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9.9. Experiment 9 

Because of the poor performance of lambda to discard, this experiment aims to find the 

reason for this. The difference between the lambda value of the individuals and the best 

lambda value, the value used to discard genomes, was recorded. This will show how many 

genomes would be discarded per run and also reveal the best discard limit.  

To do this the limit was put into an array of counters with granularity of 0.01, which 

persisted over several runs. 

Experiment setup: 

GA versions tested:  Standard  
Complexities tested: 25 000 
Number of runs: 10 
Mutation rates tested: 0.05, 0.1, 0.25  
 

The plot shows boxes for each 0.01 step of lambda limits of newly created individuals. The 

values are accumulated in 10 runs of the genetic algorithm. The lambda limits is on the X-

axis and the accumulated count of individuals is on the Y-axis. 

 

Figure 22: Accumulated lambda differences, Experiment 9 

 

To get a better sense of scale the 0.1 point represents 58127 for mutation rate 0.25(blue). 

For 0.05 this was 3068 and it is not visible. 
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Analysis: 

The mutation rate used previously was 0.05, and the discard limit where the performance of 

the algorithm came close to the standard genetic algorithm was 0.1. In 10 runs 3068 

genomes were found with this limit. 

In total 3940 genomes were found to have difference of 0.1 or bigger compared to the best 

lambda value. In average this is 394 per run. This means that with a discard limit of 0.1 394 

of 800 000 individuals were discarded which is about 0.05%. This is so small that the effects 

are negligible.  

It is now possible to conclude that this version of lambda to discard cannot improve the 

genetic algorithm. There may be other ways to use it, like using parents to calculate relative 

lambda instead of the best genome of the previous generation. But it seems unlikely that 

this will have any positive effect as it will still be limiting the search in the same way. 

 

9.10. Experiment 10 

In this experiment the old version of lambda in fitness was tested. The weight between 

lambda and fitness value have always been 50-50 up until now. The goal was to see if 

reducing the emphasis on lambda value would result in an algorithm performing better than 

the standard genetic algorithm. 

The ratios given are how much lambda counts in the fitness function. Trajectory length then 

has the inverse ratio of 1 – lambda ratio. 

Experiment setup: 

GA versions tested:  Lambda in fitness  
Complexities tested: 25 000 
Number of runs: 20 
Lambda ratios tested: 0.5, 0.4, 0.3, 0.2, 0.1  
 

The plot shows the lambda in fitness algorithm compared to the standard one.  
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Figure 23: Fitness, Complexity 25 000, Experiment 10 

 

Analysis: 

Lambda in fitness performs much better than before with the new mutation rate, but it is 

never better than the standard genetic algorithm. In the same way as lambda to discard it 

closes in on the standard version as the lambda emphasis gets smaller. This version does not 

improve on the genetic algorithm. 

 

9.11. Experiment 11 

To shorten the time for experiments a different approach has been tried. A higher amount of 

runs searching for shorter trajectory lengths provides more precise results, and uses less 

time. This approach also allows to measure performance as the average generations it may 

take the genetic algorithm to find genomes.  

This is useful because even if the algorithm finds high complexities fast, it may be slow at 

finding the desired properties. In these experiments this is illustrated by finding an exact 

trajectory length. 

The genetic algorithm is configured the same way as before.  Except now both random and 

empty populations were tested. Due to the high amount of runs the initial population does 

not affect the average as much. 
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Experiment setup: 

GA versions tested:  Standard, Lambda in fitness , Lambda to discard 
Complexities tested: 100, 1 000 
Number of runs: 1000 
Discard limit: 0.1 
Lambda ratio in fitness: 0.3, 0.1 
 

The plot shows a zoomed in view of the average of 1000 runs at complexity test 1000. 

 

Figure 24: Fitness, Complexity 1000, Experiment 11 

 

Average generation the algorithms found genome of trajectory length 100. 

GA version Random population Empty Population 

Standard 112 42 

Lambda to discard 104 45 

Lambda in fitness 806 4066 
Table 4: Average generation genome of traj len 100 found 

Average generation the algorithms found genome of trajectory length 1000. 

GA version Random population Empty Population 

Standard 371 433 

Lambda to discard 358 443 

Lambda in fitness 3347 16077 
Table 5: Average generation genome of traj len 1000 found 
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Analysis: 

The results confirm what have been shown in the 25000 complexity tests. Lambda in fitness 

clearly underperforms here as well. An extra test where the ratio is 0.1 was tried, but 

showed no improvements past the standard genetic algorithms. Lambda to discard however 

shows a small improvement for random populations. It does not converge any faster than 

the standard version but it finds genomes slightly earlier on average. This difference is small, 

but needs to be examined further.  

Random population performs better than empty population, which was expected. But for 

complexity test 100 it performs worse. This is probably because an empty population is 

closer to 100 than a random population will be on average.  

 

9.12. Experiment 12 

After the last experiment showed lambda to discard showed a slight improvement compared 

to the standard genetic algorithm this had to be tested further. These experiments runs 

several tests with different discard limits to see if lambda to discard can consistently perform 

better than the standard genetic algorithm. The tests were done on a random initial 

population. 

One difference is made here, and that is that lambda to discard continues running if an 

infinite loop is detected. It simply gives up and lets the genome through even if it is outside 

the limit. The idea was that this may provide all the benefits of lambda to discard and ignore 

the limit if it does not help the algorithm (like in the beginning).  

Experiment setup: 

GA versions tested:  Lambda to discard  
Complexities tested: 100 
Number of runs: 1000 
Discard limits tested: 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12 
 

The plots did not provide interesting knowledge but a table with the average generations 

genomes were found is presented: 

Discard ratio Random population 

Standard GA 112 

0.02 105 

0.03 103 

0.04 104 

0.05 104 

0.06 111 

0.07 109 
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0.08 108 

0.09 104 

0.1 104 

0.11 105 

0.12 107 
Table 6: Average generation genome found tested on different discard limits 

 

Analysis: 

The tuning could not get any improvements, and the results are very close to each other. 

The performance is marginally better than standard version, but too close to say it is an 

improvement. It seems that for limits smaller than 0.06 the limit is too small to let any 

genomes through to the next generation. The new mechanism of just giving up then shows 

here because the performance of 0.05 is suddenly better. 

 

9.13. Experiment 13 

In this experiment genome usage statistics have been used to control mutation dynamically. 

This mutation can only be applied to genomes that has not undergone crossover, because 

data from the last fitness test is needed. The crossover rate is 0.70 which means that on 

average only 30% of new genomes are mutated this way 

The mutations of the genomes are controlled using the gathered genome usage data. Only 

the parts of the genome that has been used in the last run will be mutated. The mutation 

rate for this part will be 1 – genome usage rate.  The effect of this is that when there are few 

genes in a genome to mutate the chance of mutating each one is very high, but when the 

number of used genes in the genome increases the chance of mutating individual genes 

decreases. When all of the genome is used, no extra mutation is happening. 

Experiment setup: 

GA versions tested:  Genome usage  
Complexities tested: 25000, 1000, 100 
Number of runs: 20 for 25000, 1000 for others 
 

The plot is zoomed in and show comparisons to the normal GA with random and empty 

initial populations for complexity test 1000. For the 25 000 test the plots were very similar 

and not very interesting. 
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Figure 25: Zoomed in fitness, Complexity 1000, Experiment 13 

 

Average generation the algorithms found genome of trajectory length 100. 

GA version Random population Empty Population 

Standard 112 42 

Genome usage 127 50 
Table 7: Average generation genome of traj len 100 found 

Average generation the algorithms found genome of trajectory length 1000. 

GA version Random population Empty Population 

Standard 371 433 

Genome usage 340 397 
Table 8: Average generation genome of traj len 1000 found 

 

Analysis: 

The plot shows that genome usage makes the algorithm converge much faster than the 

standard genetic algorithm. The tables show that it performs better than standard algorithm 

for complexity test 1000 and worse for complexity test 100. 

Random population also performs in the same way, better on 1000 and worse on 100. They 

seem to be related in the way that both provide variation to the population in early stages. 

Yet they are not the same, because it seems that genome usage improves performance even 

when population is random. This may be because a random genome does not guarantee 

that the whole genome is used, but mutating it with genome usage does. 
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9.14. Experiment 14 

After the last experiment it was speculated on how the genome usage algorithm performs 

with different mutation rates. Mainly it was believed that the mutation rate could be lower 

and the algorithm would perform better. This way the claim that a too high mutation rate is 

bad could also be tested. The experiment was split into two parts; the high mutation rates 

and low mutation rates.  

Experiment setup: 

GA versions tested:  Standard, Genome usage  
Complexities tested: 5000 
Number of runs: 50 
Mutation rates tested:  0.05, 0.1, 0.25, 0.01, 0.02, 0.03, 0.04 
 

The plot shows the low mutation rates zoomed in, only empty population was tested. 

 

Figure 26: Fitness, Complexity 5 000, Experiment 14 

 

Mutation rate Genome usage algorithm Standard GA 

0.05(standard) 4866 6267 

0.1 5682 5841 

0.25 7228 6072 
Table 9: Average generation the algorithm found genomes, higher mutation rates. 
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Mutation rate Genome usage algorithm 

0.05(standard) 4866 

0.04 4777 

0.03 5623 

0.02 7402 

0.01 14559 
Table 10: Average generation that the algorithm found genomes, lower mutation rates. 

 

Analysis: 

The genome usage improves the genetic algorithm when mutation rate is around 0.05 and 

below. Higher mutation rates make it harder to find genomes even if the search converges 

faster. Genome usage makes the search converge fast, but does not make it harder to find 

genomes. It improves on lower mutation rates versions of the genetic algorithm, but the 

best performance is found around 0.05.    

 

9.15. Experiment 15 

At first this experiment tried to test the old lambda in fitness with using lambda value 

directly, simply trying to get it as high as possible. During this work it was discovered that the 

old lambda in fitness did not provide consistent fitness values for roulette wheel selection. 

Same fitness value and lambda value would be combined to different values depending on 

the rest of the population.  

To change this lambda in fitness was simplified; lambda and fitness were to be combined 

inside the fitness function before preparing the population the same way as before. 

Now lambda in fitness cannot be given a definitive ratio, only a variable to tune the weight. 

A few variations of this lambda in fitness were tested to find the one which provides an 

advantage over standard genetic algorithm. They use two different types of relative lambda 

values, high and relative to best, and two types of punishments, relative and absolute. 

 

These 4 versions were tested: 

 HiLambda is the lambda value where the highest trajectory lengths are found 

 bestLambda is the lambda value relative to the lambda of the previously best 

individual 
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Close to best, relative: 

                                                              

Close to best, absolute:  

                

                                                       

High, relative 

                                 
                    

        
       

High, absolute:  

                

                           
                    

        
       

 

The challenge is finding a fitting ratio which will be unique for each version.  

First a series of complexity test 1000 and 100 runs were done to roughly determine the best 

ratios of each version. Then a series of complexity tests 1000 and 1000 runs were done to 

find a good specific ratio. The best results of the last tests for random and empty 

populations are shown in the table below. The plot shows the same results. 
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Figure 27: Fitness, Complexity 1000, Experiemnt 15 

 

Lambda in fitness type Random population Empty Population 

Reference normal GA 372 433 

Close to best, relative 339 423 

Close to best, absolute 341 418 

High, relative 351 384 

High, absolute 350 432 
Table 11: Average generation genomes were found, best results, 1000 runs complexity test 1000 

 

Analysis: 

Looking at the table the results are very similar. Random population has a bigger variation 

and is probably not affected by using lambda at all. This is because the lambda value is 

initially close to the highest possible, and there is no lambda development. Lambda can 

probably therefore be used only in empty populations. 

For empty population the high, relative version distinguishes itself. It both converges slightly 

faster than the others and finds genomes faster on average. This version will therefore be 

examined further and used as the new lambda in fitness. 

 

9.16. Experiment 16 

The goal of this experiment was to show that the new lambda in fitness is better than the 

standard genetic algorithm for higher complexities. The first step was tuning the lambda to 
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trajectory length ratio to test it on optimal settings. Then run it on a series of complexity 

tests and compare it to the Standard genetic algorithm. 

Experiment setup: 

GA versions tested:  Standard, Lambda in fitness  
Complexities tested: 1000, 5000, 10000, 15000, 20000, 25000 
Number of runs: 1000 for 1000 and 20 for others 
Rates tested:  10, 15, 20, 25, 30, 40, 50, 100 
 

The tuning run complexity test 1000 for 1000 runs with ratio at increments of 10. The 

criterions set was that the average generation a genome was found should be as low as 

possible, and the plots should converge as fast as possible.   

When the optimal value of 20 was found 15 and 25 were tested to see if there was any 

difference. There was no difference and the ratio used in the end was 20. The average 

generation a genome was found for ratio 20 was 365. 

Below are the average plots of complexity tests 15000 and 20000. Standard genetic 

algorithm with empty and random initial population is provided for comparison.  

 

Figure 28: Fitness, Complexity 15 000, Experiment 16 
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Figure 29: Fitness, Complexity 20 000, Experiment 16 

 

Analysis: 

The average generation the genomes were found for lambda in fitness is better than for 

Standard genetic algorithm with random initial population. However in all the plots the 

random population converges faster. This may not be surprising as the random population 

gives a big head start. 

The plots get more and more similar the closer one get to 25 000 (a solution is never found). 

For complexity test 15 000 the standard genetic algorithm converges slowest and lambda in 

fitness is in the middle. This is what all the tests up until then looked like. But for the tests 

20 000 and 25 000 they start to be indistinguishable. 

This experiment shows that lambda in fitness definitely provides an improvement over 

standard genetic algorithm. It is however unclear what happens when searching for very 

high complexities. 

 

9.17. Experiment 17 

This experiment aimed to gain knowledge about the developing phenotype in terms of 

growth differentiation and death transitions (GDD). The usages of the different transitions 

were measured by counting the number of times the rules were used for each step of the 

cellular automaton. The hope was that this knowledge could contribute to a new genome 

parameter, and shed light on how to use genome parameters in general. 
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Experiment setup: 

GA versions tested:  No GA, only recording developing CA stats  
Complexities tested: 100, 1000, 5000, 10000 
Number of runs: 1 
 

The genetic algorithm was not used in this experiment. Only the GDD stats were recorded 

for each development step and the value for each development step has been plotted 

together with the cumulative value. The plots show the development of a genome with 

complexity 100. 

 

Figure 30: Cumulative GDD for development of phenotype with traj len 100 

 

Figure 31: GDD stats for development of phenotype with traj len 100 
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Analysis: 

The cumulative plots all looked similar to the one for 100. The step by step plot cannot be 

for much more steps than 100, because the lines become indistinguishable.  

The slopes of the cumulative plots were compared to each other across different trajectory 

length phenotypes, but no clear trends were found. However, the slope is the ratio of which 

each transition type is used, and is an interesting measurement to be used with the GA. 

Another property of the cumulative plots is that growth and death transitions always have 

the same slope. This suggests that they need to be balanced. None-transition is used more 

than the rest because it contains 3 sub transitions instead of 2 as for the others. 

Differentiation transition is mostly random. Some times higher than growth and death and 

sometimes lower. 

The step by step plot seems to have a repeating pattern. The flat are at 37 and 80 is the 

same. This is even though the trajectory length is confirmed to be 100. The reason for this 

was because the cellular automaton uses wrap around, and the phenotype moves in a 

certain direction. This means that the same pattern of cell states shows up at two different 

places in two different states in the cellular automaton.  

  

9.18. Experiment 18 

For this experiment 100 000 random individuals were created. Their fitness was calculated 

and plotted using GDD stats and sub transition stats. It is different from the last test in that 

GDD stats are calculated from the genome, and not measured in a developing phenotype, 

making this a test on genome parameters. The transition stats were calculated by counting 

the number of transitions in the genome and dividing them on the length of the genome to 

create a transition rate. 

The goal was to see how well they are suited as genome parameters. The plot is done the 

same way as Figure 3: Plot of trajectory length and lambda [15]. except this population has 

not been seeded in any way to avoid bias to any of the transition types. 

Experiment setup: 

GA versions tested:  No GA,  only fitness function used 
Complexities tested: Random complexities 
Number of runs: 100 000 
 

The plots have trajectory length on the Y-axis and the parameter on the X-axis. It shows the 

GDD stats and lambda, and one sub transition. 
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Figure 32: Sub transition of growth, center cell change from 0 to 1 

 

  

Figure 33: From top left: Death, Growth, Differentiation, None. 
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Figure 34: Lambda 

 

Analysis: 

All the plots looks very similar, they have a different scale on the X-axis as the parameters 

are measured as different sized parts of the whole, but this will not matter if they are used 

as parameters. They are also all very similar to the lambda plot, which means that they 

probably can be used in the same way. 

They all tell something about the variation in the genome on different levels. The sub 

transitions are more specific and the none-transitions and lambda are the least specific. If 

this can help the genetic algorithm or not needs to be investigated further. The transitions 

could definitely be usable as genome parameters. 

 

9.19. Experiment 19 

The previous two experiments treated the same genome properties in two different ways. In 

9.17 the usage of the different GDD stats in a developing phenotype were measured, and in 

9.18 the GDD stats was calculated from the genome.  

This experiment aimed to measure the GDD stats and plot them the same way as in 9.18. 

This would also make it easier to find Relations and dependencies among the different stats. 

The main goal was to check if growth and death transitions really need to be balanced. 

Experiment setup: 

GA versions tested:  No GA,  only fitness function used 
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Complexities tested: Random complexities 
Number of runs: 100 000 
 

The plots are presented for differentiation transition and one where X-axis is the difference 

between growth transition rate and death transition rate. Several combinations of the 

different transition stats were tested, but all looked similar to the differentiation plot. 

 

Figure 35: Differentiation transition rate 

 

Figure 36: Growth – Death 
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Analysis: 

The measured usage of differentiation transition rules in the cellular automata provides a 

more accurate prediction of where to find good genomes compared to the one calculated 

from the genome. From 0 to 0.1 most genomes have very low trajectory lengths while at 

0.22 the best genomes are found.  

This makes it much easier to know where the good genomes are as one can disregard 

genomes at certain values. The plots in general looked the same for all GDD stats. All had 

areas with bad genomes and the good genomes were concentrated around 0.22 for growth, 

death and differentiation, and around 0.33 for none-transitions. 

Growth and death usage seems to have to be balanced; good genomes are only found when 

the difference between them is close to 0. This makes sense because if they are not 

balanced the developing phenotype will move towards a point attractor where all cells are of 

one type, or one type is not present.  

 

9.20. Experiment 20 

This experiment uses the knowledge gathered about measuring usage of different parts of 

the genome to see if it can improve on the genetic algorithm. There are a lot of possibilities, 

but the time only allowed for a few variations to be tested.  

The tests focused on using the average generations because this have proven to be a good 

measurement to how good the algorithm performs also on higher complexities. It also takes 

less time allowing testing more variations. 

Experiment setup: 

GA versions tested:  New versions 
Complexities tested: 1000 
Number of runs: 1000 
 

The different versions are presented below together with their results at the end. The values 

presented are used the same way as lambda is used in the new version, as seen in 9.15. 

 

Measured Lambda 

The plots of the measured GDD stats seemed to suggest that they were more precise than 

calculating them from the genome. This version seeks to find out if this precision is an 

advantage to the genetic algorithm.  
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This version measures the lambda value in the same way that GDD stats are collected from a 

developing phenotype. The number of times a quiescent state is used during development of 

the phenotype is used to calculate a measured lambda value.  

                
                                   

                
 

 

Death Parameter 

Simply uses the number of death transitions in the genome and calculate a death parameter 

the same way as lambda. Death parameter is dependent on growth, and contains only 2 sub 

transitions; the question is how this will compare to lambda parameter. 

                
                             

            
 

 

Single Transition Parameter 

Death parameter contains two sub transitions, this version aims to find out how a single 

specific parameter compares to lambda. This parameter uses only the transition rules from 0 

to 1 in the genome. Only neighborhood configurations with a center cell 0 that results in 1 

will be counted. 

                            
                            

            
 

 

Measured Average  

Measured average uses the average difference of growth, death and differentiation 

transitions from 0.22. 0.22 is used because there are a total of 9 possible transitions for 3 

state cellular automata and each have 2 sub-transitions (2/9 ≈ 0.22). This was tested because 

they incorporate 6 sub transitions into one parameter which is interesting to compare to 

lambda which only contains 3 (all transitions to the quiescent state). 
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Measured Growth minus Death  

This parameter uses growth minus death to filter out bad genomes in the fitness function. It 

basically said that if genomes are outside a given limit the fitness gets very high. If it is inside 

the growth – death transitions were used the same way as measured lambda. 

 

Below are the results of the average generation genomes were found for each version. The 

plot shows Trajectory length on Y-axis and the measured average on X-axis. Together with an 

example of filtering out genomes using measured growth – death. 

GA version Generation genomes found 

Reference normal GA 433 

Reference lambda in fitness 365 

Measured lambda 364 

Death parameter 397 

Single Transition Parameter 436 

Measured average 423 

Measured Growth minus Death 425 
Table 12: Average generation genomes were found, best results, 1000 runs complexity test 1000 

 

 

Figure 37: Measured average plot 
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Figure 38: Filtering out genomes with growth –death (red are unfiltered, blue are after filtration) 

 

Analysis: 

None of the new versions performed better than lambda in fitness. Measured lambda was 

interesting because it performs exactly the same compared to lambda in fitness. This means 

that the precision of the parameter in predicting the exact fitness is not as important as 

knowing what area it is probable to find good individuals. 

Death parameter was the only one close to lambda in fitness. This is probably because it is so 

similar, and it may be possible to tune it somehow. However the single transition parameter 

performed badly despite its similarity to lambda in fitness. It may have something to do with 

the fact that it does not cover all aspects of the genome. 

The measured average and Measured Growth minus Death did not do well. There probably 

exists much better way of using these parameters. Bur unfortunately there is not enough 

time for that.  

The plots presented show an example of the last two versions, and suggests why they should 

work. The measured average has a clear area where the best genomes are found. It also has 

many low scoring genomes far away from the highest point. Using growth minus death as 

filter removes a lot of the lower complexity genomes which should better indicate where to 

find the good genomes. 
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10. Discussion and further work 
In this project the effects of lambda and other genome parameters on a genetic algorithm 

have been studied. Lambda in fitness has been able to improve the genetic algorithm for 

empty populations. Genome usage shows promise in controlling mutation and transition 

parameters may prove useful even if the results in the last experiment were not good. 

This section discusses the overall results of the experiments and suggests further work. The 

main portions are discussed; Lambda parameter, genome usage and transition parameters. 

In the end general properties of genome parameters in relation to the genetic algorithm are 

discussed.  

 

10.1. Lambda 

How to use lambda to improve the genetic algorithm was the first task in this project. 

Lambda to discard showed the most promise in the beginning and it was attempted to tune 

it to see if the performance could improve over standard genetic algorithm. It turns out 

lambda to discard can only be tuned up to the performance of the standard genetic 

algorithm but not further. This happens when discard limit is 0.1 which only discards about 

0.05% of the genomes through one run of the genetic algorithm. So this means the fewer 

genomes are discarded the better the algorithm performs. 

Discarding genomes seems to narrow down the search, making the population less diverse. 

This in turn makes it harder for the genetic algorithm to climb out of local maxima. The main 

result is that the algorithm becomes more unstable, either finding good genomes or getting 

stuck early at low trajectory lengths.  

One issue is that lambda to discard prevents variation; a better approach could be to use it 

to add variation to the population. There are a number of other ways to exploit lambda 

outside the fitness function. This project aimed to investigate other genome parameters as 

well, so they were not tried, but here are some suggestions: 

 Discard children based on parents instead of the best individual of the previous 

generation. 

 Instead of creating two children to go on to the next population it is possible to 

create 10 children by crossover and mutation from two parents. Lambda will then be 

used to select the best one(s) to go on to the next generation. 

 Lambda could be used to ensure that a certain number of individuals become more 

different from the best individual of the last population, rather than limit them. 

 Lambda could be used to control the mutation rate dynamically. 
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Lambda in fitness has shown good promise for empty populations. The results are in fact 

comparable to that of a standard genetic algorithm initialized with a random population. 

During the tests it also seemed that lambda affect a randomly initialized population less than 

an empty one. Lambda increases fast when complexities get higher, and at very high 

complexities it do not seem to change the behavior of the genetic algorithm at all. This is the 

same for a random initial population. Searching for trajectory 25 000 removes the 

differences between lambda in fitness and standard genetic algorithm with both empty and 

random population.  

Lambda in fitness needs to follow a path of increasing lambda values to be useful. Starting 

with a random population will make the population initialize on an average lambda 0.66, 

diminishing the effect. However, there is probably an advantage to it anyway as genomes 

with potential (a high lambda) may still have a low fitness, but using lambda together with 

fitness will send them to the next generation anyway. This promotes variation in the 

population which seems to be very important. 

It is clear that lambda in fitness finds fit genomes faster than the standard genetic algorithm. 

Lambda only tells where potentially high genomes are found, poor genomes are still found 

at lambda value 0.66. Leading the population to this area increases the probability of finding 

individuals with high fitness. It is likely this is why the fitness increases faster if the genetic 

algorithm is forced towards this area.  

The version of lambda in fitness chosen was based on forcing the lambda value as high as 

possible and reducing the penalty relatively to how complex the individual is. The reason this 

version works better than the others is maybe because it is important to get to a high 

lambda value quickly, but when lambda is at 0.66 it is not really useful anymore, so it is good 

that the emphasis on it decreases. 

Lambda parameter shows very roughly how far from a solution an individual is. Supported 

by the explanation in 6.11, this by itself explains why lambda in fitness can improve the 

genetic algorithm. It relates the genome to the developing phenotype in the fitness function. 

The work that may be important to do on lambda in fitness is seeing how well it works for 

cellular automata with more states. The last experiment showed that a transition parameter 

that only checks 1/9 of the genome (the single transition parameter) did not perform well. 

As the cellular automata gets fewer states lambda may have a lower effect. For a 9 state 

cellular automata lambda may be as little useful as the single transition parameter is for a 3 

state cellular automata. In that case a GDD parameter may be more useful as they span an 

equally big part of the genome independent of the number of states. 
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10.2. Genome usage 

The experiment on genome usage in mutation showed some promise. But the genome usage 

was also investigated when measuring the GDD usage and lambda in the developing 

phenotype in experiment 58, 62 and 64.  

The performance on both random and empty population was slightly better than the 

standard genetic algorithm. This difference was very small however and it may be that the 

same results could be achieved only controlling the mutation rate dynamically. 

Recording genome usage statistics for each single gene in a genome provides interesting 

possibilities however. One can look at individual genes and see if they are used. This way one 

could know exactly which genes to mutate to see an effect. It may also be possible to predict 

what the mutations will do.  

One can start with an empty genome, and then only mutate the part that is triggered during 

development of the phenotype. This will create a new genome which, while developing, will 

probably have a larger part triggered. Comparing two steps like these can provide interesting 

knowledge about individual genes roles in a phenotype. This can also be used to roll back a 

mutation and try over if the results are not desired.  

It could be possible to treat the development of a genome almost like a heuristic search. 

Each state is a point in a directed graph, and the possible paths from one point to another 

are defined by what genes are mutated at each step. The problem may be that the growth in 

complexity may be very high for each step, and may mean that a random search is better.  

The other way of measuring genome usage with an emphasis on genome parameters did not 

prove very useful. The result of measuring a parameter is more precise than calculating it 

from the genome.  When using measured lambda it was shown that the performance 

compared to normal lambda in fitness was exactly the same.  The precision do not seem to 

matter so much, this may be because they both lead genomes to the same area of lambda 

0.66. Genome usage does not seem to be able to improve on genome parameters in this 

way. 

It was shown that death transitions and growth transitions need to be balanced, but it was 

hard to exploit. The value needs to be measured so it cannot be used to discard genomes. It 

may exist a better way of using it in fitness, for example together with lambda.  

 

10.3. Transition parameters 

The transition parameters are alternatives to lambda in fitness and can be used much in the 

same way. The last experiment was the only time they could be tested, and they failed to 

perform equally to lambda.  



Page 71 of 75 
 

However they created a notion of sub transitions, and many genome parameters can be 

built from them. Death parameter, for example, has two sub transitions of 1 to 0 and 2 to 0 

when the cellular automaton has 3 states. Lambda parameter also consists of sub 

transitions. If the quiescent state is 0 the sub transitions are 0 to 0, 1 to 0 and 2 to 0. Lambda 

then has 3 sub transitions. As can be seen from the last experiment, lambda in fitness 

performed better than death parameter which performed better than single transition 

parameter.  

This suggests that more sub transitions used in a genome parameter leads to a better fitness 

function, but it ignores the measured average which incorporated 6 sub transitions. The way 

this has been done may not have been correct and it differs from the other parameters in 

that it combines transitions that are not necessarily related.  

Sub transitions may be used in similar ways to the measured average to design genome 

parameters. It becomes more relevant for cellular automata with more states as the number 

of sub transitions increase. It could even be used with a developmental model with the 

fitness function searching for trajectory length 1000 and use the average generation 

genomes were found after 1000 runs. 

Before the parameters were chosen a plot like Figure 3 was created. It was analyzed and 

measured average looked like it would have good properties. Because it did not it seems 

that what these graphs look like do not always dictate if the parameter will be good. It may 

be an idea to look into how to interpret these kind of plots more closely.  

The inherent properties in the different transitions also need to be considered. The growth 

and death transitions should be balanced in the developing phenotype. This is not true for 

growth and differentiation for example. More research into these properties may also be 

useful.  

One example is two transitions of to1 and from1. To1 consists of the sub transitions 0 to 1 

and 2 to 1 and from1 consists of the transitions 1 to 0 and 1 to 2. To1 and from1 will 

probably also have to be balanced in the same way as growth and death.  In that case the 

same will be true for to2 and from2. These are properties that may be able to tell more 

accurately what genomes are good and not. They may also be strongly related so if growth 

and death is balanced so will the others.  

The last property of the transition parameters was using growth minus death and filter out 

the genomes where growth and death are too different.  This in combination with another 

genome parameter could be used to discard many of the lower complexity genomes. From 

the last experiment this strategy did not work very well, but this did not use a different 

genome parameter.  
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10.4. Genome Parameters and the Genetic Algorithm 

Genome parameters ability to help the genetic algorithm seems to be dependent on their 

ability to both drive mutation and drive the development in the right direction. The genetic 

algorithm needs more variation, and attempting to limit variation in favor of going in the 

right direction seems to have a bad influence.  The experiments with lambda to discard show 

this.  

Increasing the mutation rate of the genetic algorithm helped a great deal compared to the 

earlier versions. Increasing past 2% mutation also made it a lot more stable. The result is that 

the difference between the standard algorithm and lambda in fitness may be smaller than it 

would have been at lower mutation rates.  

During the experiments it has also become clear that a genome needs to be balanced. This is 

the theory behind lambda value. The genomes become more random as they reach lambda 

0.66(for 3 state CA), which is also the area with the longest trajectories. The same can be 

said for all sub transitions, where the longest trajectories are found around 0.22 (1/9 for 9 

sub transitions).  

This project only tested very specific cellular automata with size 4 by 4, 3 states and a 5 cell 

neighborhood. It is unclear how lambda would perform with a larger number of states, or 

with a bigger grid. This would take much more time, and would make it hard to test more 

ways to exploit the genome. The lambdas effect at a higher number of states was explained 

earlier. Larger grids or neighborhoods will not affect how much of the genome lambda 

covers, so this will probably not affect lambda in fitness.  

Genome usage however may actually become more useful as the genome gets bigger. In a 9 

cell neighborhood for example the genome is much larger and it may take longer to exploit 

all of it, especially if there are more states. With genome usage mutation is targeted exactly 

where needed and may help develop good individuals much faster initially. 

In the end the tests started to rely more and more on the test setup with 1000 runs at 

complexity 1000. This is because these results were very consistent, especially for empty 

populations. The versions that performed well at 1000 runs of complexity test 1000 

performed well in general. However after complexity test 20 000 the differences began to 

disappear.  

Nothing seems to help the algorithm a lot at complexity test 25 000 initially some are better, 

but in the end the results are too similar. Maybe 1000 runs at this complexity would be 

accurate, but that simply takes too long time. 
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11. Conclusion 
The experiments have shown that using lambda parameter in the fitness function can 

improve a genetic algorithm. Other parameters like the transition parameters have not 

performed as good, but the plots for the parameters looks the same as for lambda 

parameter; this suggests that at some level they should be able to provide the same 

advantages. The transition parameters present a way to design genetic parameters. Lambda 

and GDD parameters all consists of sub transitions that can be combined in many different 

ways. The number of sub transitions used for the genome parameter may affect how useful 

it is, because more sub transitions incorporate more information about the diversity of the 

genome. 

Using lambda to discard genomes has been shown to have little or no benefit for the genetic 

algorithm. The results pointed to how important the width of the search is. Limiting the 

search even by a small fraction decreases the performance of the genetic algorithm. 

Genome usage presents an interesting idea of mutating only the part of the genome that 

was used when developing the phenotype. It has been used to control mutation dynamically 

with good results, though not necessarily just because of the technique, but also because of 

a higher mutation rate. Genome usage can be used to gain great control of the genome 

search. 

The tests done show that running a complexity test of 1000 for a 1000 runs provide an 

accurate picture of the behavior of the algorithm all the way up to complexity test 20 000. 

The average generation that genomes were found is accurate and the plot looks the same as 

for higher complexities. For complexity test 20 000 and up the differences are very small, 

and it becomes harder to assess the performance. 

Genome parameters can improve the genetic algorithm, but this project has only scratched 

the surface. 
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