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Abstract

In this thesis we have added and developed the necessary hardware and software
to transform a radio controlled quadcopter into an autonomous drone.

The main goal for this thesis was to precise and safely land the drone on its
lanidng spot. This should be done autonomously and by visual navigation. To
make this possible the we started with the assembly of a radio controlled quad-
copter from a almost-ready-to-fly kit (ARF) based ont he AeroQuad platform.

We then applied the necessary hardware to the drone by adding a web camera
for visual abilities, an embedded computer for processing power and wireless
access point for telemetry.

We implemented computer vision algorithms the enable visual navigation and
the linear Kalman filter to give robustness to the visual tracking and to cope
with noisy sensor observation. A proportional-integral-derivative controller (PID
controller) was developed to control the drones pose and fly to desired positions.
These implementations was tested in experiments in a real-world environment
and the drones ability to perform autonomous tasks based on visual navigation
are presented in results.
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Chapter 1

Introduction

In the last decade drones have moved from mostly being used in military opera-
tions to being demilitarized and available for the public market. We can see to
the rise of the smart phone to explain this drone revolution that have been going
the last couple of years and is still going on. The smartphones demand for more
processing power and low power consumption have resulted in new hyper efficient
single-chip-processors based on the RISC architectures led by the chip designer
ARM. These processors as it turns outs are also well suited for use as autopilots
in drone and the huge demand for smartphones have rapidly driven the prices of
single-chip processors down. The smartphone-drone connection goes far beyond
only the processors, the smartphones today are packed with hardware that we can
also need in drone autopilots. Tnternal sensors like accelerometers, gyroscopes
and GPS can be found in almost every smartphone today, a swell as high quality
image sensors. The smartphone market have driven the prices and size for this
hardware at an all time low. With these cheap and powerful hardware available
to public the drone revolution have literally lifted off and drones have been used
in a wide variety of applications. In agriculture for monitoring farm crop, in
rescue operations, surveillance of power grids and delivery systems. The drones
used in real-world applications are mostly radio controlled by humans with the
support of an autopilot. As the hardware and software matures we will probably
see more fully autonomous drones in real-world applications in the future.

1.1 Background and Motivation

In the last five years there have been a great deal of drone projects and some with
mind blowing results. Everything from aggressive formation flying micro drones
to pole-throwing and catching drones. These projects have been conducted with

1



2 CHAPTER 1. INTRODUCTION

high-end equipment in the range of hundreds thousand of dollars. This thesis will
focus on the possibility of designing a autonomous drone using only off-the-self
available low-cost hardware and open source software. The drone will be acting
in a real-world environment and should be able to preform real-world tasks like
the goals described in Section 1.2.

1.2 Goals and Research Questions

Research question 1 How well will a drone designed with off-the-self hardware,
open source software perform in autonomous flight with navigation with
computations done on on-board hardware.1

Research question 2 What AI-methods are necessary implemented to make
this drone autonomous?

Goal Autonomously land the drone on a given landing spot

Sub goals

• Build the drone and make it operational, airborne.

• Control the drone with code running high level on-board hardware.

• Preform stable altitude hold.

• Preform stable position hold over the marker.

• Land safe and precisely on the marker.

1.3 Research Method

The research method for this this will be design/experiment. The reason for this
is the uncertainty of how well the hardware and software will work independently
and more import, together.



Chapter 2

Background Theory and
Motivation

2.1 Motivation

2.1.1 Build our own drone

At the commercial market today there are not many options to buy a drone that
fits the criteria for this thesis. The criteria are that the drone should be able to
operate independently without any need for a ground station or radio control.
The drone should have camera abilities and be able the run computer vision on-
board. The drones that are commercial available at the market today and able to
perform this kind of tasks are in a very high price, from $6000 and above. This
requires a big budget, but even if money where no issue most of these expensive
drones are deployed with proprietary software software running on-board.

2.1.2 Autonomous precision landing

The idea of autonomous precision landing was based on issues the electric power
company Trønder Energi had with landing their radio controlled drones used for
surveillance of power grids should land on a trailer. The motivation choosing
this goal was after some research found that this is a missing feature in most
commercial available drones today within the price range of $1000. Limited
battery power is one of the main limitations of drones today, usual flight time of
these kind drones today is about 10 to 25 minutes depending on their current pay
load. This feature possibly enable drones to land on charging station and make
them completely autonomous. Autonomous drone with this feature can possibly

3



4 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

be used for motoring power grids in distance locations with nearby charging
station.

2.2 Background Theory

2.2.1 Control theory

To control a dynamic system a system that changes state over time control theory
is applied. Control theory is about implementing a controller that helps the
system reach a desired state. The controller calculates the corrective action to
help the system reach this state also known as a set point. The corrective actions
u(t) are calculated based on the error e(t). The error is measured with the
difference between the system state x(t) and set point s(t). This goes into a
generic feedback loop that continuously measures the error and calculates the
corrective action and trying to hold the system in a stable state at the given set
point without any oscillations. This is schematically represented Figure ??.

Figure 2.1: Basic feedback loop for control of a dynamic system. This figure is taken

from 2and licensed under Creative Commons Attribution 2.5 license

2.2.2 PID Controller

The PID controller is a widely used and well known controller used by the industry
today. PID is an acronym for the terms the controller uses, Proportional, integral
and derivative. It is based on the same idea as the generic feedback controller
described in the previous section, but with extensions. If you ever have used
cruise control on a car there is a high possibility that it is controlled by a PID
controller. Where the set point is the your wanted speed. A car will be subjected
to a great deal of external disturbances caused by the environment it is acting in.
This could cause oscillations around the set point. If a car using cruise control is
driving up a step hill the car will need more throttle to reach the set point and

2 http://en.wikipedia.org/wiki/File:Feedbacka_loop_with_descriptions.svg

http://en.wikipedia.org/wiki/File:Feedbacka_loop_with_descriptions.svg


2.2. BACKGROUND THEORY 5

keep it in comparison to a car driving on a straight road. To cope with this kind
of random disturbances the PID controller takes the present, the past and the
future into consideration and are represent by the terms P , I and D.

• The proportional term is the current error Kpe(t) , where Kp is a weighting
parameter

• The integral is the accumulated past error Ki
∫ t

0
e(t)dt. where Ki weighting

parameter.

• The derivative term defines the slope of error over time Kd d
dte(t) and gives

a prediction for the future error.

The corrective system input u(t) is calculated by.

u(t) = Kpe(t) +Ki

∫ t

0

e(t)d+Kd
d

dt
e(t) (2.1)

Depending on the complexity of the application where the PID controller is
implemented different designs of the controller could be applied by adding or
removing one or more of the three terms.

Proportional term

This term is mandatory in every controller, its main objective is to reduce the
error. The higher the measured error is, the stronger the controller signal from
the P term will be proportional to the gain Kp. The higher the gain the faster it
will reach its set point, but to high of a gain will the cost of it overshooting and
the time its takes to settle around the set point may be grater than a controller
with lower gain. In more complex applications where there are great deal of
external disturbances a purely P based controller will not work at all, causing
the systems to overshoot and oscillate around the set point and never settle.

Integral term

This term is implemented to help the controller keep a steady state around the
given set point. In the case that the P and PD controller settles below or above
the given set point. The I term will help eliminate this bias using the accumulated
error over time t . If the system for some reason suffers from saturation the I term
will become very large and leads to unwanted behaviour. o handle this windup
effect, constraints could be applied to the I term to prevent it from accumulating
to large.
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Derivative term

The derivative term is applied to dampen the oscillation caused by the P term.
Its dependent on the rate of change in error, the higher the rate is , the more
it will contribute to the u(t) system input. This term could be very useful in
difficult applications, but it is also the hardest to tune.

Plant /
Process

Figure 2.2: Block diagram on the PID feed back loop process This figure is taken from
4and licensed under Creative Commons Attribution 2.5 license

Tuning parameters

For dynamic system to reach a stable state the PID controller needs to be tuned.
The PID controller is only as good as its tuning parameters. The tuning param-
eters are.

• Kp is the gain for the proportional term

• Ki is the gain for the integral term.

• Kd is the gain for the derivative term.

• Windup guard constraint for the integral term.

4 http://commons.wikimedia.org/wiki/File:PID_en_updated_feedback.svg

http://commons.wikimedia.org/wiki/File:PID_en_updated_feedback.svg


2.2. BACKGROUND THEORY 7

In most systems a Kp and Kd are sufficient gains to tune. The Kp gain is
indicates how fast the state should reach its set point. In most cases we want the
system to reach the state as fast as possible, but if we set the Kp gain to high,
the cost could be that the controller is overshooting. To cope with overshooting,
the Kp gain could be increased introduced to dampen the effect of the Kp when
its closes in on the set point.

Steady state error

If the state settles above or bellow the set point and continues this stagnation.
The error between the set point and the steady state is refereed to as an steady
state error. To resolve this stagnation a the Ki parameter could be increased.

2.2.3 Sensor fusion

In real-world environments a robot is not able to directly observe the world state.
Robots use sensors to give an perception of the world. The limitations with ob-
serving the world through sensor are that they are subjected to noise and the
measurements therefore maybe inaccurate, sensors could also malfunction for
short periods of time. No sensors is prefect, so to give a more accurate estimate
of the world the robots often uses multiple sensors and fuses the observations
together. This is what we call sensor fusion and the key idea is to use measure-
ments from multiple sensors to correct and verify each other and combining the
observations to give a better and more accurate estimate of the world. There is
a vary of filters that can be applied for these kind of applications. A well known
data fusion algorithm for real-world applications is the filter.

2.2.4 The Kalman filter

The Kalman filter is one of the most important and widely used data fusion
algorithms in the industry today. It is was developed over fifty years ago by
Rudolf E. Kalman [Kalman, 1960]. One of one of most famous and historic
use of the Kalman filter was in the navigation systems of the Apollo 11 that
put Neil Armstrong on the moon. Today Kalman filter is often used in GPS
navigation system, drones and smartphones. The success of the Kalman filter
may be its ability to model the observations from noisy observations and system
dynamics in real-time and give a more accurate estimate of the wo1ld-state. In
the devices containing sensors like GPS, Accelerometers and gyroscopes is often
small embedded devices with limited computational power, Kalman filter is often
preferred in this kind of solutions due to its small computational cost. The idea of
the Kalman filter is to incorporate our predicted state with our estimation to give
a more accurate estimate. The Kalman filter uses a set of previous observations
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to give estimate of the current state. The Kalman filter assumes that observations
are Gaussian distributed and that they are subject to white Gaussian noise and
that the system is linear. The state is represented as a normal distribution. The
state could be estimate with the linear stochastic difference Equation 2.2 the
Equation 2.3 is the observation update and Equation 2.5 and 2.5 represents the
noise for the process and observations as a normal distribution.

xt = Atxt−1 +But + wt (2.2)

Zt = Htxt + vt (2.3)

with

wt N(0, Q) (2.4)

vt N(0, R) (2.5)

• xt is the state vector it represents the state parameters of the system.
Example of state parameters are; position, velocity, acceleration, heading
at time t

• At is the state transition matrix maps the impact the state parameters in
xt−1 applies to the state parameters in xt. For example the system position
and velocity will both influence the estimated position at time t.

• ut is the vector that represents control input applied to the state at t.

• Bt is the control matrix maps the impact the control vector ut has on the
state parameters in xt.

• wt is the vector containing the process noise terms for each parameter in
the state vector xt.

• Qt covariance matrix for the vector wt. This covariance matrix represents
the uncertainty of the process for each state parameter. The matrix repre-
sents how much each parameter

• Ht is the observation matrix that maps the effect of the observations on
each parameter in Zt has on the parameters in the state vector xt.

• Rt is the covariance matrix for the incoming observations. It represents the
uncertainty of each observation. This models how much we should believe
the different observations. The observation stream from the systems sensor
each have independent uncertainty that needs to be modelled correctly to
exploit their properties in the best way.
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• vt is the vector the contains the observation noise for each parameter in the
observation vector Zt. The observation noise is assumed to be zero mean
Gaussian noise with covariance Rt.

The Kalman filter algorithm operates in two steps.

Step 1 State prediction

x̂t|t−1 = Ax̂t|t−1 +Btut (2.6)

Pt|t−1 = AtPt|t−1 +AT +Q (2.7)

Step 2 State correction with observations

This step updates state estimate for xt|t with observation vector Zt

x̂t|t = xt|t−1 +Kt(Zt −Hx̂t|t−1) (2.8)

Update the error covariance / Project the error covariance ahead

Pt|t−1 = Pt|t−1 −KHPt|t−1 (2.9)

Compute the Kalman gain

Kt = Pt|t−1H
T (HtPt|t−1H

T
t +Rt)

−1 (2.10)

A full derivations of the these equations is out of the scope of this thesis. A
key factor to notice in this algorithm is the Kalman gain. The larger the state
covariance is the more we trust our measurements and the larger the Kt is.
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Figure 2.3: In this figure we show Kalman filter for state estimation. We have
generated a sine wave were the observation points are subjected to random white
noise. The scattered points represent the sine waves data points with the random
white noise as an offset and the red line shows are the position estimated by the
Kalman filter we applied to the generated dataset. The sine wave without noise
is plotted as a blue dashed line.
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Outliers

An outlier is generally defined as an observation that “lies outside some overall
pattern of distribution” Moore and McCabe [1999]. Outlier may originate from
sensor noise, malfunctions and disturbances in the environment. The Kalman
filter assumes that all observations lies inside the a Gaussian distribution with a
set variance and the performance of the filter will suffer if outliers are present.
In Figure 2.4 bellow the a dataset containing outliers originated from a ultra
sonic distance sensors mounted on a flying quad copter is plotted. Outlier in this
dataset could be identified as observations that lies outside 0.50 meters of the
mean. Figure 2.4 shows the quality of the state estimated of the linear kalman
filter degrade.

20 30 40 50 60 70
time in seconds

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
et

er
s

Observations
Filtered

Figure 2.4: This figure shows observations from a ultra sonic distance sensors
that contains outliers. The raw observations are plotted as a red graph. The
observations filtered by a linear kalman filter are plotted as a blue graph.



Chapter 3

Architecture/Model

In this chapter the hardware and software design of the drone will be presented
and explained. In this thesis the system that is airborne will be refereed as the
drone

Figure 3.1: The last version of the drone.

11



12 CHAPTER 3. ARCHITECTURE/MODEL

3.1 Building the drone

In late January 2013 Artificial Intelligence Group at IDI NTNU purchased two
quad copter kits from the online store at www.aeroquadstore.com. The kits cost
around 500 dollars each and contain the necessary parts for building a functional
quad copter.

List of parts

• Aeroquad v2.1 Flight Control Board kit

• Cyclone Frame kit (arms and chassis)

• 4 x A2217-9 Brushless outrunner motors.

• 4 x 30 Amp Electronic Speed Controllers (ESC’s).

• 4 x 10 x 4.7 propellers.

The store sells parts and equipment aimed for the open source community around
the website Aeroquad [2013]. The website is the host for the AeroQuad project.
The projcet is an open source hardware and software project dedicated to the
construction of remote controlled helicopters. The site contains forums and wikis
to support building and flying a multicopter.

3.1.1 Building process

The drones were assembled during a two day long workshop at IDI-NTNU. The
frame was put together with the electronics. For the sensor shield the sensor
needed to be hand soldered to their mounting holes.

First connector pins were soldered to the sensors for stable and easier mount-
ing on the shield. Each solider point was quality checked with a microscope. The
best practice suggested in the AeroQuad wikis was followed under the soldering
and frame construction

3.2 Hardware platform

The drone is designed with a two processor architecture, one low level processor
and one high level processor. The low level processor handles real-time tasks
like sensors observations and motor control. The high level processor handles
computer vision, filtering, altitude and position control. The low level unit is
a Arduino mega 2650 (3.2.2) with a sensors shield (??) mounted on top. The
Arduino controls the drones motors with four electronic speed controllers (ECS)
connected through the sensor shield. The high level unit is a BeagleBoard-XM
(3.2).
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Figure 3.2: Soldering connector pins on 9 DOF sensor

The Arduino and BealgeBoard is connected with a USB cable and communi-
cates through a serial interface 3.6.4. A web camera (3.3.4 ) is connected to the
Beagleboard to enable computer vision tasks and a small and light weight wire-
less router is connected to enable two-way telemetry ?? and streaming abilities.
The Figure 3.2 schematically describes of the hardware parts are connected.
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Figure 3.3: This figure shows how the different hardware parts that forms the
drones autonomous navigation system is connected.

3.2.1 BeagleBoard-XM

The BeagleBoard-XM is a low powered hardware embedded computer based on
the ARM37x 1 GHZ Cortex-A processor. For this thesis the board used for
the high level computations, computer vision, senor fusion, streaming, telemetry
and navigation. The board was mounted on top of the drone with a 3D-printed
mounting part (3.4.1). The board ran an ARM based verison of Ubuntu Linux
12.04.
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CPU ARM Cortex A8 1 GHZ
RAM 512 LPDDR
USB 4 x USB 2.0

Network 100 Mbit Ethernet
Size 85 mm x 85 mm

Weight 37 g

Table 3.1: Highlighted specifications for the BeagleBoard-XM

Figure 3.4: Beagle board XM

3.2.2 Arduino 2560 Mega

The Arduino 2560 is a micro controller board based on the ATmega2670. It has
a number of digital and analog input and output pins and a USB connection
for serial interfacing. For this thesis the Arduino was used to gather the data
from the sensors mounted on the sensor shield. The sensors shield is mounted
on top of the Arduino making input pins for motors and external sensors easily
accessible and holds the stationary sensors in place. The data from the sensors
are processed by the flight software and keeps the drone in stable flight.
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Figure 3.5: Arduino mega 2560

Sensor shield

Figure 3.6: Aeroquad Sensor shield v2.1

1 Three camera servo inputs
2 Motor outputs
3 Receiver input channels
4 Analog inputs, Used for Sonar sensor
5 Resistors for batteryMontioring
6 Barometric sensor
7 Logic Level Translator
8 9DOF IMU, Accelerometer, gyroscope and magnetometer.
9 GPS input pins

Table 3.2: Description of components on the sensor shield
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3.2.3 Telemetry

The telemetry is the connection between the drone and the ground station. The
connection was done over a portable router. An Asus WL-330N mounted on the
drone and connected to the Beagleboard through its Ethernet port connects the
drone and the ground station. The reason for this solution is rather than just
connecting a WI-FI dongle is that this solution gives better range, bandwidth
and spares one USB port and USB-bandwidth.

3.2.4 Radio control

Although the goal for this thesis is to make the drone navigate autonomously it is
necessary to have R/C connection to the drone for testing purposes and override
under autonomously flight if the autopilot for some reason should go rouge. The
R/C is achieved through a Hi-Tec Eclipse 7 8-channel receiver and transmitter.
The receiver is mounted on the drone and connected to the sensor shield. There
is one signal cable for each channel that maps to the corresponding channel on
the shield.

1. Yaw

2. Roll

3. Pitch

4. Throttle

5. Autopilot

6. Altitude Hold

7. Attitude mode (rate / attitude)

Override

The override is a switch on the transmitter that enables fast switching between
manual and autonomous flight. This is useful when testing out new autonomous
features on the drone and getting manual control back as fast as possible if
needed. To enable this feature the source code of the AeroQuad was modified.
The original source code reads the incoming receiver channels on the Arduino in
a for loop where there is added a function to check if the auto switch is turned on
or off. Functionality is also added so it is possible to select which channels (3.2.4)
that should be under autonomous control. This is useful because it makes us able
to independently run autonomous control on one or multiple control channels.
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3.2.5 Hardware costs

Hardware costs are one of the research questions in this thesis (1.2). The bill of
matériels are presented bellow.

Component Cost
AeroQuad Cyclone ARF Kit $535
Ultra sonic sensor $50
Battery 4000 mAh 3 cells $20
BealgeBoard-XM $199
Logitech HD Pro Webcam C920 $100
Asus WL-330N $35
Total $939

Table 3.3: Bill of materials

3.3 Sensors

3.3.1 Barometric sensor

A barometric sensor measures the atmospheric pressure above sea-level. From the
measured pressure the absolute altitude can be calculated from the international
barometric formula.

altitude = 44330×

(
1−

(
p

p0

) 1
5,255

)
(3.1)

Where p is the measured pressure in and p0 is the pressure at sea level. We
can calculate relative altitude by initializing a ground altitude before take off.

relativealtitude = groundaltitude− altitude (3.2)

As for all sensors the barometric has its limitations. It is sensitive to changes in
the weather in particular wind and temperature that could lead to drop or rise
pressure. The pressure will then be different from when the sensor was initialized
and the altitude will suffer from a offset.

3.3.2 Ultra sonic range sensor

An ultra sonic range sensor emits a high frequency beam of sound waves and
interpreter the echoes. The time interval between sending the waves and receiving
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the echo is used to calculate the distance to an object. The ultra sonic sensor
used in this thesis is the XL-Maxsonar MB1200 from the supplier Maxbotix. The
mounting of the ultra sonic sensor is essential for its performance. A quad copter
is a challenging environment to mount a range sensor. There are multiple sources
of noise and bias on the airborne drone as described in Gross [2013].

• Air turbulence from the propellers wash.

• Propeller acoustic noise

• Conducted and electrical noise on the shared power supply.

• Radiated electrical noise from other electrical components

• Frame vibration

Limitations and issues with the ultra sonic sensor

• Resolution at 1 cm

• Can produce non-Gaussian noise.

• Minimum range at about 30 centimetres.

• Maximum range at about 6 meters

3.3.3 Inertial measurement unit

The inertial measurement unit (IMU) is a collection of sensors. In this build the
the IMU has 9 degrees of freedom obtained by an accelerometer, gyroscope and
magnetometer.

• The Accelerometer measures the acceleration in 3-axis. x, y and z.

• The Gyroscope measures the angle in 3-axis. x, y and z.

• The Magnetometer measures the compass direction in 3-axis. x, y and z.

The sensors on the IMU have some limitations and bias.

• The accelerometer drifts and accumulates error over time.

• The gyroscope accumulates error over time.

• The magnetometer accumulates error over time x, y and z

These limitations and biases was found during experiments conducted in the-
sis.
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3.3.4 Camera

The camera is a Logitech HD Pro C930e webcamera. The camera can produce
video streams in three formats RAW, MJPEG and H264 and in a variety of
resolutions from 90p to 1080p and has a 90 degrees field of view. The camera
was connected to the Bealgeboard using USB 2.0.

Figure 3.7: webcamera used for this thesis

3.3.5 Camera calibration

The distance to a physical object can be calculated with a monocular camera can
be calculated with this formula3.3.

Z =

(
D × f
d

)
(3.3)

Where the

• Z is the distance to the object

• D is physical size of the object

• d is size of the object in pixels

• f is the focal length of the camera in pixels.

The focal length in pixels was measured by holding the camera in a fixed position
in front of the marker. The marker size, distance to the marker was measured
and the focal length could be calculated with the same formula (3.3) with respect
to f .
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3.3.6 Hardware issues

When dealing with hardware and multiple hardware devices that are working
together there are a variety of issues could arise.In this thesis a hardware failure
will be critical and potentially dangerous since it could lead to the drone los-
ing control in mid air and crashing. The hardware was carefully tested before
mounted and connected on the drone build, but not everything can be foreseen
and tested.

Hardware failures

In this thesis we have experience a wide variety of hardware failures that have
led to crashes. One of the major incident that led to hard crash of the drone was
radio antenna mounted incorrectly. In the first outdoor test of the drone it had
been 20 seconds in the air before it crashed. The drone broke three propellers,
motor mounts and was bend out of shape. From the sound of the motors the
it sounded like malfunction on one or more of the ESC‘s as one or more of the
motors spiked in thrust making the drone flip and spin into the ground. Back on
the lab troubleshooting began, first on the ESCs and later on the different sensors.
Nothing wrong could be found. After some troubling hours with debugging it was
pinned down the problem existed some were between the transmitter, receiver or
receiver and sensor shield. Multiple attempts to recreate the malfunction were
done, carefully monitoring every data and sensor output from the drone. After
multiple sessions it was discovered that the way the antenna on the receiver was
mounted was closely linked to how much interference it picked up. For practical
reasons the antenna on the drone had been lashed around the chassis of in a
circular manner because of length. This a lot of interference as shown i Figure
3.8, when the transmitter control was not pointed directly on the drone or the
transmitter was turned of.

In conclusion the drone crashed was caused by high interference on the receiver
due to incorrect mounting of the antenna and transmitter not directly pointed at
the drone in flight.

This is one example a hardware failure that caused the drone to crash, through-
out this thesis we have summed up four hard crashes and one fire, that led to
serious damage to the drone. We have almost changed every part on the drone at
least one time from damage that came from crashes and parts that just stopped
working. One of the interesting things is that the drones crashes strictly came
from hardware failure like antenna mounting and power cables that melted in
mid air and not from rouge autopilot as we feared in the beginning. In figure 3.9
the drone is crashing to the ground due to a power malfunction and in the Video
(http://www.youtube.com/watch?v=Io98jnSxHA8) the drone crashed due to a
melted power cable (at least it hits the marker).
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Figure 3.8: This figure shows the drone receiving heavy noise over the radio
control channels.

Figure 3.9: We can see the drone loosing its power about 2.5 meters in the air
and causing it crash into the floor.
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3.4 Designing parts

In this section I will describe how I designed and printed parts to the drone. For
this thesis on-board computing is an essential part. The hardware required to
make this possible is needed to be mounted on the drone. There is no commercial
product available for mounting this kind of hardware on this type of drones.
The hardware needed to be stable and safely mounted on the drone for optimal
performance and protection. The drone operates in harsh working environment
with contentious hard landings and crashes. Crashes are expensive and very time
consuming. Repairing the the drone and waiting for the delivery of replacement
parts often take days and possibly weeks if parts need to be sent from foreign
suppliers. The strategy of protecting the critical parts with replaceable parts
that could be printed on the lab was applied. The parts needed to be designed so
the ratio of robustness and weight was suitable for a flying robot. The printing
was done on a 3D printer Makerbot Replicator 2. This printer makes it possible
print plastic parts designed in a 3D-modelling software (Autodesk Invetor). The
printer uses a plastic-filament and the printing software lets you customize the
percentage of infill in your parts. This enables you to find the right combination
of robust and lightness in the drone parts 3.10.

3.4.1 BeagleBoard mount

In the need for safe and stable mounting for the BeagleBoard a mounting device
for the drone was designed. The device should protect the BeagleBoard in crashed
and hard landings, mounted on the drone with screws for stability and be as light
weight as possible to obtain the manoeuvrability of the drone. The device is fitted
on the drone on top of its exiting layer architecture.
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Figure 3.10: This figure shows the production line of the beagle board mount. In
left image is a screen shot of the blueprint for part. The middle image shows the
part being printed in plastic. The last image shows part mounted on the drone
with the Beagleboard Figure (3.4) inside and a protection lid on top.

3.4.2 Sensor module plate

To mount the camera and the ultra sonic sensor a sensors module plate was
designed to fit these at the bottom of the drones body.

3.4.3 Camera mount

The camera mount was designed to fit the sensor plate (3.4.2). The camera
mount holds the camera in stable fixed position and the lens pointed downwards
in the vertical direction. The web camera was stripped down removing most of
its plastic body and stand to its essentials keeping the wiring and some of its
body to protect the electronic components. This was to make it as light possible
and fit in the designed camera mount.

3.4.4 Ultra sonic sensor mount

To ensure the performance of the ultra sonic sensor the mount point needed to
be as far from the ECSs as possible because of the electronic radiation they cause
and as near the body frame center to avoid turbulence from the four propellers
of the drone. The measurements taken to ensure the mounting of the ultra sonic
sensor as discussed in section 3.3.2. A mount was designed to fit the ultra sonic
sensor and the so the mounting holes on the sensor plate (3.4.2).
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3.4.5 Propeller guards

Flying and operating a drone can be potentially dangerous. The greatest risk is
the spinning propellers, if it interacts with living person it could cause serious
injuries. In this thesis there have been taken precautions to protect our self from
injury from the drone. The process of designing the propeller guards a great deal
of ideas was taken under consideration. What seemed to be the most reasonable
were to design the guards using a 3D modelling software and printing them with
a 3D printer, the Makerbot 2.0. The prototyping started using Google SketchUp.
The first prototype was heavily inspired by the guards on the Aeroquad Tyfoon
beta frame show in Figure 3.11.

Figure 3.11: Inspiration for the propeller guards

We started out printing my prototypes early to get a feel for the properties of
the material and prototypes construction. After a number of trying and failing a
”fly-ready” prototype was tested. The test did not go as expected when the drone
was experience semi-hard landings the guards bounced up into the propellers
causing them to explode on impact making actually making the drone more
dangerous, shooting plastic shrapnel around. This prototype was shelved. A
new prototype was designed from scratch using a more advanced 3D modelling
software (AutoDesk inventor) to cope with the limitations of Google Sketch up.
Making the 3D model more modal and easier to work with. The new propeller
guard contains of two parts or optional third part for full protection. The main
reason for this is that the 3D printer that was used simply can not print the hole
guard in one session due to size limitations. There are some pros and cons to take
under consideration when printing. Its important to find the right combination
of strength and lightness. In Figure 3.12
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Figure 3.12: Evolution of propeller guards
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3.5 Software platform

The system of the running the drone is a series of software working together
The software runs on two different platforms. The BeagleBoard 3.2 runs the
high level computations, such as image processing, position controller, Kalman
filtering and logging and the Arduino runs the low level operations controlling
the attitude of the drone and keeping it in the stable flight. In figure 3.7 is a
schematic description of how the applications is dived.

3.6 BeagleBoard software

The software that is deployed on the BeagleBoard is designed to capture the video
feed from the web camera, read sensor data from the Arduino (3.2.2) through
serial interface, filter them and navigate the drone to its desired state or desti-
nation. In this thesis the main objective is to identify the drone landing spot,
fly there and land. All the computing necessary to solve this problem is done
on-board and the drone must be able to act independently without interference
from any ground station or radio transmitter. For debugging and observability
causes the system is designed to stream live video back to the ground station
(3.6.3). The software on running on the BeagleBoard and the ground station
software is developed from scratch and written in Python. It uses collection of
frameworks such as OpenCV, PyKalman and Gstreamer.

3.6.1 Video capture

The web camera is connected to the BeagleBoard using a USB 2.0 connection
and captured with Gstreamer using the Video 4 Linux driver. Gstreamer is a
pipeline-based multimedia framework that lets you customize and build a pipeline
with different media elements. In this application this is useful because it lets
us choose different parameters for the video stream from the web camera, such
as the frame rate, image resolution and vide codec. For image recognition and
target tracking these parameters are important. The higher the frame rate is,
the more accurate the tracking are, on the other hand the processing power in
this system is limited and it is powered by battery. A lower frame rate will need
less processing power, but could lead to more inaccurate tracking. The image
resolution also has a impact on the processing power: the higher the resolution,
the higher the computational costs for each image processed is. These parameters
eventually depend on cameras abilities to deliver them. In this thesis the Logitech
c930e was used. This is one of the web cameras on the market that gives the
widest variety of options for these parameters as described in Section 3.3.4. The
media pipeline is schematically described in Figure 3.13.
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Figure 3.13: The video driver element captures the frames from the camera.
The video parameters element sets the codec, frame rate and resolution for the
video driver element to capture. The Image processing element sends a copy
of the frame passing through the pipeline to the image processing model. The
streaming element streams the video feed over the wireless network to the ground
station. The feed is streamed over UDP and encapsulated in RTP.

3.6.2 Computer Vision

For this thesis open source computer vision library Open CV is applied to rec-
ognize the landing spot.The landing spot will act as an marker. The maker is
recognized through color and shape. For the marker we have chosen NTNU‘s logo
and alternated its color to red. This is to make it more distinct in environment
and easier to recognize. Open CV offers a great deal of functionality to help sort
out color and shape in a given image. Below we describe the algorithm designed
in steps to make this possible.

First the incoming frame from the web camera is converted from BGR col-
orspace to the HSV (Hue, Saturation, Value) colorspace. The reason for this is
that it is easier to recognize a color in this colorspace.

• H , Hue represents the color

• S , saturation is the amount of color that given color

• V , value is the how bright the color is

The marker color is represented in an array that have the values of the H ,S and
V for the color to track. The OpenCV function inRange() replaces the pixels
within the threshold of the target color with white and the rest with black. This
gives a binary image where the areas with the target color is coloured white
and background is coloured black. Contours can easier be identified from the
binary image. The areal of the contours are calculated by counting the number
of pixels inside the contour, the contour with the greatest areal is selected to most
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likely be the target marker. Contour approximation is applied to the contour to
smooth out defects caused by small curves in the contour. The OpenCV function
moments() calculates the image moment for the given contour. From the moment
we could get the pixel position of the contours center in X and Y direction and
this is what we need to estimate the horizontal distance in pixels to the marker.

Figure 3.14: The images visualize the transformation the captured video frames
goes through in 3.6.2 from top left to bottom right. The first image are the raw
captured frame, in the next image thresholding on the target color is applied. In
the third picture the largest contour from the thresholded image is drawn on the
raw image. In the last image the contour center and contour approximation are
visualized

3.6.3 Ground station

The ground station was used to monitor the drone under flight, debugging and
tuning parameters on location when experiments were conducted. The ground
station was a laptop running software that connected to the live video feed from
the drones camera and showed it images in real time and visualised the marker
recognition on the screen. In Figure 3.6.3 the ground station in action.The video
was saved on the laptop for later analyses. The software for the ground station
was developed from scratch for this thesis with the support of third party libraries



30 CHAPTER 3. ARCHITECTURE/MODEL

mentioned in section 3.6.

Figure 3.15: This figures shows the ground station software (3.6.3) deployed on
a laptop. The laptop is connected to the drone through Wi-Fi (3.2.3) and are
receiving a live video. The ground station presents the video feed and visualizes
the computer vision algorithms (3.6.2) deployed on the drone.

3.6.4 Interfacing

The interfacing between the Arduino and the Beagle Board is done by USB serial
connection running at an baudrate of 115200. The AeroQuad software have
support for serial communications for intended for configurations of the flight
software. For this thesis we will use this communication channel to interface
with the flight software on the Arduino. In a two-way communication where
the Arduino sends the measured sensor data to the BeagleBoard and reads the
controller commands u sent from BeagleBoard and the position controller. The
sensor measurements are sent at 20 HZ and the control commands are sent at 50
HZ. The communication is schematic described in 3.6.4

Limitations

Since the serial communication included in the AeroQuad-software is intended
to be used to purely for on the ground configurations of the drone. Thsere are
some limitations with the software. The sensor data sent is over serial is sent as
a comma separated string this is quite CPU intensive on the sender and receiver
side when the sample frequency gets high. Higher sampling frequency in the
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sensors measurements and control commands will lead to less delay and more
responsive and accurate system, this is futher discussed in the the section ??.
The robustness of sending a the sensor data over serial in clear text can vary and
where there is no checksum used.

Figure 3.16: 2 way communication between the Arduino and the Beaglboard

3.7 State estimation

For an autonomous drone to perform well in real-world applications it needs to
have some perception of the world it acts in. Since the world state can not be ob-
served directly the drone needs some kind of estimate of the state. The estimate
is obtained through observations from the drones sensors and updated continu-
ously according to new observations and actions using the different models. The
observation model (3.7.3) describes how the sensor observations is linked to state
estimate and the motion model describes how the state changes according to the
control commands issued and the drones dynamics. To give this estimate of the
world and update it continuously the Kalman filter is implemented.

3.7.1 The state space

The internal state of Kalman filter is defined as a vector of state parameters

X̂ = [x̄, ȳ, z̄, ẋ, ẏ, ż, ẍ, ÿ, z̈,Φ,Θ,Ψ] ∈ R12 (3.4)

Where

• x̄ and ȳ are the drones position in meters relative to the landing spot.

• z̄ is the altitude of the drone in meters.

• ẋ, ẏ, ż are the velocity of the drone in meter per second.

• ẍ, ÿ, z̈ are the accelerations of the drone in meters per second.
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• Φ,Θ,Ψ are the roll, pitch and yaw Euler angles.

The state changes over time and are updated 20 times in one second. The
state gets updated according to the motion and observation model.

3.7.2 Motion model

The motion model defines how the dynamics of the drone and the control com-
mands influence the predicted world state. We could help the Kalman filter with
its prediction by defining a good motion model.

Hovering

The drone hovers when the vertical acceleration is at zero and the drone is in
flight. Gravity is pulling the drone with a downward force and the motors are
keeping it afloat. The vertical acceleration is given by the Equation 3.5.

mz̈ = F −mg (3.5)

Where F is the sum of forces gained by the motors F = F1 +F2 +F3 +F4 and
m is the mass and g the gravitational acceleration. Rather than calculating the
force each motors generates this models uses the battery voltage to estimate the
thrust needed to keep the drone hovering. The amount of thrust needed to hover
increases through out the flight time and is dependent on the battery voltage
that decreases in a linear fashion.

Horizontal velocity

To calculate the horizontal velocity in x and y direction the attitude of the drone
is calculate in 3.6 and 3.7.

ẋ = c1(cos Ψ sin Φ cos Θ− sin Ψ sin Θ) (3.6)

ẏ = c1(− sin Ψ sin Φ cos Θ− cos Ψ sin Θ) (3.7)

where

• Φ, Θ and Ψ is the roll, pitch and yaw angle in Euler angles

• c1 is a constant found through a series of test flights.
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Control commands

The control commands are the commands sent to the on-board flight software
and tells the drone how to act. The control commands are defined in Vector 3.8.

u = [uΦ, uΘ, uΨ, uż] (3.8)

The control commands originally ranges from 1000 to 2000, but are normalized
in the range [−1, 1] before fed into the Kalman filter. The Kalman filter has
support for control inputs as shown in the prediction Equation 3.9

x̂t = Atxt−1 +Btut + wt (3.9)

The Kalman filter uses the control input to improve its prediction when the
observations are missing or to biased. In this application the control commands
are used when the drone loses track of the landing marker. Where ut is the
control input vector and Bt the control matrix. The control inputs are caluated
in the Equations 3.10, 3.11, 3.12 and 3.13

üΦ = c2(uΦt − uΦt−1) (3.10)

üΘ = c2(uΘt − uΘt−1) (3.11)

üΨ = c2(uΨt − uΨt−1) (3.12)

üz = c2(uzt − uzt−1) (3.13)

where

• uΦt, uΘt, uΨt and uΨt is the current control input

• uΘt−1, uΨt−1, uzt and uΦt−1 is the previous control input

• c2 is a constant found through a series of test flights.

The control commands give an estimate of the acceleration of horizontal accel-
eration in x and y direction and are fused with the parameters ẍ and ÿ in the
update filter step.
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3.7.3 Observation model

In the correction step of the Kalman filter algorithm the observations from mul-
tiple sensors are fed into the process updating the state and giving us a better
estimate of the state. By combing and fusing the sensors observations together
the key idea is that the sensors will compensate each other biases. The observa-
tion model describes the mapping for the observation matrix H and the sensor
covariance matrix R. The observation vector Z represents the stream of sensor
observations fed into the Kalman filter.

Measuring horizontal distance

To convert the distance to the marker in pixels obtained from the algorithm
described in Section 3.6.2 to meters we can use focal length found in Section
3.3.5. Since the drone has an attitude when in motion and the camera was
mounted in a fixed position at drones rigid body the camera has an attitude as
well. To compensate for the offset caused by an attitude greater than zero the
measurement from the gyroscope was used. The Equations 3.15 and ?? makes
two assumptions.

• The camera is mounted in level with the gyroscope.

• The distance z̄ equals the distance in the vertical line to the ground and is
not affected by the attitude because of the width of the ultra sonic sensors
as beam described in Section 3.3.2.

x = sin(Φ)z̄ −∆py
f

z̄
(3.14)

z = sin(Θ)z̄ −∆py
f

z̄
(3.15)

where

• x and y is horizontal distance to the marker in meters.

• f is the focal length of the camera

• ∆px is difference in pixels between the camera width center and the markers
center point.

• ∆py is difference in pixels between the camera height center and the markers
center point.

• Φ and Θ is the roll and pitch Euler angle
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Observation vector

The vector for the observation parameters is described in Equation 3.16.

Z =
[
x, y, ẋ, ẏ, z,Φ,Θ,Ψ

]
(3.16)

where the

• x and y is the distance to the marker in x and y direction found in Section
3.7.3.

• z is the distance measured by the ultra sonic distance sensor.

• ẋ is the velocity in x direction calculated in Equation 3.6.

• ẏ is the velocity in z direction calculated in Equation 3.7.

• Θ,Φ,Ψ Roll, pitch as Euler angles obtained for gyroscope.

Each of parameters in the observation vector Z has an independent covariance
represented in a covariance matrix R. The observation covariance represents
the uncertainty of the measurements. This enables us to model the noise of
each of the sensors and tell the Kalman filter how much it should believe these
measurements. The covariances of the sensors is found through experimental
testing and running the Kalman filter on offline data collected with throughout
flight tests.

Handling outliers

An outliers is a noisy sensors measurement that lies outside the Gaussian distri-
bution. The outlines need to be identified and handled. In this implementation
the ultra sonic distance sensor is suffers from this kind of non-Gaussian noise. To
handle this the measurements gets checked for outliers before the kalman filtering.
If the change between the an incoming measurement and the average value of the
ten last measurements is greater than 0.5 meters the measurements are identified
as an outliers. The kalman filter then threats this an missing measurement and
predicts the new state using the motion model and process model.



36 CHAPTER 3. ARCHITECTURE/MODEL

3.7.4 Process model

The process model consists the state transition matrixA and its covariance matrix
Q. The state transition matrix models the linear transformation for the state x̂t−1

goes through to get to X̂t. In the state transition matrix we have implemented
the equations of motion and they are defined as Equation 3.17 and 3.18

xt = xt−1 + ẋt−1∆t+ 0.5ẍt−1∆t2 (3.17)

yt = yt−1 + ẏt−1∆t+ 0.5ÿt−1∆t2 (3.18)

From these equations we can estimate the position parameters xt and yt for the
current state X̂t, transformed from the parameters in the previous state X̂t−1.
This enables us to give a prediction of the the state X̂t that uses the previous
velocity and acceleration and give a estimated based on this transformation is
important when dealing with missing observations. The process noise is defined
in the covariance matrix Q. It defines the uncertainty of the parameters in the
process. The covariance for these parameters was found by experimental research
using offline data collected through a series of flight. The data was both video
from the web camera and logged sensor data. The covariance used for the process
is presented in the Matrix 3.19

Q =



0.001 0 0 0 0 0 0 0
0 0.001 0 0 0 0 0 0
0 0 0.001 0 0 0 0 0
0 0 0 0.001 0 0 0 0
0 0 0 0 0.001 0 0 0
0 0 0 0 0 0.001 0 0
0 0 0 0 0 0 0.001 0
0 0 0 0 0 0 0 0.001


(3.19)

3.7.5 PID controller

This drone have multiple PID controllers and for its different applications. This
is further discussed in the descriptions of the different applications. The PID
controllers are responsible for giving correction to the control input so the ap-
plication can reach its set point. The PID controllers have been designed as
described in Section 2.2.2.

3.7.6 Altitude hold

In altitude hold the drone tries hold an altitude over time as stable as possible.
When the altitude hold is enabled by the user, the altitude at the given time is
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set to a initial set point of the PID controller. The current throttle and battery
power are set as initial values. The PID controller applies a correction to the
initial throttle based on the present, past and predicted error based on the P, ID
parameters set. This will work for some time, but after some time the drone
slowly loose altitude since the amount of force given by the motors is not constant
and degrades as the battery drains . The constraint of the maximum and the
minimum correction that could be given inebriates the drone to hold its desired
altitude. To cope with this the battery voltage is taken into account in the as
shown in Equation 3.20

uz = γ + T0
B0

Bt
(3.20)

Where

• uz is the new throttle with corrections.

• γ is the correction from the PID controller.

• T0 is the initial throttle.

• B0 is the initial battery voltage.

• Bt is the battery voltage at time t.

3.7.7 Position hold

The objective in position hold is to hold a position in roll and pitch direction
stable over a period of time stable. To enable this to happen the drone needs
to have a some measurement of its whereabouts. In this thesis we use the state
parameters x and y from the estimated state X̂ from the Kalman filter described
in Section 3.7.4.The roll and pitch axis has its own independent PID controller
and the set points to the controller are set to 0.0, in a optimality solution this
would place the drone directly above the marker. The PID controllers calculates
a correction for the control input uΘ and uΦ and the control commands is issued
to the on-board control loop.
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3.7.8 Autonomous landing

The autonomous landing is a combination of the altitude hold (3.7.6) and position
hold (3.7.6). When the drone have positioned itself in a steady state over the
marker. The user can enable the autonomous landing from a dedicate channel on
the remote as described in Section 3.2.4. The PID controller for the autonomous
landing uses the desired decline velocity as a set point. From the state estimate X̂
we can get the vertical velocity from the state state parameter ż. PID controllers
calculates a correction for the control input uz and the the control commands
is the on-board control loop. Since the ultra sonic sensor sensors is not able to
return accurate measurements under 20 - 30 centimetres the drone goes in for the
final stage landing when it reaches this altitude, decreasing the throttle rapidly
the at the last stage. To identify when the drone is safely on the ground and
the motors can be disarmed we look at the attitude pattern for the last 60 time
steps. By looking at the variance we could tell if the drone has landed or not.



Chapter 4

Experiments and Results

4.1 Experimental Plan

The initial experimental plan for this thesis was to iteratively implement features
to reach the main research goal of precision autonomous landing described in
Section 1.2. The sub goals was approached from top to bottom, with the as-
sumption the prior goal needed to be implemented, tested and stable before the
next goal could be addressed. The override switch enabled us to test the sub
goals as independently as described in Section 3.2.4.

During thesis experiments was conducted both inside and outdoors. In the
following Section 4.2 only results from the indoors experiments is presented, this
is further discussed in Section 5.3.

4.2 Experimental Results

In this section the results from the experiments conducted in this thesis will be
presented. We present the results from the research sub goal described in section
1.2. The sub goal altitude hold is presented independently section 4.2.1. And the
position hold and autonomous landing is presented in section 4.2.2.

4.2.1 Altitude control

In the altitude control experiments the drone was first flown manually to an
random altitude between approximatively 1.5 to 3.5 meters and when the drone
was in stable position the autonomous control was enabled and the altitude hold
implementation described in Section 3.7.6 was applied. We will measure the
performance of the drones altitude control in two different experiments.

39
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• The ability to hold a set point.

• The ability to reach a changed set point.

Endurance

In the experiment presented in this section we will look at the drones ability to
hold an altitude given by the initiated set point over a period of time. In figure
4.1 shows how the altitude control performed. The the altitude represented by
the blue line is to the red line representing the set point. The closer the blue
line is to the red, the closer the drone is to its set point. The Table 4.2 show
us the drone is able to stay within an average error of 0.13 meters, a variance of
0.15 meters and standard derivation of 0.095 meters over time of 47 seconds. In
the PID parameters used in this experiment is presented in Table 4.2. Figure 4.2
shows that the D correction had the most impact on the total correction and is
what you will expect when the drone is in a steady state with a low error.

Set point 2.45 meters
Average error 0.13 meter

Variance 0.15 meters
Standard derivation 0.095 meters

Elapsed time 47 seconds

Table 4.1: Statical results from the altitude hold endurance experiment

Kp 25
Ki 0.5
Kd 80

Table 4.2: Values for the PID controller used in Section 4.2.1.



4.2. EXPERIMENTAL RESULTS 41

0 10 20 30 40
time in seconds

0

1

2

3

4

5
al

tit
ud

e 
in

 m
et

er
s

Observations
Set point

Figure 4.1: The blue line represents the altitude of the drone in meters and the
red line dashed line is the altitude its attempt to hold.
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Figure 4.2: This figure shows the PID corretions issued to the control command
uz under the experiment.

Altitude trajectory

In this experiment we tested the drones ability to go from one altitude to another.
The drone was first manually flown to an altitude to about 1.5 meters before the
autonomous control was enabled. The drone then tried to hold initial set point of
1.5 meters in 8.7 seconds until we manually altered the set point while the drone
was in flight. The new set point was set to the initial set point and 1 meter was
added.

In Figure 4.3 shows how the drone is trying to hold the altitude in the time
period until the set point was altered. After the set point is altered we we
can see the P corrections shots up causing the drone to accelerate in a positive
vertical direction, the D compensates for the P corrections giving a negative
value to prevent the drone to overshot its set point. The I corrections of have
almost no impact on the total correction. The PID controller is in no danger of
overshooting its set point and it settles around 0.40 meters bellow the set point
and this stagnation continues throughout the experiment. This is what we call a
steady state error as shown in Figure 4.4, where corrections to the control input
uz is presented. We see that the P correction dominates the total correction and
the I correction have almost no impact on the total correction. In cases with
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steady state errors described in Section 2.2.2 the solution to cope with this kind
of error is to increase the Ki parameter in the PID controller, but in this scenario
the Kp should also have been increased to decrease the steady state error. The
gains for the PID controller are presented in Table 4.3.

Kp 25
Ki 0.5
Kd 80

Table 4.3: PID gains used in Section 4.2.1
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Figure 4.3: At the initial point is altitude of the drone is about 1.5 meters after
about 8 seconds seconds set point was change to 2.5 meters. The set point is
represented by the red line and the blue line represents the altitude. The closer
the blue line is to the red dashed line, the more accurate the control of the drone
is.
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Figure 4.4: This figure shows the PID corretions issued to the control command uz
under the experiment. The maximum thrust was capped to 80 and the minimum
to -50

Qualitative example

To present the qualitative performance of altitude hold an experiment where the
some of the observations are subjected with heavy tailed sensor noise as described
as outliers in Section 2.2.4. Figure 4.5 shows the outliers and the effect it has on
the filter with and without the outier detection. The outlier detection handles
the most heavy tailed outliers, but does not cache the cluster of outliers between
33 and 37 seconds. The threshold value for what is an outlier is could have been
decreased to handle this. The threshold value in this experiment was 0.5.
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Figure 4.5: The figure shows the raw ultra sonic distance sensor measurements,
filtered measurements and filtered measurements with outliers detection

4.2.2 Autonomous landing

The autonomous landing experiment was conducted as follows; The drone was
manually flown to an altitude of 2.5 meters when the drone was stable and the
marker was in the field of view of the camera the autonomous landing was en-
abled, as described in Section 3.7.7. The drone starts the decline after 9 seconds
into the autonomous flight. Figure 4.6 and 4.7 shows the horizontal distance
in roll and pitch direction from the landing spot through out the autonomous
landing. The oscillation in roll direction is heavier than in pitch direction. From
experiences made under this thesis the drone had an offset drift in both roll and
pitch direction, but heavier to in the roll direction. This drift was most likely
due to unbalanced weight distribution on the drone. This was experienced after
changing batteries between tests. After the weight distribution was altered and
the drones drift offset was altered as well. Figure 4.8 and 4.9 shows the correc-
tions from the PID controllers applied to the control input to reach the set point.
In Table 4.5 the PID gains used for this experiments are presented. To cope the
oscillations we are seeing the Kd could have been set higher. After 10 seconds in
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autonomous flight the drone starts the decline. The decline velocity set point was
set to -0.20 m/s.Figure 4.11 shows the vertical velocity from the decline and had
an average error from the set point at 0,06 m/s. The drone landed on marker with
an error of 11 cm roll direction and 9 cm in pitch direction measured manually
from the center of the drones body to the center for the marker. The drone was in
autonomous flight for 25 seconds and decline took 16 seconds. Figure 4.14 shows
snapshots from the video taken during this experiment. The video for this exper-
iment can be found here; http://www.youtube.com/watch?v=9otkmpm6RUQ

Roll Pitch Vertical velocity

Set point 0 0 -0.20 m/s
Average error 0.15 m 0.10 m 0.07 m/s

Variance 0.17 m 0.11 m 0.06 m/s
Standard derivation 0.11 m 0.06 m 0.06 m/s

Table 4.4: Statical results from the autonomous landing experiment. The results
are error is logged from the PID controllers for the given control domain. The
Roll and pitch controller errors is given in meters and the Vertical velocity in
meters per second.

Roll PID Pitch PID Autolanding PID

Kp 18 18 25
Ki 0.5 0.5 0
Kd 40 40 50

Table 4.5: The gains for the three PID controllers used for the autonomous
landing experiment.
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Figure 4.6: In this figure the distance in X direction from the marker is plotted.
The blue line shows the estimated horizontal distance in meters as described in
Section 3.7.3. The red dashed line the red dashed line is the PID controllers set
point.
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Figure 4.7: In this figure the distance in Y direction from the marker is plotted.
The blue line shows the estimated horizontal distance in meters as described in
Section 3.7.3. The red dashed line the red dashed line is the PID controllers set
point.
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Figure 4.8: This figure shows the corrections to the control input uΦ (roll) at the
time t. The Kp gain was set to 18 , Ki gain to 0.1 and the Kd gain to 40. The
maximum thrust was capped to 50 and the minimum to -50
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Figure 4.9: This figure shows the corrections applied to the control input uΘ

(pitch) at the time t. The Kp gain was set to 18 , Ki gain set to 0.1 and the Kd
gain to 40. The maximum thrust was capped to 50 and the minimum to -50
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Figure 4.10: This figure shows the decline velocity during autonomous landing.
The blue line represents the velocity and the red dashed graph is the set point
for its PID controller.
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Figure 4.11: This figure shows the corrections applied to the control input uz at
the time t. The KP gain was set to 25 , KI gain to 0 and the KD gain to 50.
The maximum thrust was capped to 50 and the minimum to -15
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Figure 4.12: The graph shows the trajectory of the drone during an autonomous
landing. The plot starts when the autonomous flight is enabled.
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Figure 4.13: The graph shows the trajectory of the drone during an autonomous
landing. The plot starts when the autonomous flight is enabled.
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Figure 4.14: In the pictures above we see the drone performing an autonomous
landing.

Quantitative example

The autonomous landing was tested a number of times through out this thesis.
The tests results presented in Table 4.6 is the results from experiments where the
drone was stable enough to give us real data. The assumptions for this was that
the drone should operate without any significant drift in any direction due to
unbalanced weight distribution. This unbalance originated from psychical parts
on the drone that changes position throughout experiments. This was typically
battery packs and parts remounted due to defection. In Table (4.6) the results
from 7 stable experiments that was conducted are presented. The distance was
measured manually with the shortest distance from the markers center to the
drones body center.
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Average Error Standard derivation

0.27 meters 0.14 meters

Table 4.6: This table contains the results from 7 autonomous landings.

Qualitative example

For an qualitative example we have chosen to focus on robustness of the au-
tonomous landing and the drones ability to recover if the marker observations are
missing. Figure 4.15 shows the marker observations that represents the drones
trajectory in X and Y direction. The red scatter points represents when the
marker was out of the cameras field-of-view. Figure 4.16 shows the marker as its
goes out of the cameras field-of-view and later makes it recovery based on the
predicted position given by the Kalman filter that was applied.
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Figure 4.15: The blue scatter represents the estimated position of the landing
spot when the marker with marker observations the red scatter represents the
estimated position without marker positions, when the marker was out of the
field-of-view
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Figure 4.16: The figure shows video images taken from the drones camera. The
marker goes out of the cameras field-of-view in picture 3 and 4, and making its
recovery in image 5 and 6.
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Chapter 5

Evaluation and Conclusion

In this thesis we have built a fully operating autonomous drone with with visual
navigation abilities and all computations are done on-board with limited process-
ing power. The drone was been built using only with off-the-self hardware a and
with a budget under a $1000 3.2.5. We have developed software implementing
computer vision algorithms for identifying the marker and calculating its position
the linear Kalman filter for robust tracking of the marker and recovery after lost
visual tracking. The Kalman filter implemented also fuses and filters noisy sensor
observations. All the software developed 1 and used are open source, as well as
the design for the 3D parts. 2

A PID controller was implemented for control of the drone pose and fly to
and hold desired set points. The Section 5.1 we discuss the performance of these
implementations.

5.1 Evaluation

In Section 4.2.1 and 4.2.1 we showed the drones ability to hold an altitude over
time and ability fly to a desired altitude. This is a important feature and affects
the performance of the position hold and autonomous landing. In Section 4.2.2
we showed that drones ability the perform position hold and precise autonomous
landing on a given landing spot. In Section 4.2.2 we have showed the robustness
of the visual tracking and the drones ability to recover to position hold after a
series of missing visual observations.

1https://github.com/paalmoest/drone
2https://github.com/paalmoest/3d-drone
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5.2 Conclusion

We have in our experiments showed that the drone we have designed with our
hardware and software implementation can perform under optimal conditions
and in a indoor environment an autonomous precision landing within an average
of 0.27 meters of the desired landing spot.

5.3 Discussion

On one hand, we can say that the system we designed is robust and it can recover
from loss of visual tracking and handle noisy sensors and heavy outliers. But on
the other hand this robustness is under what we call optimal conditions. The
assumptions of these optimal conditions are that the drone initially operates
should operate without any significant drift in any direction when no control
command is issued. During this thesis this was not always the case and to fill
the assumptions of the optimal conditions, manually calibrations of the weight
distribution and tuning of the initial control commands values had be issued
before any of the experiments. These calibration slashed our flight time in the
experiments. The flight time for the drone at the end of thesis was about 6
minutes due to degraded battery capacity and the payload on the drone. In this
thesis it has been difficult to distinguish between what is plain hardware issues
EG. sensors giving over 50% outliers) and issues that could have been solved with
a more robust and adaptive software implementations, like noise sensor data and
attitude pose

The lack of outdoor experiments conducted is due to limitations in time and
the weather conditions in Norway in December and January when the majority
of the experiments was conducted. In Section 5.5 we have further discussed the
limitations of the drone and suggested solutions.

5.4 Contributions

In this thesis we have showed the necessary steps to transform a radio con-
trolled helicopter into a an autonomous drone. We have documented the what
AI-methods need to be implemented to make it operational and

What are the main contributions made to the field and how significant are
these contribution.
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5.5 Future Work

5.5.1 Operating in challenging environments

In this thesis autonomous landing was only tested in a indoor environment. With
landing outdoors more factors needs to be accounted for. Landing in windy
environments may require a more robust and adaptive control of the drone. The
identifying and tracking of the landing spot is done by color and shape (3.6.2) from
experience made under this thesis the tuning parameters for marker recognition
are directly influenced by the lighting condition in environment and search or
learning algorithm could be applied to handle this challenges. The unscented
Kalman filter could have been applied to leading to more robust and accurate
results ( Julier and Uhlmann. [1997] ) of the state prediction.

5.5.2 Gimbal mount for camera

In this thesis the camera was mounted in a fixed position with a gimbal mounting
would have enabled the camera to move in two direction and had been able to
identify the marker from a greater distance. This would naturally have risen the
complexity of the solution.
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