
Distributed Hosting of Systems using
donated Computer Resources

André Skoglund Hansen

Master of Science in Computer Science

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

To host a value-added internet service, like a web page with a large user base, an

organization either has to rely on cash donations or it has to monetize the service.

The monetization of the service often means degrading the quality of the service or

making it less appealing. This is why this project introduces a new business model

where services can be run by the users themselves by letting them donate computer

resources. This again should lower the operating cost of the service. The new

business model is introduced by developing a framework that allows developers to

implement their services in a way that let dedicated users participate in hosting the

service. First the framework was developed, and then the framework was used to

develop an example implementation of a distributed web page. For it to be realistic

that users would be able to partake in an operation like this, a project goal was to

make sure that the technical demand from users are low. The framework is written

with this in mind and the reached simplicity is presented at the end of the report.

 Sammendrag

For å drifte en internet tjeneste, for eksempel ei nettside eller et flerspiller spill med

en stor brukerbase, er en organisasjon i de fleste tilfeller avhengig av donasjoner

eller nødt til å tjene penger på tjenesten. Ofte så involverer det å tjene penger på en

tjeneste at man forringer kvaliteten på tjenesten eller så gjøres den mindre

tilltrekkende ved en betalingsmodel. Derfor handler dette prosjektet om å introdusere

en ny modell for å kunne drifte en tjeneste, en modell hvor brukerne av tjenesten

drifter tjenesten selv. Dette gjøres ved å la brukerene donere maskinressurser som

kan brukes til å drifte tjenesten. Derfor er det i dette prosjektet utviklet et rammeverk

for hjelpe utviklere i å implementere tjenesten på en distribuert måte. I tilegg så er

det et poeng at for at brukere skal kunne bidra, så er det en fordel at prosessen med

å bidra er teknisk enkel. Dette er vurdert oppnådd og er presentert til slutt i

repporten.

 Preface

A student master thesis at the Norwegian University of Science and Technology

(NTNU) for André Skoglund Hansen, and is the conclusion to the Game Technology

specialization at the Department of Computer and Information Science (IDI) under

the Faculty of Information Technology, Mathematics and Electrical Engineering

(IME). The general project idea spawned from the project member and was

narrowed down after guidance from the supervisor.

I would like to thank my supervisor Svein Erik Bratsberg for accepting my master

thesis project and for theoretical guidance during the project work phase. I also

would like to thank two of my fellow students at Gribb: Damian Dubicki and Ole

Jørgen Rishoff for all those long nights working side by side, for the hours of

watching and analyzing Dota 2 streams, and for feedback and contribution to my

master thesis. And lastly, I would like to thank myself for hanging in there.

 Content

Part I, Introduction .. 1

1 Project Background ... 2

1.1 Motivation .. 2

1.2 Project Goal ... 2

1.3 Project Context .. 2

1.4 Stakeholders .. 3

1.4.1 Project member ... 3

1.4.2 Supervisor ... 3

1.4.3 Users: Developers ... 3

1.4.4 Users willingly to donate their computer resources 3

2 Research ... 3

2.1 Research Questions .. 3

2.2 Research Methodology .. 4

2.2.1 Literature Review .. 4

2.2.2 The Engineering method ... 4

3 Development ... 4

3.1 Development Methods ... 5

3.1.1 Software Prototyping ... 5

3.2 Development Tools .. 5

Part II, Pre-study .. 6

4 Concepts ... 7

4.1 Business Models for value-added services .. 7

4.1.1 Free ... 7

4.1.2 Free + Premium .. 7

4.1.3 Crowdsourcing .. 7

4.1.4 Advertisement ... 8

4.1.5 Micro-transactions ... 8

4.1.6 Subscription Fee ... 8

4.1.7 One-Time Payment ... 8

4.2 Web Hosting .. 8

4.3 Decentralized System .. 9

4.4 Relevant Application Architectures .. 9

4.4.1 Peer-to-Peer (P2P) .. 9

4.4.2 Master-Worker (MW) ... 10

4.4.3 Service Oriented Architecture (SOA) ... 11

4.5 Distributed Systems ... 11

4.5.1 Distributed Database ... 11

4.5.2 Process Migration .. 11

4.5.3 Content Deliver Network (CDN) .. 12

4.5.4 Load Balancing.. 13

5 Technologies ... 16

5.1 Nginx .. 16

5.1.1 Nginx Load Balancer ... 16

5.2 Haproxy ... 17

5.3 Apache ZooKeeper .. 17

5.4 Protocol Buffer ... 18

5.5 MongoDB and NoSQL ... 18

5.6 Twisted .. 19

5.7 Node.js ... 19

5.8 Universal Plug and Play (UPnP) .. 19

6 Related Systems ... 19

6.1 Case Study: BOINC ... 19

6.2 Case Study: Superdonate .. 20

6.3 Case Study: Amazon Elastic Compute Cloud (Amazon EC2) 21

6.4 Case Study: Google App Engine (GAE) .. 21

6.5 Free Hosting Services .. 22

Part III, Own Contribution ... 23

7 Proof of Concept “Plug N Host” ... 24

7.1 Stages and functional requirements ... 25

7.1.1 Stage 1: Web Page ... 25

7.1.2 Stage 2: Load Balancing ... 25

7.1.3 Stage 3: Automate ... 25

7.1.4 Stage 4: Configurable .. 25

7.1.5 Stage 5: Monitor .. 25

7.2 Technology Rationale .. 26

7.2.1 Core Technology ... 26

7.2.2 Custom Technology .. 27

8 Architecture ... 27

8.1 Physical Architecture ... 27

8.2 Logical View ... 28

8.2.1 Class Diagrams: Core Classes.. 28

8.2.2 Class Diagrams: Example Custom Classes 29

8.2.3 Configuration ... 30

8.3 Process View ... 30

8.3.1 Service Oriented (Process) Architecture ... 30

8.3.2 Starting Services ... 32

8.3.3 Integrating with existing systems ... 33

9 Evaluation and Conclusion .. 33

RQ1: Is this business model applicable to the real world? 33

RQ1.1: What are the alternative business models?....................................... 34

RQ1.2: Is there similar business models which are good enough? 34

RQ2: How can distributed hosted web systems best be done? 34

RQ2.1: How can distribution of static files best be done? 34

RQ2.2: How can distributed request processing best be done? 34

RQ2.3: How can distributing a database best be done? 34

RQ3.1: How should new worker nodes connect/disconnect to the network?. 35

RQ3.2: What architecture(s) should the distributed network have? 35

RQ4.1: Can it be avoided that an evil worker does permanent damage to the

persistent storage? .. 35

RQ4.3: Can processing be done in a fashion that makes it hard for an evil

worker to do damage? ... 35

10 Demonstration of Result .. 35

10.1 Starting the master ... 36

10.2 Starting the worker ... 36

11 Future Work ... 36

11.1 Functional improvements .. 36

11.2 Research topics .. 37

References ...

List of Figures

Figure 4-1: A flat peer-to-peer hierarchy, where one peer is selected as leader (L). .. 9

Figure 4-2: Master-Worker Architecture ... 10

Figure 4-3: Super-Master-Worker architecture ... 10

Figure 4-4: A simple representation of a SOA .. 11

Figure 4-5: A client http content request [14] using a CDN 12

Figure 4-6: How the CNAME-IP mapping propagates through the network 14

Figure 4-7: Load balancing using remapping at the network layer 15

Figure 5-1: ZooKeeper architecture [22] ... 17

Figure 7-1: A simple representation of a custom framework usage.......................... 24

Figure 8-1: Core classes, stripped for some variables and methods names. 28

Figure 8-2: NginxMasterService and NodejsWorkerService, a service class pair 29

Figure 8-3: An example configuration... 30

Figure 8-4: The service oriented architecture of the framework 31

Figure 8-5: The five steps of starting a service at the worker and master node. 32

1

 Part I,

Introduction

2

1 Project Background

In this chapter the motivation, goal and context behind the project is given.

1.1 Motivation

Today the business model for most web based services either involves payment or

degrading the quality of the product to monetize it. The degrading can involve limiting

the functionality, adding advertisement or monetization of the user base and its data

itself. These are all unwanted solutions. Another option is to rely on cash donations

from organizations or persons. A last option is that service owners fund the service

themselves, however, not viable for large and costly systems. This is a reality I want

to challenge: I want to examine if it is possible to reduce services operational cost by

using crowdsourcing as a business model to operate them. Or in other words, I want

to examine if it is possible to develop a technology that allows users to donate their

computer‟s resources to operate a foreign service.

Personally, this idea and motivation spawned from the experience of playing

numerous games that had to degrade the quality of the game to survive. Examples

of this were commercial games that used pay-to-win models and non-commercially

games that could not evolve its functionality because the required computer

resources for said functionality were not affordable.

1.2 Project Goal

The end goal is to develop software that can assist developers at developing their

own services that can easily be distributed hosted by end users. “Easily” is an

important keyword, as the higher the technical requirements to partake in the

distribution, how fewer users will partake. A sub-goal of this is to consider what the

potential using crowdsourcing to host services is. There already exist many scientific

projects that use users‟ computer resources to do calculations for them, which are

projects that is worth looking into.

A second sub-goal is to investigate what technologies can be used, and a third sub-

goal is to derive inspiration from similar software that exists today.

1.3 Project Context

A student master thesis at the Norwegian University of Science and Technology

(NTNU), conducted as a conclusion to the Game Technology specialization at the

Department of Computer and Information Science (IDI) under the Faculty of

Information Technology, Mathematics and Electrical Engineering (IME). The general

project idea spawned from the project member and was narrowed down after

guidance from the supervisor.

3

1.4 Stakeholders

This chapter identifies all stake holders of this project.

1.4.1 Project member

 - André Skoglund Hansen

The project member is concerned with understanding relevant theoretical principles

and interested in exploring technical solutions that can be part of a finished product.

Finally the project member has a strong interest in delivering a solid project report as

it defines the master thesis grade.

1.4.2 Supervisor

- Svein Erik Bratsberg

The supervisor‟s main concern is the quality of the documentation, and additionally

has interest in the result part as it can be a start point for new master thesis projects

that take the problem domain further.

1.4.3 Users: Developers

While the user group is not an active part of the project, developers of systems that

require large amounts of computer resources will have an interest in the conclusions

of this project.

1.4.4 Users willingly to donate their computer resources

The last group of stake holders is users that are willingly to donate their computer

resources to do work for a service. These users are interested in working with a

simple system and getting some form of acknowledgement for doing so.

2 Research

As part of the project process, a set of research questions have been posed. These

questions will help further defining the project goal. The methodologies used to

answer them are then described afterwards.

2.1 Research Questions

Allowing new worker nodes to join an already running system in a plug and play

fashion, to then partake in hosting it requires complicated features and techniques.

These research questions tries to break down this complication into isolated

problems which can be answered and possible be done prototyping on.

RQ1: Is this business model applicable to the real world?

4

 RQ1.1: What are the alternative business models?

 RQ1.2: Is there similar business models which are good enough?

RQ2: How can distributed hosted web systems best be done?

 RQ2.1: How can distribution of static files best be done?

 RQ2.2: How can distributed request processing best be done?

 RQ2.3: How can distributing a database best be done?

RQ3: How should a distributed network be operated?

 RQ3.1: How should new worker nodes connect/disconnect to the network?

 RQ3.2: What architecture(s) should the distributed network have?

RQ4: How can it be avoided that evil workers do damage to the overall system?

RQ4.1: Can it be avoided that an evil worker does permanent damage to the

persistent storage?

RQ4.2: Can sensitive data be stored at untrusted worker nodes?

RQ4.3: Can processing be done in a fashion that makes it hard for an evil

worker to do damage?

2.2 Research Methodology

A general description of the methods used in this project is given in the following

subchapters.

2.2.1 Literature Review

Literature review consists of reading articles, studies, books or other form of

documentation about technology or subjects relevant to the project. The literature

review is a most important during the projects theoretical pre-study phase, but also

relevant during the design and implementation phase.

2.2.2 The Engineering method

The engineering method is a process where you observe existing solutions, propose
better solutions, build/develop a solution, measure and analyse the solution, and
repeat the process until no more improvements appear possible within a given
timespan. It is one of the methods Basili [1] describes as part of the scientific
method.

3 Development

This chapter describes which development methods have been considered for the

project, which have been used, and which tools have been used.

5

3.1 Development Methods

A development method is a process that can be used to structure, plan and control

the development of the system. During this project the two development methods

Waterfall Model and Scrum was considered, but due to the theoretical nature of the

project it was deemed unnecessary. The technical research question has instead

been answered by literature review and by prototyping.

3.1.1 Software Prototyping

Software prototyping consists of developing working, but incomplete software, which

focuses on testing concepts or critical functionality. Examples are; testing technology

for performance, testing architectural decisions and testing user interfaces. In

addition, prototyping can help discovering problems earlier, problems that could be

severe enough that the architecture or technologies have to be changed or

scrapped.

3.2 Development Tools

The following tools have been used to either develop a prototype, test the prototype,

or to write the various documents during the master thesis.

Eclipse is an Integrated Development Environment (IDE) that can be used to write

and manage software code.

PuTTY is an open source terminal emulator. In this project it has been used to

control an external server that has been used to test the master node.

Dropbox is a file hosting service used to store personal files in the cloud, it can be

used as an external backup service or to share files between computers.

GitHub is a web-based hosting service that can be used to store project source code

files. It is built upon Git [2] which is a distributed version control system.

Google Docs is Google‟s office suite and has been used to create word and excel

type of documents.

Microsoft Word 2010 is a word processor program.

6

 Part II,

Pre-study

7

4 Concepts

As a basis for the paper a set of concepts and techniques has to be discussed.

4.1 Business Models for value-added services

A value-added service is a telecommunications industry term that describes services

that is built on top of and adds value to an existing service by increasing the usage of

it [3], this case the existing service is the internet.

To offer any sort of value added service, like a web page, an application server or a

web service there will always be a cost associated with it. To cover this cost the

service provider can use one or more of the following business models.

4.1.1 Free

The cost will have to be covered by the administrators of the service themselves.

Often this means that persons closely involved with the system cover the cost. In

other cases organizations offer the service for free because they can, like Google

with Gmail and Google Drive. However, organizations may indirectly benefit from

offering popular services like this. The benefit can for an example be a positive name

branding effect or the possibility of doing data mining on user data generated by the

service.

4.1.2 Free + Premium

Services can be offered for free to gain traction/popularity, while at the same time

dedicated users can pay for a premium account with extra or improved functionality.

These users are able to cover the total operation cost. An example of this is Dropbox

[4] where users either can have a free account with a small amount of storage, a pro

account with a large amount or storage, or business plan aimed at businesses with

several user accounts.

4.1.3 Crowdsourcing

Often a service cost is covered purely by the generosity of its users, and this

generosity can take one of the following forms.

Users donates money to support the service, Wikipedia, one of the most popular

web pages in the world [5] is funded this way.

User donates computing power to the service. This is within this project‟s scope

and no cases where this are done have been discovered. The only similar cases are

volunteered computing with two subcategories: 1) Donating computer resources to

scientific projects. 2) Donating computer resources to a middleman which sells the

resources to a third party and give a percentage of the revenue to a selected charity.

These two cases are discussed later.

8

4.1.4 Advertisement

Advertisement is a business model mainly suited for services that provide content;

sound, image, video and text to users. The cost is covered by charging a third party

for advertisement views.

4.1.5 Micro-transactions

In computer games a micro-transaction is a small real-life payment a user can do to

gain an in-game token such as items, visual effects or access to new content. It is an

increasingly popular business model proved to work and is the only source of

revenue for League of Legends, one of the most played online game today [6][7]. It

is not uncommon that this payment model is combined with other payment models.

Often this business model can take shape as a pay-to-win system, and if this model

is used in a multiplayer game, you end up with a system where players can pay for

an advantage over other players. If these advantages get to large, the game will feel

unfair for the players not willingly to spend real life money.

4.1.6 Subscription Fee

A subscription fee is a regular payment and can range from weekly to yearly. This

can be a problem if it has to compete against services that are free, as a one-time

payment makes the service less appealing to first time users.

4.1.7 One-Time Payment

The user pays a one-time payment to gain access to a service. The one-time

payment model faces the same problem as the subscription fee model.

4.2 Web Hosting

There are several methods to host an internet service, but in generalized form there

exists two main categories:

- Dedicated hosting, which involves renting a dedicated server, either a virtual

or an actual server that the renting part has either limited or full (root) access

to.

- The second is cloud or clustered hosting, which allows for much easier

scaling as the available computer resources can be scaled up.

Hosting web pages at home is rarely done for web pages in production, and it is

even common that ISPs has policies that forbid this. For example: the translated

terms of usage for Telenor‟s private subscriptions states that “It is not allowed to set

up servers connected to the Telenor broadband connection for commercial activities”

[8]. It is also common that ISPs block port 80 for incoming traffic to private

9

subscribers. This is probably done because ISPs do not want people to use the full

extent of their internet connection.

4.3 Decentralized System

A decentralized system is a system without a central organ in control, and still works

in unison for a common purpose. In computer technology a fully decentralized

system is described by Nelson Minar and Marc Hedlund as a system where “not only

is every host an equal participant, but there are no hosts with special facilitating or

administrating roles” [9].

4.4 Relevant Application Architectures

Not all application architectures are relevant to this project; the architecture has to

allow the application to stay decentralized. In this chapter we take a look at those

who are relevant.

4.4.1 Peer-to-Peer (P2P)

“Peer-to-peer is a class of applications that takes advantage of resources – storage,

[CPU] cycles, content, human presence – available at the edges of the internet.

Because accessing these decentralized resources means operating in an

environment of unstable connectivity and unpredictable IP addresses, peer-to-peer

must operate outside the DNS and have significant or total autonomy from central

servers” [10].

Peer (L) Peer PeerPeer

Figure 4-1: A flat peer-to-peer hierarchy, where one peer is selected as leader (L).

Peer-to-peer computing uses computers volunteered by generous users to do

distributed computing, and are mainly found in scientific computing projects. A non-

scientific example of this is the BitTorrent technology, which takes advantage of

users storage and network throughput, bur do not depend on low latency.

10

4.4.2 Master-Worker (MW)

Master

Worker

Worker

Worker

Client

Client

Figure 4-2: Master-Worker Architecture

Instead of having a flat hierarchy like in a peer-to-peer network, master-worker

architecture allows one participant to be the authority. This has the benefit of being a

simpler protocol where work distribution, process management and fault tolerance all

belong to one master. A downside is that the master is in danger of becoming the

performance bottleneck as the amount of workers increase [11].

If the tasks done by a master consists of more than just routing traffic, for an

example tasks that involves heavy processing. It could also be beneficial to

implement another layer of hierarchy, where a super node administrates all master

nodes, and master nodes administrate a limited group of worker nodes. This super-

master-worker hierarchy can be seen on Figure 4-3.

Super

Master

Master

Master

Client

Client

Master

Worker

Worker

Worker

Worker

Worker

Figure 4-3: Super-Master-Worker architecture

11

4.4.3 Service Oriented Architecture (SOA)

System

Service 1 Service 2 Service 3 Service ...

Client
Client

Figure 4-4: A simple representation of a SOA

In a SOA there exist decoupled services which alone serve a specific role, that

collectively provide the complete functionality of a large and complex system.

Services can access other services using their API and data is most commonly

exchanged using either XML or JSON, which are language-independent and human

readable data formats. This makes the services easier to tailor together and reuse.

Since no restrictions are posed by the service and data formats themselves,

applications using the service only need to be able to parse strings.

SOA does not replace P2P or MW architecture; instead it may be considered as a

secondary architecture that the P2P or MW architecture can be built on top of.

4.5 Distributed Systems

A distributed system is a system where multiple computers work together over a

network. The network can either be locally close (LAN) or globally separated (WAN).

Often specific software is written to delegate tasks in a distributed manner. In the

next chapters a few distributed techniques that have been considered are presented.

4.5.1 Distributed Database

The most central part of a distributed system is the distributed storage of data, which

can be done by either using:

- Replication: all data is replicated among all nodes

- Fragmentation: data is split up and scattered to different nodes. This again is

done either by splitting data horizontally or vertically. In horizontal

fragmentation the split is done between database tuples, for an example; if

you create two Facebook profiles one of them is stored at location 1 and the

other at location 2. In vertical fragmentation the tuples are split on schema

level, for an example; all your Facebook “likes” relations are stored at location

1 and the rest of your profile is stored at location 2.

4.5.2 Process Migration

To achieve parallel computing over a distributed system the process migration

technique can be used, which is the act of transferring a process between two

machines (the source and the destination node) during its execution [12]. This

12

should not be confused with remote invocation which is the creation of a process on

a remote node. The most relevant benefits - which are mentioned by [12] - of

process migration is:

 Dynamic load distribution, by migrating processes from overloaded nodes

to less loaded ones.

 Improved system administration, by migrating processes from the nodes

that are about to be shut down or otherwise made unavailable.

 Data access locality, by migration processes closer to the source of the

data.

Process migration can be more complex than simply transferring the state of the

process to the destination node; it can also involve sharing other resources like

memory. Naturally, the effectiveness of shared memory is limited to the quality of the

internet connectivity between the two nodes, latency and bandwidth.

A shortened version of the migration steps, based on [13] are:

1. The process state is extracted from the source node.

2. A destination process instance is created at destination node.

3. State is transferred and imported into the new instance.

4. The new instance is resumed.

4.5.3 Content Deliver Network (CDN)

A CDN is a distributed system of servers which main goal is to serve content to end-

users on the internet with high availability and performance. It achieves this by

replicating the content to servers across the world. The content served is usually

static content like text, html, sound, video, scripts, documents, etc. However, some

CDN‟s can deliver dynamic content. CDN is primarily an acronym that describes a

business model where companies offer value-added service providers a way to host

their static content.

Figure 4-5: A client http content request [14] using a CDN

13

Secondarily CDN describes a technique that is illustrated in Figure 4-5. The CDN

works as a buffer between the content provider and the users, and will grab content

on demand (step 4) and return it to the user (step 3) as well as cache it. Caching it

allows the CDN to respond directly to the consecutive requests for the same content,

which lowers the stress on the content provider‟s server.

4.5.4 Load Balancing

Load balancing is one of, if not the most central part of creating scalable services.

Load balancing is the method of distributing workload across available resources. A

resource can be a disk drive, a CPU, a whole computer or anything that can be

replicated. In this project using load balancing to create scalable web pages has

been the research focus.

H. Bryhni, E. Klovning, and Ø. Kure [15] describe that most web links are accessed

using its canonical name (CNAME, example: www.example.no) instead of the 4-byte

IP address. Then using the Dynamic Naming System (DNS) the CNAME is resolved

to an IP. With replicated HTTP servers, load sharing requires the ability to map one

logical address onto several different physical servers. This mapping can be done at

three logical places; at the client, among the servers, or by the network. Five

methods are here summarized. Method 3 is a software method, while method 4 and

5 is a hardware method.

 #1 Remapping at the Client - Transparent

Consider a case where a system is hosted by several replicated servers with their

own unique IP, and they are all mapped to the same CNAME. Not that DNS provides

a distributed database for mapping between CNAME and IP addresses. So when a

client access a CNAME URL, the client will query its local domain‟s name server for

an IP mapped to that CNAME. This local name server will then lookup that CNAME

progressively through the DNS until it finds the end name server which has the

hosted servers IPs mapped to the CNAME. This end name server will return one of

the IPs in the manner of round robin. Now the local name server has one IP mapped

to the CNAME, which it caches and now every consecutive local CNAME lookup

points to that IP. The result of this will be an unevenly distributed system if many

clients have the same local name server, as they all get the same IP. Why? Because

the local name server only stored one IP as seen on Figure 4-6 and a round robin

distribution is not possible.

This method is considered to be remapping at the client since the CNAME and IP

mapping is finally saved at the client. However, one could also argue that it is

remapping at the DNS.

14

End name serverLocal name server
Client

Lookup Table
CNAME = IP1
CNAME = IP2
CNAME = IP3

Server 1

Server 2

Server 3

Lookup Table
CNAME = IP1

Lookup Table
CNAME = IP1

Figure 4-6: How the CNAME-IP mapping propagates through the network

 #2 Remapping at the Client - Non-Transparent

An example of a non-transparent remapping is how Netscape load balanced

requests to their homepage. Netscape had its browser periodically query a DNS with

random number X between 1 and 32 using homeX.netscape.com to select one

available server to load pages from. This effectively spread the load between the 32

servers [ref]. This solution is rather unique and was only possible because Netscape

had such a huge percentage of the browser marked.

 #3 Remapping in the Server

This is a software method that uses a master web server to process the HTTP

requests and distributes them on to one of the replicated servers. The drawback is

that remapping is done at application level, and the request must traverse the full

protocol stack four times before the request is actually processed. Two times down,

and two times up the stack. In most cases the master server will be the bottleneck,

but it is still a possibility if the requests are time demanding, and that the HTTP

process overhead is only a small part of the full process time.

 #4 Remapping in the Network - at the network layer

In this method a system has several replicated servers, where each has a unique IP

address, and the delegation is done by a HTTP Scheduler. The HTTP scheduler is in

practice - but not necessarily physically - between the replicated servers and the web

client as it intercepts all IP packets to the system‟s logical address (for example

www.example.com). The interception is done by having the HTTP scheduler‟s IP

mapped to www.example.com at DNS level. It distribute requests by inspecting the

intercepted IP packets (at the network layer) and changing the destination addresses

to the address of the replicated server with the lowest load and then sending the

packets out again. Since the HTTP scheduler will receive the packets for the

processed HTTP request from the chosen replicated server, it also has to change

15

the destination address of the processed IP packets to the web client‟s address and

send the packets out again.

This method do not require, but works better if the HTTP scheduler is close to the

replicated servers, so network capacity is high and load information polled from the

replicated servers are accurate. Since every bit of data has to pass through the

HTTP scheduler it will have to handle the sum of the system‟s network traffic.

Step 3

Step 2

Web Server (1.1.1.3)

HTTP Scheduler (1.1.1.2)Client (1.1.1.1)

Step 1
Step 4

Request Packet
TO: 1.1.1.2
FROM: 1.1.1.1

Return Packet
TO: 1.1.1.2
FROM: 1.1.1.3

Request Packet
TO: 1.1.1.3
FROM: 1.1.1.2Internet

Return Packet
TO: 1.1.1.1
FROM: 1.1.1.2

Figure 4-7: Load balancing using remapping at the network layer

Figure 4-7 show how a HTTP request packet is processed through the internet and

the system. As it can be seen, the scheduler has to inspect every packet the system

receives, and needs to maintain a table that contains information that make sure the

packet at step 3 is changed to the correct client IP (step 4). Conceptually, one could

say that the scheduler works as a network component and not a web server. The

reason the web server cannot send the return packet to the client directly, is that the

client would not recognize the web server as the correct responder, which is the

scheduler, and would drop the packet unopened.

 #5 Remapping in the Network - between the network and link layer

In this last method all replicated servers have the same IP as the logical server, and

now the HTTP Scheduler has to inspect the IP packets and remap by another label,

like the MAC-address (link layer) or port. However, since both these cases would

result in the scheduler not doing any changes on the network layer, it would end up

sending all packets to all replicated servers as they all have the same IP. To counter

16

this, the scheduler has to hardcode its Address Resolution Protocol (ARP) table, a

table that maps network layer addresses to link layer addresses.

The advantage of this method is that IP packets do not have to be modified. The

disadvantage is that all replicated servers have to be on the same subnet, a

disadvantage that is a deal breaker in conjunction with this project.

 Scheduling Algorithms

In the cases where there is a scheduler who is responsible for distributing load, the

scheduler has to use a scheduling algorithm. A few worth mentioning are:

Round-round: distributes requests evenly one at a time for every replicated server.

A problem with this algorithm is that requests may have different processing times.

So a unlucky scenario is that a replicated server might not be finished processing the

last request and then get a new one, while at the same time a second replicated

server has zero requests waiting.

Least connections: distributes requests to the replicated server with the least active

connections.

5 Technologies

Several technologies and software that might be relevant for this project or could be

used for inspiration have been researched.

5.1 Nginx

Nginx pronounced “Engine X” is a HTTP and reverse proxy server, as well as a mail

proxy server [16]. Currently Nginx is recommended to be used on Unix bases

operative systems, and discouraged to be used with Windows.

5.1.1 Nginx Load Balancer

Nginx has a module named ngx_http_upstream_module [17] that when activated

allows the system administrator to specify multiple servers that Nginx will distribute

requests to using a technique called reverse proxy. This proxied method is the same

as the load balancing method #3 [18], which is explained in chapter [4.5.4]. A few

key properties of the Nginx load balancer:

- Can use the round-robin or least connections scheduling algorithm.

- Can distribute requests between servers based on client IP addresses, so

sessions are maintained. This is done by mapping client IPs to worker nodes

IPs, and making sure all requests from the same client are forwarded to the

same worker.

17

- Can add new servers to the server pool without restarting [19]. To add a new

worker node to the sever pool a configuration file has to be updated and then

reloaded. The reload does not require the Nginx process to restart and current

requests can go unaffected.

- Can weight servers; some servers can get more traffic directed to than other.

- The load balancer only works on unix based operative systems.

- Detects failing services by a configurable fail_timeout parameter, given in

seconds. Servers will in combination with the configurable max_fails

parameter be removed from the load balancing loop when the server has

failed enough times.

5.2 Haproxy

Haproxy [20] is an alternative to the Nginx load balancer module. While Nginx is a

web server that can also serve as a load balancer, Haproxy‟s only functionality is

load balancing. It does not perform noticeable better [21] but is together Nginx the

two software load balancers that are most commonly used.

The most interesting difference is that Haproxy allows a maximum amount of

connections to be configured for each worker node. This option help avoid that a

very long running request in a round robin queue props up the request queue for the

unlucky worker node that received it.

5.3 Apache ZooKeeper

ZooKeeper [22] is a distributed open source coordination service for distributed

applications. It helps developers at developing distributed systems by simplifying

administrative tasks such as synchronization of data and coordination between

nodes out of the box. ZooKeeper can also be used to develop client applications,

and will then create the architecture seen on Figure 5-1.

Figure 5-1: ZooKeeper architecture [22]

Some qualities of ZooKeeper:

18

- There is no single point of failure, as the ZooKeeper application is replicated

over a set of hosts. A leader is selected using a leader election algorithm, and

quickly replaced if it goes down.

- It is designed with the idea that clients connects to a single ZooKeeper server

and maintains a TCP connection which it uses to send requests, get

responses, listen to events and send heart beats. In other words, this is not a

load balancer for HTTP request.

5.4 Protocol Buffer

Google developed Protocol Buffer because they needed a “language-neutral,

extensible way of serializing structured data for use in communication protocols, data

storage and more” [23]. By defining the data structure in a .proto file you can let java,

python or c++ classes be automatically generated by the Protocol Buffer compiler.

An example of a data structure is given:

message Person {

 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

}

When compiling this with the protocol buffer, a corresponding Java, Python or C++

Person class and PersonBuilder class are created. These classes can then be used

to create objects which are serialized for further use, like communication or storage.

Note that Protocol Buffer does not take part in communicating or storing the

serialized data. Individual code has to be written for this.

5.5 MongoDB and NoSQL

From their own homepage: “MongoDB is an open-source document database, and

the leading NoSQL database” [24]. It was developed with the purpose of being agile

and scalable.

A NoSQL database uses simpler storage and retrieval mechanisms than SQL

databases, which makes them better suited for scalable systems. This is because

NoSQL uses a looser consistency model, where storage is simply a key-value

record. This also increases performance as inserts and updates do not need to be

validated according to a database scheme.

MongoDB has the following relevant properties:

- Focus on easy data replication.

- Auto-sharding: Sharding distributes a single logical database system across

a cluster of machines.

19

5.6 Twisted

Twisted is an event-driven network engine written in Python and is licensed as open

source under the MIT license [25]. It is a framework that assists developers in

creating custom network applications by letting developers write callback functions

for network events. A Twisted network application has two distinct components, a

server and a client. And the most central network events for the components

respectively are:

 connectionMade – A client connected / Connected to Server

 connectionLost – Lost connection with client / Lost connection to Server

 dataReceived – String data received from client / server.

5.7 Node.js

Node.js is a platform built on Chrome's JavaScript runtime for easily building fast,

scalable network applications. Node.js uses an event-driven, non-blocking I/O model

that makes it lightweight and efficient, perfect for data-intensive real-time

applications that run across distributed devices [26]. It is a very young (created in

2009) web server software that has become popular because it synergies very well

with new technologies like WebSocket [27] and MongoDB and because it allows the

backend to be written in the same language as the frontend.

5.8 Universal Plug and Play (UPnP)

UPnP is a set of network protocols that allows one network device to discover,

access and possible change other network devices. The intention is to simplify the

process of installing network devices that might require specific network options

activated. The interesting part of this protocol is that it allows software installed on a

user‟s computer to access the router the computer is behind and change the NAT

configuration so specific ports are routed to the user computer.

6 Related Systems

Projects similar to this project have been studied for two reasons; for inspiration and

to understand if there is, and if so, how much potential may lie in crowd-driven

systems.

6.1 Case Study: BOINC

Berkeley Open Infrastructure for Network Computing (BOINC) [28] is the most

known software for volunteered computing. It allows people to donate their home

computers free CPU time to one of the many available scientific projects. Most

projects are named under the @home standard, and among them is the

20

SETI@home project which in 2008 had harvested more than a million CPU years

that was roughly estimated to be worth more than $1 billion [29].

For all the BOINC projects combined there are currently (May, 2013) 2.5 million

registered users and 380 thousand active computers participating. These are

impressive numbers and on top of this; these projects are scientific projects which

users have no real gain from supporting, except the common benefit from scientific

progress. The only incentive users have to participate are gaining virtual credits

which are added as a score to their profile, team and country. One can only

speculate how willingly users are to support a service that they use themselves.

More interesting statistics about BOINC can be found at http://boincstats.com/.

As described on their homepage: “BOINC is designed to support applications that

have large computation requirements, storage requirements, or both. The main

requirement of the application is that it be divisible into a large number (thousands or

millions) of jobs that can be done independently.” [30]. Each job to be done are

queued up and feed to the BOINC worker nodes in a First Inn First Out (FIFO) order.

Worker nodes receive jobs and execute them when they are idle. A worker node‟s

idle status is defined by time since last user input for that computer. This makes it

hard to use BOINC for any real-time processing. As there is no way to control that

only running worker nodes receive jobs and to secure that a worker node running a

job is not stopped by a user input.

A problem with volunteered computing is how the results generated by the users can

be trusted. Most BOINC projects solve this with cross-checking, which involves

sending multiple users the same tasks and only accepting data that are validated to

be equal among multiple job calculations. Another way that this can be solved in

BOINC is to write custom validators that validate user generated results by specific

conditions.

6.2 Case Study: Superdonate

Like BOINC, Superdonate [31] allow generous users to download a client that uses

the CPU when it otherwise would idle. The CPU will then be used to do calculations

that require little data, but could take long time to finish. The difference from BOINC

is that there is a third party that pays Superdonate for CPU time, and that the client

chose a charity that a percentage of the third party payment goes to.

As part of this master thesis Superdonate was contacted multiple times about their

usage numbers. Numbers that could further indicate the potential of donated

computer resources. No reply was received, so no real conclusion could be taken.

Nevertheless, the concept is still interesting.

http://boincstats.com/

21

6.3 Case Study: Amazon Elastic Compute Cloud (Amazon EC2)

There exists 10s if not 100s of cloud computing providers, one of them is Amazon

EC2 [32]. Cloud computing providers allow system administrators to quickly scale

the resource capacity of the services they are administrating. Amazon EC2 allows

this scaling to be done through their EC2 web service which can be accessed either

through a web page or an API. Three payment models can be used:

- On-Demand Instances: Pay for compute capacity by the hour, where

compute capacity can be increased or decreased depending on the

application demand. This model is best suited for applications with short term,

spiky or unpredictable resource requirements.

- Reserved Instances: Upfront payment for a compute instance. Best suited

for applications with long term and predictable resource requirements. Such

as popular web pages.

- Spot Instances: The user sets a maximum hourly price he is willing to pay, if

there are available instances to this price or lower the application will run. The

current spot price fluctuates based on supply and demand. This model is best

suited for applications with flexible start and end times.

It is hard to give any exact numbers on the cost of using a cloud computing payment

model, as the pricing is defined by the applications resource usage. It will vary from

application to application. However the reserved instances model is naturally the

most expensive one and the spot instances model the cheapest.

Amazon EC2 actually provides 750 free hours of instance run time each month, and

anything beyond this will be charged. In a hypothetical scenario where a web server

process requests in an average time of 200ms per request, the web server could

serve 5.2 requests per second. This is a total of 13.5 million requests per month for

free.

6.4 Case Study: Google App Engine (GAE)

Google App Engine do like Amazon EC2, they provide a cloud computing service.

However it is a bit more restrictive. Whereas Amazon EC2 provides a virtual OS,

GAE provides a programming language environment where the developer has to

develop his application according to a specific API for that language. The current

main languages that can be used are Java and Python and the experimental ones

are PHP and Go.

Like Amazon, Google has a payment model that scales by the resource usage of the

application. Each Google developer account can have 10 applications that each can

have 1 GB storage and a CPU and bandwidth to support an efficient app serving

around 5 million page views a month [33]. Anything beyond this is charged for.

Registering a developer account requires a unique phone number, this serves as a

22

defense against persons attempting to game the system by registering multiple

accounts.

6.5 Free Hosting Services

Free hosting services do exists, but they either have a low storage capacity, low

bandwidth capacity, enforce ads or have limited or no OS access where they only

can be accessed through web admin pages.

23

 Part III,

Own Contribution

24

7 Proof of Concept “Plug N Host”

To understand the possibilities and limitations of a system that distributes load in a

„plug n host‟ fashion a proof of concept have been developed.

The concept can best be described from a developer‟s view-point. Imagine that a

developer wants to develop a system which is a value-added internet service that

requires an extraordinary amount of resources. Resources can be CPU, memory,

storage, etc. The project has no real potential revenue due to its nature and it is

impossible to afford paid hosting. However, the project might have many dedicated

users that might want to support the system by donating their computer‟s resources.

The developer can build the system by extending “Plug N Host”, a framework that

comes with tools to distribute a system in a way that allows workers to join in on

processing in a plug n play fashion, thereby the Plug N Host name. The coupling

between the framework and the custom implementation using the framework can be

seen on Figure 7-1. The gray box illustrates the framework and the green boxes the

custom implementation. These colors are used in all related figures.

PlugNHost
Config

WebServiceClass()

DatabaseServiceClass()

...CustomServiceClass()

Figure 7-1: A simple representation of a custom framework usage.

To test this concept both the core functionality for PlugNHost and a custom example

project with a config file and an HttpServiceClass have been developed. Further

details on the configuration will be described later.

In a best case scenario the user that wants to donate his computer only has to 1)

Download the custom software. 2) Run a script that installs dependencies and starts

the service. One thing that has to be pointed out, the worker node has to be publicly

accessible, meaning it has to have the service specific ports open and accessible

from the internet. This poses a big limitation on which users can participate, since it

either requires that the users‟ computer is behind a router that supports UPnP or it

increases the technical skill required from users.

25

7.1 Stages and functional requirements

This concept was developed in five stages where functionality has been

implemented incrementally.

7.1.1 Stage 1: Web Page

F1 – Online Web Page A web page is hosted by a production web server, and is
then accessible using a browser.

F2 – Spawnable Web Server The web server process should be spawnable
programmatically, using a python script.

7.1.2 Stage 2: Load Balancing

F3 – Manual single-worker distribution Serve the web page with a single worker using the load
balancing software.

F4 – Manual multi-worker distribution Serve the web page with 2 or more workers using the
load balancing software.

7.1.3 Stage 3: Automate

F5 – Master-Worker Communication The master and workers can communicate with each
other over a stable communication protocol.

F6 – Automated multi-worker distribution

If a worker joins or leaves the network the load balancer
has to automatically adjust itself and serve requests to
the available workers nodes without manual changes.

7.1.4 Stage 4: Configurable

F7 – Software is configurable

To allow for reuse of software and easier implementation
of custom solutions, custom classes have to be defined
in a configuration file.

The F7 functionality is in other words first step in creating a framework.

7.1.5 Stage 5: Monitor

F8 – Monitor distribution at master

Requests, requests distribution and other data which can
help investigate performance should be logged and
presented live.

26

7.2 Technology Rationale

The rationale behind choosing the technology for the core and for the custom

implementation is given in this chapter.

7.2.1 Core Technology

For the core functionality there have been made two technology decisions. The first

one was which language to do the implementation in; the only requirement for the

language was that it has to be cross-platform. Since the framework has to be cross-

platform to make runnable for as many users as possible. Python, a cross-platform

programming language was a natural choice as the project member had enough

experience with it to make sure it did not pose as an extra obstacle between

reaching the project goals.

The second decision was how communication between the master and the worker

was going to be done. Either a socket based communication module could be written

from scratch or already existing software could be used. Among existing software

ZooKeeper and Twisted was considered. ZooKeeper was discarded as it tries to do

much more than was needed, for an example its purpose is not only to assist in

communication between the server parts (master and workers), but its purpose is

also to be used as a protocol between clients and servers, and to provide

synchronization mechanism which is better suited for peer-to-peer architectures. It

was undesirable to further complicate the framework with functionality not necessary

to create a working proof of concept. ZooKeeper also couples service logic tighter

with distribution logic, more than was desired. In fact, ZooKeeper is better

considered as an alternative to PlugNHost, an alternative that could be used if a

client-server application was to be developed. Instead Twisted was chosen as its

only purpose is to assist in communication at a high level. It is an event-driven

networking engine, which means that the engine triggers a defined callback method

for a few predefined network events. Currently, the only communication done is a

notification from the worker to the master when a service is available and ready to

accept load. However it is perceivable that future versions could include

communicating administrative data, like server load, list of current workers or similar

status data. These are all communication events that could demand action taken on

the receiving end. That is why Twisted is a good choice with its event-driven design.

It is also a programming design pattern that is simple to understand and implement.

It should also be mentioned that BOINC was considered. However BOINC‟s

architecture goes against real-time processing of requests, like a web requests

would require. Even if the limitations of the BOINC could be surpassed by clever

techniques it was decided early on to be dropped as potential software as this

project would be an unnatural area of use.

27

7.2.2 Custom Technology

When it comes to the development of the example project that uses the framework, a

custom implementation of a distributed web page has been written. This

implementation uses Nginx as a load balancer at the master node and Nodejs to

process the web requests at the worker nodes. Node.js was chosen because it allow

web servers to be started using a shell command. This makes it easy to start new

worker node instances for testing purposes.

Nginx was chosen for the example project and is recommended to be used in all

custom implementations requiring a load balancer, because it performs well and has

a good reputation. The benefit of using a software load balancer like Nginx over a

load balancing method that takes use of the DNS is that the worker node list can be

updated much quicker. If the DNS was used to load balance, a joining/leaving worker

node IP would propagate slowly through the DNS which in turn could be a problem.

If a client has mapped a disconnected worker node to the CNAME it would get a

dead response, and it is undesirable that joining workers aren‟t able to accept load

until the DNS is updated. Especially if there is a tendency that users don‟t donate

their computer resources for longer amount of times.

8 Architecture

In this chapter the architecture of the proof of concept is described and illustrated

with a process and logical view. The rationale behind the architectural decisions is

also given.

8.1 Physical Architecture

The network topology of the proof of concept is a true master-worker architecture, an

architecture that are described in chapter [4.4.2].The reason a master-worker

architecture was chosen over a p2p architecture is that there is no easily imaginable

way a p2p architecture can guarantee the administration rights and ownership of the

system to one worker node. In a p2p system the peers must have a significant or

total autonomy from central servers. If there is no central server that all requests are

channeled through, there would be nothing that stops an evil worker from processing

requests outside the systems scope, potentially stealing or destroying them.

Even if a hybrid master-p2p architecture was chosen, where one worker cleverly

keeps administrative rights through a special protocol implemented at code level

there would still not be anything that stops the evil worker from ignoring this protocol

if the software was reverse-engineered and re-implemented with an evil intention.

28

8.2 Logical View

The logical view should describe how the functional requirements have been met at

code-level, using class diagrams.

8.2.1 Class Diagrams: Core Classes

A core class is a class which are used by and common among all custom

implementations. It should not be thought of as a library, as a library is something

you import and use in projects. In practice there are two different types of core

classes:

- A Master and Worker service manager class, named MasterNode and

WorkerNode respectively. These two manager classes read the configuration

file which contains information about service classes and runs custom class

behavior:

o Master: Runs the on_worker_change() event.

o Worker: Runs the start() and stop() event.

- Abstract classes that should be extended by the custom classes:

o BaseWorkerService – a class that should be extended by each worker

service class.

+new_worker_service()
+lost_worker_host()
+connectionMade()
+dataReceived()
+connectionLost()

-workers
-service_handlers

MasterNode

+start()
+stop()
+connectionMade()
+dataReceived()
+connectionLost()

-services

WorkerNode

-IP
-services

Worker

-PORT
-name

WorkerService

1

0..*

1 0..*

Master Worker

-PORT

BaseWorkerService

Figure 8-1: Core classes, stripped for some variables and methods names.

The MasterNode and WorkerNode class extends Twisted‟s protocol.Protocol class.

This gives them the connectionMade, dataReceived and connectionLost methods

which are communication events.

29

8.2.2 Class Diagrams: Example Custom Classes

Each different project that uses PlugNPlay will have to implement its own custom

service classes. An analogy of this is that the core classes are the pole of a flag pole,

while the flag fabric itself represents the custom classes.

Every service that should be distributed has to have a service class pair defined in

the configuration file. This service class pair consists of one class that is run on the

master node and one that is run on the worker node. As seen Figure 8-2 worker

service classes have to extend a base class called BaseWorkerService which is a

class that implements some functionality required to communicate with the master.

Among this functionality is the notify_ready() method that should be run by the

extending class when it is ready to accept load. In the custom implementation the

extending class is the NodwejsWorkerService.

+on_worker_change()
+install()

NginxMasterService

Master Worker

+notify_ready()

-PORT

BaseWorkerService

+start()
+stop()
+install()

NodejsWorkerService

Figure 8-2: NginxMasterService and NodejsWorkerService, a service class pair

As part of this project install and startup scripts have been written in python, these

help simplify the process of installing and starting the master and worker node. This

simplification requires all service class pairs to implement an install() method which

should contain custom logic to install dependencies for each service.

As a result, every custom service requires five events callbacks to be written, two (1,

2) in the master class and three (3, 4, 5) in the worker class. These events are

summarized:

1. Master, on_worker_change(): The amount of workers changed.

2. Master, install(): Will be run by the install script at the master node.

3. Worker, start(): Will start the service.

4. Worker, stop(): Will stop the service.

5. Worker, install(): Will be run by the install script at the worker node.

30

It is imaginable that some custom implementations would require other events than

start and stop that needs to be communicated between the master and workers.

That‟s why future versions of the framework should allow the implementation of

custom events that can be triggered and listened to on both the master and worker.

8.2.3 Configuration

The configuration file is a python file and requires two main configuration definitions:

- COMMUNICATION_PORT: A port used for administrative communication.

- SERVICES: A list of service pair classes. In the example below (Figure 8-3)

one service have been defined, the “http” service. This service has two

required configuration parameters, the MasterClass and the WorkerClass.

These configurations should be dotted class path strings that are relative to

the configuration file. So normally it would be something like

“folder1.folder2.file.class”, while it is now only “class”. Take a look at the

GitHub project for a complete example of this. The GitHub project url is given

under result.

TCP port to be used for twisted communication
COMMUNICATION_PORT = 7999

Created services, each item represent one service and the master and worker
class contains business logic for the specific services.
SERVICES = {
 'http': {
 'MasterClass': "NginxMasterService",
 'WorkerClass': "NodejsWorkerService",
 },
}

Figure 8-3: An example configuration.

8.3 Process View

A process view should present how the system behaves at runtime and how the

different parts of it communicate.

8.3.1 Service Oriented (Process) Architecture

The PlugNPlay framework encourages a SOA by letting the developer to split his

functionality into different service classes. These service classes are registered in

the configuration file, which the framework reads and runs in each its process.

The reason a SOA is enforced is that it is a good architecture to use with distributed

systems. Consider the case with a dynamic web page where users upload a lot of

static content like pictures. In this case it makes sense to divide up the system in

31

three services, one static content service for hosting pictures, one web server

service and one database service. Now the distribution can be split in two, where a

worker either hosts a static content service or runs the dynamic http request

processer which consists of a web server service and a database service. This split

allows the worker nodes to be specialized, instead of just being a full replication of

the system.

MasterNode()

onNewWorkerService

onLostWorkerService

Service Stack

NginxMasterService()

WorkerNode()

Service Stack

NodejsWorkerService()

Web Clients
2

3

5
4

1

Figure 8-4: The service oriented architecture of the framework

In this project a working distributed web page has been developed. Figure 8-4

depicts this, gray parts are core functionality and green parts are custom

functionality. The numbers indication communication parts:

1. Users send http requests.

2. The NginxMasterService() uses Nginx as a Load Balancer that forwards http

requests to one of its registered worker nodes.

3. Communication between the master and the worker is done using Twisted.

4. When a new worker joins the system it will notify the master about which

services it is hosting, this triggers the new_worker_service() method that

forwards the notification to the specific service class, in this example the

NginxMasterService() class. The NginxMasterService() class then behaves

according to the custom implementation.

5. When a worker node either terminates his participication or the connection is

lost, the lost_worker_host() method is triggered, this method will also forward

a notification to all the master service classes affected. Since every worker

node can run multiple services, the framework mighty have to notify multiple

master service classes.

32

8.3.2 Starting Services

Services are started by the framework according to the classes specified in a

configuration file that is read by both the MasterNode and WorkerNode. In Figure 8-5

it can be seen how they together start one service pair, NginxMasterService and

NodejsWorkerService respectively. In the custom example these service classes

main purpose is to start a child process, which is the best way to do this as the

services then can be implemented completely decoupled from the framework. The

PlugNHost framework should only contain protocols for administrating the services.

Config

NginxMasterService

NodejsWorkerService

MasterNode
process

WorkerNode
process

Nginx
process

Nodejs
process

Reads (4)

reads (1)
Starts (2)

Starts (5)

Notifies (3)

Figure 8-5: The five steps of starting a service at the worker and master node.

A property of the framework is that services can be started on demand and without

restarting the MasterNode or WorkerNode process. This is easily doable because

Python is an interpreted language and code is executed directly, in contrary to

precompiling code where this would be a complicated procedure. So in a scenario

where the developer wants to add a new service without interfering with the already

online services, the developer can update the configuration file and start the service

at a worker node (step 1+2). The worker would then notify (step 3) the master that it

is ready to accept load. If the master service that is paired with the newly started

worker service is running, it will update it with the new worker node list, otherwise it

will attempt to start it (step 4+5). By reloading the configuration file before step 1 and

4 one allows the configuration file to be updated live, and since the configuration file

contains a path to the service classes they can also be loaded live. It should be

noted that in the current state of the framework, services cannot be deleted or

updated, only added.

When Twisted detects that a worker node have disconnected it will trigger the

connectionLost event, which will update the available service workers list.

33

8.3.3 Integrating with existing systems

The framework should be fully decoupled from the implementation of the service

itself. Only the callbacks for events that are listed in chapter [8.2.2] has to be

implemented to tie the business logic for distributing the service (the framework) with

the service. On Figure 8-5 the “Nginx Process” and “Nodejs Process” represent the

implementation of the service.

9 Evaluation and Conclusion

As a summarization of the paper the research questions are attempted answered.

RQ1: Is this business model applicable to the real world?

To answer this question one has to look at related systems that exist today, a few of

them are listed at [6]. If a developer wants to host a dynamic web page both GAE

and Amazon EC2 are viable options. However, once the web page reaches a few

millions hits per month the issue of cost will arrive. To put this in perspective, in a

worst case scenario the free cap for GAE and Amazon EC2 might be reached at 2

million hits. This would require 500 users to do 5 hits each hour to reach the cap, or

4 users to do 11 hits each minute. If the estimated maximum amount of hits per

month is 12.5 million as the Amazon EC2 calculations suggest you still get a cap that

is reached with 5 hits each second.

Another point is that the mentioned scenario does not take into consideration server

load spikes. And it is realistic that spikes will occur since it is perceivable that users

of a service are more prone to use it at certain times of the day and Amazon EC2

does not deliver free load balancing to multiple instances.

For small to maybe medium services, using Amazon EC2 or similar free cloud

hosting is probably viable, but once a service should be able to handle a medium or

larger user base this cannot be considered viable anymore. GAE allows for more

free processing power in total due to its 10 free projects, but this does still not serve

as a universal solution as GAE only allow specific language implementations to be

run.

During the research phase it was discovered that some ISPs have policies that

prevent private internet subscribers from hosting web pages or other internet

services. This poses an interesting problem, how will this policy affect a private

person that donates their home computer as a worker node? Some ISPs don‟t allow

commercially operated servers on their internet connections, other don‟t allow any

server activity. Most likely this will be a non-issue for several reasons:

- ISPs do not generally take action against private persons that have servers

that do not do very excessive internet activity.

34

- PlugNHost only uses obscure ports, and not known ports like the HTTP port

80, which makes it less likely to be detected.

- Most systems using a framework like PlugNHost are not going to be

commercial.

Also, the goal of this business model is not only to allow people to donate their home

computers as worker nodes, it is also to allow people to donate all of or part of the

processing power of their running dedicated servers.

RQ1.1: What are the alternative business models?

The alternative business models have been described in chapter [4.1].

RQ1.2: Is there similar business models which are good enough?

For some resource demanding services, relying on free hosting, which can be

unreliable, or relying on donations from users is simply not enough. So the answer

would be no. Providing an alternative business model option where users instead

donate computer resources can lower the threshold for donating. As mentioned

SETI@Home had harvested donated computer power estimated to be worth more

than 1 billion dollars and this to a cause of finding extraterrestrial life. It is impossible

to imagine that this sum could have been achieved with traditional cash donations

from the same user base.

RQ2: How can distributed hosted web systems best be done?

Chapter [4.5] answers this, and the most relevant technique is load balancing.

RQ2.1: How can distribution of static files best be done?

For commercial services, paying for a CDN would be the best way to distribute the

serving of static files. CDN is described in chapter [4.5.3]. For non-commercial

services using its own load balancing network is a viable option.

RQ2.2: How can distributed request processing best be done?

There are two ways to do this, either using load balancing or process migration.

Process migration is an option that better fit for heavy calculations that requires long

running processes. For web requests which are required to be processed quickly,

load balancing is the way to go. In chapter [4.5.4] several load balancing methods

are discussed.

RQ2.3: How can distributing a database best be done?

There are two types of distribution of databases that can be done, replication and

fragmentation. These methods are discussed in chapter [4.5.1].

35

RQ3.1: How should new worker nodes connect/disconnect to the network?

In the PlugNHost concept framework a possible solution to this is presented, see

chapter [8.3.1] and [8.3.2].

RQ3.2: What architecture(s) should the distributed network have?

A distributed network can have a peer-to-peer architecture or master-worker

architecture, and in addition to either of the two it can be built using a SOA scheme.

Which architecture should be chosen depends on security and ownership concerns,

and is discussed in chapter [8.1]

RQ4.1: Can it be avoided that an evil worker does permanent damage to the

persistent storage?

This is a question that has not been answered in this paper. The question is

therefore listed under future work. However it is safe to say no if the database is

distributed using a fragmentation method without any replication. Since that means

one worker sits on the only copy of any given part of the data.

RQ4.3: Can processing be done in a fashion that makes it hard for an evil

worker to do damage?

The case study of BOINC revealed that this was solved by cross-checking data

between multiple clients. So in the case of processing web requests one can send

the web requests to two worker nodes and validate that the returned web responses

are equal. Keep in mind a damaged worker response might not only be the result of

an evil intention, it can also be the result of hardware failure that somehow damaged

the response. Since it is possible that two clients return a damaged response, the

level of security can be increased by increasing the amount of workers used to

cross-check between.

10 Demonstration of Result

The project goal is to “assist developers at developing their own services that can be

easily distributed hosted by end users”. This can be demonstrated by downloading

and testing the custom framework implementation. As it can be seen by the following

sup-chapters on how to start a master and worker, it is simple and has a low

technical skill level required.

The framework with the custom implementation can be found at

https://github.com/Andrioden/plugnhost/archive/v0.1.zip.

36

10.1 Starting the master

The master can currently only be run on a unix based operative system, as Nginx‟s

load balancer module does not work on Windows. Note that the framework‟s core

functionality is fully cross-platform. The master has only been tested on Ubuntu 12.

The following are the steps to start the master node:

Step 1) Download the zip file.

Step 2) Install dependencies: Python v2.7

Step 3) Run the start script: “sudo python go.py master”

10.2 Starting the worker

Can be run on Windows and unix based operative systems. The worker have been

tested on Windows 7 32Bit, Windows 7 64Bit and Ubuntu 12. The following steps to

start the worker node are:

Step 1) Download the zip file.

Step 2) Install dependencies: Python v2.7

Step 3) Open the twisted communication port on the local router, and route it to the

worker node.

Step 4) Run the start script: “sudo python go.py workfor [DOMAIN]” where DOMAIN

is the url to the server you want to work for.

Step 5) Open the assigned http service port on the local router, and route it to the

worker node.

11 Future Work

The framework is only a proof of concept, and to be considered a framework that can

be used in a production there are several things that needs to be implemented and

researched.

11.1 Functional improvements

Here is a list of functionality that would be an improvement to the framework.

- Detect worker nodes that are either completely failing or underperforming so it

can be reported to the master service class.

- Allow services to be deleted and updated live, without requiring a process

restart.

- Allow the developer to implement custom events in the master and worker

service pair classes.

37

- The problem of distributing a database is a well-researched topic, and this

project does not delve into that topic. However, it would be an important point

in validating the usefulness of the framework to do a custom implementation

of a distributed database with the framework. Together with a distributed web

page it would be a more realistic scenario which could be applicable to real

world problems.

- Can limit the amount of computer resources the server will use, the relevant

resources are storage, RAM and CPU.

- Worker performance should be monitored and logged, this can be used to

determine the value the worker node adds as well as give feedback to users

on their contribution.

- Use the UPnP protocol to automatically open and route port traffic to the

worker node, this would eliminate step 3 and 5 of the worker node starting

steps.

11.2 Research topics

During this project a few related research topics have been discovered that has not

been answered because they were either outside the scope of the project or was

considered too large of a topic to be spent time on and included in this paper.

- In chapter [8.1] the problem of keeping control of a system using a p2p

architecture is discussed, and it is concluded that a master-worker

architecture is most likely the only possibility. However, this could pose an

interesting research question. Is it possible to maintain control over a p2p

system without significant or total autonomy from central servers?

- RQ4.1 was not answered in this project and is therefore listed under future

work, the question is “can it be avoided that an evil worker does permanent

damage to the persistent storage?” To further elaborate on this, in a scenario

where worker nodes have write access to the distributed database, is it

possible to safeguard the whole system from being permanently damaged by

one evil worker. Is the answer simply backups? Is there ways to detect

destructive patterns that could detect or suggest that a worker might be evil?

- RQ4.2 was also not answered in this project. The question is “can sensitive

data be stored at untrusted worker nodes?” One example of sensitive data is

user passwords. Even if they are hashed by a strong cryptographic algorithm

they are still open for attack. However, un-hashed business data can also be

considered sensitive. So the question asks if this data can be protected from

being snooped on by an evil worker.

- Examine how patching of service software should be conducted on worker

nodes that the developer do not have administrative access to.

 References

[1] Basili, Victor R. The experimental paradigm in software engineering. Springer Berlin
Heidelberg; 1993.

[2] Git. Distributed is the new centralized [Internet]; 2013 Jun. Available from: http://git-
scm.com/.

[3] Wikipedia contributors. Value-added service [Internet]. Wikipedia, The Free
Encyclopedia; 2013 May 21 [cited 2013 Jun 18]. Available from:
http://en.wikipedia.org/w/index.php?title=Value-added_service&oldid=556124719.

[4] Dropbox. Dropbox - Plans [Internet]. Dropbox Inc; 2013 Jun. Available from:
https://www.dropbox.com/pricing.

[5] Alexa. Wikipedia.org Site Info [Internet]. Alexa Internet, Inc; 2013 Jun. Available from:
http://www.alexa.com/siteinfo/wikipedia.org.

[6] John Gaudiosi. Riot Games' League Of Legends Officially Becomes Most Played PC
Game In The World [Internet]. Forbes. 2012 Jul 11 [cited 2013 Jun 18]. Players:
[about 3 screens]. Available from:
http://www.forbes.com/sites/johngaudiosi/2012/07/11/riot-games-league-of-legends-
officially-becomes-most-played-pc-game-in-the-world/

[7] Steve Peterson. League of Legends and Riot's Play for Global Domination [Internet].
GamesIndustry International. 2012 Oct 17 [cited 2013 Jun 18]. Players: [about 1
screen]. Available from: http://www.gamesindustry.biz/articles/2012-10-16-riot-
president-make-the-s-in-riot-games-mean-something

[8] Telenor. Vilkår for bredbånd over DSL [Internet]. Telenor ASA; 2013 Jun. Available
from: http://www.telenor.no/privat/abonnementsvilkar/vilkaardsl.jsp

[9] Oram, Andy. Peer-to-peer: harnessing the benefits of a disruptive technology.
O'Reilly Media, Inc; 2001. 16 p.

[10] Oram, Andy. Peer-to-peer: harnessing the benefits of a disruptive technology.
O'Reilly Media, Inc; 2001. 22 p.

[11] Shao, Gary. Adaptive scheduling of master/worker applications on distributed
computational resources [PhD diss]. University of California; 2001. 3 p.

[12] Milojičić, Dejan S., Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian
Zhou. Process migration. ACM Computing Surveys (CSUR). 2000;32(3):241-299. 244
p.

[13] Milojičić, Dejan S., Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian
Zhou. Process migration. ACM Computing Surveys (CSUR). 2000;32(3):241-299. 248
p.

[14] Dilley, John, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman, and Bill
Weihl. Globally distributed content delivery. Internet Computing, IEEE. 2002;6(5):50-
58. p 53.

[15] Bryhni, H., Klovning, E., & Kure, O. A comparison of load balancing techniques for
scalable web servers. Network, IEEE. 2000;14(4):58-64. p 58.

[16] Nginx [Internet]; 2013. Available from: http://nginx.org/en/.

[17] Nginx. Module ngx_http_upstream_module [Internet]; 2013. Available from:
http://nginx.org/en/docs/http/ngx_http_upstream_module.html.

[18] Sam Kleinman. Use Nginx for Proxy Services and Software Load Balancing [Internet].
Linode Library. 2010 May 11 [updated 2011 Apr 29, cited 2013 Jun 18]. Available
from: https://library.linode.com/web-servers/nginx/configuration/front-end-proxy-and-
software-load-balancing#sph_front-end-proxy-services-with-nginx.

[19] anthonysomerset. Adding websites to nginx without restarting nginx [Internet]. Stack
Exchange, Inc; 2011 Aug 21 [cited 2013 Jun 18]. Available from:
http://serverfault.com/questions/303568/adding-websites-to-nginx-without-restarting-
nginx.

[20] HAProxy. The Reliable, High Performance TCP/HTTP Load Balancer [Internet]; 2013
Jun. Available from: http://haproxy.1wt.eu/.

[21] Sang-Min Park. Preliminary benchmark for ELB [Internet]. GitHub, Inc; 2013 Feb 17
[cited 2013 Jun 18]. Available from:
https://github.com/eucalyptus/architecture/blob/master/features/elb/3.3/elb-
benchmark.wiki.

[22] ZooKeeper. ZooKeeper: A Distributed Coordination Service for Distributed
Applications [Internet]. The Apache Software Foundation; 2013 Jun. Available from:
http://zookeeper.apache.org/doc/trunk/zookeeperOver.html.

[23] Google. Developer Guide - Protocol Buffers -- Google Developers [Internet]. Google
Inc; 2012 Apr 2 [cited 2013 Jun 18]. Available from:
https://developers.google.com/protocol-buffers/docs/overview.

[24] MongoDB. Agile and Scalable [Internet]. 10gen, Inc; 2013 Jun. Available from:
http://www.mongodb.org/.

[25] Twisted [Internet]. Twisted Matrix Labs; 2013 Jun. Available from:
http://twistedmatrix.com/trac/.

[26] Node.js [Internet]. Joyent, Inc; 2013 Jun. Available from: http://nodejs.org/.

[27] Wikipedia contributors. WebSocket [Internet]. Wikipedia, The Free Encyclopedia;
2013 Jun 10 [cited 2013 Jun 18]. Available from:
http://en.wikipedia.org/w/index.php?title=WebSocket&oldid=559267872.

[28] BOINC. Open-source software for volunteer computing and grid computing [Internet].
University of California; 2013 Jun. Available from: http://boinc.berkeley.edu/.

[29] Gray, J. Distributed computing economics. Queue; 2008;6(3):63-68. p 66.

[30] BOINC. BoincIntro - BOINC [Internet]. University of California; 2011 Des [cited 2013
Jun 18]. Available from: http://boinc.berkeley.edu/trac/wiki/BoincIntro.

[31] Superdonate. Donate Idle Computer Time to your Favorite Charity [Internet].

SuperDonate, Inc; 2013. Available from: http://www.superdonate.org/.

[32] Amazon. Amazon Elastic Compute Cloud (Amazon EC2), Cloud Computing Servers
[Internet]. Amazon Web Services, Inc; 2013 Jun. Available from:
http://aws.amazon.com/ec2/.

[33] Google. What Is Google App Engine? - Google App Engine [Internet]. Google Inc;
2013 Jun 11 [cited 2013 Jun 18]. Page views: [about 1 screen]. Available from:
https://developers.google.com/appengine/docs/whatisgoogleappengine.

	Abstract
	Sammendrag
	Preface
	Content
	List of Figures
	Part I, Introduction
	1 Project Background
	1.1 Motivation
	1.2 Project Goal
	1.3 Project Context
	1.4 Stakeholders
	1.4.1 Project member
	1.4.2 Supervisor
	1.4.3 Users: Developers
	1.4.4 Users willingly to donate their computer resources

	2 Research
	2.1 Research Questions
	2.2 Research Methodology
	2.2.1 Literature Review
	2.2.2 The Engineering method

	3 Development
	3.1 Development Methods
	3.1.1 Software Prototyping

	3.2 Development Tools

	Part II, Pre-study
	4 Concepts
	4.1 Business Models for value-added services
	4.1.1 Free
	4.1.2 Free + Premium
	4.1.3 Crowdsourcing
	4.1.4 Advertisement
	4.1.5 Micro-transactions
	4.1.6 Subscription Fee
	4.1.7 One-Time Payment

	4.2 Web Hosting
	4.3 Decentralized System
	4.4 Relevant Application Architectures
	4.4.1 Peer-to-Peer (P2P)
	4.4.2 Master-Worker (MW)
	4.4.3 Service Oriented Architecture (SOA)

	4.5 Distributed Systems
	4.5.1 Distributed Database
	4.5.2 Process Migration
	4.5.3 Content Deliver Network (CDN)
	4.5.4 Load Balancing
	#1 Remapping at the Client - Transparent
	#2 Remapping at the Client - Non-Transparent
	#3 Remapping in the Server
	#4 Remapping in the Network - at the network layer
	#5 Remapping in the Network - between the network and link layer
	Scheduling Algorithms

	5 Technologies
	5.1 Nginx
	5.1.1 Nginx Load Balancer

	5.2 Haproxy
	5.3 Apache ZooKeeper
	5.4 Protocol Buffer
	5.5 MongoDB and NoSQL
	5.6 Twisted
	5.7 Node.js
	5.8 Universal Plug and Play (UPnP)

	6 Related Systems
	6.1 Case Study: BOINC
	6.2 Case Study: Superdonate
	6.3 Case Study: Amazon Elastic Compute Cloud (Amazon EC2)
	6.4 Case Study: Google App Engine (GAE)
	6.5 Free Hosting Services

	Part III, Own Contribution
	7 Proof of Concept “Plug N Host”
	7.1 Stages and functional requirements
	7.1.1 Stage 1: Web Page
	7.1.2 Stage 2: Load Balancing
	7.1.3 Stage 3: Automate
	7.1.4 Stage 4: Configurable
	7.1.5 Stage 5: Monitor

	7.2 Technology Rationale
	7.2.1 Core Technology
	7.2.2 Custom Technology

	8 Architecture
	8.1 Physical Architecture
	8.2 Logical View
	8.2.1 Class Diagrams: Core Classes
	8.2.2 Class Diagrams: Example Custom Classes
	8.2.3 Configuration

	8.3 Process View
	8.3.1 Service Oriented (Process) Architecture
	8.3.2 Starting Services
	8.3.3 Integrating with existing systems

	9 Evaluation and Conclusion
	RQ1: Is this business model applicable to the real world?
	RQ1.1: What are the alternative business models?
	RQ1.2: Is there similar business models which are good enough?
	RQ2: How can distributed hosted web systems best be done?
	RQ2.1: How can distribution of static files best be done?
	RQ2.2: How can distributed request processing best be done?
	RQ2.3: How can distributing a database best be done?
	RQ3.1: How should new worker nodes connect/disconnect to the network?
	RQ3.2: What architecture(s) should the distributed network have?
	RQ4.1: Can it be avoided that an evil worker does permanent damage to the persistent storage?
	RQ4.3: Can processing be done in a fashion that makes it hard for an evil worker to do damage?

	10 Demonstration of Result
	10.1 Starting the master
	10.2 Starting the worker

	11 Future Work
	11.1 Functional improvements
	11.2 Research topics

	References

