%
VGDW 8 8.23 12.36 8.49 103% 107% 101%

Table 4.3: Results from the Synthetic volume test described in Section 3.2.3
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Figure 4.9: The RMS Errors for the Synthetic volume test
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4.2.2 Images

Figure 4.10: Images from set 1 of the Synthetic Volume test in the X direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
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Figure 4.11: Images from set 1 of the Synthetic Volume test in the Y direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes

Figure 4.12: Images from set 1 of the Synthetic Volume test in the Z direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
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Figure 4.13: Images from set 2 of the Synthetic Volume test in the X direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes

Figure 4.14: Images from set 2 of the Synthetic Volume test in the Y direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
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Figure 4.15: Images from set 2 of the Synthetic Volume test in the Z direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes

Figure 4.16: Images from set 3 of the Synthetic Volume test in the X direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
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Figure 4.17: Images from set 3 of the Synthetic Volume test in the Y direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes

Figure 4.18: Images from set 3 of the Synthetic Volume test in the Z direction
Top row: Gold standard, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
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4.3 Slice removal

We will now present the results of the slice removal evaluation, described in
Section 3.2.4.

4.3.1 Results

Method #P RMS Error % of lowest
Skip
0

Skip
1

Skip
3

Skip
5

Skip
0

Skip
1

Skip
3

Skip
5

VNN N/A 0.19 7.60 7.14 8.05 100% 137% 124% 114%
VNN2 4 1.48 6.19 5.77 7.76 797% 112% 100% 110%
VNN2 8 1.55 6.02 6.32 7.08 836% 109% 110% 100%
DW 4 1.48 6.19 5.77 7.76 797% 112% 100% 110%
DW 8 1.56 6.02 6.32 7.08 836% 109% 110% 100%
VGDW 4 3.95 5.63 5.79 7.48 2126% 102% 100% 106%
VGDW 8 3.99 5.54 6.54 7.58 2143% 100% 113% 107%

Table 4.4: Results from the Slice skip evaluation described in Section 3.2.3
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Figure 4.19: The RMS Errors for the slice removal test
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4.3.2 Images

Figure 4.20: Images from the frame skip test with 0 frames skipped
Top row: Original US slice, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
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Figure 4.21: Images from the frame skip test with 1 frame skipped
Top row: Original US slice, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes

Figure 4.22: Images from the frame skip test with 3 frames skipped
Top row: Original US slice, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
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Figure 4.23: Images from the frame skip test with 5 frames skipped
Top row: Original US slice, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Bottom row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes

4.4 Visual evaluation

We will now present the results of the visual evaluation, described in Sec-
tion 3.2.5.

4.4.1 Results

Some notes for Table 4.5: Medical person 1 gave separate ranks for each
axis, these scores have been averaged. Medical person 3 only stated that
VGDW with B = 5 was better than the others, and did not provide further
ranking. Medical person 3 was excluded from the average computation, since
full ranking was not provided.
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Method #P Avg T1 T2 T3 M1 M2 M3
PNN N/A 10.93 12 11 11 8.67 12 X
VNN N/A 8.33 3 10 10 9.67 9 X
VNN2 4 6.6 5 7 9 6 6 X
VNN2 8 5.8 9 6 4 6 4 X
DW 4 5.67 4 9 5 7.33 3 X
DW 8 7.4 8 5 8 8 8 X
VGDW 4 6 6 8 3 6 7 X
VGDW 8 5.53 9 3 7 3.67 5 X
VGDW L = 5 4 11.53 11 12 12 11.67 11 X
VGDW L = 5 8 7.53 10 4 6 7.67 10 X
VGDW B = 5 4 1.17 1 1 2 1 1 1
VGDW B = 5 8 1.67 2 2 1 2 2 1

Table 4.5: Results from visual evaluation. “T” refers to technologist, “M”
refers to medical personnel. Lower is better.
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4.4.2 Images

Figure 4.25: Slices from the reconstructed volumes generated from the “Tu-
mor” data set. Slice 200 in X direction
Top row: PNN, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Middle row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
Bottom row: VGDW with Wnew = 5 with 4 planes, VGDW with Wnew = 5
with 8 planes, VGDW with Wbright = 5 with 4 planes, VGDW with
Wbright = 5 with 8 planes
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Figure 4.26: Slices from the reconstructed volumes generated from the “Tu-
mor” data set. Slice 100 in Y direction
Top row: PNN, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Middle row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
Bottom row: VGDW with Wnew = 5 with 4 planes, VGDW with Wnew = 5
with 8 planes, VGDW with Wbright = 5 with 4 planes, VGDW with
Wbright = 5 with 8 planes
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Figure 4.27: Slices from the reconstructed volumes generated from the “Tu-
mor” data set. Slice 100 in Z direction
Top row: PNN, VNN, VNN2 with 4 planes, VNN2 with 8 planes
Middle row: DW with 4 planes, DW with 8 planes, VGDW with 4 planes,
VGDW with 8 planes
Bottom row: VGDW with Wnew = 5 with 4 planes, VGDW with Wnew = 5
with 8 planes, VGDW with Wbright = 5 with 4 planes, VGDW with
Wbright = 5 with 8 planes
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4.5 Performance

4.5.1 32M Volume
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Figure 4.28: The results of the 32M performance evaluation

Method #P Time taken (seconds) % of smallest
Phantom Angio Tumor Phantom Angio Tumor

PNN 7.22 7.07 8.79 578% 214% 100%
VNN 1.25 3.31 11.77 100% 100% 134%
VNN2 4 2.36 5.46 13.78 189% 165% 157%
VNN2 8 4.28 6.60 19.46 342% 199% 221%
DW 4 2.73 5.95 14.30 218% 180% 163%
DW 8 5.43 7.62 20.85 434% 230% 237%
VGDW 4 3.10 6.33 14.81 248% 191% 168%
VGDW 8 6.23 8.29 21.80 498% 250% 248%

Table 4.6: The results of the 32M performance evaluation
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4.5.2 128M Volume
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Figure 4.29: The results of the 128M performance evaluation

Method #P Time taken (seconds) % of smallest
Phantom Angio Tumor Phantom Angio Tumor

PNN 43.57 18.47 22.52 1095% 179% 100%
VNN 3.98 10.30 39.20 100% 100% 174%
VNN2 4 8.12 18.61 46.10 204% 181% 205%
VNN2 8 15.29 22.77 67.19 384% 221% 298%
DW 4 9.53 20.45 48.03 239% 199% 213%
DW 8 19.56 26.45 72.38 491% 257% 321%
VGDW 4 11.01 21.82 49.90 277% 212% 222%
VGDW 8 22.72 28.99 76.22 571% 281% 338%

Table 4.7: The results of the 128M performance evaluation
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Chapter 5

Discussion

In this chapter we will discuss the results presented in the previous chapter.
We will first discuss the results of each evaluation technique separately, try-
ing to discern what we can learn from the results. Then we will take a step
back and discuss some broader topics, and try to see how to attack some of
the issues the results may have revealed.
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5.1 Reconstruction from existing volume

We will now discuss the results of the evaluation technique “reconstruction
from existing volume”.

5.1.1 Reconstruction from existing ultrasound volume

The results of the reconstruction from existing volume evaluation with the
“Simulated from Ultrasound” data set are are not very conclusive – all meth-
ods are within 2.43% of each other in the RMS comparison. The “PNN”
method delivers the “best” result in regards to RMS, which may be related to
the fact that the original volume was reconstructed using PNN. However, the
images display seen in Figure 4.2, Figure 4.3 and Figure 4.4 show less noise
with VGDW, but the images also look less crisp with VGDW. In general,
the 8 plane version appear more smoothed than does the 4-plane variant.
This may indicate that the smoothing is too aggressive with VGDW.

5.1.2 Reconstruction from existing MRI volume

We see that VGDW with 8 planes produces the reconstructions that are
closest to the original in this test, while VNN is the worst performer. The
images provide some insight into why VGDW performs well on this test –
since the input data is relatively smooth, VGDW benefits from being able
to use a wide Gaussian without smoothing the result much further. As a
result, the “liney” appearance from the other reconstructions are tougher
to spot. There is also virtually no noise in the input data, which in this
theoretical measurement is beneficial for VGDW, since it will try to reduce
noise. It must also be noted that the original MRI volume was not aligned
originally, tri-linear interpolation had to be performed in order to compute
RMS values – this may have lead to elevated RMS values in general, but all
methods suffered equally from this problem.

5.2 Synthetic volume

For the synthetic volume test, we see that the 4 plane variants generally
give better results than the 8 plane variants. This may be related to the
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nature of the details in the synthetic volume – as long as they are visible,
further smoothing them by adding more planes will generally give a result
further away from the gold standard. The images from this evaluation tell an
interesting story. For data set 1, if we look at Figure 4.11, we see that VNN
shows hard edges, since it does not perform any smoothing when selecting
what pixel value goes into what voxel. The VNN2 and DW have artifacts on
the sides of the details – the “lines” over and under the big center block is a
good example. Why these lines appear as lines and not a completely smooth
region is currently unknown – an educated guess is that the inverse distance
weight function becomes very large and causes floating point errors. Finally,
we observe that the VGDW variants both have quite hard edges, and exhibit
opposite behavior from the DW and VNN2 variants: with increasing number
of planes, the edges become less smoothed, as opposed to DW and VNN2
where the edges become more smoothed. This may be because with more
planes it is possible to demonstrate larger variance with a larger amount
of planes to consider. We also observe that the 4 plane variant achieved a
better RMS score than the 8 plane variant – this may be due to the fact
that the lines (seen as 5 dots on the bottom of Figure 4.11) are too wide in
the direction of acquisition, but are slightly smoothed when using 4 planes.

For data set 2, we clearly see the artifacts of the tilted scan pattern. Looking
at Figure 4.13, we see here the trade-off of the assumption we made in
Section 3.1.1: Since we only include one value from each image plane, no
indication is provided to the algorithm that the side of the cube is in fact
straight. As for the RMS results, DW with 4 planes performs best, and
VGDW is the worst performer outside of VNN. This may be because since
all the reconstructions have quite a bit of artifacts, the reconstructions that
provide a bit of smoothing will generally score higher. We also observe at the
edges of the images that there is a larger area that is completely black on the
reconstructions with 8 planes, and especially for VGDW, contributing to an
elevated RMS. Interestingly, VGDW still shows well defined edges, without
the jaggedness of the VNN reconstruction and the “liney” artifacts of DW
and VNN2.

For data set 3, we see the noise smoothing capabilities of VGDW clearly
in Figure 4.13. With VNN, the noise is clearly visible, VNN2 and DW
do smooth the noise a little bit, but it they also smooth the details of the
volume, whereas VGDW smooths the noise quite drastically, but retains
the well defined edges of the details of the volume. Again VGDW with 4
planes has the lowest RMS error, and VGDW in general beats the other
reconstruction methods by a large margin. However, the noise added to the
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slices in this test was Gaussian noise, not speckle, and the details of the
volume are not very subtle - it is to be expected that VGDW will perform
very well in this test.

5.3 Slice removal

We here observe that VGDW has very high RMS error even with 0 slices
skipped – this may be attributable to the fact that VGDW deliberately
smooths noise, as may be seen in Figure 4.20. However, it may also be
attributable to over-smoothing and slight misalignment. VNN performs best,
as is to be expected – theoretically the slice should be identical when using
VNN. However, when 1 slice is removed, VGDW performs best, which is
quite a feat considering it already has quite a bit of error due to noise
smoothing. When 3 planes is removed, it is neck in neck with DW and
VNN2. We observe in Figure 4.22 that the DW and VNN2 reconstructions
are blurrier with less clearly defined edges around the rod. We also observe
that VGDW seems to experience large variance in at the edges of the rod,
and seems to have a very steep weighting function in that region, leading to
much sharper edges than DW and VNN2. With 5 slices removed, DW and
VNN2 are clearly better than VGDW in terms of RMS. Interestingly, VGDW
with 4 planes generally perform better than the variant with 8 planes in this
test. Again, this may be indicative of either successful noise reduction, or
oversmoothing.

5.4 Visual evaluation

In this evaluation, we used the Tumor data set which exhibits U-turn scan-
ning, and thus overlapping data. This can be seen by looking at Figure 4.25
– the PNN and VNN reconstructions both have very visible lines due to
overlapping data having very different intensities. VNN2 and DW smooths
this out somewhat, but it is still clearly visible. VGDW with the standard
weight function smooths it out even further, but it is still clearly visible,
albeit not as disruptive. The reconstructions with Wnew = 5, which gives
higher weight to the latest frames, gets rid of the lines in their original
sense, but in this particular case the most recent data is also the darkest
data, making it clearly visible where the “new” data is located. Finally, for
the reconstructions with Wbrightness = 5, the tumor can be seen relatively
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unobstructed. It is difficult to try to answer the question of which weight
strategy is “best” – in this case the Wbrightness = 5 reconstructions provide
the best visual quality, but this is situation-dependent. If a practitioner de-
cided to do an extra sweep over a region, he might have had a reason to do
so, and may then want to give extra weight to more recent samples in the
reconstruction.

For the Y direction, seen in Figure 4.26, the same reasoning may be applied.
Finally, in the Z-direction as seen in Figure 4.27 the effects of the different
reconstruction strategies can be seen quite dramatically, with particularly
PNN and VNN giving very poor results, and the VGDW reconstructions
giving very good results with little obstructive artifacts.

The results from the visual evaluation performed by ultrasound technologists
and medical personnel can be seen in Table 4.5. The most striking result is
that the reconstructions generated by VGDW with extra weight to bright
values are unanimously preferred over the other reconstructions. We also
observe that VGDW with extra weight to more recent images are generally
given a poor rank. This may be explained by the fact that data in the end of
the “Tumor” data set was darker than the data in the beginning, leading this
weight function to give extra weight to data that in this case was undesirable.
This does, however, suggest that giving extra weight to bright data is a more
“universally good” approach to the problem of intersecting/conflicting data,
since there are fewer conditions in which it will yield poor results. We also
observe that on average, there is a very large “middle field” ranging from
5.53 to 7.17, which contains VGDW with no extra weight, VGDW with 8
planes and extra weight to late planes, DW and VNN2. This tells us that
subjective the reconstruction qualities of these algorithms are very similar,
and it is hard to claim that one is “better” than the other. However, PNN
and VGDW with L=5 and 4 planes are clear “losers” of this evaluation.

In regards to the use of 4 planes versus 8 planes, we observe that in the case
of VGDW with B = 5, the 4-plane version is generally preferred. From this
we can possibly deduce two things:

1. Spending the extra time computing the 8-plane variant is not worth
it, and/or

2. VGDW smooths too aggressively, causing more data to yield poorer
results.

The last point can be tied directly to the behavior of 3 of the 5 parameters
mentioned in Section 3.1.3, which we discuss in Section 5.6.2.
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5.5 Performance

For the 32M reconstructions, we see that the voxel-based methods in most
cases are faster than PNN, with the exception of the Tumor data set. This
may partly be explained by the large amount of image planes in the Tumor
data set, as well as the fact that the plane search algorithm will need to keep
more guesses, and thus perform more plane searches for the Tumor data set
than for the others, which are simple linear scans. The PNN algorithm
appears relatively robust with respect to how many image planes the data
set contains.

For the 128M reconstructions, we see that PNN performs very poorly for the
Phantom data set, probably due to having to do a lot of hole-filling as there
is not much data available. The voxel-based methods generally perform very
well for the Phantom data set, but for the Tumor data set they have rather
poor performance, bordering unusable in a clinical setting.

A very interesting thing to note is that among the voxel-based methods, the
most important determining factor in computational time seems to be the
number of image planes to include. VNN includes only a single plane, and
the others include planes as specified (4 or 8). This means that the overhead
of the much more complex weight function in VGDW does not contribute
significantly to computational time, at least not on the GPU used in the
evaluation.. An explanation for this is that the algorithms are memory-
bandwidth starved – they spend a lot of time waiting for data from the
global memory. Some extra computation once the data has arrived therefore
does not contribute much to the computational time.

It should however be noted that these results come from a a relatively slow
AMD Radeon 6470M GPU with slow DDR3 memory, and since the algorithm
is already parallelized it will benefit tremendously from a faster GPU.

5.6 General discussion

In this section we will take a step back, and discuss some general aspects of
the algorithm and results as a whole.
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5.6.1 What is reconstruction quality?

Most of the evaluation techniques in this thesis revolve around measuring
the RMS error. For an algorithm designed to suppress noise, this is not
advantageous, since RMS error will also measure the noise removed. In
regards to the visual evaluation, a reconstruction with no smoothing may
also appear more “feature-rich” than a slightly smoother reconstruction, yet
the perceived feature-richness may in fact be noise. On the flip side, ex-
cessive smoothing may blur and mask important image features, such as
tumor edges. An important argument is that it is much more important
to avoid hiding true positives than avoiding false positives in the context of
medical imaging. A wise strategy would therefore be to “err on the side of
caution”, i.e. sacrifice some noise reduction to reduce the chance of hiding
true positives. This argument especially carries over to the discussion of the
reconstruction parameters below.

5.6.2 Parameters

VGDW has a number of parameters that deserve to be discussed in more
detail. Some of them pertain to the problem of finding the closest image
planes to a voxel, which is common to the other distance-weighted algo-
rithms. Others are specific to VGDW, and will be discussed separately.

Multi-start local search as described in Section 3.1.2 has two interesting
parameters:

1. Gmax – the maximum number of guesses for Algorithm 1

2. Nmax – the maximum number of image planes to return for Algo-
rithm 3

Higher Gmax has a performance penalty in the beginning of the execution
of the algorithm, but will generally give less artifacts in problematic regions
in the volume (e.g. if the direction of the probe movement suddenly turns
around, this will be a problematic region for a local search, due to the ex-
istence of many minima with very short distance between them). Because
Algorithm 1 does not store more minima than it finds, the performance hit
is a “one-time” hit per cube. If reason is found to increase Gmax, one may
thus also consider increasing the cube size to reduce the relative performance
impact.
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Higher Nmax gives, as we see in Table 4.6 and Table 4.7, dramatic increase
in computational time, the time consumed increasing approximately propor-
tionally to the increase in Nmax. Ludvigsen [Ludvigsen, 2010] concluded in
his master thesis that the increase in computational speed was not worth
it in terms of image quality for the methods he evaluated, and we reiterate
this conclusion here based on the fact that using 8 planes over 4 planes does
even always constitute an improvement, in some cases even the opposite is
true.

VGDW-specific parameters are mentioned in Section 3.1.3. We reiter-
ate them here:

1. B – the extra weight to give to bright data

2. L – the extra weight to give to “late” data

3. σmin – the lowest value σ is allowed to take

4. σmax – the highest value σ is allowed to take

5. K – the constant which is divided by the square root of the variance
of the data to obtain σ

B and L are parameters whose behavior has been evaluated in this thesis.
The parameters σmin and σmax can be used to set upper and lower bounds on
how “hard” to smooth, and finally K can be used to tune the aggressiveness
of the smoothing.

The three parameters tuning the Gaussian have not been evaluated in this
thesis. However, as we saw in Section 5.4, the parameters chosen for the
visual evaluation(listed in Table 3.5) may have been too aggressive, i.e. the
algorithm may be smoothing too much.

Another thing to be on the lookout for is that while using B gives good
results in terms of the visual evaluation, it may also cause bright structures
to appear slightly wider than they are, since the extra weight given will cause
bright data to have higher weight than dark data, also in the regions where
the bright structure ends.

5.6.3 GPU considerations

When considering a GPU implementation of reconstruction methods, voxel-
based methods are what comes to mind first due to the simple parallelization
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– the same set of operations is repeated for a large set of voxels. However,
pixel based methods can also be implemented on the GPU with good results,
as demonstrated by Ludvigsen[Ludvigsen, 2010].

The plane-search algorithm described in Section 3.1.2 has both an unpre-
dictable memory access pattern, and quite a few branches, properties that
are not desirable for optimal performance on a GPU. A pixel-based ap-
proach would completely sidestep the problem of finding the closest planes,
and could potentially be both faster and more robust when facing complex
scanning patterns.

We may also notice that the reconstruction time of VGDW compared to
DW and VNN2 is not extremely much longer. Those 3 algorithms all re-
quire the same amount of image data per reconstructed voxel, yet VGDW
performs considerably more computation to determine the voxel value. This
may be an indication that the main bottleneck of the implementation is the
memory interface, since extra computation does not add significantly to the
reconstruction time.

5.6.4 32M vs 128M volumes

From the tables Table 4.6 and Table 4.7 we see that the reconstruction time
required is roughly proportional to the volume size for the voxel-based meth-
ods. PNN behaves slightly differently with the large volume, in that case
the small input data set leads to a lot of holes that need to be filled and thus
very long computational time. We have included aligned slices from 128M
and 32M volumes in Appendix B. Looking at them, it is very hard to tell
the difference, suggesting the conclusion that the 4x longer computational
time is a waste of time.
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Conclusions/Further Work

Ultrasound imaging is an important imaging modality, both due to its speed,
portability and flexibility. In the context of 3D ultrasound, 3D reconstruc-
tion of ultrasound is especially attractive due to its low cost, flexibility (no
need for big clunky 3D probes) and superior resolution. The purpose of
this thesis was to investigate the possibility of improving upon the existing
voxel-based distance-weighted algorithms, and implementing an optimized
version of it on a GPU. While we have not been able to obtain performance
results on a recent GPU, we observe that even a dated mid-range notebook
GPU shows reasonable performance.
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6.1 Conclusions

We have seen a novel reconstruction algorithm, VGDW, which tries to exploit
the nature of features in the volume – in feature-rich regions the algorithm
becomes sharp and minimizes smoothing in that region. In regions where the
volume does not have features, it smooths much more aggressively to sup-
press speckles and tracking system inaccuracies. The algorithm also includes
a scheme for dealing with voxels that have more than one image plane hit-
ting it, allowing increased priority for bright values, or newer values (or even
both). We have seen a GPU implementation of said algorithm, and com-
pared it to the older algorithms PNN, VNN, VNN2 and DW. We have also
seen a compromise between speed and correctness to address the problem of
complex scanning patterns, by performing a multi-start local search.

In terms of reconstruction quality, VGDW performs well in the synthetic
tests. In real-world volumes it is difficult to establish whether it is better
using computational metrics, due to the fact that it tries to suppress noise.
However, visual evaluation reveals that the algorithm produces a more desir-
able result than the other algorithms it was compared with, significantly so
with the customized weight function with increased weight to bright values.
The result of the visual evaluation is strikingly clear – giving extra weight to
bright values gives great results in conditions with value collisions, and was
unanimously preferred over the other approaches. Conversely, giving extra
weight to “late” values appears to be a bad idea, however we cannot rule
out the possibility that it is beneficial in some specific conditions.

We can also conclude that the increased computation time associated with
using 8 planes as opposed to 4 planes is in most cases not worth it. Finally, we
can conclude that spending a lot of time computing high-resolution volumes
is generally a waste of time, unless there are very good reasons to compute
a high-resolution volume.

6.2 Further work

In working with this thesis, some ideas have occurred to us that was out of
the scope of this thesis to pursue. We will present them here as inspiration
for future projects.
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6.2.1 Looking at the problem from the other side: a
pixel-based approach

We have seen an elaborate multi-start local search scheme to deal with the
problem of finding the image planes close enough to a voxel. This approach
is still not perfect – it still depends on some loose structure on the input data,
as it tries to find “valleys” in the search space defined by the distance of the
planes to the voxel. However, PNN which looks at the problem from the
opposite direction, “here I have an image plane, what voxels is it close to?”
is a much simpler problem to solve. One can imagine a two-step algorithm
where the first step iterates over the image planes and assigns them to voxels,
and then computing the statistics and weighted sums in a second step. The
first step may require some degree of synchronization, but it is absolutely
worth it to investigate, especially considering the slow performance of the
voxel-based methods on the “Tumor” data set, which contained a complex
scanning pattern.

6.2.2 The weight functions

One of the subtle beauties of the use of a Gaussian weight function as a
baseline is its flexibility – it has a very well-defined behavior, does not take
any unmanageable high values and has a lot of tweaking potential. We saw
in Equation 3.4 that there is a constant K influencing σG. The nature of
this constant should be investigated – should it be a constant, or should
it take on some other dynamic value (for instance the inverse of the mean
value of the samples, giving higher degree of smoothing in dark areas). Fur-
ther, the extra weight functions for brightness and “lateness”, Equation 3.5
and Equation 3.6 are rather primitive, and should perhaps be more dynamic
as opposed to their current binary nature. In particular, L and B should
perhaps not be constants, but rather some values dependent on the current
condition. Furthermore, collaboration with practitioners is important in de-
termining the weight functions, as no-one knows better what they want to
see than the practitioners themselves. Formulating weight functions consti-
tutes a straightforward way to emphasize some things and suppress others,
and should absolutely be looked into.
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6.2.3 Performance on recent GPUs, APUs and even
FPGAs

The performance results in this thesis are not very telling, as they were ob-
tained on a dated notebook GPU, as opposed to a recent, powerful desktop
GPU which will no doubt be a more common choice in a specialized system
to perform 3D Freehand Ultrasound acquisitions. Especially the memory
bandwidth of the GPU is interesting, as the reconstruction process is quite
memory intensive. At the moment of writing, AMD has recently announced
its Kaveri APU(Accellerated Processing Unit)[AMD, 2014], which can be
described as a highly integrated CPU and GPU on the same die, and im-
portantly sharing the same memory space – leading to no need for copies
between the CPU and GPU. The performance of the algorithm (and other
3D Reconstruction Algorithms for that matter) on such a system would be
interesting. Finally, it would also be interesting to investigate the perfor-
mance on modern embedded GPU-s, such as ARM Mali, Qualcomm Adreno
or Imagination PowerVR series, or even FPGAs. Acceptable performance
on such devices may pave the way into the realm of affordable hand-held,
battery-powered equipment.

6.2.4 Applying Probe Trajectory estimation

The Probe Trajectory technique[Coupé et al., 2005] has shown interesting
results, and it may be interesting to see what applying this technique to our
algorithm may achieve, especially in fan-based acquisition.

6.2.5 Investigating the effect of noise from the tracking
system

Noise in the tracking data may cause the image slices to be slightly mis-
positioned, which may be the cause of the jagged lines visible in many
reconstructions. Treating the tracking system as a “black box” delivering
accurate positions may not be the best approach – modeling its noise and
attempting to compensate for it, combined with Probe Trajectory estimation
may further improve reconstruction quality.
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6.3 Final thoughts

The work with thesis has been exploratory and experimental in nature, and
lies at the border between rigorous Computer Science and more human con-
siderations – the question “What is good image quality?” is a question that
in this context is very relevant. That is why we chose to include the element
of the practitioner in the definition of the problem, and it is also why we
have left it to the actual practitioners to be the judge of the reconstruc-
tion quality. We have seen that good reconstruction quality can be achieved
without very large compromises in reconstruction speed, and we have tried
to explore the use of weight functions to emphasize parts of the data set. We
hope this work will become as useful as it was fun and rewarding to work
with.
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Backward-warping ultrasound reconstruction for improving diagnostic
value and registration. In Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2006, pages 750–757. Springer. [32, 44, 104]

[Wiora, 2005] Wiora, G. (2005). Principle of a sonar or radar distance mea-
surement. http://en.wikipedia.org/wiki/File:Sonar_Principle_
EN.svg. [6]

[Yu and Acton, 2002] Yu, Y. and Acton, S. (2002). Speckle reduc-
ing anisotropic diffusion. Image Processing, IEEE Transactions on,
11(11):1260–1270. [7]

[Øygard, 2013] Øygard, T. (2013). Aliasing- and angle correction for
Doppler ultrasound measurements in 3D. [16]

101

http://en.wikipedia.org/wiki/File:Sonar_Principle_EN.svg
http://en.wikipedia.org/wiki/File:Sonar_Principle_EN.svg




Appendix A

Annotated Bibliography

In this chapter we will give a brief summary of selected entries from the
bibliography of this thesis. References to the bibliography entries is included
in the paragraph headers.

Freehand 3D Ultrasound Reconstruction Algorithms—a review
[Solberg et al., 2007] This paper by O.V. Solberg et.al gives a com-
prehensive summary of the state of the art of Freehand 3D Ultrasound Re-
construction in 2007. Solberg also introduced the classification into “Voxel-
based”, “Pixel-based” and “Function-based” methods.

A new adaptive interpolation algorithm for 3D ultrasound imaging
with speckle reduction and edge preservation[Huang et al., 2009]
Huang et.al. in this paper presents a novel reconstruction algorithm similar
to the one presented in this thesis. The core idea of adjusting the filter based
on the data present came from this approach. However, the implementation
details were scarce, as were the results in terms of computational speed –
but they delivered very good results in terms of image quality.

Volume reconstruction of freehand three-dimensional ultrasound
using median filters[Huang and Zheng, 2008] The approach to use
median filters was also a huge inspiration in this thesis. In this paper, Huang
et.al. presents an algorithm using median filters on all values falling inside
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the radius to select the value to go into a voxel. This method had excellent
speckle suppression, but was very computationally demanding.

3D Freehand Ultrasound Reconstruction Based on Probe Trajec-
tory[Coupé et al., 2005] Coupé et. al. presented a novel 3D Ultrasound
Reconstruction which takes the Probe Trajectory into account – instead of
performing orthogonal projection onto the image plane, they estimate the
movement of the ultrasound probe and use that movement estimation to
find the position on the image plane. They show impressive reconstruc-
tion quality, especially considering the low computational complexity of the
approach.

Backward-warping ultrasound reconstruction for improving diag-
nostic value and registration[Wein et al., 2006] Wein et.al. in this
paper presents a fast voxel-based method for 3D Ultrasound Reconstruction
implemented on a CPU. This paper, among other things, presents a very
efficient and sound way to locate the image planes close to a voxel.

Comparison of different reconstruction algorithms for three-dimensional
ultrasound imaging in a neurosurgical setting[Miller et al., 2012]
This paper evaluates the algorithms MPR, PNN, VNN, VNN2 and DW, 4
of which are also evaluated in this thesis. After both a subjective evaluation
similar to the visual evaluation in this thesis, and a slice-skip evaluation also
similar to the evaluation in this thesis, Miller et.al. finds that VNN2 and
DW produce the best results.

Real-time GPU-based 3D ultrasound reconstruction and visual-
ization[Ludvigsen, 2010] This Master’s thesis could be regarded as a
direct predecessor of this thesis. Ludvigsen paved the way into the realm
of GPU-based 3D ultrasound reconstruction, presenting several algorithms
implemented on a GPU, with tremendous speedup compared to CPU imple-
mentations.
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Appendix B

Additional Results

B.1 32M images vs 128M images

In this section we will display slices from volumes with 32M voxels side-by-
side with aligned slices from volumes with 128M voxels.
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APPENDIX B. ADDITIONAL RESULTS

Figure B.1: Images comparing 128M volumes to 32M volumes, X direction
Top row: 128M volumes. Bottom row: 32M volumes
Method, from left: PNN, VNN, VNN2 with 4 planes, VNN2 with 8 planes
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B.1. 32M IMAGES VS 128M IMAGES

Figure B.2: Images comparing 128M volumes to 32M volumes, X direction
Top row: 128M volumes. Bottom row: 32M volumes
Method, from left: DW with 4 planes, DW with 8 planes, VGDW with 4
planes, VGDW with 8 planes
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APPENDIX B. ADDITIONAL RESULTS

Figure B.3: Images comparing 128M volumes to 32M volumes, Y direction
Top row: 128M volumes. Bottom row: 32M volumes
Method, from left: PNN, VNN, VNN2 with 4 planes, VNN2 with 8 planes
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B.1. 32M IMAGES VS 128M IMAGES

Figure B.4: Images comparing 128M volumes to 32M volumes, Y direction
Top row: 128M volumes. Bottom row: 32M volumes
Method, from left: DW with 4 planes, DW with 8 planes, VGDW with 4
planes, VGDW with 8 planes

Figure B.5: Images comparing 128M volumes to 32M volumes, Z direction
Top row: 128M volumes. Bottom row: 32M volumes
Method, from left: PNN, VNN, VNN2 with 4 planes, VNN2 with 8 planes
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APPENDIX B. ADDITIONAL RESULTS

Figure B.6: Images comparing 128M volumes to 32M volumes, Z direction
Top row: 128M volumes. Bottom row: 32M volumes
Method, from left: DW with 4 planes, DW with 8 planes, VGDW with 4
planes, VGDW with 8 planes
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Appendix C

Code Listings

This appendix contains the full OpenCL code produced during the course
of the work. A few notes about the code to make it more understandable:
There is a single kernel, voxel methods, which is the entry point of all
methods. Which method is in use, and the parameters is selected using
defines at compile time.

1 /* ***************** */
/* Begin constants */

3 /* ***************** */

5 # define CUBE_SIZE 4

7 // Reconstruction methods
# define METHOD_VNN 0

9 # define METHOD_VNN2 1
# define METHOD_DW 2

11 # define METHOD_VGDW 3

13 // Plane searching methods
# define PLANE_HEURISTIC 0

15 # define PLANE_CLOSEST 1

17 /* *************** */
/* End constants */

19 /* *************** */

21

/* ************** */
23 /* Begin macros */
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/* ************** */
25

//# define DEBUG
27 # define CHECK_PLANE_INDICES

29 # ifdef DEBUG
# define DEBUG_PRINTF (...) if (( get_global_id (0) % 5000) == 0)

printf (## __VA_ARGS__ )
31 //# define DEBUG_PRINTF (...) printf (## __VA_ARGS__ )

//# define BOUNDS_CHECK (x, min , max) if(x < min || x >= max)
printf (" Line %d: %s out of range : %d min: %d max: %d\n",
__LINE__ , #x, x, min , max)

33 # define BOUNDS_CHECK (x, min , max)

35 #else
# define DEBUG_PRINTF (...)

37 # define BOUNDS_CHECK (x, min , max)
# endif

39

41 # define plane_dist (voxel , matrix ) (dot( matrix .s26AE , voxel ) - dot
( matrix .s26AE , matrix . s37BF ))

43 # define euclid_dist (a, b, c) sqrt ((a)*(a) + (b)*(b) + (c)*(c))

45 # define projectOntoPlane (voxel , matrix , dist) ( voxel - dist *(
matrix . s26AE ))

47 # define projectOntoPlaneEq (voxel , eq , dist) ( voxel - dist *( eq))

49 # define isInside (x, size) ((x) >= 0 && (x) < (size))
# define isNotMasked (x, y, mask , xsize ) (( mask)[(x) + (y)*( xsize )

] > 0)
51 //# define isNotMasked (x, y, mask , xsize ) true

53 # define VOXEL (v,x,y,z) v[x + y* volume_xsize + z* volume_ysize *
volume_xsize ]

55 # define WEIGHT_INV (x) (1.0f/fabs(x))

57 # define WEIGHT_TERNARY (val , mean , factor )
\

(( val) >= (mean) ? ( factor ) : 0.0f)
59

# define WEIGHT_GAUSS_SQRT_2PI 2.506628275 f
61

# define WEIGHT_GAUSS_NONEXP_PART ( sigma ) (1.0f/(( sigma )*
WEIGHT_GAUSS_SQRT_2PI ))

63 # define WEIGHT_GAUSS_EXP_PART (dist , sigma ) exp ( -(( dist)*( dist))
/(2*( sigma )*( sigma )))
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65 # define WEIGHT_GAUSS (x, sigma ) ( WEIGHT_GAUSS_NONEXP_PART ( sigma )*
WEIGHT_GAUSS_EXP_PART (x, sigma ))

67 # define VGDW_GAUSS_WEIGHT (px , var , mean , mean_id , sigma )
WEIGHT_GAUSS (px.dist , sigma )

69 # ifndef BRIGHTNESS_FACTOR
# define BRIGHTNESS_FACTOR 0.0f

71 # endif
# ifndef NEWNESS_FACTOR

73 # define NEWNESS_FACTOR 0.0f
# endif

75

# define VGDW_WEIGHT_BRIGHTNESS (px , var , mean , mean_id , sigma )
\

77 (( WEIGHT_GAUSS (px.dist , sigma )) + ( WEIGHT_TERNARY (px.intensity
, mean , BRIGHTNESS_FACTOR )))

79 # define VGDW_WEIGHT_LATENESS (px , var , mean , mean_id , sigma )
\

(( WEIGHT_GAUSS (px.dist , sigma )) + ( WEIGHT_TERNARY (px.plane_id ,
mean_id , NEWNESS_FACTOR )))

81

83 # define VGDW_WEIGHT (px , var , mean , mean_id , sigma ) \
(( WEIGHT_GAUSS (px.dist , sigma )) \

85 + ( WEIGHT_TERNARY (px.plane_id , mean_id , NEWNESS_FACTOR )) \
+ ( WEIGHT_TERNARY (px.intensity , mean , BRIGHTNESS_FACTOR )))

87

# define DW_WEIGHT (x) WEIGHT_INV (x)
89 # define VNN2_WEIGHT (x) WEIGHT_INV (x)

91 # define CLOSE_PLANE_IDX (p, i) p[ get_local_id (0) *( MAX_PLANES +1) +(
i)]

93 /* ************ */
/* End macros */

95 /* ************ */

97 /* *************** */
/* Begin structs */

99 /* *************** */

101 typedef struct _close_plane
{

103 float dist;
short plane_id ;

105 unsigned char intensity ;
unsigned char padding ; // Align with 4
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107 } close_plane_t ;

109 /* ************* */
/* End structs */

111 /* ************* */

113 /* ****************** */
/* Begin prototypes */

115 /* ****************** */

117 // Declare all the functions , as Apple seems to need that

119 int isValidPixel (int x,
int y,

121 const __global unsigned char* mask ,
int in_xsize ,

123 int in_ysize );

125 int
findHighestIdx ( __local close_plane_t *planes ,

127 int n);
int2

129 findClosestPlanes_heuristic ( __local close_plane_t * close_planes ,
__local float4 * const plane_eqs ,

131 __constant float16 * const
plane_matrices ,

const float4 voxel ,
133 const float radius ,

int guess ,
135 bool doTermDistance ,

__global const unsigned char* mask ,
137 int in_xsize ,

int in_ysize ,
139 float in_xspacing ,

float in_yspacing );
141

int2
143 findClosestPlanes_multistart ( __local close_plane_t * close_planes

,
__local float4 * const plane_eqs ,

145 __constant float16 * const
plane_matrices ,

const float4 voxel ,
147 const float radius ,

int * multistart_guesses ,
149 int n_multistart_guesses ,

bool doTermDistance ,
151 __global const unsigned char* mask ,

int in_xsize ,
153 int in_ysize ,
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float in_xspacing ,
155 float in_yspacing );

157

// I’m sorry about this ..
159 #if PLANE_METHOD == PLANE_EXACT

# define FIND_CLOSE_PLANES (a, b, c, d, e, f, g, h, i, j, k, l)
findClosestPlanes_multistart (a, b, c, d, e, f, g, 1, h, i, j
, k, l)

161 #elif PLANE_METHOD == PLANE_CLOSEST

163 # ifdef MAX_MULTISTART_STARTS
# undef MAX_MULTISTART_STARTS

165 # define MAX_MULTISTART_STARTS 1
# endif

167

# define FIND_CLOSE_PLANES (a, b, c, d, e, f, g, h, i, j, k, l)
findClosestPlanes_multistart (a, b, c, d, e, f, g, 0, h, i, j
, k, l)

169 # endif

171 float2
transform_inv_xy ( float16 matrix , float4 voxel );

173

void
175 toImgCoord_int (int* x,

int* y,
177 float4 voxel ,

float16 plane_matrix ,
179 float in_xspacing ,

float in_yspacing );
181

void
183 toImgCoord_float ( float * x,

float * y,
185 float4 voxel ,

float16 plane_matrix ,
187 float in_xspacing ,

float in_yspacing );
189

191 unsigned char vgdwFilter ( __local const close_plane_t *pixels ,
int n_planes );

193

#if METHOD == METHOD_VNN
195

__constant const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE
| CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST ;

197 unsigned char
performInterpolation_vnn ( __local close_plane_t * close_planes ,
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199 int n_close_planes ,
__constant const float16 *

plane_matrices ,
201 __local const float4 *plane_eqs ,

__read_only image2d_array_t in_bscans ,
203 int in_xsize ,

int in_ysize ,
205 float in_xspacing ,

float in_yspacing ,
207 __global const unsigned char* mask ,

float4 voxel );
209 # endif

211 #if METHOD == METHOD_VNN2
__constant const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE

| CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST ;
213 unsigned char

performInterpolation_vnn2 ( __local close_plane_t * close_planes ,
215 int n_close_planes ,

__constant const float16 *
plane_matrices ,

217 __local const float4 *plane_eqs ,
__read_only image2d_array_t in_bscans ,

219 int in_xsize ,
int in_ysize ,

221 float in_xspacing ,
float in_yspacing ,

223 __global const unsigned char* mask ,
float4 voxel );

225 # endif

227 #if METHOD == METHOD_DW
__constant const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE

| CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR ;
229 unsigned char

performInterpolation_dw ( __local close_plane_t * close_planes ,
231 int n_close_planes ,

__constant const float16 *
plane_matrices ,

233 __local const float4 *plane_eqs ,
__read_only image2d_array_t in_bscans ,

235 int in_xsize ,
int in_ysize ,

237 float in_xspacing ,
float in_yspacing ,

239 __global const unsigned char* mask ,
float4 voxel );

241 # endif

243 #if METHOD == METHOD_VGDW
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__constant const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE
| CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR ;

245 unsigned char
performInterpolation_vgdw ( __local close_plane_t * close_planes ,

247 int n_close_planes ,
__constant const float16 *

plane_matrices ,
249 __local const float4 *plane_eqs ,

__read_only image2d_array_t
in_bscans ,

251 int in_xsize ,
int in_ysize ,

253 float in_xspacing ,
float in_yspacing ,

255 __global const unsigned char* mask ,
float4 voxel );

257 # endif

259 void
prepare_plane_eqs ( __constant float16 * plane_matrices ,

261 __local float4 * plane_eqs );

263

int
265 findLocalMinimas (int *guesses ,

__local const float4 *plane_eqs ,
267 float radius ,

float4 voxel ,
269 float out_xspacing ,

float out_yspacing ,
271 float out_zspacing ,

float in_xspacing ,
273 float in_yspacing ,

__constant const float16 * plane_matrices ,
275 __global const unsigned char *mask ,

int in_xsize ,
277 int in_ysize );

279

__kernel void
281 voxel_methods (int volume_xsize ,

int volume_ysize ,
283 int volume_zsize ,

float volume_xspacing ,
285 float volume_yspacing ,

float volume_zspacing ,
287 int in_xsize ,

int in_ysize ,
289 float in_xspacing ,

float in_yspacing ,
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291 __read_only image2d_array_t in_bscans ,
__global unsigned char* out_volume ,

293 __constant float16 * plane_matrices ,
__global unsigned char* mask ,

295 __local float4 *plane_eqs ,
__local close_plane_t *planes ,

297 float radius );

299

301 /* **************** */
/* End prototypes */

303 /* **************** */

305

307 int isValidPixel (int x,
int y,

309 const __global unsigned char* mask ,
int in_xsize ,

311 int in_ysize )
{

313 # ifndef DEBUG
return ( isInside (x, in_xsize )

315 && isInside (y, in_ysize )
&& isNotMasked (x, y, mask , in_xsize ));

317 #else
if (( isInside (x, in_xsize )

319 && isInside (y, in_ysize )
&& isNotMasked (x, y, mask , in_xsize )))

321 {
return 1;

323 }
else {

325 // DEBUG_PRINTF (" Pixel %d, %d is not valid ! Sizes : %d, %d
\n",

// x, y, in_xsize , in_ysize );
327 return 0;

}
329 # endif

331 }

333

/**
335 * Find the plane with the highest distance to the voxel

* i.e. the plane with the highest absolute value of dist.
337 * Return the index of that plane

* @param * planes Pointer to first element of plane array
339 * @param n size of array pointed to * planes
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*/
341 int

findHighestIdx ( __local close_plane_t *planes ,
343 int n)

{
345 int maxidx = 0;

float maxval = -1.0f;
347 planes = & CLOSE_PLANE_IDX (planes , 0);

349 for(int i = 0; i < n; i++)
{

351 float abs = fabs(planes ->dist);
if(abs > maxval )

353 {
maxidx = i;

355 maxval = abs;
}

357 planes ++;
}

359 // DEBUG_PRINTF (" New maxidx : %d maxdist = %f\n", maxidx ,
maxval );

BOUNDS_CHECK (maxidx , 0, MAX_PLANES );
361 return maxidx ;

}
363

int2
365 findClosestPlanes_multistart ( __local close_plane_t * close_planes

,
__local float4 * const plane_eqs ,

367 __constant float16 * const
plane_matrices ,

const float4 voxel ,
369 const float radius ,

int * multistart_guesses ,
371 int n_multistart_guesses ,

bool doTermDistance ,
373 __global const unsigned char* mask ,

int in_xsize ,
375 int in_ysize ,

float in_xspacing ,
377 float in_yspacing )

{
379 close_plane_t tmp;

tmp.dist = INFINITY ;
381 tmp. plane_id = -1;

for(int i = 0; i < MAX_PLANES ; i++)
383 {

CLOSE_PLANE_IDX ( close_planes , i) = tmp;
385 }
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387 int2 ret;
int found = 0;

389 for(int i = 0; i < n_multistart_guesses ; i++)
{

391 ret = findClosestPlanes_heuristic ( close_planes ,
plane_eqs ,

393 plane_matrices ,
voxel ,

395 radius ,
multistart_guesses [i],

397 doTermDistance ,
mask ,

399 in_xsize ,
in_ysize ,

401 in_xspacing ,
in_yspacing );

403 if(ret.x > 0)
{

405 multistart_guesses [i] = ret.y;
}

407 found += ret.x;

409 }

411 ret.x = min(found , MAX_PLANES );
ret.y = 0;

413

# ifdef DEBUG
415 # ifdef CHECK_PLANE_INDICES

for(int i = 0; i < min(found , MAX_PLANES ); i++)
417 {

BOUNDS_CHECK ( CLOSE_PLANE_IDX ( close_planes , i).plane_id , 0,
N_PLANES );

419 }
# endif

421 # endif

423 return ret;
}

425

/**
427 * Find planes that are within radius of voxel .

* Search in both directions in the plane array , starting at
guess

429 * The assumption is that as you move away from the guess ,
* the distance to this voxel will increase . That assumption may

not always be true , for instance
431 * if the US probe was swept back and forth .

* Finds the closest MAX_PLANES planes within radius ,
433 * provided no plane with distance greater than
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* 2x radius is found before any of the MAX_PLANES closest
planes .

435 */
int2

437 findClosestPlanes_heuristic ( __local close_plane_t * close_planes ,
__local float4 * const plane_eqs ,

439 __constant float16 * const
plane_matrices ,

const float4 voxel ,
441 const float radius ,

int guess ,
443 bool doTermDistance ,

__global const unsigned char* mask ,
445 int in_xsize ,

int in_ysize ,
447 float in_xspacing ,

float in_yspacing )
449 {

451

// Number of planes found so far
453 int found = 0;

455 // Done condition . .x = up , .y = down
int2 done = {0 ,0};

457

// The index of the plane with the smallest distance found so
far

459 int smallest_idx = guess ;

461 float term_condition = clamp (fabs(dot(voxel , plane_eqs [ guess ])
), radius , 3* radius );

463 // The smallest distance found so far
float smallest_dist = 99999.9 f;

465

// The index of the plane with the biggest index so far
467 int max_idx = findHighestIdx ( close_planes , MAX_PLANES );

469 // The biggest distance found so far
float max_dist = min(fabs( CLOSE_PLANE_IDX ( close_planes ,

max_idx ).dist), radius );
471

close_plane_t tmp;
473 tmp. intensity = 0;

475 // If guess is 0, we will try to access data for plane id -1,
which does not exist .

// Assume plane 1 is close enough in that case
477 if( guess == 0) guess = 1;
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479 // We won ’t be changing the guess , but the compiler wouldn ’t
know that

const int tmp_guess = guess ;
481 BOUNDS_CHECK (tmp_guess , 1, N_PLANES );

float2 dists = {dot(voxel , plane_eqs [ guess ]) , dot(voxel ,
plane_eqs [guess -1]) };

483 float2 abs_dists = {fabs( dists .x), fabs( dists .y)}; // .x =
abs_dist_up , .y = abs_dist_down ,

485 for(int i = 0; !done.x || !done.y ; i++)
{

487 // Compute the indices of the planes we want to look at.
int2 idx = { tmp_guess + i, tmp_guess - i - 1};

489

if(idx.y <=0)
491 idx.y = 0;

if(idx.x >= N_PLANES -1)
493 idx.x = N_PLANES -1;

495 // float2 prev_abs_dists = abs_dists ;

497 // Compute the distances to those planes
dists .x = dot(voxel , plane_eqs [idx.x]);

499 dists .y = dot(voxel , plane_eqs [idx.y]);
// Compute the absolute distances to those planes

501 abs_dists .x = fabs( dists .x);
abs_dists .y = fabs( dists .y); // .x = abs_dist_up , .y =

abs_dist_down ,
503

505 // float2 diff_dists = prev_abs_dists - abs_dists ;

507 // Check if the plane is closer than the one farthest away
we have included so far

if (! done.x && abs_dists .x < max_dist )
509 {

BOUNDS_CHECK (idx.x, 0, N_PLANES );
511 BOUNDS_CHECK (max_idx , 0, MAX_PLANES );

int px , py;
513 float4 translated_voxel = projectOntoPlaneEq (voxel ,

plane_eqs [idx.x
],

515 dists .x);
toImgCoord_int (&px ,

517 &py ,
translated_voxel ,

519 plane_matrices [idx.x],
in_xspacing ,

521 in_yspacing );
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523 if( isValidPixel (px , py , mask , in_xsize , in_ysize ))
{

525

// If yes , swap out the one with the longest distance
for this plane

527 tmp.dist = dists .x;
tmp. plane_id = idx.x;

529 CLOSE_PLANE_IDX ( close_planes , max_idx ) = tmp;
found ++;

531

// We have found MAX_PLANES planes , but we don ’t know
they ’re the closest ones.

533 // Find the next candidate for eviction -
// the plane with the longest distance to the voxel

535 max_idx = findHighestIdx ( close_planes , MAX_PLANES );
max_dist = min(fabs( CLOSE_PLANE_IDX ( close_planes ,

max_idx ).dist), radius );
537

if( smallest_dist > abs_dists .x)
539 {

// Update next guess
541 smallest_dist = abs_dists .x;

smallest_idx = idx.x;
543 }

}
545 }

547 // And the same in the down direction
// Check if the plane is closer than the one farthest away

we have included so far
549 if (! done.y && abs_dists .y < max_dist )

{
551 BOUNDS_CHECK (idx.y, 0, N_PLANES );

BOUNDS_CHECK (max_idx , 0, MAX_PLANES );
553 // If yes , swap out the one with the longest distance for

this plane
int px , py;

555 float4 translated_voxel = projectOntoPlaneEq (voxel ,
plane_eqs [idx.y

],
557 dists .y);

559 toImgCoord_int (&px ,
&py ,

561 translated_voxel ,
plane_matrices [idx.y],

563 in_xspacing ,
in_yspacing );

565 if( isValidPixel (px , py , mask , in_xsize , in_ysize ))
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{
567 tmp.dist = dists .y;

tmp. plane_id = idx.y;
569 CLOSE_PLANE_IDX ( close_planes , max_idx ) = tmp;

571 found ++;
max_idx = findHighestIdx ( close_planes , MAX_PLANES );

573 max_dist = min(fabs( CLOSE_PLANE_IDX ( close_planes ,
max_idx ).dist), radius );

if( smallest_dist > abs_dists .y)
575 {

// Update next guess
577 smallest_dist = abs_dists .y;

smallest_idx = idx.y;
579 }

}
581 }

583

int2 term_dists = {( abs_dists .x > term_condition )*
doTermDistance , ( abs_dists .y > term_condition )*
doTermDistance };

585

// int2 term_radius_jump = {fabs( diff_dists .x) > radius , fabs
( diff_dists .y) > radius };

587 int2 term_boundaries = {idx.x == N_PLANES -1, idx.y == 0};

589 done = done + term_dists + term_boundaries ;// +
term_radius_jump ;

}
591

int2 ret;
593 ret.x = min(found , MAX_PLANES );

ret.y = smallest_idx ;
595 return ret;

}
597

599 /**
* Perform an inverse transformation of voxel , but only

transform the x and y coordinates . This is useful
601 * when finding image coordinates .

*/
603 float2 transform_inv_xy ( float16 matrix , float4 voxel )

{
605 float2 ret;

float4 col0 = matrix . s048C ;
607 float4 col1 = matrix . s159D ;

float4 col3 = matrix . s37BF ;
609
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ret.x = dot(voxel ,col0) - dot(col3 ,col0);
611 ret.y = dot(voxel ,col1) - dot(col3 ,col1);

return ret;
613 }

615 /**
* Transform to integer image coordinates - i.e. pixel

coordinates
617 */

void toImgCoord_int (int* x,
619 int* y,

float4 voxel ,
621 float16 plane_matrix ,

float in_xspacing ,
623 float in_yspacing )

{
625

float2 transformed_voxel = transform_inv_xy ( plane_matrix ,
voxel );

627

*x = (( transformed_voxel .x/ in_xspacing ) + 0.5f);
629 *y = (( transformed_voxel .y/ in_yspacing ) + 0.5f);

}
631

/**
633 * Transform to floating point image coordinates

*/
635 void toImgCoord_float ( float * x,

float * y,
637 float4 voxel ,

float16 plane_matrix ,
639 float in_xspacing ,

float in_yspacing )
641 {

643 float2 transformed_voxel = transform_inv_xy ( plane_matrix ,
voxel );

645 *x = (( transformed_voxel .x/ in_xspacing ));
*y = (( transformed_voxel .y/ in_yspacing ));

647 }

649

651 #if METHOD == METHOD_VNN
# define PERFORM_INTERPOLATION (a, b, c, d, e, f, g, h, i , j, k)

\
653 performInterpolation_vnn (a, b, c, d, e, f, g, h, i, j, k)

655 /**
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* Perform interpolation using the Voxel Nearest Neighbour
method .

657 * This works by taking finding the plane closest to the voxel ,
* projecting the voxel orthogonally onto the image plane to

find pixel coordinates
659 * and taking the pixel value

*/
661 unsigned char

performInterpolation_vnn ( __local close_plane_t * close_planes ,
663 int n_close_planes ,

__constant const float16 *
plane_matrices ,

665 __local const float4 *plane_eqs ,
__read_only image2d_array_t in_bscans ,

667 int in_xsize ,
int in_ysize ,

669 float in_xspacing ,
float in_yspacing ,

671 __global const unsigned char* mask ,
float4 voxel )

673 {
if( n_close_planes == 0) return 1;

675

int plane_id = 0;
677 float lowest_dist = 10.0f;

int close_plane_id = 0;
679 close_plane_t plane ;

// Find the closest plane
681 for(int i = 0; i < n_close_planes ; i++)

{
683 plane = CLOSE_PLANE_IDX ( close_planes , i);

float fabs_dist = fabs( plane .dist);
685 if( fabs_dist < lowest_dist )

{
687 lowest_dist = fabs_dist ;

plane_id = plane . plane_id ;
689 close_plane_id = i;

}
691 }

BOUNDS_CHECK (plane_id , 0, N_PLANES );
693

695 // Now we project the voxel onto the plane by translating the
voxel along the

// normal vector of the plane .
697 float4 translated_voxel = projectOntoPlane (voxel ,

plane_matrices [
plane_id ],

699 CLOSE_PLANE_IDX (
close_planes ,
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close_plane_id )
.dist);

translated_voxel .w = 1.0f;
701

703 // And then we get the pixel space coordinates
int x, y;

705 toImgCoord_int (&x,
&y,

707 translated_voxel ,
plane_matrices [ plane_id ],

709 in_xspacing ,
in_yspacing );

711 int4 coord = {x, y, plane_id , 0};
if (! isValidPixel (x,y, mask , in_xsize , in_ysize ))

713 {
return 1;

715 }
BOUNDS_CHECK (x, 0, in_xsize );

717 BOUNDS_CHECK (y, 0, in_ysize );
return max (( unsigned int)1, read_imageui (in_bscans , sampler ,

coord ).x);
719

}
721 # endif

723 #if METHOD == METHOD_VNN2
# define PERFORM_INTERPOLATION (a, b, c, d, e, f, g, h, i ,j, k)

\
725 performInterpolation_vnn2 (a, b, c, d, e, f, g, h, i, j, k)

727 /**
* Perform interpolation using the VNN2 method . For each close

plane , add (1/ dist)* closest_pixel_value to the sum.
729 * In the end , divide sum by sum (1/ dist), and you have your

voxel value .
*/

731 unsigned char
performInterpolation_vnn2 ( __local close_plane_t * close_planes ,

733 int n_close_planes ,
__constant const float16 *

plane_matrices ,
735 __local const float4 *plane_eqs ,

__read_only image2d_array_t in_bscans ,
737 int in_xsize ,

int in_ysize ,
739 float in_xspacing ,

float in_yspacing ,
741 __global const unsigned char* mask ,

float4 voxel )
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743 {
if( n_close_planes == 0) return 1;

745

747 float scale = 0.0f;

749 float val = 0;
for(int i = 0; i < n_close_planes ; i++)

751 {
close_plane_t plane = CLOSE_PLANE_IDX ( close_planes , i);

753 int plane_id = plane . plane_id ;

755 // Now we project the voxel onto the plane by translating
the voxel along the

// normal vector of the plane .
757 voxel .w = 1.0f;

float4 translated_voxel = projectOntoPlaneEq (voxel ,
759 plane_eqs [

plane_id ],
plane .dist);

761

translated_voxel .w = 1.0f;
763 // And then we get the pixel space coordinates

int x, y;
765 toImgCoord_int (&x,

&y,
767 translated_voxel ,

plane_matrices [ plane_id ],
769 in_xspacing ,

in_yspacing );
771

if (! isValidPixel (x,y, mask , in_xsize , in_ysize ))
773 {

continue ;
775 }

float dist = fabs( plane .dist);
777

if(dist < 0.001 f)
779 dist = 0.001 f;

float weight = VNN2_WEIGHT (dist);
781 int4 coord = {x, y, plane_id , 0};

scale += weight ;
783 val += ( read_imageui (in_bscans , sampler , coord ).x * weight );

}
785

787 return max (( unsigned char)1, ( unsigned char) (( val / scale ) +
0.5f));

789 }
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# endif
791

#if METHOD == METHOD_DW
793 # define PERFORM_INTERPOLATION (a, b, c, d, e, f, g, h, i ,j, k)

\
performInterpolation_dw (a, b, c, d, e, f, g, h, i, j, k)

795

/**
797 * Perform interpolation using the DW method . Works the same as

VNN2 , but instead of taking the closest pixel on each image
plane ,

* the value from each plane is a bilinearly interpolated from
that plane .

799 */
unsigned char

801 performInterpolation_dw ( __local close_plane_t * close_planes ,
int n_close_planes ,

803 __constant const float16 *
plane_matrices ,

__local const float4 *plane_eqs ,
805 __read_only image2d_array_t in_bscans ,

int in_xsize ,
807 int in_ysize ,

float in_xspacing ,
809 float in_yspacing ,

__global const unsigned char* mask ,
811 float4 voxel )

{
813

815 if( n_close_planes == 0) return 1;

817

float scale = 0.0f;
819

float val = 0;
821 for(int i = 0; i < n_close_planes ; i++)

{
823 close_plane_t plane = CLOSE_PLANE_IDX ( close_planes , i);

int plane_id = plane . plane_id ;
825

827 // Now we project the voxel onto the plane by translating
the voxel along the

// normal vector of the plane .
829 voxel .w = 1.0f;

float4 translated_voxel = projectOntoPlaneEq (voxel ,
831 plane_eqs [

plane_id ],
plane .dist);
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833

translated_voxel .w = 1.0f;
835 // And then we get the pixel space coordinates

float x, y;
837 toImgCoord_float (&x,

&y,
839 translated_voxel ,

plane_matrices [ plane_id ],
841 in_xspacing ,

in_yspacing );
843

845 // The OpenCL spec defines the linear filtering to be shited
by 0.5f for some reason

x += 0.5f;
847 y += 0.5f;

int ix , iy;
849 ix = x;

iy = y;
851 if (! isValidPixel (ix ,iy , mask , in_xsize , in_ysize )

|| ! isValidPixel (ix+1, iy , mask , in_xsize , in_ysize )
853 || ! isValidPixel (ix+1, iy+1, mask , in_xsize , in_ysize )

|| ! isValidPixel (ix , iy+1, mask , in_xsize , in_ysize )
855 )

{
857 continue ;

}
859 float4 coord = {x, y, plane_id , 0};

861 float interpolated_value = read_imageui (in_bscans , sampler ,
coord ).x;

863 float dist = fabs( plane .dist);
if(dist < 0.001 f) dist = 0.001 f;

865 float weight = DW_WEIGHT (dist);
scale += weight ;

867 val += ( interpolated_value * weight );
}

869

871 return max (( unsigned char)1, ( unsigned char) (( val / scale ) +
0.5f));

873 }
# endif

875

#if METHOD == METHOD_VGDW
877 # define PERFORM_INTERPOLATION (a, b, c, d, e, f, g, h, i ,j, k)

\
performInterpolation_vgdw (a, b, c, d, e, f, g, h, i, j, k)
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879

/**
881 * Perform interpolation using VGDW filter

*/
883 unsigned char

performInterpolation_vgdw ( __local close_plane_t * close_planes ,
885 int n_close_planes ,

__constant const float16 *
plane_matrices ,

887 __local const float4 *plane_eqs
,

__read_only image2d_array_t
in_bscans ,

889 int in_xsize ,
int in_ysize ,

891 float in_xspacing ,
float in_yspacing ,

893 __global const unsigned char*
mask ,

float4 voxel )
895 {

897

if( n_close_planes == 0)
899 {

return 1;
901 }

int found_planes = 0;
903 for(int i = 0; i < n_close_planes ; i++)

{
905 close_plane_t plane = CLOSE_PLANE_IDX ( close_planes ,i);

const int plane_id = plane . plane_id ;
907

// Project onto plane
909 voxel .w = 1.0f;

float4 translated_voxel = projectOntoPlaneEq (voxel ,
911 plane_eqs [

plane_id ],
plane .dist);

913 translated_voxel .w = 1.0f;

915 float x, y;
toImgCoord_float (&x,

917 &y,
translated_voxel ,

919 plane_matrices [ plane_id ],
in_xspacing ,

921 in_yspacing );

923 // The OpenCL spec defines the linear filtering to be shited
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by 0.5f for some reason
x += 0.5f;

925 y += 0.5f;

927 int ix , iy;
ix = x;

929 iy = y;
if (! isValidPixel (ix ,iy , mask , in_xsize , in_ysize )

931 || ! isValidPixel (ix+1, iy , mask , in_xsize , in_ysize )
|| ! isValidPixel (ix+1, iy+1, mask , in_xsize , in_ysize )

933 || ! isValidPixel (ix , iy+1, mask , in_xsize , in_ysize )
)

935 {
continue ;

937 }
float4 coord = {x, y, plane_id , 0};

939 CLOSE_PLANE_IDX ( close_planes , found_planes ). intensity =
read_imageui (in_bscans , sampler , coord ).x;

found_planes ++;
941 }

return max (( unsigned char)1, vgdwFilter ( close_planes ,
found_planes ));

943

}
945

947

unsigned char vgdwFilter ( __local const close_plane_t *pixels ,
949 int n_planes )

{
951 // Calculate the variance

953 float mean_value = 0.0f;
int sum_ids = 0.0f;

955 close_plane_t tmp;
for(int i = 0; i < n_planes ; i++)

957 {
tmp = CLOSE_PLANE_IDX (pixels , i);

959 mean_value += tmp. intensity ;
sum_ids += tmp. plane_id ;

961 }
float mean_id = ( float ) sum_ids / n_planes ;

963 mean_value = mean_value / n_planes ;

965 float variance = 0.0f;
for(int i = 0; i < n_planes ; i++)

967 {
float tmp = CLOSE_PLANE_IDX (pixels , i). intensity -

mean_value ;
969 variance += mad(tmp , tmp , variance );
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}
971

// We want high variance regions to have a sharp weight
function

973 // and small variance regions to have a smooth weight function
.

975 variance = clamp ( variance /( n_planes -1) , 1.0f, 10000000.0 f);
float gauss_sigma = 32.0f/sqrt( variance );

977

# ifdef DEBUG
979 if( variance > 0.1f && mean_value > 10.0f)

DEBUG_PRINTF ("Mean: %f, variance : %f, sigma : %f\n",
mean_value , variance , gauss_sigma );

981 # endif

983 float sum_weights = 0.0f;
float sum = 0.0f;

985 // Use the resulting gauss sigma to calcualte weights
for(int i = 0; i < n_planes ; i++)

987 {
tmp = CLOSE_PLANE_IDX (pixels , i);

989 float weight = VGDW_WEIGHT (tmp , variance , mean_value ,
mean_id , gauss_sigma );

sum = mad(tmp.intensity ,weight , sum);
991 sum_weights += weight ;

}
993 return (sum / sum_weights ) + 0.5f;

}
995

997

# endif
999 /**

* Build the plane equations from the matrices and store them in
local memory

1001 */
void

1003 prepare_plane_eqs ( __constant float16 * plane_matrices ,
__local float4 * plane_eqs )

1005 {
int id = get_local_id (0);

1007 int max_local_id = get_local_size (0);
const int n_planes_pr_thread = ( N_PLANES / max_local_id ) + 1;

1009

for(int i = 0; i < n_planes_pr_thread ; i++)
1011 {

int idx = i + n_planes_pr_thread * id;
1013 if(idx >= N_PLANES ) break ;

plane_eqs [idx ]. xyz = plane_matrices [idx ]. s26A;
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1015 plane_eqs [idx ].w = -dot( plane_matrices [idx ]. s26AE ,
plane_matrices [idx ]. s37BF );

}
1017 barrier ( CLK_LOCAL_MEM_FENCE );

}
1019

int findLocalMinimas (int *guesses ,
1021 __local const float4 *plane_eqs ,

float radius ,
1023 float4 voxel ,

float out_xspacing ,
1025 float out_yspacing ,

float out_zspacing ,
1027 float in_xspacing ,

float in_yspacing ,
1029 __constant const float16 * plane_matrices ,

__global const unsigned char *mask ,
1031 int in_xsize ,

int in_ysize )
1033

{
1035 // Find all valleys in the search space of distances .

// We don ’t need the _exact_ minima , however it should be
inside the sweep we want.

1037 // However , the input data are noisy , so local minima in its
strictest sense does not work for us.

// But if we can find two indices a and b, such that dist(i) <
dist(a) and dist(i) < dist(b)

1039 // and b - a = LOCAL_SEARCH_DISTANCE , it ’s a good chance it ’s
a minima .

1041 int nMinima = 1;

1043 // Now with the cube -ish way of doing things , we may simply
find all guesses that are closer than CUBE_SIZE *
voxel_scale

float max_dist = euclid_dist ( out_xspacing * CUBE_SIZE ,
out_zspacing *CUBE_SIZE , out_yspacing * CUBE_SIZE ) + radius ;

1045 DEBUG_PRINTF ("Max dist is %f\n", max_dist );
int prev_pos = 0;

1047 // float smallest_dist = fabs(dot(voxel , plane_eqs [0]));
guesses [0] = 0;

1049 int hasHighSinceLastTaken = 1;
for(int i = 0;

1051 i < N_PLANES ;
i++)

1053 {
float dist = fabs(dot(voxel , plane_eqs [i]));

1055 if(dist < max_dist )
{
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1057

// We are inside a local minima . Now , how do we know we
haven ’t found this minima before ?

1059 // We require that they be spaced by at least
LOCAL_SEARCH_DISTANCE .

// However , if this minima is better (i.e. closer ) than
the previous one

1061 // inside LOCAL_SEARCH_DISTANCE ,
// of course we want to use this one.

1063 if (! hasHighSinceLastTaken )
{

1065 DEBUG_PRINTF (" Minima %d: Found nearby minima : %d : %f\n"
, nMinima , i, dist);

// We have a previous minima , and it ’s too close .
1067 float prev_dist = fabs(dot( plane_eqs [ guesses [ prev_pos ]],

voxel ));
if(dist < prev_dist )

1069 {
DEBUG_PRINTF (" Taking it\n");

1071 // But this one is better , lets use it
guesses [ prev_pos ] = i;

1073 hasHighSinceLastTaken = 0;
}

1075 }
else if( nMinima < MAX_MULTISTART_STARTS )

1077 {
// We may simply store this minima

1079 DEBUG_PRINTF (" Minima %d: Found new minima : %d : %f\n",
nMinima , i, dist);

guesses [ nMinima ] = i;
1081 prev_pos = nMinima ;

hasHighSinceLastTaken = 0;
1083 nMinima ++;

}
1085 else {

// We already have MAX_MULTISTART_STARTS minimas , so now
pick the " worst " minima

1087 // and toss it out for this one

1089 float biggest = -INFINITY ;
float tmp;

1091 int biggest_idx = 0;
hasHighSinceLastTaken = 0;

1093 for(int j = 0; j < nMinima ; j++)
{

1095 tmp = fabs(dot( plane_eqs [ guesses [j]], voxel ));
if(tmp > biggest )

1097 {
biggest_idx = j;

1099 biggest = tmp;
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}
1101 }

if( biggest > dist)
1103 {

DEBUG_PRINTF (" Switching out %d for %d: %f vs %f\n",
biggest_idx , i, biggest , dist);

1105 guesses [ biggest_idx ] = i;
prev_pos = biggest_idx ;

1107 }
}

1109 }
else

1111 {
hasHighSinceLastTaken = 1;

1113 }
}

1115

DEBUG_PRINTF (" Found %d minima in total \n", nMinima );
1117

return nMinima ;
1119 }

1121 /** The entry point for this set of reconstruction methods .
* Parameters :

1123 * @param volume_xsize Size of output volume , X direction
* @param volume_ysize Size of output volume , Y direction

1125 * @param volume_zsize Size of output volume , Z direction
* @param volume_xspacing Voxel size of output volume , X

direction
1127 * @param volume_yspacing Voxel size of output volume , Y

direction
* @param volume_zspacing Voxel size of output volume , Z

direction
1129 * @param in_xsize Size of each ultrasound input image in pixels

, X direction
* @param in_ysize Size of each ultrasound input image in pixels

, Y direction
1131 * @param in_xspacing Size of each pixel in input ultrasound

images , X direction
* @param in_yspacing Size of each pixel in input ultrasound

images , Y direction
1133 * @param in_bscans_b_ Ultrasound input images

* @param out_volume Output volume - reconstructed volume goes
here

1135 * @param plane_matrices One matrix per image plane specifying
the transform from pixel space to voxel space

* @param plane_eqs Pointer to local memory where we will store
plane equations

1137 * @param radius The radius of the kernel - how far away to
accept voxels from.
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*/
1139 __kernel void

voxel_methods (int volume_xsize ,
1141 int volume_ysize ,

int volume_zsize ,
1143 float volume_xspacing ,

float volume_yspacing ,
1145 float volume_zspacing ,

int in_xsize ,
1147 int in_ysize ,

float in_xspacing ,
1149 float in_yspacing ,

__read_only image2d_array_t in_bscans ,
1151 __global unsigned char* out_volume ,

__constant float16 * plane_matrices ,
1153 __global unsigned char *mask ,

__local float4 *plane_eqs ,
1155 __local close_plane_t * close_planes ,

float radius
1157 )

{
1159

int id = get_global_id (0);
1161

int xcubes = ( volume_xsize / CUBE_SIZE ) + 1;
1163 int ycubes = ( volume_ysize / CUBE_SIZE ) + 1;

1165 int x_cube_id = id % xcubes ;
int y_cube_id = (id / xcubes ) % ycubes ;

1167 int z_cube_id = (id / ( xcubes * ycubes ));

1169 int x_origin = x_cube_id * CUBE_SIZE ;
int y_origin = y_cube_id * CUBE_SIZE ;

1171 int z_origin = z_cube_id * CUBE_SIZE ;

1173 # ifdef DEBUG
if(id == 5000)

1175 BOUNDS_CHECK (id , 0, 1);
# endif

1177

int n_close_planes ;
1179

float4 voxel = {( x_origin ) * volume_xspacing ,
1181 ( y_origin ) * volume_yspacing ,

( z_origin )* volume_zspacing ,
1183 1.0f};

1185

prepare_plane_eqs ( plane_matrices , plane_eqs );
1187
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1189 // Return if x/z is invalid

1191 if( z_origin >= volume_zsize ) return ;
if( x_origin >= volume_xsize ) return ;

1193 if( y_origin >= volume_ysize ) return ;

1195 BOUNDS_CHECK (x_origin , 0, volume_xsize );
BOUNDS_CHECK (y_origin , 0, volume_ysize );

1197 BOUNDS_CHECK (z_origin , 0, volume_zsize );

1199 int multistart_guesses [ MAX_MULTISTART_STARTS ];

1201 int nGuesses =
findLocalMinimas ( multistart_guesses , plane_eqs , radius ,

voxel , volume_xspacing , volume_yspacing , volume_zspacing
, in_xspacing , in_yspacing , plane_matrices , mask ,
in_xsize , in_ysize );

1203

# ifdef DEBUG
1205 for(int i = 0; i < nGuesses ; i++)

{
1207 DEBUG_PRINTF (" Multistart %d: idx %d dist %f\n",i,

multistart_guesses [i],
1209 fabs(dot(voxel , plane_eqs [ multistart_guesses [i

]])));
}

1211 # endif

1213 int2 close_planes_ret ;
// Iterate over the axes such that the the

1215 // next voxel is always a neighbour of the previous voxel
for(int xoffset = 0; xoffset < CUBE_SIZE ; xoffset ++)

1217 {
int x = x_origin + xoffset ;

1219 if(x >= volume_xsize ) break ;
BOUNDS_CHECK (x, 0, volume_xsize );

1221

int ystart , yend , ydir;
1223 if( xoffset % 2)

{
1225 ystart = CUBE_SIZE -1;

yend = -1;
1227 ydir = -1;

}
1229 else {

ystart = 0;
1231 yend = CUBE_SIZE ;

ydir = 1;
1233 }
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1235 for(int yoffset = ystart ; yoffset != yend ; yoffset += ydir)
{

1237 int y = y_origin + yoffset ;
if(y >= volume_ysize ) continue ;

1239 BOUNDS_CHECK (y, 0, volume_ysize );

1241 int zstart , zend , zdir;
if( yoffset % 2 && xoffset % 2)

1243 {
zstart = CUBE_SIZE -1;

1245 zend = -1;
zdir = -1;

1247 }
else {

1249 zstart = 0;
zend = CUBE_SIZE ;

1251 zdir = 1;
}

1253 for(int zoffset = zstart ; zoffset != zend ; zoffset += zdir)
{

1255 int z = z_origin + zoffset ;
if(z >= volume_zsize ) continue ;

1257 BOUNDS_CHECK (z, 0, volume_zsize );
BOUNDS_CHECK (x, 0, volume_xsize );

1259 BOUNDS_CHECK (y, 0, volume_ysize );
voxel .x = x * volume_xspacing ;

1261 voxel .y = y * volume_yspacing ;
voxel .z = z * volume_zspacing ;

1263

// Find all planes closer than radius
1265 close_planes_ret =

FIND_CLOSE_PLANES ( close_planes , plane_eqs ,
plane_matrices , voxel , radius , multistart_guesses ,

nGuesses , mask , in_xsize , in_ysize , in_xspacing ,
in_yspacing );

1267

n_close_planes = close_planes_ret .x;
1269

// Call appropriate method to determine pixel value
1271 VOXEL ( out_volume ,x,y,z) =

PERFORM_INTERPOLATION ( close_planes , n_close_planes ,
plane_matrices , plane_eqs , in_bscans , in_xsize ,
in_ysize , in_xspacing , in_yspacing , mask , voxel );

1273 }
}

1275 }
}

code/kernels.ocl
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