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Problem Description

Mobile devices such as iPads or iPhones have a relatively little amount of RAM, but
a comparably powerful CPU and increasing amounts of low-latency flash memory
storage (128 GiB on the last generation iPad). Increased computational power and
storage, combined with progressively more energy efficient devices, allows one to
pursuit new areas of research including exploiting available hardware in unique
ways.

The Trondheim-based company “Atbrox” are involved with an EU project fo-
cusing on search on mobile devices. An important component of search is the rep-
resentation of the inverted index, and within, the per term postings list – a com-
pressed list of URIs, where each URI represents a document containing the search
term. Compression and decompression of the posting list can be handled in a num-
ber of different ways.

This thesis will focus on implementation, tuning (e.g. chunk size) and bench-
marking of Variable byte encoding, a simple but efficient way to store the posting
list. A survey of additional algorithms such as Elias gamma coding will also be in-
cluded.

The work carried out in this project should provide insight to the performance
of reading and writing from an SSD on a mobile device, streaming data and random
access, and the balance between SSD and CPU utilization.

This work will be implemented in Objective-C, utilizing acceleration frame-
works provided on the iOS platform.
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Abstract

Recent years has seen a tremendous increase in both the performance of handheld
devices and the use cases they are required to fullfil. Indeed, operations previously
reserved for handling on personal computers have begun being executed on smart
phones and tablets instead. This revolutionary development allows one to exploit
handheld device hardware in novel applications.

Trondheim-based start-up “Atbrox” is engaged in an EU project where Atbrox’
focus is search on mobile devices. An important component of search is the in-
verted index, and within, the per term postings list – an encoded list of Unified
Resource Identifiers (URI). Decoding of a postings list must be fast in order to not
comprimise the user experience, but is also required to hold a small storage foot-
print. As the first to our knowledge, this thesis attempts to identify the properties
of postings list encoding and decoding on handheld devices.

Variable-byte coding, Group Varint coding, and Elias γ coding are implemented
in Objective-C. Performance is surveyed by benchmarking three devices out of Ap-
ple: A 5th generation iPod, a 4th generation iPad, and an iPad Air. Executions are
run from disk-to-disk, i.e. by reading a block of data, applying either encoding or
decoding, and writing the result to permanent storage. Block sizes are varied. In
addition, multithreading is applied during both encoding and decoding and com-
pared to serial executions in an attempt to identify the properties under which each
coding scheme performs best.

This thesis provides valueable insight to the properties of coding schemes on
handheld devices. Among its findings is the varying degree of performance and
compression ratio between coding schemes: Group Varint proves to outperform
the two others in terms of speed, however, is lacking in terms of compression. Elias
γ code provides the best compression ratio, but is the slowest in both encoding and
decoding. Results also prove a strong correspondance between block size and per-
formance, although a point of saturation is reached at 512 KiB. Additionally, block
sizes below 512 KiB display an inability to take advantage of multithreading.
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Sammendrag

De senere årende har sett en rivende utvikling innen ytelsen i håndholdte enheter
og deres bruksområder. Gjøremål tidligere reservert for PC har blitt flyttet over til
smarttelefoner og nettbrett. Denne revolusjonerende utviklingen tillater utnyttelse
av tilgjengelig maskinvare på nye, spennende måter.

Det Trondheims-baserte selskapet “Atbrox” er engasjert i et EU-prosjekt, der
Atbrox fokuserer på søk på mobile enheter. En viktig komponent i søk er den in-
verterte indeksen, med tilhørende postings-liste – en komprimert liste av Unified
Resource Identifier-er (URI). Dekomprimering av postings-listen må være rask for
ikke å forkludre brukerfølelsen, men samtidig tilordne seg lite lagringsplass. Til vår
kjennskap er denne masteroppgaven det første forsøket på å kartlegge en postings-
listes egenskaper på mobile enheter.

Variable-byte-, Group Varint- og Eliasγ-komprimering er implementert i Objective-
C. Ytelsen er kartlagt ved å benytte følgende enheter fra Apple: En femtegenerasjons
iPod Touch, en fjerdegenerasjons iPad og en iPad Air. Kjøringer er gjort ved å lese en
datablokk, anvende komprimering eller dekomprimering på datablokken og skrive
resultatet til disk. Blokkstørrelser varieres mellom kjøringer. Flere tråder er benyt-
tet under både komprimering og dekomprimering og sammenlignet med serielle
kjøringer.

Masteroppgaven gir verdifull kunnskap om egenskapene ved de nevnte kom-
primeringsmetodene på håndholdte enheter. Blant funnene er variasjonen i ytelse
og komprimeringsgrad metodene i mellom. Group Varint gir best ytelse sett i forhold
til hastighet, men betaler med dårligst komprimeringsgrad, mens Elias γ har egen-
skaper invertert av disse. Resultatene viser også en sterk sammenheng mellom
hastighet og blokkstørrelse. Et metningspunkt oppstår dog ved 512 KiB. I tillegg
virker applikering av flere tråder mot sin hensikt for blokkstørrelser under 512 KiB.
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Chapter 1

Introduction

Recent years has seen a tremendous increase in both the performance of handheld
devices and the use cases they are required to fullfil. Indeed, operations previously
reserved for handling on personal computers have begun being executed on smart
phones and tablets instead. This revolutionary development allows one to exploit
handheld device hardware in novel applications. In addition, while handheld de-
vices have become increasingly faster in terms of computation, they have also re-
ceived storage space on par with Solid State Drive (SSD) based notebooks. The
recent iPad Mini and iPad Air out of Apple each hold storage capacities of 128 GiB.
With flash memory as the storage technology, such devices promise high Input/
Output (I/O) performance.

Trondheim-based technology start-up “Atbrox” specialize in search technolo-
gies and novel applications of search. They are currently engaged in an on-going
EU project where Atbrox’ focus is on search on mobile devices. An important com-
ponent of search is the inverted index, and within, the per term postings list – an
encoded list of Unified Resource Identifiers (URI), each identifying a document in
the document storage system. Decoding of a postings list must be fast in order to
not comprimise the user experience, but is also required to hold a small storage
footprint as the device storage space is shared with numerous other applications.

This thesis is motivated by recent hardware developments in the handheld de-
vice market, with a major potential for utilizing the available performance in unique
ways. Three different coding schemes commonly used in encoding and decoding
postings lists will presented and implemented: Variable-byte coding, Group Varint
coding, and Elias γ coding. Each coding will be applied using a 5th generation
iPod, a 4th generation iPad, and an iPad Air, with the performance of each being
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2 CHAPTER 1. INTRODUCTION

recorded. In addition, tests with a varying block size will be conducted, and multi-
threading will be attempted in order to investigate the potential for parallel encod-
ing and decoding.

1.1 Project Context

This master’s thesis is the end product of a five year Master of Science (M.Sc.) ed-
ucation in Computer Science conducted at the Norwegian University of Science
and Technology (NTNU). It is one of several projects organized by the High Perfor-
mance Computing (HPC) group at the Department of Computer and Information
Science (IDI) [16]. Further, the project is under advisement from Dr. Anne C. Elster
from NTNU1, and Dr. Amund Tveit on behalf of atbrox2.

1.2 Project Contributions

While novel ways of coding or structuring postings lists are not part in the this
projects contributions, it provides valuable insight to the behaviour of coding schemes
on mobile platforms, the performance, and optimal ways of use. In addition, prob-
lems related to blocked reading of data to encode or encoded data are assessed and
handled. These are situations that have not been found described in other littera-
ture. Implicitly, the relative performance between devices is also measured, both
in terms of CPU performance and disk performance.

1.3 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2: Contains an introduction to the current handheld device market, as
well as a more thorough presentation of Apple i-series of devices and the
hardware found within. In addition, a quick walkthrough of developing on
the iOS platform will be given.

Chapter 3: Gives a review of parallel concepts such as multi-core, parallel data
models, and theoretical models of parallelization.

1http://www.idi.ntnu.no/∼elster/
2http://www.atbrox.com
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Chapter 4: Presents the concept of a postings list in general, how they are com-
monly organized, as well as encoding and decoding methods relevant to post-
ings lists. The chapter will end with a review of work related to this thesis.

Chapter 5: Discloses the implementation details of the work performed, with in-
formation on the work flow of created applications and the processing of data
from disk into encoded or decoded form. Additionally, the internals of im-
plemented coding schemes are presented. Towards the end, a description on
how benchmarks were executed is given.

Chapter 6: Begins with an overview of the performance and compression ratio of
implemented coding schemes. At the same time, a comparison with gener-
alized compression methods is made. Following, results of the flash memory
reading benchmarks are presented. The remainder of the chapter is dedi-
cated to presenting and discussing results found testing each coding scheme
under various parameters on the benchmarked devices. In the end, results
are summarized and given a critical review.

Chapter 7: Contains a recap of the findings in the thesis, an assessment of these
findings, and conclusions that have been made. Suggestions for future work
is presented at the end.





Chapter 2

Handheld Devices and Development

This chapter will introduce the reader to the handheld device market, and devel-
opment on such devices. First off, common hardware configurations and their
properties are presented. Further, Apple’s i-series, i.e. the iPod Touch, iPhone, and
iPads, are given a more thorough introduction. Due to Atbrox’ involvement in iOS,
important contributors and large hardware manufacturers such as Samsung, HTC,
and LG, have not been covered in this thesis.

Towards the end, a walkthrough of development on iOS will be given, introduc-
ing the Objective-C programming language and important programming frame-
works.

2.1 Central Processing Unit

While limitations in power consumption, generation of heat and physical die space
are all factors hampering the performance of a Central Processing Unit (CPU) run-
ning on a desktop computer, compromises made on mobile platforms are more
rigorous. Consumers demand high performance coupled with maximized battery
life. In addition, the tight body of mobile devices force manufactures to shrink the
CPU’s die and forego active cooling solutions such as fans. Indeed, even passive
cooling solutions must be trimmed to fit within the shell of a handheld device. An
increased awareness of battery life, the absense of active cooling and less real estate
for the CPU have forced a new market of mobile CPU manufacturing with roots in
the embedded market.
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6 CHAPTER 2. HANDHELD DEVICES AND DEVELOPMENT

2.1.1 ARM Architecture

ARM’s embedded past and early initiative with low-powered Graphics Processing
Units (GPUs) have made them a dominant entity in the handheld chip market.
Their list of Intellectual Property (IP) licensee’s include manufacturers such as Ap-
ple, Qualcomm, Samsung and others [10].

The architecture has been designed to be small and simple, allowing for a low
power consumption. In essence, it follows the design of a Reduced Instruction Set
Computer (RISC), incorporating several typical RISC features such as a load/store-
centric architecture and a large uniform register file. Coupled with additional en-
hancements to the traditional RISC architecture, particularly towards the use of the
Arithmetic Logic Unit (ALU), ARM processors achieve a good balance between per-
formance, power consumption and die size [50]. ARM’s first 64 bit processor was
introduced in 2011.

ARM has been present in the handheld market since the early 1990s, first intro-
duced with the Apple Newton [23]. Since then, the company has become a domi-
nant actor within the handheld chip market. In 2006, research estimated an ARM
designed core was present in 98 % of all mobile phones [40]. Table 2.1 list common
ARM processors and their features found in current mobile phones and tablets [7–
9].

Table 2.1 Core specifications of common ARM processors.

Cortex-A8 Cortex-A9 Cortex-A15

Clock Frequency: 600 MHz – 1 GHz 800 MHz – 2 GHz 1.0 GHz - 2.5 GHz
# Cores: 1 1 – 4 1 – 4
L1 Cache (I/D): 32 KiB /32 KiB 32 KiB /32 KiB per core 32 KiB /32 KiB per core
L2 Cache: - 128 KiB – 8 MiB 128 KiB – 8 MiB
64 bit: - - -
SIMD Extensions: NEON NEON NEON

2.1.2 IA–32/Intel x86–64 Architecture

Intel’s IA–32 and x86–64 architectures are architectures based on and backwards
compatible with Intel’s x86 architecture. In comparison to the previously men-
tioned ARM architecture, x86 is a Complex Instruction Set Computer (CISC) archi-
tecture. A characteristic of CISC is the inherit complexity of instructions, enabling
them to perform several operations per instruction, for instance loading a value
from memory and dispatching it to the ALU. Later generations of x86 introduced
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a decoding step and a RISC-like core in the processor. X86/CISC instructions are
decoded into micro-operations and executed in a RISC-like manner [33, 57].

In handheld devices, Intel’s Atom series of processors has been the most preva-
lent x86-based CPU. Intel Atom is a family of Ultra-Low-Voltage (ULV) processors,
created to establish Intel in the embedded and handheld device market [32, 34]. As
with ARM, Intel Atom sports a notably lower clock frequency compared to proces-
sors designed for desktop and server use. In addition, the physical size of the chip
is significantly less than its desktop counterparts.

2.2 Storage

In order to keep device size at a minimum, but still provide sufficient storage, hand-
held devices resort to the use of flash memory instead of traditional, mechanical
hard drives.

2.2.1 Flash Memory

Flash memory is a type of non-volatile electronic storage medium, commonly found
within hardware devices such as mobile phones, tablets and Solid State Drives (SSD).
The technology promises significant performance gains, while being more dense
and power efficient. However, flash memory does not come without idiosyncrasies.
It is known to be less durable, as well as having data integrity issues [20]. Indeed, the
current most common type of flash memory, Negated AND (NAND) memory, has
been predicted a bleak future since both the increase in performance and reliabil-
ity have stagnated as the density has risen [21]. Despite mentioned idiosyncrasies,
flash memory’s low power consumption and performance compared to that of me-
chanical hard drives makes it a favourable candidate when choosing the storage
medium for a device. Being both electric and non-volatile, flash memory combines
the properties of technology found in use as main memory, i.e. high random access
performance, without data loss when the memory is unpowered. In addition, some
issues, such as wear-leveling and integrity, may be countered through the use of an
intelligent flash controller or a flash translation layer.

2.3 Memory

With the advent of more and more mobile devices, with a higher demand for pro-
longed battery life as well as less device real estate, a new type of Random Access
Memory (RAM) was introduced: Low Power Double Data Rate RAM (LPDDR) or
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Mobile DRAM (mDDR). LPDDR was first standardized by JEDEC1 in 2007, then as a
minor modification to the existing DDR standard, specifying lower operating volt-
age, a new deep power down mode as well as a smaller physical size [38]. Devices
such as the first generation of iPad and Samsung Galaxy Tab adopted the new type
of memory [19].

As new devices have been released, so has the LPDDR standard. JEDEC an-
nounced LPDDR2 in 2009, further lowering the operating voltage in addition to rep-
resenting a more dramatic change from conventional DDR [36, 53]. LPDDR2 was
quickly adopted by the industry, and is represented in devices such as the iPhone
5 and Samsung Galaxy S3 [30, 51]. LPDDR3 was announced in May 2012, promis-
ing a higher data rate, improved bandwidth and power efficiency, as well as higher
memory densities than its predecessor [37, 54].

2.4 Apple Devices

Apple released their first modern, handheld i-device in 2007 with the introduction
of the iPhone2 [25]. Since inception, the devices have had a strong emphasis on
preserving battery life. Indeed, an emphasis to the extent that processors within
i-devices have been underclocked3. Each generation of devices from Apple have
possessed the previously mentioned hardware characteristics: An ARM based CPU,
flash drive for storage and a variant of Low Power DDR RAM. Table 2.2, Table 2.3,
and Table 2.4 lists the different generations, as well as key hardware components.

Table 2.2 Specifications of iPod Touch devices.

System on Chip Memory Storage

1st gen. iPod Touch: Samsung S5L8900 (412 MHz) 128 MiB 8 GiB – 32 GiB
2nd gen. iPod Touch: Samsung S5L8720 (533 MHz) 128 MiB 8 GiB – 32 GiB
3rd gen. iPod Touch: Samsung S5L8920 (600 MHz) 128 MiB 32 GiB – 64 GiB
4th gen. iPod Touch: Apple A4 (800 MHz) 256 MiB 8 GiB – 64 GiB
5th gen. iPod Touch: Apple A5 (1 GHz) 512 MiB 16 GiB – 64 GiB

1JEDEC is a standardization body and independant semiconductor trade organization. The DDR
SDRAM standards are a product of JEDEC. More information is available at http://www.jedec.org.

2Only generations of iPod running iOS are considered in this project, that is, the iPod Touch-series
of devices.

3Running a CPU on a clock frequency lower than specified. As opposed to overclocking, where the
clock frequency is increased beyond specification., iphone2008underclocked, iphone2009underclocked
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Table 2.3 Specifications of iPhone devices.

System on Chip Memory Storage

iPhone: Samsung S5L8900 (412 MHz) 128 MiB LPDDR 4 GiB – 16 GiB
iPhone 3G: Samsung S5L8900 (412 MHz) 128 MiB LPDDR 8 GiB – 16 GiB
iPhone 3GS: Samsung S5PC100 (600 MHz) 256 MiB LPDDR 8 GiB – 32 GiB
iPhone 4: Apple A4 (800 MHz) 512 MiB LPDDR2 8 GiB – 32 GiB
iPhone 4s: Apple A5 (800 MHz) 512 MiB LPDDR2 8 GiB – 64 GiB
iPhone 5: Apple A6 (1.3 GHz) 1 GiB LPDDR2 16 GiB – 64 GiB
iPhone 5C: Apple A6 (1.3 GHz) 1 GiB LPDDR2 16 GiB – 32 GiB
iPhone 5S: Apple A7 (1.3 GHz) 1 GiB LPDDR3 16 GiB – 64 GiB

Table 2.4 Specifications of iPad devices.

System on Chip Memory Storage

1st gen. iPad: Apple A4 (1 GHz) 256 MiB LPDDR 16 GiB – 64 GiB
2nd gen. iPad: Apple A5 (1 GHz) 512 MiB LPDDR2 16 GiB – 64 GiB
3rd gen. iPad: Apple A5X (1 GHz) 1 GiB LPDDR2 16 GiB – 64 GiB
4th gen. iPad: Apple A6X (1.4 GHz) 1 GiB LPDDR2 16 GiB – 128 GiB
1st gen. iPad Mini: Apple A5 (1 GHz) 512 MiB LPDDR2 16 GiB – 64 GiB
2nd gen. iPad Mini: Apple A7 (1.3 GHz) 1 GiB LPDDR3 16 GiB – 128 GiB
iPad Air: Apple A7 (1.4 GHz) 1 GiB LPDDR3 16 GiB – 128 GiB

An interesting observation to make is the close relationship between hardware
configurations in generations of iPod and iPhone.

2.4.1 Apple A-Series System on Chip

The A-series family of System on Chips (SoC) integrate one or several ARM-based
CPU cores, an arbitrary GPU, cache memory and additional electronic equipment
required for mobile computing functions. Its first official debute was in the release
of Apple’s iPad, then represented by the Apple A4. Apple themselves design the
package, while manufacturing is out-sourced to external contractors such as Sam-
sung [56]. A-series SoCs are found in nearly all electronic equipment produced by
Apple; iPad, iPod Touch, iPhone as well as the Apple TV.

As mentioned, Apple A4 first introduced the series. Then followed the Apple A5
and A5X the consecutive year and lastly Apple A6 and Apple A6X. In 2013, Apple
released its first 64 bit mobile SoC aptly named A7. Properties of each generation is
summarized in Table 2.5 [41, 43–45, 56].
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Table 2.5 Properties of the different generations of A-series System on Chips.

Apple A4 Apple A5 Apple
A5X

Apple A6 Apple
A6X

Apple A7

Proces-
sor:

ARM
Cortex-A8

ARM
Cortex-A9

ARM
Cortex-A9

Apple
Swift

Apple
Swift

Apple
Cyclone

Clock Fre-
quency:

800 MHz
– 1 GHz

800 MHz
– 1 GHz

1 GHz 1.3 GHz 1.4 GHz 1.3 GHz –
1.4 GHz

# Cores: 1 1 – 2 2 2 2 2
L1 Cache
(I/D):

32 KiB /32
KiB

32 KiB
/32 KiB

32 KiB
/32 KiB

32 KiB
/32 KiB

32 KiB
/32 KiB

64 KiB /64
KiB

L2 Cache: 512 KiB 1 MiB 1 MiB 1 MiB 1 MiB 1 MiB
64 bit: - - - - - Yes
GPU: PowerVR

SGX 535
PowerVR

SGX543
PowerVR

SGX543
PowerVR

SGX543
PowerVR

SGX554
PowerVR

G6430

Apple recently made a move from making use of ARM designed cores, to cores
designed by Apple themselves, i.e. the Apple Swift found in Apple’s A6 and A6X and
Apple Cyclone found in A7.

2.4.2 Storage

The amount of available storage on devices made by Apple varies from generation
to generation. From the first iPhone having options between 4 and 16 Gigabytes
(GB), to the latest iPhone 5S having been made available with 16, 32 or 64 GB of
storage. Common to all is the use of NAND flash Memory as the electronic stor-
age medium. It is unknown whether Apple employ the use of an additional Input/
Output (I/O) controller to facilitate access to the flash memory or if the CPU has
direct access. Several investigations into the internals of i-devices make no men-
tion of a controller [27–29, 31]. Indeed, reverse engineering attempts show atleast
earlier versions of iPhone make use of dynamic wear leveling implemented in soft-
ware as a proprietary flash translation layer (FTL) [35]. However, in 2012 Apple
acquired Anobit Technologies, Ltd, an Israeli flash memory controller manufac-
turer [52]. Articles commenting on the acquisition mention Anobit technology as
already present in iPhones and iPads [17].
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2.4.3 Memory

Main memory in Apple’s devices is not bundled alongside the CPU and GPU on the
same SoC, but rather attached as a Package on Package (PoP). That is, RAM and SoC
are stacked and unified through a standard routing interface. Apple makes use of
one of the standards of Low Power DDR RAM (LPDDR), a physically smaller type of
DDR RAM operating on lower than normal voltages. The original LPDDR was used
up until the release of the second generation iPad (iPad 2) and iPhone 4, providing
bandwidths up to 1600 Megabytes per second (MB/s) depending on memory clock
rate and width of the memory bus. iPad 2, iPhone 4 and later generations of the two
use LPDDR2, achieving theoretical bandwidths up to 12800 MB/s. In iPhone 5S,
the Apple A7 is packaged with LPDDR3, further pushing the theoretical bandwidth
limit.

2.5 Mac OS X and iOS Development

The following sections will introduce the programming languages and tools avail-
able for development on Apple’s platforms.

2.5.1 Programming Languages

Three different, although related, programming languages are available when de-
veloping for Mac OS X and iOS: C, C++, and Objective-C, with the latter being the
primary language of use.

Objective-C

Objective-C is the primary programming language of use when developing soft-
ware for Mac OS X and iOS. It is a strict superset of the C programming language,
defining several powerful extensions. Among these are Object-oriented capabilities
by adopting Smalltalk-like messaging and a dynamic runtime [2, About Objective-
C].

Syntax Being a thin layer on top of C, any Objective-C compiler is able to com-
pile a C program. In addition, a developer is permitted to freely include C code in
an Objective-C class. It follows Smalltalk’s syntax for sending messages, i.e. calling
an object’s method or function. Syntax for associating variables with values, arith-
metics, conditional constructs, and other non-object oriented behaviour follows
the same convention as C.
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Classes and Objects As with other object-oriented languages, objects in Objective-
C are made to encapsulate and package related data. A class is a description of an
object. It acts as a blueprint, defining properties and behaviour of objects that be-
long to this specific class. For instance, an array object may contain functionality
for storing, expanding, and contracting data. However, one does not need to know
the interals of such an object, as described in the class, only how one is expected to
interact with the object and how the object will respond [2, Defining Classes].

Class inheritance is an important feature of an object-oriented design, and Objective-
C is no exception. Although not required, almost all classes used in relation to Mac
OS X or iOS inherit from NSObject. NSObject corresponds to Java’s Object class
or Python’s object class. That is, a root class4 with a basic interface to the runtime
system, enabling child classes to behave as objects of their respective programming
languages.

Interface An important focus in Objective-C is to define the behaviour of ob-
jects of a class, and hide implementation details. To facilitate such an architecture,
classes are required to define public methods and properties in what is called an in-
terface. Listing 2.1 illustrate a bare class interface definition namedMyPersonClass,
inheriting methods and properties from NSObject.

Listing 2.1 An example of an Objective-C class interface definition.
1 #import <Foundation.h>
2

3 @interface MyPersonClass : NSObject
4

5 @end

In Objective-C, the properties of a class are public class instance variables. These
are variables that should be easily referenced and require no additional source when
accessed, other than setting or getting their value. For instance, consider if one was
to extend the class created in Listing 2.1 to contain information to better describe
a person. This could be achieved by creating properties to contain a person’s name
and birth date as demonstrated in Listing 2.2. Note the asterisk preceding the vari-
able names. This is due to NSString and NSDate being Objective-C objects and
the language’s thin layer around C: objects must be represented by their pointers [2,
Defining Classes].

4A class which inherits from no other class and defines a common interface shared by all objects in
the hierarchy below it.
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Listing 2.2 Creating properties to contain information abouth a specific person.
1 #import <Foundation.h>
2

3 @interface MyPersonClass : NSObject
4

5 @property NSString *firstName;
6 @property NSString *lastName;
7 @property NSDate *birthDate;
8

9 @end

As mentioned earlier, objects primarily communicate with each other through
messages. These messages are defined through method declarations. While the
concept is similar to how one would assume C method declarations to behave, the
syntax is quite different, as demonstrated in Listing 2.3a and Listing 2.3b. In List-
ing 2.3b, first and second are the variable names that must be referred to in the
implementation of the method, while anotherParameter is a descriptive name of
the parameter. It is important to note, however, that Objective-C does not support
named parameters, as for instance Python does. Both the order of parameters and
the descriptive name is part of the method declaration and must match when the
method is called or is to be implemented. In other words, the declaration in List-
ing 2.3b is not the same as the one displayed in Listing 2.3c [2, Defining Classes]. In
general, a method declaration in Objective-C follows the following pattern:

- (ReturnType)methodName:(FirstParameterType)firstParameter
nextParameterDescription:(NextParameterType)nextParameter

The leading - (dash) creates an instance method. Replacing it with a + (plus)
will create a class method.

Implementation With the properties and methods defined in an interface,
the implementation of a class’ behaviour is written inside an implementation di-
rective. As illustrated in Listing 2.4, this is done by importing the header file con-
taing the interface declaration and writing the implementation for each defined
method in the interface. Here, the interface example from earlier has been ex-
tended with an additional method, secondsSinceBirthDate:(NSDate *)date [2,
Defining Classes].
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Listing 2.3 Comparison of method definitions in C and Objective-C.

1 void someMethod(int first,
2 int second);

(a) Method definition in C.

1 - (void)someMethod:(int)first
2 anotherParameter:(int)second;

(b) Method definition in Objective-
C.

1 - (void)someMethod:(int)first
2 secondParameter:(int)second;

(c) A second method definition in Objective-C.

2.5.2 Fundamental Frameworks and APIs

When developing with Objective-C for Mac OS X or iOS, there are a set of essential
frameworks and Application Programming Interfaces (API). These are the Founda-
tion framework and Cocoa and Cocoa Touch APIs.

Foundation

Foundation is a framework providing a base layer of primitive object classes and
utility classes that are not covered by the Objective-C language. Among these are
NSString, NSArray, NSDictionary and the previously referenced NSDate. Each
of these are defined in separate header files. However, they can all be included by
importing Foundation’s primary header file, Foundation.h [5]:

#import <Foundation.h>

Cocoa and Cocoa Touch

Cocoa and Cocoa Touch are Apple’s native object-oriented APIs for Mac OS X and
iOS, respectively. Developers are encouraged to use Apple’s Xcode Integrated De-
velopment Environment (IDE) when interfacing with Cocoa Touch, as the IDE tightly
incorporates both APIs [3, 4].

Cocoa includes the previously introduced Foundation framework, in addition
to the AppKit framework [3]. The latter includes classes for handling a program’s
User Interface (UI), as well as handling events when a user interacts with UI com-
ponents. Cocoa Touch is based on Cocoa, with a an AppKit modified to suit iOS as
well as additions for handling touch gestures and an animation framework [4].
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Listing 2.4 Example of a defined interface and its implementation.
1 #import <Foundation.h>
2

3 @interface MyPersonClass : NSObject
4

5 @property NSString *firstName;
6 @property NSString *lastName;
7 @property NSDate *birthDate;
8

9 - (float)secondsSinceBirthDate:(NSDate *)date;
10

11 @end

(a) Interface for MyPersonClass.

1 #import "MyPersonClass.h"
2

3 @implementation MyPersonClass
4

5 - (float)secondsSinceBirthDate:(NSDate *)date {
6 float seconds = [date timeIntervalSinceDate:self.birthDate];
7 return seconds;
8 }
9

10 @end

(b) Implementation of MyPersonClass

Common to both is the use of the Model-View-Controller (MVC) development
pattern for coupling user engaged events in the UI and corresponding data [3, 4].





Chapter 3

Multi-core and Parallel Computing

This chapter is a summary of the litterature studied at the beginning of the process
leading up to this thesis. Within, the principles, technologies and hardware that
define and set the bounds of the project is presented.

3.1 Parallel Programming

This section will give a quick overview of the architectures and memory models of
parallel programming.

3.1.1 Architectural Definitions

Two different models are commonly used to define parallel architectures. The first
uses the relationship between memory and compute units to describe its modes,
while the other, often identified as Flynn’s taxonomy, describe the relationship be-
tween instruction and data stream.

The former defines three different architectures:

Shared Memory: In shared memory, every compute unit shares the same unified
memory location. This allows for relatively easy development and for fast
communication between compute units. However, this architecture does
generally not scale well because of race conditions. In addition, memory is
often cached locally by compute units, which in turn raises a cache-coherency
issue.

17
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Distributed Memory: Distributed memory describes an architecture where each
compute unit has its own private memory. This makes computation on lo-
cal data very fast. However, computation on external data enforces commu-
nication between compute units beforehand, which in turn results the need
for some interconnect and message passing interface between each compute
unit. Distributed memory eliminates race conditions.

Distributed Shared Memory: In distributed shared memory, the memory is not
shared among compute units, but it is addressed logically as it was shared.
This means that the extra communication between compute units in dis-
tributed memory is abstracted away from the programmer.

Flynn’s taxonomy defines four different models:

Single Instruction, Single Data (SISD): A single instruction is executed which does
not exploit any data parallelism, either in the instruction or in the data.

Single Instruction, Multiple Data (SIMD): A single instruction which exploits mul-
tiple data streams. This is typical for graphics processing units (GPU).

Multiple Instruction, Single Data (MISD): Multiple instructions operate on a sin-
gle data stream. This architecture is fairly uncommon.

Multiple Instruction, Multiple Data (MIMD): Multiple instructions simultaneously
execute on multiple data streams. This architecture is typical for distributed
systems, either organized as a shared memory system or a distributed mem-
ory system.

3.2 Parallel Scaling

It is important to note that the speedup gained by exploiting the parallelism in a
program is highly dependent on the properties of each individual program, i.e. the
fraction of the program’s execution which is parallelizable. This rather pessimistic
assumption is stated in Amdahl’s law [1], and has later been revised by Mark D. Hill
and Micheal R. Marty [24].

Parallel speedup is defined as the quotient after dividing the sequential exe-
cution time of an algorithm, T1, by the parallel execution time of the algorithm,
executed with p processors, Tp [39]:

SP = T1

Tp
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Further, Amdahl’s law states that if 90% of your program is sequential and the
remaining 10% is parallelizable, the minimum execution time can not be lower
than the 90% spent in the sequential part of the program. In other words, if P is
the proportion of the program that can be made parallel, and 1−P ) is the remain-
ing serial proportion, the maximum speedup given N processors is given by the
following equation [1]:

S(N ) = 1

(1−P )+ P
N

John L. Gustafson and Edwin H. Barsis later reevaluated Amdahl’s assertion in
what has been known as “Gustafson’s law” or “Gustafson-Barsis’ law” [22]. Gustafson’s
law has a more optimistic take on parallel computing, stating that computations
involving arbitrary large datasets can efficiently be parallelized. This has made
Gustafson’s statement a counter-part to Amdahl’s law, which presents an upper
bound for fixed size datasets. Gustafson’s assumption was that software developers
set the problem size based on the available hardware. Therefore, if more parallel
hardware and powerful hardware is available, the problem size would increase. In-
herently, as the problem size increases, the ratio of parallel-to-serial tasks also sees
change. That is, the serial portion will become smaller in proportion to the total ex-
ecution. Gustafson called his metric “scaled speedup” and defined it as such [22]:

S(P ) = P −α× (1−P )

Where S is the speedup, P is the number of processors and α is the serial frac-
tion of any parallel process.

With the advent of multi-core processors, Mark D. Hill and Michael R. Marty
revised Amdahl’s law in 2008, providing new insight to how multi-core processors
should be designed in relation to Amdahl’s law [24]. The authors deduced three
equations for three different types of models:

3.2.1 Symmetric Multi-core Chips

Every core on a chip has equal cost, i.e. exploit the same amount of Base Core
Equivalents (BCE)1. For instance, a symmetric multi-core with a budget of n = 16
BCEs and r = 1 BCE per core would give a 16 core symmetric, multi-core chip. In
general, the number of cores is decided by the quotient of n

r , i.e. the BCE budget
and number of BCEs per core. In addition, Hill and Marty defined a parameter
per f (r ), which is equivalent to the performance of a core with r BCEs.

1A generic unit of cost depending on context, e.g. power, design effort or money.
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The symmetric multi-core architecture uses one core to execute the serial part,
with performance per f (r ), and applies all n

r cores to execute the parallel part. As a
result, the speedup is given by the formulae:

Ss ymmetr i c ( f ,n,r ) = 1
1− f

per f (r ) +
f ×r

per f (r )×n

3.2.2 Asymmetric Multi-core Chips

The second architecture explored by Hill and Marty is that of the asymmetric multi-
core chip. Here, the relation between BCEs and cores is not linear. Instead, sev-
eral BCEs are combined into one large, more powerful core, while the remainder
is divided among a set of smaller, less powerful cores. For instance, an asymmet-
ric multi-core chip could have a budget of n = 16 BCEs at its disposal. Of these,
four could be combined into one large, single core, with 12 small cores with one
BCE each. In general, an asymmetric chip can have 1+n − r cores. The large core
allocates r BCEs, while the remainder, n − r , is distributed to the rest of the cores.

In the asymmetric architecture, the serial part is executed on the powerful core,
and every core executes the parallel part. The speedup is modelled by the equation:

Sas ymmetr i c ( f ,n,r ) = 1
1− f

per f (r ) +
f

per f (r )+n−r

With the advent of General Purpose Programming on GPUs (GPGPU), this ar-
chitecture has become increasingly more relevant lately. If one thinks of a Cen-
tral Processing Unit (CPU) as the large core, performing the serial portion of the
program, the GPU can be thought of as the set of smaller, less performant cores,
executing the parallel portion of the program. The result is a heterogeneous archi-
tecture.

3.2.3 Dynamic Multi-core Chips

The third and last architecture is that of dynamic multi-core chips. In this archi-
tecture, resources are dynamically allocated depending on where they are needed.
When a program executes its serial fraction, all of the BCEs are combined into one
large core. During the parallel execution of a program, the BCEs are distributed
evenly among all cores, utilizing all base cores. This behaviour is modelled by:

Sd ynami c ( f ,n,r ) = 1
1− f

per f (r ) +
f
n
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For a more thorough explanation of the three architectures, and a modelled re-
view of their performance, the reader is urged to investigate Hill and Marty’s paper
from 2008, “Amdahl’s Law in the Multi-core Era” [24].





Chapter 4

Postings Lists in Inverted Indexes

This chapter will start with a description of the most common structure a postings
list is given. Following sections will introduce techniques commonly employed
to reduce the storage footprint. Due to the postings list often being organized as
a list of sorted integers, more effective methods than generalized compression,
such as Bzip2 and Zlib, have been developed. Coding schemes included ahead are
Variable-byte coding, Group Varint coding, and Elias γ coding.

The chapter will end with an overview of work related to what has been per-
formed in this thesis.

4.1 Structure

An inverted index is an index data structure used to map between arbitrary con-
tent, such as words or terms, to locations in a database or document storage. It is
conventionally used in search engines to provide fast full text search, at the cost of
expensive processing when the database or document storage system is updated.
A common structure of an inverted index is to keep a dictionary of terms and pair
each term with the individual IDs of documents the term occurs in. The result-
ing list of such IDs, or postings, is described as a postings list [46, p. 6]. Listing 4.1
displays a simple inverted index for the following sentences:

1. Hakuna Matata.

2. It is our motto.

3. What is a motto?

23
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4. Nothing. What is a motto with you?

Below, terms occur on the left hand side, while separate postings lists are en-
capsulated in curly braces on the right hand side.

Listing 4.1 An inverted index for the four sentences above. Each number in the
postings list represents the sentence a term occurs in.

1 a: {3, 4}
2 hakuna: {1}
3 is: {2, 3, 4}
4 it: {2}
5 matata: {1}
6 motto: {2, 3, 4}
7 nothing: {4}
8 our: {2}
9 what: {3, 4}

10 with: {4}
11 you: {4}

In its simplest form, a postings list constitute a number of Uniform Resource
Identifiers (URI), sorted in ascending order. Each URI identifies a location in an
arbitrary document storage system. Listing 4.2 illustrates one of form a postings
list can take, a comma delimited series of sorted integers.

Listing 4.2 A simple example of a postings list for the term “motto” in the previously
listed sentences.

1 motto: {2, 3, 4}

A common addition to storing the URI is to also bundle the location of a word
in each document together with the number of occurences. Again for the term
“motto”, a postings list more rich in information is demonstrated in Listing 4.3.

Listing 4.3 A postings list also containing the location of the word “motto” in each
sentence, where the location is the nth position of the first character in “motto” in
the sentence (whitespace included).

1 motto: {<2, 11>, <3, 11>, <4, 20>}
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4.2 Compression and Decompression

With an increasingly larger abundance of information being generated and indexed [18],
the necessity of efficient schemes to minimize an inverted index’ storage footprint
is paramount. In addition, such schemes must enable fast retrieval of data stored
in an index. Search engines implement a number of optimizations to reduce index
size and provide better indexing and retrieval of data. Among these are specialized
handling of extremely common terms which incur little benefit in providing a bet-
ter search experience, so called “stop words” [46, p. 27], but also compression of
the postings list. In addition to reducing the disk space, compression provides two
additional benefits [46, p. 85]: a) Increased use of cache, as common terms can be
stored in memory, rather than read from disk; and b) faster transfer between disk
and memory. Indeed, compression schemes are known to have an efficiency level
that surpass the time to transfer uncompressed data from disk to memory [46, p.
85].

A third, more subtle benefit is the ability to cache more data in memory, as an
inverted index’ size is decreased. For an uncompressed index, the cost of retrieval
is equal to the sum of locating, i.e. seeking, for the index on disk, transferring it to
main memory, and further caching it on the CPU. In order to deem a compression
scheme successful, the reduction in retrieval time plus the time spent decompress-
ing retrieved data, should not surpass the time cost of an uncompressed index [49].

The following sections will introduce techniques which facilitate the process
of index minimization, each with a different granularity on their representation.
Only lossless compression schemes that are effective for integer compression are
presented.

4.2.1 Δ-Coding

Δ-Coding is the process of recording the difference or delta between sequential
data, rather than the data values themselves. Algorithm 4.1 and 4.2 illustrate a
serial, naive approach to encoding and decoding.
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1: function DELTA(A : ar r ay[1..n])
2: D ← ar r ay[1..n] � Allocate result matrix D
3: D[1] ← A[1]
4: for i ← 2 to n do
5: D[i ] ← A[i ]− A[i −1]

6: return D
Algorithm 4.1 Serial, naive approach to Δ-encoding.

1: function SUM(D : ar r ay[1..n])
2: A ← ar r ay[1..n] � Allocate result matrix A
3: A[1] ← D[1]
4: for i ← 1 to n −1 do
5: A[i +1] ← A[i ]+D[i +1]

6: return D

Algorithm 4.2 Serial, naive approach to Δ-decoding.

The effectiveness of the technique is influenced by the nature of data at hand.
For an unsorted data set, Δ-encoding may yield little to no compression. However,
for an evenly distributed data set of sorted values, results of compression may be
significant. The difference in compression ratio is best demonstrated by an exam-
ple: Consider the list of integers displayed in Listing 4.4. Assuming the result of
encoding is stored as ASCII characters, Listing 4.5 and 4.6 illustrate the difference
in length after encoding the list as unsorted data and sorted data. It can be seen
that the former achieves a compression ratio of 40

35 = 1.14, while the latter achieves
a compression ratio of 40

22 = 1.89.

Listing 4.4 An unsorted list of integers.
1 [177, 152, 171, 155, 170, 128, 163, 133, 143, 139]

Listing 4.5 List after Δ-encoding it without sorting.
1 [177, -25, 19, -16, 15, -42, 35, -30, 10, -4]
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Listing 4.6 List after Δ-encoding it with sorting.
1 [128, 5, 6, 4, 9, 3, 8, 7, 1, 6]

4.2.2 Variable-byte Coding

As the name suggests, Variable-byte Coding, or vByte, is a byte-oriented coding
scheme. It is popular in Information Retrieval (IR) systems because of its simplicity
and balanced trade-off between speed and compression ratio [46, p. 96]. Variable-
byte coding uses as an integral number of bits in a byte (7) to encode an integer’s
value (the payload), while the first bit (the continuation bit) denotes if a byte is the
last byte of an encoded number. That is, the continuation bit is set to 1 if this is the
last byte of an encoded number, otherwise it is set to 0 [46, p. 96]. Table 4.1 displays
four integers and their respective binary representations after being encoded with
Variable-byte coding.

Table 4.1 Example of Variable-byte coded integers. The continuation bit is high-
lighted in bold.

Integer Encoded Bit String

1 10000001
7 10000111
9 10001001
259 00000010 10000011

Decoding is done by reading a bytestream until the continuation bit is equal to
1. Payloads are then extracted from read bytes and concatenated into the resulting,
decoded number [46, p. 96]. Algorithm 4.3 and Algorithm 4.4 illustrate the pseudo-
code for encoding and decoding, respectively. Decoding of variable-byte encoded
numbers lends itself well to optimizations, as one is able to minimize the number
of CPU cycles by use of bit shifts [12, p. 206].

During a keynote talk in 2009, Senior Google Fellow Jeff Dean introduced Google’s
modified variant of Variable-byte encoding, Group VarInt. A problem with tradi-
tional Variable-byte encoding is branch mispredictions. During decoding, the de-
coder must inspect every continuation bit and decide whether to continue decod-
ing or concate the currently collected results and skip to the next set of data to
decode. The decision is made via a branch instruction, and as such, a branch mis-
prediction may occur. Group VarInt circumvents this by replacing the continuation
bit with a two bit representation of an encoded posting’s length. This allows for the
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use of a lookup table or arithmetics to determine the number of bits to read for the
posting currently being decoded [14]. Listing 4.7 illustrates the four previous val-
ues encoded with Group Varint. The vertical separator and the space between each
encoded integer is present for readability only and not part of the encoded format.

Listing 4.7 An example of four integers encoded with Group Varint. Note that the
length of the last encoded integer is first in bit mask representing the length of each
encoded integer.

1 01 00 00 00 | 00000001 00000111 00001001 00000010 00000011

1: function ENCODE(number s : ar r ay[1..n])
2: by testr eam ← ar r ay[] � Allocate result array bytestream
3: for i ← 1 to n do
4: by tes ← ar r ay[]
5: n ← number s[i ]
6: while tr ue do
7: by tes ← [n mod 128 : by tes] � Prepend the result of n mod 128 to

bytes
8: if n > 128 then
9: br eak

10: n ← n di v 128
11: by tes[l en(by tes)] ← by tes[l en(by tes)]+128
12: by testr eam ← [by testr eam : by tes] � Extend bytestream with bytes

array

13: return by testr eam

Algorithm 4.3 Encoding a list of numbers with Variable-byte encoding.
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1: function DECODE(by testr eam : ar r ay[1..n])
2: number s ← ar r ay[] � Allocate result array numbers
3: n ← 0
4: for i ← 1 to n do
5: if by testr eam[i ] < 128 then
6: n ← 128×n +by testr eam[i ]
7: else
8: n ← 128×n + (by testr eam[i ]−128)
9: number s ← [number s : n] � Append decoded number to numbers

array.
10: n ← 0
11: return number s

Algorithm 4.4 Decoding a bytestream of Variable-byte encoded numbers.

4.2.3 Elias γ Coding

Elias γ Coding is one of the first non-trivial coding schemes for positive integers,
first described by Elias in 1975 [15, p. 193]. It is bit-oriented, dividing each encoded
number into two components: 1) the selector, a unary representation of the body’s
length; and 2) the body, an integer’s binary representation [12, p. 193]. Table 4.2
lists the encoded values of integers 1, 7, 9 and 21.

Table 4.2 Example of Elias γ encoded integers.

Integer Selector Body

1 1 1
7 110 111
9 1110 1001
21 11110 10101

With the unary segment of the encoded value having length 1+�log2 x� and the
binary representation having the same length, an integer encoded with Elias γ en-
coding will inhabit 2× �log2 x�+2 bits of space. By inverting the unary code, it can
be observed that one is able to decrease the consumption of space, as the 1 bit be-
tween between the unary encoding and the integers binary representation is com-
mon. This is established from the fact that for an integer k with sel ector (k) = j ,
2 j−1 ≤ k < 2 j is true. As such, the j -th least significant bit in k’s binary representa-
tion, which happens to be the first bit in the encoded value’s body, must be 1. With
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this information in hand, the first bit in every encoded number’s body is redundant
and one can omit one bit per posting. The resulting storage foot print for an Elias γ
encoded integer is thus 2× �log2 x�+1. [12, p. 193].

Elias γ coding is most effective when used together with postings lists of pre-
dominantly small gaps. However, for lists consisting of large gaps, it can be quite
wasteful [12, p. 193]. Elias δ Coding is an attempt to improve the efficiency for
larger values. Here, the length of the integer value, i.e. the values previously en-
coded in unary, is instead encoded using Elias γ encoding. This way of compres-
sion manages to represent an integer in �log2 x�+2×�log2(�log2 x�+1)�+1 bits [15].
However, Elias δ coding suffers from inefficiencies when encoding large values [49].

4.2.4 SIMD Accelerated Coding

The previously presented compression schemes are not trivially translated to SIMD
instructions and accelerated in such a manner. This is in essence due to the vari-
able nature of each codeword generated by the different techniques. For both Variable-
byte coding and Elias γ coding, the byte position of an encoded value is unknown
until the preceding codeword is decoded.

With some modifications to Elias’ initial algorithm and storage format, Schlegel
et al. are able to parallelize and produce a SIMD accelerated Elias γ coding scheme;
k-γ coding [48].

Stepanov et al. use Variable-byte coding as a basis in their paper “SIMD-Based
Decoding of Posting Lists”, presenting SIMD accelerated compression techniques
for variations of traditional Variable-byte coding, as well as the previously men-
tioned Group Varint.

Due to the unavailability of core SIMD instructions used in the implementa-
tion of the mentioned articles and time constraints, an implementation for ARM
utilizing the NEON SIMD extensions have not been pursued.

4.3 Related Work

Research into how one can minimize a postings list’s storage footprint, and com-
pression of data in general, is a thorougly researched area. Common techniques
for compressing an inverted index are found in book literature by Ian H. Witten et
al. [58], as well as text books from Manning et al. [46] and Büttcher et al. [12]. Such
techniques have further been revised and optimized, for instance by Falk Scholer et
al. in “Compression of Inverted Indexes For Fast Query Evaluation” [49]. However,
these authors are not concerned with the underlying hardware of the inverted in-
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dex. “Fast integer compression using SIMD instructions” considers using Single In-
struction Multiple Data (SIMD) instructions for a performance increase in integer
compression and decompression, but does not address the storage medium [48].

Ahmed A. Aqrawi and Anne C. Elster considered compression performance in
regards to SSD storage in 2011 [6]. However, their paper was concerned with the
compression of seismic images and minimizing the size of data transferred across
the bus between CPU and GPU. Microsoft, represented by Bojun Huang and Zenglin
Xia attempted the use of flash memory as a replacement of expensive DRAM for
caching frequently accessed data structures in a search engine [26].

To the best of this thesis’ knowledge, none have previously investigated the
nature of postings list encoding and decoding on a flash memory based storage
medium in detail, and in addition, employed ultra-low-powered, i.e. handheld,
hardware in the process.





Chapter 5

Postings List Coding on Mobile
Devices

In order to perform the experiments required, two iOS applications have been cre-
ated. The first is a tool to identify the flash memory read performance of bench-
marked devices with a varied read buffer size. This was implemented due to an
unavailability of similar applications for the platform. The first sections will be ded-
icated to the description of this.

The second is an application where one selects the compression scheme and
buffer size, and measures the performance of a full disk-to-disk read-encode-write
or read-decode-write. Below, test data, internal details of the application’s imple-
mentation, concerns with developing for an embedded environment, and which
coding schemes that have been implemented and the internals of these is dis-
closed. Problems one must handle when data is read blockwise and runs the risk of
reading incomplete data is also described, together with how these problems have
been solved.

Towards the end, details on how benchmarks are executed will be given.

5.1 Flash Memory Performance

Flash memory read performance is measured using a iOS application identified as
“SSDPerformanceMapping”. Via its User Interface (UI), displayed in Figure 5.1, a
user is able to set the number of iterations for a performance measurement test, as
well as the size of each block to be read and whether or not data should be read in a
random access manner. During execution, a user will receive visual feedback on the

33
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status of the benchmark through two progress bars. After a successful execution,
data from the run may be saved by pushing the “Save Log” button. Data from the
benchmark is then stored on the device and must be retrieved through iTunes. A
sample log file is illustrated in Listing 5.1.
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Figure 5.1 The User Interface of the Flash Memory benchmark app.

Listing 5.1 A sample of the output generated from a test run of the benchmark.
1 Test start: 2013-11-08 10:34:47 +0000
2 Test end: 2013-11-08 10:37:42 +0000.
3 Was Random: 0
4 Iterations: 10.
5 Total duration: 71.25 s.
6 Average iteration duration: 7.12 s.
7 Average transfer rate: 14.04 MB/s



36 CHAPTER 5. POSTINGS LIST CODING ON MOBILE DEVICES

5.1.1 Benchmark Details

A 100 Mebibytes (MiB) file of random data is bundled with the application1. The
data file is read in blocks as configured by the executor, with each read block be-
ing discarded immediately. The time to read each block is summarized, with an
average being calculated at the end, together with an estimate of the transfer rate.

If the benchmark is executed with several iterations one runs the risk of not
achieving accurate results due to data being kept in cache. Restarting the device
to clear memory is tedious and also prone to inaccurate results, and flushing the
memory by reading another large file will cause the operating system to kill the
application due to memory consumption. To counter caching of the data file, each
iteration starts with moving and renaming the file. Tests have shown this to be a
viable option for achieving accurate results.

If one is measuring random access performance, each read location, i.e. the
jumps in the data file, are also randomized before each iteration.

1The file was generated by reading data from /dev/urandom as such: dd if=/dev/urandom
of=data.random bs=1024 count=\$((100*1024)). The file size will be read as 105 MB (1× 106),
but is equal to 100 MiB (1×220).
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5.2 Encode and Decode Performance

Benchmarking of encode and decode performance is similar to the flash memory
measurements, in that a user is presented a UI with options, setting different pa-
rameters of the benchmark. These parameters include block size, number of iter-
ations, number of threads, and the coding scheme to use. The option of setting
the number of postings list terms to process is also present. However, current test
data only includes one term and an associated postings list. Figure 5.2 displays a
screenshot of the user interface.

Figure 5.2 The user interface of the encoding and decoding benchmark app.

A summary of a benchmark run is displayed the user in the “Statistics” tab,
where a user also is given the option to save a log of the execution. An example
execution is displayed in Figure 5.3.
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Figure 5.3 The user is presented the results of an execution in the encoding and
decoding benchmark app.

5.2.1 Test Data Structure

A postings file is generated by a Python script and bundled with the application. In
this project, the terms themselves are irrelevant. However, the length and distribu-
tion of postings in postings lists are not. As such, to uncomplicate the reading of
data, terms are fixed in size and only represented as integers, prefixed with zeros
to reach the fixed length. On the other hand, postings lists are generated accord-
ing to Zipf’s law [59]: The frequency of any word in a corpus of natural language
utterances is inversely proportional to its rank in the frequency table. That is, the
most frequent word in the corpus will occur approximately twice as often as the
second most frequent word, three times as often as the third most frequent word,
and so forth. For the test data structure of generated term and postings list pairs,
this translates to the term simulated as being most popular having approximately
twice the length as the second most popular term.
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A file of test data is a simple structure of lines, where each line contains a term
and postings list pair. The term and its associated postings list is separated by a
tab character (\t), while each posting is separated by a comma (,). Listing 5.2 il-
lustrates a sample of the test data set. In total, the data set consists of 4 862 476
postings.

Listing 5.2 A sample of the test data set.
1 00000001 17,60,86,92,107,119,126,129,145,167,170,172,175,179,186,218,238,269, ...

5.2.2 Disk-to-Disk Pipeline

The implementation is focused purely on benchmarking, and does not store inter-
mediate results, e.g. encoded or decoded values of processed terms. Instead, term
data is read from disk in blocks, processed by the CPU and written back to disk
immediately.

Data is handled end-to-end in a five stage parallel pipeline, where each stage
is notified of incoming work via the use of semaphores. The following paragraphs
inform on the actions made during each stage. An illustration of the pipeline is
displayed in 5.4.

Read block of data: Read a specific size of data into main memory. The size is
constant throughout a run, except the last block if the number of bytes to reach
end of data file is less than the set size.

Preprocess data: Data read during the earlier stage is preprocessed before encod-
ing or decoding.

When reading unencoded data, a read block may split an integer. If this should
occur, the tail of the buffer, i.e. the split integer, will be buffered and prepended to
the consecutively read block. As such, while the block size of read data is constant,
the actual size of the data to be processed in later stages may vary within a few bytes
in size.

During encoding, incoming data is Δ-encoded in the pre-processing stage. As
such, the last read data must also be buffered for use in the consecutive run to
calculate the correct Δ-values for the complete set of integers.
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Process data: The processing stage is where values are either encoded or de-
coded.

During decoding, a block of read data may not contain the required bytes to
decode an integer correctly. All decoding implementations detect when a run is
incomplete and record the position of the last completely decoded integer. The
processing stage reads this value and buffers trailing data for the consecutive run.

Postprocess data: A stage where encoded or decoded data is postprocessed. Dur-
ing decoding, this stage calculates the prefix sum of incoming data. It also converts
the array of decoded values to data that can be written to disk.

Write block of data: Receives postprocessed data and writes it to disk.

Figure 5.4 An illustration of the encoding/decoding pipeline.

An entity identified as a Postings List Entry wraps data passed between different
stages. This entity has the following properties:

• term: The term the processed postings list belongs to.

• range: The start and end position of the postings list in the data file.

• lastReadPosition: The current position in the file containing the data set.

• buffer: The current block of read data.

• bufferTail: A buffer of any integers split during reading. This buffer is
prepended to the formerly mentioned buffer during preprocessing.

• toEncodeBuffer: A buffer structured as an array with the current integers to
be encoded.

• toEncodeBufferTail: An array of integers that were discarded during the
current decode session. This buffer is only relevant during Group Varint en-
coding because of special requirements to the number of integers to be en-
coded.
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• lastReadValue: The last unencoded value read in the currently buffered
block of data. This property is critical in calculating the correct Δ-values for
the complete set of integers.

• encodedDataTail: A tail of data to that was discarded during the previous
write of encoded data. This buffer is only relevant during Elias γ coding it
being a bitwise coding scheme.

• haveDecodedBuffer: An array of the currently decoded integers.

• data: A buffer containg the result data of the pipeline to be written to disk.

• dataLength: The length of the pipeline’s result data.

The time spent in each stage, as well as the time each stage must wait for data
to process is recorded:

• READ: The total time spent reading data.

• READ_WAIT: The total time spent waiting for the three process stages to com-
plete.

• PREPROCESS: The total time spent preprocessing.

• PROCESS: The total time spent processing, i.e. encoding or decoding.

• POST_PROCESS: The total time spent postprocessing.

• PROCESS_WAIT: The total time spent waiting for data to be read from disk.

• WRITE: The total time spent writing data.

• WRITE_WAIT: The total time spent waiting for data from the processing stages.

• TOTAL: The total time spent on the benchmark.

5.2.3 Operating in an Embedded Environment

While i-devices, and similar hardware such as Android tablets and smart phones,
become increasingly more powerful with each generation, they still feature traits
found in embedded devices. One such trait is the limited available memory. For
instance, the 5th generation iPod Touch only has 512 MiB of main memory. In
addition, iOS does not allow one to freely allocate memory. If the total allocated



42 CHAPTER 5. POSTINGS LIST CODING ON MOBILE DEVICES

memory space of an application increases rapidly, the operating system will issue
a warning. If the memory consumption continues to increase, the application will
eventually be killed. This aggressiveness has proven difficult to overcome when
operating with large files. As such, parts of the implementation may suffer in per-
formance because one is forced release allocated memory in order to not provoke
the operating system. In Objective C, this is handled through Automatic Reference
Counting (ARC), a feature of Xcode where the burden of deallocating memory is
placed on the compiler rather than the programmer. The compiler will investigate
the source code and insert release and retain messages where it detects an ob-
ject is no longer used. One can also force the insertion of calls to release and
retain by wrapping source code in an @autoreleasepool block. This is a feature
used heavily in this implementation to ensure memory is free between consecutive
blocks of data being read into memory and data being processed. ARC is not to be
confused with Garbage Collection, as found in other languages such as Java, as no
background process or similar is running, collecting memory to be released.

5.2.4 Implemented Coding Schemes

All implemented schemes make use of Δ-encoding beforehand. The ones imple-
mented are those presented in Chapter 4: a) Variable-byte Coding, b) Group Varint
Coding, and c) Elias Gamma Coding.

Variable-byte Code

Of the three coding schemes, Variable-byte is the most straight forward to imple-
ment. It does not require the postings list’s length to be divisable by a particular
factor, and is also byte-oriented.

Encoding Encoding is executed by passing an array of unsigned integers to the
encoding method. An initial pass is is made through the array to establish the
amount of memory needed to hold the encoded values. This is done as to avoid
having to resize the allocated memory area during encoding. The size of an integer
in encoded form is equal to the number of bitwise right shifts by seven required to
make the integer equal to zero. Listing 5.3 displays the source code used to estab-
lish an integer’s encoded size. Another pass is made where each number is encoded
and stored in an allocated NSData object.

Decoding A stream of bytes is supplied the decoding method, wrapped in an
NSData object. Single bytes are read in turn and continuously decoded. The de-
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Listing 5.3 Calculating the number of bytes required to store a Variable-byte en-
coded integer.

1 + (NSUInteger)byteSize:(NSNumber *)number {
2 NSUInteger numberAsInteger = [number integerValue];
3

4 if (numberAsInteger <= 127)
5 return 1;
6

7 int byteSize = 0;
8 do {
9 ++byteSize;

10 numberAsInteger >>= 7;
11 } while (numberAsInteger);
12 return byteSize;
13 }

coded value of a series of bytes or the length of the byte series is unknown until
decoding is finished. This poses an issue when reading fixed size blocks, as a byte
series representing an encoded integer may not be read completely. To counter
this, a tail of the current read block, the size of the last decoded integer, is kept
in memory and merged with the consecutive read block of data. This ensures all
integers are decoded, and decoded into their correct, respective values.

The implementation is otherwise optimized with the use of bit shifts in replace
of multiplications, divisions, and modulo operations.

Group Varint Code

Group Varint code incurs additional complexity compared to Variable-byte code.
While being a byte-oriented coding scheme, the postings list is required to be a
length divisable by four. This is due to how encoded integers are grouped and pre-
fixed by their lengths.

Encoding Group Varint resembles Variable-byte coding in that integers are en-
coded by stripping leading zeros in the integers binary representation. Unlike,
Variable-byte coding, however, Group Varint bundles several integers together and
prefix the group with a bitmask representing the encoded byte length of each in-
teger. During this project, a 32 bit version of Group Varint has been implemented.
As a result, the prefix mask is one byte long, where each two bits signifies the size
of an encoded integer: 00 represents a length of one byte, 01 represents a length of
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two bytes, 10 represents a length of three bytes, and 11 represents a length of four
bytes.

When encoding a group of integers, each integer has its value in the length bit-
mask calculated. This is done by first counting the number of leading zeros in an
integer’s binary representation. On ARM architectures, the implementation makes
use of the CLZ instruction from the ARMv7 Instruction Set Architecture (ISA) lan-
guage. Further, this value is divided by eight and subtracted from three to obtain
the bitmask representing the number of bytes an integer occupies in encoded form.

Encoded integers are stored in a buffer equal to the sum of each integer’s mask
and the size of the length bitmask. Through the use of bitwise operations, integers
are stored byte-by-byte in the buffer. In other words, an encoded integer occupy-
ing two bytes, will be split and stored in two continuous locations in the buffer.
Listing 5.4 displays the source code of how the this operation is performed. The
resulting buffer is wrapped in an NSData object and returned.

Because integers are grouped by four, it is important that four is a factor of the
postings list length, unless one employs alternative coding schemes for trailing in-
tegers. In this implementation, an option is to ensure that the test data fulfills the
length requirement of Group Varint coding. However, with the data being read in
blocks of varying size for each benchmark run, it is not possible to ensure that each
block contains a section of the postings list with a length also divisable by four. As
such, read postings list sections have split to be divisable by four. The discarded
data is collected and prepended to the consecutively read block. If the complete
postings list itself has a length where four is not a factor, zeros are appended until it
is. One would prefer to employ a secondary coding scheme for trailing values. How-
ever, with data being read in blocks, it is very difficult to detect when the alternative
scheme is in use when decoding. The introduction of multithreaded encoding fur-
ther adds to the complexity.

Decoding With the length bitmask being one byte in length, one can exploit that
bitmask only can take 256 different values. In the decoding implementation, a
lookup table was created where each index, i.e. entry, in the table points to an array
with the length mask of each encoded integer. Listing 5.5 displays a sample of the
lookup table. Having found the length of each integer in encoded form, the imple-
mentation jumps ahead in the read buffer and decodes each integer in sequence.
For integers above a single byte in size, several sequential bytes are read from the
buffer and combined through bitwise operations into the resulting 32 bit integer.
The combining of integers is presented in Listing 5.6. As of this project, there exists
no de-facto or officinal reference implementation of Group Varint, only details on
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Listing 5.4 Stripping the leading zeros off of 32 bit integers, and storing them as
discrete bytes in a buffer.

1 + (void)stripLeadingZeros:(UInt8 *)buffer
2 atBufferPosition:(NSUInteger)position
3 forNumber:(UInt32)number
4 withKey:(UInt8)key {
5

6 if (key == 0)
7 buffer[position] = number & 0xFF;
8 else if (key == 1) {
9 buffer[position] = number & 0xFF;

10 buffer[position + 1] = (number >> 8) & 0xFF;
11 }
12 else if (key == 2) {
13 buffer[position] = number & 0xFF;
14 buffer[position + 1] = (number >> 8) & 0xFF;
15 buffer[position + 2] = (number >> 16) & 0xFF;
16 }
17 else {
18 buffer[position] = number & 0xFF;
19 buffer[position + 1] = (number >> 8) & 0xFF;
20 buffer[position + 2] = (number >> 16) & 0xFF;
21 buffer[position + 3] = (number >> 24) & 0xFF;
22 }
23 }

the organization of bytes. As such, the implementation presented here may vary
from other textbook or sample implementations.

Elias γ Code

Elias γ code is in principle a simple scheme. However, being a bitwise coding
scheme, it incurs additional complexity during encoding.

Encoding As presented in Section 4.2.3, an encoded value consists of two parts:
the length of an integer’s bit representation written in unary, and the actual bit rep-
resentation. While the algorithm itself is simple, the compression scheme’s bitwise
nature poses a problem when one encodes blocks of data and writes it to storage
on completion. Often, the data after such a block encoding is not byte aligned. As
the writing of data is done bytewise, this results in a trail of garbage bits at the end
of an encoded block. Not only will such bits increase the file size, they will also
force errornous data to be produced during decoding. Consider a block of encoded
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Listing 5.5 A sample of the lookup table used during Group Varint decoding.
1 static const UInt8 MASK_LOOKUP_TABLE[256][4] = {
2 {1, 1, 1, 1}, // 00 00 00 00
3 {1, 1, 1, 2}, // 00 00 00 01
4 {1, 1, 1, 3}, // 00 00 00 10
5 {1, 1, 1, 4}, // 00 00 00 11
6

7 {1, 1, 2, 1}, // 00 00 01 00
8 {1, 1, 2, 2}, // 00 00 01 01
9 {1, 1, 2, 3}, // 00 00 01 10

10 {1, 1, 2, 4}, // 00 00 01 11
11

12 ...
13

14 {4, 4, 3, 1}, // 11 11 10 00
15 {4, 4, 3, 2}, // 11 11 10 01
16 {4, 4, 3, 3}, // 11 11 10 10
17 {4, 4, 3, 4}, // 11 11 10 11
18

19 {4, 4, 4, 1}, // 11 11 11 00
20 {4, 4, 4, 2}, // 11 11 11 01
21 {4, 4, 4, 3}, // 11 11 11 10
22 {4, 4, 4, 4} // 11 11 11 11
23 };

integers, 1021 bits in length. Assuming the block ended with the bits 10100, an
additional three bits of garbage, 000, would be appended on write. A consecutive
block of encoded data given the starting bits 00100 would result in the following
representation in storage: 10000000100, while the correct is 10000100.

To handle such behaviour, encoded values of integers are first represented as ar-
rays of boolean values. In Objective C, the type BOOL is an alias for C’s signed char
data type. These arrays are then truncated to the nearest length divisable by eight.
Bits, i.e. BOOL elements, outside the new array are stored in memory and prepended
to the next block of encoded data. The truncated array is then rewritten in binary
and stored to disk. How the rewrite is performed is displayed in Listing 5.7.

Decoding Decoding is performed by continuously reading encoded bytes, where
each byte is investigated bitwise. First, the length of the encoded integer is calcu-
lated by incrementing a counter until a set bit is encountered. Second, an amount
of bits equal to the counter is read and combined into the resulting, decoded inte-
ger. Each number is appended to an array before they are summarized and written
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Listing 5.6 Reading a byte buffer and decoding bytes into the original, 32 bit integer.
1 + (NSUInteger)decodeBytes:(UInt8 *)buffer
2 fromPosition:(NSUInteger)position
3 length:(UInt8)length {
4

5 if (length == 1)
6 return buffer[position];
7

8 else if (length == 2)
9 return buffer[position] |

10 (buffer[position + 1] << 8);
11

12 else if (length == 3)
13 return buffer[position] |
14 (buffer[position + 1] << 8) |
15 (buffer[position + 2] << 16);
16

17 else
18 return buffer[position] |
19 (buffer[position + 1] << 8) |
20 (buffer[position + 2] << 16) |
21 (buffer[position + 3] << 24);
22 }

to permanent storage.
It is important to properly ensure an individual decode is complete. As bits are

continuously read and combined, errornous values may be produced if the com-
plete encoded data of an integer is not present in the currently buffered block of
data. As such, a decode in progress will not have its produced value added to the
set of decoded values if its length bit length is found to surpass the current buffer
length. Rather, this data is buffered and prepended to the next block to be decoded.

5.2.5 Parallelization Opportunities

The implementation has attempted to utilize the parallel resources available in Ap-
ple’s devices.

Parallel Encoding

In the implementation, encoding is performed in two stages: First, the postings list
is Δ-encoded. Second, the encoding scheme at hand is applied to the Δ-values.
As the encoding of an integer is completely independent of all other integers, this
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Listing 5.7 Writing an array of boolean bytes as bits.
1 + (NSData *)rewriteByteArray:(NSData *)data {
2 NSUInteger bitLength = (data.length >> 3) + 1;
3 BOOL *bytes = (BOOL *)data.bytes;
4 UInt8 bits[bitLength];
5

6

7 for (NSUInteger i = 0; i < bytes.length; i++) {
8 BOOL bit = bytes[i];
9 if (bit) {

10 bits[i >> 3] |= 1 << (i & 7);
11 }
12 else {
13 bits[i >> 3] &= ~(1 << (i & 7));
14 }
15 }
16

17 return [NSData dataWithBytes:bits length:bitLength];
18 }

latter operation can be performed in parallel. The implementation described here
solves this by evenly dividing an incoming array of integers among a set number
of threads. Each thread calculates its distinct set of data, which are later combined
with the overall thread’s data in sequence and returned. This three-step process
may incur a penalty in performance if the amount of data to process is too small.

Parallel Decoding

Parallelization during decoding is not straightforward. Both Variable-byte coding
and Elias γ coding are inherently serial. In the former, the length of a decoded inte-
ger is unknown until all but the last byte is read. In consequence, subsequent values
can not be decoded until the preceding are finished. Stepanov et al. managed to
utilize Single Instruction Multiple Data (SIMD) instructions with Variable-byte de-
coding by modifying the algorithm to prefix a set of values with their data individual
data lengths, similar to Group Varint, and introducing an extra step of applying sev-
eral masks and bitshifts [55]. However, their use of SIMD instructions did not result
in a significant performance increase [55]. As such, this opportunity has not been
investigated further.

The latter coding scheme suffers in a similar manner. However, unlike Variable-
byte coding, the length of data associated with an integer is known before the actual
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decoding is performed. This allows one to read the length, dispatch the remaind-
ing decoding operation to a separate thread, and continue to the next value. In
this implementation, however, such a solution has not been taken advantage of.
There’s an overhead associated with dispatching a new thread, an overhead which
is assumed to be larger than the increase in performance.

Concerning Group Varint, groups of four integers are completely independent.
This allows one to read the first byte of a group to establish the group’s total length
and then dispatch a thread to perform the actual decoding. However, tests have
shown the duration taken to dispatch a new thread surpasses the time required
to decode a group by an order of six. In other words, there is no gain in such an
implementation. Stepanov et al. managed to achieve a signicant speedup in their
SIMD-based implementation of Group Varint [55]. However, the benchmark was
performed on a Streaming SIMD Extensions 3 (SSE3) enabled system, and made
use of an instruction identified as PSHUFB. This instruction receives a bitmask and a
packed set of bytes and shuffles the bytes according to the bitmask. Unfortunately,
an equivalent instruction does not exist in ARM’s NEON SIMD extensions.

While each coding scheme is difficult to parallelize, there are opportunities in
the surrounding implementation. After a block of data is decoded, the data is stored
in an array. This array must then be converted to continuous bytes to enable writing
it to permanent storage. It is possible to divide the array among several threads
have the conversion happen in parallel.

5.3 Benchmark Execution

Benchmarks were executed on three devices for both the flash memory and encode
and decode performance tests:

a) a 5th generation iPod Touch, b) a 4th generation iPad, c) and an iPad Air.
A summary of each device’ specifications is displayed in Table 5.1.

Table 5.1 Concrete specifications of the devices employed during benchmarking.

5th gen. iPod Touch 4th gen. iPad iPad Air

SoC: Apple A5 Apple A6X Apple A7
Memory type: LPDDR2 LPDDR2 LPDDR3
Memory amount: 512 MiB 1 GiB 1 GiB
Storage: 16 GiB 64 GiB 128 GiB

During the measurement of flash memory performance, a total of 30 configura-
tions were executed per device. 15 different block sizes were investigated for both
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sequential read performance and random access read performance2:

• 512 Bytes

• 1 KiB

• 2 KiB

• 4 KiB

• 8 KiB

• 16 KiB

• 32 KiB

• 64 KiB

• 256 KiB

• 512 KiB

• 1 MiB

• 2 MiB

• 4 MiB

• 8 MiB

• 16 MiB

A selection of the above mentioned block sizes were employed further in testing
of encode and decode performance:

• 512 Bytes

• 1 KiB

• 4 KiB

• 512 KiB

• 1 MiB

2Block sizes were calculated in accorandance with IEEE standards, i.e. they are all values of 2nth .
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• 4 MiB

The reasoning behind these six being chosen is presented in Chapter 6.
In addition, encode and decode benchmarks were conducted with three differ-

ent thread configurations:

• 1 Thread

• 2 Threads

• 4 Threads

With three different coding schemes to investigate in two different modi on
three distinct devices, the number of configurations performed totals 324.





Chapter 6

Results and Discussion

Within this chapter are the results of the benchmarks described in Chapter 5. In
addition, an overview of each coding scheme’s respective performance and com-
pression ratio will be presented.

The chapter will begin with an introduction of the different coding scheme’s
properties, before the results of the flash memory performance tests are presented.
The results from encoding and decoding will be displayed towards the end. The
latter results will introduce two new performance metrics: Encoded Integers Per
Second (EIPS) and Decoded Integers Per Second (DIPS). This is a measure of the
raw performance in each device for a given coding scheme. It is calculated by di-
viding the number of postings in the test data (4 862 476) by the time spent in the
processing stage.

6.1 Coding Scheme Properties

Properties of each coding technique were researched by encoding and decoding
the complete data set, recording the total time spent processing the data, and divid-
ing the result by the number of postings processed. This gives an average number
of seconds each coding scheme spends on encoding or decoding. Lastly, the result-
ing byte size after encoding was recorded to give insight to each technique’s com-
pression ratio. Table 6.1, Table 6.2 and Table 6.3 display encoding performance per
posting, decoding performance per posting, and compression ratio respectively. As
a demonstration of the viability of specialized encoding methods for postings lists,
results after compressing the same data set with Bzip2 and Zlib are included. These
are two well-known, general purpose compression methods. Both were applied to

53
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the data set with the maximum compression level. While, all specialized encod-
ing schemes provide worse compression than both Bzip2 and Zlib, the overhead
associated with each general purpose method requires the uncompressed data to
contain a significant amount of data, rendering such encodings non-applicable for
short postings lists.

Table 6.1 Comparison of the time spent encoding the test data set.

Encoding Time per posting Total time

Variable-byte 822.6 ns 4.0 s
Group Varint 199.5 ns 0.97 s
Elias γ 674.6 ns 3.28 s

Table 6.2 Comparison of the time spent decoding the test data set.

Decoding Time per posting Total time

Variable-byte 43.2 ns 0.21 s
Group Varint 51.4 ns 0.25 s
Elias γ 125.5 ns 0.61 s

Table 6.3 Comparison of compression ratio on the test data set.

Scheme Original File Size Result File Size Ratio

Variable-byte 43 221 384 B 4 871 192 B 8.87
Group Varint 43 221 384 B 6 078 117 B 7.11
Elias γ 43 221 384 B 4 558 525 B 9.48
Bzip2 43 221 384 B 3 821 457 B 11.31
Zlib 43 221 384 B 4 486 009 B 9.63

It is apparent that Group Varint provides the best performance both in terms
of encoding and decoding. However, the gain in performance takes its toll on the
ability to compress data. On the other hand, Elias γ coding provides excellent com-
pression, but suffers in decoding speed. Variable-byte coding presents itself as the
middle ground between compression ratio and performance in terms of speed.

In an addenda to the book “Information Retrieval: Implementing and Evalu-
ating Search Engines”, Büttcher et al. measure a relative performance difference
between the techniques as presented here [13]. They pin Variable byte coding’s
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decoding results on the nature of their data set: The postings within the data set re-
quire seven bits or less, which in turn results in few branch mispredictions during
Variable-byte decoding [13]. Indeed, low Δ-values is a trait in the test data applied
in these benchmarks as well. Performing the same benchmark without prior Δ-
encoding gives the following table (Table 6.4):

Table 6.4 Comparison of the time spent decoding the test data set without prior
delta encoding.

Decoding Time per posting Total time

Variable-byte 65.8 ns 0.32 s
Group Varint 50.2 ns 0.24 s
Elias γ 353.7 ns 1.72 s

Branch mispredictions during Variable-byte decoding has placed Group Varint
ahead in terms of decoding performance.

6.2 Flash Memory Performance

Following are the results of the flash memory read benchmarks. Devices are pre-
sented in descending order, sorted after their respective age.

6.2.1 iPod Touch, 5th Generation

From the results displayed in Figure 6.1 and Figure 6.2, it is apparent how the iPod
favours a larger block size for both sequential access and random access. However,
the performance increase appears to become saturated at a block size of 1 MiB.
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Figure 6.1 Results of flash memory benchmark on a 5th generation iPod Touch.
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Figure 6.2 Results of flash memory benchmark on a 5th generation iPod Touch.
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6.2.2 iPad, 4th Generation

The results from the flash memory perfomance measurement of the 4th generation
iPad are presented in Figure 6.3 and Figure 6.4. Compared to the iPod, the iPad
represents a much steeper curve before it reaches its peak transfer rate. Indeed, the
highest transfer rate is measured as early as 16 KiB. It is not known what causes the
4th generation iPad to achieve such a transfer rate for blocks of this size. As will be
presented further on, such a trait is only present in this device. Consecutive block
sizes have a stable, albeit slowly decreasing transfer rate.

Concerning random access, the 4th generation iPad display similar traits as the
iPod. Random access performance appear to have exponential growth, before sta-
bilizing at a block size of about 2 MiB.
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Figure 6.3 Results of flash memory benchmark on a 4th generation iPad.
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Figure 6.4 Results of flash memory benchmark on a 4th generation iPad.
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6.2.3 iPad Air

Figure 6.5 and Figure 6.6 display the results from the flash memory benchmark on
iPad Air. Both figures resemble the four previosly presented results in the large dif-
ference between sequential and random access for small to mid-range block sizes.
The iPad Air presents itself as particularly similar to the iPod, with a steep increase
up to 4 KiB – 8 KiB, and a more conservative performance growth towards larger
block sizes.
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Figure 6.5 Results of flash memory benchmark on an iPad Air.
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Figure 6.6 Results of flash memory benchmark on an iPad Air.

6.2.4 Summary

Figure 6.7 summarize the sequential performance of all three devices in a single
graph. All three devices deliver impressive results, however, just as impressive is
the relative performance increase between the 4th generation iPad and the new
iPad Air: a near doubling in transfer rate from one iteration of the iPad to the next.
With such a difference between two versions of the iPad, one might expect the per-
formance delta between the iPod Touch and the 4th generation iPad to have been
greater.

Little is known of the interface residing between the device’s main memory and
flash memory. An evolution in components in all areas of the devices is to be ex-
pected. In principle, the read performance measured should not be affected by
properties in main memory or the CPU. However, the operating system may pro-
vide performance benefits by utilizing a wider memory bus or CPU cache. Indeed,
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the Apple A7 found in iPad Air has double the memory bandwidth of its older sib-
ling, in addition to a processor wide cache of 4 MiB [42]. These features may be
culprits behind such an increase in perfomance.

Figure 6.8 displays a comparison of the random access read performance of the
three devices. Each device’ graph near echoes the shape of its comparands. Inter-
estingly, a random access read pattern portraits properties similary to traditional,
mechanical hard drives. For smaller block sizes, it appears that the seeks being
performed to skip from location to location in the data file are quite costly. How-
ever, it is important to keep in mind the flash memory technology in use: Negated
AND (NAND) flash memory. Indeed, NAND flash memory’s organization of data
and hardware interface makes random access for small block sizes a costly oper-
ation [11, 47]. Properties specific to NAND flash memory may also be to blame
for the large difference between sequential and random access seen between block
sizes of 1 KiB – 8 MiB.

The results off of the flash memory performance survey, sets the block sizes of
which the encoding and decoding benchmarks will use. From the presented re-
sults, it is a clear distinction in the performance for lower block sizes, 512 B – 1 KiB,
and higher block sizes, 512 KiB – 16 MiB. As such, block sizes from both regions
have been chosen. In addition, the native block size of the file system, Hierarchical
File System, case sensitive, (HFSX), is 4 KiB, which makes this a natural block size to
investigate. This leads to the following block sizes being used further in encoding
and decoding surveys:

• 512 Bytes

• 1 KiB

• 4 KiB

• 512 KiB

• 1 MiB

• 4 MiB
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Figure 6.7 Summary of sequential flash memory performance.
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Figure 6.8 Summary of random access flash memory performance.
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6.3 Performance Critical Applications in Objective-C

Before presenting concrete results, an important experience made during devel-
opment of performance critical applications in Objective-C should be presented.
With Objective-C being the language in use, it is tempting to employ the use of
Objective-C objects to ease implementation. Initially, built-in objects such asNSArray,
representing an array, and NSNumber, a container class for all numbers, were used.
However, results were more than unsatisfactory. As such, investigations were made
to modify the source code to employ bits of the Foundation fromework more close
to pure C.

During both encoding and decoding, all occurences of NSArray were replaced
by CFArray, a thinner encompassment of malloc, and unlike NSArray, capable of
holding data not inheriting from NSObject. Results were significant. Figure 6.9
compare two single threaded executions of Variable-byte decoding on a 5th gen-
eration iPod, displaying results where the optimized implementation offers almost
six times the performance of the preoptimization implementation.
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6.4 Variable-byte Coding Performance

Initial tests of Variable-byte coding in Section 6.1 placed it as the slowest during
encoding, but the nature of the test data set enabled it to claim the throne as the
fastest during decoding. The following sections will further elaborate on the prop-
erties of Variable-byte coding on iOS platforms.

6.4.1 Encoding

The results from the encoding survey are divided into graphs per device, where
each slope represents a different thread configuration. Coding schemes are pre-
sented in separate sections, with devices listed in the order as in Section 6.2.

iPod, 5th Generation

From Figure 6.10, it is quite apparent how multithreading hampers performance
for a lower block size. The cost overhead of dispatching additional threads, as well
as dividing the workload among said threads, is greater than the benefit. Not until
providing the processing stages with 4 KiB blocks is the multithreaded implemen-
tation on par with single threaded processing, and the maximum provided speedup
is only of about 19 %.

Table 6.5 displays detailed statistics, comparing a single threaded and a dual
threaded run with a 4 MiB block size. Applying multithreading during encoding,
i.e. the processing stage, has some benefit, however, not enough have a significant
impact on overall performance. Circa 81 % of the computation takes place within
the processing stage. As this is the section of the application one assumes to be par-
allelizable, one can apply Hill and Marty’s formulae for symmetric multi-core chips
with r = 1 and calculate a theoretical upper bound for expected speedup [24]1:

• 2 threads: Speedups ymmetr i c (n = 2,r = 1, p = 0.81) = 1
1−0.81+ 0.81

2
= 1.68

• 4 threads: Speedups ymmetr i c (n = 4,r = 1, p = 0.81) = 1
1−0.81+ 0.81

4
= 2.55

A practical speedup of 1.19 is much lower than the theoretical.
Data in Table 6.5 also reveal that more time is spent waiting for the processing

stage to finish than time spent doing actual processing, i.e. I/O fetches data faster
than the CPU can process it. This is also reflected in the low Process Wait value,

1Hill and Marty’s formulae is used as the processor within the iPod is a multi-core CPU. Assuming
r = 1, this is equivalent to applying Amdahl’s law [1].
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and translates to efficient use of the CPU. From Figure 6.11 one can observe how
the block size is strongly correlated with efficient use of the CPU. A smaller block
size results in better efficiency on average per block, but a larger block size is more
efficient overall.
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Figure 6.10 Disk-to-disk Variable-byte encoding for configurations of single thread,
two threads, and four threads on a 5th generation iPod.

Table 6.5 Detailed comparison of a single threaded Variable-byte encoding and
dual threaded Variable-byte encoding on a 5th generation iPod.

Single Threaded (ms) Dual Threaded (ms) Ratio

I/O Read: 264.6 371.1 0.71
I/O Read Wait: 48320.2 40682.5 1.19
Preprocessing: 9143.9 9165.4 1.0
Processing: 40630.2 32764.3 1.24
Postprocessing: 3.3 3.1 1.006
Process Wait: 287.0 327.2 0.89
I/O Write: 40.1 46.8 0.86
I/O Write Wait: 50094.3 42244.9 1.19
Total Execution Time: 50185.5 42335.4 1.19
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Figure 6.11 Correlation between block size and process waiting time on a 5th gen-
eration iPod (lower is better).

iPad, 4th Generation

Figure 6.12 contains the results from running Variable-byte encoding on the 4th
generation iPad. A similar trend as the one observed earlier with the iPod is present
here as well. For the attempted block sizes, multithreading has little to no effect,
as the serial performance of the A6X System on Chip (SoC) present in the device
encodes data faster than the overhead associated with dispatching a thread. With
85 % of the execution spent in the stage attempted parallelized, theoretical values
of speedup would compare to the ones calculated for the iPod Touch. However,
Table 6.6 displays a meager 5 % increase in performance.

While the performance is almost double compared to that of the iPod, the shape
of each curve is almost identical to the previous ones. Backed by the results from
the flash memory survey, one can assume the increased performance is due to im-
provements in the processor more than in the flash memory itself or the interface
between processor and flash memory.
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Figure 6.12 Disk-to-disk Variable-byte encoding for configurations of single thread,
two threads, and four threads on a 4th generation iPad.

Table 6.6 Detailed comparison of a single threaded Variable-byte encoding and
dual threaded Variable-byte encoding on a 4th generation iPad 4.

Single Threaded (ms) Dual Threaded (ms) Ratio

I/O Read: 238.1 265.0 0.90
I/O Read Wait: 23994.8 23189.8 1.03
Preprocessing: 3656.6 3941.1 0.93
Processing: 21092.5 20020.5 1.05
Postprocessing: 1.4 1.5 0.93
Process Wait: 173.9 211.0 0.82
I/O Write: 20.4 23.8 0.86
I/O Write Wait: 24971.1 24204.1 1.03
Total Execution Time: 25027.4 24268.1 1.03
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iPad Air

Results from Variable-byte encoding on the iPad Air are displayed in Figure 6.13.
Usurprisingly, with an even faster CPU present in the iPad Air, the difference in per-
formance between singel threaded and multithreaded implementations is neglible.

Table 6.7 contains a detailed comparison of a single threaded and dual threaded
execution with the largest benchmarked block size. While the increase in perfor-
mance is missing, statistics show an increase in efficient use of the CPU. Compar-
ing the additional efficiency with corresponding values from benchmarks with the
previous generation iPad and 5th generation iPod Touch, this is a unique trait in
the iPad Air. However, it may also be due to an anomaly in the particular execution
of the benchmark. Table 6.7 also display a raised I/O read value. This may cascade
throughout the run and improve the usage of the CPU.

In terms of raw power, the iPad Air is more than twice as fast as the 4th genera-
tion iPad for large block sizes.
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Figure 6.13 Disk-to-disk Variable-byte encoding for configurations of single thread,
two threads, and four threads on an iPad Air.
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Table 6.7 Detailed comparison of a single threaded Variable-byte encoding run and
a dual threaded Variable-byte encoding run on an iPad Air.

Single Threaded (ms) Dual Threaded (ms) Ratio

I/O Read: 185.3 77.8 2.38
I/O Read Wait: 8819.6 8765.0 1.01
Preprocessing: 1560.5 1512.8 1.03

Processing: 7526.6 7512.4 1.0
Postprocessing: 1.0 1.0 1.0

Process Wait: 148.4 35.3 4.20
I/O Write: 13.3 12.9 1.03

I/O Write Wait: 9259.5 9087.1 1.02
Total Execution Time: 9306.6 9136.6 1.02

Summary

Foregoing sections have particularly demonstrated one the features needed to effi-
ciently utilize parallelization: An adequate amount of data to process. Only the 5th
generation iPod Touch managed to gain a notable increase in performance when
multithreading was applied. An additional observation is how a block size of 512
KiB appear to be a point of saturation. Encoding larger blocks at a time results in
little to no gain. In the efficiency plot of the iPod Touch (Figure 6.11), a decrease
in efficiency could indeed be spotted for block sizes of 1 MiB and 4 MiB. Table 6.8
demonstrates this is the case for all three devices. The following surveys of Group
Varint code and Elias γ code will shed light on whether this is a feature provoked by
Variable-byte encoding or the devices themselves.

Table 6.8 Correlation between block size and process wait time on the three tested
devices (lower is better).

Block Size 5th Generation iPod Touch (ms) 4th Generation iPad (ms) iPad Air (ms)

512 B 20666.6 10460.3 10310.3
1 KiB 10650.2 6906.4 8559.1
4 KiB 2649.6 2123.6 1180.8
512 KiB 240.1 48.8 80.3
1 MiB 273.6 88.6 87.8
4 MiB 287.0 173.9 148.4

Figure 6.14 plots the encoding speed of each device for comparison, that is,
the processing stage. The significant difference in computational power is appar-
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ent between the devices. An additional interesting observation to make is, while
the increase in performance is moderate, every device enjoys processing few larger
blocks rather than many small. This may be due to the cost of allocating memory,
i.e. the cost allocating an area is not linearly correspondant to the size of the area.
This is particularly visible in the iPad Air’s slope.
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Figure 6.14 Variable-byte encoding performance of the three devices tested.



74 CHAPTER 6. RESULTS AND DISCUSSION

6.4.2 Decoding

Variable-byte decoding proved initially to be the fastest decoding scheme. The fol-
lowing subsections will more thoroughly investigate how decoding behaves on the
Apple devices surveyed.

iPod Touch, 5th Generation

Figure 6.15 presents the disk-to-disk performance of Variable-byte decoding with
a single thread implementation, as well as implementations with two threads and
four threads. Multithreading is not applied to the actual decoding, but rather dur-
ing postprocessing when the array holding decoded values is iterated through and
converted to a continuous stream of bytes.

Applying multithreading during postprocessing pays dividence for the smallest
block sizes, but one does not witness a significant improvement until a block of 512
KiB or larger is in use. Figure 6.15 illustrates a speedup of around 1.62 from a single
thread execution to applying two threads for a block size of 1 MiB.
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Figure 6.15 Variable-byte decoding performance on a 5th generation iPod Touch.
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iPad, 4th Generation

It can be observed in Figure 6.16 how the trend from the 5th generation iPod bench-
mark continues. The performance benefit harvested during multithreaded decod-
ing may be due an inefficient conversion step between an array of integers to a con-
tinuous series of bytes. If this step is slow, separating the workload between more
than one thread may pay dividence. One must also take into account the amount
of data being processed during postprocessing after data has been decoded. On
average during Variable-byte decoding, a block of data will expand to over nine
times its read size. Indeed, a block of encoded data, 4 MiB in size, will contain near
the complete decoded postings list. As established earlier, for multithreading to be
beneficial, one must supply enough data. Table 6.9 displays a detailed comparison
of a decoding benchmark where the block size was set at 1024 MiB.

Applying Hill and Marty’s formulae for a symmetric, multi-core processor, and
assuming 90 % of the computation during a serial execution is within the paral-
lelizable postprocessing stage, one achieves the following values for a theoretical
speedup [24]:

• Two threads: Speedups ymmetr i c (n = 2,r = 1, p = 0.9) = 1
1−0.90+ 0.90

2
= 1.81

• Four threads: Speedups ymmetr i c (n = 4,r = 1, p = 0.9) = 1
1−0.90+ 0.90

4
= 3.08

It is apparent that for four threads, the practical speedup is not comparable
to that of the theoretical. However, for two threads, a practical speedup of 1.65 is
decent. This is also reflected in the total execution time.

In contrast to the results from the encoding survey, the increase performance
during single threaded decoding is moderate in regards to block size. This is most
probably due to the size of the total amount of encoded data. That is, the sheer
number of reads required to decode a file of roughly 4.5 MiB in size is not high
enough to have quite the impact it has during encoding.
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Figure 6.16 Variable-byte decoding performance on a 4th generation iPad.

Table 6.9 Detailed comparison of a single threaded Variable-byte decoding run and
a dual threaded Variable-byte decoding run on a 4th generation iPad 4.

Single Threaded (ms) Dual Threaded (ms) Ratio

I/O Read: 29.8 29.8 1.0
I/O Read Wait: 8159.0 4943.9 1.65
Preprocessing: 0.0 0.0 1.0

Processing: 790.1 843.1 0.94
Postprocessing: 8655.7 4908.3 1.76

Process Wait: 31.5 25.3 1.25
I/O Write: 67.7 69.5 0.97

I/O Write Wait: 9428.5 5728.5 1.65
Total Execution Time: 9708.4 5977.8 1.62

iPad Air

Figure 6.17 demonstrates how the iPad Air behaves in the same fashion the fore-
going device. Applying multithreading for a lower block sizes is severly penalized.
However, the slopes representing two threads and four threads are steep and sur-
pass serial execution for a block size of 4 KiB. As during encoding, applying a block
size larger than 512 KiB gives no significant benefit. Table 6.10 compares the three
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executions of 512 KiB, 1 MiB, and 4 MiB. The difference may be small variations
in the benchmark environment, however, it is interesting how the total time spent
reading data increases for block sizes larger than 512 KiB. In addition, while decod-
ing enjoys a smaller block size, the added data to process among threads for larger
block sizes during postprocessing keeps the performance on an almost equal level.
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Figure 6.17 Variable-byte decoding performance on an iPad Air.

Table 6.10 Detailed statistics of an execution with two threads and block sizes of
512 KiB, 1 MiB, and 4 MiB.

512 KiB (ms) 1 MiB (ms) 4 MiB (ms)

I/O Read: 8.9 9.0 10.9
I/O Read Wait: 2453.5 2143.1 2073.7
Preprocessing: 0.0 0.0 0.0
Processing: 349.0 347.0 370.9
Postprocessing: 2186.9 2146.3 2058.0
Process Wait: 10.0 13.4 7.7
I/O Write: 44.4 123.8 262.0
I/O Write Wait: 2501.8 2386.2 2184.4
Total Execution Time: 2601.6 2605.4 2536.5
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Summary

A summary of the decoding performance of the three devices benchmarked is dis-
played in Figure 6.18. It is apparent that Apple’s A7 SoC is a significant improvement
from prior generations.

Each device plot demonstrate block size having a large role in improving de-
coding performance. The iPad Air displays an improvement of over 50 % from 512
bytes to 512 KiB, while the 4th generation iPad and the 5th generation iPod improve
over 50 % and 30 % respectively. A point of saturation is reached at 512 KiB.
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Figure 6.18 A comparison of the decoding performance of the three devices tested.
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6.5 Group Varint Code

Group Varint coding proved to be the fastest encoding scheme, and also on par with
Variable-byte coding during decoding.

6.5.1 Encoding

Variable-byte encoding struggled with making efficient use of multithreading due
to the overhead associated with dispatching threads. With Group Varint encoding
being a faster scheme, multithreading may not provide significant gain here either.

iPod, 5th Generation

Figure 6.19 displays signs of the initial assumption being wrong. For block sizes
512 KiB – 4 MiB, both applying two threads and four threads is beneficial to perfo-
mance. While the improvement is modest, the plot illustrates potential for larger
data sets.

One can also observe a steep improvement when increasing the block size. How-
ever, as previosly demonstrated during Variable-byte encoding, block sizes larger
than 512 KiB achieve no gain in performance. Figure 6.19 illustrate a slight dis-
favour of applying block sizes of 1 MiB or 4 MiB.
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Figure 6.19 Encoding performance of Group Varint on a 5th generation iPod.

iPad, 4th Generation

Illustrated in Figure 6.20, similar trends as above are present when Group Varint
encoding is applied with a 4th generation iPad. However, the optimistic results in
regards to multithreading is not present. A detailed investigation, displayed in Ta-
ble 6.11, reveals the multithreaded execution is slower during the parallelized part
of the implementation. It is not known if this is a behaviour enforced by Group
Varint encoding, the device itself, or an anomoly in the benchmark. The 5th gener-
ation iPod Touch also suffered a performance drop for a block size of 1 MiB, how-
ever, not as significant as this.
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Figure 6.20 Encoding performance of Group Varint on a 4th generation iPad.

Table 6.11 Detailed statistics of a single threaded and dual threaded execution of
Group Varint encoding on a 4th generation iPad 4, with 1 MiB block size.

Single Threaded (ms) Dual Threaded

I/O Read: 197.7 182.6
I/O Read Wait: 11395.3 12223.4
Preprocessing: 4486.8 4647.6
Processing: 6946.5 7592.5
Postprocessing: 0.0 0.0
Process Wait: 104.3 85.5
I/O Write: 101.9 34.4
I/O Write Wait: 11522.9 12406.8
Total Execution Time: 11672.4 12567.7

iPad Air

Figure 6.21 demonstrates a feature similar to the one just witnessed for the 4th gen-
eration iPad. When executing Group Varint encode with a block size of 1 MiB, the
performance is severly hampered when two threads are applied to the computa-
tion. Both the single threaded and the four threaded results display lower values
for this particular block size, however, not a difference as large as during the previ-
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ous device’ benchmark.
The result from the single threaded execution with a 4 MiB block size has most

likely been disturbed during execution in some way, and should be rendered void.
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Figure 6.21 Encoding performance of Group Varint on an iPad Air.

Summary

Figure 6.22 contains a direct comparison of Group Varint encoding executed on the
three devices.

The results are comparable to the ones displayed earlier from Variable-byte en-
coding (Figure 6.14). Particularly, the sharp increase in performance at a block size
of 4 KiB during the iPad Air benchmarks is present here as well. Additionally, each
slope is moderate in change, although interestingly, both the 4th generation iPad
and 5th generation iPod degrade in performance as the block size increases. This is
a surprising result, as the allocation of several small blocks of data proved was as-
sumed to be more expensive than allocating few larger ones earlier (Section 6.4.1).
The relationship between the cost of encoding and allocating an area of mem-
ory appears to have shifted during Group Varint encoding, slightly favouring small
block sizes.

The sudden drop in performance for a block size of 4 MiB during execution on
the iPad Air is thought to be due to a defective benchmark run.
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Figure 6.22 Comparison of Group Varint encoding performance on the devices
tested.

6.5.2 Decoding

In Section 6.1, Group Varint decoding performed on par with Variable-byte decod-
ing. As such, one would expect similar results in the following sections.

iPod, 5th Generation

Decoding using Group Varint promises a similar parallel speedup to the one achieved
during Variable-byte decoding. Figure 6.23 illustrates a speedup of 1.61 for a block
size of 512 KiB. This is expected as multithreading is applied to postprocessing and
not the decoding, i.e. the processing stage, itself. Overall, the plot has features sim-
ilar to previously presented results: A stabilized perfomance for a block size of 512
KiB and larger, as well as little additional gain in applying four threads to enhance
the rate of output.
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Figure 6.23 Decoding performance of Group Varint on a 5th generation iPod.

iPad, 4th Generation

Compared to Group Varint decoding using the 5th generation iPod, Figure 6.24
show multithreading needing additional data before improving the performance.
While the 5th generation iPod surpassed serial execution at a block size of 1 KiB,
the 4th generation iPad is trailing until 4 KiB of data is read per block. This is most
probably due to the increased computational power available in the Apple A6 SoC.
As such, more data must be supplied each thread to compensate the penalty of
dispatching additional threads.
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Figure 6.24 Decoding performance of Group Varint on a 4th generation iPad.

iPad Air

Figure 6.25 repeat the trend witnessed with the iPad Air during Variable-byte de-
coding (Figure 6.17), and is almost an exact replica of Group Varint decoding using
the 4th generation iPad. The slope representing the single threaded execution has a
moderate incline, while both multithreaded executions have a significant increase
until reaching 512 KiB. At such a block size, multithreaded performance is seem-
ingly exhausted.

While the 4th generation iPad and the iPad Air have similar performance pat-
terns, the output rate from the latter device is more than double that of the former.
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Figure 6.25 Decoding performance of Group Varint on an iPad Air.

Summary

Decoding results from all benchmarked devices are compared in Figure 6.26. In
correspondence with the Variable-byte decoding summary, both the 4th genera-
tion iPad and the 5th generation iPod appear to have moderately increasing slopes.
The former hold a difference in performance of almost 60 %, while the latter have
a difference of about 35 %. The iPad Air differ almost 80 % between the lowest and
highest measured value, leaving one to conclude that the block size plays a signifi-
cant role also when decoding data present in memory.
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Figure 6.26 Comparison of Group Varint decoding performance on the devices
tested.

6.6 Elias γ Code

While Elias γ code proved superior in compression ratio, it lacked an edge in per-
fomance both during encoding and decoding.

6.6.1 Encoding

Elias γ code is a bit-oriented coding scheme, and as such, extra measures must
be taken when the result is to be written to permanent storage. During encoding,
this results in an extra operation during postprocessing when the in-memory rep-
resentation of the encoded data is converted from an array BOOL values to bits to
be written.

iPod, 5th Generation

As displayed in Figure 6.27, encoding using Elias γhas a similar pattern as encoding
using Variable-byte and Group Varint. An interesting trait is the significant decline
in performance for a block size larger than 512 KiB. Particularly noticable is the
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result after applying a block size of 4 MiB for a dual threaded execution. Several
reexecutions with these distinct properties were performed, however, the poor re-
sult proved to be consistent. From Table 6.12, it is apparent that the additional time
is spent during the processing stage, i.e. when the data is encoded. A tempting as-
sumption to make is that the degrade in performance is due to an excessive amount
of data to convert, however, this process is executed during postprocessing. It is not
known what causes such a result, if it is a trait present in Elias γ encoding, the im-
plementation, or a scheduling issue in the operating system.
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Figure 6.27 Encoding performance of Elias γ on a 5th generation iPod Touch.
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Table 6.12 Detailed statistics of an execution on a 5th generation iPod with two
threads and block sizes of 512 KiB, 1 MiB, and 4 MiB.

512 KiB (ms) 1 MiB (ms) 4 MiB (ms)

I/O Read: 477.1 404.5 385.2
I/O Read Wait: 52144.3 51769.3 63300.8
Preprocessing: 9435.4 9417.9 9170.1
Processing: 39442.6 39090.8 52456.3
Postprocessing: 3509.9 3502.4 3490.1
Process Wait: 241.6 268.1 270.7
I/O Write: 41.8 38.5 30.9
I/O Write Wait: 52804.3 52333.8 65477.5
Total Execution Time: 52915.4 52461.2 65558.1

iPad, 4th Generation

While not as significant, executing on the 4th generation iPad (Figure ??) present
a similar degrade in performance as the 5th generation iPod for a setup of two
threads and a block size of 4 MiB. Both from Figure 6.28 and 6.27, it can be seen
how the results favour a block size of 512 KiB. Being present in both devices, this
may point to involuntairy favouritism in the implementation or a trait in the oper-
ating system.
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Figure 6.28 Encoding performance of Elias γ code on a 4th generation iPad.

iPad Air

Figure 6.29 maintains the trend presented in the two preceding paragraphs, the dif-
ference being the degrade in performance is present in all three threading variants.
In addition, results are even more in favour of a block size of 512 KiB.

An interesting feature is the increase in performance from a block size of 1 KiB
to that of 4 KiB. Table 6.13 compares serial executions with block sizes set to 512 B,
1 KiB, and 4 KiB. For a block size of 4 KiB, the time spent on processing is decreased
with over 100 %. Consecutive executions displayed the same trait, however, the
reason for the result is currently not identified.
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Figure 6.29 Encoding performance of Elias γ code on an iPad Air.

Table 6.13 Detailed statistics of a serial execution on an iPad Air with block sizes of
512 B, 1 KiB, and 4 KiB.

512 B (ms) 1 KiB (ms) 4 KiB (ms)

I/O Read: 3828.7 2707.2 501.4
I/O Read Wait: 33674.2 31758.5 11482.3
Preprocessing: 7711.1 6221.7 1851.3
Processing: 14033.3 16783.3 7859.3
Postprocessing: 3254.7 3034.5 1011.7
Process Wait: 10388.3 7053.6 1055.2
I/O Write: 2682.2 1698.4 271.4
I/O Write Wait: 31234.8 31189.4 11495.1
Total Execution Time: 42639.5 37676.0 12477.8

Summary

Initially, Figure 6.30 may appear to contain invalid results. However, comparing
the slopes of Elias γ encoding with those of Variable-byte encoding (Figure 6.14)
and Group Varint encoding (Figure 6.22) reveals a similar pattern to be present.
The significant gain in performance iPad Air achieves for a 4 KiB block size is a
particularly noticable trait. As are the stable results recorded during tests with the
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4th generation iPad and the 5th generation iPod.
It is not clear why the iPad Air looses momentum and declines in performance

for block sizes 1 MiB and 4 MiB, however, the result is corresponding with what was
presented in the individual encoding result graph (Figure 6.29).

While Eliasγ encoding was measured as slightly faster in beginning of this chap-
ter (Section 6.1), the values presented here are the lowest yet.

51
2

B

1
K

iB

4
K

iB

51
2

K
iB

1
M

iB

4
M

iB

2

4

6

·105

E
n

co
d

ed
In

te
ge

rs
Pe

r
Se

co
n

d
(E

IP
S)

Single thread Two threads Four threads

Figure 6.30 Comparison of Elias γ encoding performance on the devices tested.
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6.6.2 Decoding

As mentioned in the introduction of Section 6.6.1, Elias γ encoding requires an ad-
ditional operation when encoded data is to be written. This is relevant during de-
coding as well, as individual bits must be expanded to BOOL values and stored as an
array in memory. The expansion is performed during the processing stage before
decoding takes place.

iPod, 5th Generation

Figure 6.31 paints a picture of the performance, similar to the ones produced by
Variable-byte decoding (Figure 6.15) and Group Varint decoding (Figure ??): Mul-
tithreading is beneficial already at block size of 1 KiB, with the gain in perfomance
saturated at a block size of 512 KiB.
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Figure 6.31 Decoding performance of Elias γ code on a 5th generation iPod Touch.
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iPad, 4th Generation

In contrast to results from Variable-byte decoding (Figure 6.16) and Group Varint
decoding (Figure 6.24), Figure 6.32 illustrates the 4th generation iPad 4 benefitting
from multithreading already at a block size of 1 KiB. However, the speedup is a
meager 14 %. Increasing the block size, the most significant increase is seen at 4
MiB, processed using four threads, with an improvement of about 50 %. As mul-
tithreading is applied during postprocessing, this result is low compared to those
achieved during executions presented prior. For instance, the 4th generation iPad
achieved a speedup of over 60 % during Variable-byte decoding. However, with
an extra postprocessing operation, less of the total time is spent in the parallelized
part of the implementation, which results in a lower, total achievable speedup. In-
deed, Table 6.14 displays the speedup achieved during decoding is 1.76, however,
the speedup reported by the total execution is lowered due to an increase in the
amount of time spent in the serial processing stage.
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Figure 6.32 Decoding performance of Elias γ code on a 4th generation iPad.
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Table 6.14 Detailed comparison of a single threaded Elias γ decoding and a four
threaded Elias γ decoding with a block size of 4 MiB on a 4th generation iPad.

Single Threaded (ms) Four Threaded (ms) Ratio

I/O Read: 35.5 37.4 0.95
I/O Read Wait: 10494.9 6931.8 1.51
Preprocessing: 0.0 0.0 1.0

Processing: 2870.0 2748.5 1.04
Postprocessing: 8575.1 4864.1 1.76

Process Wait: 34.4 38.2 0.9
I/O Write: 321.3 316.5 1.02

I/O Write Wait: 11170.1 7349.0 1.52
Total Execution Time: 11650.1 7853.2 1.48

iPad Air

As displayed in Figure 6.33, the iPad Air follows a pattern similar to that of the
4th generation iPad: Applying multithreading does achieve an increase in perfor-
mance, however, not as significant as during Variable-byte decoding and Group
Varint decoding. The execution sequence is equal for all devices, as such, the low-
ered parallel speedup is due to an increased presence in serial parts of the execu-
tion.
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Figure 6.33 Decoding performance of Elias γ code on an iPad Air.

Summary

Elias γ decoding results are summarized and available for comparison in Figure ??.
The three graphs reflect previous results of Variable-byte decoding (Figure 6.18)
and Group Varint decoding (Figure 6.26). As expected from Section 6.1, Elias γ
code is significantly slower than the other coding schemes during decoding. Inter-
estingly, the iPad Air is pictured as dominant performance-wise as earlier. Instead,
the 4th generation iPad appears to enjoy decoding using Elias γ.
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Figure 6.34 Comparison of Elias γ decoding performance on the devices tested.

6.7 Summary

The preceding sections have displayed detailed statistics of all coding schemes, ex-
ecuted on three different devices with varying parameters. Extracting common de-
nominators from these executions is challenging, however, some traits are present
in all executions.

6.7.1 Device Performance

The devices used during testing represent three generations from the Apple A-series
of System on Chips (SoC), the A5, A6X, and the A7. Looking at the specifications of
these chips within each device, the difference in performance is surprising.

The Apple A6X present within the 4th generation iPad used during testing is
running at the same clock frequency as the Apple A7 within the iPad Air. The former
is coupled with one GiB of Low Powered DDR2 (LPDDR2) memory, while the latter
is interfaced with one GiB of LPDDR3 memory. In addition, the Apple Cyclone pro-
cessor within the Apple A7 has double the level one cache, and an additional four
MiB core global level three cache. Despite appearing near equal in specifications,
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the iPad Air managed to perform more than double that of the 4th generation iPad
on several occasions.

A surprising addition is the disk performance all three devices achieve during
sequential reading. However, there is a significant difference comparing random
access reading with sequential for smaller block sizes. It is important to remem-
ber that random access reading is an issue with Negated AND (NAND) based flash
drives. As such, one should strive to read large blocks of data.

As a last, but important note is the overhead associated with employing Objective-
C objects in performance critical applications. It is apparent from Section- 6.3 how
wrapping during repeated tasks incur a significant performance penalty.

6.7.2 Optimum Parameters

Large variations occured during executions. However, should one pick a set of pa-
rameters in an attempt to maximize performance and cover most use cases, a block
size of 512 KiB and execution using two threads appear achieve the best results. In
each test performed, performance has been steadily rising until meeting a point of
saturation at a 512 KiB block size. Preceding block sizes have either had a minor in-
crease in performance or begun degrading. In addition, 512 KiB of data is sufficient
to take advantage of multithreading.

All three devices tested are dual core. Tests were performed with both two
threads and four threads sharing the load. Seldom did four threads gain a signif-
icant upper hand in comparison to a similar two-threaded execution. This may
be due to an insufficient amount of data being processed to properly benefit from
four threads, or it may be due to poor scheduling in the operating system. With the
results presented earlier as a basis, two threads appear to be the better fit.

An additional note is worth making concerning multithreading and lower block
sizes. During encoding, a block size of less than 512 KiB was not able to benefit from
multithreading, leaving the single threaded execution as most performant alterna-
tive. Decoding benchmarks displayed similar results, but for a few executions. As
such, should one wish to operate with a block size in area of 4 KiB or less, applying
multithreading is discouraged.

6.8 Critique

Areas of the presented results are subject to some critique. For one, small variations
within distinct executions may stack up and produce a seemingly significant varia-
tion between two results. Benchmarks are timed in a per block fashion. That is, the
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time each block spends in for instance the processing stage or write stage is sum-
marized with all timings gathered from overall blocks to produce the final result.
This makes an execution vulnerable to outside influence, if for instance, a back-
ground process in operating system is executed and impact the resources available
to the benchmark. On the other hand, results may not be as fine grained as one
would wish for. An example is the processing stage. The timing may be affected by
the time spent dividing resources among threads, allocating memory, and so forth,
and not only the time spent encoding or decoding data.

A second point to make is the nature of the data set. Being one large postings
list, it simulates a term found in almost all documents in a document storage sys-
tem. One could compare the data set to the postings list of the word “the”. This
results in a postings list where calculated Δ-values are small, which in turn results
in a high compression ratio and faster decoding. This is particularly the case for
Variable-byte decoding and Elias γ decoding, where values are read byte-by-byte
and bit-by-bit, respectively.

Additionally, encoding and decoding for midrange block sizes, i.e. 16 KiB – 64
KiB, were not performed. This has resulted in somewhat polarized results: If one
is not privvy to or not in need of reading large chunks of data, use a block size of 4
KiB and do not apply multithreading. In the contrary use case, apply a block size
of 512 KiB and divide the workload among two threads. With postings list varying
significantly in size depending on the term, an additional inspection of midrange
block sizes may be interesting.

Finally, one might inquire encoding results for block sizes of 16 MiB and larger.
Previous sections pointed out the need for additional data to process to better make
us of multithreading. However, the gain of dividing the workload among several
threads appeared to be saturated already at 512 KiB, leaving one to conclude larger
block sizes may not provide additional insight.





Chapter 7

Conclusion and Future Work

This thesis has focused on providing insight in the use of handheld devices for an
uncommon and narrow use case: the encoding and decoding of postings list in in-
verted indexes. The focus has been to give an overview of suitable coding schemes,
their properties, and how they perform on different devices under distinct condi-
tions. To provide a broad basis of comparison, three different ways of coding were
selected: Variable-byte coding, Group Varint coding, and Eliasγ coding, with the lat-
ter being bit-oriented and the two former being byte-oriented. Benchmarks were
applied to three different devices of Apple: A 5th generation iPod, a 4th generation
iPad, and an iPad Air, each device sporting a distinct version of an Apple A-series
SoC. Additionally, in the process of selecting parameters to use during the main
tests, this thesis has identified the sequential and random access read performance
of each device.

A fictional postings list was generated according to Zipf’s law of term frequency,
resulting in a data set of about 45 MiB in size and containing over 48 million post-
ings.

We have developed two iOS applications in order to perform the executions in
native environments: the “SSDPerformanceMapping” application, measuring se-
quential and random access reading of the flash memory present in the device, and
the “PostingListApp”, measuring encoding and decoding of the on-device postings
list with the different schemes implemented. As all three devices tested are dual
core, additional benchmarks were performed in attempt to utilize the capabilities
presented in a multi-core CPU. As such, the latter application also has the ability to
set the number of threads to use during execution. Postings list benchmarks were
applied using one, two and four threads during both encoding and decoding.

101
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Flash memory performance tests found the read performance present in Ap-
ple’s i-series of devices impressive. For instance, the iPad Air peaked at over 275 MiB
per second for sequential reading and about 267 MiB per second during random ac-
cess reading. Overall results from these initial benchmarks selected the block sizes
to apply in further surveying of postings list coding:

• 512 B

• 1 KiB

• 4 KiB

• 512 KiB

• 1 MiB

• 4 MiB

Blockwise reading of unencoded and encoded data presented problems not
found described in previous litterature. During encoding, a block of read data may
split the last read integer. Methods were developed to detect such an event, cache
the split integer, and combine data on the consecutive reading. When reading en-
coded data, a similary situation may occur. Read data may not contain the required
to bytes to perform a complete decode. Either, data is attempted decoded, but fails
and data is discarded, or the decode produces the wrong result. We have developed
methods per coding scheme to handle such situations.

With three devices benchmarked, three distinct coding schemes to survey in
both encoding and decoding, three threading configurations, and an additional six
different block sizes, the number of experiments performed counts to over 300.
Extracting common denominators from these executions have been challenging,
however, some traits were present in several results:

• Coding schemes vary significantly in terms of speed and compression ra-
tio. Being bit-oriented, Elias γ coding achieves the better compression ra-
tio, but falls short during both encoding and decoding. Variable-byte cod-
ing provides a middle-ground between compression ratio and performance.
However, performance may degrade for sparse postings lists as decoding is
subject to branch mispredictions. Group Varint eliminates Variable-byte’s
branch mispredictions, but suffers in compression ratio. It is, however, the
fastest during both encoding and decoding. Group Varint incurs additional
complexity in during if four is not a factor of the postings list’s length. This
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means one must either append data to extend the postings list or apply an
alternative encoding for trailing values.

• For multithreading to be beneficial, one is required to supply sufficient data
to process. There is an inherit overhead associated with dispatching addi-
tional threads. Results in this thesis proved this penalty to be quite expen-
sive, usually not providing multithreading with a performance edge until the
block size reached 512 KiB. As such, in the general case, a single threaded im-
plementation is sufficient for block sizes in the area of 4 KiB. In addition, two
threads proved to be sufficient in all experiments performed.

• Performance is strongly correlated with the block size. Although, a large block
size is not synonymous with higher performance. Results indicated an in-
crease in permance as the block size augmented. However, reaching a block
size of 512 KiB, performance stalled. A minor decline could be witnessed in
some experiments when the block size reached 1 MiB or 4 MiB. This corre-
lation is mainly due flash memory appreciating reading few large blocks in
contrast to several small ones. Isolating the values of encoding or decoding
displayed a more modest relationship between block size and performance.
Still, the difference between decoding a small black compared to that of a
large block was over 50 % when measured on an iPad Air.

• One cannot determine the potential in devices by looking at the specifica-
tions. The SoCs present in benchmarked devices are similar specification-
wise, but differ significantly in terms of performance. The difference between
the Apple A6X and the Apple A7 is particularly surprising.

7.1 Future Work

To our knowledge, this is the first thesis investigating the potential for encoding and
decoding postings lists on handheld devices. As such, the potential for future work
is significant.

• One should strive to optimize current encoding and decoding implementa-
tions. Currently, bitwise operations replace modulo, multiplication, and di-
vision operations where available, however, as this is the first release of the
source code, additional areas may not be sufficiently optimized. In addition,
the current implementation makes use of prefix sum during decoding. This
is a textbook parallelization problem, with the potential of contributing with
additional speedup during decoding.
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• Further research into ARM NEON, ARM’s SIMD extensions should be per-
formed. Stepanov et al. applied SIMD instructions to Group Varint using
instructions (PSHUFB) lacking equivalents in the NEON instruction set [55].
However, investigations should be made to survey if combinations of instruc-
tions provide equal results. In addition, further revisions of NEON may pro-
vide what is required.

• More accurate timing should be provided, particularly during the processing
stage of the pipeline, i.e. encoding and decoding. Currently, memory allo-
cations and thread preparations are recorded. Such operations should not
pollute the timing when one attempts to measure the performance of the
coding scheme.

• Research should be made into more exotic data sets, that is, data sets with
more sparsely populated and shorter postings lists. These are believed to par-
ticularly have an effect on the compression ratio, but also the performance of
Variable-byte code and Elias γ code.

• One should look into taking this thesis one step further towards a mobile
search engine. An opportunity is to investigate the viability of encoding or
decoding several terms in parallel or the merging of postings from two or
more postings lists.

• A survey of the memory consumption is recommended. During the creation
of this thesis, memory consumption proved to be a challenge on several oc-
casions. iOS is particularly strict in terms of the rate memory is allocated, in
addition to the amount of memory currently in use. Memory is particularly
an issue during decoding, as encoded data is initially small, but quickly de-
flated as decoding progresses. If one is to decode several terms in parallel,
memory consumption will become an issue for terms occuring in an abun-
dance of documents, i.e. having a very long postings list.
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Appendix A

Bundled Scripts and Applications

Together with this thesis one should find the following scripts and applications:

• Within PostingList folder: Pythons script to generate an inverted index with
postings lists according to Zipf’s law.

• Within SSDPerformanceMapping folder: iOS application to measure the se-
quential reading and random access reading.

• Within PostingListApp folder: iOS application to measure encoding and de-
coding performance of implemented coding schemes.

• Within PostingListCompression folder: iOS framework used by PostingListApp
to perform encoding and decoding.

The three iOS applications have their respective Xcode projects included as
well.
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Appendix B

Executing SSDPerformanceMapping

“SSDPerformanceMapping” is the iOS application used to measure the sequential
reading and random access reading performance of iOS devices. Execution of SSD-
PerformanceMapping must happen through Apple’s Xcode IDE. It is not available
in either Apple’s App store or via a third-party developer tool such as TestFlight. The
applications Xcode project file is attached to the thesis.

B.1 Preparations

Due to the size of the file used during benchmarking in thesis, this is not bundled
with the delivery. As such, one must generate a file before executing and bundle it
together with the application before execution. There are no requirements to the
data file, other than it being identified as data.random. The file is bundled with
the application by dragging and dropping it inside the opened Xcode project.
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Appendix C

Executing PostingListApp

“PostingListApp” is the iOS application used to configure and measure the encod-
ing and decoding performance of the three implemented coding schemes. As with
SSDPerformanceMapping, it must be executed through Xcode.

C.1 Preparations

With the postings list used during benchmarking measuring over 40 MiB, it has
not been delivered with the thesis. Therefore, a postings list must be generated
beforehand and bundled with the application. This can be done with the Python
script attached to this thesis in the "PostingList" folder as such:

python generate.py generate <parameters>

Available parameters are:

• -a<number>: The value of the exponent characterizing the distribution (de-
faults to 2).

• <number>: The total number of postings to distribute among terms (defaults
to 10 000 000).

• <number>: The total number of documents to simulate present in the index
(defaults to 100 000 000).

• -v: Verbose output.
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The postings list will be generated in the same folder as the script is executed
from. This file can then be bundled with the benchmarking application by dragging
and dropping it into the opened Xcode project.

C.1.1 Generating Encoded Data

Generating encoded data for each coding scheme to benchmark decoding is te-
dious. Preparations are best executed via the following steps:

1. Start the application through Xcode.

2. Select the coding scheme.

3. Press encode.

4. Copy the files produced by encoding to a folder on the computer and rename
them accordingly:

• Variable-byte coding:

– vbyte-data.out
– vbyte-mapping.out

• Group Varint coding:

– gvi-data.out
– gvi-mapping.out

• Elias γ coding:

– elias-data.out
– elias-mapping.out

5. Drag and drop each file into the opened Xcode project.

C.2 Caveats During Execution

PostingListApp is in its alpha stage of development and contains several issues one
should be aware of:

• Encoding or decoding several consecutive time without restarting the appli-
cation does not work.
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• Encoding or decoding over several iterations is currently not properly sup-
ported.

• Encoding or decoding more than one term is not thoroughly tested and the
behaviour of the application under a multiterm benchmark is undefined.


