

6.3. THE FINAL CONCEPT 31

Figure 6.4: The game sketch of Magnus Bliitecher Dysthe

uses his spacecraft 'Radix’ to travel around the planet and disable all satellites,
leaving Pythonia without power. When Dr.Thereon started his corrupt plot of
havoc, the Pythonian launched their maintenance crafts, but to no avail. They
were shot down while correcting the satellites, every last one. Except one, yours.
You are the pilot of the last spacecraft in Pythonian orbit, and the Pythonians
have fitted your ship with time warping capabilities. This means that you need
not to fear Dr.Thereon when you are docked with a satellite. Your task is to
repair all the satellites in the quadrant, and dock with the power dish, to expel
Dr.Thereon and proceed to next quadrant. The faith of Pythonia lies in your
hands. Good Luck!”

6.3.2 Playing Field Elements
The objects displayed in figure 6.6 make up the interaction on the playing field.

The spaceship This is the avatar representing the player in the game. It is
flown using the arrow keys on the keyboard, and can dock with satellites and
the power station when the speed is sufficiently low.

Satellites The satellites distributed on the playing field are linked together in
a grid of power connections. The coding exercises are placed in the satellites and
is accessible for a player if he successfully docks with a satellite. The satellites
are displayed in two colors, red and green, and distinguish between respectively
solved and unsolved exercises. Upon beeing solved, the satellite changes color
from red to green, and the power connections of the satellite are changed to a
light blue color.

Power station The power station is the level exit. When all satellites are
powered on by solving their exercises, the player is allowed to dock with the

32 CHAPTER 6. CONCEPT

Speed: 02 | 3 Satellite(s) operational score: 5250

Figure 6.5: Screenshot of the game as it is today. The code exercises are acces-
sible by docking at any of the satellites

=X i

Figure 6.6: From left to right: The player spaceship, an unsolved satellite, a
solved satellite, the power station and Dr.Thereon

power station and proceed to the next level.

Dr.Thereon Dr.Thereon is represented by his spaceship 'Radix’, and has the
only weapon in orbit around Pythonia. His mission is to wreak havoc on the
people of Pythonia by disabling their power sources. He completes this by three
means. First he has disabled all the satellites, second he shoot down other ship
within his range and third, as the player fixes the satellites, he flies around and
mess with the code in some of the solved exercices, disabling the satellite again.

6.3.3 Code Interface

The code interface is displayed when the player has docked with a satellite. Four
text areas are displayed in the code interface, where the largest is reserved for
the player to code in. The other text boxes display the task, show the output
of the player’s code, and present the assessment of the player’s code.

6.3. THE FINAL CONCEPT 33

: ith the arrow keys, and interact with objects by pressing space.
’hen a level is completed you can advance to the next level by interacting with the power source.

Figure 6.7: A screenshot of the code interface

In addition to the text area, the interface has three buttons available; exe-
cute, reset and exit. The execute button is used to send the player’s code for
interpretation and evaluation, and the result will be presented in the two bot-
tom text areas. If the player is stuck and want to start over, the reset button
will remove the code and restore the exercise to its initial state. The exit button
will leave the coding interface, and return the player to the playing field.

6.3.4 Game objective

In order to win the game, a player has to complete all the levels. The levels are
completed by solving the exercises, and powering on every satellite the particular
level and dock with the power station.

6.3.5 Key Features

According to section 5.2.6 it is important that the game adhere to one or more
of Malone’s fun categories[8]. Covering all three categories is a tremendous
challenge for all games, and if not implemented correctly may lower the fun
value of the game entirely. Based on this Pyception will mainly focus on two of
the aspects, challenge and fantasy.

The sketch detailed in the previous section, would mainly appeal to the
fantasy and challenge categories defined by Malone [8]. Through the game story

34 CHAPTER 6. CONCEPT

and the graphics displaying a space environment, the fantasy aspect is catered.
In addition, the exercises will provide the player with a set of challenges.

6.4 Syllabus

A target audience for Pyception are students attempting to learn programming,
such as NTNU students attending the course TDT4110. It is natural for the
game to follow the syllabus of the mentioned courses, as stated in section 5.4, and
if the Pyception is successful, it may be deployed as supplementary educational
tool or even as a part of the compulsory exercises.

Chapter 7

Requirements

Requirements are important in order to provide a clear set of features that
must be present in the project, and also make sure all stakeholders needs are
satisfied. Requirements are divided in two groups, functional and non-functional
requirements.

7.1 Functional Requirements

Functional requirements are the baselane for the game set according to the
thesis description, and will later be the basis of the evaluation. FR1 group
are requirements regarding the game in general. The requirements related to
actions that take place on the playing field, are listed in FR2. In FR3 the
requirements are tied to the players interaction with the coding interface, as well
as the response generated by the interface. Finally the FR4 lists requirements
of features that a lecturer would require in order to adapt the game syllabus to
his or her course.

FR 1 Game

Id Description Priority
FR 1.1 | It should be possible to start playing without an instal- High
lation process
FR 1.2 | The game should have an intrinsic fantasy, where the High
player’s action affects the playing field, and the playing
field affects the play.
FR 1.3 | The game should proceed to the next level when the High
player interacts with the power source after all the tasks
are correctly solved.
FR 1.4 | The game should store tasks in a database. High
FR 1.5 | The game should retrieve tasks from the database. High

Table 7.1: Functional requirements Game

35

36 CHAPTER 7. REQUIREMENTS

FR 2 Playing field

1d Description Priority

FR 2.1 | Asa player I want to be able to navigate the space ship High
freely on the playing field

FR 2.2 | As a player I should not be able to navigate the space | Middle
ship outside the playing field

FR 2.3 | As a player I want to be able to dock with all satellites High

FR 2.4 | As a player I want to not be able to dock with the | Middle
powerstation when some tasks are unsolved

FR 2.5 | As a player I want to be able to dock with the power- High
station when all tasks are solved

FR 2.6 | There will be an enemy on the playing field at all times. | Middle

FR 2.7 | If the player is in range of the enemy, a penalty will be | Middle
applied.

FR 2.8 | The enemy will sporadically ruin the satellites and mess Low
up the code

FR 2.9 | As a player I want to be able to earn points and keep | Middle
track of the score

FR 2.10 | As a player I want to be able to see a measure of com- Low
pletion of the current level

Table 7.2: Functional requirements Playing field

FR 3 Code Interface

Id Description Priority
FR 3.1 | As a player I want to enter my own code High
FR 3.2 | As a player I want to have my code evaluated High
FR 3.3 | As a player I want feedback regarding what is wrong in High

my code
FR 3.4 | As a player I want feedback when my code is correct High
FR 3.5 | As a player I want to be able to reset my code Middle

FR 3.6 | As a player I want to have my code stored so I can go | Middle
back and continue later

FR 3.7 | As a player I want to have my finished tasks stored so I | Middle
can go back and review it later

FR 3.8 | As a player I want to be able to debug code Middle

Table 7.3: Functional requirements Player Coding

FR 4 Lecturer

Id Description Priority

FR 4.1 | As a lecturer I want to have a password protected ad- | Middle
ministration account with access to the exercises.

FR 4.2 | As a lecturer I want to be able to create new tasks High
FR 4.3 | As a lecturer I want to be able to edit tasks Middle
FR 4.4 | As a lecturer I want to be able to delete tasks Middle

Table 7.4: Functional requirements Lecturer

7.2. NON-FUNCTIONAL REQUIREMENTS 37

7.2 Non-functional Requirements

Non-functional requirements describe necessities not directly related to features
of the game, like security and extendability. Definition of the non-functional
requirements are listed alphabetically in this section.

Accessibility A high priority of Pyception is the accessibility. In the thesis
description it is listed that it should be easily accessible online. From a users
perspective, it should not be necessary to perform any installation process prior
to playing the game. Installation guide should be available to lecturers who
want to establish a gameserver.

Compatibility Pyception is a proof of concept, making a wide compatibiliy
unneccessary in order to prove the value of the project. Compatibility is a
medium priority. The game should be playable in the newest version of all
major browsers. The game server should be compatible with both Linux and
Windows platforms, but as noted in appendix B, the installation guide will only
be available for the Windows platform.

Performance Pyception is a proof of concept, making performance a low
priority issue. The game should be playable, but not scalable to usage for many
players.

Security As this is a proof of concept, the security aspect is low on the priority
list. The topic should recieve some attention in the report, listing potential
security issues that are present in Pyception.

Usability The usability of the system has a high priority in the project. The
game should be easy to use and understand, but hard to master. Gamers should
be able to understand the game mechanics within few minutes, and be able to
understand how to submit code for execution and evaluation. Solving tasks
may require the gamer to learn something new, so the gamers are expected to
spend time solving the tasks. There should be an understandable interface for
lecturers to create and edit tasks.

38

CHAPTER 7. REQUIREMENTS

Chapter 8

Design Choices

The basis of Pyception has always been to create an educational game, where
the player will learn Python by playing a game in his web browser. The loose
boundaries has given me the freedom to create the game as it suited me, but in
the process I had to make a lot of choices. In this section I will discuss notable
choices made regarding Pyception.

8.1 Architecture

An entire chapter is devoted to describing the chosen architecture of Pyception,
however the implemented architecture was not the single option that was con-
sidered. The core challenge of Pyception is to create a web service that execute
and evaluate user produced code. Essentially two options are available, execute
code locally on the client or on the web service.

8.1.1 Server Side Execution

Prior to the project start, to my knowledge there existed web frameworks, such
as Django. This would allow me to create a Python web app, and by using the
Python statement ‘exec’ I could execute Python code from a string. Getting
a string containing user code from a web browser to a web server I considered
trivial, and similarly returning the result of evaluated code. Another advantage
is that there is no need for locally installed software apart from a modern web
browser. This will enable a user to access the game and start playing, without
going through the hassle of an installation process. The server execution ap-
proach would necessarily create a somewhat larger work load on the server, due
to the webserver not only serving the game, but also executing the player code.
Executing code on the server would present a major risk to security, as stated
by [30] “run native machine code on the client machine—an ultimate hacker
goal and the definition of disaster”. However, if the executed code is properly
sandboxed on the server, the disaster may be avoided.

8.1.2 Client Side Execution

Locally executed code would have the advantage of performance by creating less
load on the server and distributing the processing requirements to the clients

39

40 CHAPTER 8. DESIGN CHOICES

machines. Security of the system would benefit from client side execution by
not creating a vulnerable server.

The drawback of client executed code is that it complicate the solution.
Either the player would have to install Python locally or a Python interpreter
in JavaScript would have to be written.

8.1.3 Summary

Having the user install the Python interpreter would not create an effortless
introduction to programming and thus be in violation with RQ3, which states
that the start should be effortless. In fact, the installation process is part of what
the project seeks to remove from the learning process, in order to let the student
focus on coding and not the facilities required to produce code. Pyception is a
project limited in time and the complexity and uncertainty of implementing a
Python interpreter in JavaScript were estimated a risky venture.

When comparing the security risk of server side execution with the com-
plexity and uncertainty of client side execution, I decided in favor of server side
execution. Pyception is a proof of concept developed in a short time frame,
requiring some sacrifices. If the prototype proves to be success, security can be
prioritized in the future.

8.2 Game Engine

In order to find a suitable game engine for Pyception, I searched the web for
recommended game engines. A post on the Stack overflow forum[29], were
decisive in my inquiry for a suitable game engine. The post recommended
Crafty and EaselJS, and with a later update, gives extra support in favor of
EaselJS. In addition to the game engines recommended by stack overflow, I
looked into the Unity game engine before I chose game engine.

The criteria for decision will be based on the game engines ease of usage,
documentation and available community support.

8.2.1 Crafty

The Crafty engine is a JavaScript library designed to work with the HTML5
canvas. Their website provides several basic demo games that are playable, and
giving indication on features of a game created with Crafty. The demos shows
input from mouse, keyboard and playing of animations and sound. The site
features a thorough documentation of Crafty’s features, a thin getting started
section, and also an active forum. Crafty boast of being cross browser compati-
ble, however basic features like mouse and keyboard input, failed to function in
the Opera web browser on some of the demos and tutorials.

8.2.2 EasellJS

The EaselJS is part of the CreateJS suite and designed to handle working with
the HTML5 canvas. The rest of the suite handles audio, animation and preload-
ing. Similar to the Crafty website, the EaselJS website has several demos show-
ing the engine in use in several different applications, thorough documentation,
an active discussion forum and a getting started section.

8.2. GAME ENGINE 41

8.2.3 Unity

The Unity game engine is designed to create 3D games as web plugins. It sup-
ports several programming languages and has its own integrated development
environment. A prerequisite of playing a game with the unity engine, is down-
loading and installing their browser plugin. The Unity website features, loads
of impressive demos, extensive documentation and a large community.

8.2.4 Summary

The Unity game engine is far superior to the two HTML5 game engines when it
comes to documentation and community support. However, it is also far more
complex when it comes to development, and requires the user to install a browser
plugin. Of the two HTML5 game engines, Crafty failed to read keyboard input
from some web browsers during testing. This inconvenience left me with the
EaselJS as the prefered game engine.

42

CHAPTER 8. DESIGN CHOICES

Chapter 9

Architecture

This chapter is devoted to create an understanding of the architectural struc-
tures of Pyception. Usually there are several stakeholders in a project and they
will have different opinions on what is relevant to them. In order to present
the system to all stakeholders, many projects have crammed one architectural
view with as much information as possible and ultimately failed to present a
clear view to any one of the stakeholders. To avoid such missfortune, the docu-
mentation of Pyception follows the method presented in Kruchtens ”4+1 View
model”[6]. The model presents the architecture in five concurrent views, with

Logical Devel'opment
view view

Scenarios

o System
& environment i

Process Physical
: E—— .
view view

Figure 9.1: Illustration of the 4+1 view model.

the purpose of creating a clear understanding of the system as a whole for all
stakeholders. The five views are; logical view, development view, process view,
physical view and scenarios, and are related as seen in figure9.1

43

44 CHAPTER 9. ARCHITECTURE

9.1 Physical View

The physical view describes the mapping of software onto physical objects such
as server and clients. The view is intended for administrators, providing an
overview of the system and its communication.

Pyception is deployed on one server, to which players and administrators
can connect via HTTP connections. The server is responsible for serving the
game, storing code exercises, executing player code and evaluating the result
of executed code. In addition it provides an admin interface for lecturers to
add, edit and delete tasks. The game package is loaded directly into the players
browser from the server, and most of the game execute there. When the server
is running, all that is required of a player, is to enter the correct web page.

~
L+]
=
Computer Game server
Uses
Lecturer User

Figure 9.2: All of the software in Pyception is deployed on the game server,
however it provides web access to players and lecturers

9.2 Logical view

The logical view is primarily concerned with the functional requirements of the
system, detailing how the system is coded. By the means of class diagrams, the
logical view convey how the classes and objects are related and utilized. We will
start by examining the game server and later explore the more extensive game
client.

9.2.1 Game Server

The Django game server is a Python web framework based on the MTV pat-
tern. The game server is a small service based on only one model which is
the mission tasks. The model is backed by the four views detail(), evaluate(),
evaluateJSON() and task_JSON(). The first two are linked with the templates
detail.html and evaluate.html. detail.html presents the missions stored in the

9.2. LOGICAL VIEW 45

model, and supplies a way to test tasks without doing it in the game. The
evaluate.html presents the results of a task submittet by detail.html.

index.html detal. hitml evaluate. himl
Views Mission

-miission

revaluatejson]) -defaultCode

sevaluated) -solution

: I
+task_jsoni)]
s detail()

Figure 9.3: Class diagram alt1.

The evaluateJSON() and task_-JSON() views are used by the game client
where the latter provides details regarding the task the player is about to solve.
The former execute the player code, evaluate according to the mission, and
presents the result to the game.

The Django framework provides an administrative interface to the model,
thus enabling lecturers to add, edit and remove missions tasks. Access to the
administrative interface is only granted to users with the correct privileges, in
most cases limited to the lecturer.

9.2.2 Game client

The game client can roughly be divided in two parts, playing field and coding
interface. The two parts are connected, but do not run simultaneously and
correspond to two different functional requirement groups, FR2 Playing Field
and FR3 Code Interface. The playing field is based on a game loop that runs
continuously until a player docks with a satellite. The game loop is then paused
and the coding interface is displayed.

Playing Field

The playing field is developed with a game loop based on the pipe and filter
pattern, where a stack of elements is processed one element at a time. When the
entire stack is processed it starts over again. In Pyception the game elements
are queried for actions, updated and painted on every tick. The game is limited
to a maximum of 30 ticks per second. However, if the game is played in an
environment with limited resources, the amount of ticks per second will be
lower. The four stages of the game loop are player, level, enemy and Graphical
User Interface (GUI).

The player class reads the input stored by event handlers, and uses the input
to move the player freely on the playing field. There is code implemented in
the player class to prohibit the player from leaving the playing field, and if the

46 CHAPTER 9. ARCHITECTURE

Settings
Enemy
1 H-gatUrl[)
r= = HRetlevels(]
| +B|_t ma_p__lnltlallzetl getplayer()
+initializel)
| tick(] +EetEnemyl)
| Device
I 1
Level
| Hnitializel)
| Main gt Devicelmage])
| [+initialize() +detDeviceXl)
I e +interact{} 1 o [rEetDevicey()
. +s0lveDevice() vinterace])
trstartGarme —— y

| +t|cltr|:| 0 +unSolvelevise]] +getDisplaylmage()
| Player : 1 1 |+setDeviceCodeContent(} +setComplete|)
| +handleKeyUpd) +removelevel() +setincomplete]]
' 1| [tHandlekeyDown() tick() +hessUpCaded)
I +Bitmap_initislize(] |__[rereateTerminal ri' +get DeviceCoordinate]) +setCodeContenti]

+ |r||l|.a|1e€| [remmave Terminal|) +getsalvedDeviceCount() rsetCompleteStatus()
I +tick() -executeCode(] : ticki)

+movel) tincreaselevel() | trecalarLings(]
l +reset|) startlevel|] | |
I +moveleft]) 1 rendGame() | |
+moveRight] 1 HeetTerminalContent()		
+movelipl] HaddButtonlisteners()			
+movelawn(] +updateDashboard)		
+location) +changeScore(]		
	teetSpeedi] T		
T i_			
	. I		
[R			
Easells K			
____________ <___________________________|

Figure 9.4: Class diagram game client.

player press the interact button, the player class calls the interact function of
the level class to check if interactions are possible.

The level class handles player interaction with satellites and the power sta-
tion. It checks for conditions like speed and number for solved satellites, before
it allows a docking or rejects docking and display a warning message.

The enemy is programmed to fly from satellite to satellite, thus keeping the
enemy on the playing field. If the player comes within range of the enemy, the
player is fired upon, resetting all satellites of the current level and subtracting
points from the players score. Occasionally, when the enemy arrives at a solved
satellite, the satellite is disabled by randomly changing some letters of the code
that the player has used to solve the satellite.

After the three game logic stages have been processed, the GUI is updated.
The game elements are redrawn, and the amount of solved satellites and score
is updated.

Coding Interface

The player is granted access to the coding interface if a successful docking has
occured. The coding interface has four text boxes and three buttons, where
the largest textbox is for write the code. The other three boxes are used to
present the player with the task that must be solved, output from the player’s
code and output from the code evaluation. The three buttons of the interface
are execute, reset and exit. The first button sends the player’s code to the

9.3. DEVELOPMENT VIEW 47

server, execute and evaluate it, and display the result in the code output box
and mission output. The reset button fetches the task from the server, and
enables the player to retry solving the task as the lecturer created it. The exit
button leaves the coding interface and return the player to the playing field. If
the player later returns to the satellite, all code is stored enabling the player to
continue coding where he left off or use the solution as a reference.

The feedback provided to the player, is reliant on how the tasks are created.
It is important that the lecturer creating the tasks have in mind that some
output may be lost, if not specifically output in the solution code.

9.3 Development View

The development view illustrates organization of the actual software modules
in the project [6].

Pyception can be divided in two packages, and the packages are both hosted
on the server. However, the game client is downloaded to a player’s browser,
and for the most part executed locally on the player’s computer. The game
client uses the server to perform two activities, fetch task metadata and execute
task.

The server package is responsible for storing code exercises, executing player
code and evaluating the result of executed code. In addition it provides an
admin interface for lecturers to add, edit and delete tasks. When the server is
running, all that is required of a player is to enter the correct web page. As the
player is loading the webpage, the game is included.

Connecting the server and client are ordinary HT'TP requests for loading the
game to the player’s web browser, and JSON for loading and executing exercises
while playing the game.

1 1

Django R Game Client

Figure 9.5: Pyception’s two packages and their relationship

9.4 Process view

The process view is designed to provide an understanding of how the processes
relate to eachother with regards to concurrency and distribution. The view is
particularly useful for developers, seeking to mend bugs or expand the project.

9.4.1 Server

The game server is developed on the Django framework. A feature of the Django
framework is that it handles all the processes necessary for a webserver, making
that a non issue in this project. The only processes in the gameserver that need
attention, are those coded in the view. The evaluateJSON function, beeing the

N
oo

CHAPTER 9. ARCHITECTURE

evaluatejson

Record smndand Execute mission Compile results in
O—{ Ferch task dam H i Haxeme player :uﬂe]—{ i H oo m
Start End

=

Figure 9.6: insert caption

longest and most complex of the four functions of the view, will now be detailed.
The function is called when a player hits the ’execute’ button in the game client,
sending a post request with player code to an address with specified task id that
is unique for each task. The function proceeds by fetching the mission object
containing the solution code from the database. It carries on by starting to
keep record of the standard output, and then executing the playersubmitted
code. The output record is made available for usage in the solution and then
the solution code is executed. After execution and evaluation, the results are
compiled in a JSON object, and returned to the game client. There are no write
operations or exclusive reads, so there should not be any concurrency issues if
several users hit the execute button simultaneously.

9.4.2 Game client

Main Loop

Player H Level H Enemy]—{ Update Graphics]—vo
b End

Pyception

h

Get pressed keys

Figure 9.7: insert caption

Event
Handler

The game client features more complex code with an actual concurrency
issue.The pipe and filter main loop, which handles, among other things, move-
ment of player, is reliant on keyboard input. JavaScript has no feature allowing
to query if keys are pressed, so key handling needs to be controlled outside of the
main loop with an event handler. The key handling is composed by 2 listeners,
one for key down and one for key up. When a key is pressed, the key id is stored
in a list, and removed when released.

The main loop shown in fig 9.7 shows the pipe and filter pattern applied
in Pyception. The first processed action in the game, is that of the player. It
reads the list of stored keypress, and moves the player possision accordingly. If
the interact key is pressed, it attempts to interact with the environment. The
interaction can have five outcomes. Nothing happens if the player is not close
to any other game objects. If the player is in the proximity of the power station

9.5. SCENARIOS 49

or a satellite, a warning message is displayed if the speed is too great. If the
player is within the speed limit of 0-3, and in proximity of a satellite, the playing
environment is paused, and the coding terminal is brought up. If the player is
in range of the powerstation and within speed limits, but has not repaired all
satellites, a warning is displayed. The final outcome occurs if the player is in
range of the powerstation, within the speed limit and has solved all satellites.
This completes the level and either advances the player to the next level, or
completes the game.

After the player action is complete, the level action starts. The level process
all devices(satellites) and rotate them according to their random rotation and
handle the display of warnings, if necessary. Next process is the enemy, which
moves its possision closer to its target, or if it is at its target, chooses a new
target. The enemy also check if the player is within its range, and if so, fires upon
the player. The firing action causes the level to reset, and deduct points from
the score. After the three previous actions has been completed, the final thing
that happens in the main loop, is that the graphics are updated to correspond
with the objects new possitions.

9.5 Scenarios

The scenario view is an addition to the four views and serve as an illustration
of the architecture from a third party view. The view is necessary to provide a
sense of wholeness to the architectural views, and is useful when creating test
cases.

Figure 9.8 illustrates the game from a player’s view. Pyception will always
start by showing the story screen to the player, and giving the player the option
to start the game. When the game is started, the player is in control of a
spaceship and can maneuver freely around the playing field. From the playing
field there are three possible events that may occur, come within range of Dr.
Thereon, dock with a satellite or dock with the powerstation.

Dr. Thereon Dr.Thereon is the enemy who in the story has disabled all
the satellites providing power to the planet Pythonia. The enemy is flying
around the playing field between satellites, and if the player flies within range,
Dr.Thereon fires his laser and kills the player. The player looses a large portion
of his points, and all satellites on the level are reset to not fixed.

Satellite The satellites contains the coding exercices. If the player is within
range of a satellite and flying with a speed of 3 or lower, he is able to dock with
a satellite. When the player docks with a satellite, the code interface is brought
up and the time warp is powered up and freezes Dr.Thereon in order to let
the player code in his own pace. The code interface has three options; execute,
reset and exit. The execute button sends code to the server for evaluation,
and if correct, the satellite is marked as solved. The reset button fetches the
initial code from the server, and is useful in cases where the player has deleted
too much code, or just want to start over. The exit button terminate the code
interface and leave the satellite in the state it is, solved or not. The player is
returned to the playing field, and the time starts running again.

50 CHAPTER 9. ARCHITECTURE

Power station The power station is used to complete a level. Similar to the
satellites, the player has to be in range and fly slow to dock with the power
station. An additional requirement is added in order to successfully dock with
the power station. The player has to solve all satellites on the playing field, or
a warning message is displayed if the player attempts to dock with the power
station, and the player continues to play on the playing field. If a player has
solved all satellites on the level and attempts to dock with the powerstation, the
spaceship is moved to the next level. When the player solves the final level, a
game completed screen is showed and the player has won. If the player wishes,
it is possible to start the game over again while keeping the current score, thus
enabling the player to earn more points.

51

9.5. SCENARIOS

Aejday

usas pEsdwos
BLWES Mmoys

jA3| 1EU LS

B3] Ul
| woon

panjosale
S| s EEE Y

panjoE3E
2YlI2Es |2 0N

uosBY| 1g
o a5usl uanry

I [BAsTUEIEEY

31| [EIES I 430

anpe sWen

3poaamIexg

2po1 132y

[,

E

3924i=1U1 3p00 K3

SWen uEs

Figure 9.8: Third person view of the gameplay.

52

CHAPTER 9. ARCHITECTURE

Chapter 10

Implementation

10.1 Milestones

Development of Pyception has been divided in milestones, where each milestone
has a key feature that needs to be implemented. By implementing the milestones
in a chronological order, they will give an indication of the progress in the
development. The milestones will cover the core features of the game. However,
other aspects such as graphics and development of curriculum, is not accounted
for and will be developed independent of the milestones.

M1 Django “Hello world!”
Use the Django web framework to create a web page, and familiarize with
the features available in the framework.

M2 Execute submitted code

Test interesting game engines and determine which to implement in the
game client. Use the chosen game engine to create a demo capable of handling
keyboard input to move a player shape around the screen.

M3 Web client “Hello world!”

Test interesting game engines and determine which to implement in the
game client. Use the chosen game engine to create a demo capable of handling
keyboard input to move a player shape around the screen.

M4 Interaction
Expand the demo to include an object that the player shape can interact
with by pressing a key.

M5 Submit code
Create a code interface where the player is able to type code and submit the
code for evaluation. Tie the code interface to the object created in M4.

M6 Client - Server - Client
Modify the server to execute submitted code and reply using JSON to create
a good communication link between the server and the client.

33

54 CHAPTER 10. IMPLEMENTATION

M7 Task status
Utilize the JSON reply from the server, and display results to the user. Store
solved exercises as completed

M8 Level
Create a level with several tasks.

M9 More Levels
Create more levels and a way to complete a level and advance to the next
level.

M10 Enemy
Add an enemy to the game and create structured behavior for him.

M11 User test the game
Apply the game to a set of subjects. Record their responses.

10.2 Graphics

Malone describes three categories that are important in fun games; fantasy,
challenge and curiosity [8]. In Pyception, graphics plays an important role in the
creation of a fun fantasy, along with the story of the game. Three options were
considered for the process of obtaining graphics, creating it myselves, finding it
on the internet or have someone create it for me. The first option were discarded
on the grounds that I do not possess adequate skills in graphic design. Several
sites on the internet, such as Open game art[32], offer a myriad of graphics
with various licences. Finding suitable and good graphics among the multitude
of available graphics may be a considerable task, still it is a better alternative
than the first option. The final option of obtaining graphics, relies on favors
from my friends. As the budget of Pyception is virtually non existent and
hiring a graphic designer is expensive, it is not an option to pay a professional.
Fortunately, Magnus Bliitecher Dysthe presented me win a game idea and was
willing to create the graphics for it. I am very happy with the graphics he created
and Magnus’ graphics are the core contributor to the fantasy of Pyception .

10.3 Exercises

The creation of exercises for Pyception was based on the syllabus of TDT4110
as discussed in section 6.4.

Paras and Bizzocchi note that the flow is a considerable aspect in education.
“Flow explains a phenomenon that many people find themselves experiencing
when they reach a state where there becomes a perfect balance between challenge
and frustration, and where the end goal becomes so clear that hindrances fall
out of view.” [4]

Pyception must strive to create a syllabus that is easy enough to immerse
the player in a flow while still challenging enough to educate the player. It is
also important that the exercises follow the TDT4110 curriculum, as outlined

10.3. EXERCISES 55

Speed 01 | 0 Satellite(s) operational

Figure 10.1: Screenshot of the coding interface showing an easy task from level
1

in Section 5.4, if it is to be utilized in the course. The exercises should reflect
the fantasy outlined in the concept, in order to achieve a wholeness of the game.

Listed below is the syllabus of the respective levels. The levels are designed
to try and create a good educational flow for the player.

Level 1 has a total of 8 satellites with individual exercises. In order to create
good flow the difficulty range from the most basic, like printing “hello world”
to the standard output. The difficulty increases with exercises teaching how to
use variables and how to apply basic arithmetics in Python.

The second level introduces the player to functions, which are widely used
throughout the rest of the game. The exercises start off by teaching how to write
functions, by using variables and arithmetics learned on the previous level. The
syllabus of level two cover functions and more arithmetics, such as the modulo
operation.

When arriving at level 3, the player is expected to be familiar with functions
and basic arithmetics. The third level utilizes functions in all tasks to convey
scope, and introduce control structures to the player. The control structures
applied in exercises at this level are limited to if and else. The final level
consists of 4 exercises. Control structures such as for loops and if statements
with ‘elif’ statements, are utilized in these exercises. Challenging the player
with exercises of the most difficult type, the final level involves skills attained
on all the previous levels.

56 CHAPTER 10. IMPLEMENTATION

Speed: 01 | 1 Satellite(s) operational score: 11246

Figure 10.2: Screenshot of the coding interface showing a difficult task from
level 4

10.4 Security

The non-functional requirement security is listed with a low priority due to
the fact that Pyception is a prototype. This is reflected in the implementation
by executing player code on the server. “Run native machine code on the
client machine, an ultimate hacker goal and the definition of disaster” [30]. The
quote states the fact that letting other people execute code on your server, is a
bad idea. However the nature of this project is to prove the possibilities that
lies within online education, so some sacrifices must be acceptable in order to
produce a prototype within the allocated time frame. The reasoning behind this
decision is discussed in section 8.1.1 and will also be included in suggestions for
future work in Chapter 17.

10.5 Challenges

In every project, at some time, there is bound to arise challenges that affect the
participants. How these challenges are handled varies from project to project,
but common to all are that they must be solved. When it comes to software
development, common challenges can be new technologies, compatibility with
legacy systems or unstructured existing code.

Pyception is a project that starts from scratch, minimizing the risk of chal-
lenges concerned with existing systems. However, the implementation has not

10.5. CHALLENGES o7

been without challenges as I am a young and inexperienced developer.

One of the main challenges of Pyception was the technologies necessary in the
implementation. Among other, the main technologies JavaScript and Django
were unknown to me at the start of the project. This required me to familiarize
myself with the technologies before I was able to use them properly, and this
consumed significant amount of the time available to the project.

Initially the project planned to use Unity as a game engine, but due to the
complexity of the framework, I decided to examine other options. An additional
feature of Unity that is in disfavour to this project, is the fact that Unity
requires the installation of a web browser plugin and would be in conflict with
the effortless start stated in RQ3 . Eventually I overcame this challenge by
using the EaselJS framework in place of Unity.

Graphics posed another challenge to me, as I do not possess skills in that
field. This was resolved by having a friend create the graphics, and is discussed
in section 10.2

Creating relevant and understandable tasks for a player that has not pro-
grammed before posed a challenge to me as I have five years experience with
programming. To overcome this challenge I researched the curriculum of the
course TDT4110, as well as TDT4100 object oriented programming, and other
introductory programming courses at NTNU.

58

CHAPTER 10. IMPLEMENTATION

Chapter 11

User Experiment

This chapter will present the most important data generating activity for the
evaluation of the project, the user experiment.

11.1 Test Framework

According to ISO 9241-11, usability is defined as follows: ”The extent to which
a product can be used by specified users to achieve specified goals with ef-
fectiveness, efficiency and satisfacton in a specified context of use.”[23] where
"contex of use” is defined as: ”User, tasks, equipment(hardware, software and
materials), and the physical and social environment in which a product is used”

This means that usability depends on the context of use, and to measure the
usability we need to focus on the right users with the right goals in the right
environment. In order to start the usability testing for Pyception these parts
need to be defined

11.1.1 Users

Pyception is a serious game for people who want to learn programming in the
language Python. In order to get a most accurate user testing, it is important
to find test persons who are motivated to learn coding, or motivated to learn
more. Testing on experienced user may also supply valuable test results, in the
form of suggestions or eradication of bugs in the game or exercises.

11.1.2 Goal

The goal of this experiment was to get an overall picture of how Pyception
worked in a real life setting. In the following paragraphs, thesis RQ2 and RQ3
will be outlined and analyzed based on data from the user experiment, while
RQ1 and RQ4 are of a technical nature and will be evaluated on other datasets

RQ2 Is it possible to create a serious game based on programming that is
both fun and educational?

From this question we need to figure out if players enjoy playing the game,
and if they learn something from it. Pyception is a custom made serious game,

99

60 CHAPTER 11. USER EXPERIMENT

and it would be interesting to know if the game feels different from just solving
tasks.

RQ3 Will more people be motivated to learn programming if the learning
process has an effortless start through a web based game?

By providing a different approach to teaching programming, and lowering
the initial effort required, it is possible to reach a new audience.

Related RQ | Goal id | Goal
RQ2 G1 Is the game fun ?
RQ2 G2 Is the game educational ?
RQ2 G3 Do pyception feel more like a game than program-
ming tasks?
RQ3 G4 Is it easy to get started with the game?
RQ3 G5 Is the game motivating?

Table 11.1: The research questions and their derived goals.

The releationship between goal and questions asked by the questionnaire, is
listed in Table 11.2.

11.1.3 Environment

The setting in which the test is conducted, may affect the users, their motivation
and how they perform. It is imperative that they feel comfortable during the
test, as a stressed out person would have a hard time having fun and will not
perform at their best. The target environment for Pyception is an educational
setting. Due to the educational nature of Pyception, it is important that I as
a test leader meet the users at their local education environment. In this test
case it is natural to utilize NTNU as a basis for a good test environment.

11.2 Execution

When a suitable user group and environment has been acquired, it is time to
conduct the testing. In order to conduct the tests as smoothly as possible, a
structured plan has been deviced.

The testing will be carried out by the users on their computer. Pyception
will be deployed locally on the computers used in the test, in order to avoid
interference between testers or errors caused by network connection. The de-
ployment will be taken care of by me, so that when the test starts, all the users
have to do in order to start the game, is to enter the specific web address. The
test will be conducted with 1-3 persons at a time, so there will be no lack of
help if something goes wrong.

At the start of the test, the users will be informed of the address of the game,
and that they are free to use any aids they would like to use such as Google or
ask me a question. I will be present during the testing to help the test users if
they get stuck, uncover a bug and observe for anything else that might arise.

The test session will end either by the user completing the game, or spending
more than an hour. Following the test, the users will be asked to fill out a

11.3. QUESTIONNAIRE 61

Goal id | Questionnaire question
Gl Q15, The game felt like more than just task solving
Q16, The game was captivating
Q17, The points motivated me to play better
G2 Q16, The game was captivating
Q21, I received sufficient feedback when things did not go according
to my plan
Q22, I received sufficient feedback when things went according to
my plan
Q23, The game motivated me to code more
Q27, I would successfully learn to code Python by playing Pycep-
tion
Q28, I feel that my coding skills were improved by playing Pycep-
tion
G3 Q15, The game felt like more than just task solving
Q16, The game was captivating
Q18, I find the game visually appealing.
Q20, The game was more motivating than solving traditional tasks
G4 Q5, It was easy to get started with the game and exercises.
Q6, Understanding how to control the game was easy.
Q7, Navigating between satellites and Dr. Thereon was easy
GbH Q9, Earning points were hard.
Q15, The game felt like more than just task solving.
Q16, The game was captivating
Q17, The points motivated me to play better.
Q20, The game was more motivating than solving traditional tasks.
Q23, The game motivated me to code more
Q29, My motivation towards learning to code is increased.

Table 11.2: Goals and their relation to the questions of the questionnaire listed
in Appendix C.

questionnaire regarding Pyception . After the test, the user is allowed to keep
Pyception on their computer, and play it later if they choose to do so.

11.2.1 Eventualities

In a user test, it is likely that some unplanned situations will arise. The test
leader must be prepared for imaginable situations, and if they arise, adapt the
test in a manner that do not significantly impact the user or test result. Should
the situation be too difficult to handle, the test leader must consider to abort
the test.

11.3 Questionnaire
A valuable part of the user test is the information gathered for later use. A

way to structurally gather results from a user test, is to have the users fill out
a questionnaire after the test has been performed. A questionnaire will gather

62 CHAPTER 11. USER EXPERIMENT

subjective meanings from the users, which is important to have in mind when
analyzing.

Most of the questions listed in the questionnaire, are multiple choice ques-
tions with five alternatives. The questions are written as statements with five
alternatives ranging from strongly disagree via neutral to strongly agrees. The
user must select one option that fits the best.

The questionnaire applied on Pyception, is attatched in Appendix C. The
questionnaire is divided in six parts, and covers everything from metadata about
the user to their experience with the user interface. The six parts are outlined
in the following paragraphs.

Metadata The Metadata part captures general information concerning the
user’s history, previous experience and motivation.

Game Control This part identifies how the user perceive the game concept.
Information regarding movement, game flow and difficulty are derived from
these questions.

Game experience The experience the user receives from the game is cap-
tured by the questions in this part. Motivation and fun are important factors
determined in this part.

Proficiency The proficiency part covers the user’s overall experience in rela-
tion to the educational aspect of Pyception. The questions address how the user
perceive the feedback provided, the appropriateness of the syllabus and future
aspirations in the field of programming.

Other This part contains a single question where the users are encouraged
to state their feelings of the game. This allows the user to supply valuable
suggestions, that are othervise not covered by the multiple choice questions.

System Usability Scale (SUS) The SUS is a “quick and dirty” method,
that allows a low cost assessments of usability in industrial systems [24]. From
a completed SUS form, a SUSscore in the range 0 - 100, is calculated and gives
a general overview of the usability of the system.

11.3.1 Calculation of Score

In order to calculate a score based on each questions, the alternatives are con-
verted into a scale with a range of 1 to 5, where 1 represents strongly disagree
and 5 represents strongly agree. A score of 3 represents a neutral response.

The average score of each question belonging to a goal is calculated, then
the sum of all questions are totaled, and an average of that is the goal’s final
score. In order to get a significant reply, the average score must be 3.5 or higher,
if the is goal to be considered a success. 3.5 is reckoned as significantly better
score than the neutral reply.

11.4. SUCCESS CRITERA 63

11.4 Swuccess Critera

This section list success criterias for the user experiment. The success criterias
are derived from the research questions.

SC1 Fun and Educational Game

This success criteria is based on Research Question 2 (RQ2). RQ2 tries
to determine if it is possible to create a serious game that is both fun and
educational. Based on Section 11.1.2, RQ2 is broken down in three goals, G1,
G2, G3. If the average of the three goals’ score is higher than 3.5, this criteria
is considered a success.

SC2 Game Motivation

This success criteria is based on Research Question 3 (RQ3). RQ3 tries
to determine if more people will be motivated, if the learning process has an
effortless start through a web based game. Based on Section 11.1.2, RQ2 is
broken down in two goals, G4 and G6. If the average of the two goals’ score is
higher than 3.5, this criteria is considered a success.

SC3 Usability

A System Usability Scale (SUS) test is applied, in order to determine if the
system is easy to use. According to [37], the average SUS score lies between 52
and 68. If this success criteria is to be met, Pyception has to score within this
range or better.

64

CHAPTER 11.

USER EXPERIMENT

Part V

Evaluation

65

Chapter 12

User Experiment Results
and Analysis

12.1 Execution

The experiment were conducted according to the test framework discussed in
chapter 11 and spanned several test sessions. Prior to starting the experiment,
the users were informed that they could abort the test whenever they wanted,
for whatever reason, and they would not have to state the reason why they
chose to quit. When all practical issues were handled, the users were free to
test the game. The experiment mainly ran smoothly, however, some changes to
the plan were required in order to adapt to situations that arose. The situation
and solutions will be discussed in section 12.1.3.

12.1.1 Users

The users that participated in the user experiment were recruited from two
groups. Some testers were friends of mine who study Informatics at NTNU,
while the other users study other subjects with with little or no programming
courses.

In total 14 users with different coding skills participated in the user experi-
ment. The test user’s skills and motivation are displayed in figures

Coding skills Motivation

18% QlEaeie ks m Great Motivation: 36%

R
§ Good: 29% m
= Average: 14% = Average Motivation: 29%
29% .
- Limited: 22% Limited Motivation: 21 %
zz %
None: 21% No Motivation: 0%

m Good Motivation: 14 %

Figure 12.1: Chart displaying the skills Figure 12.2: Chart displaying the moti-

possessed by the users. vation of the users.

67

68 CHAPTER 12. USER EXPERIMENT RESULTS AND ANALYSIS

12.1.2 Environment

The experiments were conducted at three locations, NTNU campus Glgshaugen,
NTNU campus Dragvoll and Berg dormitory. The chosen environments were
selected due to being where the participating users usually reside, creating a
relaxing environment for the users. The users with the best coding skills were
found on NTNU campus Glgshaugen, while the users with the least coding skills
resided at NTNU campus Dragvoll.

12.1.3 Challenges

While conducting the first experiment sessions, one slightly significant problem
occurred. The server installation process were not rigid enough, causing the
setup on the user’s computer to fail. As a test leader, I was prepared for such
a situation. Two spare laptops with Pyception were brought to the experiment
location, so when the installation failed, the users were able to execute the test
on the laptops supplied. The later experiment sessions were mainly conducted
on the same laptops and the installation process were improved.

During the experiment, some users suffered from buggy or poorly written
exercises. To overcome these situations, I provided help to the users on the
spot. In cases of ambiguous tasks, an explanation were given to clarify. In cases
of buggy and unsolvable exercises, a cheat code were provided.

Apart from the mentioned situations, the experiment went smoothly.

12.2 Results

This section will address each goals on individual pages. The goals are intro-
duced by stating the relevant questions to the particular goal, followed by the
results from the user test. The questions are identified in section 11.1.2, table
11.2

An average score for each question is computed and visualized in the charts.

12.2. RESULTS 69

12.2.1 G1 Is the game fun ?
Results

The related questions regarding G1 are listed in table 12.1 below, and the results
are presented in fig 12.3

| Question
Q15 | The game felt like more than just task solving.
Q16 | The game was captivating
Q17 | The points motivated me to play better

Table 12.1: Questions related to G1

Chart 12.3 shows the average score of each question. The red column to the
far right in the chart shows the goal’s average score.

5,00
450
4,00
3,50
3,00

E 250
2,00
1,50
1,00
0,50
e Q15 al6 Q17 TOTAL
W Aver gge Score 3,57 3,79 2,83 3,43
Questions
Figure 12.3: G1
Analysis

Based on the findings in section 12.2.1, the users feel the game is more than just
task solving, with an average score of 3.79. An average score of 3.79 indicates
that the need to be a skilled space pilot, in addition to a knowledgeable Python
coder, is an attractive combination.

The points were meant as an incentive for the players to perform better.
However, with an average score of 2.93, the incentive has not been clear or
beneficial enough for the players to care about. A score of 2.93 is close to neutral,
which means the incentive did not impact the game in a negative manner.

With an overall score of 3.43, the goal have room for improvements, and
does not meet the criteria for a successful goal. A low average does not count
for everything, some users found the game enjoyable and stated “Det var ggy,

70 CHAPTER 12. USER EXPERIMENT RESULTS AND ANALYSIS

vil ha fleire baner :)”, which translates to “the game was fun, I'd like to play
more levels :)”.

12.2. RESULTS 71

12.2.2 G2 Is the Game Educational?
Results

The related questions regarding G2 are listed in table 12.2 below, and the results
are presented in fig 12.4

| Question
Q16 | The game was captivating
Q21 | I received sufficient feedback when things did not go according to my
plan
Q22 | I received sufficient feedback when things went according to my plan
Q23 | The game motivated me to code more
Q27 | I would successfully learn to code Python by playing Pyception
Q28 | I feel that my coding skills were improved by playing Pyception

Table 12.2: Goal ID 2 and the related questions

Chart 12.4 shows the average score of each question. The red column to the

far right in the chart shows the goal’s average score.

3,50
3,00
2,00
15

1,00
0,5

0,00

Qle Q21 Q22 Q23 Q27 Q28 TOTAL

W Averzge Score 3,79 2,79 4,00 3,86 3,36 3,64 3,57

Score
(=]
(¥
f=] fm]

(=]

Questions

Figure 12.4: G2

Analysis

Presenting feedback on exercises that the user has trouble solving, has been
a severe challenge in the project. The freedom of coding gives an exercise a
numerous different ways to perform the same task. Predicting the approach
chosen by the user, and presenting clues to what is wrong and how to mend it,

72 CHAPTER 12. USER EXPERIMENT RESULTS AND ANALYSIS

was not easy. This is reflected in the feedback from users, with an average score
of 2.79.

The feedback of tasks where the users solve the task as intended, is better
appreciated. When a task is solved, the user feels that satisfactory feedback is
provided, which is reflected with a score of 4.00.

The educational aspect of the game scores an average of 3.57, this proves
that users find the game educational. The exercises poses a challenge for the
users who does not know how to code, and for experienced coders.

12.2. RESULTS 73

12.2.3 G3 Do Pyception feel more like a game than pro-
gramming tasks?

Results

The related questions regarding G3 are listed in table 12.3 below, and the results
are presented in fig 12.5

| Question
Q15 | The game felt like more than just task solving.
Q16 | The game was captivating
Q18 | I find the game visually appealing
Q20 | The game was more motivating than solving traditional tasks

Table 12.3: Goal ID 3 and the related questions

Chart 12.5 shows the average score of each question. The red column to the
far right in the chart shows the goal’s average score.

5,00
450
4,00
3,50
3,00
E 2,50
2,00
1,50
1,00
0,50

e Q15 al6 Qig Qzo TOTAL

m Averzge Score 357 3,79 3,57 421 3,79

Questions
Figure 12.5: G3
Analysis

The user experiments proves that the users find more motivation through the
game, compared to traditional task solving. In Figure 12.5, Q20 “The game was
more motivating than solving traditional tasks” scores an average of 4.21 where
5.00 represents “strongly agree”. This result can be seen as clear indicator that
Pyception brings more to the table than traditional task solving.

Upon being asked if the game is something more than traditional task solv-
ing, the users opinions were more divided. The question may have been poorly
formulated, as “something more” may be ambiguous. However, with an average

74 CHAPTER 12. USER EXPERIMENT RESULTS AND ANALYSIS

score of 3.57, Pyception gives the users a new experience when trying to learn

Python.
With a total average of 3.79 users agree that Pyception feel more like a game
than programming tasks.

12.2. RESULTS 75

12.2.4 G4 Is it easy to get started with the game?
Results

The related questions regarding G4 are listed in table 12.4 below, and the results
are presented in fig 12.6

| Question

Q5 | It was easy to get started with the game and exercises
Q6 | Understanding how to control the game was easy

Q7 | Navigating between satellites and Dr. Thereon was easy

Table 12.4: Goal ID 4 and the related questions

Chart 12.6 shows the average score of each question. The red column to the
far right in the chart shows the goal’s average score.

5,00
4,50
4,00
3,50
3,00
g 2,50
“ 2,00
1,50
1,00
0,50

0.00 as a6 Q7 TOTAL

W Aversge Score 414 4,36 357 4,02

Questions
Figure 12.6: G4
Analysis

The users agree that understanding how to control the game, was easy. With
an average score of 4.36, Q6 is the statement that the users agree with the
most. Controlling the spaceship and docking with satellites is easily under-
standable, however observations during the experiment suggest that the mas-
tery of controlling the spaceship was harder, as some players had a hard time
avoiding Dr.Thereon. This is reflected in Q7, “navigating between satellites and
Dr.Thereon was easy”, which receives an average score of 3.57

The total average of G4 is 4.02. A core value of the project has been to
create an easily accessible game, making this finding positive reading.

76 CHAPTER 12. USER EXPERIMENT RESULTS AND ANALYSIS

12.2.5 G5 Is the game motivating?
Results

The related questions regarding G5 are listed in table 12.5 below, and the results
are presented in fig 12.7

| Question
Q9 | Earning points were hard
Q15 | The game felt like more than just task solving.
Q16 | The game was captivating
Q17 | The points motivated me to play better
Q20 | The game was more motivating than solving traditional tasks
Q23 | The game motivated me to code more
Q29 | My motivation towards learning to code is increased.

Table 12.5: Goal ID 1 and the related questions

Chart 12.7 shows the average score of each question. The red column to the
far right in the chart shows the goal’s average score.

3,50
3,00
2,00
1,50
1,00
0,50
200 Tas als al6 Q7 Q20 @ Q33 QW

TOTAL
W iversgesore 3,57 357 379 293 471 386 364 3,65

Questions

Score
(]
[,)
(=]

Figure 12.7: G5

Analysis

A game feature meant to be motivational was the points and score system. How-
ever as mentioned in section 12.2.1,the appreciation of the points were moderate
with an average score of 2.93.

The motivational factor of the game was mentionable, as users rated that
the game motivated them to code more. The findings are based on 23, with an

12.2. RESULTS 7

average score of 3.86. The users also clearly find the game more motivational
than traditional tasks, as discussed in section 12.2.3 and illustrated in figure

12.7
With an average score of 3.65, the users agree that the game is motivational.

78 CHAPTER 12. USER EXPERIMENT RESULTS AND ANALYSIS

12.3 System Usability Scale

Table 12.6 presents the results of the SUS schema. The “Average Score” column
represents the average point value of what the users voted, while the “Sum
Question” column represents the calculated SUS score. At the bottom of the
table, the SUS scores are added together in a total of 71.96 points out of 100.

| Question Average Score | Sum Question

1 | I think that I would like to use this 3.43 6.07
system frequently

2 | I found this system unnecessarily 2.21 6.96
complex

3 | I thought the system was easy to use 4.00 7.50

4 | Ithink that I would need the support 1.79 8.04

of a technical person to be able to use
this system

5 | I found the various functions in this 3.64 6.61
system were well integrated

6 | I thought there was too much incon- 2.14 7.14
sistency in this system

7 | I would imagine that most people 4.00 7.50
would learn to use this system very
quickly

8 | I found the system very cumbersome 1.71 8.21
to use

9 | I felt very confident using the system 3.71 6.79

10 | Ineeded to learn a lot of things before 2.14 7.14
I could get going with this system
Total score 71.96

Table 12.6: Pyception SUS score

12.4 Success Criteria

This Section presents an anaysis of the success criteria defined in Section 11.4

12.4.1 SCI1 - Fun and Educational game

All goals should receive a satisfactory score, of 3.5 or higher.

12.4. SUCCESS CRITERIA 79

Results
Goal ID | Goal Score
G1 Is the game fun? 3.43
G2 Is the game educational? 3.57
G3 Do Pyception feel more like a game than programming | 3.79
tasks?
Total 3.60
Table 12.7: SC1 summary
Analysis

This success criteria is related to Research Question 2, and tries to determine
if it is possible to create a serious game that is both fun and educational. SC1
is measured by goals G1, G2 and G3. In order to fulfill the success criteria, the
average of G1, G2 and G3 need to score above 3.5

From the results presented in Table 12.7, we can see that these criterias
are met. This means that Pyception can be considered a fun and educational
serious game.

12.4.2 SC2- Motivation

All goals should receive a satisfactory score, of 3.5 or higher.

Results
Goal ID | Goal Score
G4 Is it easy to get started with the game? 4.02
G6 Is the game motivating? 3.65
Total 3.84
Table 12.8: SC2 - summary
Analysis

This success criteria is related to Research Question 3, and tries to determine
if more people will be motivated, if the learning process has an effortless start
through a web based game. SC2 is measured by goals G4 and G6. In order to
fulfill the success criteria, the average of G4 and G6 must score above 3.5

From the results presented in Table 12.8, we can see that these criterias are
met. This means that Pyception can be considered motivate users better than
traditional tasks.

12.4.3 SC3 - Usability

All goals should receive a satisfactory score.

80 CHAPTER 12. USER EXPERIMENT RESULTS AND ANALYSIS

Results

The results of the SUS schema is presented in detail in Section, and table The
calculated score is 71.96.

Analysis

The calclated score is within the parameters established in. This determines
that the system is easy to use, and well appreciated.

Chapter 13

Difference between a novice
and an experienced coder

In this chapter I will discuss interesting differences and similarities between a
novice and an experienced coder, in the data generated by the user experiment.

Based on the questionnaire answers, I have chosen to evaluate the questions
with the biggest and smallest leap. The questions and their total average are
listed in table 13.1

Q5- It was easy to get started with the game and exercises Even
though the users have different coding experience, they agree that starting the
game was easy. This was presumed prior to the experiment, and the result is
fortunate as one of Pyception’s core goals is to have an effortless start.

Q6- Understanding how to control the game was easy Similar to Q5,
Understanding the game control was not affected by their previous experience
with coding.

Q15- The game felt like more than just task solving The lower score of
users who are experienced in programming, indicate that the game feels similar
to task solving to them. A reason to this may be that the coding tasks are
perceived to be so simple that the challenge element, described by Malone[2],
is eliminated. For novice programmers the challenge element of the tasks was
prominent, and may have been perceived more as a part of the game.

Q20- The game was more motivating than solving traditional tasks
Similar to Q15, the motivational aspect of the game may have been removed
when the tasks are not perceived challenging. Pyception does not feature code
highlighting, a feature that is well appreciated among experienced coders, and
may have a been contributory cause to the lack of motivation.

Q26- I applied pre existing knowledge while playing the game FExperi-
enced coders benefiting from existing knowledge, is apparent. However, with an
average score of 3.17, the novices claim to have taken advantage of preexisting

81

82CHAPTER 13. DIFFERENCE BETWEEN A NOVICE AND AN EXPERIENCED CODER

Question Experienced | Novice | Difference

Q5 | It was easy to get started with 4.17 4.00 0.17
the game and exercises

Q6 | Understanding how to control 4.50 4.33 0.17
the game was easy

Q15 | The game felt like more than 3.17 4.00 0.83
just task solving

Q20 | The game was more motivating 3.83 4.50 0.67
than solving traditional tasks

Q26 | I applied pre existing knowledge 3.17 4.67 1.50
while playing the game.

Q27 | I would successfully learn to 2.83 4 1.17
code Python by playing Pycep-
tion

Table 13.1: The average score of experienced and novice coders, and the differ-
ences

knowledge. This is surprising, as I had anticipated a lower score. An explaina-
tion to this, may be that users with “limited” code skills are more aware that
they apply some pre existing knowledge.

Q27- I would successfully learn to code Python by playing The cur-
riculum displayed in Pyception would definitely be characterized as basic. This
may be a turnoff for experienced coders, as they already know their basics and
feel the game has nothing to offer them. Creating a game with curriculum that
suits both novices and experienced coders is challenging, and the Pyception
curriculum is purposely aimed at novices. Due to this fact Q27 has the most
divergent answers in the questionnaire.

Chapter 14

Technical Analysis

This chapter is intended to analyse the prototype in regards to research question
4. RQ4 tries to figure out if the Python language is suitable for a web based
serious game.

14.1 Architectural issues

In the planning phase of the project, some design choices were made.Thesis
choices have been discussed in Chapter 9, and the architecture is discussed in
Chapter 8. Among the choices made, was that of the systems architecture. The
Pyception project has been developed with a server - client architecture where
the game requires a server in order to perform the execution and evaluation of
the server. The choice of this architecture has two important impacts on the
system in relation to security and performance.

14.1.1 Security

The execution of user submitted code on the server is a major security risk.
“Run native machine code on the client machine- an ultimate hacker goal and the
definition of disaster”[30]. The security threat could be mitigated by filtering the
user submitted code for code that could possible threat the server. However, the
threat would still be present, as hackers constantly search for, and occasionally
find, errors in deployed systems.

14.1.2 Performance

The tasks written for the Pyception prototype, if solved correctly, require only a
tiny amount of computation. However, the nature of Pyception is to learn users
how to code, and assuming that users not familiar with Python would create
effective code all the time, is downright silly. When a lot of users simultaneously
send bad code for evaluation, the servers would require tremendous processing
capacity.

83

84 CHAPTER 14. TECHNICAL ANALYSIS

14.2 Python Issues

When learning how to code ”while loops”, all users sooner or later will try out
a variant of the “while(True):”-loop, more or less willingly. Endless loops need
to be stopped somehow, but this is a real challenge in Python.

A technical issue present in Python is the lack of good ways to implement
timeouts[36]. Two options are commonly proposed to solve this; multi-threading
or operating system specific signals. By spawning a thread specifically for the
function that should timeout, and use the “timeout” argument of “Thread.join”
to implement the time limit. Sadly this does not work, and Python has no option
to kill a thread.

The other option is to use operating specific signals. The “signal. SIGALRM”
function of the “signal” module is an option that may work, but is tricky. A
significant drawback of the solution is that “SIGALRM?” is a Unix specific, and
will not work in a Windows environment.

14.3 Existing Solutions

As mentioned in Section 5.2.2, Codecademy has an online gamified Python
service. Their solution is based on a JavaScript implementation of the Python
interpreter. There is no documentation available online that specify exactly how
the implementation has been performed. However, when executing demanding
computations the local utilization of the processor increases. This indicate that
the computations is performed at the client side. In addition, if a computation
runs for too long, a confirma box is displayed, giving the user the option to stop
the process, and reload the JavaScript

14.4 Summary

By examining the Pyception implementation, we can immediately conclude that
it is possible to create a web based serious game. However, the implementation
chosen has some serious flaws regarding security and performance issues.

The Codecademy implementation has handled the issues present in Pycep-
tion. By moving the code exception to the client, the security threat of running
user code on the server, is eliminated. Other threats still exist, however that is
not the scope of this thesis. The performance issue is handled in much the same
manner, by moving the computational load to the client. Codecademy also has
implemented a timeout feature, which handles endless loops.

By combining the features of Pyception, a serious game, with the architec-
tural design of Codecademy, client side execution, it is evident that Python as
a language is well suited for use in an online serious game.

Chapter 15

Requirement fulfillment

This chapter will review the project requirements as described in Chapter 7. The
following sections address the functional requirements and the non functional
requirements. Each of the requirements will be listed and evaluated individually.

15.1 Functional Requirements

The four requirement groups identified in Section 7.1 will be the basis for this
section. Each of the groups will be listed with their respective requirements.
These requirements are important, in order to create a fun and educational
game.

15.1.1 Game

FR 1.1 It should be possible to start playing without an installation process

Part of Research Question 3 states that starting the game should be effort-
less. This is implemented by coding Pyception as a JavaScript web based game,
with no installation or registration process.

FR 1.2 The game should have an intrinsic fantasy, where my the player’s
action affects the playing eld, and the playing field affects the play.

The player affects the game by solving exercises, consequently changing the
appearance of the satellites from unsolved red, to solved green. The game affects
the play mainly through the enemy, Dr.Therion. Dr. Thereon has the ability
to kill the player and reset all exercises as well as corrupt the players solved
exercises.

FR 1.3 The game should proceed to the next level when the player interacts
with the power source after all the tasks are correctly solved.

FR 1.3 is fulfilled by the player navigating the spaceship to the power source
when all satellites are powered on. If the speed is sufficiently low, less than 3,
the player is allowed to dock with the power source and proceed to the next
level.

85

86 CHAPTER 15. REQUIREMENT FULFILLMENT

FR 1.4 The game should store tasks in a database.
All of the exercises of Pyception, is stored in a MySQL database, and are
available through the Django web framework.

FR 1.5 The game should retrieve tasks from the database.
The exercices stored in the MySQL database, are retrieved by the Django
framework, and sendt as a JSON object to the gameclient.

15.1.2 Playing Field

FR 2.1 As a player I want to be able to navigate the space ship freely on the
playing field

When the playing field is displayed, the player is able to move as he or she
wishes. The space ship is controlled by using the arrow keys on the keyboard.
There are no objects hindering the players movement on the playing field, how-
ever, Dr. Thereon may kill the player.

FR 2.2 As a player I should not be able to navigate the spaceship outside the
playing field.

The game client has implemented boundaries along the edges of the playing
field. If a player tries to fly out of the playing field, the spaceship will hit the
border and have its speed reversed, bouncing the player back into the playing
field.

FR 2.3 As a player I want to be able to dock with all satellites

It is possible to dock with both solved and unsolved satellites, provided the
speed is low enough. If the speed is greater than the dock limit of 3, a warning
message is displayed, informing the player that he or she needs to slow down in
order to dock. Docking with a satellite will bring up the coding interface.

FR 2.4 As a player I want to not be able to dock with the powerstation when
some tasks are unsolved

If a player tries to dock with the powerstation with some satellites still
glowing red and unsolved, the player is denied docking and is informed by a
warning message. The warning message states the number of solved satellites,
and total number of satellites.

FR 2.5 As a player I want to be able to dock with the power-station when all
tasks are solved

In order to dock with the power station and proceed to the next level, all
satellites have to be solved and glow green. The docking still requires the player
to keep a slow pace, or a warning message is displayed.

FR 2.6 There will be an enemy on the playing field at all times.

The enemy, Dr.Thereon, has a navigation algorithm that is based on the
satellites. A satellite is always Dr.Thereon’s target, and he moves closer to
the satellite with every iteration of the game loop. Upon reaching the satel-
lite, Dr.Thereon selects a new satellite on random. Based on this algorithm
Dr.Thereon will never move out of the playing field.

15.1. FUNCTIONAL REQUIREMENTS 87

FR 2.7 If the player is in range of the enemy, a penalty will be applied. If
a player appears closer to Dr.Thereon than the range of his laser cannon, Dr.
Thereon fires on the player. A message stating that the player was killed is
displayed close to Dr.Thereon, and after a few seconds, the level is reset to it’s
initial state with all satellites unsolved. In addition a penalty of 1000 points is
applied.

FR 2.8 The enemy will sporadically ruin the satellites and mess up the code

Approximately 20% of the time Dr. Thereon arrives at a solved satellite, he
will corrupt the exercise code and disable the satellite. The player is deducted
100 points from the score when a satellite is corrupted.

FR 2.9 As a player I want to be able to earn points and keep track of the
score

The player will earn 100 points by solving a satellite. To the far right, below
the playing field, the player’s score is displayed.

FR 2.10 As a player I want to be able to see a measure of completion of the
current level

To the left, below the playing field, the number of operational satellites is
displayed.

15.1.3 Code Interface

FR 3.1 As a player I want to enter my own code

By docking with a satellite, the code interface is displayed. The code inter-
face has four text areas, where the largest of them is labeled “CodeArea”. In
the CodeArea text box, the player is free to enter his or her own code.

FR 3.2 As a player I want to have my code evaluated
The coding interface has three buttons. The “Execute” button will send all
code in the “CodeArea” text box to the server for evaluation.

FR 3.3 As a player I want feedback regarding what is wrong in my code

The exercise examining system capture the output of the player code. In
order to provide good feedback, the solution code of the exercises must take the
output of coding errors into account and display a relevant feedback message.
This requirement has received some attention during the user experiment, as
some tasks did not correctly anticipate common mistakes, and thus did not
provide sufficient help.

FR 3.4 As a player I want feedback when my code is correct

When an exercise is solved, a label in the top right corner of the coding in-
terface changes from “Status: unsolved” on red background to “Status: solved”
on green background.

88 CHAPTER 15. REQUIREMENT FULFILLMENT

FR 3.5 As a player I want to be able to reset my code

The coding interface has three buttons. The “Reset” button will fetch the
exercise from the server, and reset the “CodeArea” text box to the template
code.

FR 3.6 As a player I want to have my code stored so I can go back and
continue later

Upon leaving a satellite, the content of the “CodeArea” box is stored in the
satellite. If a player returns to the satellite later, the stored code is brought
back.

FR 3.7 As a player I want to have my finished tasks stored so I can go back
and review it later

Upon leaving a solved satellite, the content of the “CodeArea” box is stored
in the satellite. If a player returns to the satellite later, the stored code is
brought back. It does not matter if the satellite is solved or not, any code is
stored for the duration of the game.

FR 3.8 As a player I want to be able to debug code
If a bug is present in the player code when the code is executed, the Python
output related to that bug, is presented in the “code output” textbox.

15.1.4 Lecturer

FR 4.1 As a lecturer I want to have a password protected administration
account with access to the exercises.

The Django framework takes care of administrator users, enabling lecturers
to have a password protected account.

FR 4.2 As a lecturer I want to be able to create new tasks

Through the Django framework administrators are able to create new tasks.
In order to add the excercises to a level, the lecturer has to add the task in the
“settings.js” file. This requirement is fulfilled, however, the implementation is
poor, and improvements will be suggested in Chapter 17, future work.

FR 4.3 As a lecturer I want to be able to edit tasks
Through the Django framework administrators are to edit tasks.

FR 4.4 As a lecturer I want to be able to delete tasks

Through the Django framework administrators are to delete tasks.In order
to remove the excercises from a level, the lecturer has to remove the task from
the “settings.js” file. This requirement is fulfilled, however, the implementation
is poor, and improvements will be suggested in Chapter 17, future work.

15.2 Non-functional Requirements

Accessibility One of Pyception‘s core goal is to make an easy accessible game.
This means that the user should not have to go through an installation, nor a
registration process..

15.2. NON-FUNCTIONAL REQUIREMENTS 89

The questionnaire users filled out after the user experiment addresses the
accessibility in Q5, “It was easy to get started with the game and exercises”.
Q5 scored an average of 4.14, indicating the users agree, that the game is easily
accessible.

Compatibility The server is implemented in the Django framework and the
game client is coded in JavaScript. Django is compatible with both windows
and Unix platforms, and JavaScript is implemented in all major web browsers.
This makes Pyception compatible with multiple environments, however this has
not been tested and verified, as compatibility is a low priority in this project.

Performance The development of Pyception has not accounted for perfor-
mance, as this is a low priority non-functional requirement.

Security The security issue present in Pyception, is detailed in Section 14.
Apart from that, security has not received any attention, as it is a low priority
non-functional requirement.

Usability The game should be easy to use and to understand. As indicated in
section 12.3 the total average SUS-score is 71.96. In addidtion, the questionnaire
has several questions that address usability, among them Q6 “Understanding
how to play the game was easy”, which has a satisfying result, with an average
of 4.36.

The usability of Pyception is satisfying,a SUS score of 71.96 is above average[37],
but still has room for improvements.

90

CHAPTER 15. REQUIREMENT FULFILLMENT

Part VI

Conclusion

91

Chapter 16

conclusion

16.1 Research Questions

16.1.1 Research Question 1

“Which systems related to Pyception exists today, and do they exhibit any
features that should be included in Pyception?”

In Section 5.2, I examined systems that were similar to Pyception. The sec-
tion were rounded of by identifying important aspects of the examined surfaces,
fantasy and challenge. The key aspects have been a factor when developing
sketches and eventually the game.

The challenge aspect is featured in Pyception with two features, the enemy
and the exercises. The enemy moves about the playing field, and the player has
to avoid it or the entire level is reset. Python is thought by a series of tasks
with escalating difficulty, creating a challenge for the players. It is possible to
edit the tasks in order to adapt the curriculum for a more experienced crowd.

The fantasy aspect is implemented in Pyception through the game set in
space. The story provided is intended to motivate the player to help save a
fictional world, and all game elements have space themed graphics.

16.1.2 Research Question 2

“Is it possible to create a serious game based on programming that is both fun
and educational?”

Most of this thesis is based on the work trying to create a serious game
that was both fun and educational. Research question 1 founded the basis for
a prototype. In Chapter 6 several sketches were discussed, and a final concept
was created. The concept was turned into requirements, described in Chapter
7, design choices are listed in Chapter 8, and an architecture is described in
Chapter 9. Finally, the implementation is discussed in Chapter 10. The product
developed in the process described, was Pyception, a game I believed is fun and
educational.

In order to objectively determine if the game is both fun and educational,
a user experiment has been conducted, as described in Chapter 11. Using the
results from this experiment, listed in Chapter 12, it is possible to draw some
conclusions.

93

94 CHAPTER 16. CONCLUSION

The user experiment gave through observations and a questionnaire answers
regarding this Research Question. In order to make a quantitative measure of
the success of this Research Question,I formulated the Success Criteria 1, SC1
“Fun and Educational game” 11.4. In Section 12.4.1 the results state that this
Success criteria was fulfilled with a score of 3.60, tipping over the 3.50 limit,
which in Section 11.3.1 was determined the minimum score for the criteria to
be met.

As in every prototype, there is room for improvements in Pyception. How-
ever, based on these findings and results, Pyception can be considered a serious
game that is both fun and educational

16.1.3 Research Question 3

“Will more people be motivated to learn programming if the learning process
has an effortless start through a web based game?”

The implementation of Pyception require no installation or registration pro-
cess. The only thing required of the user is to enter a web address, which must
be considered effortless. The data from the user experiment questionnaire sup-
port this claim. Section 12.2.4 lists Q5 “it was easy to get started with the
game and exercises”, which received a score of 4.14 out of 5, where 5 represents
“strongly agree”.

The motivational aspect of Pyception was investigated in the user exper-
iment, through Success Criteria 2, “Motivation”. In the analysis in Section
12.4.2, SC2 receive 3.84 of 5.00 points, which is above the minimum margin of
3.5 established in Section 11.3.1.

An interesting observation in the data, is that there is a significant difference
in the motivation experienced between a novice coder and an experienced coder.
Q20 states that “the game was more motivating than solving traditional tasks”
receive a score of 4.50 out of 5 from the novice, indicating that Pyception is
best at motivating novice coders.

With the success criteria fulfilled in addition to the motivational observa-
tion, Pyception gives a clear indication that users are more motivated towards
learning Python if the game has an effortless start.

16.1.4 Research Question 4

“Is the Python language a suitable language for a web based serious game?”

The Pyception implementation is a proof that it is possible to implement a
serious web game based on teaching Python. Although, Chapter 14 discuss the
security and performance issues present in Pyception. Despite these findings,
an implementation is suggested where Pyception’s issues are handeled.

The Pyception implementation is a proof that Python is a possible, but not
suitable language for a web based serious game. The data provided in this thesis
is not comprehensive enough to conclude that Python is suitable, as there is no
implementation of the system suggested in Chapter 14.

16.2. PROJECT EVALUATION 95

16.2 Project Evaluation

16.2.1 Pre-study

The pre-study is presented in Part III and consists of two main parts; previous
work and technology choices.

In the previous work I present a research of already existing educational
web services, and analyse them for their focus on one or more of the aspects of
challenge, fun or curiosity. I also take a look at different game genres and which
of these genres that would suit Pyception.

During this project, a lot of time were invested in coding the game. Due to
this, the report mostly reflects all the work done by creating the game.

Finding suitable technologies for the development of the prototype was im-
portant. Many technologies were considered, and the ones used are listed and
discussed in Part III.

The findings from this part have helped me creating a combination of tech-
nology, design and game genre that would suit a serious game.

16.2.2 The Engineering Method

Section 3.2 presents different approaches to performing software research, pro-
posed by Basili et al. [3]. The most fitting approach for this project was the
engineering method. The engineering method consists of observing existing so-
lutions, propose improvements, measure and analyse, and repeat the process
until no improvements appear possible. Due to the limited time available in
this project, only one iteration were performed.

The first step, observing other solution, were performed as a part of the
prestudy. Part IV describes the proposed solution, the process of implementing
and at the end, a user experiment as an analysis process.

The user experiment were performed, and is summarized in the following
subsection. Due to the mentioned time constraint, no improvements as a result
of the user experiment, were performed in the prototype. However, proposed
changes are discussed in Chapter 17.

16.2.3 The User Experiment

The user experiment was executed with 14 contestants. Even though the number
could have been higher, 14 users are enough in order to create a representative
result. By executing a user experiment, a lot of feedback was received. However,
as the user experiment came late in the process it was more of a user evaluation
of the final product. The users were quite satisfied, which is stated in Chapter
12.

96

CHAPTER 16. CONCLUSION

Chapter 17

Future Work

This chapter presents some remaining work, and lists features that could im-
prove Pyception.

17.1 Finalizing Pyception

The development of Pyception has consumed a great deal of the time available
in this thesis. Some issues still remain in the project due to time constraints,
or design flaws.

17.1.1 Security

The chosen architecture with server side execution of code, is a security threat.
Unless this threat is properly handled, Pyception can not be deployed online
and accessible for all. This is thoroughly discussed in Chapter 14, and the two
proposed solutions are detailed below.

Whitelisting By filtering all submitted code for malicious code, it is possible
to mitigate the security risk to some degree. By applying this solution, host-
ing Pyception would still be a risky venture, however, far safer than today’s
implemented solution.

JavaScript Python Interpreter If Pyception implement a client side Python
interpreter, the security threat of running user submitted code on the server, is
eliminated.

17.1.2 Settings

The implementation as it is today, store information of levels in a JavaScript
file. If a lecturer whish to add or remove a task to a level or add a level, it is
necessary to edit the JavaScript file.

By implementing the settings in the Django server, it would be possible for
a lecturer to handle level info in the same interface that is used to edit the
exercise content.

97

98 CHAPTER 17. FUTURE WORK

17.1.3 Full Browser Support

The game is not displayed equally in all browsers, and consequently looks better
in Chrome, than in other browsers.

17.1.4 Exercises

There is a total of 22 exercises used in Pyception today. These exercises span
from the easiest “hello world”-type of task, to harder exercises with nested
control structures. The span in the curriculum is too wide for only 22 exercises,
so more exercises should be added.

17.2 Improving Pyception

In this Section, I present some features I believe will improve Pyception.
Audio Add background music and sound effects.

Multiplayer Enale players to cooperate against a common enemy.
Gamification Add achievements to the game.

Social Media Enable users to share their score with friends on social media,
such as Facebook or Twitter.

Lenient Penalty When Dr.Thereon kills the player, the players find it an-
noying to loose all of the solved tasks, and suggest to only disable a few, or half
of all solved satellites.

17.3 Research Improvements

The user experiment performed in this thesis featured 14 test users who played
as they felt for an hour, then completed a questionnaire. The data were enough
to prove the research questions. However, it would be interesting to research if
a serious game could teach programming better that traditional task solving.

Bibliography

1]
2]

3]

[9]

[10] NTNU Course information http://www.ntnu.edu/studies/courses/TDT4110/2012

NTNU Course information. http://www.ntnu.edu/studies/courses/IT1103

Thomas W. Malone What makes things fun to learn? Heuristics for design-
ing instructional computer games 1980

Victor R. Basili. The experimental paradigm in software engineering. In Pro-
ceedings of the International Workshop on Experimental Software Engineer-
ing Issues: Critical Assessment and Future Directions, pages 3-12, London,
UK, 1993

Brad Paras, Jim Bizzocchi Game, Motivation, and Effective Learning: An
Integrated Model for Educational Game Design 2005

Pablo Moreno-Ger, Daniel Burgos, Ivdn Martinez-Ortiz, José Luis Sierra,
Baltasar Fernandez-Manjon FEducational game design for online education
2008

Philippe B. Kruchten The 4+1 View Model of Architecture November 1995

Markus Montola, Timo Nummenmaa, Andrés Lucero, Marion Boberg,
Hannu Korhonen applying game achievementsystems to enhance user ex-
perience in a photosharing service 2009

Thomas W. Malone Heuristics for Designing Enjoyable User Interfaces”
Lessons from Computer Games 1980

Sebastian Detering, Dan Dixon, Rilla Khaled, Lennart Nacke From game
design elements to gamefulness defining gamification 2011

[11] M.F.Sanner Python: A programming language for softwareintegration and

development

[12] Gregor Richards, Sylvain Lebresne, Brian Burg, Jan Vitek An Analysis of

the Dynamic Behavior of JavaScript Programs

[13] MySQL AB About MySQL http://www.mysql.com/about/

[14] Django Software Foundation Databases https://docs.djangoproject.com/en/dev/ref/databases/

[15] Django Software Foundation Django https://www.djangoproject.com/

99

100 BIBLIOGRAPHY
[16] Jeff Forcier, Paul Bissex, Wesly Chun Python Web Development with
Django Addison-Wesley Professional, 2008

[17) Python Python Programming Language — Official ~ Website
http://www.python.org/

[18] JSON Introducing JSON http://json.org/

[19] CreateJS FEaselJS http://www.createjs.com/EaselJS

[20] CreateJS CreateJS http://www.createjs.com/.

[21] World Wide Web Consortium HTML http://www.w3.org/community /webed /wiki/index.php?title

[22] World Wide Web Consortium Cascading Style Sheets home page
http://www.w3.org/Style/CSS/

[23] International Standardation Organisation ISO 9241-11: Ergonomic re-
quirements for office work with visual display terminals (VDTs), Part 11:
Guidance on usability. March 1998.

[24] John Brooke SUS - A quick and dirty usability scale 1996

[25] KhanAcademy KhanAcademy https://www khanacademy.org/
[26] Codecademy Codecademy http://www.codecademy.com/

[27] Code Hero Code Hero http://primerlabs.com/codehero0

[28] Robocode Robocode http://robocode.sourceforge.net/

[29] Stack Overflow http://stackoverflow.com/questions/7376727 /html-5-
game-development-tools /73797564 7379756

[30] Aviel D. Rubin, Daniel E. Geer Jr Mobile Code Security November 1998

[31] Tom S. Chan, Terence C. Ahem Targeting motivation — adapting flow theory
to instructional design Journal of Educational Computing Research, v21 n2
p151-63 1999

[32] Open Game Art Open Game Art http://opengameart.org/
[33] David Miunnich notpron http://notpron.org/notpron/
[34] raphidae Try2Hack http://try2hack.nl

[35] Jeff Sauro Measuring Usability with the System Usability Scale (SUS)
February 2, 2011 http://www.measuringusability.com /sus.php

[36] Eli Bendersky How (not) to set a timeout on a computation in
Python http://eli.thegreenplace.net/2011/08/22/how-not-to-set-a-timeout-
on-a-computation-in-python/

[37] Jeff Sauro, James R. Lewis correlations among Prototypical Usability Met-
rics: FEvidence for the Construct of Usability April 2009

Appendix A

Acronyms

AT Artificial Intelegence

API Application Programming Interface
GUI Graphical User Interface

MTYV Model Template View

MVC Model View Controller

SUS System Usability Scale

RTS Real Time Strategy

RPG Role Playing Game

101

102 APPENDIX A. ACRONYMS

Appendix B

Installation Guide

In this appendix the instructions on how to set up, and remove, the Pyception
system are outlined.

B.1 Installation

Step 1 Copy files.
Use ”installation stepl.bat” to copy files to C:\Pyception

Step 2 Install Django

Navigate to ”C:\Pyception\InstallationFiles” and use the Bitnami Django
stack to start the installation of Django. During the installer, some options
need to be filled.

Pyception only require the MySQL database, unselect SQLite and Post-
greSQL.

Install bitnami to the standard directory, ” C:\BitNami\DjangoStack-1.4.5-
07’

Apache port; use 80 or something else, this setting is not vital.
MySQL password must be ”pythonia”.

Do not change windows setting to associate Python files (.py) to the bun-
deled Python

Do not start an inital project
Uncheck ”Learn more about BitNami cloud hosting”.

Do not Launch BitNami DjangoStack

Step 3 Add Python to the path variable

Run ”sysdm.cpl” from command prompt.

Select the ” Advanced” tab

103

104 APPENDIX B. INSTALLATION GUIDE

Press ”Environment Variables”

In the system variables field, select Path, and click Edit.

e Add ”;C:\BitNami\DjangoStack-1.4.5-0\python” to the end of the vari-
able value

Click OK on all dialogs to close them

Step 4 Create the mission database, and add the exercises to the database.
Right click and run as administator “installation step 4.bat”. The file is
located in 7 C:\Pyception\InstallationFiles”

Start the game server Right click and run as administator “startServer.bat”.
The file is located in ”C:\Pyception”

Start the game Open your web browser and enter "http://127.0.0.1:8000/executer,/”.
Preferably use the Chrome web browser.

B.2 Uninstallation

Remove Pyception Delete the folder ”C:\Pyception” and its content.

Remove BitNami DjangoStack Use the uninstall available from windows
control panel, Program and features.

Appendix C

Questionnaire

The questionnaire was originally written and answered in Norwegian, and has
later been translated for usage in the thesis.

Metadata

1. My computer skills
None, Limited, Average, Good, Expert

2. My video game skills
None, Limited, Average, Good, Expert

3. My coding skills
None, Limited, Average, Good, Expert

4. My motivation towards learning how to code

No motivation, Limited motivation, Average motivation, Good motiva-
tion, Great motivation

Game Control

5. It was easy to get started with the game and exercises.

Strongly disagree, disagree, neutral, agree, Strongly agree

6. Understanding how to control the game was easy.

Strongly disagree, disagree, neutral, agree, Strongly agree

7. Navigating between satellites and Dr. Thereon was easy

Strongly disagree, disagree, neutral, agree, Strongly agree

8. Repairing satellites were hard.

Strongly disagree, disagree, neutral, agree, Strongly agree

9. Earning points were hard.

Strongly disagree, disagree, neutral, agree, Strongly agree

105

106 APPENDIX C. QUESTIONNAIRE

10. The game was slow, lagging or lacked response.

Strongly disagree, disagree, neutral, agree, Strongly agree

11. Technical issues ruined my game flow

Strongly disagree, disagree, neutral, agree, Strongly agree

12. T wish i could cooperate with my friends, in order to beat Dr.Thereon.

Strongly disagree, disagree, neutral, agree, Strongly agree
13. T wish i could play against, and beat, my firends.
Strongly disagree, disagree, neutral, agree, Strongly agree.
Game Experience

14. The game was suitable in length and duration

Strongly disagree, disagree, neutral, agree, Strongly agree

15. The game felt like more than just task solving.

Strongly disagree, disagree, neutral, agree, Strongly agree

16. The game was captivating

Strongly disagree, disagree, neutral, agree, Strongly agree

17. The points motivated me to play better.

Strongly disagree, disagree, neutral, agree, Strongly agree

18. T find the game visually appealing.

Strongly disagree, disagree, neutral, agree, Strongly agree

19. T would like to show my skills on social medias, such as facebook or twitter.

Strongly disagree, disagree, neutral, agree, Strongly agree
20. The game was more motivating than solving traditional tasks.
Strongly disagree, disagree, neutral, agree, Strongly agree
Prociency

21. I received sufficient feedback when things did not go according to my plan
Strongly disagree, disagree, neutral, agree, Strongly agree

22. I received sufficient feedback when things went according to my plan
Strongly disagree, disagree, neutral, agree, Strongly agree

23. The game motivated me to code more
Strongly disagree, disagree, neutral, agree, Strongly agree

24. The code exercises were too hard.

Strongly disagree, disagree, neutral, agree, Strongly agree

25.

26.

27.

28.

29.

107

The learning curve were too steep

Strongly disagree, disagree, neutral, agree, Strongly agree

I applied pre existing knowledge while playing the game.
Strongly disagree, disagree, neutral, agree, Strongly agree

I would successfully learn to code Python by playing Pyception
Strongly disagree, disagree, neutral, agree, Strongly agree

I feel that my coding skills were improved by playing Pyception
Strongly disagree, disagree, neutral, agree, Strongly agree

My motivation towards learning to code is increased.

Strongly disagree, disagree, neutral, agree, Strongly agree

Other

30.

Any other thoughts regarding the game ?

System Usability Scale (SUS)

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

I think that I would like to use this system frequently

Strongly disagree, disagree, neutral, agree, Strongly agree

I found the system unnecessarily complex

Strongly disagree, disagree, neutral, agree, Strongly agree

I thought the system was easy to use

Strongly disagree, disagree, neutral, agree, Strongly agree

I think that T would need the support of a technical person to be able to
use this system

Strongly disagree, disagree, neutral, agree, Strongly agree

I found the various functions in this system were well integrated
Strongly disagree, disagree, neutral, agree, Strongly agree

I thought there was too much inconsistency in this system

Strongly disagree, disagree, neutral, agree, Strongly agree

I would imagine that most people would learn to use this system very
quickly

Strongly disagree, disagree, neutral, agree, Strongly agree

I found the system very cumbersome to use

Strongly disagree, disagree, neutral, agree, Strongly agree

I felt very confident using the system

Strongly disagree, disagree, neutral, agree, Strongly agree

I needed to learn a lot of things before I could get going with this system

Strongly disagree, disagree, neutral, agree, Strongly agree

