
Page 46 of 75

9.9. Experiment 9

Because of the poor performance of lambda to discard, this experiment aims to find the

reason for this. The difference between the lambda value of the individuals and the best

lambda value, the value used to discard genomes, was recorded. This will show how many

genomes would be discarded per run and also reveal the best discard limit.

To do this the limit was put into an array of counters with granularity of 0.01, which

persisted over several runs.

Experiment setup:

GA versions tested: Standard
Complexities tested: 25 000
Number of runs: 10
Mutation rates tested: 0.05, 0.1, 0.25

The plot shows boxes for each 0.01 step of lambda limits of newly created individuals. The

values are accumulated in 10 runs of the genetic algorithm. The lambda limits is on the X-

axis and the accumulated count of individuals is on the Y-axis.

Figure 22: Accumulated lambda differences, Experiment 9

To get a better sense of scale the 0.1 point represents 58127 for mutation rate 0.25(blue).

For 0.05 this was 3068 and it is not visible.

Page 47 of 75

Analysis:

The mutation rate used previously was 0.05, and the discard limit where the performance of

the algorithm came close to the standard genetic algorithm was 0.1. In 10 runs 3068

genomes were found with this limit.

In total 3940 genomes were found to have difference of 0.1 or bigger compared to the best

lambda value. In average this is 394 per run. This means that with a discard limit of 0.1 394

of 800 000 individuals were discarded which is about 0.05%. This is so small that the effects

are negligible.

It is now possible to conclude that this version of lambda to discard cannot improve the

genetic algorithm. There may be other ways to use it, like using parents to calculate relative

lambda instead of the best genome of the previous generation. But it seems unlikely that

this will have any positive effect as it will still be limiting the search in the same way.

9.10. Experiment 10

In this experiment the old version of lambda in fitness was tested. The weight between

lambda and fitness value have always been 50-50 up until now. The goal was to see if

reducing the emphasis on lambda value would result in an algorithm performing better than

the standard genetic algorithm.

The ratios given are how much lambda counts in the fitness function. Trajectory length then

has the inverse ratio of 1 – lambda ratio.

Experiment setup:

GA versions tested: Lambda in fitness
Complexities tested: 25 000
Number of runs: 20
Lambda ratios tested: 0.5, 0.4, 0.3, 0.2, 0.1

The plot shows the lambda in fitness algorithm compared to the standard one.

Page 48 of 75

Figure 23: Fitness, Complexity 25 000, Experiment 10

Analysis:

Lambda in fitness performs much better than before with the new mutation rate, but it is

never better than the standard genetic algorithm. In the same way as lambda to discard it

closes in on the standard version as the lambda emphasis gets smaller. This version does not

improve on the genetic algorithm.

9.11. Experiment 11

To shorten the time for experiments a different approach has been tried. A higher amount of

runs searching for shorter trajectory lengths provides more precise results, and uses less

time. This approach also allows to measure performance as the average generations it may

take the genetic algorithm to find genomes.

This is useful because even if the algorithm finds high complexities fast, it may be slow at

finding the desired properties. In these experiments this is illustrated by finding an exact

trajectory length.

The genetic algorithm is configured the same way as before. Except now both random and

empty populations were tested. Due to the high amount of runs the initial population does

not affect the average as much.

Page 49 of 75

Experiment setup:

GA versions tested: Standard, Lambda in fitness , Lambda to discard
Complexities tested: 100, 1 000
Number of runs: 1000
Discard limit: 0.1
Lambda ratio in fitness: 0.3, 0.1

The plot shows a zoomed in view of the average of 1000 runs at complexity test 1000.

Figure 24: Fitness, Complexity 1000, Experiment 11

Average generation the algorithms found genome of trajectory length 100.

GA version Random population Empty Population

Standard 112 42

Lambda to discard 104 45

Lambda in fitness 806 4066
Table 4: Average generation genome of traj len 100 found

Average generation the algorithms found genome of trajectory length 1000.

GA version Random population Empty Population

Standard 371 433

Lambda to discard 358 443

Lambda in fitness 3347 16077
Table 5: Average generation genome of traj len 1000 found

Page 50 of 75

Analysis:

The results confirm what have been shown in the 25000 complexity tests. Lambda in fitness

clearly underperforms here as well. An extra test where the ratio is 0.1 was tried, but

showed no improvements past the standard genetic algorithms. Lambda to discard however

shows a small improvement for random populations. It does not converge any faster than

the standard version but it finds genomes slightly earlier on average. This difference is small,

but needs to be examined further.

Random population performs better than empty population, which was expected. But for

complexity test 100 it performs worse. This is probably because an empty population is

closer to 100 than a random population will be on average.

9.12. Experiment 12

After the last experiment showed lambda to discard showed a slight improvement compared

to the standard genetic algorithm this had to be tested further. These experiments runs

several tests with different discard limits to see if lambda to discard can consistently perform

better than the standard genetic algorithm. The tests were done on a random initial

population.

One difference is made here, and that is that lambda to discard continues running if an

infinite loop is detected. It simply gives up and lets the genome through even if it is outside

the limit. The idea was that this may provide all the benefits of lambda to discard and ignore

the limit if it does not help the algorithm (like in the beginning).

Experiment setup:

GA versions tested: Lambda to discard
Complexities tested: 100
Number of runs: 1000
Discard limits tested: 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12

The plots did not provide interesting knowledge but a table with the average generations

genomes were found is presented:

Discard ratio Random population

Standard GA 112

0.02 105

0.03 103

0.04 104

0.05 104

0.06 111

0.07 109

Page 51 of 75

0.08 108

0.09 104

0.1 104

0.11 105

0.12 107
Table 6: Average generation genome found tested on different discard limits

Analysis:

The tuning could not get any improvements, and the results are very close to each other.

The performance is marginally better than standard version, but too close to say it is an

improvement. It seems that for limits smaller than 0.06 the limit is too small to let any

genomes through to the next generation. The new mechanism of just giving up then shows

here because the performance of 0.05 is suddenly better.

9.13. Experiment 13

In this experiment genome usage statistics have been used to control mutation dynamically.

This mutation can only be applied to genomes that has not undergone crossover, because

data from the last fitness test is needed. The crossover rate is 0.70 which means that on

average only 30% of new genomes are mutated this way

The mutations of the genomes are controlled using the gathered genome usage data. Only

the parts of the genome that has been used in the last run will be mutated. The mutation

rate for this part will be 1 – genome usage rate. The effect of this is that when there are few

genes in a genome to mutate the chance of mutating each one is very high, but when the

number of used genes in the genome increases the chance of mutating individual genes

decreases. When all of the genome is used, no extra mutation is happening.

Experiment setup:

GA versions tested: Genome usage
Complexities tested: 25000, 1000, 100
Number of runs: 20 for 25000, 1000 for others

The plot is zoomed in and show comparisons to the normal GA with random and empty

initial populations for complexity test 1000. For the 25 000 test the plots were very similar

and not very interesting.

Page 52 of 75

Figure 25: Zoomed in fitness, Complexity 1000, Experiment 13

Average generation the algorithms found genome of trajectory length 100.

GA version Random population Empty Population

Standard 112 42

Genome usage 127 50
Table 7: Average generation genome of traj len 100 found

Average generation the algorithms found genome of trajectory length 1000.

GA version Random population Empty Population

Standard 371 433

Genome usage 340 397
Table 8: Average generation genome of traj len 1000 found

Analysis:

The plot shows that genome usage makes the algorithm converge much faster than the

standard genetic algorithm. The tables show that it performs better than standard algorithm

for complexity test 1000 and worse for complexity test 100.

Random population also performs in the same way, better on 1000 and worse on 100. They

seem to be related in the way that both provide variation to the population in early stages.

Yet they are not the same, because it seems that genome usage improves performance even

when population is random. This may be because a random genome does not guarantee

that the whole genome is used, but mutating it with genome usage does.

Page 53 of 75

9.14. Experiment 14

After the last experiment it was speculated on how the genome usage algorithm performs

with different mutation rates. Mainly it was believed that the mutation rate could be lower

and the algorithm would perform better. This way the claim that a too high mutation rate is

bad could also be tested. The experiment was split into two parts; the high mutation rates

and low mutation rates.

Experiment setup:

GA versions tested: Standard, Genome usage
Complexities tested: 5000
Number of runs: 50
Mutation rates tested: 0.05, 0.1, 0.25, 0.01, 0.02, 0.03, 0.04

The plot shows the low mutation rates zoomed in, only empty population was tested.

Figure 26: Fitness, Complexity 5 000, Experiment 14

Mutation rate Genome usage algorithm Standard GA

0.05(standard) 4866 6267

0.1 5682 5841

0.25 7228 6072
Table 9: Average generation the algorithm found genomes, higher mutation rates.

Page 54 of 75

Mutation rate Genome usage algorithm

0.05(standard) 4866

0.04 4777

0.03 5623

0.02 7402

0.01 14559
Table 10: Average generation that the algorithm found genomes, lower mutation rates.

Analysis:

The genome usage improves the genetic algorithm when mutation rate is around 0.05 and

below. Higher mutation rates make it harder to find genomes even if the search converges

faster. Genome usage makes the search converge fast, but does not make it harder to find

genomes. It improves on lower mutation rates versions of the genetic algorithm, but the

best performance is found around 0.05.

9.15. Experiment 15

At first this experiment tried to test the old lambda in fitness with using lambda value

directly, simply trying to get it as high as possible. During this work it was discovered that the

old lambda in fitness did not provide consistent fitness values for roulette wheel selection.

Same fitness value and lambda value would be combined to different values depending on

the rest of the population.

To change this lambda in fitness was simplified; lambda and fitness were to be combined

inside the fitness function before preparing the population the same way as before.

Now lambda in fitness cannot be given a definitive ratio, only a variable to tune the weight.

A few variations of this lambda in fitness were tested to find the one which provides an

advantage over standard genetic algorithm. They use two different types of relative lambda

values, high and relative to best, and two types of punishments, relative and absolute.

These 4 versions were tested:

 HiLambda is the lambda value where the highest trajectory lengths are found

 bestLambda is the lambda value relative to the lambda of the previously best

individual

Page 55 of 75

Close to best, relative:

Close to best, absolute:

High, relative

High, absolute:

The challenge is finding a fitting ratio which will be unique for each version.

First a series of complexity test 1000 and 100 runs were done to roughly determine the best

ratios of each version. Then a series of complexity tests 1000 and 1000 runs were done to

find a good specific ratio. The best results of the last tests for random and empty

populations are shown in the table below. The plot shows the same results.

Page 56 of 75

Figure 27: Fitness, Complexity 1000, Experiemnt 15

Lambda in fitness type Random population Empty Population

Reference normal GA 372 433

Close to best, relative 339 423

Close to best, absolute 341 418

High, relative 351 384

High, absolute 350 432
Table 11: Average generation genomes were found, best results, 1000 runs complexity test 1000

Analysis:

Looking at the table the results are very similar. Random population has a bigger variation

and is probably not affected by using lambda at all. This is because the lambda value is

initially close to the highest possible, and there is no lambda development. Lambda can

probably therefore be used only in empty populations.

For empty population the high, relative version distinguishes itself. It both converges slightly

faster than the others and finds genomes faster on average. This version will therefore be

examined further and used as the new lambda in fitness.

9.16. Experiment 16

The goal of this experiment was to show that the new lambda in fitness is better than the

standard genetic algorithm for higher complexities. The first step was tuning the lambda to

Page 57 of 75

trajectory length ratio to test it on optimal settings. Then run it on a series of complexity

tests and compare it to the Standard genetic algorithm.

Experiment setup:

GA versions tested: Standard, Lambda in fitness
Complexities tested: 1000, 5000, 10000, 15000, 20000, 25000
Number of runs: 1000 for 1000 and 20 for others
Rates tested: 10, 15, 20, 25, 30, 40, 50, 100

The tuning run complexity test 1000 for 1000 runs with ratio at increments of 10. The

criterions set was that the average generation a genome was found should be as low as

possible, and the plots should converge as fast as possible.

When the optimal value of 20 was found 15 and 25 were tested to see if there was any

difference. There was no difference and the ratio used in the end was 20. The average

generation a genome was found for ratio 20 was 365.

Below are the average plots of complexity tests 15000 and 20000. Standard genetic

algorithm with empty and random initial population is provided for comparison.

Figure 28: Fitness, Complexity 15 000, Experiment 16

Page 58 of 75

Figure 29: Fitness, Complexity 20 000, Experiment 16

Analysis:

The average generation the genomes were found for lambda in fitness is better than for

Standard genetic algorithm with random initial population. However in all the plots the

random population converges faster. This may not be surprising as the random population

gives a big head start.

The plots get more and more similar the closer one get to 25 000 (a solution is never found).

For complexity test 15 000 the standard genetic algorithm converges slowest and lambda in

fitness is in the middle. This is what all the tests up until then looked like. But for the tests

20 000 and 25 000 they start to be indistinguishable.

This experiment shows that lambda in fitness definitely provides an improvement over

standard genetic algorithm. It is however unclear what happens when searching for very

high complexities.

9.17. Experiment 17

This experiment aimed to gain knowledge about the developing phenotype in terms of

growth differentiation and death transitions (GDD). The usages of the different transitions

were measured by counting the number of times the rules were used for each step of the

cellular automaton. The hope was that this knowledge could contribute to a new genome

parameter, and shed light on how to use genome parameters in general.

Page 59 of 75

Experiment setup:

GA versions tested: No GA, only recording developing CA stats
Complexities tested: 100, 1000, 5000, 10000
Number of runs: 1

The genetic algorithm was not used in this experiment. Only the GDD stats were recorded

for each development step and the value for each development step has been plotted

together with the cumulative value. The plots show the development of a genome with

complexity 100.

Figure 30: Cumulative GDD for development of phenotype with traj len 100

Figure 31: GDD stats for development of phenotype with traj len 100

Page 60 of 75

Analysis:

The cumulative plots all looked similar to the one for 100. The step by step plot cannot be

for much more steps than 100, because the lines become indistinguishable.

The slopes of the cumulative plots were compared to each other across different trajectory

length phenotypes, but no clear trends were found. However, the slope is the ratio of which

each transition type is used, and is an interesting measurement to be used with the GA.

Another property of the cumulative plots is that growth and death transitions always have

the same slope. This suggests that they need to be balanced. None-transition is used more

than the rest because it contains 3 sub transitions instead of 2 as for the others.

Differentiation transition is mostly random. Some times higher than growth and death and

sometimes lower.

The step by step plot seems to have a repeating pattern. The flat are at 37 and 80 is the

same. This is even though the trajectory length is confirmed to be 100. The reason for this

was because the cellular automaton uses wrap around, and the phenotype moves in a

certain direction. This means that the same pattern of cell states shows up at two different

places in two different states in the cellular automaton.

9.18. Experiment 18

For this experiment 100 000 random individuals were created. Their fitness was calculated

and plotted using GDD stats and sub transition stats. It is different from the last test in that

GDD stats are calculated from the genome, and not measured in a developing phenotype,

making this a test on genome parameters. The transition stats were calculated by counting

the number of transitions in the genome and dividing them on the length of the genome to

create a transition rate.

The goal was to see how well they are suited as genome parameters. The plot is done the

same way as Figure 3: Plot of trajectory length and lambda [15]. except this population has

not been seeded in any way to avoid bias to any of the transition types.

Experiment setup:

GA versions tested: No GA, only fitness function used
Complexities tested: Random complexities
Number of runs: 100 000

The plots have trajectory length on the Y-axis and the parameter on the X-axis. It shows the

GDD stats and lambda, and one sub transition.

Page 61 of 75

Figure 32: Sub transition of growth, center cell change from 0 to 1

Figure 33: From top left: Death, Growth, Differentiation, None.

Page 62 of 75

Figure 34: Lambda

Analysis:

All the plots looks very similar, they have a different scale on the X-axis as the parameters

are measured as different sized parts of the whole, but this will not matter if they are used

as parameters. They are also all very similar to the lambda plot, which means that they

probably can be used in the same way.

They all tell something about the variation in the genome on different levels. The sub

transitions are more specific and the none-transitions and lambda are the least specific. If

this can help the genetic algorithm or not needs to be investigated further. The transitions

could definitely be usable as genome parameters.

9.19. Experiment 19

The previous two experiments treated the same genome properties in two different ways. In

9.17 the usage of the different GDD stats in a developing phenotype were measured, and in

9.18 the GDD stats was calculated from the genome.

This experiment aimed to measure the GDD stats and plot them the same way as in 9.18.

This would also make it easier to find Relations and dependencies among the different stats.

The main goal was to check if growth and death transitions really need to be balanced.

Experiment setup:

GA versions tested: No GA, only fitness function used

Page 63 of 75

Complexities tested: Random complexities
Number of runs: 100 000

The plots are presented for differentiation transition and one where X-axis is the difference

between growth transition rate and death transition rate. Several combinations of the

different transition stats were tested, but all looked similar to the differentiation plot.

Figure 35: Differentiation transition rate

Figure 36: Growth – Death

Page 64 of 75

Analysis:

The measured usage of differentiation transition rules in the cellular automata provides a

more accurate prediction of where to find good genomes compared to the one calculated

from the genome. From 0 to 0.1 most genomes have very low trajectory lengths while at

0.22 the best genomes are found.

This makes it much easier to know where the good genomes are as one can disregard

genomes at certain values. The plots in general looked the same for all GDD stats. All had

areas with bad genomes and the good genomes were concentrated around 0.22 for growth,

death and differentiation, and around 0.33 for none-transitions.

Growth and death usage seems to have to be balanced; good genomes are only found when

the difference between them is close to 0. This makes sense because if they are not

balanced the developing phenotype will move towards a point attractor where all cells are of

one type, or one type is not present.

9.20. Experiment 20

This experiment uses the knowledge gathered about measuring usage of different parts of

the genome to see if it can improve on the genetic algorithm. There are a lot of possibilities,

but the time only allowed for a few variations to be tested.

The tests focused on using the average generations because this have proven to be a good

measurement to how good the algorithm performs also on higher complexities. It also takes

less time allowing testing more variations.

Experiment setup:

GA versions tested: New versions
Complexities tested: 1000
Number of runs: 1000

The different versions are presented below together with their results at the end. The values

presented are used the same way as lambda is used in the new version, as seen in 9.15.

Measured Lambda

The plots of the measured GDD stats seemed to suggest that they were more precise than

calculating them from the genome. This version seeks to find out if this precision is an

advantage to the genetic algorithm.

Page 65 of 75

This version measures the lambda value in the same way that GDD stats are collected from a

developing phenotype. The number of times a quiescent state is used during development of

the phenotype is used to calculate a measured lambda value.

Death Parameter

Simply uses the number of death transitions in the genome and calculate a death parameter

the same way as lambda. Death parameter is dependent on growth, and contains only 2 sub

transitions; the question is how this will compare to lambda parameter.

Single Transition Parameter

Death parameter contains two sub transitions, this version aims to find out how a single

specific parameter compares to lambda. This parameter uses only the transition rules from 0

to 1 in the genome. Only neighborhood configurations with a center cell 0 that results in 1

will be counted.

Measured Average

Measured average uses the average difference of growth, death and differentiation

transitions from 0.22. 0.22 is used because there are a total of 9 possible transitions for 3

state cellular automata and each have 2 sub-transitions (2/9 ≈ 0.22). This was tested because

they incorporate 6 sub transitions into one parameter which is interesting to compare to

lambda which only contains 3 (all transitions to the quiescent state).

 (growth r tio

2
9) (de th r tio

2
9)

2
9

Page 66 of 75

Measured Growth minus Death

This parameter uses growth minus death to filter out bad genomes in the fitness function. It

basically said that if genomes are outside a given limit the fitness gets very high. If it is inside

the growth – death transitions were used the same way as measured lambda.

Below are the results of the average generation genomes were found for each version. The

plot shows Trajectory length on Y-axis and the measured average on X-axis. Together with an

example of filtering out genomes using measured growth – death.

GA version Generation genomes found

Reference normal GA 433

Reference lambda in fitness 365

Measured lambda 364

Death parameter 397

Single Transition Parameter 436

Measured average 423

Measured Growth minus Death 425
Table 12: Average generation genomes were found, best results, 1000 runs complexity test 1000

Figure 37: Measured average plot

Page 67 of 75

Figure 38: Filtering out genomes with growth –death (red are unfiltered, blue are after filtration)

Analysis:

None of the new versions performed better than lambda in fitness. Measured lambda was

interesting because it performs exactly the same compared to lambda in fitness. This means

that the precision of the parameter in predicting the exact fitness is not as important as

knowing what area it is probable to find good individuals.

Death parameter was the only one close to lambda in fitness. This is probably because it is so

similar, and it may be possible to tune it somehow. However the single transition parameter

performed badly despite its similarity to lambda in fitness. It may have something to do with

the fact that it does not cover all aspects of the genome.

The measured average and Measured Growth minus Death did not do well. There probably

exists much better way of using these parameters. Bur unfortunately there is not enough

time for that.

The plots presented show an example of the last two versions, and suggests why they should

work. The measured average has a clear area where the best genomes are found. It also has

many low scoring genomes far away from the highest point. Using growth minus death as

filter removes a lot of the lower complexity genomes which should better indicate where to

find the good genomes.

Page 68 of 75

10. Discussion and further work
In this project the effects of lambda and other genome parameters on a genetic algorithm

have been studied. Lambda in fitness has been able to improve the genetic algorithm for

empty populations. Genome usage shows promise in controlling mutation and transition

parameters may prove useful even if the results in the last experiment were not good.

This section discusses the overall results of the experiments and suggests further work. The

main portions are discussed; Lambda parameter, genome usage and transition parameters.

In the end general properties of genome parameters in relation to the genetic algorithm are

discussed.

10.1. Lambda

How to use lambda to improve the genetic algorithm was the first task in this project.

Lambda to discard showed the most promise in the beginning and it was attempted to tune

it to see if the performance could improve over standard genetic algorithm. It turns out

lambda to discard can only be tuned up to the performance of the standard genetic

algorithm but not further. This happens when discard limit is 0.1 which only discards about

0.05% of the genomes through one run of the genetic algorithm. So this means the fewer

genomes are discarded the better the algorithm performs.

Discarding genomes seems to narrow down the search, making the population less diverse.

This in turn makes it harder for the genetic algorithm to climb out of local maxima. The main

result is that the algorithm becomes more unstable, either finding good genomes or getting

stuck early at low trajectory lengths.

One issue is that lambda to discard prevents variation; a better approach could be to use it

to add variation to the population. There are a number of other ways to exploit lambda

outside the fitness function. This project aimed to investigate other genome parameters as

well, so they were not tried, but here are some suggestions:

 Discard children based on parents instead of the best individual of the previous

generation.

 Instead of creating two children to go on to the next population it is possible to

create 10 children by crossover and mutation from two parents. Lambda will then be

used to select the best one(s) to go on to the next generation.

 Lambda could be used to ensure that a certain number of individuals become more

different from the best individual of the last population, rather than limit them.

 Lambda could be used to control the mutation rate dynamically.

Page 69 of 75

Lambda in fitness has shown good promise for empty populations. The results are in fact

comparable to that of a standard genetic algorithm initialized with a random population.

During the tests it also seemed that lambda affect a randomly initialized population less than

an empty one. Lambda increases fast when complexities get higher, and at very high

complexities it do not seem to change the behavior of the genetic algorithm at all. This is the

same for a random initial population. Searching for trajectory 25 000 removes the

differences between lambda in fitness and standard genetic algorithm with both empty and

random population.

Lambda in fitness needs to follow a path of increasing lambda values to be useful. Starting

with a random population will make the population initialize on an average lambda 0.66,

diminishing the effect. However, there is probably an advantage to it anyway as genomes

with potential (a high lambda) may still have a low fitness, but using lambda together with

fitness will send them to the next generation anyway. This promotes variation in the

population which seems to be very important.

It is clear that lambda in fitness finds fit genomes faster than the standard genetic algorithm.

Lambda only tells where potentially high genomes are found, poor genomes are still found

at lambda value 0.66. Leading the population to this area increases the probability of finding

individuals with high fitness. It is likely this is why the fitness increases faster if the genetic

algorithm is forced towards this area.

The version of lambda in fitness chosen was based on forcing the lambda value as high as

possible and reducing the penalty relatively to how complex the individual is. The reason this

version works better than the others is maybe because it is important to get to a high

lambda value quickly, but when lambda is at 0.66 it is not really useful anymore, so it is good

that the emphasis on it decreases.

Lambda parameter shows very roughly how far from a solution an individual is. Supported

by the explanation in 6.11, this by itself explains why lambda in fitness can improve the

genetic algorithm. It relates the genome to the developing phenotype in the fitness function.

The work that may be important to do on lambda in fitness is seeing how well it works for

cellular automata with more states. The last experiment showed that a transition parameter

that only checks 1/9 of the genome (the single transition parameter) did not perform well.

As the cellular automata gets fewer states lambda may have a lower effect. For a 9 state

cellular automata lambda may be as little useful as the single transition parameter is for a 3

state cellular automata. In that case a GDD parameter may be more useful as they span an

equally big part of the genome independent of the number of states.

Page 70 of 75

10.2. Genome usage

The experiment on genome usage in mutation showed some promise. But the genome usage

was also investigated when measuring the GDD usage and lambda in the developing

phenotype in experiment 58, 62 and 64.

The performance on both random and empty population was slightly better than the

standard genetic algorithm. This difference was very small however and it may be that the

same results could be achieved only controlling the mutation rate dynamically.

Recording genome usage statistics for each single gene in a genome provides interesting

possibilities however. One can look at individual genes and see if they are used. This way one

could know exactly which genes to mutate to see an effect. It may also be possible to predict

what the mutations will do.

One can start with an empty genome, and then only mutate the part that is triggered during

development of the phenotype. This will create a new genome which, while developing, will

probably have a larger part triggered. Comparing two steps like these can provide interesting

knowledge about individual genes roles in a phenotype. This can also be used to roll back a

mutation and try over if the results are not desired.

It could be possible to treat the development of a genome almost like a heuristic search.

Each state is a point in a directed graph, and the possible paths from one point to another

are defined by what genes are mutated at each step. The problem may be that the growth in

complexity may be very high for each step, and may mean that a random search is better.

The other way of measuring genome usage with an emphasis on genome parameters did not

prove very useful. The result of measuring a parameter is more precise than calculating it

from the genome. When using measured lambda it was shown that the performance

compared to normal lambda in fitness was exactly the same. The precision do not seem to

matter so much, this may be because they both lead genomes to the same area of lambda

0.66. Genome usage does not seem to be able to improve on genome parameters in this

way.

It was shown that death transitions and growth transitions need to be balanced, but it was

hard to exploit. The value needs to be measured so it cannot be used to discard genomes. It

may exist a better way of using it in fitness, for example together with lambda.

10.3. Transition parameters

The transition parameters are alternatives to lambda in fitness and can be used much in the

same way. The last experiment was the only time they could be tested, and they failed to

perform equally to lambda.

Page 71 of 75

However they created a notion of sub transitions, and many genome parameters can be

built from them. Death parameter, for example, has two sub transitions of 1 to 0 and 2 to 0

when the cellular automaton has 3 states. Lambda parameter also consists of sub

transitions. If the quiescent state is 0 the sub transitions are 0 to 0, 1 to 0 and 2 to 0. Lambda

then has 3 sub transitions. As can be seen from the last experiment, lambda in fitness

performed better than death parameter which performed better than single transition

parameter.

This suggests that more sub transitions used in a genome parameter leads to a better fitness

function, but it ignores the measured average which incorporated 6 sub transitions. The way

this has been done may not have been correct and it differs from the other parameters in

that it combines transitions that are not necessarily related.

Sub transitions may be used in similar ways to the measured average to design genome

parameters. It becomes more relevant for cellular automata with more states as the number

of sub transitions increase. It could even be used with a developmental model with the

fitness function searching for trajectory length 1000 and use the average generation

genomes were found after 1000 runs.

Before the parameters were chosen a plot like Figure 3 was created. It was analyzed and

measured average looked like it would have good properties. Because it did not it seems

that what these graphs look like do not always dictate if the parameter will be good. It may

be an idea to look into how to interpret these kind of plots more closely.

The inherent properties in the different transitions also need to be considered. The growth

and death transitions should be balanced in the developing phenotype. This is not true for

growth and differentiation for example. More research into these properties may also be

useful.

One example is two transitions of to1 and from1. To1 consists of the sub transitions 0 to 1

and 2 to 1 and from1 consists of the transitions 1 to 0 and 1 to 2. To1 and from1 will

probably also have to be balanced in the same way as growth and death. In that case the

same will be true for to2 and from2. These are properties that may be able to tell more

accurately what genomes are good and not. They may also be strongly related so if growth

and death is balanced so will the others.

The last property of the transition parameters was using growth minus death and filter out

the genomes where growth and death are too different. This in combination with another

genome parameter could be used to discard many of the lower complexity genomes. From

the last experiment this strategy did not work very well, but this did not use a different

genome parameter.

Page 72 of 75

10.4. Genome Parameters and the Genetic Algorithm

Genome parameters ability to help the genetic algorithm seems to be dependent on their

ability to both drive mutation and drive the development in the right direction. The genetic

algorithm needs more variation, and attempting to limit variation in favor of going in the

right direction seems to have a bad influence. The experiments with lambda to discard show

this.

Increasing the mutation rate of the genetic algorithm helped a great deal compared to the

earlier versions. Increasing past 2% mutation also made it a lot more stable. The result is that

the difference between the standard algorithm and lambda in fitness may be smaller than it

would have been at lower mutation rates.

During the experiments it has also become clear that a genome needs to be balanced. This is

the theory behind lambda value. The genomes become more random as they reach lambda

0.66(for 3 state CA), which is also the area with the longest trajectories. The same can be

said for all sub transitions, where the longest trajectories are found around 0.22 (1/9 for 9

sub transitions).

This project only tested very specific cellular automata with size 4 by 4, 3 states and a 5 cell

neighborhood. It is unclear how lambda would perform with a larger number of states, or

with a bigger grid. This would take much more time, and would make it hard to test more

ways to exploit the genome. The lambdas effect at a higher number of states was explained

earlier. Larger grids or neighborhoods will not affect how much of the genome lambda

covers, so this will probably not affect lambda in fitness.

Genome usage however may actually become more useful as the genome gets bigger. In a 9

cell neighborhood for example the genome is much larger and it may take longer to exploit

all of it, especially if there are more states. With genome usage mutation is targeted exactly

where needed and may help develop good individuals much faster initially.

In the end the tests started to rely more and more on the test setup with 1000 runs at

complexity 1000. This is because these results were very consistent, especially for empty

populations. The versions that performed well at 1000 runs of complexity test 1000

performed well in general. However after complexity test 20 000 the differences began to

disappear.

Nothing seems to help the algorithm a lot at complexity test 25 000 initially some are better,

but in the end the results are too similar. Maybe 1000 runs at this complexity would be

accurate, but that simply takes too long time.

Page 73 of 75

11. Conclusion
The experiments have shown that using lambda parameter in the fitness function can

improve a genetic algorithm. Other parameters like the transition parameters have not

performed as good, but the plots for the parameters looks the same as for lambda

parameter; this suggests that at some level they should be able to provide the same

advantages. The transition parameters present a way to design genetic parameters. Lambda

and GDD parameters all consists of sub transitions that can be combined in many different

ways. The number of sub transitions used for the genome parameter may affect how useful

it is, because more sub transitions incorporate more information about the diversity of the

genome.

Using lambda to discard genomes has been shown to have little or no benefit for the genetic

algorithm. The results pointed to how important the width of the search is. Limiting the

search even by a small fraction decreases the performance of the genetic algorithm.

Genome usage presents an interesting idea of mutating only the part of the genome that

was used when developing the phenotype. It has been used to control mutation dynamically

with good results, though not necessarily just because of the technique, but also because of

a higher mutation rate. Genome usage can be used to gain great control of the genome

search.

The tests done show that running a complexity test of 1000 for a 1000 runs provide an

accurate picture of the behavior of the algorithm all the way up to complexity test 20 000.

The average generation that genomes were found is accurate and the plot looks the same as

for higher complexities. For complexity test 20 000 and up the differences are very small,

and it becomes harder to assess the performance.

Genome parameters can improve the genetic algorithm, but this project has only scratched

the surface.

Page 74 of 75

12. References
[1] Moshe Sipper, “The Emergence of Cellular Computing”, Computer, 1999

[2] http://necsi.edu/publications/dcs/DCSchapter0.pdf 10.12.2012

[3] Stefano Nichele, “Trajectories and attractor basins as a behavioral description and

evaluation criteria for artificial EvoDevo systems”, 2009

[4] Stefano Nichele, “Discrete Dynamics of Cellular Machines: Specification and

Interpretation”, GECCO '11 Proceedings of the 13th annual conference companion on

Genetic and evolutionary computation Pages 767 – 770, 2011

[5] C. Langton. “Computation at the Edge of Chaos: Phase Transitions and Emergent

Computation”, Physica D Volume 42 Issue 1 – 3 Pages 12 – 37, 1990

[6] Francis Heylighen, “The science of selforganization and adaptivity”, The Encyclopedia

of Life Support Systems (EOLSS), 2001

[7] Julian Francis Miller, “Evolving a Self-Repairing, Self-Regulating, French Flag

Organism”, Proceedings of Genetic and Evolutionary Computation Conference

(GECCO), Springer LNCS3102, 2004

[8] Richard Lewtonin, “The triple helix Gene, organism and environment”, 2002

[9] W Brian Arthur, Steven N. Durlauf, David A. Lane, “The economy as an evolving

complex system II”, 1997

[10] Peter J. Denning, “Is Computer Science Science?”, Communications of the

ACM - Transforming China Volume 48 Issue 4 Pages 27 - 31, 2005

[11] Herbert A. Simon, “Invariants of human behavior”, Annual Review of

Psychology, 41, Pages 1-19, 1990

[12] C. Langton, “Studying artificial life with cellular automata”, Physica D:

Nonlinear Phenomena Vol. 22, No. 1-3: Pages 120-149, 1986

[13] http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

17.11.2012

[14] http://www.ai-junkie.com/ga/intro/gat2.html 19.11.2012

[15] Gunnar Tufte, Stefano Nichele, “On the Correlations Between Developmental

Diversity and Genomic Composition”, GECCO '11 Proceedings of the 13th annual

conference on Genetic and evolutionary computation Pages 1507 – 1514, 2011

[16] Stephen Wolfram, “Universality and complexity in cellular automata”, Physica

D: Nonlinear Phenomena, Vol. 10, No. 1-2 Pages 1 – 35, 1984

[17] http://cell-auto.com/neighbourhood/ 28.11.12

[18] http://java.icmc.usp.br/dilvan/thesis.phd/genetic4.gif 28.11.2012

[19] Taras Kowaliw,” Measures of Complexity for Artificial Embryogeny”, GECCO 08

Pages 843 – 850, 2008

[20] T. Jones, S. Forrest, “Fitness Distance Correlation as a Measure of Problem

Difficulty for Genetic Algorithms”, Proceedings of the 6th International Conference

on Genetic Algorithms Pages 184 – 192, 1995

http://necsi.edu/publications/dcs/DCSchapter0.pdf
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html%20%2017.11.2012
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html%20%2017.11.2012
http://www.ai-junkie.com/ga/intro/gat2.html%2019.11.2012
http://www.sigevo.org/gecco-2011/
http://cell-auto.com/neighbourhood/
http://java.icmc.usp.br/dilvan/thesis.phd/genetic4.gif%2028.11.2012

Page 75 of 75

[21] H. H. Wold, “Using genome parameters to improve performance in genetic

algorithms”, 2012

[22] http://www.oracle.com/technetwork/java/javase/memorymanagement-

whitepaper-150215.pdf 9.5.13

[23] Gunnar Tufte, “Gene Regulation Mechanisms introduced in the Evaluation

Criteria for a Hardware Celluar Development System”, Adaptive Hardware and

Systems, 2006. AHS 2006. First NASA/ESA Conference on Adaptive Hardware and

Systems Pages 137 – 144, 2006

[24] A. Chavoya, Y. Duthen, “Using a Genetic Algorithm to Evolve Cellular

Automata for 2D/3D Computational Development”, GECCO '06 Proceedings of the

8th annual conference on Genetic and evolutionary computation Pages 231 – 232,

2006

[25] M. Mitchel, J. P. Crutchfield, R. Das, “Evolving Cellular Automata with Genetic

Algorithms: A Review of Recent Work”, In Proceedings of the First International

Conference on Evolutionary Computation and Its Applications (EvCA'96). Russian

Academy of Sciences, 1996

[26] T. C. Fogarty, “Varying the probability of mutation in genetic algorithms”,

Proceedings of the Third International Conference on Genetic Algorithms Pages 104 –

109, 1989

[27] W. Lin, W. Lee, T. Hong, ”Adapting Crossover and Mutation Rates in Genetic

Algorithms”, Journal of information science and engineering Pages 889 – 904, 2003

[28] http://mathworld.wolfram.com/UniversalCellularAutomaton.html 24.5.2013

[29] http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

31.05.2013

http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf%209.5.13
http://www.oracle.com/technetwork/java/javase/memorymanagement-whitepaper-150215.pdf%209.5.13
http://www.sigevo.org/gecco-2006/index.html
http://mathworld.wolfram.com/UniversalCellularAutomaton.html%2024.5.2013
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

