NTNU - Trondheim
Norwegian University of

Science and Technology

Evolutionary Feature Selection

Sigve Dreyer

Master of Science in Informatics
Submission date: November 2013
Supervisor: Anders Kofod-Petersen, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Abstract

This thesis contains research on feature selection, in particular feature selection using
evolutionary algorithms. Feature selection is motivated by increasing data-dimensionality
and the need to construct simple induction models.

A literature review of evolutionary feature selection is conducted. After that a ab-
stract feature selection algorithm, capable of using many different wrappers, is con-
structed. The algorithm is configured using a low-dimensional dataset. Finally it is
tested on a wide range of datasets, revealing both it’s abilities and problems.

The main contribution is the revelation that classifier accuracy is not a sufficient
metric for feature selection on high-dimensional data.

Preface

This thesis is the intellectual product of Sigve Dreyer, at the artificial intelligence group
at the department of computer and information science at NTNU.

I would like to thank Anders Kofod-Petersen for his supervision and guidance. I
also give credit to Bjoern Magnus Mathisen for providing a high performance testing
environment.

Sigve Dreyer
Trondheim, November 30, 2013

Contents

1 Introduction

2 Literature review protocol

2.1 Approach
2.2 Researchquestions
23 Search
24 Inclusioncriteria
2.5 Qualitycontrol

3 Literature review

3.1 Whatis the goal of feature selection?
3.2 How are evolutionary methods used as a tool for feature selection? . . .
3.3 How are evolutionary methods for feature selection evaluated?
34 Summary e e e e e

4 An evolutionary feature selection algorithm

4.1 Genome and phenotype
42 Thealgorithm
4.3 Implementationdetails

5 Parameters

5.1 Benchmark
52 ELtism.
5.3 Populationsize
5.4 Initial population Lo
5.5 Crossoverrate e e
5.6 Mutationrate e e e
57 Group-size.
5.8 Randomselection
5.9 Finalsettings e

9]

[eelle IEN RN BEN N |

10

Dealing with noise
6.1 Length-penalty
6.2 Initial population

Run-time optimization

7.1 Look-uptable
7.2 Multithreading
Testing protocol

8.1 Testing feature selection
8.2 UCI machine learning datasets
8.3 Addingnoisetodatasets
8.4 Bigdatasets
8.5 Settings
8.6 Resultmetrics

Test results

9.1 Normaldatasets
9.2 WIthnoise 0 i e e
9.3 Bigdatasets e
9.4 CompariSONS v v it e e e e e e e e e

Summary and Conclusion
10.1 Summary e e e
10.2 Conclusions e e

Literature search

37
38
39

41
41
4

47
47
48
49
49
50
51

53
53
56
60
65

67
67
68

73

Chapter 1

Introduction

Big data is a term thrown around a lot these days. It has many meanings. But there
seems to be a loose agreement about what makes data ’big”. The data is ’big” when its
size makes traditional approaches to handling it unable to perform satisfactory. Be it an
inability to effectively search through the data or just not knowing what to do with it.

In this thesis I will take a closer look at one of these problems: How to decide what
is important data and what is not, from the point of view of machine learning?

In machine learning we do not need terrabytes of data for there to be a problem.
The traditional algorithms can handle datasets with many instances, in most cases this
is a good thing, but when the dimensionality of these sets increases we will quickly
get problems. An obvious way to solve this issue is to find out which dimensions are
important and which can be ignored.

As a student of information technology I am motivated by the need to make the tradi-
tional techniques of machine-learning function in a world were data is bigger. Reducing
dimensionality is both time consuming and prone to human errors. Artificial intelligence
should be used to handle this chore.

One approach is to find the subset of features that gives highest accuracy on the train-
ing data. This is a complex task which turns out to be NP-hard. So solutions can not
be found within a reasonable time frame using traditional algorithms. Evolutionary al-
gorithms have been successful at coming up with good solutions for complex problems,
when there is a way to measure quality of solutions. And that is the case here, we want
a simple model with high accuracy.

I investigate how the problem high-dimensional data poses for machine learning can
be solved using evolutionary algorithms. It starts out with an extensive review of the
already existing literature, there are a lot of biology-inspired approaches to the feature
selection problem in the literature. Then a new algorithm, based on the simple genetic
algorithm is proposed and its parameters are tuned for the task. A test protocol is created

5

High dimensional data »| Feature selection »| Induction algorithm

Evolutionary algorithms

Figure 1.1: The general approach to feature selection and the domain of this research.

containing a range of datasets. It contains very simple problems, very complex problems
and multiple interesting performance-metrics. Finally the results of the testing of the
algorithm are shown, revealing both the usefulness and the problems of the approach.

Chapter 2

Literature review protocol

To gather knowledge about evolutionary algorithms and feature selection a structured
literature review [KP] had to be done. This chapter lists the different criteria used when
gathering this knowledge.

2.1 Approach
Searches are done using Engineering Village [Els]. This is a multi source search platform
that includes results from compendex, inspec and others. The articles are first controlled

using the inclusion criteria. Those that are deemed relevant are then set up against the
quality control statements and included if they have enough quality and relevance.

2.2 Research questions
1. Can evolutionary methods be used as a tool for feature selection?
2. What is the goal of feature selection?
3. How are evolutionary methods used as a tool for feature selection?

4. How are evolutionary methods for feature selection evaluated?

2.3 Search

The searches are done using two terms.

2.3.1 Search terms
1. Evolutionary algorithm, genetic algorithm.

2. Feature selection.

To answer the different research questions a search of this form is used: ST1 AND
ST2.

2.4 Inclusion criteria

Each inclusion criteria is used to eliminate studies from the search result, starting with
the first. This way the other criteria don’t need to be checked against studies that would
be eliminated by higher ranking criteria.

1. The title of the study suggests both of the search term groups are discussed.
2. The study is from a credible and relevant publication.
3. The main focus of the abstract is on the search terms.

4. The main focus of the conclusion is on the search terms.

2.5 Quality control
For a high quality document the following statements should be true:

1. The study considers other relevant research.
2. The study is clear on what is done and what knowledge it unearths.

3. The conclusions reached by the study are extracted from quantitative data, in a
logical manner.

4. The study describes how the system was implemented.
5. The study contributes to answering one or more research questions.

6. The approach of the study is reproducible.

Chapter 3

Literature review

The literature contains many examples that confirm research question 1: Can evolution-
ary algorithms be used as a tool for feature selection? The answer is yes.

Actually the initial search resulted in 908 hits. Because of this large number of results
the inclusion criteria where applied very strictly. After applying criterion 1 the number
was a much more manageable 96 articles. They are listed in appendix A. The high
number of irrelevant articles was mainly because the search term “feature selection”
gives many hits in other parts of the biology-inspired artificial-intelligence literature.
Also the meta search used gave some double hits.

The rest of this chapter will consider each of the research questions from the proto-
col, except the first.

3.1 What is the goal of feature selection?

Based on the literature review there are multiple reasons for doing feature selection. In
this section I will summarise the most common.

In some cases the amount of features can make construction of an induction model
hard, either because the model can not fit in memory or construction would take too
long. Creating a limited subset can help construct a model within these constraints.

One of the reasons for building classifiers, and in particular decision trees, is to create
an understandable decision model. Now an unpruned decision tree made from instances
with 100 features is most likely going to be very messy. If the number of features is
reduced in a manner that does not significantly reduce accuracy we would get a smaller
model. This would make the model more readable and it could also be less over-fitted.

Removing redundant and irrelevant features can help improve the performance of
classifiers. This is done by reducing the potential for over-fitting and, in the case of
redundant features, selecting those that work best.

9

3.1.1 What is the goal of evolutionary feature selection?

The literature review revealed that evolutionary feature selection has been applied to
solving many problems.

General classifier improvements

Many of the research paper found in the review take a general approach to feature
selection without focusing on a specific domain [Yan+98; Che+12; AlS+10; Zen+09;
Wan+12; RC+06; Mun+06; Dro+10; Din+09; Bae+10; MG+07; Pra+10]. There are mul-
tiple goals this research tries to reach. The most common task is to improve classifier
accuracy and dimensionality reduction on simple machine learning datasets, like those
available at the uci machine-learning repository [AAQ7]. Some of them [Mun+06] also
makes the tasks harder by adding irrelevant variables to the data. Others create artificial
datasets [Wan+12]. Some of these articles also use their algorithm on a more specific
domain.

Medical features

The medical field has many areas where machine learning can be useful and feature
selection can help find good models for diagnosis and outcome prediction.

[Win+11] uses feature selection to create small models for predicting if tumor-markers
are present in blood samples using multiple strategies and wrappers.

Another examples of medical features can be found in [Dur+09] where features from
a portable health recording system is used to detect if the user is asleep or awake.

Gene expression data

One of the hardest problems in machine learning comes from analysing micro arrays of
gene expressions. These are very high dimensional datasets. They contain gene expres-
sions from tissue samples with different properties (classes). This is usually a diagnosis
or treatment outcome. The task of analysing them is made harder by the fact that most of
these datasets contain very few samples. The goal is to create a high accuracy classifier,
by removing the redundant and irrelevant gene expressions, but also to suggest small
sets that can be interesting for closer analysis. Thus there are multiple goals. [AIS+10;
Wan+12; Mun+06; Ban+07; Can+10; Hua+07; BH+10] all show promising result, but
comparison is difficult because many use different datasets. A couple of the studies
[Hua+07; BH+10] do compare results with other proposed solutions. Unfortunately, it
is unclear what the reported accuracies mean, in [BH+10] they are presented as the best
accuracies obtained. Whether these are cross-validation results of the feature selection,
results on a hold out set, or just best fitness, is unclear.

10

Visual features

The image analysis literature has many examples of evolutionary feature selection. This
stems from the high number of features image based machine learning has to choose
from not only in the original domain but also different frequency domains. The goals are
often to learn different bio-metrics: facial features[Fun+97; Har+05; Vig+12; Liu+08;
Nes+09], gesture/activity recognition [Cha+13] and iris recognition [Roy+08]. There
are also studies where the goal is generic object recognition or detection of some sort
[Che+12; DS+08; Tre+04; Dat+11].

Text features

Some of the studies focus on extracting features for different induction tasks related to
text analysis, this domain can have high dimensional feature-spaces with many useless
n-grams.

In [Yah+11] a genetic algorithm is used to select features for dialogue act recognition
models.

In [Zhu+10] a parallel and collaborative genetic algorithm is used to learn a pattern
for deciding what category a document belongs to.

Other

There are many other domains where evolutionary algorithms are applied for solving
feature selection problems:

e [Kru+12] has success in finding patterns based on surveys, their algorithm both
boosts model accuracy and helps clarify the underlying patterns in a manner that
gives a better understanding of the data.

e [Viv+03] uses a simple genetic algorithm to create induction models for under-
standing what makes source-code maintainable by analysing software metrics.
The algorithm is improved by the feature selection but little in the form of com-
parison is presented. The study also analysis the results to suggest how source
code can be made more maintainable.

e [Zha+05] uses a genetic algorithm with modified mutation function for selecting
data from satellite readings for temperature estimation at different pressure levels.

e In [Sik+05] genetic algorithms are used on a set of industrial plant variables to
come up with effective rules for minimizing the use of an expensive chemical.

o [Alf+12] uses feature selection to improve an algorithm that creates summary vari-
ables for relational attributes in databases.

11

e [RC+06] considers feature selection combined with instance selection. The goal
here is to avoid instances that make it harder to generalize.

It is clear that evolutionary feature selection can be used in many different domains.

3.2 How are evolutionary methods used as a tool for fea-
ture selection?

According to [Joh+94] there are primarily two categories of feature selection algorithms.
The wrapper and the filter approach. The first subsection explains these two approaches.
The rest of the subsections explains the evolutionary approaches in the literature.

3.2.1 The wrapper and filter approach
Wrapper method

subset search

!

High dimensional data sub-set evaluation »| Induction algerithm
1\

Induction algorithm

Figure 3.1: The wrapper approach.

Wrapper methods “wraps around” the induction algorithm that is used for the final
classifier. It consists of a heuristic search using the induction algorithm as the heuristic.
This search can be something as simple as the backward or forward search presented in
[Joh+94].

Naturally the wrapper method can be very expensive. It usually consists of K-fold
cross-validation on the training data. But it also has advantages. It evaluates the set of
variables selected and not just one at a time, so redundant variables can be removed,
and variables that are only useful given other variables can be found. It will also find
variables that might be particularly useful with the proposed induction algorithm, so if a

12

support vector machine (SVM) and a decision tree algorithm get best performance with
different variables the wrapper method could take advantage of this.

Filter method

The filter method selects features based on statistics only. It can be as simple as selecting
the 5 variables with the highest information gain, but the final induction algorithm can
not be used. They can be split into two categories; those that evaluates all the features
in one pass and those that evaluates multiple proposed feature-subsets combined with a
heuristic search.

Hybrid method

Any feature selection algorithm that both utilizes wrappers and filters can be considered
hybrid feature selection methods. However, if a method only uses a filter as an additional
heuristic variable, without effecting the number of wrapper evaluations done, it is not
very hybrid. The algorithms usually considered hybrid methods improve run time and/or
performance by using filter methods and also use the wrapper method in parts of the
algorithm to retain some of the advantages that it provides.

3.2.2 Evolutionary approaches

Numerous sources describe different evolutionary approaches to the problem. These
are used because the problem is NP-hard and therefore in many cases unsolvable. Ran-
dom search techniques could give reasonable sub optimal solutions. The most popular
approach is the genetic algorithm. In addition ant colony optimisation, particle swarm
optimization and genetic programming are also used. The following categorizes these
approaches.

Ant colony optimization

Some of the literature uses ant colony optimization to perform feature selection [Che+12;
Pra+10]. This is done by converting the feature selection problem into a path-finding
problem. Then artificial ants are sent to find the optimal path, they do this by laying
down pheromones along the edges of the graph. These traces get colder when the paths
go unused, thus the ants converge towards the (hopefully) best solution.

Genetic algorithms and Evolutionary strategies

Most of these approaches apply a standard genetic algorithm[Yan+98; Wan+12; Sik+05;
Har+05; Vig+12; Win+11; Din+09; DS+08; Dur+09; Cha+13; Liu+08; Roy+08; Pra+10;

13

Kru+12; Viv+03; BH+10]. Some use slightly modified genetic algorithms or evolution-
ary strategy to optimize the feature-set [AIS+10; Zen+09; Fun+97; Zha+05; RC+06;
Win+11; Yah+11; MG+07; Dat+11; Hua+07]. Different genetic encoding may be used,
but binary or real numbers are most common. The standard components of a genetic
algorithm; genomes, selection, crossover and mutation are combined with a fitness func-
tion that somehow estimates the quality of the selected features.

[Tre+04] uses an evolutionary search to do feature extraction, creating new features
from the data, and the population is then used as input for a meta classifier.

[Zhu+10] uses multiple evolutions to do feature selection. Many parallel evolutions
are done and the algorithm combines individuals from each of them to construct the
complete solution.

One of the modified versions uses multi-objective genetic algorithms [Ban+07], it
creates sets of solutions that satisfy more than one fitness function, in this case both
accuracy and complexity. The most common approach is to combine them and search
for an optimal solution.

Genetic programming

Genetic programming (GP) is a specialized genetic algorithm. In GP logic structures or
programs are constructed by the evolutionary process.

[Nes+09] uses genetic programming to create subsets and then evaluates them with
an induction algorithm.

In [Mun+06] each individual has a tree for each class and a weighting scheme is used
if they do not agree. Feature selection is done by limiting each individual to a subset of
the available features.

[Dro+10] uses a hybrid of GP and genetic algorithms to both shrink the original
feature-set and construct new features from combinations of the selected.

Particle swarm optimization

Particle swarm optimization is a random search strategy. In this approach many particles
are moving through a multi-dimensional space towards the most attractive positions. The
movements of these particles is influenced by their previous experiences but also by the
other particles, emulating social behaviour. This approach is applied towards feature
selection by [Din+09; Bae+10; Pra+10].

3.2.3 Evolutionary feature selection using the wrapper method

This seems to be the most popular approach, probably because the classifier accuracy is
very tempting as a fitness function. Most of the studies focus on one specific wrapper
algorithm and build the evolution around this. The following sections categorize them
based on which algorithm is used.

14

Evolutionary search
A
h 4

High dimensional data Fitness | Induction algorithm

!

Induction algorithm

Figure 3.2: Evolutionary wrapper approach.

Artificial neural-networks

Artificial neural networks (ANN) are popular as the wrapper. This is because these algo-
rithms are capable of creating very accurate models, but also because they are biology-
inspired algorithms that researches familiar with evolutionary algorithms also are likely
know.

This wrapper is applied in many studies that can be separated into two groups; the
ones that use it as a pure wrapper[Yan+98; Zha+05; Dro+10] and therefore only modify
input nodes, and those that include parameters or structures of the network into the
optimization[Win+11; Dur+09].

Support vector machines

Support vector machines are applied by many of the studies. Some optimize the result-
ing parameters in addition to the feature-sets through the evolution [Che+12; Win+11;
Din+09; MG+07; Hua+07] and some only use a simple pre-specified SVM [Can+10;
Pra+10].

[Roy+08] uses a SVM for its internal fitness function, however it is not used as the
final classifier so it is not a text-book wrapper approach. Also the fitness is made up of a
weighing including false accept rate and false reject rate, not just recognition rate.

Bayesian methods

[Kru+12; Nes+09] use the accuracy of the naive bayes algorithm to guide the search.
This is a simple algorithm capable of handling continuous and nominal data.

15

Tree-based algorithms

Tree based algorithms are not that common as the wrapper function among the men-
tioned articles. [Dro+10] performs some tests using the C4.5 algorithm as the wrapper.

k Nearest neighbour

The k nearest neighbour (kNN) algorithm is very common in the literature [AlS+10;
Fun+97; Wan+12; RC+06; Win+11; Liu+08; Dat+11]. It is a suitable fitness-function
because the performance of the algorithm is very dependant on a good feature-subset.

Some of the algorithms use a set number of neighbours to vote among [AIS+10;
Fun+97; RC+06; Liu+08]. Others let the number be decided by the algorithm [Win+11].
[Wan+12; RC+06] decide the weight used for each feature with the evolutionary algo-
rithm. [Wan+12] also uses the evolution to decide the distance function (Manhattan-
distance, euclidean-distance, etc.).

Other induction-algorithms

Some of the algorithms [Sik+05; Mun+06] create rules instead of using an existing in-
duction algorithm classifier.

In addition to SVM, kNN and ANN [Win+11] also uses linear regression in testing.

The K-mean algorithm is used as the wrapper in [Cha+13], the accuracy of this
approach is non deterministic, so if a better fitness is found, existing fitness values are
updated.

[Tre+04] uses a weak classifier type that will be used in the resulting adaboost clas-
sifier as fitness function for individual features.

[Viv+03; BH+10] use linear discriminant analysis as the fitness function.

3.2.4 Evolutionary feature selection using the filter method

Filters can either evaluate individual features, giving a ranking, or they can evaluate
individual subsets of features. The latter can be used as a statistical test replacing the
wrapper method as the fitness function.

[DS+08] uses a separability index for calculating how separate the classes are using
the proposed feature-sets, combined with a penalty for large feature-sets. When the
feature selection is done, the resulting feature-set is used to train a ANN.

[Ban+07] optimizes both set size and a rough-set theory based measure for discerni-
bility. After selection kNN is used to make classifications.

In [Yah+11] the informativeness of a feature-subset is combined with a punishment
for feature-subset size.

16

3.2.5 Other evolutionary solutions for the feature selection problem

There are not that many pure filter approaches to the problem but there are a large selec-
tion of studies where hybrid approaches are taken. Both wrappers and filters are utilized
to reach good solutions in a reasonable time.

Filter prior to evolution

The most popular hybrid solution is to apply filtering prior to using an evolutionary
approach to select the final feature-subset. This is done to reduce dimensionality and
complexity of the heuristic search, saving time. In [Can+10; Roy+08; BH+10] a feature-
pool is created using filters and the evolutionary feature selection is carried out using
only this pool.

Other hybrid techniques

Most of the algorithms discussed in 3.2.3 have one filter technique included for penalis-
ing large feature-subsets. This is done with a separate fitness function in multi objective
approaches [Ban+07], by including this penalty directly in the fitness function [Yan+98;
Che+12; RC+06; Mun+06; Dro+10; Din+09; Roy+08; Hua+07; Kru+12; BH+10] or by
favouring the shortest individual when the fitness is equal[Cha+13; Pra+10].

In [Liu+08] a filter is used to punish individuals with high entropy by giving them a
close to zero fitness score.

In [BH+10] the discriminant coefficients of the linear discriminant analysis (LDA)
wrapper, is used to also inform the mutation and crossover functions.

3.3 How are evolutionary methods for feature selection
evaluated?

The literature contains many different evaluation methods, further complicated by many
different test-datasets. This section will describe the most popular methods.

3.3.1 Classifier accuracy

One indicator of the performance of the feature selection is how well classifiers perform
with the selected subset. This is used in almost all of the literature but there are some
different approaches. The accuracy is either measured on a single hold out set or cross-
validated by running the algorithm multiple times with different training and validation-
sets. Sometimes only the accuracy achieved in the fitness evaluation is reported. In many
of the papers it is unclear what exactly is measured. This is a problem as one would
expect higher accuracy on data used in the feature selection process than on unseen data.

17

3.3.2 Classifier complexity

Another indicator of the efficiency of feature selection is the complexity of the final

induction model. Most of the papers report on this by using the number of selected fea-

tures [Yan+98; Wan+12; Mun+06; Dro+10; Vig+12; Win+11; Din+09; DS+08; Ban+07;

Dur+09; Cha+13; Can+10; Tre+04; Alf+12; Hua+07; Pra+10; Kru+12; Nes+09; BH+10].
Some include metrics from the final induction model [Yan+98; Sik+05; Dur+09] like

number of nodes. Many of the algorithms return specific sized subsets [A1S+10; Liu+08;

Roy+08; Dat+11; Hua+07], these report the accuracy with different pre-specified num-

bers of features.

3.3.3 Comparison to other solutions

Comparison to other solutions is important, unfortunately in many of the studies non or
few other similar algorithms are compared. In many cases the comparison is made using
a classifiers accuracy with all the features [Yan+98; Wan+12; Zha+05; Sik+05; RC+06;
Mun+06; Din+09; DS+08; Dur+09; Liu+08; Pra+10; Nes+09]. Some compare their
algorithm with runs of other feature selection algorithms [Yan+98; AlS+10; Zen+09;
DS+08; Ban+07; Yah+11; Bae+10; MG+07; MG+07; Tre+04; Roy+08; Dat+11; Hua+07;
Pra+10; Kru+12; Zhu+10], while others include reported results of other algorithms
[Mun+06; Vig+12; Cha+13; Hua+07; Pra+10; BH+10] or just refer to other results
[Win+11; Hua+07]. Usually the comparisons are on number of selected features and
accuracy of the resulting models, but some of the studies also include time-to-complete
on problems with known optimal solutions [Bae+10; AIS+10].

The comparisons are complicated by the use of different datasets. For example
[BH+10] contains a good overview of reported results from micro-array feature selection
but each study only contains results from a small subset of the datasets.

3.4 Summary

The literature has many proposed solutions to the feature selection problem that use dif-
ferent evolutionary approaches, like genetic algorithms. The problem of feature selec-
tion is general, but many of the studies focus on a specific domain. The algorithms either
use an induction algorithm’s accuracy or a statistical measure to estimate the value of so-
lutions, most of them also penalise complexity. The algorithms are evaluated by looking
at the accuracy and size of the final feature-subsets, but there are many different metrics
used.

18

Chapter 4

An evolutionary feature selection
algorithm

The literature review reveals that there are many different wrapper based algorithms
using many different induction algorithms. I want to create an abstract algorithm capable
of using any induction algorithm as the wrapper.

This chapter will describe the construction of a feature selection algorithm using
evolution as the heuristic search. The first section describes genomes, phenos, fitness
and the other evolutionary functions. The the second section describes details of the
proposed algorithm. The last section summarizes the implementation.

19

Initialize population

v

Evaluate fitness

Y
Return best individual

No

v

Select parents

v

Create new individuals

v

Replace old population
with new individuals

Figure 4.1: A general evolutionary algorithm

4.1 Genome and phenotype

To create a genome representing a feature selection we first need an understanding of
what we expect as the result of a feature selection algorithm. [Kal+07] summarizes
three types of feature selection outputs:

Weight-scoring
Each feature is given an importance score.

Ranking
The features are sorted based on their importance.

Feature-subset
A set of attributes the algorithm proclaims to be best suited to create the final
model.

Some induction algorithms can use the weights or the ranking as input, but most
of the algorithms expect a finite set of features. This can be created from each of the
outputs. When using ranking a fixed set size can be used, so only the N best features
are used. Weight-scoring can use the same approach or set a threshold for inclusion.

20

The subset output can not distinguish between the selected features but it can be used to
create the model without any finite threshold used in the conversion.

This algorithm uses the feature-subset as its genome. This way any filtering on how
important a feature has to be can be done by the evolution instead of by post-processing
the output. This is an advantage as the solutions are general.

The genome will be based on the feature-subset and the pheno is an evaluated feature-
subset, including some heuristic on how well it works. This is implemented by having
each individual contain a set of selected features. Most of the genetic algorithms dis-
cussed in the literature do this with a simple bit-string, each bit signalises if the feature
is included or not.

4.1.1 Fitness

The fitness is the heuristic used to compare different feature-subsets. It should indicate
how close we are to an optimal solution.

Filters

As discussed in the literature review, there are two main types of filtering. One that
evaluates different features and one that evaluates individual feature-sets. The latter can
be used as a heuristic for how well the feature-subsets perform. These filters evaluate
the subsets independently of the induction algorithm used, and can therefore not be used
to find or exclude features that work particularly well for this. The primary benefit of
using filters is low cost when compared to the wrapper function. The proposed algorithm
does not use filters as fitness, but there are not many modifications needed to use filters
instead of wrappers.

Wrappers

The wrapper function is an obvious candidate for measuring fitness. This could be the
accuracy from any classification algorithm. The wrapper approach also has the advan-
tage that specific considerations can be made for each algorithm.

One of the good existing libraries with many induction algorithms is weka [Hal+09].
By abstracting the fitness function for wekas classifier super class the algorithm can
utilize any of them to measure fitness.

Hybrid

The literature has many examples of feature selection algorithms that combine filter
functions with wrapper functions. The proposed algorithm will just do a very simple,
but popular, combination. By combining the wrapper fitness with a penalty for feature-
set size, we can hopefully get both accurate and simple solutions.

21

The proposed length penalty is just a general cost penalty that assumes every feature
is obtained at the the same expense. [Yan+98] discusses how a similar function, that
takes each features actual cost into account, can be constructed. Unfortunately most
of the time this information is unavailable and in some cases it might not be relevant,
for example if the features are created using feature-extraction. The length penalty is a
general punishment for complexity. Without it all features that don’t worsen the accuracy
of the induction algorithm can be considered worthy of inclusion. But if it is to high,
valuable features can be filtered out resulting in poorer models.

The literature contains different approaches to penalising long feature-sets. The most
common approach is to add a penalty that depends on the number of features used and
then dividing it by the number of available features, punishing complexity more when
the dataset is low dimensional. I take the other approach and punish with a flat rate
independent of the dataset, because the amount of available features should not be used
as an indicator on how complex the underlying model is.

4.1.2 Selection

In the simple genetic algorithm selection is most commonly done using a roulette-
wheel approach, where each individual is given a segment of the wheel based on its
fitness. With feature selection, this does not seem to be an appropriate approach because
the fitness difference between different subsets can be very slim resulting in very low
selection-pressure.

To avoid this issue we use tournament selection instead. This has the advantage that
the value of the fitness function is irrelevant. With tournament selection the only thing
that matters is the ranking of the different individuals. A small group from the population
is randomly selected from the population and the one with highest fitness is selected.
The size of this group can be regulated, bigger groups equals more selection pressure.
The tournaments can also have random winners, the chance of random selection can be
adjusted to change selection pressure.

4.1.3 Mutation

This algorithm distinguishes itself from others by using sets as genotypes. The mutation
functions have to take this into consideration.

This is done by imitating both the forward and backward search algorithms. Each
mutation adds or removes one feature from the genome.

This might seem like an over-simplified approach, but the hope is that the other steps
in the evolution will make this sufficient. For example getting out of local minimums
can be done by randomized selection instead of changing large parts of the genome.

22

4.1.4 Crossover

Using sets instead of regular strings also makes regular crossover a hard fit. Instead
of including both inclusion and exclusion variables in the crossover mix, the proposed
approach only focuses on what features to include.

A fixed set of parents are selected using tournament selection and then all the features
are laid out on a roulette wheel, giving features that appear in multiple parents more
space. Also there is no mirror child that we see in the traditional crossover technique.

4.1.5 Elitism

Elitism can also be used to make it easier for the algorithm to converge towards good
solutions.

The idea is simple, keep the N best solutions after each iteration of the algorithm.
This way the best solution will be preserved until a better solution is found.

4.2 The algorithm

The proposed algorithm relies heavily on the weka[Hal+09] classifier library, it contains
all the induction algorithms and some of the data handling code. This sections main
concern is the algorithm details. An important part of this algorithm is what parameters
are used, but this will be discussed in chapter 5.

4.2.1 Algorithm description

The algorithm starts with a fresh population of feature subsets. It then goes into a loop
consisting of 5 separate steps.

First it evaluates the fitness of each subset(FS) using the wrapper classifier. This is
done using cross-validation on the training data, with a pre-set number of folds (NF).
The fitness is set to the classification accuracy minus a length penalty, a constant (LP)
multiplied by the size of the subset. This will punish complexity in the way discussed in
3.255.

fitness = crossvalidate(NF) — (LP x size(FS)) 4.1

Secondly, sets of parents are selected using tournament selection, the size of the sets
can be changed to adjust crossover.

The third step is child creation. For each parent-set a new feature-subset is created.
The size of the new set is the average size of it’s parents and the features are randomly
selected from the parents. If a feature is used by multiple parents it’s inclusion chance
increases.

23

The fourth step is mutation. This consists of randomly adding and removing random
features from the subsets. The mutation rate (MR) determines how likely this is. Each
newly created subset can add and/or remove one random feature.

The last thing done is removing the old generation from the population. The algo-
rithm can be configured to use elitism by not removing a few (E) of the best existing
subsets.

The loop will run for a fixed set of iterations or until a stopping criterion is met, for
example 100% accuracy on a subset with 10 or fewer features.

4.2.2 Pseudocode

Pseudocode:

while(!'done ()4
evaluate(population) ;
parentSets=tournamentselection(population);
for(ps : parentSets)
population.add(new FeatureSet(ps));
population.mutateNew() ;
population.remove0ld();

24

T T
’Fitness’ ——
098 _

0.96

|
1

0.94

0.92

Fitness

0.9

0.88

0.86

I \ I | I | I | I
5 10 15 20 25 30 35 40 45 50

Iteration

Figure 4.2: An example run of the algorithm

4.3 Implementation details

The pseudocode in 4.2.2 describes what the algorithm does but it is far from the actual
implementation. Most of the code is already created in the form of classifier algorithms
in weka. Hooking this up with a generic evolutionary algorithm required a couple of
new classes. The implementation can be seen in figure 4.3. It is done using the Java
programming language.

The classes are summarized in figure 4.3. Geno, Pheno, Evolution and the population
functions are part of a generic evolutionary library implementing some analysis tools and
selection algorithms.

The Classifier is an abstract class from the weka library, all induction algorithms ex-
tends this class. Its most important methods are buildClassifier() and classifyInstance().
EVES is the class used for testing the proposed algorithm and it implements both these
methods. EVFS contains a classifier and also inherits the Classifier class, the classifyIn-
stance method uses the classifier created with the algorithm to classify new instances
after removing unused indexes. The buildClassifier method runs the algorithm.

The classes important to implementatin of the feature selection-algorithm is from
left to right: FeatureSet, ev, FitnessFunction and Datawrapper. The FeatureSet class is
the pheno representation of feature-subsets, it also handles the genome functionality by
implementing combineWith() for crossover and mutate() for mutation. The ev is just

25

an Evolution object with the appropriate population functions. The WrapperFitness is
the population function responsible for ranking the FeatureSets based on the training
data. When the Fitness function is run on the population its setFitness function is called
for each FeatureSet in the population. This function evaluates a single featureSet using
cross-validation. The lp (length penalty) is used to determine how much the subsets
should be penalized for each feature. nf (number of folds) determine how many folds
should be used for the cross-validation used to determines their base accuracy. The
DataSource is needed by the fitness function as it contains all the training data. It also
contains the function getFeatureSubset that can be used to create a new DataSource
where only the given columns are included so that specific subsets can be evaluated.

Classifier L
+buildClassifier{i:Instances)
+classifyInstance(i:Instance): double

Class<? extends Classifier>

EVFS

+classifier: Classifier
+indexes: Set<Int=>

+buildClassifier(i:Instances)

+classifyInstance(i:Instance):

double

DataSource
-all: Instances

+getFeatureSubset(): DataWrapper
+getAll({): Instances
1

1
FeatureSet
; : evi<>
+indexes: Set<Int=> —
+combineWith(g:Geno...)

WrapperFitness

+1p: double
+nf: int
+setFitness(fs:FeatureSet

ChildCreator

AgeAdder

V...,
v v i

PopulationLimit [—

PopulationFunction

Geno| |Pheno|_- Evolution]'<>'

+runOnPopulation(pop:Set<P=): Set<P>

Figure 4.3: Class diagram of the implementation

26

Chapter 5

Parameters

This section describes how the default values of the different parameters where deter-
mined. This is done by measuring performance on a well defined feature selection task,
the benchmark test.

When defining multiple variables for an algorithm, picking the order they are anal-
ysed in is tricky. This starts out with parameters that seem normal in the literature or are
intuitive. We start with the analysis of the elitism settings. The settings are summarized
at the start of each section.

5.1 Benchmark

To find the correct parameters for the evolution a benchmark was developed. It uses
the wine dataset, see 8.2. This dataset has 13 features, from these we can create 2'3 or
8192 different subsets of features. This means that brute force can be used to find the
highest ranking feature-subset. The goal is then to minimize the time it takes to find this
solution. The time is measured in number of classifier evaluations performed. In case
there are multiple solutions with the same score any of them will be acceptable. The
benchmark is run 300 times with different seeds so we can get an average. To give a
more full view of the performance the output also includes best case, worst case and the
standard deviation.

The classifier used is the IB5 classifier. It was selected because it is fast and it
only has one optimal solution for the test data when using the 10-fold cross-validation
on the wine data with O as the data randomization seed. It is important that the brute
force evaluation is done with the same evaluation method as the fitness function. This
benchmark task could be unsolvable if the fitness function was modified (for example
by using length penalty) or the training data was slightly different.

The benchmark is very strict in that it requires an optimal solution, something that

27

is difficult to guarantee when dealing with larger datasets. In these cases the task would
be to find a close to optimal solution. For example for the Sonar dataset making sure
the feature-set is optimal would involve 2% evaluations which of course is unreasonable.
This benchmark is a check to see that the evolution goes smooth, avoids local minimums
and efficiently makes it’s way through the search space.

5.1.1 System specifications

To conduct these experiments a high-performance computer was used. This was kindly
provided by Sintef. Here are some of the technical specifications for the tests:

CPUs: 2x Xeon x5650 @ 2.67 GHz, 2 x 6 Cores with hyper-threading
Memory: 44 GB of ram memory
Java-version: Java-7-openjdk-amd64

Operating-system: Ubuntu, Linux-kernel version 3.11.0-12-generic

5.2 Elitism

Benchmark options:

Initial population: no features
population size: 50

mutation chance: 1.0
crossover rate: 0.0

group size: 2

random chance: 0.0

elitism: 0,1,2,3,4,5,6,7,8,9

The average benchmarks for 3 or more elite individuals are not entirely correct, when
the benchmark reaches 25000 the algorithm stops even if the ultimate solution is not
reached. The results are probably not that far off, the number of runs that didn’t complete
is in the range of 1 to 7 out of 300.

From table 5.1 we can see one thing clearly: using elitism improves performance on
average. The highest mean run time is clearly the run that does not use elitism.

28

Table 5.1: Benchmark results for different elitism settings

elitism | mean | std max min | unfinished
0 4124 | 2912 | 15513 | 363 0
1 2852 | 2330 | 17063 | 413 0
2 2872 | 2492 | 17413 | 463 0
3 3111 | 3758 | 25013 | 563 2
4 2920 | 3077 | 25013 | 563 1
5 2445 | 2737 | 25013 | 563 2
6 2936 | 4231 | 25013 | 463 5
7 2820 | 3283 | 25013 | 463 2
8 2623 | 3551 | 25013 | 563 2
9 3204 | 4735 | 25013 | 463 7

There is also a trend that elitism can speed up the process. Too much and the number
of evaluations get higher and some of the tests do not finish. The deviation also gets
bigger the more elitism is used.

It is also quite clear that all the benchmarks have big deviations in the time it takes
to finish. On average the cases where elitism is used are all better than the brute-force
approach, it would use on average % = 4096 evaluations to find the best solution. But
the algorithm can also use much more time, the worst case with one elite individual took
17063 evaluations to reach the goal, more than the worst case of brute force.

The benchmarks suggest that the best performance is achieved when there is some
elitism. Not too much, however, because the more elitism there is the more deviation
there is in performance. The best mean, with no unfinished runs and lowest deviation, is
1 elite individual, so we use this from now on, keeping in mind that a little higher elitism
could bring the average run-time down.

5.3 Population size

Benchmark options:

Initial population: no features

population size: 10, 20, 30, 40, 50, 60, 70, 80, 100
mutation chance: 1.0

crossover rate: 0.0

group size: 2

29

random chance: 0.0

elitism: 1

Table 5.2: Benchmark results for different population sizes

population-size | mean | std max min | unfinished
10 3062 | 4598 | 30013 | 163 3
20 2548 | 3192 | 30013 | 193 1
30 2584 | 2218 | 13843 | 253 0
40 2499 | 1932 | 12333 | 373 0
50 2702 | 1878 | 14013 | 463 0
60 3138 | 2342 | 17893 | 733 0
70 3404 | 2740 | 29903 | 503 0
80 3402 | 2296 | 18733 | 653 0
90 3754 | 2548 | 26383 | 733 0
100 3919 | 2086 | 13913 | 1013 0

The results show the initial guess for population size wasn’t that far off. However,
a little smaller population size saves some evaluations. Also note that if it is too small,
there is a drastic performance loss. The population size is set to 40, keeping the perfor-
mance loss with too small populations in mind for more complex problems.

5.4 [Initial population
Benchmark options:

Initial population: no features, one random feature each, random subsets
population size: 40

mutation chance: 1.0

crossover rate: 0.0

group size: 2

random chance: 0.0

elitism: 1

30

n lr
(a) no (c) ran- (d) one
features dom for each
subsets features

Figure 5.1: Different initial populations. Each line is an instance and each colomn is one
feature

The benchmark shows that there isn’t that big a difference between the initial popu-
lations. It is intuitive that starting with empty subsets would take more time than starting
with one attribute in each subset, something these numbers contradict. One explanation
could be that early crossover between single good attributes and empty subsets helps to
focus the search.

The initial population that gives the best performance is random subsets. This makes
sense because it gives the algorithm the opportunity to start the search very close to the
goal, something we can see in the minimum run time. However, it does not help avoid
the worst case.

31

5.5 Crossover rate

Table 5.3: Benchmark results for different start populations

initial population mean | std max min

no features 2634 | 2363 | 17521 | 401

one random feature each | 2955 | 2606 | 19761 | 401
random subsets 2477 | 2584 | 19761 | 41

one pheno for each 2783 | 2256 | 17521 | 401

Benchmark options:

Initial population: random subsets

population size: 40

mutation chance: 1.0

crossover rate: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,0.7,0.8,0.9, 1.0

group size: 2

random chance: 0.0

elitism: 1

Table 5.4: Benchmark results for different crossover rates

crossover-rate | mean | std max min | unfinished

0 2549 | 2531 | 15281 | 41 0
0.1 2783 | 3300 | 19921 | 41 0
0.2 2304 | 2817 | 20001 | 41 2
0.3 2426 | 2671 | 20001 | 121 1
04 2442 | 2609 | 14881 | 41 0
0.5 2641 | 3124 | 20001 | 41 1
0.6 3270 | 3571 | 20001 | 41 4
0.7 3290 | 3733 | 20001 | 41 2
0.8 4199 | 4265 | 20001 | 41 3
0.9 4867 | 4831 | 20001 | 41 6

1 5092 | 5303 | 20001 | 81 13

32

The numbers in table 5.4 suggest that some crossover has a positive effect. The
increase is not drastic. There is, however, a negative effect from applying crossover too
often. In the range of 0.0 to 0.5 there is not much of a difference, but 0.4 is chosen
because it has the lowest run time in combination with no unfinished runs.

5.6 Mutation rate

Benchmark options:

Initial population: random subsets

population size: 40

mutation chance: 0.0, 0.1, 0.2,0.3,0.4, 0.5, 0.6,0.7,0.8, 0.9, 1.0
crossover rate: 0.4

group size: 2

random chance: 0.0

elitism: 1

Table 5.5: Benchmark results for different mutation-rates

mutation-rate | mean | std max min | unfinished
0 8191 | 3745 | 10001 | 81 243
0.1 7051 | 4295 | 10001 | 41 200
0.2 5712 | 4346 | 10001 | 41 138
0.3 4239 | 3918 | 10001 | 81 73
0.4 2836 | 2831 | 10001 | 121 21
0.5 2417 | 2429 | 10001 | 41 8
0.6 2069 | 2219 | 10001 | 81 10
0.7 2204 | 2117 | 10001 | 41 2
0.8 2285 | 2225 | 10001 | 81 6
0.9 2486 | 2462 | 10001 | 121 8
1 2577 | 2501 | 10001 | 41 12

The mutation rate used in the previous tests might seem very high, but it makes
sense when you consider what the mutation function actually does. With a mutation
rate below 1.0 there would be individuals with no change from their parents and the

33

algorithm would just be wasting time evaluating some of the same subsets. Now with
the introduction of crossover, another way of creating new subsets, this parameter should
be re-evaluated.

The benchmark results in table 5.5 show that a high mutation rate still is the best
approach. However, applying a mutation to every new subset does not give the best
performance. It is worth noting that the maximum evaluations allowed was decreased
for these runs. A mutation rate of 0.7 gives the second best evaluation time, but also
fewest unfinished runs, and is therefore picked.

5.7 Group-size
Benchmark options:

Initial population: random subsets
population size: 40

mutation chance: 0.7

crossover rate: 0.4

group size: 1,2,3,4,5,6,7,8,9
random chance: 0.0

elitism: 1

Table 5.6: Benchmark results for different group-sizes

group-size | mean | std max min | unfinished

1 8464 | 3136 | 10001 | 41 228
2 2544 | 2358 | 10001 | 41 5

3 2019 | 2128 | 10001 | 41 3

4 4264 | 4271 | 10001 | 41 88
5 4846 | 4411 | 10001 | 41 113
6 5871 | 4476 | 10001 | 81 149
7 6564 | 4363 | 10001 | 41 176
8 6875 | 4330 | 10001 | 41 189
9 6952 | 4349 | 10001 | 41 191

These numbers show that once again the best performance is achieved with well
balanced parameters. It is however surprising that slightly bigger group-size has such an

34

impact on performance. Going from group size 3 to 4 doubles the number of evaluations.
This could be because of the low population size.

The difference between a group size of 2 and 3 is not very significant. I am reluc-
tant to pick 3 because of the drastic performance drop when using 4 and keep both as
potential candidates for now.

5.8 Random selection

Benchmark options:

Initial population: random subsets

population size: 40

mutation chance: 0.7

crossover rate: 0.4

group size: 2,3

random chance: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
elitism: 1

Table 5.7 shows that selection pressure is important. The lower the group size the
lower the pressure, the lower the chance of random selection the higher the pressure.
With a group size of 2 the pressure is low enough without any random winners. With
3 in each group a few random winners give better performance. The best performance
comes with 0.2 random chance and a group-size of 3.

35

Table 5.7: Benchmark results for different chances of random tournament winners

group-size | random chance | avg std max min | unfinished
1 0 2264 | 2585 | 19761 | 41 0
1 0.1 2644 | 2841 | 20001 | 161 1
1 0.2 2987 | 3190 | 20001 | 41 1
1 0.3 3720 | 4120 | 20001 | 81 5
1 0.4 4631 | 4660 | 20001 | 41 4
1 0.5 6450 | 5917 | 20001 | 41 15
1 0.6 7606 | 6527 | 20001 | 41 32
1 0.7 10019 | 7583 | 20001 | 121 77
2 0 2332 | 3207 | 20001 | 41 1
2 0.1 1923 | 2211 | 14801 | 81 0
2 0.2 1721 1729 | 12361 | 41 0
2 0.3 1873 | 2148 | 15321 | 81 0
2 0.4 1854 | 1965 | 12801 | 41 0
2 0.5 2304 | 2618 | 20001 | 81 1
2 0.6 2805 | 3213 | 20001 | 41 3
2 0.7 5531 | 5472 | 20001 | 81 14

5.9 Final settings

options:

Initial population: random subsets
population size: 40

mutation chance: 0.7

crossover rate: 0.4

group size: 3

random chance: 0.2

elitism: 1

If these settings will work for anything other than the benchmark used here remains
to be seen, but by looking at all the numbers it is clear that picking the correct settings
can have a huge effect on the algorithm’s ability to reach the global optimum. It is
no surprise that settings that remove any selection pressure will degrade performance.
But completely reasonable variables like slightly larger group-size (and slightly higher
selection pressure) can also drastically increase the run time.

36

Chapter 6

Dealing with noise

The benchmarks in chapter 5 are created using a dataset with very little noise. Feature
selection will be more useful the more noise there is. In this section we will do bench-
marks with different levels of noise added to the original dataset to see if the algorithm
and it’s parameters are still suitable.

When adding noise to the benchmark dataset the old optimal solution is still valid,
however new solutions may also become valid, see table 6.2. In the original benchmark
the accuracy is very high (0.9944) and there is only one subset that is able to give this
rate: {0,1,4,6,7,9,10,12}. This is no longer true when we start to add noise.

For the following benchmarks we consider the task completed when an accuracy of
<=0.9944 is reached, even if there does exist subsets that show no errors in the cross-
validation, since they clearly reach this level of accuracy by over-fitting and including
attributes that are unrelated to the concept. What we hope to get from the algorithm is
maximum accuracy and minimum complexity. Therefore we need some more metrics
for the tests:

feats: The number of features in the solutions.
avg accurasy: The average accuracy of the solutions.

The results from the initial noise benchmark can be seen in table 6.1. The more noise
that is added the more iterations are required to reach a high enough fitness. 10 noise
variables dilutes the training data and makes the search space 2!© = 1024 times bigger
so an increase is expected, and finding the best solution is no longer the highest priority.
The main problems are too diverse and big solutions, especially with 30 noise variables.
Looking at table 6.2 we see very different solutions, but all the solutions have the same
fitness (> 0.994 accuracy) in the cross-validation. One of the reasons we do feature
selection is to create understandable models so clearly fewer variables in the solution is
better. Also reaching a maximum with many variables is much harder because there are

37

Table 6.1: Benchmark results for different levels of noise.

added noise | avg | std max min | fails | # feats | avg accuracy
0 1696 | 1882 | 14961 | 41 0 9.00 0.9944
10 2943 | 4019 | 20001 | 161 | 9 10.60 | 0.9946
20 3273 | 3472 | 20001 | 321 | 4 15.88 | 0.9946
30 9593 | 7283 | 20001 | 601 | 78 18.64 | 0.9929

Table 6.2: Output examples for different noise levels

of noise variables

selected variables

0
10
20

10,1,4,6,7,9,10,12)
{0,1,4,5,6,8,9,10,11,12,15}
{0,2,3,4,5,6,9,10,11,12, + 7 more }

6.1 Length-penalty

so many ways to mutate big subsets. The size of the subsets in the middle of execution
could make the search much harder. The resulting accuracy and complexity is not that
much worse with 30 noise variables but we might be able to do better by modifying parts
of the algorithm.

If the fitness-function is modified performance could improve. We start by doing the
same benchmark with a close to zero value (0.00000000001) for the length penalty. This
will give the shortest of two equally accurate subsets an advantage in the tournament
selection.

Table 6.3: Benchmark results when using close to zero length penalty.

noise | avgruns | stdev | max min | # fails | # features | avg accuracy
0 1311 1068 | 6841 81 0 9.00 0.9944
10 | 2648 2789 | 19721 | 321 | O 9.87 0.9947
20 | 2609 2476 | 20001 | 441 | 1 13.78 0.9946
30 | 6706 5708 | 20001 | 641 | 23 14.35 0.9942

The algorithm’s run time is slightly better for all noise-levels, this could be because
the penalty makes it easier to travel through the search space. By giving simpler solutions
a slight advantage, fewer runs are required to reach the stopping criteria. Also the final

38

solutions are less complex. There is very little difference on the low noise tests, but
with 30 noise variables the solutions are on average 4 variables smaller when using the
penalty. Because these results are only positive without restricting us to new optimal
solutions, the close to zero length-penalty is used for all the following benchmark tests.

The next test was done to illustrate one of the problems with the length penalty.
What happens when the best feature-set no longer gets the highest fitness because it is
too long? When the penalty is put at 0.003 the best solution, according to the fitness-
function, is a subset with only 0.98 accuracy. Note that the stopping criteria is lowered
to this value for these tests.

Table 6.4: Benchmark results when using 0.003 as the length penalty.

noise | avgruns | stdev | max min | # fails | # features | avg accuracy
0 496 439 | 4321 | 41 0 8.13 0.9899
10 1266 1061 | 7361 | 241 | O 8.34 0.9898
20 1621 1758 | 14601 | 161 | O 10.29 0.9897
30 | 2097 1734 | 12801 | 361 | O 9.96 0.9897

From table 6.4 we see the number of runs is drastically reduced. The accuracy is
unfortunately also slightly reduced. The number of features is also lower at all the noise
levels, which means less complex solutions.

When using the close to zero penalty one of the most accurate solutions will always
be picked, if the algorithm can reach it. The close to zero length-penalty also reduces
the runtime, even when there is no artificial noise added. The results of the test with
0.003 length penalty shows that sacrificing the ability to reach the best solution can help
reduce the time needed to reach a close to optimal solution.

We can safely say that a non-zero length penalty should always be used. How high it
is set, however, should be determined by how big the feature-space is, how much training
data is available and how complex solutions we want.

6.2 Initial population

When the dimensionality increases, there is a risk of running the algorithm for many
generation without the most significant features showing up in the gene pool. This can
be avoided by tweaking the initial population. The proposed solution is making an initial
population with one individual for each variable with only this variable in it’s genome.
This should not affect the performance by starting further from the global optimum than
with random genes, because it is highly unlikely to start close to it. The wrapper method
is used for the fitness of each of them. The features that are most useful on their own are

39

then preserved through normal elitism and the selection process is more likely to pick
them for future breeding.

This is also done because the use of completely random subsets, the best performing
on the small scale, will start with very big subsets. This will increase the run-time of the
fitness evaluations.

40

Chapter 7
Run-time optimization

Initial testing suggests the majority (> 99%) of the run-time is spent evaluating subsets.
In this chapter we will discuss two techniques to improve the run-time. They will focus
on limiting the time of the fitness evaluation.

7.1 Look-up table

It is obvious that the algorithm will have much redundancy. At the end of a run the
population will become less diverse and new subsets are more likely to have already
been evaluated.

A look-up table linking all evaluated subsets to their fitness could decrease run-
time, especially with lower dimensionality datasets and a resource hungry induction
algorithm. This is a classic case of memory versus run-time trade-off, storing the fitness
for each possible subset becomes impossible if there are many features. On the other
hand, if the induction algorithm is slow, we will run out of patience long before memory
is full.

Evaluation of this optimization is done on the system described in 5.1.1. We use the
same parameters as for previous benchmarks, but also include run-time.

Table 7.1: Benchmark with and without lookup table.

look-up table | average time (ms) | average # evaluations | worst # evaluations
no 4139 1230 5401
yes 1759 521 1656

Table 7.1 shows that about half of the evaluations can be avoided by using the look-

41

up table. However, it seems to be even more helpful for the worst cases where the
algorithm gets stuck in local minimums for some time. For these runs the number of
evaluations is reduced by more than 2/3.

By using this technique, the solution to the benchmark, that took on average 4096
evaluations to brute force, can be found by doing on average 521 evaluations.

7.2 Multithreading

There are many examples of parallelizable induction algorithms. Given the abstraction
of the proposed algorithm, the only practical parallelization that can be done for the
fitness evaluation, is to split the fitness evaluations up among the available cpu cores.

The implementation is parallelized by creating a list of tasks: one for each individual
in the population. A thread-pool is made, with one thread for each available cpu-core.
Each thread takes one task and executes it. If there are more available afterwards, it goes
on to another task.

For an infinite population we would get linear speed-up, the best possible speed-up.
Since the current algorithm merges once for each generation, the ability to speed-up will
be limited by the population size. To test how this optimization performs, the benchmark
was run on 5.1.1 with different thread-pool sizes from 1 to 12. The results of this, and
the curve of linear speed-up, can be seen in figure 7.1.

The algorithm scales pretty well. Multi-threading can significantly reduce the run
time by using more cores. In this case going from 1.75s in average run-time when single
threaded to 0.37s when 12 threads are in use. But when we compare the run time with
linear scaling (1/x), the results are far from perfect.

The main problem is that the algorithm is synchronous and therefore has to end all
the threads each generation. This means waiting until the last and most likely slowest
individual is evaluated while the other threads idle. This problem can be removed by
making the evolution asynchronous. But this would also cause the algorithm to change,
for example small subsets could reproduce more quickly because they take less time
to evaluate. It’s not necessarily a problem, but it would require a rework of the entire
algorithm.

One of the ways we can make the algorithm more parallelizable, without changing
it, is to increase the population size. But, as can be seen in chapter 5, a big population
size can make the algorithm slower. First, tests are made to see if the algorithm is more
scalable when we double the population size.

Figure 7.2 shows that the algorithm does scale better with a bigger population, but
unfortunately the total cpu time is much higher, now 2.34s compared to 1.75s, when
running on one thread. The average run time with 12 threads is 0.34s, a little better. But
the increase in population size makes the search worse, eating up most of the gain in
scalability. It might be possible to compensate for this by increasing selection pressure.

42

1 I I
‘average run time’ —Jil—

0.9 1/x N

Time to complete

0 | | | | 1
2 4 6 8 10 12

number of threads used

Figure 7.1: How run time changes with multiple threads.

Increasing the number of tournament participants gives us better run-time single-
threaded. It now takes 1.83s, which is slightly worse than the original. However, the
scalability is similar to the previous run. When we look at figure 7.3 we see that the
new configuration outperforms the old one when multiple threads are used. The gain is
significant. The old time was 0.37s and with this set-up the optimal solution is found in
0.26s on average. This shows how sacrificing run-time when single threaded can give
higher performance when running on many threads.

43

Lau.feral,ge run t{me’ ——
0.9 1/x N

Time to complete

0 1 1 \ |
2 4 6 8 10 12

number of threads used

Figure 7.2: How run time changes with multiple threads, with twice as big population.

44

2000

’old setlihgs’ —
‘new settings’ —A—
1500
8
[:¥]
=)
g
S 1000
8
w
£
=
500 =
N
0

2 4 6 8 10 12

Number of threads used

Figure 7.3: How run time (ms) changes with multiple threads, with larger population
and higher selection pressure.

45

46

Chapter 8

Testing protocol

For evaluating the proposed algorithm some extensive testing was done, using multiple
metrics on many datasets. These are described in this chapter.

8.1 Testing feature selection

These are the tests performed with the algorithm.

8.1.1 Cross-validation

To cross-validate the algorithm it is run multiple times with altering training and testing
data. So for the proposed algorithm this means doing the feature selection, not the
fitness function, with multiple subsets of the available data. From this we can get both
the resulting classifiers average performance and the deviation in performance.
For these tests 10-fold cross-validation is done, this is most popular in the literature.
For the feature selection algorithm it is also interesting to know how many features
we end up with on average, this can also be obtained from the cross-validations.

8.1.2 Tanimoto distance

In addition to set-length it is also interesting to know how different the subsets of each
fold are. If two subsets each have 5 different features, then they are completely different
and the algorithm is unstable. Therefore we also need to measure this difference with
some additional metric other than the number of features. These tests include the average
Tanimoto distance [Kal+07] of all the feature-subsets from the cross-validation. Higher
distance means more stable, which is desirable.

47

The Tanimoto distance, measures how much overlap there are between two subsets.
Given two subsets a and b it is:

_ la[+1b[=2]aNb|

Slta,b) =1.0
(@b) la[o]~ la5]

(8.1)

If it is 1.0 the subsets are equal and if it is 0.0 there is no overlap.

One small problem with this metric is that it will be higher for bigger subsets sim-
ply because the chance for overlap increases[Kal+07]. Therefore the average Tanimoto
distance must be seen in context with the number of possible features and the size of the
selected subset.

8.2 UCI machine learning datasets

One of the challenges of testing this algorithm was obtaining realistic data that can be
used for feature selection. Preferably this data should also be used by other similar
algorithms as well.

The UCI machine learning repository [AAO7] has many available datasets that can
be used for testing the presented algorithm. These sets are also popular in the feature
selection literature. Therefore a selection of § datasets was used for these tests.

A short summary of the sets and their characteristics follow:

Wdbc
A dataset with 30 continuous attributes computed for 569 images of breast masses.
The dataset also contains one ID number and a nominal diagnosis value for each
instance. This is one of the most popular datasets in the literature.

Ionosphere
A dataset based of electromagnetic return-signals from the ionosphere. The sig-
nals are described by 34 continuous attributes, based on 17 pulse numbers. The
351 instances are divided into good and bad returns based on whether they show
evidence of structure in the ionosphere.

Bupa
This dataset consists of 5 blood test values and number of half-pints each day for
345 individuals. The task is to figure out if they suffer from disorders or not.

Pima
This is a dataset with the results of 8 different medical metrics, such as BMI, and
a class attribute indicating whether the patient has diabetes. In total the dataset
has 768 instances. According to [AAQ7] this set probably contains missing values
(some of the zero values are supposedly impossible) but this was not taken into
consideration when the tests where run.

48

Wine
A dataset with 13 attributes from different wine types, the wine types are derived
from 3 different cultivars. The task is to predict the type based on a wines at-
tributes. The set contains a total of 178 wines. This set was used for the previous
benchmarks.

Iris
This dataset contains 4 plant measurements in cm and has 3 classes, each is an iris
plant type. There are 150 instance, 50 of each class.

Sonar
The dataset is made from reading sonar signals with to different objects as reflec-
tors, a rock and a cylinder (this represents a mine). They make up the two classes
of the instances. Each instance has 60 numbers which are the energy levels at
different times and frequencies, they are normalized into the range of 0.0 - 1.0.
The original set is sorted depending on the angle used, but to avoid any bias it’s
randomized for the tests. There is only one instance for each angle.

Vote
This dataset contains the voting history of 435 representatives from the democratic
and the republican party. The task is to determine the party by looking at 16
different votes.

8.3 Adding noise to datasets

One of the aspects of a good feature selection algorithm is it’s ability to reduce the
dimensionality of the feature-space by removing useless features. An easy way to test
this would be to take a dataset with a few relevant variables, add noise to it, and see if it
can filter this noise. The noise variables are then known to be useless and any variable
from the original set is potentially useful. A good feature selection algorithm should
therefore only select a subset of the original attributes.

For the noise reduction tests, continuous noise variables are added to the datasets
from 8.2. These variables have a range of either -1.0-1.0 or 0.0-1.0. The values are
randomly or normally distributed. This noise is created by a random number generator
seeded by the number of instances. The generator also decides the range and distribution
pattern.

8.4 Big datasets

A couple of big gene-expression datasets from http://www.gems-system.org/ where used
to validate the algorithm’s performance on datasets that are useless without proper fea-

49

ture selection. These tests are interesting because they contain thousands of features and
very few samples, fifty to a few hundred. Note that the abbreviations used are the same
as in [AlS+10].

The goal of these datasets is to determine tissue types; different types of cancer or
normal tissues. The sets have 2 to 26 different tissue types. The accuracy might be a
little miss-leading as a metric, we can not expect that much accuracy when there are 26
different classes. The datasets are summarized in table 8.1.

Table 8.1: High dimensional gene-expression data

dataset name # features | # classes | # samples
Ic lung-cancer 12600 5 203
pt prostate tumor 10509 2 102
11 leukaemia 1 5328 3 72
12 leukaemia 2 11226 3 72
btl brain tumor 1 5920 5 90
bt2 brain tumor 2 10368 4 50
t9 9 tumors 5726 9 60
t11 11 tumors 12533 11 174
t14 14 tumors 15009 26 308
dl lymphomas 5469 2 77
Sr Small, round blue cell tumors 2309 4 83

8.5 Settings

For the tests we use the proposed algorithm with the following settings:
Initial population: one of each feature

population size: 80

mutation chance: 0.7

crossover rate: 0.4

group size: 4

random chance: 0.2

elitism: 1

Length penalty: 0.005

50

Threads: 24
Wrappers: 1B1, IB5, j48, NaiveBayes, SMO

Number of folds: 10

8.6 Result metrics
This section summarizes the result metrics:

dataset
What dataset is used.

features
How many variables are there in the dataset, this includes the class index.

original
The error rate (and deviation) when the original machine learning algorithm is
used without feature selection. Not included for section 9.3.

error
The error rate when the induction algorithm is used with feature selection, stan-
dard deviation in parenthesis.

fitness
The fitness score of the highest ranking individual (actually it is 1.0-fitness) at the
end of the evolution. This variable includes length penalty, which means the actual
error rate it is based on is lower. Standard deviation is shown inside parenthesis.

selected
The number of features in the proposed solutions, lower number equals less com-
plex solutions. Standard deviation is shown inside parenthesis.

Tanimoto
A metric for how much overlap there is between the different solutions of the
cross-validation. A higher number means the algorithm is stable.

51

52

Chapter 9

Test results

This chapter contains the test results and analysis of them. It is divided into one for the
simple machine learning data from [AAOQ7], one for the same datasets with additional
noise added, one for the high dimensional datasets from [Gem]. Finally the algorithm is
compared to other reported results on three other data-sets.

9.1 Normal datasets

Table 9.1-9.5 show the results of the algorithm running on the normal datasets. There is
one table for each induction algorithm.

Table 9.1: uci tests with naive bayes as the fitness function

dataset # features original error fitness # selected | Tanimoto

bupa 7 464(.072) | .403(.096) | .383(.011) 3.1(.7) .613
wine 14 .022(.037) | .044(.054) | .039(.003) | 4.4(.663) .587
vote 17 .099(.048) | .044(.035) | .049(.004) 1.0(.0) 1.0
sonar 61 322(.094) | .269(.07) | .21(.011) | 6.0(1.673) 246
iris 5 .047(.043) | .047(.043) | .049(.004) 1.5(.5) .507
pima 9 .241(.048) | .247(.057) | .243(.008) | 2.8(.872) .677
wdbc 32 .067(.038) | .039(.022) | .045(.002) 3.1(.3) 469
ionosphere 35 JA183(.091) | .114(.054) | .097(.005) | 5.2(.98) .36

53

Table 9.2:

uci tests with SMO as the fitness function

dataset # features | original error fitness # selected | Tanimoto
bupa 7 A417(.055) | .42(.052) | .42(.006) .0(.0) 1.0
wine 14 .022(.027) | .022(.037) | .036(.002) | 5.9(.831) .654
vote 17 .039(.029) | .044(.035) | .049(.004) 1.0(.0) 1.0
sonar 61 .201(.084) | .254(.093) | .19(.014) | 7.2(1.249) .266
iris 5 .047(.043) | .047(.043) | .046(.004) | 1.6(.49) .6
pima 9 23(.056) | .254(.049) | .248(.007) 3.6(.8) .612
wdbc 32 .023(.019) | .046(.02) | .049(.002) | 3.3(.64) .366
ionosphere 35 J12(.03) | .134(.092) | .123(.009) | 3.5(1.5) 449

Table 9.3: uci tests with IB1 as the fitness function

dataset # features | original error fitness # selected | Tanimoto
bupa 7 .382(.061) | .443(.057) | .36(.011) 4.2(.4) .641
wine 14 .045(.049) | .039(.05) | .038(.003) | 5.9(1.044) .632
vote 17 .085(.047) | .053(.036) | .054(.005) | 2.6(1.02) 414
sonar 61 .149(.101) | .149(.089) | .097(.009) | 9.2(1.327) .288

iris 5 .04(.033) | .04(.033) | .051(.008) 2.8(.6) 8
pima 9 301(.052) | .32(.058) | .297(.01) 3.1(.3) .625
wdbc 32 .047(.019) | .067(.027) | .048(.004) | 3.9(.539) .38
ionosphere 35 .143(.054) | .143(.081) | .076(.008) | 4.9(1.044) 215
Table 9.4: uci tests with IB5 as the fitness function

dataset # features | original error fitness # selected | Tanimoto
bupa 7 .382(.061) | .446(.062) | .357(.011) | 3.8(.98) .526
wine 14 .045(.049) | .034(.051) | .038(.003) | 5.9(1.044) .655
vote 17 .078(.045) | .053(.036) | .046(.003) | 2.9(1.136) 416
sonar 61 .149(.101) | .149(.069) | .096(.007) | 9.8(.872) 31
iris 5 .04(.033) | .027(.033) | .038(.004) 2.0(.0) 1.0
pima 9 .301(.052) | .305(.038) | .293(.008) | 2.0(1.0) .585
wdbc 32 .047(.019) | .067(.027) | .048(.004) | 3.9(.539) 392
ionosphere 35 .143(.054) | .134(.056) | .077(.008) | 5.0(.894) 154

54

Table 9.5:

uci tests with J48 as the fitness function

dataset # features original error fitness # selected | Tanimoto
bupa 7 .342(.068) | .353(.056) | .33(.012) | 3.2(1.249) .621
wine 14 .067(.048) | .061(.052) | .047(.01) 3.6(.49) 501
vote 17 .046(.032) | .044(.035) | .049(.004) 1.0(.0) 1.0
sonar 61 .284(.072) | .255(.092) | .143(.018) | 7.1(.943) 208
iris 5 .047(.043) | .06(.047) | .055(.008) | 1.3(.458) 593
pima 9 265(.047) | .263(.029) | .259(.012) | 2.4(1.02) 434
wdbc 32 .072(.033) | .047(.016) | .051(.003) | 3.3(.458) 537
ionosphere 35 .1(.055) .08(.054) | .077(.005) | 4.1(.831) 483

9.1.1 Analysis

To start with we can see clearly that the algorithm is able to come up with good so-
lutions to the feature-subset selection problem, finding subsets that maximize accuracy
on training data. In most tests the reported accuracy on training data is higher than the
accuracy of the wrapper-algorithm on the original dataset. The numbers do not make
it that obvious, however, for example on the pima dataset with the SMO wrapper the
reported fitness is .248, this is equivalent to an average error rate of 0.23 when we take
the length penalty into consideration. On the wdbc dataset, on the other hand, the SMO
based feature selection does not reach a good optimum. Its error rate (0.0325) is slightly
higher than what is achieved with all the features. However, it is still better from the
point of view of the algorithm, considering that the original dataset would give a total
length penalty of 0.155. This shows that a length penalty higher than slightly below zero
can give suboptimal solutions. There is two more example of this behaviour; the vote
test with SMO and the iris test with the J48 wrapper.

The results show that the wrapper fitness in many cases does not relate well to good
performance on instances not used in the feature selection. The high fitness could be a
result of over-fitting. In most cases the difference is a few percent, but a few cases have
very big difference. For example the bupa test with the IB1 wrapper has an error rate
that is on average 0.104 higher on unseen data.

The lack of improvements could be because many of these datasets already are noise
free and there is little to gain from the removal of features. In many of the tests this
difference gives the algorithm a worse error rate than the original feature-set.

24 of the 40 tests show a reduction in dimensionality with lower or equal error rate
on unseen data. The difference in error rate is rarely big, though there are a couple
of exceptions. The bupa dataset seems to get high variations in the error rate from
feature selection but depending on the wrapper used feature selection is both positive
and negative. The same is true for the ionosphere dataset with a significant gain with

55

naive bayse wrapper and a small loss of performance with the SMO.

The SMO error rate does not seem to benefit much from feature selection. In none
of the tests does feature selection lower it. This is probably because the SMO is able to
get close to optimal error rate on all tests (except bupa) without feature selection.

When we look at the number of selected features, the results are clear. The algorithm
is capable of significantly reducing the dimensionality of the data. The highest number
of average features is 9.8 on the sonar set containing 60 candidate features. In all the
tests the dimensionality is reduced significantly. For the vote dataset it is often reduced
down to only 1 feature, and in these cases we get an error rate of 0.044.

The smallest set selected was 0, for the bupa dataset with SMO as the wrapper,
suggesting that guessing the most common class was the only model, and looking at the
error rate when using all 6 features, this is not far from the truth.

In general we see that we do get much smaller feature-sets and induction models
with the feature selection algorithm.

The stability varies, and is also dependent on the wrapper function used. The Vote
dataset was often completely stable. But, when using the IB1 and IB5 classifiers, more
than one vote was selected and the stability is drastically reduced. There are two more
examples of no set distance. The iris (lowest dimensionality) with the IB5 classifier
was completely consistent through each part of the cross-validation using the same 2
features and the empty feature selection for bupa when using the SMO. The SMO seems
to be the most stable, if we rank the wrappers by how stable they are on each set. It
is also the wrapper that selects fewest features. This is mainly because of the way it
handles the pima dataset. In general the wrappers get similar scores on this ranking.
No one is much better than the other because they do well and poorly on different sets.
The instance based wrappers (IB1 and IB5) on average select more features than the
rest. More features on average should give higher Tanimoto. Unfortunately this does not
seem to be the case here. This suggests that there might be a local maximum for stability
that these tests overshoot.

9.2 With noise

Tables 9.6-9.10 show the results when the same tests are done with 400 additional noise
variables added to each dataset.

9.2.1 Analysis

When we compare the original induction algorithms with and without noise we can see
that in general the accuracy is worse with added noise, especially for the instance based
classifiers. For example for the iris dataset using IB5 gets an error rate of .493 compared
to .04 without noise. However, there are some cases where the error actually becomes
smaller when adding noise.

56

Table 9.6: uci tests with noise, with naive bayes as the fitness function

dataset # features original error fitness # selected # noise Tanimoto
bupa 407 409(.09) | .525(.113) | .33(.019) | 6.1(1.136) | 5.9(.943) .072
wine 414 .039(.05) | .039(.043) | .038(.003) | 5.0(.775) 9(.7) 519
vote 417 .096(.043) | .044(.035) | .049(.004) 1.0(.0) .0(.0) 1.0
sonar 461 299(.112) | .341(.087) | .202(.012) | 6.1(2.071) | 3.2(1.661) 123
iris 405 .093(.074) | .087(.085) | .033(.006) 3.4(.8) 2.4(.8) 183
pima 409 .269(.055) | .238(.057) | .236(.008) 3.8(.6) 1.7(.458) 484
wdbc 432 .069(.039) | .037(.024) | .045(.002) 3.5(.5) 5(.5) 393
ionosphere 435 .171(.095) .1(.063) .101(.007) | 4.0(.894) .3(.458) 492

Table 9.7: uci tests with noise, with SMO as the fitness function

dataset # features | original error fitness # selected # noise Tanimoto
bupa 407 412(.071) | .42(.052) .42(.006) .0(.0) .0(.0) 1.0
wine 414 .169(.071) | .04(.045) | .034(.003) | 6.0(.894) 1.2(.748) .62
vote 417 .046(.042) | .044(.035) | .049(.004) 1.0(.0) .0(.0) 1.0
sonar 461 278(.064) | .269(.075) | .202(.017) | 6.9(1.814) | 3.4(1.562) 139
iris 405 .22(.085) .053(.04) | .034(.006) | 3.9(1.044) 2.3(.9) 254
pima 409 .361(.058) | .245(.064) 24(.01) 4.1(.7) 2.0(.447) 301
wdbc 432 .065(.019) | .051(.02) .05(.002) 2.9(.539) .3(.458) 353
ionosphere 435 .188(.067) | .117(.063) | .124(.007) | 3.3(.781) 907 434

Table 9.8: uci tests with noise, with IB1 as the fitness function

dataset # features original error fitness # selected | #noise | Tanimoto
bupa 407 46(.079) | .516(.048) | .35(.016) 2.7(1.1) 2.6(.917) 011
wine 414 393(.111) | .073(.05) | .037(.005) 5.6(.8) 1.4(.663) .384
vote 417 .092(.051) | .051(.03) | .054(.005) 2.2(.6) .3(.458) 446
sonar 461 41(.143) 201(.09) | .123(.012) | 7.6(1.428) 7(.64) 152
iris 405 .493(.068) .1(.061) .024(.006) 3.4(.8) 1.7(.64) 283
pima 409 409(.035) | .346(.046) | .277(.007) | 4.2(.872) | 2.2(.748) 258
wdbc 432 .183(.057) | .054(.024) | .048(.004) 3.9(.7) .4(.49) 313
ionosphere 435 236(.078) | .131(.041) | .083(.008) | 4.9(1.136) 7(.64) .249

One example would be the sonar dataset with NaiveBayes, the classifier improves its
error rate by .023. NaiveBayes handles real variables by creating Gaussian distributions,

57

Table 9.9: uci tests with noise, with IB5 as the fitness function

dataset # features original error fitness # selected | #noise | Tanimoto
bupa 407 46(.079) 44(.087) .36(.012) 1.9(.7) 1.4(1.02) 256
wine 414 393(.111) | .05(.052) | .037(.005) 5.6(1.2) 1.5(.922) .386
vote 417 .092(.051) | .048(.039) | .048(.004) | 2.0(.632) .0(.0) 719
sonar 461 A41(.143) | .216(.093) | .124(.022) | 6.4(1.685) 4(.49) .168
iris 405 .493(.068) | .073(.063) | .024(.007) | 3.1(.831) | 1.5(.671) .266
pima 409 .409(.035) | .324(.05) | .284(.008) | 3.0(1.483) | 1.3(1.1) .305
wdbc 432 .183(.057) | .054(.03) | .048(.004) | 3.9(.539) 5(.5) .364
ionosphere 435 .236(.078) | .143(.059) | .079(.008) | 4.2(.872) 5(.5) 254

Table 9.10: uci tests with noise, with J48 as the fitness function

dataset # features original error fitness # selected # noise Tanimoto
bupa 407 42(.078) 377(.06) | .292(.013) | 6.7(1.1) | 4.5(1.285) 197
wine 414 .067(.048) | .045(.049) | .047(.01) | 3.7(.458) 4(.49) 515
vote 417 .071(.051) | .048(.031) | .047(.003) | 2.0(.894) .8(.6) 444
sonar 461 275(.094) | .322(.095) | .16(.019) 7.3(1.1) | 3.7(1.187) .078
iris 405 .08(.04) .087(.052) | .041(.007) | 2.6(.663) | 1.5(.806) .193
pima 409 .324(.069) | .269(.048) | .247(.011) | 4.3(.64) 2.9(.831) 171
wdbc 432 .098(.03) | .055(.012) | .055(.005) | 3.4(.663) .8(.6) 17
ionosphere 435 A51(.08) | .077(.036) | .079(.004) 4.1(.7) 2(.4) .548

so it is possible that a false pattern is removed when the noise variables are added. The
standard deviation for this classifier is large so this could also be a statistical error.

In all these tests the algorithm is able to find pretty good optimisations for the fitness
function. Actually, many of them are higher than the fitnesses found during the noise free
testing. This suggests that the algorithm is over-fitting the data by using noise variables
that proved slightly useful during the fitness cross-validation. Apart from this, the new
fitnesses are very similar to the old.

These concerns are verified when we compare the fitness with the error rate on in-
stances not used in the fitness function. The biggest difference is also this time seen in
the bupa dataset. The error rate reported, when using the naive bayes classifier for fitness,
is 0.3 but the error on unseen examples is 0.525, a decrease in accuracy of 0.225, leaving
us with a model that is worse than flipping a coin. This shows that the variables in the
bupa dataset do not relate all that well to any concept, but also that the feature selection
algorithm performs very poorly if the pattern is weak and there is a lot of noise.

All this aside, the feature selection proved useful in most of the tests. 34 performed

58

equal or better with fewer features. Three of the times feature selection reduced the
accuracy was on bupa (Naive bayes, SMO and IB1), two times on sonar (Naive bayes
and J48) and one time on the iris dataset (J48). On all the other tests there was a positive
effect, especially for the lazy classifiers. For example IBS5 had an error rate of 0.493 and
with feature selection the average error was as low as 0.73.

Unlike on the original set the SMO seems to really benefit from feature selection.
All tests, except bupa, perform better and the result is actually the same as we got with
no artificial noise at all.

The number of selected features is still pretty low, in most cases it is slightly higher
on average than with the original datasets. But in some cases, especially with the in-
stance based models, the number of selected features is reduced. This is probably be-
cause it is harder for the algorithm to land on the right features in the same number of
generations as before when there are much more to choose from. These classifiers are
especially vulnerable to noise so using suboptimal variables that compensates is also
more difficult.

The size of the selected feature-sets are similar, but these results can also tell us if
the selection algorithm can remove the variables that are unrelated to the underlying
concepts. If a randomized variable was selected by the algorithm when the punishment
for each included is more than zero, it suggests that it is used to over-fit the model to
score a higher fitness. When we analyse the amount of noise selected, it puts some of
the results in perspective.

We can see why Naive bayes performed so poorly on the bupa set, pretty much every
selected variable through the 10 folds was a random variable and it only took 6 of them
to get a significant increase in accuracy on the training data. This obviously did not
generalize well. In fact, the only algorithm able to select on average 1 or more variables
from the real dataset was j48, the algorithm with the highest accuracy without noise.

The IB5 algorithm was the best algorithm for filtering noise. On 4 of the tests it
has the lowest noise levels. This is most likely because it is very sensitive to noise, as
can be seen in the big drop in performance the added noise gives. This could give it an
advantage over other algorithms when the dimensionality increases.

In general, all the algorithms perform pretty well noise vice, given that about 9/10
variable are noise but only about 1/3 of the selected are. The error rate after selection is
also not that different from the previous test. However, the stability has taken a turn for
the worse. Most of the Tanimoto measures are worse as one would expect when most of
the tests contain noise variable over-fitted for each fold. With these Tanimoto measures
we do not need to take the set size into account because the number of features makes
the increase we can attribute to size insignificant.

Some of the solutions in the tests most likely do not have one feature in common
with each other. It is clearly the case with some of the bupa tests. The sonar test with
J48 must also contain solutions like this. On the tests with poorest results there seems
to be little stability in the solutions and big difference between fitness and error rate.

59

But on the wdbc and pima tests with J48 we do not see a big loss in accuracy. So poor
performance comes with low stability, but not necessarily the other way around.

Overall the SMO still is more stable than the rest the of the algorithms. Naive bayes
and IBS5 have similar stability as the SMO. NB1 and J48, however, seem to be much
more unstable than the rest. This could be because they are more likely to over-fit their
training data.

9.3 Big datasets

Tables 9.11-9.15 show the results from using the same approaches on a couple of high-
dimensional micro arrays.

Some of the SMO-tests, on the problems with many classes, took too long to finish
and could not be included.

Table 9.11: tests using high-dimensional datasets with naive bayes as the fitness function

dataset | # features error fitness # selected | Tanimoto
Ic 12601 .094(.061) | .064(.009) | 6.7(.781) .071
pt 10510 .119(.087) | .048(.008) | 3.7(1.005) 119
11 5328 112(.107) | .028(.006) | 5.4(1.428) .08
12 11226 136(.151) | .029(.007) 5.6(1.2) .024
btl 5921 3(.165) .083(.016) | 6.6(1.02) .023
bt2 10368 .34(.156) .059(.02) | 6.3(1.345) .017
t9 5727 .6(.17) 251(.057) | 9.7(1.792) .023
tl1 12534 213(.106) | .16(.015) | 13.8(1.99) .019
t14 15010 49(.074) | .438(.022) | 14.2(1.6) .018
dl 5470 .155(.126) | .029(.003) 5.8(.6) .027
sr 2309 .097(.119) | .037(.009) 7.4(1.8) .066

9.3.1 Analysis

In many of the tests the algorithm is still able to find a high fitness value. For the tests
on Ic, pr, 11, 12, dl and sr the error rate the fitness is based on would be zero or very close
in all of the tests. On the btl and bt2 datasets the fitness function does not get the error
rate that low, however, it is always below .1. For the multi-class datasets t9, t11 and t14
the error rate is considerably higher. t9 gets an error rate between .2025(Naive bayes)
and .3115 (J48). t11 does better and the error rate on the training data is between .091
(Naive bayes) and .1885 (J48). On t14, with 26 different classes, the accuracy on the
training data was between .367 (Naive bayes) and .4805 (J48). Naive bayes consistently

60

Table 9.12: tests using high-dimensional datasets with IB1 as the fitness function

dataset | # features error fitness # selected | Tanimoto
Ic 12601 .098(.052) | .065(.008) | 7.4(1.114) .013
pt 10510 177(.152) | .039(.007) | 4.5(.922) .077
11 5328 17(.154) | .024(.006) 4.6(1.2) .064
12 11226 .082(.093) | .024(.006) | 4.2(.872) .189
btl 5921 .267(.166) | .08(.016) 6.9(.831) .018
bt2 10368 .36(.15) .055(.012) 5.8(1.4) .002
t9 5727 733(.186) | .292(.049) | 8.0(1.949) 011
tl1 12534 .327(.086) | .195(.02) | 10.9(1.513) .043
t14 15010 .588(.128) | .474(.023) | 13.0(1.265) .003
dl 5470 154(.134) | .024(.006) | 4.5(1.204) .036
sr 2309 .086(.097) | .036(.004) 7.0(.775) .08

Table 9.13: tests using high-dimensional datasets with IB5 as the fitness function

dataset | # features error fitness # selected | Tanimoto

Ic 12601 .138(.061) | .063(.008) | 7.5(1.204) .015
pt 10510 .139(.12) | .037(.011) 3.8(.6) 208
11 5328 .109(.078) | .025(.004) 4.7(.64) .056
12 11226 .109(.136) | .025(.005) 4.4(.8) 181
btl 5921 211(.092) | .071(.012) 6.6(.663) .017
bt2 10368 .38(.189) .05(.017) 6.1(1.578) .013
t9 5727 .6(.249) .3(.039) 8.4(1.908) .016
tl1l 12534 273(.136) | .194(.026) | 11.0(1.483) .034
t14 15010 .601(.091) | .475(.02) | 14.6(1.497) .01

dl 5470 116(.119) | .022(.005) | 4.2(1.166) .035
sr 2309 .062(.062) | .029(.007) | 5.8(1.327) 136

finds classifiers with higher accuracy on the training data and J48 does not perform very
well.

Unfortunately the gap between fitness accuracy and error rate on unseen data is very
clear in these tests. It is most obvious for the t9 dataset, this does not get much out of the
feature selection at all. The error rate is between .6 and .767, granted there are 9 classes.
But this is nowhere near the accuracy on the training data mirrored by the fitness. bt2
and t9 seem to get the biggest gaps. These are also the smallest datasets, so it could be
that the cross-validation used does not leave enough of a pattern in the training data and
features with outliers in the validation-set get picked.

61

Table 9.14: tests using high-dimensional datasets with J48 as the fitness function

dataset | # features error fitness # selected | Tanimoto
Ic 12601 .133(.071) | .069(.01) 5.4(.663) .027
pt 10510 .148(.121) | .055(.014) 3.1(.943) .079
11 5328 A41(.111) | .048(.012) 2.3(.458) 122
12 11226 .136(.147) | .062(.016) 2.6(.8) .06
btl 5921 311(.109) | .111(.017) | 4.7(.458) .006
bt2 10368 .58(.189) .1(.027) 3.8(.6) .004
t9 5727 J6T(.111) | 341(.047) | 5.9(.943) .021
t11 12534 A403(.1) .235(.022) | 9.3(1.269) .038
t14 15010 .627(.101) | .532(.023) | 10.3(1.269) .056
dl 5470 .195(.147) | .048(.018) 2.1(.7) .19
sr 2309 122(.112) | .073(.018) 3.7(.781) .063

Table 9.15: tests using high-dimensional datasets with SMO as the fitness function

dataset | # features error fitness # selected | Tanimoto
Ic 12601 .112(.075) | .083(.008) | 9.9(1.578) .016
pt 10510 .158(.068) | .046(.006) | 6.4(1.744) .047
11 5328 .125(.077) | .035(.008) | 5.2(1.833) .103
12 11226 138(.116) | .045(.006) 8.5(1.91) .018
btl 5921 .233(.126) | .119(.009) | 8.6(1.281) .021
bt2 10368 44(.233) .07(.011) 9.1(1.972) .008
t9 5727 .617(.198) | .253(.046) | 18.8(2.441) .004
dl 5470 .102(.094) | .038(.006) | 6.8(1.887) .035
Sr 2309 A1(118) | .047(.007) | 9.5(1.36) .065

When we look at some of the more positive results, it is clear that useful models
where created for Ic, pt, 11, 12, dl and sr. The algorithm was able to do this with every
wrapper.

The number of selected features is still very small. the largest average is 14.6, much
bigger than anything seen in the other tests but the t14 also has much more classes than
anything else that has been tested. Given that there are 26 different classes, this might
not be enough, it is possible that the length penalty is holding back the accuracy. On
the other hand; many of the tests come close to no error in the fitness evaluation, and
without a length penalty there would not be any improvements to make.

62

By ranking the different wrappers based on how well they work on each of the sets
(1 = best, 5 = worst) we can analyse how well the different wrappers performed. See
table 9.16.

Table 9.16: Wrappers ranked by error on unseen data

wrapper avg rank
Naive Bayes | 2.0

IB5 2.1

IB1 2.82
SMO 3.25

148 42

The results show that NaiveBayes performed best on average, closely followed by
IB5. IBS did well on the noise-test, so this is no surprise. We also see that J48 ranked
very poorly. This is no surprise , as it did not do well on the noise test either. The results
for the SMO are not reliable as only 8 out of 11 ranks are included in this average.

There is no similar trend if we rank the wrappers by how high their Tanimoto distance
is, see table 9.17.

Table 9.17: Wrappers ranked by their Tanimoto distance

wrapper avg rank
Naive Bayes | 2.45
IB5 2.82
IB1 3.18
SMO 3.38
J48 2.64

In fact, the Tanimoto is so low in most cases that the only thing it indicates is that
the feature selection in this domain was very unstable. This is also reflected in very big
deviations in the error rates.

So, the conclusion is that with data of this dimensionality, the feature selection al-
gorithm is very capable of finding a feature-subset that fits the training-data. However,
models created using this model will probably not generalize well to unseen data, even
with a close to zero error rate on the training data. The wrappers that are most suited are
IBS and NaiveBayes whereas J48 is not suited at all.

63

9.3.2 Follow up tests

Based on the analysis new tests were run, only using Naive Bayes and IBS.

e The length penalty was set to near zero.

e Population size was increased to 500

Number of iterations increased to 2500.

Table 9.18: bigTests-class weka.classifiers.bayes.NaiveBayes.tex

dataset | # features error fitness # selected | Tanimoto
Ic 12601 .108(.065) .0(.0) 17.5(3.905) .021
pt 10510 .139(.08) | .003(.005) | 7.0(2.049) .089
11 5328 .086(.095) .0(.0) 6.9(1.513) .038
12 11226 .098(.128) .0(.0) 7.2(1.536) .019
btl 5921 .178(.124) | .005(.008) | 10.5(3.557) .018
bt2 10368 42(.14) .0(.0) 9.3(2.002) .009
t9 5727 .633(.145) | .047(.018) | 14.4(2.059) .045
tl1 12534 212(.117) | .007(.008) | 26.9(8.814) .014
tl4 15010 448(.109) | .215(.016) | 36.4(4.883) .026
dl 5470 .077(.084) .0(.0) 7.3(2.238) .027
sr 2309 .178(.106) .0(.0) 8.6(1.2) .03

Table 9.19: bigTests-class weka.classifiers.lazy.IBk.tex

dataset | # features error fitness # selected | Tanimoto

Ic 12601 .094(.065) .0(.0) 16.3(5.08) .01

pt 10510 .198(.142) .0(.0) 9.1(2.663) .045
11 5328 .138(.166) .0(.0) 5.0(1.732) .051
12 11226 127(.119) .0(.0) 6.6(2.538) .019
btl 5921 211(.144) .0(.0) 13.3(2.41) .015
bt2 10368 .36(.215) .0(.0) 10.0(2.324) .012
t9 5727 .683(.138) | .038(.016) | 16.7(4.291) .03

tl1 12534 213(.128) | .018(.008) | 22.8(4.936) .025
t14 15010 468(.076) | .226(.025) | 37.7(8.05) .022
dl 5470 .139(.118) .0(.0) 5.5(1.285) .007
sr 2309 .06(.096) .0(.0) 7.8(2.04) 114

64

The results are pretty similar to the previous runs. The main difference is bigger
feature-sets on average, but they are still pretty small. Error rate is different, in some
cases better and in some cases worse, but this is expected given the high deviations.

The tests do, however, make the problem more obvious. In almost every test the
fitness of the solutions used is 0.0. Even the multi-class problems come pretty close to
no error rate. This shows that the main issue is not the search algorithm, but the heuristic
used.

9.4 Comparisons

Here we compare the proposed algorithm to a couple of other reported results found in
the literature review. The previous datasets where found through an article discussing
how to avoid local maxima, and are not used by the other micro-array articles, so a
couple of new tests where done. None of the others report on stability, therefore it is
omitted. The datasets where difficult to obtain. Following the links mentioned in the
articles did not always work. Because of this there is no guarantee that the tests are
done on exactly the same datasets, they do, however, have the same dimensionality and
number of examples. They are from:

leukemia3: http://www.broadinstitute.org/mpr/publications/projects/Leukemia/
colon: http://genomics-pubs.princeton.edu/oncology/affydata/index.html
lymphoma: http://llmpp.nih.gov/lymphoma/data/figurel/figurel.cdt

Table 9.20: comparison of other results reported as: error rate (standard deviation),
number of features.

dataset Naive Bayes IB5 [Mun+06] [Ban+07] [Can+10]
leukemia3 | .094(.036), 2.0 | .103(.037), 2.0 | 0.075, 10.45 | .176-.059, 2-3 0.0,3

colon .361(.087), 3.1 | .277(.059), 2.8 - .273-.09, 8-10 -
lymphoma | .106(.049), 2.0 .1(.054), 2.0 - .083-.042, 2-3 -

The results for NaiveBayes and IBS5 in table 9.20 are the results of 10 runs with
different seeds (and the standard deviation of these runs). The reported tests use sep-
arate training and test-sets. Using this technique gives poorer performance than cross-
validation because fewer examples are available for training, but this is what the other
studies use, so comparison is simpler. 10-fold cross-validation runs using these datasets
gave approximately half the reported error rate. It is also worth mentioning that the
fitness on every run of the proposed algorithm for these datasets was 0.0.

65

[Mun+06] uses a genetic programming approach with one tree for each class, the
fitness function used is not accuracy but each tree’s contribution towards the correct
class, this means the algorithm will be able to separate between features and sets of
trees that give perfect accuracy. The fitness function in [Ban+07] is based on distinction
tables, it also uses filters to reduce initial search space. They report many different results
for the datasets, using different candidates and induction algorithms (INN - 7NN). The
proposed algorithm gets similar results using IB5 as the wrapper, slightly higher error
rate and fewer features. [Can+10] uses a SVM as fitness function but instead of 10-
fold cross-validation a leave-one-out-cross-validation is used, meaning for each training
example the induction algorithm is tested after construction from the rest. This technique
could give more general feature-subsets, but it is also much more expensive.

The statistics of the test results are not very convincing, because they are done on
one small training set and one small validation set. Results could be down to a lucky
configuration, particularly for [Can+10] that only use one dataset for validation of the
algorithm. [Mun+06] shows good results on multiple datasets, but unfortunately only
one with very high dimensionality. The results in [Ban+07] are more reliable because
they use multiple datasets, but they report results on multiple settings and the best per-
formance is not achieved with the similar settings on each dataset.

The use of training and test-sets also makes it harder to evaluate the stability of the
selection. One could of course slightly modify the training set on multiple runs and
measure the difference, but the training-sets are so small that there probably will be no
stability anyway.

66

Chapter 10

Summary and Conclusion

10.1 Summary

In this thesis the literature on evolutionary approaches to the feature-set selection prob-
lem is discussed. A new implementation is created with a generalized wrapper approach
capable of using any classifier extending the Classifier super-class from weka. It uses
new simplified genetic operators. The algorithm’s parameters are extensively tested us-
ing an example dataset. The algorithm’s run-time and scalability was analysed and en-
hanced. The resulting algorithm was able to solve the benchmark test in a fraction of the
time of the brute-force approach. Extensive tests where then carried out to evaluate the
abilities of the algorithm on a wide range of datasets.

The proposed algorithm scales pretty well, but to be able to use more advanced
induction algorithms as wrappers one must use multi-threading, this is no big issue with
a few threads, but the algorithm was not capable of linear scaling, even if significant
improvements where found by tweaking it. To achieve linear speed-up, an asynchronous
algorithm must be created. Given that this is a type of algorithm that takes some time to
run, reports on scalability and run time is important, unfortunately this is not the norm
in the literature, an exception being [Zhu+10].

The results show that genetic algorithms can be used for fast and useful wrapper
based feature selection. But they also show a problem with wrapper-based feature selec-
tion in general. The test results are plagued by big differences in test-error and holdout-
error. This is not due to over-fitting of the wrapper algorithm, but rather an over-fitting
of the feature-set with regard to the cross-validation used as in the fitness evaluation.

In most cases performance is improved anyway, but for some of the tests, subsets
evaluated to be significantly improved are outperformed by their supersets on unseen in-
stances. This shows that feature selection is more than just finding the optimal subset for
training-data accuracy. Optimal accuracy on training-data does not always equal good

67

generalization. Higher accuracy on test data is one indicator, but it is not optimal because
there are so many similar subsets that some are bound to test better by coincidence. This
leads to our main conclusion.

10.2 Conclusions

The proposed evolutionary approach works well for traversing the subset search-space.
This is demonstrated by finding a solution with high fitness on the test-data in every test.
The main limitations are problems with the search heuristic.

Both the low dimensional tests and the high-dimensional tests demonstrate that there
is a gap between the accuracy used as fitness and the accuracy the final algorithm gets
on unseen data, this gap often means the feature selection does not help, especially for
data with little noise.

The tests demonstrate a limitation of the wrapper-approach, with accuracy as heuris-
tic, when it comes to dealing with high dimensional datasets. The proposed algorithm
is not able to compete with other similar algorithms, not because of some limitations of
the search algorithm, but because the wrapper-accuracy is incapable of finding the best
subsets when there are many that give no, or similar, error rate. This leads to a big gap
between accuracy on training and unseen instances. This problem is especially evident
when looking at the results of the tests with high-dimensional datasets with few training
examples.

This problem causes the proposed algorithm to perform worse than other examples
from the literature, especially on the tests that use separate training and testing-sets,
giving fewer training-examples than cross-validation. For wrapper-based feature selec-
tion with high dimensionality and few examples an approach similar to what is done in
[Mun+06] should be taken, this uses not just accuracy but the certainty of the induc-
tion algorithm allowing search among different solutions that classify every example
correctly.

The main main conclusion is: Wrapper accuracy is not a sufficient measure for subset
fitness with high dimensional datasets, the fitness should also include some metric for
differentiation of subsets that show complete accuracy on training data.

Consequently, an abstract approach is difficult to implement. This type of metric
would differ between the wrapper algorithms and would in some cases not be available.
This is exemplified here by the classifier super-class in weka that does not include any
such methods.

68

Bibliography

[AAQ7]

[Alf+12]

[A1S+10]

[Bae+10]

[Ban+07]

[BH+10]

[Can+10]

[Cha+13]

[Che+12]

D.J. Newman A. Asuncion. UCI Machine Learning Repository:
http:/fwww.ics.uci.edu/~mlearn/MLRepository.html. 2007.

Rayner Alfred, Irwansah Amran, Leau Yu Beng, and Tan Soo Fun. “Unsu-
pervised learning of mutagenesis molecules structure based on an evolutionary-
based features selection in DARA”. In: vol. 7691 LNAI. 2012, pp. 291 -
299.

A. AlSukker, R.N. Khushaba, and A. Al-Ani. “Enhancing the diversity of
genetic algorithm for improved feature selection”. In: 2010//, pp. 1325 -31.

Changseok Bae, Wei-Chang Yeh, Yuk Ying Chung, and Sin-Long Liu. “Fea-
ture Selection with Intelligent Dynamic Swarm and Rough Set”. In: Expert
Systems with Applications 37.10 (2010/10/), pp. 7026 —32.

M. Banerjee, S. Mitra, and H. Banka. “Evolutionary rough feature selec-
tion in gene expression data”. In: IEEE Transactions on Systems, Man, and
Cybernetics—Part C (Applications and Reviews) 37.4 (2007/07/), pp. 622
-32.

Edmundo Bonilla Huerta, J. Crispin Hernandez Hernandez, and L. Alberto
Hernandez Montiel. “A new combined filter-wrapper framework for gene

subset selection with specialized genetic operators”. In: vol. 6256 LNCS.
2010, pp. 250 -259.

Laura Maria Cannas, Nicoletta Dessi, and Barbara Pes. “A filter-based evo-
lutionary approach for selecting features in high-dimensional micro-array
data”. In: vol. 340 AICT. 2010, pp. 297 -307.

Alexandros Andre Chaaraoui and Francisco Florez-Revuelta. “Human ac-
tion recognition optimization based on evolutionary feature subset selec-
tion”. In: 2013, pp. 1229 —1236.

Bolun Chen, Ling Chen, and Yixin Chen. “Efficient ant colony optimization
for image feature selection”. In: Signal Processing (2012).

69

[Dat+11]

[Din+09]

[Dro+10]

[DS+08]

[Dur+09]

[Els]

[Fun+97]

[Gem]
[Hal+09]

[Har+05]

[Hua+07]

[Joh+94]

[Kal+07]

[KP]

A. Datta, S. Ghosh, and A. Ghosh. “Wrapper based feature selection in hy-
perspectral image data using self-adaptive differential evolution”. In: 2011//,
6 pp. —

Sheng Ding and Xiaoming Liu. “Evolutionary computing optimization for

parameter determination and feature selection of support vector machines”.
In: 2009//, 5 pp. —

K. Drozdz and H. Kwasnicka. “Feature Set Reduction by Evolutionary Se-
lection and Construction”. In: vol. pt.2. 2010//, pp. 140 -9.

C. De Stefano, F. Fontanella, and C. Marrocco. “A GA-based feature se-
lection algorithm for remote sensing images”. In: vol. 4974 LNCS. 2008,
pp. 285 —294.

P. Durr, W. Karlen, J. Guignard, C. Mattiussi, and D. Floreano. “Evolution-
ary selection of features for neural sleep/wake discrimination”. In: Journal
of Artificial Evolution & Applications (2009//), 179680 (9 pp.) —.

Elsevier. Engineering Village:
http://www.engineeringvillage.com/.

George S.K. Fung, James N.K. Liu, K.H. Chan, and Rynson W.H. Lau.
“Fuzzy genetic algorithm approach to feature selection problem”. In: vol. 1.
1997, pp. 441 —446.

http://www.gems-system.org/.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. “The WEKA Data Mining Software: An Update”.
In: SIGKDD Explor. Newsl. 11.1 (Nov. 2009), pp. 10-18.

M.T. Harandi, M.N. Ahmadabadi, B.N. Araabi, and C. Lucas. “Feature se-
lection using genetic algorithm and it’s application to face recognition”. In:
vol. vol.2. 2005//, 6 pp. vol.2 —.

Hui-Ling Huang and Fang-Lin Chang. “ESVM: Evolutionary support vec-
tor machine for automatic feature selection and classification of microarray
data”. In: BioSystems 90.2 (2007), pp. 516 —-528.

George H John, Ron Kohavi, Karl Pfleger, et al. “Irrelevant Features and
the Subset Selection Problem.” In: ICML. Vol. 94. 1994, pp. 121-129.

Alexandros Kalousis, Julien Prados, and Melanie Hilario. “Stability of fea-
ture selection algorithms: a study on high-dimensional spaces”. In: Knowl-
edge and information systems 12.1 (2007), pp. 95-116.

Anders Kofod-Petersen. How to do a Structured Literature Review in com-
puter science, http://research.idi.ntnu.no/aimasters/files/SLR_HowTo.pdf.

70

[Kru+12]

[Liu+08]

[MG+07]

[Mun+06]

[Nes+09]

[Pra+10]

[RC+06]

[Roy+08]

[Sik+05]

[Tre+04]

[Vig+12]

[Viv+03]

[Wan+12]

Joseph S. Krupa, Somdeb Chatterjee, Ethan Eldridge, Donna M. Rizzo, and
Margaret J. Eppstein. “Evolutionary feature selection for classification: A
plug-in hybrid vehicle adoption application”. In: 2012, pp. 1111 —1118.

Nan Liu and Han Wang. “Improving predictive accuracy by evolving fea-
ture selection for face recognition”. In: IEICE Electronics Express 5.24
(2008), pp. 1061 —1066.

Ivan Mejia-Guevara and Angel Kuri-Morales. “Evolutionary feature and
parameter selection in support vector regression”. In: vol. 4827 LNAIL. 2007,
pp. 399 —408.

D.P. Muni, N.R. Pal, and J. Das. “Genetic programming for simultaneous
feature selection and classifier design”. In: IEEE Transactions on Systems,
Man and Cybernetics, Part B (Cybernetics) 36.1 (2006/02/), pp. 106 —17.

Kourosh Neshatian and Mengjie Zhang. “Dimensionality reduction in face
detection: A genetic programming approach”. In: 2009, pp. 391 —-396.

Y. Prasad, K.K. Biswas, and C.K. Jain. “SVM Classifier Based Feature Se-
lection Using GA, ACO and PSO for siRNA Design”. In: vol. pt.2. 2010//,
pp- 307 -14.

Jose-Federico Ramirez-Cruz, Olac Fuentes, Vicente Alarcon-Aquino, and
Luciano Garcia-Banuelos. “Instance selection and feature weighting using
evolutionary algorithms”. In: 2006, pp. 73 —79.

Kaushik Roy and Prabir Bhattacharya. “Improving features subset selection
using genetic algorithms for iris recognition”. In: vol. 5064 LNAI. 2008,
pp- 292 -304.

R. Sikora and S. Piramuthu. “Efficient genetic algorithm based data mining
using feature selection with Hausdorff distance”. In: Information Technol-
ogy & Management 6.4 (2005/10/), pp. 315 -31.

A. Treptow and A. Zell. “Combining Adaboost learning and evolution-
ary search to select features for real-time object detection”. In: vol. Vol.2.
2004//, pp. 2107 -13.

L. Vignolo, D. Milone, C. Behaine, and J. Scharcanski. “An evolutionary
wrapper for feature selection in face recognition applications”. In: 2012//,
pp- 1286 —90.

R.A. Vivanco and N.J. Pizzi. “Identifying effective software metrics using
genetic algorithms”. In: vol. vol.2. 2003//, pp. 1305 -8.

Shangfei Wang, Shan He, and Hua Zhu. “Similarity Measurement and Fea-
ture Selection Using Genetic Algorithm”. In: vol. vol.2. 2012//, pp. 20 —
9.

71

[Win+11]

[Yah+11]

[Yan+98]

[Zen+09]

[Zha+05]

[Zhu+10]

S.M. Winkler, M. Affenzeller, G. Kronberger, M. Kommenda, S. Wagner,
W. Jacak, and H. Stekel. “Analysis of Selected Evolutionary Algorithms
in Feature Selection and Parameter Optimization for Data Based Tumor
Marker Modeling”. In: vol. pt.1. 2011//, pp. 335 —42.

A.A. Yahya, A. Osman, A.R. Ramli, and A. Balola. “Feature selection for
high dimensional data: an evolutionary filter approach”. In: Journal of Com-
puter Sciences 7.5 (2011//), pp. 800 —20.

Jihoon Yang and Vasant Honavar. “Feature subset selection using a genetic
algorithm™. In: Feature extraction, construction and selection. Springer,
1998, pp. 117-136.

Xiao-Ping Zeng, Yong-Ming Li, and Jian Qin. “A dynamic chain-like agent
genetic algorithm for global numerical optimization and feature selection”.
In: Neurocomputing 72.4-6 (2009/01/), pp. 1214 -28.

C.K. Zhang and Hong Hu. “An effective feature selection scheme via ge-
netic algorithm using mutual information”. In: 2005/, pp. 73 —80.

Hao-Dong Zhu, Hong-Chan Li, Xiang-Hui Zhao, and Yong Zhong. “Fea-
ture Selection Method by Applying Parallel Collaborative Evolutionary Ge-
netic Algorithm”. In: Journal of Electronic Science and Technology 8.2
(2010/06/), pp. 108 —13.

72

Appendix A

Literature search

This chapter contains a table of all the documents that passed the first search criteria
described in 2.4. For those excluded there is a description of why (IC: Inclusion criteria.
QC: Quality control). See chapter 2 for more details.

73

- DI :MUH 2107 | uonodps pue SunySrop 21njea) smmawoiqnnu 10§ uonesrjdde A1euonnjoAy 29 oNQUAD) PLIGAY © Jo AI[IQR UONRZI[RIUAF-sS010 2y} SurzA[euy

- $0I ‘€01 007 uonuSoda1 2Injeaj SuruIyoRW paseq WILIOS[e O1OUAT puk JI0oM)AU [eInau pLIQAH

- $0I ‘€21 010T AJLIe[IUIIS QINJEJ UO PIseq POYIdW UONOA[AS puk SULIDISN[O dINqLIIE ATRUOIN[OAD UY

- o) L661 uopneindwoo Areuonnjoad Aq punoj syuI| [eUONOUNJ YSNOIY) SHIOMIU [EINSU J0OJ UOTII[IS dINJLd]

- MOO hNUO 6002 Sururea| pasiazadnsu) Ul UOIOI[AS 19SGNS dINJE,] J0J SWSIUBYII[A ATRUOTIN[OAT JO UONRZIPLIQAH

- 1dniiod »MUO 2102 UOTIUQJAT AINJONI)S BIA UOTIOJ[AS AINJLAJ AIRUOTINJOAT

- 01 ‘€01 210T uonod[as Jasqns axmeay fewndo 1oy sunpuioS[e pardsur-org

- 1 ‘€01 9002 UOI}0J[AS AINJEAJ PAPPAQUID YIM S931) Jeau[[JO SUTUIed] AIeuornnjoAq

ﬁo 1+oI1(] - 0102 uonodNISUO) pue UOLIA[AS AIRUONN[OAT AQ UOTIONPIY 19§ AINIBd]
- MUO 2102 WRJSAS OLIIOWIOIQ [EPOW-N[NW € J0J SUNy3Iom pue UoIod[as dImed) pLqAH :soLnowolg AIeuonnjoAd 29 d1ouaD

- mUO hNUO 6002 uonezio3aed [a[rered 1oy yoeoidde uonossfas a1neaj paseq-juajuod e s Junndwod Areuonnjoad sunowereduou pue dSLndweIeg

- 1dniroo 2102 UuoneIYISSE[d DFH J0J UONONPAI 9POIII[Q PUL UONI[S 2INJLaJ ATRUON[OAT

- 1dnaioo 1102 uonugoda1 d1AWoIq Je[nooLad 10J UONII[s AINJLIY AIRUONN[OAD 29 JNAULD) :SJHD

- 701 002 WLIOS[E UONOJ[IS [RUO[D dUNWILII UO PISEq UOTI[AS dINJLd]
~©O+E5~>D - 9002 uS1SOp JOYISSE[O PUB UONII[IS 2INELaJ snosue)nuils 10J Surwrwessord onouan
~©O+UN: - 9002 suy)Iog[e Areuonnjoad ursn SunyIrom aInjeaj pue UuordA[S dUBISU]
- 50) | €002 wy)LIo3[e ATeuonn[oAd/IdyIsse]d sakeq PLIqAY & Sulsn s)osejep [e130[01q PUB [BIIPAW UT AIDA0ISIP 93PA[MOUS]

- %) 1002 swiypLoS[e renuanbas pue onouad yim uostredwos e syIomlou ueIsakeq Aq UOIOI[AS 1osqNS AINJLS]

- %0) | 2102 UOIO9[ds 2INJLaJ Paseq 19s Y3nor £zznj Jo sueaw Aq SWYILIOS[E UONII[IS douL)sUT AIBUOIIN[OAD Sutoueyug

- MUO 0102 QuIyoRA 10399A Moddng Azzn, pue wyirioSe onouas 1yonSe], prIqAy Suisn uond9[As AINJLd,]
~WO+ H&EH - S00C uonusooa1 208y 03 uonesrrdde sJ1 pue w0 (e O13oUS FUISN UOTOJ[AS NI
- mUO nNUNV 900C UOT)EULIOJUT [eM)NW PUE WIPIIOS[E dNOUST Paoueyud JO PLIGAY oY) U0 Paseq N AS UT UONII[IS aInjed,]
ﬂmo+vmm_ - S00T Q0UR)SIP JJIOPSNEH YIIM UONOI[AS 21njeaj Sursn Sururw ejep paseq wpLoS[e onouas Jusroyg
~WO+N£NH - S00T uorewLIojul [enjnuw Suisn w0 [e S1NOUIT BIA SWAYIS UONOA[IS AINJEIJ JAIOD UY
ﬁm [+uepm] - 2102 WILIOS[Y dNAUdD) JUIS() UONOI[AS 2INJed] PUB JUSWINSLIA] AJLIR[IWIS
ﬁ h®+ﬁ—\~n: - L661 wopqoid uonosopas a1nyeay 0y yorordde wnpioSie oneuad Azzng
[60+ua7] - 6002 Uon09[as 21Med) pue uoneziundo [edLLWINU [2qO[S 10J WLIOT[L d1QUAT JUde ANI[-UIeyd JIWRUApP Y
- 01 ‘€01 €102C S[OPOW YIOMIOU [EINAU YIIM UOTIBIYISSE[O PUB UOT)II[S 2INJea) 10§ 1ozrundo 9[quiasua paseq-wiLios[e ATeuonn[oAd dAnod[qo-ninw v

ﬁo I +m_<u_ - 0102 uor99[9s 21neaj pasoidwir 10y wiLIoS[e o13oUdT Jo ANSIOAIP o) Suroueyuyg
ﬁo —+5£NH - 0102 wyLoS [y d1euan) Areuonn[oAr aaneIoqe[[o) [o[ered Suikiddy Aq poyiojy uond9[as anjea
1St papn[our | :JO asSnedaq Papnoxa Ieok Qureu juauwunodop

document name year | excluded because of: | included as:
A minimum risk wrapper algorithm for genetically selecting imprecisely observed features, applied to the early diagnosis of dyslexia 2008 Oow -
Understanding the evolutionary process of grammatical evolution neural networks for feature selection in genetic epidemiology 2006 Hﬂw, 1C4 -

The feature selection method based on the evolutionary approach with a fixation of a search space 2007 OOw -

An evolutionary wrapper for feature selection in face recognition applications 2012 - ~<wm+ 1 NH
Binary particle swarm optimization based algorithm for feature subset selection 2009 mﬁuwv 1C4 -
Genetic-fuzzy rule mining approach and evaluation of feature selection techniques for anomaly intrusion detection 2006 Mﬁwu 1C4 -
Feature selection and classification by using grid computing based evolutionary approach for the microarray data 2010 not OOE_&OEQ -
Evolutionary-rough feature selection for face recognition 2010 Hﬁw, 1C4 -
Analysis of Selected Evolutionary Algorithms in Feature Selection and Parameter Optimization for Data Based Tumor Marker Modeling 2011 - j%\m5+~ :
Combining evolutionary and sequential search strategies for unsupervised feature selection 2010 Oﬁw -
Evolutionary computing optimization for parameter determination and feature selection of support vector machines 2009 - ~UHB+O©_
Genetic & Evolutionary Type II Feature Extraction for Periocular-based Biometric Recognition” 2010 Hﬁwu 1C4 -

A GA-based feature selection algorithm for remote sensing images 2008 - Eum+OMﬁ
Evolutionary feature selection in boosting 2004 HGw, 1C4 -
Features selection approaches for intrusion detection systems based on evolutionary algorithms 2009 mﬁuw, 1C4 -
Feature selection for a fast speaker detection system with neural networks and genetic algorithms 2006 wﬁuwu 1C4 -
Co-evolutionary genetic Multilayer Perceptron for feature selection and model design 2011 1C2 -
Evolutionary rough feature selection in gene expression data 2007 - Ew mD+O\J
Feature selection for high dimensional data: an evolutionary filter approach 2011 - ~<wU+H :
Evolutionary feature selections for face detection system 2008 mﬁuu 1C4 -
Evolutionary selection of features for neural sleep/wake discrimination 2009 - :U~:.+O©_
An incremental approach to genetic-algorithms-based classification 2005 Mﬁww 1C4 -
Evolutionary Feature Construction for Ultrasound Image Processing and its Application to Automatic Liver Disease Diagnosis 2011 Hﬁw, 1C4 -
Evolutionary multi-objective optimization of trace transform for invariant feature extraction 2012 Hﬁwu 1C4 -

A New Dimensionality Reduction Algorithm for Hyperspectral Image Using Evolutionary Strategy 2012 MQw, 1C4 -
Hyperspectral feature selection and classification with a RBF-based novel double parallel feedforward neural network and evolution algorithms | 2009 1C3,IC4 -
Investigation of evolutionary feature subset selection in multi-temporal datasets for harmful algal bloom detection 2011 Oﬁ 1 . Oﬁuw -
Feature Selection with Intelligent Dynamic Swarm and Rough Set 2010 - HW ac+ :ﬁ
Hybrid optimization of feature selection and SVM training model 2004 1C2 -
Evolutionary feature and parameter selection in support vector regression 2007 - E(—@+OQH
A filter-based evolutionary approach for selecting features in high-dimensional micro-array data 2010 - [Can+10]
Feature subset selection based on co-evolution for pedestrian detection 2011 1C2 -
Combining Adaboost learning and evolutionary search to select features for real-time object detection 2004 - _”‘H,H.O+Om_.u_

- DI thH 9002 uonod9[as [euoo pue Suruwrwersord uorssaidxe oues uo peseq Jururw vleq

- MUO 00T siuaned 100ued woijy eiep diyo YN Surutw 1oy Surwweiold onouan

- 01 ‘€01 6002 uonIuS00a1 90k] J0J SAINJEJ [BIOL] JO UOISNJ PUB UONII[AS

- 1 ‘€01 1102 JoseIep paduB[eqUII [RUOISUWIP-YSIY Ul UONII[S 2INJLaJ J0J UONEOYISSE[O JNAS pue anbruyoe Surjdwes mou v

- D1 ‘€01 9002 sarmes) rewndo Jo yoreas Areuonnjoaq

- MQO 8002 uonouny ssomy Azznj Pim voneziundo wrems aponied £q UONII[IS J9SqNS NI

- mUO 0102 sa1meay Juapuadap ay) puy 03 sayoroidde uonospas armeay Sursn

- 01 ‘€01 9002 UOTIOJ[AS $3AsqNS SUIAJOA-00 [PIM SuruIea] paseq-[eutdy 10y SurwwrerSord onouan

~O I +Emﬁ_ - 0102 s10ye10do o1jouas paziferoads yim Uond9[as 19sqns duad 10j dromawely soddeim-19)[y pauIquiod mau y
- MUO 100T SULI[Y pue UOIO[ASs dINeaJ Sursn ejep [endoads woly suonIpuod judwusifesiu Jo uonorpard pasueyug

- D1 ‘€01 L00T siuaned oruarydozIyos Jo uonesyIsse[o [eusis HHH 10J S2INJLaJ JUBAS[I JO UONII[OS

- 701 2102 UONBUIWILIOSIP SPUNOS 9ATII3JJ® JOJ UOIOJ[AS dIMBJ 9A10[q0 uQ
H@O+m® Z_ - 600C yoeoidde Surwwer3ord o1nouad v :u010)p 298] Ul UONONPaI AJIfRuoIsuawI
- MUO 0002 soyoeoldde Areuonnjoad pue [EUOTIUSAUOD £q $}9SqNS 2INJedJ JO saInseaw [eonsne)s Suraoxduwy

- DI ,MUM 9002 Supropuar Apoyured ur uonod[ds 1ajowered 1oy yoress onouad pasiaradng
HMO.T AT >H - €002 SWILIOS[E 9Nouas Julsn SOLOW 2IBMIJOS JANOIY Surkjnuopy
- MQO hNQNU JUO L0027 yoeoidde Kreuonnjoad puqAy e Sursn swoqoid one)side Astou ur UONBOYISSL[O PULR UONI[AS AINJLd]

- MUO ‘I UO 0102 soresowojoyd ouwIn-ear 10J UONIA[As aInyed) anouasd £q 1os oSewr ue jo uoneziumdo

HN 1 +:.HVE - 2102 uoneosidde uondope a[o1yea prqAy ur-3njd v :uONEBOYISSE[O J0J UONI[AS 2INJed) Areuonnjoaq
[o1+e1d] - 0102 USISO(VNS 10§ OSd PUE OJV ‘YD Suls() UONOI[OG AIMER,] paseq 10YISSe[D INAS
- 701 800¢C UONBIYISSE[O JOQUIA-POOM JOJ SHIOMIAU [eINdU [eIdynIe 0} parjdde uonosfas ainjesay Areuonnjoaq
[Lo+enH] - L00T ©1ep ABIIBOIOIW JO UONEBOYISSE[D PUR UONII[AS 2INJLaJ dNRWOINE 10J Sulydrw 103994 oddns Areuonnjoaq :INASH
- +OI 00T 'IRp ARLIBOIOIW JO SIsATeur ay) 0} uonedrjdde :uonoafas 1as aInjeay 1snqol I0J SPIOYSIY) JO YdIeas AIRUOnNnjoAT

- 01 ‘€01 €10T Surwure1So1q o1euan) Aq saINJeE,] UONIJO(ASBWE(] JO UONIJRS pajewioIny

: ~+Hmﬁ: - 1102 uonn[oAd [enuaIayyip aandepe-jjos Sursn ejep aSewr rensedsiodAy ur uonooes ainyedy paseq soddeipy
- DI mmom 0102 NI0M)QU [BINSU [BIOYNIR £ UONOBNXD 2Injea) Suisn uonesyisse[d urajoid Joj yoeordde Areuonnjoss uy

- D1 ‘€01 L00T uoneziundo wrems sonted pue s19s Y301 UO PISeq UONIIAS ML

- DI thH 1102 SwIIIo3[e ATRUOTIN[OAR BIA BIEP UOISSAIAXd QUAT UT AIAOISIP AFPa[mous]
Hwo+ %ON: - 8002 uonuS0921 SLIT J0J SWPLIOS[e dN2udT Julsn UONI[s 1asqns sarnjea) Suraoxduy
- el thM 5002 sisA[eue Juauodwod fedrourid payySrom Areuonnjoad Suisn UONOBIXD 2INJEI]

- MUO 0102 BIBWOYDS UONLZIPLIGAH SUDMBWYOUIQ 1UONII[OS AINJE,] ONWIA

ﬁm 1 +b<~ - 2I0T | v¥va utuondajas samyeay Paseq-AIBUOIIN[OAD UB UO PIsEq AINJONNS SINOJ[OU SIsauageinw Jo Surured] pasiaradnsun
ﬁwo+5ﬂ.: - 8002 uonuS00a1 208 J0J UONOI[AS 2InJed) JuIA[oAd Aq Kovinooe aandrpaid Suraoxduy
:Se papnour | :JO ISNBIAQ PIapN[oxa 89K Qureu Juawndop

