
Internal Models as
Echo State Networks

Learning to Execute Arm Movements

Thesis for the degree of Philosophiae Doctor

Trondheim, Desember 2013

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Computer and Information Science

Rikke Amilde Løvlid

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Rikke Amilde Løvlid

ISBN 978-82-471-4810-5 (printed ver.)
ISBN 978-82-471-4811-2 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2013:335

Printed by NTNU-trykk

ABSTRACT

As robots are becoming more and more complex, with higher degrees-of-freedom, lighter

limbs, and springy joints, it becomes harder to control their movements. New approaches,

inspired from neuroscience, are attracting increased attention among computer scientists

dealing with motor control.

The focus in this thesis is on how robots can learn to control their limbs by learning how

their bodies work, i.e., by learning internal models of their motor apparatus. Inspiration

from cerebellar research combined with concepts from traditional control theory has been

used as a basis.

The research in the thesis is twofold. First, we investigate how internal models can be

used to solve different control problems. In particular, we consider how to handle delays

in the sensory-motor-loop and how to realize bimanual coordination. Second, we study

how the internal models can be represented and learned. This includes how to choose

movements to learn from in order to learn as much of the internal model as possible and

how to actually learn the training movement.

A simple simulator is used in the experiments and the simulator’s internal models were

implemented as echo state networks (ESNs), a relatively new and promising type of re-

current neural networks. The simulator learns internal modes of his motor apparatus by

imitating human motion. Human motion data was recorded and the task of the simulator’s

control system is to generate motor commands that result in the simulator replicating the

recorded movement.

From the experiments we conclude that using ESNs for representing and learning internal

models looks promising. With an ESN we are able to generalize to imitating novel move-

ments, and we demonstrate that it is able to learn various bimanual coordination patterns.

However, training ESNs is challenging and a major contribution from this thesis is a novel

training method that works particularly well in our application. The thesis also contributes

to how different internal models can be used and trained together.

i

ii

PREFACE

This thesis is submitted to the Norwegian University of Science and Technology (NTNU)

for partial fulfillment of the requirements for the degree of philosophiae doctor.

This doctoral work has been performed at the Department of Computer and Information

Science, NTNU, Trondheim, with Associate Professor Pinar Özturk as main supervisor

and with co-supervisors Professor Agnar Aamodt and Professor Pauline Haddow.

iii

iv

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Pinar Öztürk. I appreciate her honest, straight-

forward feedback and constructive criticisms. Also, she was always available, answered

emails on Sundays, and still kept the spirit up at 3 o’clock in the morning before a dead-

line. I also would like to thank my co-supervisor Pauline Haddow, who provided valuable

insights on what is expected of a PhD thesis.

At IDI I had many inspiring co-PhD-students. Axel Tidemann, Lester Solbakken and Boye

Annfelt Høverstad are some of the hard working people I had to look up to.

My colleagues at Simula School of Research and innovation gave me extra inspiration to

get through, and my colleagues at FFI made it impossible not to finish. Especially my

boss Karsten Bråthen has been very encouraging and mildly pushy.

I also want to thank Ingeborg Skaret Kjos-Hanssen, who has educated me in scientific

writing, Lene Bertheussen and Guro Kristin Svendsen for giving feedback on the final

thesis, and Solveig Bruvoll for proofreading.

Last, but not least, I want to thank my boyfriend Rolv Seehuus, who has also been proof-

reading as well as listening to my endless train of thoughts and anxiety, looking after our

son Emrik so that I could work, and never stopped encouraging me to go on. I love you.

v

vi

CONTENTS

Abstract i

Preface iii

Acknowledgements v

I Research Introduction and Overview 1

1 Introduction 3
1.1 Introduction . 3

1.2 Motivation . 5

1.2.1 Handling Delays in the Sensory-Motor Loop 5

1.2.2 Bimanual Coordination . 7

1.2.3 Choosing Movements to Learn From 8

1.2.4 Training the Inverse Model . 10

1.3 Research Questions . 11

1.4 Thesis Structure . 11

2 Background Theory 13
2.1 Motor Control with Internal Models . 13

2.1.1 Feedforward Control with an Inverse Model 16

2.1.2 Feedforward Control with a Forward Model 18

2.1.3 Forward and Inverse Models Working Together 18

2.2 Echo State Networks . 19

2.2.1 Recurrent Neural Networks . 20

2.2.2 Nonlinear Modeling . 20

2.2.3 The Idea behind Reservoir Computing 21

2.2.4 Training Echo State Networks 22

2.2.5 Challenges in Reservoir Computing 23

vii

3 Research Summary 25
3.1 Overview . 25

3.1.1 The Simulator . 26

3.1.2 The Dataset . 27

3.1.3 The Kinematic Control Problem 28

3.1.4 Research Progress . 29

3.2 List of Publications . 29

3.3 Paper Descriptions . 30

3.3.1 Paper A . 30

3.3.2 Paper B . 33

3.3.3 Paper C . 34

3.3.4 Paper D . 37

3.3.5 Paper E . 39

4 Discussion, Conclusion and Future Work 45
4.1 Discussion . 45

4.2 Conclusion . 46

4.3 Future Work . 47

II Publications 49

A Dancing YMCA with Delayed Sensory Feedback 51

B Learning Bimanual Coordination
Patterns for Rhythmic Movements 59

C Learning Motor Control by Dancing YMCA 67

D Learning to Imitate YMCA with an Echo State Network 79

E A Novel Method for Training an Echo State Network with Feedback Error
Learning 89

III Postscript 99

List of Figures 102

References 103

viii

I

RESEARCH INTRODUCTION AND
OVERVIEW

1

INTRODUCTION 1
This thesis is about robots learning to control their limbs by learning how

their bodies work. It is about how inspiration from neuroscience can be

used for robot motor control and how control structures can be repre-

sented and learned. The main part of the thesis is a collection of papers

included in part II. The motivation behind the research, the overall re-

search questions and background theory is included in part I together with

a summary of the papers and discussion and conclusion of conducted re-

search. In this first chapter the addressed challenges are introduced and

research questions are motivated.

1.1 Introduction

Robots are becoming more and more complex every day, with higher degrees-of-freedom

bodies, lighter limbs and springy joints. These new types of robots have the potential to

evolve from factory floors into our everyday lives. However, their complex bodies make it

hard to deliver accurate analytical models of their motor apparatus to ensure stable control

of their limbs [75]. New control schemes are required, and as our brains solve these control

challenges perfectly, neuroscience is a natural place for inspiration.

The control architectures used in this thesis do not aim to be biologically accurate, but they

are biologically inspired. In order to set our research in the perspective of human motor

control, I would like to start with a short, simplified introduction to motor control in the

human brain. A comprehensive discussion of this topic can be found in a recent textbook

on computational motor control [66].

Shadmehr and Krakauer suggest that in order to execute a movement, our brain needs to

solve three kinds of problems: 1) It needs to be able to accurately predict the sensory con-

sequences of the motor commands. 2) It needs to combine those predictions with actual

sensory feedback to form a belief about the state of the body and the world, and 3) given

this belief about the state of the body and the world, it has to adjust the gains of senso-

3

1. Introduction

rimotor feedback loops so that the movement maximizes some measure of performance

[67]. These problems are solved by cooperation of the motor cortex, the cerebellum and

the basal ganglia. In addition, lower level motor control takes place in the brain stem and

the spinal cord.

The functions of the cerebral cortex, the basal ganglia and the cerebellum are not limited

to motor control but also involve other cognitive tasks. Anatomical studies have revealed

discrete circuits or loops that reciprocally interconnect a large and diverse set of cerebral

cortical areas with the basal ganglia and cerebellum. The individual loops appear to be

involved in distinct behavioral functions [51]. From a computational viewpoint, it has

been suggested that these different parts of the brain are specialized for different types

of learning: unsupervised learning in the cerebral cortex, reward based, reinforcement

learning in the basal ganglia and error-based, supervised learning in the cerebellum [14,

15, 16]. How their contributions to motor control are reflected in this division will be

explained next.

The motor cortex is the primary part of cerebral cortex involved in motor control. It can be

described as a set of feedback controllers [67], which directly calculates motor commands

by comparing the desired position of limbs with their estimated position. The motor cor-

tex works as the master of the motor control system, and it has the necessary means for

calculating the motor commands and getting the general shape of the trajectory itself, but

it uses the basal ganglia and the cerebellum as consultants with different specialties. The

motor commands originating from the cerebral cortex are optimized in terms of their re-

ward value and sensorimotor accuracy by going through the basal ganglia and cerebellar

loop circuits, respectively.

The basal ganglia learns rewards associated with states and actions and contributes by

selecting appropriate actions and suppressing unnecessary actions by predicting the reward

values. It is associated with sequence learning, the acquirement of habits, and chunking

of actions [22, 23, 24, 64]. Prescott et al. use a model of the basal ganglia for robot

control [59], where the task of the control system is to generate coherent sequences of

actions based on input salience values for each of five possible actions. The salience

values or urgency signals of the different possible actions are calculated as a weighted

sum of relevant perceptual and motivational signals as well as a signal indicating that the

system is in the middle of an action consisting of multiple steps. Prescott et al. did not use

reinforcement learning, or any other kind of learning, but tuned the parameters by hand in

order to achieve “biologically plausible” behavior.

Where the basal ganglia decides “what” to do, the cerebellum is involved in calculating

“how” to realize the selected action. To do this it learns internal models. An internal model

is a model that mimics a natural process and can be acquired by supervised learning.

In motor control theory one talks about two types of internal models, forward models
and inverse models. Forward models predict the consequences of motor commands in

terms of positions, whereas inverse models generate the motor commands that will result

4

1.2. Motivation

in the desired positions. Whether the internal modes in cerebellum are forward models

[50], inverse models [37, 34] or both [82, 28, 76] is still an open question. By using the

internal models, cerebellum is believed to transform a well-articulated plan into graceful

coordinated movement [1, 5]. Smagt gives an overview of different cerebellar models

intended for robot control and discusses when these models might be useful [74].

1.2 Motivation

On the route to improved robotic motor control, this thesis contributes to investigations

into the use of internal models. The research can be divided into two aspects, 1) how to

use internal models to solve various control problems and 2) how to represent and learn

the internal models.

We chose to look into two particular control problems and how internal models can be

used to solve them, namely delays in the sensory-motor-loop and bimanual coordination.

These are motivated in sections 1.2.1 and 1.2.2 respectively. The problem with delays in

the sensory-motor-loop is about how to handle the fact that consequences of one’s own

motor commands might be perceived with a delay that could affect proper timing of new

motor commands. Bimanual coordination is another control problem that deals with how

to generate proper coordinated movements with two arms.

In order to be able to use internal models for complex robots, the internal models must be

learned. We represent the internal models as echo state networks (ESNs), a relatively new

and promising type of recurrent neural networks, which will be explained in section 2.2.

Our first focus was how to choose training movements in order to maximize the network’s

generalization capability. Motivation and related work for this problem is presented in

section 1.2.3. Making the ESN learn the training movement proved to be challenging.

This problem is further explained in section 1.2.4.

1.2.1 Handling Delays in the Sensory-Motor Loop

The sensory-motor system in humans is able to adjust for the presence of noise and delay

in sensory feedback, as well as for changes in the body and the environment that alter the

relationship between motor commands and their sensory consequences. This adjustment is

achieved by employing anticipatory mechanisms based on the concept of internal models.

In robotics the ability to predict the consequences of actions has been used to “mentally”
simulate alternative sensory-motor sequences and to handle delays in the sensory-motor
loop. In our experiments we only used prediction to handle delays in the sensory-motor

loop, but we will also give an example of using prediction to choose between different

actions, as the solutions are very similar.

5

1. Introduction

An example of how a robot can use mental simulation for action selection is described in

a paper by Hoffman [27]. Here, a robot learns to predict how its visual input changes dur-

ing movement. By generating “mental” images based on a sequence of motor commands,

the robot is able to calculate the distance to an obstacle or recognizing a dead end. The

prediction is made by a forward model implemented as a feed-forward neural network.

Similarly, Gross et al. provided a neural control architecture that learns to predict and

evaluate the sensory consequences of hypothetically executed actions by simulating alter-

native sensory-motor sequences, selecting the best one, and executing it in reality [26].

When using prediction to handle delays in the sensory-motor-loop, the task is not to pre-

dict the consequences of hypothetical actions, but to predict the consequences of the actual

executed action. This prediction is needed when it takes time before the robot is able to

perceive these consequences, and it might need to issue a new action before it perceives

the result of the previous. Generally, the sensory motor loop in robotics can be divided

into four steps, sensor acquisition, sensor processing, motor command generator and ac-
tuation. The overall time of the sensory-motor loop is the sum of the time these four

steps take. Especially in vision data processing, the time needed for sensor-processing

can be relatively high, which affects the robot’s capability to react in real time [8]. To

avoid adverse consequences of this delay, Datteri et al. propose a reactive control scheme

that includes a forward model, or expected perception generator, as it is called in their

papers [8, 9, 7]. The forward model predicts the sensory input, a visual image. This

prediction is compared to the actual visual image before it is further processed. If the

predicted image matches the actual image, the sensor-processing step is skipped, as the

situation is as expected. If the prediction does not match, the movement is stopped. No

match means that some unexpected event is affecting the current task execution, and the

traditional sensory data processing must be carried out in order to find out how to com-

pensate and get the movement back on track. The same approach of trying to detect when

something unexpected happens was also described in [41]. In the experiments a model

of human sensory-motor coordination in grasping was implemented. The robot learned to

reach and grasp an object detected by vision and to predict the tactile feedback by means

of a forward model implemented as a neuro-fuzzy network. The intention was to use the

predicted tactile feedback in a similar control system as the one proposed by Datteri et

al. [8]. If there is a mismatch between the predicted and actual tactile feedback, compen-

satory actions should be triggered and internal models of the observed object and the hand

should be updated.

The expected perception strategy uses prediction to decide whether the time consuming

sensory-processing step can be skipped. It is assumed that the robot can be controlled

without sensory feedback as long as nothing unexpected (like external forces) happens.

Contrary to this research, we will in this thesis assume that the inverse model needs sensory

feedback also when nothing unexpected happens. Our suggestion is to predict the result of

the sensory processing step, and use this predicted state together with the delayed, actual

result of the sensory processing step as sensory feedback to the inverse model. A similar

6

1.2. Motivation

solution was proposed by Wolpert et. al [80]. They suggested using two forward models.

The first predicts the next state, i.e., the result of the sensory processing step, based on the

estimated current state and the motor command. The second predicts the sensory input

from the estimated current state. The sensory prediction error is translated into a state

error with a Kalman filter, and this state error is used to alter the predicted state. We did

not compare this approach to ours as in our experiments the sensory feedback and the state

representation were the same, meaning contrary to for example using an image as sensory

feedback, the sensory feedback consisted of a vector expressing the position of the arms,

and the state was represented with the same type of vector. The sensory processing was

just simulated by artificially delaying the sensory feedback.

In our solution we propose using both the fast, predicted feedback and the slow, actual

feedback as input to the inverse model. The idea is that the delayed feedback can compen-

sate for errors in the forward model, and that the predicted state together with the delayed

sensory feedback make a better estimate of the current state than any of them would alone.

This is in contrast to the classical Smith Predictor control scheme [50], where only the pre-

dicted feedback is used for control, whereas the actual feedback is only used to update the

forward model. The Smith Predictor control scheme on the other hand, addresses another

problem, namely how to estimate the delay in order to calculate the error for training the

forward model. The Smith Predictor control scheme consists of a controller and two for-

ward models. The first forward model predicts the next state (e.g., arm position) based on

an efferent copy of the motor command together with the current state. This prediction is

used as input to the controller. The second forward model models the delay in the sensory-

motor loop. The prediction from the first model is used as input to the second model. The

second model delays the predicted state so that it can be compared with the actual state,

which is based on sensory feedback. The difference between the predicted and the actual

state is used to update the internal models. In our experiments we assumed the duration

of the delay was known, and that we therefore did not need the second forward model

predicting the delay. What is most accurate in practice, measuring the delay or learning to

predict it, is, however, an open questions that is out of scope of this thesis.

1.2.2 Bimanual Coordination

The second control problem addressed in this thesis is bimanual coordination, and our

objective was to study how to apply internal models to solve this problem. In this section

I will discuss the traditional approach to bimanual control and present two studies that

address problems that appear as the robots are getting more complex before relating this

to our research.

Most research on bimanual coordination regards the problem of using two arms to manip-

ulate some object, where the task is to calculate the movement trajectory for the two arms

in order to move the object, or maybe assemble two objects. From the viewpoint of con-

7

1. Introduction

ventional, analytical robot trajectory planning, two-arms manipulation is a relatively well

research topic. Suggested control schemes can be divided into two groups, “master-lave

schemes” and “symmetrical solutions”, which are compared in papers [10] and [40]. In a

master-slave scheme the master arm is typically moved along a desired trajectory, and the

slave arm follows the movement of the master arm by maintaining a force relative to the

manipulated object. In symmetric control schemes both arms are controlled based on both

their relative position and the force directed at the object they are manipulating. However,

these traditional, analytical control schemes were designed to deal with limited DOFs.

Morasso and Mohan et al. suggest tackling the problem of increased number of DOFs by

applying the “passive motion” paradigm to bimanual coordination [54, 53]. The passive

motion paradigm is an alternative to optimal control theory, where a movement trajectory

is chosen among several possibilities by minimizing some cost function [21, 73]. The

passive motion paradigm suggests coordinating the DOFs by inducing a virtual force field

applied to a small number of relevant parts of the body. The internal model creating the

trajectory operates on this small set of force fields, instead of all DOFs, in analogy to

controlling a marionette by means of attached strings [52]. Morasso and Mohan et al.

apply the passive motion paradigm to bimanual coordination by using mutual force fields

for both arms, e.g., by connecting a force field to the object that is manipulated by both

arms.

None of the above studies address learning bimanual movement skills. Gribovskaya and

Billard, on the other hand, suggest learning coordinated movements by extracting spa-

tial and temporal constraints from observed movement patterns and use these constraints

when generating the movement trajectories [25]. Contrary to this approach, we predefined

the constraints relating the movement of the two arms and investigated what kind of con-

straints the neural network was able to learn. As in the above examples, the controller of

one arm had access to the position of the opposite arm.

1.2.3 Choosing Movements to Learn From

Both when working on how to handle delays in the sensory-motor-loop and how to realize

bimanual coordination we used internal models. A common challenge addressed in this

thesis is how to learn these internal models. In particular we concentrated on learning

the inverse model, because learning an inverse model is generally harder than learning

a forward model. As mentioned, a forward model predicts the consequences of actions,

whereas an inverse model calculates the action that will lead to some desired consequence.

Learning the inverse model is harder, because there might be multiple possible actions that

lead to the same result, making the inverse model ill defined.

A robot might learn the inverse model of its motor apparatus by issuing random motor

commands and observe what happens [11]. How the brain does it is still an open question.

8

1.2. Motivation

Although this motor babbling is one hypothesis in developmental psychology [49], other

findings suggest that children use more goal directed movements [79]. Several different

strategies are used in robotics and will be explained next.

D’Souza, Vijayakumar and Schaal used locally weighted projection regression (LWPR)

[78] to learn the inverse kinematics model of a humanoid robot [17]. The inverse model

was learned online by initially biasing the motion toward a default posture. This default

posture was also used to bias the solution to the inverse kinematics problem toward a

“natural posture”. The system was first trained on data collected from motor babbling.

The system was then tested on the “figure-eight” generation task, i.e., generation of the

shape of the number 8, which is a recurring exercise for recurrent neural networks (RNNs)

[57]. Performance was not perfect, because the joint space was large and the motor bab-

bling only covered sparse data from the region required by the “figure-eight” task. Not

surprisingly, better results were obtained by training on the “figure-eight” task itself.

If the robot is only going to do a limited number of movements as in the above example,

they do not have to learn the whole inverse model, and they will do better only training on

the movements they will perform. Exploration can then be guided by humans demonstrat-

ing the movements [6] or a programmer specifying a reward function [58]. One method

for learning only the part of the inverse model relevant for given trajectories is the shifting

setpoint algorithm [62]. It uses motor babbling to build the inverse model along tubes in

actuator space, from start positions to goal positions.

However, the robot might need to learn a variety of movements over a long period of time.

Active learning algorithms might be beneficial when it is hard to predict what kind of

training data the robot will need [65]. These algorithms generate or select training data

themselves, without humans having to specify goals or training trajectories.

Also, when the robot needs to learn a large part of the inverse model, it becomes im-

portant to minimize the number of training examples required to reach a certain level of

performance. The Self-Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity

(SAGG-RIAC) is an active learning algorithm that uses motor babbling in the task space

(e.g., arm positions in Cartesian coordinates) as opposed to motor babbling in the actu-

ator space (e.g., joint angles) [4]. Baranes and Oudeyer showed that exploration in the

task space can be a lot faster than exploration in actuator space for learning the inverse

kinematics of a redundant robot [4].

The general assumption in the works referred to above seems to be that the robot needs to

exhaustively explore the parts of the actuator space it will use. In a group of experiments

we showed that it is not necessary to explore the whole actuator space the robot is going to

perform in. In paper C we discuss what needs to be trained on and what can be excluded

from the training data.

9

1. Introduction

1.2.4 Training the Inverse Model

In the previous section we explained the challenge of choosing which training movements

to learn from in order to perform well on novel movements. This section concentrates on

how to represent and learn these training movements.

For training the inverse model we chose to adopt the feedback-error-learning scheme

[35, 38], because it is able to handle redundancies, is a natural extension of a traditional

controller, and can be used for control during learning [56]. In addition, it is biologi-

cally motivated due to its inspiration from cerebellar motor control [36]. Feedback-error-

learning will be further explained in section 2.1.1.

Passold and Stemmer investigated the benefits of applying feedback-error-learning to learn

the inverse dynamic model of an INTER scara robot [56]. Experiments were conducted

with two types of artificial neural networks (ANNs), a multi-layer perceptron (MLP) and

a radial basis neural network (RBF), as the inverse model. The robot’s capability to move

along a given trajectory by using only a conventional propotional-derivative (PD) con-

troller, a PD controller together with a MLP, a PD controller together with a RBF and a

propotional-integral-derivative (PID) controller together with a RBF were compared. The

use of an ANN performing in parallel with a conventional controller was advantageous

over only using a conventional controller alone, and even though both the MLP and the

RBF performed very well, the RBF did it better and faster.

We chose to implement the inverse model with another type of neural network, namely

an ESN, because it has been proposed as a cheap and fast architectural and supervised

learning scheme and therefore suggested being useful for solving real problems [44]. In

addition, ESNs have been associated with how the cerebellum might actually work [85].

Reinhart and Steil used a similar approach for implementing internal models. They trained

a recurrent neural network with backpropagation-decorrelation (online version of ESN) to

simultaneously learn both the inverse and the forward kinematics model of a redundant

robot arm [60]. However, they did not use feedback-error-learning, but calculated the

analytical solution and used it directly for training.

The main challenges with applying feedback-error-learning on an ESN are, as explained

in paper E, that teacher forcing is not perfect and the feedback error is inaccurate1. Even

when teacher forcing is very good, there might be stability issues in networks with feed-

back connections. A classical remedy is adding noise to the internal states during training

[29], which makes the network learn the desired next target from the neighborhood of the

current state. Other suggestions include using ridge regression [84], pruning the output

weights [18] or updating the weights based on the particle swarm optimization algorithm

1Teacher forcing is a technique commonly used during training of recurrent networks and means replac-

ing the output of the network with the desired output before the result is fed back in to the network.

10

1.3. Research Questions

[68]. We suggested a new strategy, namely gradually adapting the target output during

computation of the output weights. This new method shows quite good results for the

feedback-error-learning scheme and is published in the papers D and E.

1.3 Research Questions

The main research objective for this thesis was:

Studying internal model based control schemes and how internal models can be learned
and applied for artificial motor control.

In particular, we chose to focus on two important control problems, as motivated in sec-

tions 1.2.1 and 1.2.2, resulting in these two research questions:

RQ1: How can internal models be used to handle delays in the sensory-motor-loop?
RQ2: How can internal models be used to make one of the arms coordinate its

movements relative to the movements of the other arm?

As we chose to implement the internal models as ESNs and train the inverse models with

feedback-error-learning, the research regarding how to train the internal models can be

divided into answering the following two research questions. These were motivated in

section 1.2.3 and 1.2.4 respectively.

RQ3: What characterizes a training movement that makes an ESN generalize to
most other movements?

RQ4: How can an ESN be trained with feedback-error-learning?

1.4 Thesis Structure

The thesis is a collection of papers. The research contribution of this thesis is thus con-

stituted of the five included research papers, in their original publication format. The rest

of the thesis is organized as follows: The current chapter has given a short introduction to

the research topic and motivated the research questions that have been investigated. In the

next chapter I will provide more background theory on motor control with internal models

and ESNs. The research conducted in the thesis is summarized in chapter 3. The full

description of experiments and results can be found in the papers included in part II. Fi-

nally, chapter 4 discusses the research methods, limitations and suggested improvements,

summarizes contributions, and suggests future work.

11

1. Introduction

12

BACKGROUND THEORY 2
In this chapter I will give a short introduction to motor control with inter-

nal models and explain the idea behind ESNs based on the theory behind

nonlinear modeling and general recurrent neural networks.

2.1 Motor Control with Internal Models

As mentioned in the introduction, there are two types of internal models, forward and

inverse models. These models are illustrated in figure 2.1. In the current context, the for-

ward model predicts the next arm position based on the current position and the motor

command, while the inverse model calculates the motor command that will move the arm

from the current position to the desired position. Internal models can be used to simulate

the kinematics and/or dynamics of the controlled object or the environment. With kine-

matics we mean translating the movement trajectory from the task space to the actuator

space; that is from an external coordinate system to joint angle configurations for that par-

ticular robot. In contrast, dynamics deals with forces, calculating the actual torques that

will move the limbs to those joint angles. We have concentrated only on kinematics in this

thesis, so when we use the term “motor command”, we mean joint angle velocity.

The ability to simulate the kinematics and/or dynamics makes it possible for the controlled

object to act proactively. In control theory one would say internal models can be used to

realize feedforward control, in contrast to feedback control, which merely compares a

perceived state with a desired state, and uses the difference, or error signal, to adjust the

motor command. A feedback controller will try to compensate for the error immediately.

How much it compensates depends on the feedback gain. Feedback control is also called

closed-loop-control because of its tight connection to the sensory signals. An example

of a feedback controller is a thermostat that turns on the heat when the temperature drops

below the desired value and turns the heat off when the temperature is too high. In contrast,

feedforward control uses knowledge about the plant, i.e., the system that is controlled, or

the environment to calculate an anticipatory control signal. A feedforward controller could

for example turn on the heat when the door is opened, before the temperature drops to the

13

2. Background Theory

 current position
motor command

predicted
next position

Forward
Model

 current position
desired position

motor
command

Inverse
Model

Figure 2.1: A forward model predicts the outcome of a motor command in terms of a

position, and an inverse model calculates a motor command that will move the limb to a

desired position.

critical point. Feedforward control is sometimes called open-loop-control to emphasize

that feedback sensory signals do not directly affect the timing of the response as they do

in feedback control. However, that does not mean feedforward control is independent of

sensory signals.

In some applications feedback control might work well, but when the feedback loop is

slow, the comparison always comes with a delay. Any small error is overcorrected, which

will result in even bigger errors, leading to yet bigger corrections. Consequently, relying

merely on the sensory feedback when the result of the issued motor command is signifi-

cantly delayed, will result in highly unstable control [76]. A perfect feedforward controller

on the other hand, would perform without error [32]. However, for practical applications

it is difficult to generate a perfectly accurate controller. Often a feedback controller is

used together with the feedforward controller to compensate for errors and external dis-

turbances.

In control architectures suggested by neuroscientists both feedback controllers and inter-

nal models are commonly used. In their investigation into how particularly cerebellum

works, several different control architectures have been proposed. For example, it has

been suggested that cerebellum implements feedback-error-learning [38, 37], works as a

Smith Predictor [50], and consists of multiple pairs of inverse and forward models spe-

cialized for different contexts [81]. These suggestions are compared in [82]. In the next

subsections we will look further into some of these proposed architectures, which were

used as a basis for the control architectures we applied in our experiments. In particular,

we will look into three ways to achieve feedforward control with internal models, feed-
forward control with an inverse model, feedforward control with a forward model and

forward and inverse models working together. These three approaches are illustrated in

figure 2.2 and explained next.

14

2.1. Motor Control with Internal Models

 sensed state

desired
next
state

motor
command

PlantPlant
Inverse
model

(a)

Forward
Model

predicted
next
state

desired
next
state

motor
commandFeedback

Controller+- PlantPlant

sensed
state

(b)

predicted
next state

sensed
state

desired next state
motor
command

PlantPlant
Inverse
model

Forward
model

(c)

Figure 2.2: Indirect control with internal models can be realized in three ways:

(a) An inverse model is a feedforward controller on its own. In our work the inverse

model has a feedback connection from the plant, which is not always the case in other

literature.

(b) A forward model coupled with a feedback controller will in principle realize the

same function as an inverse model.

(c) There are several ways a forward- and an inverse model can work together to im-

plement feedforward control. Illustrated is the architecture used in paper A.

In all three figures the solid connections indicate fast connections and the dashed indi-

cate slower connections that might result in a problematic delay.

15

2. Background Theory

Plant

Inverse
model

delay

sensed position

motor
inverse+-

random motor

delay
desired
next pos.

(a)

Plant

Inverse
model

sensed position
motor
inverse

desired
next pos.

(b)

Figure 2.3: Direct inverse modeling means trying out motor commands and associate the

outcomes with the commands that caused them. Figure (a) shows the architecture used

during training, and figure (b) shows the architecture used during testing.

2.1.1 Feedforward Control with an Inverse Model

The most straightforward approach for achieving feedforward control is to use only an

inverse model, as illustrated in figure 2.2(a). Since the input-output function of the inverse

model is ideally the inverse of the body’s forward dynamics, an accurate inverse model

would produce the desired trajectory that it receives as input perfectly, as long as there are

no external perturbations. Acquisition of such an accurate inverse model through learning

is, however, problematic, because it requires the desired motor commands to be available,

which is generally not possible. What is available is the movement representation in task

space.

Three schemas have been suggested for training the inverse model: directly by observing

the effect of different motor commands on the plant [35], with a forward model as a distal

teacher [33], or with an approach called feedback-error-learning [35, 38]. These will be

explained next.

Direct Inverse Modeling

Direct inverse modeling is illustrated in figure 2.3 and amounts to executing motor com-

mands and then associating their outcomes with the commands that caused them. Motor

babbling is often used for this purpose, meaning that the motor commands to be executed

are chosen at random. Alternatively, one can use a more goal directed approach, e.g., try

to execute a specific movement or reach some predetermined end position.

One major drawback with direct inverse modeling is that it needs rewiring before use,

which means that it cannot be used for control during learning. Figure 2.3(a) shows the

architecture used during training, and figure 2.3(b) shows the architecture used during

testing. During training the previous position of the plant together with the current position

is used as input to the inverse model, and a motor command is produced. This motor

command is compared to the motor command that actually moved the plant from the

previous to the current position, and the difference is used to train the inverse model.

16

2.1. Motor Control with Internal Models

Plant

Forward
model

delay

sensed positionmotor

Inverse
model

+-

+-

desired
next pos.

delay

pred.
position

(a)

Inverse model Forward model

sensed
position

desired
position

motor

sensed
position

predicted
position

(b)

Figure 2.4: In distal teacher learning a forward model is learned first. When training the

inverse model, the position error is propagated back through the forward model before

it is used to train the inverse model. Figure (a) illustrates this architecture, and figure

(b) illustrates how the inverse and forward model can be combined into one feed-forward

neural network.

During testing, on the other hand, the inverse model is used to control the movement of

the plant.

Another drawback pointed out by Jordan and Rumelhart is that most direct inverse learning

techniques learn an average of possible actuator space solutions for a given task space goal,

this average possibly being an invalid solution [33].

Distal Teacher

In distal teacher learning a forward model is learned first. When training the inverse

model, the position error is propagated back through the forward model before it is used

to train the inverse model. The architecture is illustrated in figure 2.4(a). The inverse and

the forward model can, for example, be implemented as feed-forward neural networks and

trained with back-propagation. This makes it easy to combine the two networks into one,

as illustrated in 2.4(b). When training the inverse model, the weights belonging to the

forward model are kept unaltered.

Feedback-Error-Learning

The feedback-error-learning scheme, illustrated in figure 2.5, relies on the output of a

feedback controller that translates the error in position to an error in motor command.

This error is then used both to train the inverse model and to adjust the motor command

sent to the plant.

We applied feedback-error-learning in most of our experiments.

17

2. Background Theory

+ -

Feedback
controller

*K

actual
state

desired
state

motor error

motor
inverse

Plant++

actual state

motor
totalInverse

model

motor
feedback

delay

Figure 2.5: Feedback-error-learning relies on the output of a feedback controller that

translates the position error to an error in motor command. This error is used both to train

the inverse model and to adjust the motor command sent to the plant.

2.1.2 Feedforward Control with a Forward Model

A second approach to feedforward control with internal models is to use a forward model

together with a feedback controller [50, 48]. As illustrated in figure 2.2(b), the forward

model predicts the next state based on the delayed sensed state and the motor command

issued by the controller. The idea is that the prediction from the forward model will be

available much earlier than the actual sensory feedback, and the controller can react faster

by using the difference between this predicted state and the desired state, as opposed to the

difference between the sensed state and the desired state. That is, the feedback controller

uses internal feedback provided by the forward model instead of external feedback. When

the loop through the forward model is fast, this architecture will in practice achieve the

same result as an inverse model.

Again, the question is how such a forward model can be acquired through learning. The

Smith Predictor provides one solution to the problem of training the forward model online

by using a second forward model to compare the prediction made by the first with the

actual, delayed, sensed state [50].

We did not use a control architecture without any inverse model in any of our experiments.

2.1.3 Forward and Inverse Models Working Together

As described, model based, indirect feedforward control can be acquired either with the

use of an inverse model or by using a forward model. Smagt et al. suggest a third option,

namely to use both, a forward and an inverse model coupled together [76]. In their work

the forward model was used during actual control, and not just to train the inverse model

as in the distal teacher model explained previously.

Wolpert et al. also suggest coupling inverse and forward models together, but their idea

18

2.2. Echo State Networks

is to use several such pairs, each of which is to be used for different contexts, like when

moving in water or moving while carrying something heavy [82]. The role of the forward

model in that architecture is to predict which inverse model is the most appropriate for the

current situation.

Learning distinct inverse models for different contexts seems like a good idea for robot

motor control as well, but we have not come far enough in our research to incorporate this

theory. However, we did investigate the benefit of using both a forward and an inverse

model together when there are delays in the sensory-motor loop (paper A). The coupled

forward-inverse control architecture we used was illustrated in figure 2.2(c).

2.2 Echo State Networks

In all our experiments the internal models were implemented as ESNs. This section de-

scribes the idea behind ESNs, how they work, and how they are trained.

An ESN is a recurrent neural network (RNN), which is a neural network with feedback

connections as opposed to feedforward networks, which does not contain cycles. Mathe-

matically RNNs implement dynamical systems, while feedforward networks are functions.

In theory RNNs can approximate arbitrary dynamical systems with arbitrary precision

[13].

RNNs have two obvious theoretical advantages over other methods used for solving tem-

poral tasks. Unlike feedforward neural networks and Support Vector Machines, RNNs

have internal memories, and unlike Hidden Markov Models, they can take both discrete

and continuous values. In addition, they are of course more biologically plausible. Be-

cause of this, they became very popular in the 1980s and 90s. In practice however, su-

pervised training of RNNs with the standard gradient-descent methods are difficult and

computationally expensive [42].

In the last years a fundamentally new approach to RNN design and training has attracted

new attention to the field. It was proposed independently by Wolfgang Maass under the

name of Liquid State Machines (LSMs) [46, 55] and by Herbert Jaeger under the name of

Echo State Networks [29, 30, 31]. LSMs and ESMs, together with the more recently ex-

plored Backpropagation Decorrelation learning rule for RNNs [69], are given the generic

term reservoir computing [63, 77].

To understand the idea behind reservoir computing a basic understanding of RNNs and

nonlinear modeling are required. I will therefore give a short introduction to these theories

in the next two sections, before I use this to explain the general idea behind reservoir

computing in section 2.2.3 and specifics about ESNs in section 2.2.4.

19

2. Background Theory

2.2.1 Recurrent Neural Networks

A general RNN is illustrated in figure 2.6 and consists of nodes that are tied together by

direct connections. There are three types of nodes, input-, internal- and output nodes.

The input nodes are not really a part of the RNN, but represent the external input to the

network. The output nodes are the nodes presenting the output, and the internal nodes

only send information to other nodes inside the network. The state of the input-, internal-

and output nodes at time t is denoted as u(t), x(t), and y(t) respectively.

... ...
...

W
in

W
out

W

W
back

u1 xi
y1

K input N internal L output
nodes nodes nodes

Figure 2.6: The figure illustrates a basic RNN architecture.

The input / internal / output connection weights are collected in NxK / NxN / Lx(K+N)
weight matrices, Win, W, Wout, where K in the number of input nodes, N is the number

of internal nodes and L is the number of output nodes. Additionally, the output nodes

may project back to the internal nodes with connections whose weights are collected in

the NxL weight matrix Wback.

The activation of the internal nodes at time t is updated according to

x(t) = f(Winu(t) +Wx(t− 1) +Wbacky(t− 1)) + v(t− 1), (2.1)

where f is the node’s activation function, and v is internal noise in the network. The output

of the network is computed according to

y(t) = f out(Wout(u(t),x(t))). (2.2)

These equations can represent all dynamical systems.

2.2.2 Nonlinear Modeling

A general machine learning problem can be defined as a problem of learning a functional

relation between a given input u(t) ∈ R
Nu and a desired output ytarget(t) ∈ R

Ny , where

t = 1, ..., T , and T is the number of time steps in the training dataset (u(t),ytarget(t)).

20

2.2. Echo State Networks

In a non-temporal task the data points are independent of each other and the goal is to

learn a function y(t) = f(u(t)). In a temporal task the desired output ytarget(t) does not

only depend on the last input, u(n), but on a history of previous inputs, i.e., the task is to

learn a function y(t) = W(...,u(t − 1),u(t)). In both cases the goal is to minimize an

error measure E(y,ytarget).

For the moment we assume the problem is non-temporal. Many such tasks cannot be

accurately solved by a simple linear relation between the input u and the output ytarget,

i.e., a linear model,

y(t) = Wu(t), (2.3)

where W ∈ R
NyxNu , gives big errors E(y,ytarget) regardless of W.

In such cases a nonlinear models is needed. A number of commonly used methods for

nonlinear modeling are based on the idea of nonlinearly expanding the input u(t) into a

high-dimensional feature vector x(t) ∈ R
N, and then use linear methods to compute y.

The solution can then be expressed by

y(t) = Wx(t) = Wx(u(t)), (2.4)

where W ∈ R
NxxNu . Finding W is a well defined and understood problem, but producing

a good expansion function, x, generally involves more creativity.

One such nonlinear method is Support Vector Machines. Here, the function x(t) is called

kernel [47]. Using feedforward neural networks is another method. A feedforward net-

work with one hidden layer computes

y(t) = fout(W
outx(u(t))), (2.5)

x(t) = fin(W
inu(t)). (2.6)

The same idea is used for temporal tasks, but the expansion function must now have mem-

ory, i.e., x(t) = x(x(t− 1),u(t)), as in equation 2.1.

The classical approach to supervised training of neural networks is gradient-decent. It

iteratively adapts all weights Wout, W, Win and possibly Wback according to their es-

timated gradient δE
δWall in order to minimize the error E(y,ytarget). Different classical

gradient-decent methods are presented in [2, 57].

2.2.3 The Idea behind Reservoir Computing

Reservoir computing methods differ from the traditional gradient-decent methods by con-

ceptually and computationally separating the expansion function, x and the readout, y.

Training/generating them separately and even with different goal functions makes sense

because they serve different purposes.

21

2. Background Theory

The nonlinear, temporal expansion function is called the reservoir, and it is usually imple-

mented as a recurrent neural network. This reservoir is generated randomly and remains

unchanged during training1. Its function resembles a tank of liquid. One can think of the

input as stones thrown into the liquid, creating unique ripples that propagate, interact and

eventually fade away. After learning how to read the waters surface, one can extract a

lot of information about recent events without having to do the complex input integration.

Real water has successfully been used as reservoir in such a manner [20].

The readout is essentially non-temporal and can be generated as a linear combination of

the signals from the reservoir. Learning this function is typically quick, which makes these

methods computationally efficient compared to gradient decent methods.

2.2.4 Training Echo State Networks

The task is described by a set of input and desired output pairs, [〈u(1), ytarget(1)〉, 〈u(2),
ytarget(2)〉, ..., 〈u(T), ytarget(T)〉], and the solution is a trained ESN whose output y(t) ap-

proximates the desired output ytarget(t), when the ESN is driven by the training input u(t).
The error function to be minimized is the normalized root-mean-squeare error (NRMSE),

which is the root-mean-square error (RMSE) divided by the range of the possible target

values:

E(y,ytarget) =

√‖ y(n)− ytarget(n)‖ 2

ymax − ymin

. (2.7)

The ESN is generated in three steps:

Step 1: Provide a random ESN

Initially, a random RNN with the Echo State property is generated [30]. Informally, the

echo state property says that if the network runs for a very long time, the network state

will be uniquely determined by the history of the input and the output.

Two important parameters for creating the random ESN is the network size, N , which

should reflect both the length of the training data and the difficulty of the task, and the

spectral radius, α, which determines the length of the memory of the network. We use

tanh as the activation function, which means that α ∈ [0, 1]. In our work these parameters

have been found by trial and error for each experimental setup as recommended by Jaeger

[29].

The result of this first step is the initial weight matrixes Win, W, Wout and Wback.

1Lately, quite some research is done on altering the reservoirs to improve performance on a given appli-

cation, but we stick to the original idea of keeping the reservoir fixed.

22

2.2. Echo State Networks

Step 2: Harvest the states of the nodes in the network

Using the initial weight matrixes, the network is driven by the provided input sequence,

[u(1),u(2), ...u(T)]. When there are feedback connections from the output nodes to the

internal nodes, teacher forcing is used, meaning ytarget(t) is used instead of the actual

output, y(t), when computing x(t+ 1) and y(t+ 1).

The first T0 time steps are used to wash out the initial transient dynamics. After this

initialization, the state of each input- and internal node in each time step is stored in a state

collection matrix, M. In the end, M has the dimension T ×(K+N). Just to remind, K, N
and L are the number of input-, internal- and output nodes respectively. Assuming tanh
is used as output activation function, tanh−1ytarget(t) is collected row-wise into a target

collection matrix, resulting in a matrix S of size T × L.

Step 3: Compute the output weights

Equation 2.2 can now be written:

S = M(Wout)T . (2.8)

The goal is to solve this equation with regard to Wout.

There are two possible problems when solving this equation: 1) the equation may not have

any solution, or 2) the equation may have many solutions. The Moore-Penrose pseudo-

inverse will in the first case provide the least squares solution, and in the second case

provide the solution with the minimum Euclidean norm. We used this pseudo-inverse to

calculate the output weights:

(Wout)T = M+S. (2.9)

2.2.5 Challenges in Reservoir Computing

Besides the application studies, the bulk of current research on reservoir computing is

devoted to optimal reservoir design, or reservoir optimization algorithms. The general “no

free lunch” principle in supervised machine learning states that there can exist no bias of a

model that would universally improve the accuracy of the model for all possible problems

[83]. In the current context this means that no single type of reservoir can be optimal for

all types of problems. A detailed review of reservoir optimization strategies can be found

in [45].

Another challenge is the stability issue when the network has feedback connections from

the output layer [29]. This problem is discussed further in paper D, as it is related to our

problems with training the inverse model with feedback-error-learning.

23

2. Background Theory

24

RESEARCH SUMMARY 3
This chapter summarizes the research conducted in the thesis. First, an

overview of the material and the employed methods and research process

is given. Then, a list of the included papers follows, and finally, each

paper is presented.

3.1 Overview

The overall objective of the thesis is, as mentioned in the introduction, to study inter-
nal model based control schemes and how internal models can be learned and applied
for artificial motor control. To do this we developed a simple, lightweight simulator we

call Skinny, which learns internal models of his motor apparatus by imitating the human

motion.

The human motion was recorded from arm movements of a person, and the input to

Skinny’s control system is a sequence of the recorded positions of hands and elbows rela-

tive to the shoulders. The task of Skinny’s control system is to generate motor commands

that result in Skinny imitating the recorded movement. This is solved by learning internal

models of how the arms work. Figure 3.1 illustrates the setup.

We chose to implement the internal models as ESNs as it has been proposed as a cheap and

fast architectural and supervised learning scheme and is therefore suggested being useful

Robot
Arms

Control
System

sensed
position motor

commandnext desired
position

Figure 3.1: The input to the control system is the desired next position of the robot arms.

This is used together with the sensed position of the arms, and the output is a motor

command. The motor command moves the robot’s arms.

25

3. Research Summary

x

z

S
x

z

E

 Shoulder Elbow Wrist

Arm ForearmΦθ

(a) Joint representation in 2D

x
y

z

S
x

y
z

E

 Shoulder Elbow Wrist

Arm Forearm

(b) Joint representation in 3D

Figure 3.2: The motor commands are the joint angle velocities.

for solving real problems [44]. We chose to train the inverse model with feedback-error-

learning because it is a natural extension of a traditional feedback controller and can be

used for redundant systems [56]. Another advantage with feedback-error-learning is that

it can be used for control during learning, but we did not exploit this.

3.1.1 The Simulator

All the experiments were done with the simple robot simulator Skinny. Initially we tried

to apply the multi-agent physics simulator Breve [39], but running the experiments trough

Breve was very time consuming, and in any case we wanted to start with simple kinematic

control, and thus did not need the full functionality of Breve.

As we chose to start simple by only concentrating on kinematic control, Skinny’s limbs

are directly controlled by the joint angle velocities, and we call them the motor commands.

However, we believe our methods can be used also for dynamic control.

Skinny can operate in both 2 and 3 dimensions. In 2D he has 4 degrees-of-freedom

(DOFs), one for each shoulder and one for each elbow. In 3D he has two additional

DOFs in each shoulder, giving him a total of 8 DOFs. This is illustrated in figure 3.2.

The range of motion was constrained to be between 0o and 180o for all 4 DOFs, and if

the motor command implies moving the limb further, the limb stops at the limit and the

overshooting motor command is ignored.

In some of the experiments the maximal joint angle velocity was limited to 50-100% larger

than the maximum velocity registered in the recorded movement. This meant that a joint

angle velocity equal to 1 moved the joint far less than 180 degrees. Limiting joint velocity

is realistic because no robot can move its limbs arbitrarily fast. It also makes large errors

in motor commands lead to smaller position errors.

Skinny, the ESNs, and all the experiments were implemented in matlab, and we used the

matlab toolbox for ESNs written by Herbert Jaeger et al. [19].

26

3.1. Overview

Figure 3.3: The YMCA movement.

3.1.2 The Dataset

In most of our experiments we used the YMCA dataset, which is a recording of the dance

to the song YMCA by the Village People. The movement is illustrated in figure 3.3. This

dataset was used because the movement is well known and easy to explain and recognize.

At the same time it is complex enough to be interesting. One drawback of the YMCA

movement is the symmetry of the Y, M and A movements; only the C movement breaks

this symmetry.

The movement data was gathered with a Pro Reflex 3D motion tracking system by Axel

Tidemann [71]. The system was able to track the position of fluorescent balls within a

certain volume by using five infrared cameras. The sampling frequency of the Pro Reflex

was 200 Hz. In the experiments we mostly used only every fourth sample, meaning the

position trajectory consisted of 50 samples/sec, resulting in a 313 steps long sequence.

The tracking of the balls yields Cartesian coordinates of the balls, and we used this to

make three different representations of the recorded arm position as illustrated in figure

3.4 and explained next.

Positions in 2D joint angles

The movement trajectory was projected down into 2D and translated into joint angles

which were normalized to the interval 〈−1, 1〉. The result is a position sequence with four

values per time step, the elbow and shoulder angles in 2D.

Positions in 2D Cartesian coordinates

The 2D projection was used as the position trajectory, and consisted of the x and z co-

ordinates of the elbow relative to the shoulder and the wrist relative to the elbow. The

coordinates were normalized to be in the interval 〈−1, 1〉. The position in each time step

was thus represented by 8 signals.

27

3. Research Summary

θ (t)R

0

z

x

θL

ΦL

Φ (t)R

(a) Position in 2D joint angles.

zLE

xLE

zLS

xLS

(x (t), z (t))RS RS

(x (t), z (t))RE RE

0

z

x

(b) Position in 2D Cartesian coor-

dinates

0

z

x

y

yLE

xLE

zLE

(x (t), y (t), z (t))RE RE RE

(c) Position in 3D Cartesian coor-

dinates

Figure 3.4: Position representation.

Positions in 3D Cartesian coordinates

The positions were represented in x, y and z coordinates of the wrist relative to the elbow

and the elbow relative to the shoulder. The coordinates were as usual normalized to be in

the interval 〈−1, 1〉. This means that each position was represented by 12 signals.

3.1.3 The Kinematic Control Problem

As was illustrated in figure 3.1, the task for the control system was to calculate the joint

angle velocities that will keep the arms on the desired trajectory. The different position

representations and modalities lead to control problems with various levels of complexity.

Linear Control Problem

In the simplest case Skinny moves in 2D and the arm positions are represented in joint

angles. The motor commands are angle velocities, thus, the control system must learn to

calculate the linear transformation from joint angles to joint angle velocities.

Nonlinear Control Problem

Skinny still moves in two dimensions, but the arm positions are now represented as Carte-

sian coordinates in this 2D space. The control system will need to learn the nonlinear

transformation from Cartesian coordinates to joint angle velocities.

28

3.2. List of Publications

Nonlinear Control Problem with Many Solutions

When Skinny is represented in 3D with positions in Cartesian coordinates, the inverse

problem becomes a one to many mapping, as several joint angle configurations corre-

sponds to the same arm position in Cartesian coordinates.

The analytical solution used for training in this setup is the inverse kinematics approxima-

tion proposed by Tolani and Badler [72].

3.1.4 Research Progress

In the introduction we stated four research questions:

RQ1: How can internal models be used to handle delays in the sensory-motor-loop?
RQ2: How can internal models be used to make one of the arms coordinate its

movements relative to the movements of the other arm?
RQ3: What characterizes a training movement that makes an ESN generalize to

most other movements?
RQ4: How can an ESN be trained with feedback-error-learning?

The initial focus was on investigating RQ1 and RQ2, namely how to use internal models to

handle delays in the sensory-motor-loop and to realize bimanual coordination. The results

of this work are discussed in paper A and B respectively.

During the initial work on handling delays and bimanual coordination we realized we had

to spend more time investigating how to learn the internal models, particularly the inverse

model. In paper C we studied the generalization capabilities of the inverse model by letting

Skinny train on imitating one movement and tested what other movement he could imitate

without further training. This paper includes our contributions to RQ3.

As we moved on from the linear control problem to the nonlinear control problem and

the nonlinear control problem with many solutions, we discovered that just learning the

training movements was a challenge in its own. Our last two papers, paper D and E,

address this problem by investigating the training of an ESN with feedback-error-learning,

i.e., RQ4. This research resulted in a novel training method for ESNs.

3.2 List of Publications

Papers Included in Thesis

A Rikke Amilde Løvlid and Pinar Öztürk. Dancing YMCA with delayed sensory feed-

back. In Proceedings of the Tenth IASTED International Conference on Artificial In-
telligence and Applications, 2010.

29

3. Research Summary

B Rikke Amilde Løvlid and Pinar Öztürk. Learning bimanual coordination patterns for

rhythmic movements. In Konstantinos Diamantaras, Wlodek Duch, and LazarosS. Il-

iadis, editors, Artificial Neural Networks ICANN 2010, volume 6354 of Lecture Notes

in Computer Science, pages 143–148. Springer Berlin Heidelberg, 2010.

C Rikke Amilde Løvlid. Learning motor control by dancing YMCA. In Artificial Intelli-
gence in Theory and Practice III. 2010.

D Rikke Amilde Løvlid. Learning to imitate YMCA with an ESN. In Artificial Neural
Networks and Machine Learning - ICANN 2012, Lecture Notes in Computer Science,

pages 507–514. Springer Berlin Heidelberg, 2012.

E Rikke Amilde Løvlid. A novel method for training an echo state network with feedback

error learning. Advances in Artificial Intelligence, 2013.

Other Papers

F Rikke Amilde Løvlid. Introducing learning rate analogy to the training of echo state

networks. In First Norwegian Artificial Intelligence Symposium, 2009.

3.3 Paper Descriptions

This section summarizes the papers constituting the thesis, including motivation, paper

abstract and a summary of experiments and important results.

3.3.1 Paper A - Dancing YMCA with Delayed Sensory Feedback

The first paper addresses the problem of handling delays in the sensory-motor-loop. Hu-

mans perceive their own movement with a delay. The time elapsed for the travel of neural

signals from the brain to the muscles and the time the brain needs to process the sensory

feedback it receives constitute problems for the smoothness of voluntary movement.

The delay issue poses a problem in artifacts as well. Robots’ electrical circuits do not

suffer from the same conduction delays as the neurons in the human nervous system,

but even if the delay is much smaller, a robot may need to move so fast that it becomes

a problem. Also, depending on the complexity of the robot’s perceptual capabilities, it

might take time to process the sensory signals, e.g., to interpret visual sensory input.

In this paper we compared two control architectures, one with only an inverse model and

one with an inverse model and a forward model coupled together.

30

3.3. Paper Descriptions

Plant
Inverse
model

Forward
model

D
el

ay

y

+ -

Feedback
controller

++

desired next state

sensed
state
(delayed)

predicted state

actual state
(not delayed)

y
inverse

y
feedback

+1

Figure 3.5: Two control architectures, one has only an inverse model while in the other,

the inverse model is coupled with a forward model. The dotted loop including the forward

model is only enabled in the experiments where the forward model is involved. Delays

are shown with ellipses (+1 means delayed with one time step), an arrow across a model

represents training, and y is the motor command.

Abstract: Lack of sensory feedback or delay in feedback has been shown to
have detrimental effects on cognition and action in humans and in artifacts.
Despite the adverse effects of delay, humans manage to generate smooth and
timely movements. This has been explained by the existence of predictive mod-
els in the brain. In this paper we investigate the possible role of a predictive
model that anticipates the consequences of the motor command to be issued
to the actuator (e.g., arm). The paper presents two architectures, one with and
the other without predictive components, and compares their performances in
dancing to the song ‘YMCA’. The architecture including the predictive model
has been trained in three different ways to uncover the possible effects of the
training method on the movement performance. The results confirm the role
of prediction in the movement control.

Experiments

In a group of experiments we added delay in Skinny’s sensory-motor loop and compared

the performance of two control architectures. The first had only an inverse model and the

other had both an inverse and a forward model working together. The architectures are

illustrated together in figure 3.5 and did both include a conventional feedback controller

as in the feedback-error-learning architecture.

The architectures were tested on the linear control problem from section 3.1.3, and the

31

3. Research Summary

Figure 3.6: The figure shows a comparison of the performance with and without a for-

ward model with delayed sensory input. The line plots illustrate the online correction

ratioyfeedback/y, witch is the feedback controller’s contribution to the total motor com-

mand in percent.

experiments were run 10 times with each architecture. To evaluate the performance, we

compared the difference between the desired and actual state averaged over all time steps

in the last epoch. Also the average online correction ratio, yfeedback/y, was compared.

This ratio reflects the feedback controller’s contribution to the total motor command in

percent. The feedback gain was 0.65 throughout the experiments.

Results

The results are plotted in figure 3.6. For delay ≥ 4 the performance error in the worst run

with a forward model was better than the performance error in the best run without, which

strongly suggests adding a forward model is beneficial when sensory input is delayed. In

fact, the results indicate that the combined architecture, with both a forward and an inverse

model, also performs better when there is no delay.

Figure 3.6 also shows that the feedback controller was less needed when the forward model

was used, as the online correction ratio was lower.

In the experiments, whose results are plotted in figure 3.6, the forward model was pre-

trained on the training movement and kept fixed during the training of the inverse model.

We also tried training the two models in parallel. Best results were gained when pre-

training the forward model, but the difference became less evident as the delay increased.

32

3.3. Paper Descriptions

The main challenge when investigating the use of a forward model to compensate for

delayed sensory input was how to combine the delayed, actual position with the predicted

position to make a good estimate of the position. The simplest solution was not to pre-

compile the two signals at all, but use both the prediction from the forward model and

the delayed sensory information as separate inputs to the inverse model together with the

desired next state. We got satisfactory results with this simple solution and therefore did

not proceed to incorporate more sophisticated methods like applying a Kalman filter.

3.3.2 Paper B - Learning Bimanual Coordination Patterns for Rhythmic
Movements

Coordinated bimanual movements form the basis in many everyday motor skills. In human

bimanual coordination there are several basic principles or default coordination modes,

such as the preference for in-phase or anti-phase movements, e.g., the two arms mirroring

each other or making the opposite movement.

In this paper we studied an artificial system that learned bimanual coordination patterns

with various phase differences, frequency ratios and amplitudes.

Abstract: Coordinated bimanual movements form the basis for many ev-
eryday motor skills. In human bimanual coordination there are several ba-
sic principles or default coordination modes, such as the preference for in-
phase or anti-phase movements. The objective of our work is to make robots
learn bimanual coordination in a way that they can produce variations of the
learned movements without further training. In this paper we study an arti-
ficial system that learns bimanual coordination patterns with various phase
differences, frequency ratios and amplitudes. The results allow us to specu-
late that when the relationship between the two arms is easy to represent, the
system is able to preserve this relationship when the speed of the movement
changes.

Experiments

In this paper we investigated how Skinny can learn to move one arm, the lagging arm,

in a specific pattern relative to the other, the leading arm. Our work was inspired by the

crosstalk-hypothesis, which states that there is a connection between the motor systems of

the two coordinated limbs [3, 70, 12].

The control architecture of the lagging arm is illustrated in figure 3.7. The movement of

the leading arm was forced. During testing the velocity of the leading arm was changed,

and we observed whether or not the lagging arm was able to adapt to this new velocity and

keep the pattern it had trained on.

33

3. Research Summary

Inverse
model

y

+ -

Feedback
controller

++

desired state

actual state
both arms

actual state
lagging arm

y
inverse

y
feedback

*K
y

error

Plant

y
leading arm

lagging arm

Figure 3.7: The bimanual control architecture. An arrow represents training, and u is a

motor command.

Three movement properties where used to characterize and analyze the affordance of he

bimanual architecture: relative phase, frequency and amplitude.

Results

As it is with humans, in-phase and anti-phase movements were more stable than the move-

ments with other phase relationships. As for frequency ratio, polyrhythms like 2:3, ap-

peared to be impossible to learn, whereas simpler rhythms like 1:2 and 1:3 seemed rela-

tively stable once learned. The control system had no problem generalizing when it was

trained with different amplitudes on the two arms. The results are illustrated in figure 3.8.

These results allowed us to speculate that when the relationship between the two move-

ment components is easy to represent, the system is able to preserve this relationship when

the speed of the movement changes. Further work remains to formally define the charac-

teristics of the movement that are easier to coordinate, and what is easy to represent.

3.3.3 Paper C - Learning Motor Control by Dancing YMCA

Skinny starts without any knowledge about how his motor apparatus works. Before he

can imitate anything, the internal models must be learned. In this paper we investigated

whether Skinny could learn to imitate a group of “test” movements after training on only

one. This involves the study of the generalization capabilities of the ESN.

Abstract: To be able to generate desired movements a robot needs to learn
which motor commands move the limb from one position to another. We argue
that learning by imitation might be an efficient way to acquire such a function,
and investigate favorable properties of the movement used during training
in order to maximize the control system’s generalization capabilities. Our

34

3.3. Paper Descriptions

0
2

Leading arm

0 100 200 300 t

Actual
Desired

0
2

Leading arm

0 100 200 300 t

Actual
Desired

0
2

0 100 200 300 t 0
2

0 100 200 300 t

0
2

0 100 200 300 t

(a) Anti-phase

0
2

0 100 200 300 t

(b) Relative phase 90◦

0
2

Leading arm

0 100 200 300 t

Actual
Desired

0
2

Leading arm

0 100 200 300 t

Actual
Desired

0
2

0 100 200 300 t 0
2

0 100 200 300 t

0
2

0 100 200 300 t

(c) Frequency ratio 1:2

0
2

0 100 200 300 t

(d) Different amplitude

Figure 3.8: The bimanual experiments were done with the 2D simulator with positions

in joint angles. The figures show the results when the trained control system was tested

on the same movement as it trained on in the original speed (top), half the original speed

(middle), and with 50% increase in the original speed (bottom). The shoulder angle of

the leading arm and the desired and actual shoulder angle of the lagging arm at each time

step are plotted. The movement of the leading arm is shown together with the desired and

actual movement of the controlled lagging arm.

(a) The generalization to different speeds is close to perfect for the anti-phase move-

ment.

(b) The phase difference of 90◦ seems harder to preserve when speed is changed.

(c) The system was trained to perform the basic movement with frequency ratio 1:2.

The movement of the lagging arm is not smooth, but the timing is just as good in the

testing case as in the training case.

(d) The lagging arm moves twice as far within the same time interval as the leading

arm. The control system has no problem generalizing.

control system was trained to imitate one particular movement and then tested
to see if it can imitate other movements without further training.

35

3. Research Summary

+ -

Feedback
controller

*K

actual
state

desired
state

motor error

motor
inverse

Plant++

actual state

motor
totalInverse

model

motor
feedback

delay

Figure 3.9: The feedback-error-learning architecture used for testing generalization ca-

pabilities. An arrow represents training, and y is a motor command. The feedback gain,

K, was linearly decreased from 1 to 0 during training and kept 0 during testing.

Experiments

The experiments were done with the basic feedback-error-learning architecture, as illus-

trated in figure 3.9. The feedback gain was linearly decreased from 1 to 0 during training,

and in order to test the capabilities of the inverse model, the feedback controller was

not used during testing. To generate different training and testing sequences, the YMCA

movement was manipulated in various ways, and the network was trained on one move-

ment and tested on other movements.

Results

First, we verified that when trained to imitate one movement, the control system had not

only learned to imitate that particular movement, but was able to imitate novel movements

without further training. This meant that the system had learned at least parts of the desired

inverse model.

Second, we showed that in order to learn to control one particular degree of freedom, it has

to be included in the training movement. In addition, our results suggest that the control

system does not have to train on the whole range of motion for each degree of freedom

in order to generalize to all movements. Figure 3.10 illustrates this. Not having to train

on the full range of motion is important when we want to train the inverse model with

minimal amount of effort.

Third, asynchronous movements proved to be harder than synchronous movements. The

control system was not able to produce different motor commands for the two arms when

it had not been trained to do so. For humans it is indeed true that it is easier to move

the limbs synchronously. It is still very interesting that we get the same results for this

control system. It is also interesting to see that a system trained to produce a certain

synchronous movement, when asked to generate an asynchronous movement, provides

36

3.3. Paper Descriptions

0

2

2 2

Desired

0

2

2 2

Actual

Figure 3.10: The left figure illustrates the Y part of the YMCA movement, where φ is

the elbow angle and θ the angle in the shoulder. Notice that there is hardly any motion

in the elbow. The figure to the right shows the result when the control system trained

on movement Y is tested on movement YM. The control system is able to generate more

motion in the elbow joints than it trained on, and the imitation of YM is near perfect.

the average between the desired movement of the left and right arm, which is the best

possible solution the system could provide.

In summary, our findings suggest that imitation may be used as an efficient method to learn

the inverse model, because one can choose the training sequence optimally, as opposed to

exploration without guidance. This conclusion is supported by Rolf et al., who suggest the

use of goal directed exploration in contrast to motor babbling [61].

3.3.4 Paper D - Learning to Imitate YMCA with an Echo State Network

As mentioned, we implemented the internal models as ESNs. Training an ESN to learn the

inverse model proved to be rather challenging. We tried to use feedback-error-learning,

but it did not work well together with the standard method for training ESNs, which was

explained in section 2.2.4. This led to a proposal of a novel training method for ESNs.

This paper compares the new training method with the original, standard method.

Abstract: When an echo state network with feedback connections is trained
with teacher forcing and later run in free mode, one often gets problems with
stability. In this paper an echo state network is trained to execute an arm
movement. A sequence with the desired coordinates of the limbs in each time
step is provided to the network together with the current limb coordinates.
The network must find the appropriate angle velocities that will keep the arms
on this trajectory. The current limb coordinates are indirect feedback from
the motor output via the simulator. We do get a problem with stability in this
setup. One simple remedy is adding noise to the internal states of the network.
We verify that this helps, but we also suggest a new training strategy that leads

37

3. Research Summary

to even better performance on this task.

The Novel Training Method

In the original training algorithm the training sequence is run through the network once,

and the output weights are updated based on the target and the internal states of the net-

work as given in equation 2.9. We suggest running the training sequence through the

network several times. In each cycle the weights are calculated based on the internal states

and something in between the estimated target and the actual output from the inverse

model. The target used when computing Wout in cycle i is

yi
used target(t) = βyestimated target(t) + (1− β)yESN(t), (3.1)

where

yestimated target(t) = yESN(t) + yerror(t+ 1). (3.2)

Note that when β = 1, we get the original training method, where yi
used target(t) =

yestimated target(t).

Experiments

In this paper the performance of the new training method was compared to the perfor-

mance of the original training method, both when the inverse model was trained with

feedback-error-learning, and when it was trained on the analytically calculated true target,

ytrue target. The two architectures are illustrated in figure 3.11.

We attempted to improve the performance of the original training method by adding noise

to the internal network and using a longer training sequence by repeating the movement

multiple times. Internal noise was also added when using the new training method, but

only one repetition of the training movement was used in the training sequence when

applying the new method.

To evaluate the results, we use the Root Mean Square Error (RMSE) normalized over the

range of the output values1,

NRMSE(y,ytrue target) =

√
MSE

ymax − ymin

=
1

2

√√√√
n∑

i=0

(yitrue target(t)− yi(t))2

n
(3.3)

The NRMSE for each run was averaged over all time steps and DOFs.

1The RMSE can be normalized in different ways, all called NRMSE. We used the absolute difference

between the smallest and the largest possible value. One could also use the range of the actually observed

data or the average of the observed data. Several researches on ESNs normalize over the standard deviation

of the target output [43, 84].

38

3.3. Paper Descriptions

desired
next state PlantPlantESN
desired
current state

 current state

ytrue target

yESN

(a) True Target

+ -

Feedback
controller

*K

actual
state

desired
state

y

Plant++

actual state

ESN

error
yfeedback

yESN ytotal

delay

(b) Feedback Controller

Figure 3.11: Two architectures were used in the experiments: (a) the inverse model is

trained with the true target information and teacher forcing, and (b) a feedback controller

is used both for estimating the motor error and for providing teacher forcing. In the

latter, the feedback gain, K, was gradually decreased from 1 to 0 during several rounds

of training. The dotted lines are only used during training whereas the grey lines are only

used during testing.

Results

Figure 3.12 illustrates the performance of the new training method versus the original

when the ESN is trained with the true target (figure 3.12(a)) and feedback-error-learning

(figure 3.12(b)). The new method shows particularly good results when the ESN must

be trained with feedback-error-learning. The performance in the true target setup seems

equivalent; however, it remains to be tested which method is faster.

3.3.5 Paper E - A Novel Method for Training an Echo State Network with
Feedback Error Learning

The novel training method is studied further in this last paper which focus on how and

why it works so well when the ESN is trained with feedback-error-learning.

Abstract: Echo state networks are a relatively new type of recurrent neural
net- works which have shown great potentials for solving nonlinear, temporal
problems. The basic idea is to transform the low dimensional temporal in- put
into a higher dimensional state, and then train the output connection weights
to make the system output the desired information. Because only the output
weights are altered, training is typically quick and computationally efficient
compared to training of other recurrent neural networks.

This paper investigates using an echo state network to learn the inverse
kinematics model of a robot simulator with feedback-error-learning. In this
scheme teacher forcing is not perfect, and joint constraints on the simulator

39

3. Research Summary

(a) True Target (b) Feedback Controller

Figure 3.12: Box and whisker plot for 50 runs of each of following experiments: 1)

Original training method without noise during training. 2) Original training method with
noise in the network. 3) Original training method with noise and several repetitions of
the YMCA movement in the training sequence. The experiments when using 5 and 10
repetitions are referred to as 3a and 3b respectively. 4) New proposed training method
with β = 0.1. There is still noise in the network, and the training sequence consists of
only one repetition of the YMCA movement.

On each box, the central mark is the median, the edges of the box are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points not considered outliers,

and outliers are plotted individually.

make the feedback error inaccurate. A novel training method which is less
influenced by the noise in the training data is proposed and compared to the
traditional ESN training method.

Experiments

All the experiments in this paper use the feedback-error-learning architecture, and internal

noise is included both with the original and the new training method. The optimal amount

of internal noise is tested, and it appears this training method requires more noise in the

reservoir than the original method. In this paper we also show the results for different

values of β.

In addition to the above experiments, which continue the experiments in paper D, we

investigated further why the new method works better than the original. To do this we

trained the same initial network with A) the original method without repeating the training
movement, B) the original method with the training movement repeated 5 times, and C)

the new method with β = 0.1. The results are presented next.

Results

Figure 3.13 shows why experiment A fails. The estimated target sequence is too noisy,

and with the short training sequence without any repetitions, the output from the ESN

40

3.3. Paper Descriptions

0 100 200 300
−1

−0.5

0

0.5

1

(a) True target

0 100 200 300
−1

−0.5

0

0.5

1

(b) Initial ESN output

0 100 200 300
−1

−0.5

0

0.5

1

(c) Estimated target

0 100 200 300
−1

−0.5

0

0.5

1

(d) ESN output after trained

with (c)

Figure 3.13: The plots illustrate why the original method without repetitions (experiment

A) fails. Compared to the true target, (a), the estimated target in the first epoch, (c), is

very noisy. It has the general shape of the true target, but when training the initial, random

ESN, (b), with this noisy estimate, the result is a network which outputs mostly noise, (d).

This only gets worse in the succeeding epochs. Plotted are motor commands (joint angle

velocities) for the 4 DOFs at each time step in the training sequence.

becomes even noisier.

The output from the ESN after training becomes significantly less noisy when the move-

ment is repeated several times in the training sequence, as illustrated in figure 3.14. In this

setup the target sequence has a repeating pattern, and since the error in each repetition will

differ, the weight calculation will average over these slightly different representations.

When using the new training method, the approach for making a smoother target is differ-

ent. The new method is apparently able to keep the smoothness of the output of the first,

random network, and just gradually drive that solution toward the target. As illustrated in

figure 3.15, the used target, i.e., the best target estimate combined with the previous ESN

output, appears much less noisy than the target estimate alone.

The new method also results in better teacher forcing. Figure 3.16 illustrates the quality

of the teacher forcing for the three selected experiments.

41

3. Research Summary

0 100 200 300
−1

−0.5

0

0.5

1

(a)

0 100 200 300
−1

−0.5

0

0.5

1

(b)

Figure 3.14: Adding more repetitions of the movement in the training sequence makes

the output of the ESN seem less noisy. Plot (a) shows the output of the ESN after training

with one repetition and plot (b) the ESN output after training on 5 repetition of the YMCA

movement.

0 100 200 300
−1

−0.5

0

0.5

1

(a) Estimated target

0 100 200 300
−1

−0.5

0

0.5

1

(b) Used target

0 100 200 300
−1

−0.5

0

0.5

1

(c) ESN output after training

with (b)

Figure 3.15: In experiment C the network was trained on one repetition of the YMCA

movement with β = 0.1. The plots show (a) the estimated target, (b) the used target and

(c) the ESN output after training with (b). All the plots are from epoch 5 of 10, where the

used target is starting to look like the true target. Notice that the used target appears less

noisy than the estimated target.

42

3.3. Paper Descriptions

0 100 200 300
−1

−0.5

0

0.5

1

(a) Desired position

0 100 200 300
−1

−0.5

0

0.5

1

(b) Original, 1 rep.

0 100 200 300
−1

−0.5

0

0.5

1

(c) Original, 5 rep.

0 100 200 300
−1

−0.5

0

0.5

1

(d) New, β = 0.1

Figure 3.16: The plots illustrate the quality of the teacher forcing in experiment A, B and

C. For each of these experiments the position sequences in epoch 5 of 10 are plotted as

the 8 coordinate values at each time step for one repetition of the YMCA-movement.

43

3. Research Summary

44

DISCUSSION, CONCLUSION AND FUTURE WORK 4
This chapter summarizes the contributions, points out the limitations and

suggests future work.

4.1 Discussion

The main objective of this thesis was to study internal model based control schemes and
how internal models can be learned and applied for artificial motor control. This was

motivated by the need for control architectures that can learn and that are able to control

lightweight, highly complex robots with very many DOFs.

In particular, we focused on how internal models can be used to solve two control prob-

lems, namely delays in the sensory-motor-loop and bimanual coordination. We chose to

represent the internal models as ESNs and to learn the inverse model with feedback-error-

learning. Based on these decisions, four research questions were stated:

RQ1: How can internal models be used to handle delays in the sensory-motor-loop?
RQ2: How can internal models be used to make one of the arms coordinate its

movements relative to the movements of the other arm?
RQ3: What characterizes a training movement that makes an ESN generalize to

most other movements?
RQ4: How can an ESN be trained with feedback-error-learning?

Starting with the first research question; the idea of using forward models to handle delays

in the sensory-motor loop is not new, but the forward model is then typically used together

with a feedback controller, as in the Smith Predictor architecture. We added a forward

model directly to the feedback-error-learning architecture, with the predicted state of the

forward model as an additional input to the inverse model together with delayed sensed

state and desired next state. To our knowledge this architecture has not been used before,

and we believe it is worth further studying.

The work on bimanual coordination focused on what kind of patterns the ESN was able

to learn and preserve as the velocity changed. In the control architecture the controller of

45

4. Discussion, Conclusion and Future Work

one arm received the state of both arms. Sharing the state, or position, is a common way

to achieve coordinated movement. The novelty in our research lies in the training of an

echo state network to learn the movement constraints. If we were to do the experiments

again we would consider sharing motor commands instead of position. After all, the main

difference between coordinating the movement of one limb with the other one compared

with coordinating one’s motion with someone else’s, is the access to motor commands.

Most experiments in this thesis deal with the inverse kinematics problem of calculating

motor commands that will move the limbs along a desired trajectory. The exceptions are

the experiments on bimanual coordination. Most research on learning inverse kinematics

focus on learning parts of the actuator space as they are needed. The general assumption

seems to be that the robot needs to exhaustively explore the parts of the actuator space it

is going to perform in. In our experiments we show that this is not necessarily true. For

example, Skinny is able to execute movements using the full range of motion of some

DOF even when he has only trained on a movement with minimal movement in that DOF.

Implementing the internal models with ESNs and training the inverse model with feedback-

error-learning proved not to be as straight forward as originally thought, and a large part

of this thesis was spent on RQ4. The result was a proposed new training method for ESNs

that worked very well in the feedback-error-learning setup, and which might also be faster

than the original training method on benchmark problems (thorough investigations are left

to future work).

If we had started this work today, the progress might have been different, as a lot of

research on ESNs has been conducted the latest years, and new recommendations for best

practices have just been published [42]. The most important recommendations that we did

not try ourselves are using ridge regression and regularization. It is not possible to know

if it would have made any difference for our purpose, but it deserves to be tried.

Spending much time on the training of the internal models meant less time to study how to

use them for motor control, i.e., RQ1 and RQ2. In experiments related to these questions

we used a very simple simulator and a limited dataset, and we did not compare many

different control architectures. Still, we were able to provide some interesting ideas and

preliminary results.

4.2 Conclusion

The main contributions of this thesis can be summarized as follows:

• A promising control architecture, which appears to be able to handle delays in the

sensory-motor-loop. The architecture consisting of a forward model coupled with

an inverse model that is trained with feedback-error-learning. The novelty is that

both predicted and delayed sensory feedback is used as input to the inverse model.

46

4.3. Future Work

• Evidence that suggests exhaustive exploration of the parts of the actuator space used

during performance is not necessary.

• Promising results with using ESNs to represent and learn internal models.

• A new training method for ESNs.

It can be concluded that this thesis has contributed to the initial objective of studying

internal model based control schemes and how internal models can be learned and applied

for artificial motor control.

4.3 Future Work

Improvements to the presented results could be made, and the following is a list of possible

focus areas of future work:

• Run all experiments with other and more complex movement data, at least use the

3D dataset on all the experiments.

• Combine the different experiments, e.g., add delays in the sensory-motor loop dur-

ing the bimanual experiments. In order to perform well-coordinated movements, the

control systems of the two limbs would need direct or indirect access to each other’s

motor commands. For example, for this purpose it would be interesting to explore

if each arm could have both an inverse model and a forward model as in the delay

experiments. Instead of, or in addition to, having access to the sensed state of the

other arm, the control system of one arm could have access to the prediction made

by the other arm’s forward model.

• Compare the use of ridge regression and regularization applied to the original train-

ing method with the proposed new training algorithm.

• Test the proposed new training algorithm on benchmark problems like generation of

the “figure-eight” [84] or a chaotic attractor like the Mackey-Glass system [29] to

see if it might be computationally faster than the original method.

• The new training method also makes it possible to gradually adapt the inverse model

during performance. We turned the feedback controller off during testing, but in

practical applications it should be available to handle potential changes in the simu-

lator or the environment. As our method gradually adapts the output weights, short

time perturbations will probably not lead to significant changes, but lasting changes

in the plant should eventually change the inverse model. This is a hypothesis, which

must be tested experimentally.

47

4. Discussion, Conclusion and Future Work

48

II

PUBLICATIONS

49

DANCING YMCA WITH DELAYED SENSORY
FEEDBACK A
Authors:
Rikke Amilde Løvlid and Pinar Öztürk

Abstract:
Lack of sensory feedback or delay in feedback has been shown to have detrimental effects

on cognition and action in humans and in artifacts. Despite the adverse effects of delay,

humans manage to generate smooth and timely movements. This has been explained by

the existence of predictive models in the brain. In this paper we investigate the possible

role of a predictive model that anticipates the consequences of the motor command to be

issued to the actuator (e.g., arm). The paper presents two architectures, one with and the

other without predictive components, and compares their performances in dancing to the

song ‘YMCA’. The architecture including the predictive model has been trained in three

different ways to uncover the possible effects of the training method on the movement

performance. The results confirm the role of prediction in the movement control.

Published in:
Proceedings of the Tenth IASTED International Conference on Artificial Intelligence and
Applications, pages 144-150.

Copyright:
c©2010 ACTA Press

My main contributions to the paper:

• Programming the system and running the experiments

• Writing the paper

The co-author contributed to the following areas:

• Writing the paper, mostly the introduction.

51

DANCING YMCA WITH DELAYED SENSORY FEEDBACK
Rikke Amilde Løvlid

Department of Computer and Information Science

Norwegian University of Science and Technology

Trondheim, Norway

email: lovlid@idi.ntnu.no

Pinar Öztürk

Department of Computer and Information Science

Norwegian University of Science and Technology

Trodheim, Norway

email: pinar@idi.ntnu.no

ABSTRACT
Lack of sensory feedback or delay in feedback has been

shown to have detrimental effects on cognition and action

in humans and in artifacts. Despite the adverse effects

of delay, humans manage to generate smooth and timely

movements. This has been explained by the existence of

predictive models in the brain. In this paper we investi-

gate the possible role of a predictive model that anticipates

the consequences of the motor command to be issued to

the actuator (e.g. arm). The paper presents two architec-

tures, one with and the other without predictive compo-

nents, and compares their performances in dancing to the

song ‘YMCA’. The architecture including the predictive

model has been trained in three different ways to uncover

the possible effects of the training method on the movement

performance. The results confirm the role of prediction in

the movement control.

KEY WORDS
Neural Networks, Feedforward Control, Internal Models

1 Introduction

Studies on the human sensory-motor loop have shown that

the time elapsed for the travel of neural signals from the

brain to the muscles and the time the brain needs to pro-

cess the sensory feedback it receives constitute a problem

for the smoothness of voluntary movement. Humans per-

ceive their own movement with a delay. For visual sensory

feedback this delay can be as much as 200-250 ms, and for

proprioception 110-150 ms [1]. Due to this delay, fast and

coordinated movements cannot only be attributed to pure

feedback [2, 1, 3].

The delay issue poses a problem in artifacts as well.

Robots’ electrical circuits do not suffer from the same con-

duction delays as the neurons in the human nervous sys-

tem, but this does not necessarily mean that delay does

not impair robots’ movements. In order for a robot to be-

have properly in an environment, its movements should be

timely and it should not overshoot the targets when, for ex-

ample, reaching and lifting an object. For this, the robot

needs to know its own current bodily state. However, de-

pending on the complexity of the robot’s perceptual capa-

bilities, it might take time to process the sensory signals,

e.g., to interpret the visual sensory input.

Effects of delayed sensory feedback have been of in-

terest to researchers from various disciplines. Smith and

Sussman [4] studied the cognitive effects of delay in tasks

such as tracking, steering, handwriting, and head and body

movements. Degradation in accuracy and timing was ob-

served in all these tasks. In some tasks, peak disturbances

was observed at specific delays while in others a deteri-

oration of performance was detected in proportion to the

introduced delay.

Another rather different situation where delay may be

a problem is in remote manipulation systems, where the

human operator is physically displaced from the machine

under control. The lag in this situation is due to transmis-

sion delays in the communications channel, for example, as

in controlling a space vehicle on the moon from the earth.

MacKenzie and Ware [5] studied the delay effects on hu-

man performance in interactive systems, where delay could

be attributed to properties of input devices, the software,

and output devices. In their experiments, participants had

to move a mouse from a starting point to a target location.

A delay, changing between 25 ms and 225 ms, was intro-

duced from moving the mouse to seeing the cursor move

on the screen. Two important findings were the detection

of the amount of delay that started to affect performance,

which was - 75 ms, and the observation that more complex

tasks lead to greater deterioration. Jay and Hubbold [6]

tried to quantify the effects of latency on sensory feedback

in distributed virtual environments and reported that haptic

delay is less important than visual delay.

These were mostly examples of experiments where

delay was intentionally introduced aiming to investigate its

consequences. On the other hand, it was conceived that

there is an internal delay in the sensory-motor loop of hu-

mans [1]. How come then, humans manage to produce,

for example, smooth voluntary movements (e.g., lifting a

cup in contrast to reflexive withdrawal of a hand from a

hot plate) despite significant delays in the feedback? Neu-

roscience studies suggest that human brain hosts predictive

models of the motor behavior of limbs in order to cope with

the delay in sensory feedback [7, 8, 9, 10].

In this paper we investigate whether and when predic-

tions may cancel the adverse effects of sensory feedback

delay. In order to investigate whether predictive models

similar to humans’ may also render corresponding results

in robots, we compared the performance of two architec-

tures (one with and another without a predictive model)

with regard to the smoothness of voluntary movements.

The results of the experiments show the positive influences

of predictive models on the movements. In the experi-

ments, the architectures were trained to imitate the move-

ments of the dance to the song YMCA by The Village Peo-

ple. The second part of the work presented in the paper

deals with the training methods applied to the architecture

involving a predictive model. In the next section we pro-

vide a brief overview of the related work in the control the-

ory, computational neuroscience, and robotics, along with a

description of the terminology used in the rest of the paper.

Section 3 introduces our hypotheses that constitute the mo-

tivation of this work, the training data used, the two archi-

tectures highlighting the possible role of predictive models,

the experimental setup used in evaluating the hypotheses,

and the neural network implementation of the controller

and the predictive model. The results of the experiments

are presented in section 4, and finally, in section 5 we wrap

up with the discussion and conclusions.

2 Motor Control and Internal Models

Computational neuroscientists have adopted much of the

terminology used in control theory and applied it to human

voluntary motor control. This section gives a summary of

this terminology and also explains how our experimental

architectures fit in.

In control theory there are two basic types of control:

feedback- and feedforward control. In feedback control the

sensed state of the system is compared with the desired

state of the system and adjustive motor commands are is-

sued accordingly. In feedforward control the future desired

state is monitored and a motor command is issued to drive

the system towards this state. It can be said that a feedfor-

ward control system acts proactively, whereas a feedback

control system is purely reactive. For example, a thermo-

stat that turns on the heat when the temperature drops below

the desired value and turns the heat off when the tempera-

ture is too high is a feedback controller. A corresponding

feedforward controller could for instance turn on the heat

whenever a window was opened, before the temperature

drops to the critical point.

In some applications feedback control might be suffi-

cient, but when the feedback loop is slow, to merely rely on

the sensory feedback has proven to result in highly unstable

control [11].

In order to implement feedforward control, one needs

to know something about the plant, the system to be con-

trolled. For example, in order to use the proactive con-

troller regulating the temperature, one needs direct or in-

direct knowledge about the effect of opening a window on

the room temperature. There are two types of feedforward

control, direct control and indirect control using internal
models.

Direct control means control without explicit knowl-

edge of the behavior of the plant. The control policy, which

motor
command

Inverse
Model

(Feedforward
Controller)

 sensed state

desired state

motor
command

Feedback
Controller

+
-

 sensed state
motor command

predicted
next state

Forward
Model

 sensed state
desired next state

Figure 1. A feedback controller translates the difference

between the desired and the sensed state into a motor com-

mand. An inverse model calculates the motor command

based on the sensed state of the system and the desired next

state. A forward model predicts the outcome of the motor

command given the sensed current state.

maps the relevant internal and external states to actions, is

essentially treated as a black box, and can be learned with

reinforcement learning [12], or it can be implemented as

rules. The equilibrium point hypothesis is a proposed di-

rect control approach to voluntary motor control [13].

Most research today regarding voluntary motor con-

trol shows a tendency towards indirect feedforward control

with the use of internal models. An internal model is a sys-

tem that mimics the behavior of a natural process. In con-

trol theory, two types of internal models are emphasized,

forward models and inverse models. A forward model pre-

dicts the outcome of an action (i.e., motor command). An

inverse model represents the opposite process of calculat-

ing an action that will result in a particular outcome, the

desired next state. Existence of internal models in the brain

is widely accepted and there are many theories of how they

are used and where they are located [3, 14, 10]. Figure 1

illustrates the input and outputs of a feedback controller, an

inverse model and a forward model.

There are several ways to use forward and/or inverse

models to accomplish indirect feedforward control. The

straightforward approach is to use only an inverse model.

Since the input-output function of the inverse model is ide-

ally the inverse of the body’s forward dynamics, an accu-

rate inverse model will produce perfectly the desired tra-

jectory it receives as input, as long as there are no ex-

ternal perturbations. To acquire such an accurate inverse

model through learning is, however, problematic. Kawato

[15] investigates different possibilities. Among these, we

have adopted the feedback-error-learning scheme. In this

scheme one uses a simple feedback controller together with

the inverse model.

A second approach to feedforward control is to add

a forward model to the simple feedback controller [15, 7].

The forward model would predict the next state based on

the delayed sensed state and the motor command issued

by the controller. The idea is that the prediction from the

forward model will be available much earlier than the sen-

sory feedback, and the controller can react faster by using

the difference between this predicted state and the desired

state, as opposed to the difference between the sensed state

and the desired state. The feedback controller uses internal

feedback provided by the forward model instead of exter-

nal feedback. When the loop trough the forward model is

fast, this architecture will in practice achieve the same re-

sult as an inverse model. Again, the question is how such a

forward model can be acquired trough learning. The Smith

Predictor [1] provides one solution to this problem of train-

ing the forward model.

As described, model based, indirect feedforward con-

trol can be acquired either with the use of an inverse model

or by using a forward model. Wolpert et. al [3] and Smagt

et. al [11] suggest a third option, namely to use both, a

forward and an inverse model coupled together.

In this paper we investigate two of these three pos-

sibilities. The first is an inverse model coupled with a

feedback controller for feedback-error-learning and online

correction. In the second architecture a forward control is

added to the first architecture. We do not look at the possi-

bility of using only a forward model together with a feed-

back controller without the inverse model.

3 Dancing YMCA with Delayed Sensory
Feedback

This section explains the two architectures we used in or-

der to study the role of predictive models in resolving neg-

ative effects of delay, the experimental setup used, details

of the implementation of the inverse and forward models,

and training of the whole system.

3.1 Hypotheses

An inverse model could, in theory, tackle the delay on

its own, as explained in section 2, but it requires a very

accurate inverse model, which is often hard to acquire.

In this paper, we investigate whether and when a forward

model (i.e., a predictive model) needs to be used together

with the inverse model to reduce the adverse consequences

of delay when the inverse model is imperfect. Our aim can

be conveyed through the following two hypotheses:

Hypothesis 1: The performance of the system will
be better with a predictive model than
without when delay is significant.

Hypothesis 2: Pre-training the predictive model will
increase the performance.

θ θ1 2

Φ2Φ1

Figure 2. The Movement is described with four angles; the

two shoulder abduction angles θ1 and θ2 and the elbow

extension angles φ1 and φ2.

3.2 The Movement Data

In the implementation of the experiments, we trained the

architecture to imitate the dance to the song YMCA by

The Village People (se figure 2). Movement data was gath-

ered with a Pro Reflex 3D motion tracking systems by Axel

Tidemann [16].

The movement of each arm was described in two de-

grees of freedom, the angle between the arm and the body,

i.e., the abduction angle θ, and the angle between the under-

and upper arm, i.e., the extension in the elbow φ. Hence,

the simulated robot was described by 4 degrees of freedom.

The sampling frequency used in the experiments was

50 samples/sec, which means that each time step is 0.02

sec. The whole movement takes 6.26 sec, i.e., 313 time

steps. The YMCA movement, hence, is represented as a se-

quence of 313 states. This sequence was used as the train-

ing data where state t represents the desired state at time

step t. The goal of the control system is to produce mo-

tor commands that generate a movement where the state

generated in each time step is as close as possible to the

corresponding state in the desired sequence of states.

3.3 The Architectures

The control architectures that underlie the experiments are

shown in figure 3. The control system consists of a feed-

back controller, an inverse model and possibly a forward

model. At each time step t the control system receives as

input the desired next state (i.e. the joint angles at time step

t+1 in the training sequence) and the sensed state repre-

senting the actual state of the plant a given number of time

steps earlier (specified by “Delay” in figure 3), and outputs

a motor command.

The inverse model receives as input the desired next

state, the sensed state (i.e., delayed actual state) and, when

the forward model is included, the predicted current state,

and produces a motor command. The feedback controller

translates the difference between the desired state and the

actual state (i.e. state error) to a motor command that is

used to adjust the motor command produced by the inverse

model. This means that the error done in time step t is

used to adjust the motor command in the time step t+1.

Plant
Inverse
model

Forward
model

D
el

ay

u

+ -

Feedback
controller

++

desired next state

sensed
state
(delayed)

predicted state

actual state
(not delayed)

uinverse

ufeedback

+1

Figure 3. Two control architectures, one has only an inverse

model while in the other, the inverse model is coupled with

a forward model. The dotted loop including the forward

model is only enabled in the experiments where the for-

ward model is involved. Delays are shown with ellipses

(+1 means delayed with one time step), an arrow across a

model represents training, and u is the motor command.

The total motor command is sent to the plant, i.e., the robot

simulator.

Note that the state information from the plant to the

feedback controller is not delayed, as is the case for the

state information from the plant to the internal models. It

has been suggested that while visual feedback is vital for

feedforward control, feedback control relies on proprio-

ceptive feedback [17]. Although we did not make an ex-

plicit distinction between the different modalities of feed-

back, the idea was that the feedback controller relies on a

proprioceptive-like feedback which can be assumed not to

be delayed when compared with the feedback (e.g. visual)

used as input to the inverse and forward models.

When included, a forward model was trained to pre-

dict the next state based on the motor command and the

sensed, delayed state.

This architecture differs from other proposed archi-

tectures involving a pair of forward and inverse models

in using both delayed sensory feedback and the prediction

from the forward model as input to the inverse model. The

alternatives would be to use only the prediction as input

to the inverse model or to integrate the prediction and the

delayed sensory feedback prior to feeding it to the inverse

model [18, 19, 20].

A detailed description of the implementation and

training of the different modules is given in section 3.5.

Normal-distributed noise with standard deviation 0.01

was added to the sensory signal from the plant. The system

was implemented in MatLab, including a simple stick-man-

simulator used as plant.

3.4 Experiments

In section 3.1 two hypotheses were stated, (1) the perfor-
mance of the system will be better with predictive models
than without when delay is increased, and (2) pre-training
the predictive model will increase the performance.

To test the first hypothesis the two architectures were

compared. The first consisting only of an inverse model

and the second consisting of an inverse model coupled with

a forward model. A feedback controller for online correc-

tion of the motor commands is included in both architec-

tures to ensure stability. The architectures are illustrated in

figure 3.

In order to investigate the second hypothesis, training

of the models in the architecture with a forward model was

examined in three modi: parallel, serial and hybrid. In the

parallel training modus the forward and the inverse models

were trained in parallel. In the serial and the hybrid modus

the forward model was pre-trained. That is, the forward

model was trained before the whole system started to learn

the desired movement. In the hybrid modus, different from

the serial modus, the forward model continued it’s training

while the inverse model was being trained.

To pre-train the forward model we used the desired

movement; the forward model was trained to predict the

next state in the sequence of desired states given the correct

motor command and the delayed and noisy sensory signal.

In summary, in order to study the role of the forward

model and the effects of the training method, we conducted

four sets of experiments:

Experiment 1: Only Inverse.
Experiment 2: Inverse and Forward, training

modus parallel.
Experiment 3: Inverse and Forward, training

modus serial.
Experiment 4: Inverse and Forward, training

modus hybrid.

The result of experiment 1 has been compared with

the results of the experiments 2, 3 and 4 to test the first

hypothesis. In the investigation of hypothesis 2, results of

the three last experiments are compared.

The experiments were all run on the same task,

namely imitating the YMCA dance. The delay was var-

ied between 0 and 10 time steps. All experiments were run

the same number of epochs to make the comparison easy.

3.5 Forward- and Inverse Models

Both the inverse and the forward models were implemented

as echo state networks [21] with 1000 and 100 internal

nodes in the hidden layer respectively. Both networks had

spectral radius α = 0.1 (determining the length of the

memory with increasing α ∈ [0, 1]) and noise level v = 0.2
(effectively adding 10% noise to the internal state of the

network). The inputs and outputs where scaled to be in the

range [-1,1].

The inverse model has 8 input nodes when the for-

ward model is not included, 4 representing the sensed state

and 4 representing the desired next state. When the for-

ward model is included, the inverse model has 4 additional

inputs representing the predicted state. The output layer

of the inverse model has 4 nodes, where each node cor-

responds to the motor command for one joint angle. The

forward model has 8 input nodes, the sensed state and the

motor commands for each joint angle, and 4 output nodes

representing the predicted state. There were no connections

from the output layer to the input- or hidden layer in either

of the models.

Training of the inverse model was done with the help

of a feedback controller. In this experiment the arm model

is very simple, which makes it easy to compute the mo-

tor command corresponding to the measured difference be-

tween the desired and the actual states analytically. This

motor command (ufeedback) has a double role: it is is used

to train the inverse model, and the feedback controller adds

it to the final motor command to pull the system in the right

direction. The ufeedback gain K was 0.65, and the average

ratio ufeedback/u was monitored together with the perfor-

mance error.

The input-, internal- and output weights of the two

networks were initially generated randomly and the net-

works were then trained with linear regression as described

by Jaeger [21].

4 Results

All experiments were run 10 times. For each experiment,

the mean and standard deviation for the performance error,

prediction error and ratio online correction, ufeedback/u
are presented.

Performance error is the mean difference between the

desired state and the actual state produced by the system in

each time step after the last epoch of training.

Online correction ratio, ufeedback/u, is the feedback

controller’s contribution to the total motor command in per-

cent. Since the feedback controller adjusts the motor com-

mand based on the performance error in the previous time

step, the higher this ratio, the less the inverse model has

learned. Therefore, this ratio constitutes, in addition to the

performance error, an important criteria in the evaluation

of the system.

Prediction error is the mean error done by the forward

model during the last epoch, and is used when compar-

ing the systems performance in the different training modi

when the forward model is included in the architecture.

4.1 With and without Forward Model

This section discusses the results from the experiments that

were conducted in order to see whether our first hypothesis

could be supported (i.e., the performance of the system will

Figure 4. The figure shows a comparison of performance

errors and online correction ratio with only inverse model

and with forward model and inverse model trained in the

three modi, parallel, serial and hybrid. Bars show the mean

performance error with standard deviation for each of the

three methods of training. The curves show the mean feed-

back ratio.

be better with predictive models than without when delay

is increased).

The mean performance error and the mean ratio of

online correction for all the four sets of experiments are il-

lustrated in figure 4. With regard to hypothesis 1, we com-

pare the results of the experiment without a forward model

and the three experiments with a forward model. Results

from the training of the forward models in the three differ-

ent modi will be elaborated in the next section.

Without a forward model the performance error in-

creases rapidly to 10-20% with increasing delay, but

equally important is the increase in online correction. With

only four time steps delay almost half of the motor com-

mand is produced by the feedback controller. This means

that the inverse model has clearly problems learning the

movement.

The performances of all the three experiments with a

forward model look better than the one without, for delay

≥ 2. Both the mean performance error and the ratio online

correction are significantly lower when a forward model is

included, regardless of the training modi.

The architecture with the forward model trained in se-

rial modus shows the best performance of all the setups

when there is a delay. In fact, when delay is ≥ 4 the best

performance measured with the system without forward

model is always worse than the worst performance mea-

sured with the system with forward model trained in serial

modus. This is illustrated in figure 5.

Figure 5. The figure shows a comparison of the perfor-

mance and the online correction ratio with and without a

forward model. Serial training was used when a forward

model was involved. The interval shows the min and max

performance error in the last epoch over all 10 runs. For

delay ≥ 4 the the performance error for the worst run with

forward is better than the performance error for the best run

without.

4.2 The Three Training Modi with a Forward Model

As mentioned in the preceding section and illustrated in

figure 4, the serial training modus shows significantly better

performance than the other training modi. We found no

significant difference in performance between parallel an

hybrid training modi.

Serial training yields better performance in spite of

significantly higher prediction error than in the other two

modi, as can be seen in figure 5. Why this might be hap-

pening will be discussed in section 5.

The prediction error in the last run of pre-training was

approximately 8% for 0 delay and 9% for 10 delay.

5 Discussion and Conclusion

The results of the experiments presented in section 4 lend

support to hypothesis 1, i.e., a forward model that predicts

the outcome of an action provides useful information to the

inverse model when sensory feedback is delayed.

Hypothesis 2 falls short to capture the whole story

about the training method. We expected that pre-training

would provide a forward model with a higher predictive

capability. The results do not align with our expectations.

During pre-training the prediction error was very low, but

good prediction capabilities on the training sequence does

not automatically lead to good prediction during training

of the inverse model. This is clear from the results showing

higher prediction errors in serial modus during the training

of the inverse model, and indicates that the forward model

Figure 6. The figure shows a comparison of the prediction

errors when training the forward and the inverse models

in parallel, serial, and hybrid modi. Bars show the mean

prediction errors with standard deviation for each of the

three training modi.

generalizes poorly. A longer sequence of a movement as

the training data may improve the generalization of the for-

ward model.

Despite the higher prediction error during training of

the inverse model, training in serial modus still yields the

best performance. We hypothesize that this might be be-

cause the forward model is pre-trained to predict the correct

movement and therefore imposes some kind of bias on the

inverse model. This will be tested in future work by train-

ing the forward model with babbling instead of the desired

movement before training the inverse model.

Using the correct movement to train the forward

model assumes that these motor commands are known.

This might make the training of the inverse model seem

pointless, but the reason to store a movement in a neural

network in this way might make the control system gen-

eralize to other movements. This will be investigated in

further studies.

We could not see any difference between pre-training

and not of the forward model when the forward and inverse

models where continued to be trained in parallel, which

means that what was pre-learned is lost during the concur-

rent training. Had another learning algorithm been used,

for example back-propagation with decaying learning rate

the result might have been different.

Further studies should include more complex move-

ments and other learning algorithms like Backpropagation-

Decorrelation [22]. It would also be interesting to investi-

gate how the accuracy of the inverse model effects its abil-

ity to handle delay, different ways to train the inverse model

and how accurate the forward model must be in order to be

of any help.

References

[1] R. Miall, D. Weir, D. M. Wolpert, & J. Stein, Is cere-

bellum a smith predictor? Journal of Motor Behavior,

25(3), 1993, 203–216.

[2] M. Kawato, Internal models for motor control and

trajectory planning. Current Opinion in Neurobiol-
ogy, 9(6), 1999, 718–727.

[3] D. M. Wolpert, R. C. Miall, & M. Kawato, Internal

models in the cerebellum. Trends in Cognitive Sci-
ences, 2(9), 1998.

[4] K. U. Smith & H. M. Sussman, Delayed feedback

in steering during learning and transfer of learning,

Journal of Applied Psychology, 54, 1970, 334–342.

[5] I. S. MacKenzie & C. Ware, Lag as a determinant of

human performance in interactive systems. In Proc.
of the INTERACT ’93 and CHI ’93 conference on Hu-
man factors in computing systems, New York, 1993.

[6] C. Jay & R. Hubbold, Quantifying the effects of la-

tency on sensory feedback in distributed virtual envi-

ronments, In Proc. of Virtual Images Seminar 2006,

9–16.

[7] B. Mehta & S. Schaal, Forward models in visuomo-

tor control, Journal of Neuropysiology, 88(2), 2002,

942–953.

[8] , A. G. Witney, S. J. Goodbody, & D. M. Wolpert.

Predictive motor learning of temporal delays, Journal
of neurophysiology, 82(5), 1999, 2039–2048.

[9] R. Miall & D. M. Wolpert, Forward models for phys-

iological motor control, Neural Networks, 9(8), 1996,

1265–1279.

[10] P. R. Davidson & D. M. Wolpert, Widespread ac-

cess to predictive models in the motor system a short

review, Journal of Neural Engineering, 2(3), 2005,

313–319.

[11] P. van der Smagt & G. Hirzinger, The cerebellum

as computed torque model, In R. Howlett & L. Jain,

eds., Fourth International Conference on Knowledge-
Based Ingelligent Engineering Systems & Applied
Technologies, 2000.

[12] M. L. L. Leslie Pack Kaelbling & A. W. Moore, Re-

inforcement learning: A survey, Journal of Artificial
Intelligence Research, 4, 1996, 237–285.

[13] R. Shadmehr. Equilibrium point hypothesis, In M. A.

Arbib, ed., The Handbook of Brain Theory and Neu-
ral Networks, second edition, 409–412 (The MIT

Press, 2002).

[14] R. Shadmehr & J. W. Krakauer, A computational neu-

roanatomy for motor control, Experimental Brain Re-
search, 185(3), 2008, 359–381.

[15] M. Kawato & H. Gomi. The cerebellum and vor/okr

learning models. TINS, 15(11), 1992.

[16] A. Tidemann & P. Öztürk, Self-organizing multiple

models for imitation: Teaching a robot to dance the

YMCA, In IEA/AIE, vol. 4570 of LNCS (Springer,

2007), 291–302.

[17] E. R. Kandel, J. H. Schwartz, & T. M. Jessel, Princi-
ples of Neural Science, chap. 33, 656–657 (McGraw-

Hill, 2000).

[18] D. M. Wolpert & Z. Ghahramani, Computational

principles of movement neuroscience, Nature neu-
roscience, 3, 2000, 1212–1217.

[19] D. M. Wolpert, S. Goodbody, & M. Husain, Maintain-

ing internal representations: the role of the human su-

perior parietal lobe, Nature Neuroscience, 1(6), 1998,

529–533.

[20] R. Grush, The emaluation theory of representation:

Motor control, imagery, and perception, Behavioral
and Brain Sciences, 27, 2004, 377–442.

[21] H. Jaeger, A tutorial on training recurrent neural net-

works, covering bppt, rtrl, and the echo state network

approach, Techreport, Fraunhofer Institute for AIS,

2008.

[22] J. J. Steil, Backpropagation-decorrelation: online

recurrent learning with o(n) complexity, In Proc.
IJCNN, 2004.

LEARNING BIMANUAL COORDINATION
PATTERNS FOR RHYTHMIC MOVEMENTS B
Authors:
Rikke Amilde Løvlid and Pinar Öztürk

Abstract: Coordinated bimanual movements form the basis for many everyday motor

skills. In human bimanual coordination there are several basic principles or default co-

ordination modes, such as the preference for in-phase or anti-phase movements. The ob-

jective of our work is to make robots learn bimanual coordination in a way that they can

produce variations of the learned movements without further training. In this paper we

study an artificial system that learns bimanual coordination patterns with various phase

differences, frequency ratios and amplitudes. The results allow us to speculate that when

the relationship between the two arms is easy to represent, the system is able to preserve

this relationship when the speed of the movement changes.

Published in:
Volum 6354 of Lecture Notes in Computer Science, pages 143-148.

Copyright:
c©2010 Springer-Verlag Berlin Heidelberg

My main contributions to the paper:

• Programming the system and running the experiments

• Writing the paper

The co-author contributed to the following areas:

• Writing the paper, mostly the introduction.

59

Learning Bimanual Coordination Patterns for
Rhythmic Movements

Rikke Amilde Løvlid and Pinar Öztürk

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

Abstract. Coordinated bimanual movements form the basis for many
everyday motor skills. In human bimanual coordination there are several
basic principles or default coordination modes, such as the preference
for in-phase or anti-phase movements. The objective of our work is to
make robots learn bimanual coordination in a way that they can produce
variations of the learned movements without further training. In this
paper we study an artificial system that learns bimanual coordination
patterns with various phase differences, frequency ratios and amplitudes.
The results allow us to speculate that when the relationship between
the two arms is easy to represent, the system is able to preserve this
relationship when the speed of the movement changes.

1 Introduction

Humans use both hands in most of their daily tasks. Bimanual movements
have, therefore, been rigorously studied in various research disciplines. There
are mainly two dominant frameworks for the theory of interlimb coordination,
the dynamic pattern theory [1, 2] and crosstalk theory [3, 4]. Dynamic pattern
theory aims at a mathematical formalization of the coordination principles, mod-
eling rhythmic movements as a system of coupled nonlinear oscillators [4]. The
main idea in neural crosstalk theory is that interactions occur between command
streams within a highly linked neural medium. These will give rise to patterns
of mutual interference between concurrent limb motions at different stages of
movement planning and organization [3].

In contrast to plentiful studies in psychology and neuroscience, robotic studies
of bimanual coordination are surprisingly elusive. If robots are aimed to truly
assist humans, they should be able to learn mastering movements that require
bimanual coordination.

Our work is inspired by the hypothesis that the crosstalk-based bimanual
coordination requires a peculiar connection between the motor system of the
two limbs to be coordinated [5]. This paper presents an architecture that models
the cross talk between two arms where the position of one arm is communicated
to and controls the movement of the other arm, hence bimanual coordination.
Our aim is not to investigate how the neural crosstalk happens in the nature but
to develop an architecture that mimics the bimanual capabilities of humans.

The paper proposes a method to study the characteristics of the movements
that the cross talk architecture can afford (i.e., learn and produce). Three prop-
erties are investigated to characterize and analyze the affordance of the archi-
tecture: relative phase, frequency, and amplitude. Then, the speed changes have
been used as the evaluation criterion to evaluate the stability of the architecture
with respect to the identified movement characteristics.

Our results indicate that the architecture acquires various movements through
learning how to represent the interaction between the limbs, rather than each
controller learning its movement in isolation.

2 The Method

The following three properties pertinent to a movement characterize the class of
movement that the architecture is able to learn and produce.

Relative phase is the extent of phase lag between two joints at any point in
time. Generally humans show a basic tendency towards perfectly synchronized,
in-phase (phase difference Φ = 0◦), or anti-phase movements (Φ = 180◦) [6].

The frequency is the number of occurrences of a rhythmic, repeating move-
ment per unit time. When doing rhythmic movements with both arms, humans
have a tendency towards rhythms where the frequency of one arm is an integer
multiple of the frequency of the other (e.g. 1:1, where both arms move together,
1:2, where one arm completes two cycles at the same amount of time as the other
completes one, 1:3, etc.), as opposed to polyrhythms (e.g. 2:3 or 3:5) [4].

One limb moves with a larger amplitude than the other if it moves further
than the other in a given time interval. For humans the amplitudes of the two
arms have a tendency to become similar [4].

We elaborate the characteristics of movements in terms of these properties.
Once a movement with one of these characteristics is learned, we test whether
the cross talk architecture can preserve this characteristic with a new speed.

3 Architecture and Implementation

The bimanual coordination architecture relies on a simple crosstalk where the
control system controls only the movement of the lagging arm; the movement
of the leading arm is forced. The input to the system is the current states (the
arms’ joint angles), while the output is the motor command to the lagging arm.

The basic movement used in the experiments was simply raising and lowering
the arms, with no movement in the elbow joint. The movement of each arm was
described in two degrees of freedom, the angle between the arm and the body
and the angle between the under- and upper arm. Hence, the simulated robot
was described by 4 degrees of freedom.

The system architecture is shown in figure 1 and consists mainly of an in-
verse model. Generally an inverse model calculates an action that will bring the
system to the desired next state. In the current setting, the desired next state is

Inverse
model u

+ -

Feedback
controller

++

desired state

actual state
both arms

actual state
lagging arm

uinverse

ufeedback
*K

uerror

Plant

uleading arm

lagging arm

Fig. 1. The control architecture. An arrow repre-
sents training, and u is a motor command.

...

W
in

W
out

W

v1
xi u1

 K=4 L = 100 N=2
input nodes internal nodes output nodes

Fig. 2. The Inverse model as
an Echo State Network.

implicit in the state of the leading arm. The inverse model is acquired through
feedback-error-learning as suggested by Kawato, where a simple, analytical feed-
back controller is used together with the inverse model [7].

The inverse model was implemented as an echo state network (ESN) [8] as
illustrated in figure 2. The input to the inverse model, v, is the current state
from the plant (the robot simulator);

vt+1 = plant(ut
inverse +Kut

feedback,u
t
leading arm). (1)

The feedback gain K, which decides how much the feedback controller is able to
influence the final motor command, was linearly decreased from 1 to 0 during
training. The activation of the internal nodes was updated according to

xt+1 = f(Winvt+1 +Wxt), (2)

were f i the activation function. The motor command calculated by the inverse
model is given by

ut+1
inverse = fout(Wout(vt+1,xt+1)). (3)

The training procedure was organized in epochs and cycles, where one cycle
is one full temporal presentation of the training motion. Each epoch consisted of
seven cycles. First, the network was re-initialized by setting the internal states of
the network to zero, and one cycle was ran without updating the weights. Sub-
sequently, the training sequence was presented five times with enabled learning.
The output connections were then adapted after each complete cycle. A final
cycle was used to estimate the performance error on the training sequence while
learning was disabled.

During the training cycles, the state of each node was stored in a state
collection matrix, M, and (fout)−1(utarget) was collected row-wise into a target
collection matrix, T. Equation 3 can now be written

M(Wout)T = T, (4)

and solved with regard toWout with the use of the Moore-Penrose pseudoinverse:

(Wout)T = M+T. (5)

Note that it is not straight forward to decide how to compute the target motor
command, utarget, used in the target collection matrix. The desired motor com-
mand is only known indirectly trough the state of the leading arm. Generally,
several motor commands may result in the same position of the limbs, and one
does not want to bias the controller into choosing one specific solution. Because
we had batch learning, the best guess could be calculated by using the uerror
provided in the next time step, utbest guess = ut +ut+1

error (eterror reflects the error
done at time step t − 1). However, using ubest guess as the target did not lead
to the best solution. In previous work we have shown that using something in
between the best guess and the actual output of the inverse model in the pre-
vious cycle yields better results [9]. This result was confirmed in the current
experiments. The target state for time step t in epoch k + 1 was then given by:

ut,k+1
target = βutbest guess + (1− β)ut,kinverse (6)

In the experiments we used β = 0.01.
After the inverse model was trained on one movement, we wanted to test how

the changes in the movement of the leading arm would affect the movement of
the lagging arm. This was done by changing the speed of the leading arm and
run the network for one additional epoch with only two cycles, the initialization
cycle and the evaluation cycle. The feedback gain K was 0 during testing.

4 Experiments and Results

In the experiments the control system was trained to learn a coordinated move-
ment. The stability of different coordination patterns was compared by testing
the system’s ability to replicate the learned pattern in different speeds.

Relative Phase: In this experiment the arms were trained to move in a
specific phase relationship. It could be in-phase (Φ = 0◦), i.e., both arms are
raised and lowered synchronously, or anti-phase (Φ = 180◦), i.e., one arm is
lowered as the other is raised, or anything in between. During the training, the
control system learned to perform one specific phase relationship for one motion
in one speed. During testing, the speed of the leading arm was changed.

The control system had no problem generalizing to new speeds when it was
trained (and tested) with in-phase or anti-phase movements, as illustrated in
figure 3(a).

The results of testing the system in higher or slower speeds than it was trained
for when the two arms are in 90◦ phase difference is shown in figure 3(b). The
control system is trying to coordinate its movement according to the movement of
the leading arm, instead of sticking to the absolute timing it was trained on, but
it does not accomplish this as well as it did in the in- and anti-phase modi. The
control system has a hard time matching the speed of the leading arm. When the
leading arm moves faster, the lagging arm also moves faster, but not as much as
the leading arm. Equivalently, when the speed of the leading arm is decreased,
the lagging arm also moves slower, but not slow enough. Instead of changing
direction at the trained state, the leading arm overshoots or undershoots the

0 100 200 300 4000

p i
2

p i

Leading arm
Actual
Desired

0 100 200 300 4000

p i
2

p i

Leading arm
Actual
Desired

0 100 200 300 4000

p i
2

p i

0 100 200 300 4000

p i
2

p i

0 100 200 300 4000

p i
2

p i

(a) Anti-phase
0 100 200 300 4000

p i
2

p i

(b) Relative phase 90◦

0 100 200 300 4000

p i
2

p i

Leading arm
Actual
Desired

0 100 200 300 4000

p i
2

p i

Leading arm
Actual
Desired

0 100 200 300 4000

p i
2

p i

0 100 200 300 4000

p i
2

p i

0 100 200 300 4000

p i
2

p i

(c) Frequency ratio 1:2
0 100 200 300 4000

p i
2

p i

(d) Different amplitude

Fig. 3. Results when the trained control system was tested on the same movement in
the original speed (top), half the original speed (middle) and on 50% increase of the
original speed (bottom). The shoulder angle of the leading arm and the desired and
actual shoulder angle of the lagging arm at each time step is plotted. The movement
of the leading arm is shown together with the desired and actual movement of the
controlled lagging arm. (a) The generalization to different speeds is close to perfect
for the anti-phase movement. (b) The phase difference of 90◦ seems harder to preserve
when speed is changed. (c) The system was trained to perform the basic movement
with frequency ratio 1:2. The movement of the lagging arm is not smooth, but the
timing is just as good in the testing case as in the training case. (d) The lagging arm
moves twice as far within the same time interval as the leading arm. The control system
has no problem generalizing.

target when moving too fast or too slow respectively. As a consequence, the
timing of the change in direction is closer to the desired than what it would have
been if the change in direction had been timed solely according to the state of
the lagging arm.

Frequency: The objective in this experiment was to study the control sys-
tem’s capability to perform a different rhythm with each arm. The control system
trained both with simple rhythms, with frequency ratio 1:2 (leading arm moves
ones while lagging moves twice) and 1:3, and more complex polyrhythms with
frequency ratio 2:3 and 3:5.

This proved to be quite difficult. Training with frequency ratio 2:3 failed,
and as illustrated in figure 3(c) (top), the performance is far from smooth for
frequency 1:2. However, the timing for frequency 1:2 is satisfactory, and the
results when testing the network trained on novel speeds is not worse than when
tested on the original speed, as illustrated in figure 3(c) (middle and bottom).

Amplitude: In this experiment the arms were trained to move with different
amplitude with respect to each other, one arm making a larger movement than
the other, i.e. the motor commands of one of the arms must be twice as large as
the other’s. This appeared to be an easy task to learn, and the control system
generalized perfectly to novel speeds as illustrated in figure 3(d).

5 Discussion and Conclusion

The aim of the work was to develop an artificial system that could learn and
generalize different bimanual coordination patterns related to relative phase,
frequency ratio and amplitude in the proposed architecture. As it is with humans,
in-phase and anti-phase movements was more stable than the movements with
other phase relationships. As for frequency ratio, polyrhythms like 2:3, appeared
to be impossible to learn, whereas simpler rhythms like 1:2 and 1:3 seemed
relatively stable once learned. The control system had no problem generalizing
when it was trained with different amplitudes on the two arms. These results
allow us to speculate that when the relationship between the two movement
components is easy to represent, the system is able to preserve this relationship
when the speed of the movement changes. In the continuation of this work we
will try to more formally define the characteristics of the movement that are
easier to coordinate, and what is easy to represent.

References

1. Kelso, J.A.S.: Dynamic patterns: The self-organization of brain and behavior (1995)
2. Kelso, J.A.S., de Guzman, G.C., Reveley, C., Tognoli, E.: Virtual partner interaction

(vpi): exploring novel behaviors via coordination dynamics. PLoS One 4(6) (2009)
3. Banerjee, A., Jirsa, V.K.: How do neural connectivity and time delays influence

bimanual coordination? Biological Cybernetics 96(2) (2007) 265–278
4. Swinnen, S.P.: Intermanual coordination: From behavioural principles to neural-

network interactions. Nature 3 (2002) 348–359
5. Diedrichsen, J., Shadmehr, R., Ivry, R.B.: The coordination of movement: optimal

feedback control and beyond. Trends in Cognitive Sciences (in press)
6. Peper, C.E., Beek, P.J.: Modeling rhythmic interlimb coordination: The roles of

movement amplitude and time delays. Human Movement Science 18 (1999) 263–
280

7. Kawato, M., Gomi, H.: The cerebellum and vor/okr learning models. TINS 15(11)
(1992)

8. Jaeger, H.: A tutorial on training recurrent neural networks, covering bppt, rtrl, and
the echo state network approach. Techreport, Fraunhofer Institute for AIS (2008)

9. Løvlid, R.A.: Introducing learning rate analogy to the training of echo state net-
works. In: First Norwegian Artificial Intelligence Symposium. (2009)

LEARNING MOTOR CONTROL BY DANCING
YMCA C
Author:
Rikke Amilde Løvlid

Abstract:
To be able to generate desired movements a robot needs to learn which motor commands

move the limb from one position to another. We argue that learning by imitation might

be an efficient way to acquire such a function, and investigate favorable properties of the

movement used during training in order to maximize the control system’s generalization

capabilities. Our control system was trained to imitate one particular movement and then

tested to see if it can imitate other movements without further training.

Main Results:

IFIP Advances in Information and Communication Technology, (2010) 79-88

Copyright:
c©

67

Learning Motor Control by Dancing YMCA

Rikke Amilde Løvlid

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

Abstract. To be able to generate desired movements a robot needs
to learn which motor commands move the limb from one position to
another. We argue that learning by imitation might be an efficient way
to acquire such a function, and investigate favorable properties of the
movement used during training in order to maximize the control system’s
generalization capabilities. Our control system was trained to imitate
one particular movement and then tested to see if it can imitate other
movements without further training.

1 Introduction

Humanoid robots assisting humans can become widespread only if they are easy
to program. This might be achieved trough learning by imitation, where a human
movement is recorded and the robot is trained to reproduce it. However, to make
learning by imitation efficient, good generalization capabilities are crucial. One
simply cannot demonstrate every single movement that the robot is supposed to
make.

How we want the agent to generalize depends on what we want the agent to
do. When watching the demonstrator move, the robot can either learn to mimic
the motion of the demonstrator or learn how the demonstrator acts in many
situations, that is, extracting the intention of the movement. Mimicking the exact
movement trajectory might be important when learning a dance movement, but
this is less important when washing the dishes. Belardinell et al. taught a robot
to extract salient features from a scene by imitating the gaze shifts of a human
demonstrator [1]. Wood and Bryson used observations of an expert playing a
computer game to make the agent learn what contexts are relevant to selecting
appropriate actions, what sort of actions are likely to solve a particular problem,
and which actions are appropriate in which contexts [2].

Learning by imitation is, in a sense, something in between pre programming
the agent’s control policy (i.e., the function that decides which action to choose
in every situation), and letting the agent figure it out on its own through trial
and error. According to a hypothesis in developmental psychology, learning to
control ones own motor apparatus may be based on so called motor babbling,
i.e., random exploration of joint angles [3, 4]. Other findings suggest that children
use more goal directed movements [5].

We argue that imitation can be used in an efficient way in learning to master
the motor apparatus. In this paper we investigate the features of the train-
ing movement required to make the suggested control system generalize to new
movements, and illustrate how imitation can be used to make the agent train on
movements that are most valuable in terms of future generalization capabilities.

2 Feedforward Control

The goal of the work presented here is to make the agent capable of moving its
limbs to the positions it desires, that is, we want the agent to learn feedforward
control. In feedforward control the future desired state is monitored and a motor
command is issued to drive the system towards this state. We could call this
proactive motor control. The purely reactive alternative is feedback control, where
the state of the system is compared with the desired state of the system and
adjustive motor commands are issued accordingly. Often both feedforward- and
feedback control is needed. In our experiments we have used a feedback controller
to train the feedforward controller.

We consider feedforward control as a modular process where the control pol-
icy, i.e., the function that maps the current state and the future goal to a motor
command, is decomposed into a planning stage and an execution stage. The
planning stage generates a desired trajectory. This can be realized by generating
the whole desired sequence in advance, or through a next state planner. In the
presented work planning is done by the demonstrator, and our focus is on the
execution stage.

2.1 Realization of Feedforward Control with Internal Models

There are several ways to realize the execution stage in feedforward control, but
most research regarding voluntary motor control shows a tendency towards the
use of internal models. An internal model is a system that mimics the behavior of
a natural process. In control theory, two types of internal models are emphasized,
forward models and inverse models. A forward model predicts the outcome of an
action (i.e., motor command). An inverse model represents the opposite process
of calculating an action that will result in a particular outcome, the desired next
state. Existence of internal models in the brain is widely accepted and there are
many theories of how they are used and where they are located [6–8].

Forward models, inverse models and feedback controllers can be combined in
different ways to calculate the desired motor command [9, 10, 6, 11]. The straight-
forward approach is to use only an inverse model. Since the input-output function
of the inverse model is ideally the inverse of the body’s forward dynamics, an
accurate inverse model will perfectly produce the desired trajectory it receives
as input. To acquire such an accurate inverse model through learning is, how-
ever, problematic. Kawato investigated different possibilities [9]. Among these,
we have adopted the feedback-error-learning scheme, where a simple feedback
controller is used together with the inverse model. The details are explained in
section 3.2.

2.2 Implementation of the Inverse Model

In our control system, the inverse model was implemented as an echo state net-
work (ESN) [12]. The basic idea with ESNs is to transform the low dimensional
temporal input into a higher dimensional echo state by using a large, recurrent
neural network (RNN), and then train the output connection weights to make
the system output the desired information.

Because only the output weights are altered, training is typically quick and
computationally efficient compared to training of other recurrent neural net-
works, and also simpler feedforward networks.

A typical task can be described by a set of input and desired output pairs,
[(i1, o1), (i2, o2), ..., (iT , oT)] and the solution is a trained ESN whose output yt
approximates the teacher output ot, when the ESN is driven by the training
input it.

Initially, a random RNN with the Echo State property is generated. Using
the initial weight matrixes, the network is driven by the provided input sequence,
[i1, i2, ...in], where n is the number of time steps. Teacher forcing is used, meaning
ot is used instead of yt when computing the state of the network at t + 1. The
state of each node at each time step is stored in a state collection matrix, M.
Assuming tanh is used as output activation function, tanh−1ot is collected for
each time step into a target collection matrix, T.

If Wout is the weights from all the nodes in the network to the output nodes,
we want to solve the equation MWout = T. To solve for Wout we use the
Moore-Penrose pseudoinverse; Wout = M+T.

Note that when the desired output is known, the network will learn the
input-output function after only one presentation of the training sequence.

The input of the inverse model is the current state together with the desired
next state, and the desired output is the desired motor command. The desired
motor command is only known indirectly trough the desired position of the limbs.
Generally, several motor commands may result in the same position of the limbs,
and one does not want to bias the controller into choosing one specific solution.
In sections 3.2 and 3.5 it is explained how an estimate of the desired motor
command is used for teacher forcing and when generating the target collection
matrix.

3 Learning the Inverse Model by Imitation

Our agent is implemented as a simple stick-man-simulator. After it has learned to
imitate one movement, we want it to be able to imitate any movement presented
by the demonstrator without further training. The input to the control system
is always the current state and the desired next state (which is provided by the
demonstrator). The goal is thus to learn the function mapping the current state
and desired next state to the motor command, preferably with minimal effort.

3.1 The Movement Data

In the implementation of the experiments, we used a recording of the dance to
the song YMCA by The Village People (se figure 1). The movement data was
gathered with a Pro Reflex 3D motion tracking system by Axel Tidemann [13].

θ θ1 2

Φ2Φ1

Fig. 1. The Movement is described with four angles; the two shoulder abduction angles
θ1 and θ2 and the elbow extension angles φ1 and φ2.

The movement of each arm was described in two degrees of freedom, the
angle between the arm and the body, i.e., the abduction angle θ, and the angle
between the under- and upper arm, i.e., the extension in the elbow φ. Hence,
the simulated robot was described by 4 degrees of freedom.

The YMCA movement was represented as a sequence of states, where each
state t represents the four desired joint angles at time step t. The movement was
manipulated in different ways to generate various training and testing sequences.

The goal of the control system is to produce motor commands that generate
a movement where the state generated in each time step is as close as possible
to the corresponding state in the desired sequence of states.

3.2 The Architecture

The control architecture that underlie the experiments is shown in figure 2.
It consists mainly of an inverse model, but to achieve this model, a feedback
controller is included during training.

At each time step t the control system receives as input the desired next state
(i.e., the joint angles at time step t+1 in the training sequence) and the current
state, and outputs a motor command, u.

During the training phase the feedback controller translates analytically the
difference between the desired current state and the actual current state (i.e.,
state error) to a motor command, uerror. This motor error, the error done by the
control system in the previous time step, is used to adjust the motor command for
the current time step. This works as an approximation to teacher forcing because
the only connection from the output nodes back to the network is through the
plant, providing the current state input at the next time step. How much the
feedback controller is able to influence the motor command depends on the
feedback gain, K, by letting ufeedback = K ∗ uerror. Note that during testing
K = 0. The motor command ufeedback is added to the motor command produced
by the inverse model, and the result is sent to the plant, i.e., the robot simulator.

Plant
Inverse
model u

+ -

Feedback
controller

++

desired next state

actual
state

actual state

uinverse

ufeedback

+1

*K
uerror

Fig. 2. The control architecture. Delays are shown with ellipses, i.e., the desired next
state is delayed one time step, now representing the desired current state, before given
as input to the feedback controller. An arrow across a model represents training, and
u is a motor command.

3.3 Hypotheses

First, we need to verify that the control system presented is able to imitate novel
movements when trained to perform one movement. This would imply that the
system has learned at least parts of the function that computes the motor com-
mand needed to move the agent from it’s current position to the desired next
position. Second, we investigate further what properties the training movement
must possess in order to make the system generalize to any movement in the
state space. Our aim can be conveyed through the following tree hypotheses:

Hypothesis 1: When training on imitating one movement, the control sys-
tem does not only learn to mimic that movement, but learns at least parts of the
function mapping a current and a desired state to a motor command, which will
make it able to imitate other movements without training.

Hypothesis 2: In order to learn to control one particular degree of freedom,
it has to be included in the training movement.

Hypothesis 3: When trained on synchronous movements, i.e., the move-
ment of the two arms are equivalent, mirroring each other, the control system
is only able to imitate synchronous movements. Training on movements where
the limbs follow different trajectories is necessary in order to make the control
system generalize to all movements.

3.4 Experiments

To generate different training and testing sequences the YMCA movement was
manipulated in different ways. The movements were YMCA (the whole YMCA
movement), Y (only the Y movement, moving back to start position by reversing
the Y motion), Y pure (a manipulated version of the Y movement, where all
movement in elbow angle is removed), YM (only the YM movement, moving
back by reversing the YM sequence), right arm mirror (both arms does the
movement of the right arm in the YMCA movement, making the arms mirror

each other) and left arm mirror (similar to right arm, but now both arms
moves as the left arm in the YMCA movement).

3.5 Training

The training procedure was organized in epochs and cycles, where one cycle is
one full temporal presentation of the training motion. In each epoch we ran seven
cycles. First, we re-initialized the network by setting the internal states of the
network to zero and run one cycle without updating the output weights. Sub-
sequently, the training sequence was presented five times with enabled learning.
The output connections were then adapted after each complete cycle. A final
cycle was used to estimate the performance error on the training sequence while
learning was disabled. The training was run for 150 epochs.

Multiple training epochs was needed because perfect teacher forcing could
not be provided. To make the estimate of the desired motor command, u, as good
as possible, the feedback controller should provide less influence as the inverse
model gets more accurate. This was ensured by decreasing the feedback gain,
K, by 10% each epoch.

The output from the feedback controller was also used when calculating the
target collection matrix. Because we had batch learning, the motor command
was stored and the target motor command utarget was calculated by using the
uerror provided in the next time step, uttarget = ut+ut+1

error (because uterror reflects
the error done at time step t− 1).

The inverse model had 8 input nodes, 1000 nodes in the internal layer and
4 output nodes. The ESN had spectral radius α = 0.1 (determining the length
of the memory with increasing α ∈ [0, 1]) and noise level v = 0.2 (effectively
adding 10% noise to the internal state of the network). The inputs and outputs
where scaled to be in the range [-1,1]. Normal-distributed noise with standard
deviation 0.01 was added to the sensory signal from the plant. The system was
implemented in MatLab, including the simple stick-man-simulator used as plant.

3.6 Testing

After the inverse model was trained to imitate one movement, we wanted to
test whether it could imitate other movements without training. This was done
by changing the desired sequence and run the network for one additional epoch
with only two cycles, the initialization cycle and the evaluation cycle.

During training the feedback gain was decreased to ∼ 0, and the feedback
controller was thus removed from the control system during testing.

4 Results

This section summarizes the results of the experiments. The results verifying
hypotheses 1, 2 and 3 are described in section 4.1, 4.2 and 4.3 respectively. We
have illustrated the results by plotting the shoulder abduction angle, θ against

the elbow extension angle, φ for each arm. The temporal dimension is not plot-
ted because all discrepancies between actual and desired movement could be
seen as spatial errors, the timing turned out to not be a problem in any of the
experiments. Figure 3 shows a plot of the whole YMCA movement where the
different parts of the movement is separated by the use of different markers.

4.1 Does the Control System Generalize?

The initial experiment was to train the control system to imitate the whole
YMCA movement and see if it was able to produce the correct movements when
tested on the other movements described in section 3.4. We also tested whether
the control system would generalize to different speeds. The control system
managed all these tests without significantly more error than when imitating
the trained movement. We conclude that when trained with the whole YMCA
movement, the control systems learned the complete mapping from current- and
desired state to motor command in the state space.

4.2 Training All Degrees of Freedom

Does all degrees of freedom, used in the testing sequence, need to be included in
the training sequence? To test this hypothesis the control system was trained on
Y pure and tested on YM, see figure 4. The control system is clearly not able to
utilize the joint it has not trained to use. To find out how small perturbations
in the joint is sufficient for generalization, we tried training on Y and testing on
YMCA. As figure 5 illustrates, small angular changes in the joint during training,
makes it possible to generalize to larger changes during testing, but not large
enough to perform YMCA without large errors.

p i
2

p i p i
2

p i

0

p i
2

p i

φ

θ

Y
M
C
A
down

Fig. 3. The whole YMCAmovement. The shoulder abduction angle, θ is plotted against
the elbow extension angle, φ for each arm. The left graph shows the movement of the
right arm and the right graph the movement of the left arm. Each part of the movement
is plotted with a different marker to distinguish them from each other.

p i
2

p i p i
2

p i

0

p i
2

p i

φ

θ

Desired
Actual

Fig. 4. The figure shows the trajectory produced by the two arms when the control
system is trained on Y pure, and tested on YM. In the training sequence, Y pure, there
is no movement in the elbow joints, and thus the network is not able to utilize these
during testing.

4.3 Synchronous and Asynchronous Movements

To test whether the system can generalize to asynchronous movements when
trained with a pure synchronous movement, we used right arm mirror and left
arm mirror as training sequences and tested on YMCA (see figure 6).

The system clearly does not generalize to asynchronous movements; the
movement of the arms were more or less symmetric even though the test se-
quence is not. The movement of each arm was an average of the movements of
the two arms in the desired sequence. As a consequence the results are practically
identical when the control system was trained with right arm mirror compared
to when trained with left arm mirror.

p i
2

p i p i
2

p i

0

p i
2

p i

φ

θ

p i
2

p i p i
2

p i

0

p i
2

p i

φ

θ

Desired
Actual

Fig. 5. The left figure illustrates the Y movement. Notice that there is hardly any
motion in the elbow. The figure to the right shows the result when the control system
trained on movement Y is tested on movement YMCA. The control system is able to
generate more motion in the elbow joints than it learned during training. However, it
is not able to produce the YMCA movement without large errors.

p i
2

p i p i
2

p i

0

p i
2

p i

φ

θ

Desired
Actual

p i
2

p i p i
2

p i

0

p i
2

p i

φ

θ

Desired
Actual

Fig. 6. The figures illustrates the results when trying to do an asynchronous movement
when trained to do a synchronous one. The control system produces a synchronous
movement that is the average of the desired movement of the two arms. In the figure
to the left the system was trained on left arm mirror and in the right figure, right arm
mirror. Both were tested on YMCA.

Remember that the opposite problem of imitating a synchronous movement
when trained with an asynchronous movement does not pose any problem. When
trained with the asynchronous movement YMCA, the system was able to gen-
erate all the movements without difficulty.

5 Discussion and Conclusion

Our aim was to use imitation to efficiently learn the inverse kinematics model
of our robot simulator. We showed that when trained to imitate one movement,
the control system has not only learned to imitate that particular movement,
but is able to imitate novel movements without further training. This means
that the system has learned at least parts of the desired inverse model, verifying
hypothesis 1.

Our second hypothesis envisages that in order to learn to control one par-
ticular degree of freedom, it has to be included in the training movement. We
showed this to be true. In addition, our results suggest that the control system
does not have to train on the whole range of motion for each degree of freedom
in order to generalize to all movements. This is important when we want to train
the inverse model with minimal amount of effort.

Hypothesis 3 suggests that asynchronous movements are harder than syn-
chronous movements, and that the control system will not be able to produce
different motor commands for the two arms if it has not been trained to do so.
For humans it is indeed true that it is easier to move the limbs synchronously.
It is still very interesting that we get the same results for this control system,
and interesting to see that a system trained to produce a synchronous movement
and asked to generate an asynchronous movement provides the best solution it is

able to, namely the average between the desired movement of the left and right
arm.

Our findings suggests that imitation may be used as an efficient method to
learn the inverse model, because one can choose the training sequence optimally,
as opposed to exploration without guidance. This conclusion is supported by
Rolf et. al. who suggests the use of goal directed exploration in contrast to
motor babbling [14].

Further work should include more complex movements with larger degrees of
freedoms where one target position can be reached through different motor com-
mands. In addition more systematic evaluation of efficient training movements
should be conducted.

References

1. Belardinelli, A., Pirri, F.: Bottom-up gaze shifts and fixations learning by imitation.
IEEE Trans Syst Man Cybern B Cybern 37(2) (2007) 256–271

2. Wood, M.A., Bryson, J.J.: Skill acquisition through program-level imitation in a
real-time domain. IEEE Trans Syst Man Cybern B Cybern 37(2) (2007) 1083–4419

3. Meltzoff, A.N., Moore, M.K.: Explaining facial imitation: A theoretical model.
Early Development and Parenting 6 (1997) 179–192

4. Demiris, Y., Dearden, A.: From motor babbling to hierarchical learning by imi-
tation: a robot developmental pathway. In: Proceedings of the Fifth International
Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic
Systems. (2005) 31–37

5. von Hofsen, C.: An action perspective on motor development. TRENDS in Cog-
nitive Sciences 8(6) (2004) 266–272

6. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends
in Cognitive Sciences 2(9) (1998)

7. Shadmehr, R., Krakauer, J.W.: A computational neuroanatomy for motor control.
Experimental Brain Research 185(3) (2008) 359–381

8. Davidson, P.R., Wolpert, D.M.: Widespread access to predictive models in the
motor system a short review. Journal of Neural Engineering 2(3) (2005) 313–319

9. Kawato, M., Gomi, H.: The cerebellum and vor/okr learning models. TINS 15(11)
(1992)

10. Mehta, B., Schaal, S.: Forward models in visuomotor control. Journal of Neuropy-
siology 88(2) (2002) 942–953

11. van der Smagt, P., Hirzinger, G.: The cerebellum as computed torque model. In
Howlett, R., Jain, L., eds.: Fourth International Conference on Knowledge-Based
Ingelligent Engineering Systems & Applied Technologies. (2000)

12. Jaeger, H.: A tutorial on training recurrent neural networks, covering bppt, rtrl,
and the echo state network approach. Techreport, Fraunhofer Institute for AIS
(April 2008)

13. Tidemann, A., Öztürk, P.: Self-organizing multiple models for imitation: Teaching
a robot to dance the YMCA. In: IEA/AIE. Volume 4570 of LNCS., Springer (June
2007) 291–302

14. Rolf, M., Steil, J.J., Gienger, M.: Efficient exploration and learning of whole body
kinematics. In: IEEE 8th International Conference on Development and Learning.
(2009)

LEARNING TO IMITATE YMCA WITH AN ECHO
STATE NETWORK D
Author:
Rikke Amilde Løvlid

Abstract: When an echo state network with feedback connections is trained with teacher

forcing and later run in free mode, one often gets problems with stability. In this paper an

echo state network is trained to execute an arm movement. A sequence with the desired

coordinates of the limbs in each time step is provided to the network together with the

current limb coordinates. The network must find the appropriate angle velocities that will

keep the arms on this trajectory. The current limb coordinates are indirect feedback from

the motor output via the simulator. We do get a problem with stability in this setup. One

simple remedy is adding noise to the internal states of the network. We verify that this

helps, but we also suggest a new training strategy that leeds to even better performance on

this task.

Published in:
Artificial Neural Networks and Machine Learning - ICANN 2012, Lecture Notes in Com-
puter Science, pages 507-514.

Copyright:
c©2012 Springer-Verlag Berlin Heidelberg

79

Learning to Imitate YMCA with an
Echo State Network

Rikke Amilde Løvlid

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

Abstract. When an echo state network with feedback connections is
trained with teacher forcing and later run in free mode, one often gets
problems with stability. In this paper an echo state network is trained
to execute an arm movement. A sequence with the desired coordinates
of the limbs in each time step is provided to the network together with
the current limb coordinates. The network must find the appropriate
angle velocities that will keep the arms on this trajectory. The current
limb coordinates are indirect feedback from the motor output via the
simulator. We do get a problem with stability in this setup. One simple
remedy is adding noise to the internal states of the network. We verify
that this helps, but we also suggest a new training strategy that leeds to
even better performance on this task.

1 Introduction

Echo state networks (ESNs) are a fairly new type of recurrent neural networks
that have shown great potential for solving non-linear, temporal problems. The
basic idea is to transform the low dimensional temporal input into a higher
dimensional echo state, and then train the output connection weights to make
the system output the desired information. Because only the output weights are
altered, training is typically quick and computationally efficient compared to
training of other recurrent neural networks [1].

In this paper we use an ESN to compute the inverse kinematics of an arm
movement. The network is trained to output the joint angle velocities that will
move the arm from the current position to the next desired position. After mov-
ing the arm, the resulting position is used as input to the network as the current
position in the next time step.

A know problem with ESNs are unstable output when the network is trained
to predict one step ahead with teacher forcing and is later run in a generative
mode, looping its output back into the input. Models having feedback connec-
tions in general might have this problem, even when they are driven by external
input, as is the case in our setup. The reason for these potential instabilities is
that even if the model can make a pretty accurate one step prediction, going
through the feedback loop small errors get amplified and can make the output
diverge from the desired output.

As will be shown in section 7, we do get a problem with stability. A classical
remedy is adding noise to the internal states during training [1]. This makes the
network learn the desired next target from the neighborhood of the current state.
Adding noise to the network helps in our case too, but is not enough to solve the
problem. Other suggestions include using ridge regression [2], pruning the output
weights [3] or updating the weights based on the particle swarm optimization
algorithm [4]. We suggest a new strategy, namely gradually adapting the target
used when computing the output weights.

2 Learning to Imitate YMCA

In the implementation of the experiments, we used a recording of the dance to
the song YMCA by The Village People. The movement data was gathered with
a Pro Reflex 3D motion tracking system by Axel Tidemann [5]. The movement
of each arm was described in six degrees of freedom (DOFs), the x, y and z
coordinates of the elbow position relative to the shoulder and the wrist position
relative to the elbow. The coordinates was normalized to be in the interval
〈−1, 1〉. The movement sequence was divided into 312 steps and one repetition
of this movement was used as the basic training sequence.

The robot simulator had 3 DOFs in each shoulder and 1 DOF in each elbow
joint, totally 8 DOF. The arms are moved by specifying the angular velocity for
each DOF in each time step.

The task is to make this simulator execute the YMCA trajectory, which
means calculating the angular velocities (i.e. motor commands) for each DOF in
each time step based on the actual current position and the next position in the
desired trajectory, both represented as cartesian coordinates as described above.
This is a non-linear, one-to-many mapping.

In this paper the ESN will only try to execute the trajectory which it has
trained on, but ultimately we will want it to generalize to other movements,
which means learning the inverse model of the motor apparatus. We have earlier
done experiments in 2D where we investigated the benefit of learning the inverse
model by training on one movement with certain properties [6]. When trying to
repeat those experiments in 3D, we had problems learning the training movement
itself. This paper proposes as new training method for ESNs, which makes us
able to learn the training movement i 3D.

3 The Original Training Algorithm

A general echo state network is illustrated in figure 1.
The activation of the internal nodes is updated according to

x(t) = f(Winu(t) +Wx(t− 1) +Wbacky(t− 1)) + v(t− 1), (1)

where f is the node’s activation function, and v are white Gaussian noise.
The output of the network is computed according to

y(t) = fout(Wout(u(t),x(t))). (2)

... ...
...

W
in

W
out

W
W

back

u1 xi
y1

K input N internal L output
nodes nodes nodes

Fig. 1. The figure illustrates a basic ESN.

A general task is described by a set of input and desired output pairs, [〈u(1),
ytarget(1)〉, 〈u(2), ytarget(2)〉, ..., 〈u(T), ytarget(T)〉]. The solution is a trained
ESN whose output y(t) approximates the teacher output ytarget(t) when the
ESN is driven by the training input u(t). Generating this solution ESN is done
in three steps.

First, a random RNN with the Echo State property is generated [1]. Second,
the training sequence is run through the network once. If there are feedback
connections, teacher forcing is used, meaning y(t) is replaced by ytarget(t) when
computing x(t+1) and y(t+1). After the first T0 time steps, which are used to
wash out the initial transient dynamics, the state of each input node and internal
node in each time step is stored in a state collection matrix, M. Assuming tanh
is used as output activation function, tanh−1ytarget(t) is collected row-wise into
a target collection matrix T. Equation 2 can then be written:

T = M(Wout)T . (3)

Third, the output weights are computed by using the Moore-Penrose pseudo-
inverse to solve equation 3 with regard to Wout:

(Wout)T = M+T. (4)

4 The new Proposed Training Strategy

In the original training algorithm the training sequence is run through the net-
work once. The output weights are updated based on the target collection matrix
and the state collection matrix as shown in equation 4. We suggest running the
training sequence through the network several times. In each cycle the weights
are calculated based on the state collection matrix and something in between
the target and the actual output from the inverse model. The target used when
computing Wout in cycle i is

yi
target(t) = βytarget(t) + (1− β)y(t). (5)

We hypothesis that this new proposed training method will improve performance
during testing.

desired
next state

motor
command

PlantPlantESNdesired
current state

 desired motor command

 current state

(a) True Target

+ -

Feedback
controller

*K

actual
state

desired
state

motor feedback

motor
inverse

Plant++

actual state

motor
totalESN

(b) Feedback Controller

Fig. 2. Two architectures were used in the experiments; (a) the inverse model is trained
with true target information and teacher forcing, and (b) a feedback controller is used
both for estimating the motor error and providing teacher forcing. In the latter, the
feedback gain, K, decides how much the feedback controller influences the final motor
command. K is gradually decreased from 1 to 0 during several rounds of training. The
dotted lines are only used during training whereas the grey lines are only used during
testing.

5 The Architectures

The experiments were conducted with two different architectures. In the first
architecture we calculate the desired motor commands with use of the inverse
function given in the paper by Tolani and Badler [7]. True teacher forcing was
provided during training by replacing the current position from the simulator
with the next desired position from the training sequence before using it as input
to the network. In this architecture the plant is only used during testing. The
architecture is illustrated in figure 2(a) and will be referred to as the true target
architecture.

In the second architecture we recognize that the desired joint angles are
generally not available. What is know is the desired arm positions. Also, there
are several joint angle configurations that represent the same arm position. The
feedback-error-learning scheme proposed by Kawato [8] is designed to handle
these issues. In this architecture a feedback controller transforms the error in
position to an error in motor commands. This estimated motor error is used both
as an estimate of the target and for teacher forcing. The architecture is drawn
in figure 2(b) and will be referred to as the feedback controller architecture.

In order to make the inverse model learn and the feedback controller redun-
dant, the feedback gain, K, was linearly decreased from 1 to 0 during 10 epochs.
During testing the feedback gain was 0.

6 Experiments

The main objective is to investigate whether the new training method outper-
forms the original training method. In addition we study the effect of adding
noise to the internal network, and try to improve the performance of the original

method by adding repetitions of the YMCA movement in the training sequence.
This can be summarized in four experiments:

Experiment 1: Original training method without noise during training.
Experiment 2: Original training method with noise in the network.
Experiment 3: Original training method with noise and several repeti-

tions of the YMCA movement in the training sequence.
The experiments when using 5 and 10 repetitions are
referred to as 3a and 3b respectively.

Experiment 4: New proposed training method with β = 0.1. There is
still noise in the network, and the training sequence con-
sists of only one repetition of the YMCA movement.

When implementing the ESN we used the simple matlab toolbox provided by
Jaeger [9]. The spectral radius was 0.5 and tanh was used as output function.
When noise was included in the reservoir, the noise level was set to 0.2, effectively
adding 10% noise to the internal states. All other network parameters used were
the default in the toolbox. Gaussian noise with mean 0 and standard deviation
0.01 was added to the output from plant.

In experiment 4 training time increases as β decreases because additional
passes of the training sequence must be done to make the target used converge
towards the actual target. We therefor want β to be as high as possible. To make
the network learn the training sequence in the architecture with the feedback
controller, we had to use β = 0.1 (or lower). For this value of β, 50 rounds
of training is sufficient for convergence, which meant 5 training cycles for each
value of the feedback gain when using the feedback controller.

To evaluate the results we use the Root Mean Square Error (RMSE) nor-
malized over the range of the output values, NRMSE(y,ytarget) =

√
MSE

ymax−ymin
.

The NRMSE for each run was averaged over all time steps and DOFs.

7 Results

Each experiment was repeated 50 times. Figure 3 compares the results in a box
and whisker plot and table 1 contains the average NRMSE with standard devi-
ation for each experiment. Note that when training with a feedback controller,
only the position error during testing is interesting. The motor error cannot be
computed because we do not have a correct motor command to compare with.
Also the training error is not interesting, since in this setup there is a gradual
transition from training to testing as the feedback gain is reduced. In the true
target architecture however, training and testing means teacher forcing on or off,
i.e. one step prediction or generative mode respectively.

To illustrate the effect on the actual movement and visualize the problem with
instability, figure 4 compares the actual- with the desired positions of the right
arm from one run of each of the experiments 1 (original), 2 (original w/noise)
and 4 (new method w/noise) in the true target architecture.

Table 1. The average NRMSE and variance for each experiment after 50 runs.

True Target Feedback
Controller

Position train Motor train Position test Motor test Position test

Experiment 1 0.0033 0.0007 0.3000 0.3228 0.3490
Original Method 4.94E-10 1.47E-09 4.16E-04 1.99E-04 7.0786e-04
Experiment 2 0.0092 0.0053 0.1863 0.0991 0.3289
Orig. Met. w/noise 1.10E-07 2.58E-08 2.16E-03 5.50E-04 6.6268e-04
Experiment 3a 0.0070 0.0163 0.1056 0.1539 0.2587
Orig. Met. 5 rep. 2.28E-09 2.14E-08 8.92E-04 8.62E-04 0.0013
Experiment 3b 0.0068 0.0156 0.0994 0.1519 0.2770
Orig. Met. 10 rep. 8.10E-10 1.60E-08 3.33E-04 3.30E-04 0.0013
Experiment 4 0.0070 0.0039 0.0973 0.0476 0.1164
New Met. w/noise 1.21E-07 5.47E-09 4.96E-04 1.37E-04 0.0084

In the simplest case, with true target, adding noise to the internal networks
improves the testing results. This is seen by comparing the results of experiment
1 and 2 in figure 3 and table 1. However, when using the feedback controller, the
improvement is hardly visible.

Training the network with the YMCA movement repeated several times
makes significant improvement, especially in the true target architecture. In the
true target architecture we are able to get just as good results with the origi-
nal method adding more repetitions as using the new training method on one
repetition of the YMCA movement. However, when training with a feedback
controller, the new method clearly outperforms the original.

0

0.1

0.2

0.3

0.4

Experiment

N
R

M
SE

 p
os

iti
on

1 2 3a 3b 4

Original method
New method

(a) True Target

0

0.1

0.2

0.3

0.4

Experiment

N
R

M
SE

 p
os

iti
on

1 2 3a 3b 4

(b) Feedback Controller

Fig. 3. Box and whisker plot for 50 runs of each of the experiments. On each box, the
central mark is the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and outliers
are plotted individually.

Y MC A

0 100 200 300
−1

−0.5
0

0.5
1

Y MC A

0 100 200 300
−1

−0.5
0

0.5
1

Y MC A

0 100 200 300
−1

−0.5
0

0.5
1

Y MC A

0 100 200 300
−1

−0.5
0

0.5
1

Y MC A

0 100 200 300
−1

−0.5
0

0.5
1

Y MC A

0 100 200 300
−1

−0.5
0

0.5
1

(a) Original Method

Y MC A

right elbow x

0 100 200 300

Y MC A

right elbow y

0 100 200 300

Y MC A

right elbow z

0 100 200 300

Y MC A

right wrist x

0 100 200 300

Y MC A

right wrist y

0 100 200 300

Y MC A

right wrist z

0 100 200 300

(b) Orig. Method w/noise

Y MC A

0 100 200 300

Y MC A

0 100 200 300

Y MC A

0 100 200 300

Y MC A

0 100 200 300

Y MC A

0 100 200 300

Y MC A

0 100 200 300

Target
Actual

(c) New Method w/noise

Fig. 4. The desired versus actual right arm positions during testing for one average
run of each of the experiments 1, 2 and 4 with the true target architecture. The aver-
age position error (both arms) for these selected runs was 0.300, 0.193 and 0.091 for
experiment 1,2 and 3 respectively.

8 Discussion and Conclusion

In the original training method, the training sequence is run through once (for
each value of the feedback gain). The states of the network are collected in each
time step, and the output weights are calculated from this state collection and
the target sequence. The original method finds the best fitted linear transfor-
mation from the reservoir to the target states. The new method proposed in

this paper runs the training sequence through several times, each time calcu-
lating the output weights by finding the best fitted linear transformation from
the reservoir to a sequence between the actual output states of the ESN and the
target output states.

When the target sequence is known, the novel training strategy is no better
than using the original method on an extended version of the training sequence.
Adding several repetitions of the temporal pattern is a common strategy when
there is noise in the training data, which is almost always the case. However,
when training the ESN with the feedback controller, the novel training strategy
still outperforms the original. We hypothesize that this is because the quality
of the target estimate and the teacher forcing becomes better as the network
performs with less error. This makes it beneficial to carry out the learning grad-
ually. It would be interesting to test the proposed method on a problem where
the error calculation can be done more accurately as the error decreases.

Further work could also test this new method on benchmark problems like
generation of the figure eight [2] or a chaotic attractor like the Mackey-Glass
system [10]. The focus would then be whether the novel method proposed here,
would be faster than using the original training method on a longer sequence.
Preliminary studies indicate that this might in fact be true.

References

1. Jaeger, H.: A tutorial on training recurrent neural networks, covering bppt, rtrl,
and the echo state network approach. Technical report, Fraunhofer Institute for
Autonomous Intelligent Systems (2002)

2. Wyffels, F., Schrauwen, B., Stroobandt, D.: Stable output feedback in reservoir
computing using ridge regression. In: Proceedings of the 18th international con-
ference on Artificial Neural Networks, Part I. ICANN ’08, Berlin, Heidelberg,
Springer-Verlag (2008) 808–817

3. Dutoit, X., Schrauwen, B., Campenhout, J.V., Stroobandt, D., Brussel, H.V., Nut-
tin, M.: Pruning and regularization in reservoir computing: a first insigth. In: Pro-
ceedings of the 16th European Symposium on Artificial Neural Networks (ESANN
2008). (2008) 1–6

4. Song, Q., Feng, Z., Lei, M.: Stable training method for echo state networks with
output feedbacks. In: Networking, Sensing and Control (ICNSC), 2010 Interna-
tional Conference on. (april 2010) 159 –164

5. Tidemann, A., Öztürk, P.: Self-organizing multiple models for imitation: Teaching
a robot to dance the YMCA. In: IEA/AIE. Volume 4570 of LNCS., Springer (June
2007) 291–302

6. Løvlid, R.A.: Learning motor control by dancing ymca. In: IFIP Advances in
Information and Communication Technology. (2010) 79–88

7. Tolani, D., Badler, N.I.: Real-time inverse kinematics of the human arm. Presence
5(4) (1996) 393–401

8. Kawato, M.: Feedback-error-learning neural network for supervised motor learning.
In Eckmiller, R., ed.: Advanced Neural Computers. Elsevier (1990) 365–372

9. Jaeger, H.: Simple toolbox for esns url: reservoir-computing.org/software (2009)
10. Jaeger, H.: The echo state approach to analysing and training recurrent neural

networks. Technical report, GMD (2001)

A NOVEL METHOD FOR TRAINING AN ECHO
STATE NETWORK WITH FEEDBACK ERROR
LEARNING E
Author:
Rikke Amilde Løvlid

Abstract:
Echo state networks are a relatively new type of recurrent neural net- works which have

shown great potentials for solving nonlinear, temporal problems. The basic idea is to trans-

form the low dimensional temporal in- put into a higher dimensional state, and then train

the output connection weights to make the system output the desired information. Be-

cause only the output weights are altered, training is typically quick and computationally

efficient compared to training of other recurrent neural networks.

This paper investigates using an echo state network to learn the inverse kinematics model

of a robot simulator with feedback-error-learning. In this scheme teacher forcing is not

perfect, and joint constraints on the simulator makes the feedback error inaccurate. A

novel training method which is less influenced by the noise in the training data is proposed

and compared to the traditional ESN training method.

Published in:
Advances in Artificial Intelligence

Copyright:
c©2013 Rikke Amilde Løvlid

89

Hindawi Publishing Corporation
Advances in Artificial Intelligence
Volume 2013, Article ID 891501, 9 pages
http://dx.doi.org/10.1155/2013/891501

Research Article
A Novel Method for Training an Echo State Network with
Feedback-Error Learning

Rikke Amilde Løvlid

Department of Computer and Information Science, Norwegian University of Science and Technology, Sem Sælands vei 7-9,
7491 Trondheim, Norway

Correspondence should be addressed to Rikke Amilde Løvlid; rikke-amilde.lovlid@ffi.no

Received 31 May 2012; Revised 10 December 2012; Accepted 19 February 2013

Academic Editor: Ralf Moeller

Copyright © 2013 Rikke Amilde Løvlid.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Echo state networks are a relatively new type of recurrent neural networks that have shown great potentials for solving non-
linear, temporal problems. The basic idea is to transform the low dimensional temporal input into a higher dimensional state,
and then train the output connection weights to make the system output the target information. Because only the output weights
are altered, training is typically quick and computationally efficient compared to training of other recurrent neural networks. This
paper investigates using an echo state network to learn the inverse kinematics model of a robot simulator with feedback-error-
learning. In this scheme teacher forcing is not perfect, and joint constraints on the simulator makes the feedback error inaccurate.
A novel training method which is less influenced by the noise in the training data is proposed and compared to the traditional ESN
training method.

1. Introduction

A recurrent neural network (RNN) is a neural network
with feedback connections. Mathematically RNNs imple-
ment dynamical systems, and in theory they can approximate
arbitrary dynamical systems with arbitrary precision [1].This
makes them “in principle promising” as solutions for difficult
temporal tasks, but in practice, supervised training of RNNs
is difficult and computationally expensive.
Echo state networks (ESNs) were proposed as a cheap

and fast architectural and supervised learning scheme and are
therefore suggested to be useful in solving real problems [2].
The basic idea is to transform the low dimensional temporal
input into a higher dimensional echo state, and then train
the output connection weights to make the system output the
desired information. The idea was independently developed
byMaass [3] and Jaeger [4] as liquid statemachine (LSM) and
echo state machine (ESM), respectively.
LSMs and ESMs, together with the more recently

explored Backpropagation Decorrelation learning rule for
RNNs [5], are given the generic term reservoir computing
[6]. Typically large, complex RNNs are used as reservoirs, and

their function resembles a tank of liquid. One can think of
the input as stones thrown into the liquid, creating unique
ripples that propagate, interact, and eventually fade away.
After learning how to read the water’s surface, one can extract
a lot of information about recent events, without having to
do the complex input integration. Real water has successfully
been used as a reservoir [7].
Because only the output weights are altered, training is

typically quick and computationally efficient compared to
training of other recurrent neural networks.
We are investigating how to use an ESN to learn internal

models of a robot’s motor apparatus. An internal model is
a system that mimics the behavior of a natural process. In
this paper we will talk about inversemodels, which transform
preplanned trajectories of desired perceptual consequences
into appropriate motor commands.
The inverse model is often divided into a kinematic and

a dynamic model. An inverse kinematic model transforms
a trajectory in task space (e.g., cartesian coordinates) to a
trajectory in actuator space (e.g., joint angles), and an inverse
dynamic model transforms the joint space trajectory into the
sequence of forces that will actually move the limbs. The

2 Advances in Artificial Intelligence

robot simulator in our experiments is controlled by the joint
angle velocities directly, thus we are only concerned with
kinematics.
It is common to use analytical internal models, and

deriving such a model for our simulator would be easy.
Despite this, we want to explore using an ESN as an inverse
model, because as robots becomemore complex, with springy
joints, light limbs and many degrees of freedom, acquiring
analytical models will become more and more difficult [8].
Oubbati et al. also argue that substituting the analytical
models with a recurrent neural networks might be beneficial
in general, as it can make the inverse model more robust
against noise and sensor errors [9].
To acquire an accurate inverse model through learning is,

however, problematic, because the target motor commands
are generally unavailable. What is known is the target tra-
jectory in task space. Three schemas have been suggested for
training the inverse model: directly by observing the effect of
differentmotor commands on the controlled object [10], with
a forward model as a distal teacher [11], or with an approach
called feedback-error learning (FEL) [10]. Direct modeling
was excluded because it cannot handle redundancies in the
motor apparatus and therefore will not scale to real problems
[11]. FEL was chosen over distal teacher because it is a natural
extension of using an analytical model, and because it is
biologically motivated due to its inspiration from cerebellar
motor control [12]. Another advantage, which we will not
exploit here, is that FEL can be used for control during
learning.
The objective in this paper is to investigate how an ESN

can be trained within this FEL scheme. The traditional ESN
learning method falls short in this setup due to inaccu-
rate teacher forcing and target estimation. We propose a
novel training method, which is inspired by gradient decent
methods and shows promising results on this problem.
Preliminary studies of this training method can be found in a
related work [13]. The current paper includes further studies
of why this new method works so well.

2. Learning to Imitate YMCA

In this paper an ESN is trained to execute an arm movement
on a simple robot simulator by computing the inverse
kinematics of that movement. The ESN is only tested on
the movement it was trained on, which means that we do
not verify whether the ESN has actually learned the inverse
model ormerely to execute this particular trajectory.We have
earlier investigated the benefit of learning the inverse model
by training on one movement with certain properties [14].
Here we have a slightly more complex inverse problem and
encountered a problem when trying to learn the training
sequence itself.The solution to that problem is themain point
in this paper.

2.1. Training Data. The movement data is a recording of
the dance to the song YMCA by the Village People. It was
gathered with a Pro Reflex 3D motion tracking system by
Tidemann and Öztürk [15]. The system is able to track

the position of fluorescent balls within a certain volume
by using five infrared cameras. The sampling frequency of
the Pro Reflex is 200Hz. In the experiments we used every
fourth sample, meaning the position trajectory consisted of
50 samples/sec, resulting in a sequence with 313 steps.
The tracking of the balls yields cartesian coordinates

of the balls in three dimensions. The result was projected
down to two dimensions, and the position of each arm was
expressed as the 𝑥 and 𝑧 coordinates of the elbow relative
to the shoulder and the wrist relative to the elbow. The
coordinates were normalized to be in the interval ⟨−1, 1⟩.The
position in each time step was thus represented by 8 signals,
that is, (𝑥elbow, 𝑧elbow, 𝑥wirst , 𝑧wrist) for each arm.

2.2. Simulator. For the simulations we used a fairly simple
2D simulator with four degrees of freedom (DOFs), one in
each shoulder and one in each elbow. The simulated robot
was controlled by the joint angle velocities directly, which
means that the problem of translating the velocities into
torques was not considered. The ESN was trained to output
the joint angle velocities that would keep the elbows and
wrists on the desired trajectory. The velocities were scaled to
be in the interval ⟨−1, 1⟩ and will be referred to as themotor
commands.
The range of motion was constrained to be between 0∘

and 180∘ for all 4 DOFs, and if the motor command implied
moving the limb further, the limb stopped at the limit and the
overshooting motor command was ignored.
The maximum joint angle velocity for each DOF was set

to twice the maximum velocity registered in the recorded
movement, which meant that a joint angle velocity equal to
1moved the joint less than 180 degrees. Limited joint velocity
is realistic, and it also makes large errors in motor commands
lead to smaller position errors, making the movements look
smoother.

2.3. Control Architecture. The ESN is trained to compute
motor commands that will move the simulated arms from the
current position to the next position in the target trajectory.
The target motor commands needed for training are not
available; what is available is the target positions.
The FEL scheme, illustrated in Figure 1, includes a feed-

back controller that estimates the error in motor command
from the position error. The motor error computed by the
feedback controller is used both to train the ESN and to adjust
the motor command from the inverse model before it is sent
to the arm simulator. In the current setup the transformation
from position error to motor error is simple enough to be
done analytically, but using the result will still not be perfect
as the simulator is noisy and the calculation does not take
into consideration any excess motor commands that were
potentially ignored if the limbs were moved to their limits.
How much influence the feedback controller has on the

finalmotor command is regulated by the feedback gain,𝐾. To
facilitate learning and force the feedback controller to become
redundant, the feedback gain was linearly reduced from 1 to
0 during several rounds of training.

Advances in Artificial Intelligence 3

Arm
simulator

𝑦total

𝑦feedback

∗𝐾
𝑦errorDelay

ESN
(inverse model)

𝑢actual(𝑡)

𝑢actual(𝑡)

𝑢target(𝑡)

𝑢target (𝑡 + 1)
+
+

Feedback
controller

𝑦ESN

Figure 1: The figure illustrates the feedback-error-learning (FEL)
architecture used to training the ESN. The input to the ESN is
the actual position at the current time step (𝑢actual(𝑡)) and the
next position in the target position trajectory (𝑢target(𝑡 + 1)). The
ESN learns to calculate the motor command which will move the
simulated arms from the current position to the next position in the
target trajectory. The motor command from the ESN is called 𝑦ESN
and is adjusted by themotor command from the feedback controller,
𝑦feedback, before it is used to move the simulated arms. The feedback
controller estimates the error of this total motor command (𝑦error)
by comparing the resulting position with the corresponding target
position. This error is used to train the ESN and to compute the
feedback motor command in the next time step. The feedback gain,
𝐾, determines how much the feedback controller can influence the
total motor command.

W

W

in Wout

Wback

· · ·

· · · · · ·

𝐾 input 𝑁 internal 𝐿 output

𝑥𝑖

nodes nodes nodes

𝑢1 𝑦1

Figure 2: The figure illustrates a basic ESN.

3. Training an Echo State Network

A basic echo state network is illustrated in Figure 2. The
activation of the internal nodes is updated according to

x (𝑡) = 𝑓 (Winu (𝑡)+Wx (𝑡 − 1)+Wbacky (𝑡 − 1)) + V (𝑡 − 1) ,
(1)

where 𝑓 is the node’s activation function, and V are white
Gaussian noise. The output of the network is computed
according to

y (𝑡) = 𝑓out (Wout (u (𝑡) , x (𝑡))) . (2)

A general task is described by a set of input and desired
output pairs, [⟨u(1), ytarget(1)⟩, ⟨u(2), ytarget(2)⟩, . . . , ⟨u(𝑇),
ytarget(𝑇)⟩], and the solution is a trained ESN whose output

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

Training cycle

N
RM

SE
 ta

rg
et

𝛽 = 0.01

𝛽 = 0.03

𝛽 = 0.05

𝛽 = 0.1

𝛽 = 0.3

𝛽 = 0.5

Figure 3: The plot shows the difference between the true target and
the used target in each training cycle for different values of 𝛽 when
target estimation and teacher forcing are perfect. The result is used
to deduce howmany extra cycles of training are needed for different
values of 𝛽. Note that with 𝛽 = 1, the used target and the true target
will be equal from the start, and only one cycle of training is needed.

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

N
RM

SE
 p

os
iti

on

Number of internal nodes

Figure 4: To determine the optimal reservoir size, ESNs with
different numbers of internal nodes were trained with the original
trainingmethod within the FEL scheme.The YMCAmovement was
repeated 5 times in the training sequence, and the internal noise level
was 0.02. The figure shows the mean position errors during testing
for 10 repetitions of each experiment.

y(𝑡) approximates the teacher output ytarget(𝑡), when the ESN
is driven by the training input u(𝑡).

3.1. Original Training Method. Training the ESN using the
original training methods is done in three steps. First, a
random RNN with the echo state property is generated [4].
Second, the training sequence is run through the network
once. If there are feedback connections, teacher forcing is
used, meaning y(𝑡) is replaced by ytarget(𝑡) when computing
x(𝑡 + 1) and y(𝑡 + 1). After the first 𝑇0 time steps, which are
used to wash out the initial transient dynamics, the states of
each input and internal node in each time step are stored in a
state collection matrix, M. Assuming tanh is used as output
activation function, tanh−1(ytarget(𝑡)) is collected row-wise

4 Advances in Artificial Intelligence

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

N
RM

SE
 p

os
iti

on

State noise in reservoir

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

N
RM

SE
 p

os
iti

on

State noise in reservoir

(b)

Figure 5: The optimal choice for the level of internal noise in the
reservoir was significantly different for the two training methods.
The figures show themean position error during testing for different
noise levels. (a)The networks were trained with the original method
with the training sequence consisting of 5 repetitions of the YMCA
movement. (b) The corresponding results when the networks were
trained with the new method with 𝛽 = 0.1 and the movement
sequence repeated once. All experiments were run 10 times, and the
number of internal nodes was 200 in all the networks. Based on the
results we chose noise level 0.03 for the original method and 0.2 for
the new method.

into a target collection matrix S. Equation (2) can then be
written as

S = M(Wout)
𝑇
. (3)

Third, the output weights are computed by using the
Moore-Penrose pseudoinverse to solve (3) with regard to
Wout:

(Wout)
𝑇
= M+S. (4)

3.2. New Proposed Training Method. In the original training
method the training sequence is run through the network
once, and the output weights are updated based on the target
collection matrix and the state collection matrix as shown in

0

0.1

0.2

0.3

0.4

0.5

N
RM

SE
 p

os
iti

on

Original method
New method

1 rep. 5 rep. 10 rep. 𝛽 = 0.3 𝛽 = 0.1 𝛽 = 0.05

(a)

0

0.1

0.2

0.3

0.4

0.5
N

RM
SE

 m
ot

or

Original method
New method

1 rep. 5 rep. 10 rep. 𝛽 = 0.3 𝛽 = 0.1 𝛽 = 0.05

(b)

Figure 6: The figures show a box and whisker plots for 20 runs
of each of the 6 experiments. Plot (a) illustrates the position error
during testing and plot (b) the motor error during testing. On each
box, the central mark is themedian, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually.

(4). This does not work well with our training architecture,
because teacher forcing and target estimation are far from
perfect. We therefore suggest running the training sequence
through several times for each value of the feedback gain. For
each of these cycles the output weights are calculated based
on the state collection matrix and something in between the
estimated target and the actual output from the ESN model.
One has

y𝑖used target (𝑡) = 𝛽yestimated target (𝑡) + (1 − 𝛽) yESN (𝑡) . (5)

The vector y𝑖used target(𝑡) is the target used to generate
the target matrix S for computing Wout in cycle 𝑖, and
yestimated target(𝑡) is an estimate of the target, as the true target
is not available. Note that 𝛽 = 1 corresponds to the original
training method.

Advances in Artificial Intelligence 5

0 100 200 300
−1

−0.5

0

0.5

1

(a) True target

0 100 200 300
−1

−0.5

0

0.5

1

(b) Initial ESN output

0 100 200 300

0

0.5

1

−0.5

−1

(c) Estimated target

0 100 200 300

0

0.5

1

−1

−0.5

(d) ESN output after trained with (c)

Figure 7:The plots illustrate why the original method without repetitions (experiment 1) fails. Compared to the true target (a), the estimated
target in the first epoch (c) is very noisy. It has the general shape of the true target, but when training the initial, random ESN (b) with this
noisy estimate, the result is a network which outputs mostly noise (d). This only gets worse in the succeeding epochs. Plotted are motor
commands (joint angle velocities) for the 4 DOFs at each time step in the training sequence.

We hypothesize that this new proposed training method
will improve learning.However, the training time increases as
𝛽 decreases because additional cycles of training are needed.
To test how many cycles are needed to converge for each
value of 𝛽, the network was trained with the true target
and perfect teacher forcing for 400 cycles. The true target
was found by using an analytical inverse model. Figure 3
illustrates the difference between the true target, ytarget, and
the used target, yused target, in each cycle, 𝑖. To compensate for
this extra computation time, we will try reducing the length
of the training sequence when applying this trainingmethod.

4. Experiments

The performance of the new proposed method is compared
to the performance of the original method through different
experiments. Our main hypothesis is that the new method

will provide the same or better performance as the original at
a smaller computational cost.
In all the experiments the ESN was trained to execute

the YMCA movement. It was trained with feedback-error
learning with the feedback gain linearly being decreased
from 1 to 0 during 10 epochs of training. During testing
the ESN was run without the feedback controller and the
performance was measured as how accurately the ESN was
able to reproduce the training sequence.
The original training method was used on training

sequences with varying number of repetitions of the
YMCA movement. We hypothesize that training on longer
sequences, where the movement is repeated several times,
will increase the performance. However, a longer training
sequence leads to longer training time.
The new training method was investigated by conducting

experiments for three different values of 𝛽. All trained

6 Advances in Artificial Intelligence

Table 1:The table summarizes the experiment details, including the
value of 𝛽 (𝛽 = 1means the original method), the number of cycles
per epoch, and the number of repetitions of the YMCA movement
constituting the training sequence. In all the experiments the ESN
was trained for 10 epochs with decreasing feedback gain.

Experiment number 𝛽 # cycles per epoch # rep. movement
Exp. 1 1 1 1
Exp. 2 1 1 5
Exp. 3 1 1 10
Exp. 4 0.3 2 1
Exp. 5 0.1 3 1
Exp. 6 0.05 10 1

on just one repetition of the YMCA movement, but the
sequence had to be presented several times for each epoch
to make it possible for the used target to converge during
the 10 training epochs. The number of cycles used for each
epoch was the approximate number of cycles needed for
convergence according to Figure 3, divided by the number of
epochs.

Table 1 holds the details of the different experiments.

4.1. Parameters. The ESN had 8 input nodes, corresponding
to the x and z coordinates of the shoulders and elbows, and
4 output nodes, one for each DOF of the simulator. We used
200 nodes in the internal network, which was optimized for
the original training method as illustrated in Figure 4.

When implementing the ESN, we used the simple matlab
toolbox provided by Jaeger et al. [16]. The spectral radius
was 0.5 and tanh was used as output function. The reservoir
noise level was set to 0.03 when using the original method
and 0.2 when using the new method. These noise levels are
justified in Figure 5. All other network parameters used were
the default in the toolbox. Gaussian noise with mean 0 and
standard deviation 0.01 was added to the output from the arm
simulator.

4.2. Training and Testing. The feedback controller was only
used during training, and the feedback gainwas reduced from
1 to 0 during 10 epochs. Before each epoch the ESN was
reinitialized by setting the internal states to 0 and running
the training sequence through once without learning. The
epoch continued with one cycle of training when using the
original training method and several cycles of training when
𝛽 < 1. One last circle without training (but with use of the
feedback controller) was run in each epoch to evaluate the
performance at that stage.

After training the network was again reinitialized and
tested on the training sequence by running it through once
without the feedback controller.

To evaluate the performance we use the Root Mean
Square Error (RMSE) of the resulting position sequence
normalized over the range of the output values:

MSE (y, ytrue target) =
√MSE

𝑦max − 𝑦min
=
√MSE

2
. (6)

0 100 200 300

0

0.5

1

−1

−0.5

(a)

0 100 200 300

0

0.5

1

−1

−0.5

(b)

Figure 8: Adding more repetitions of the movement in the training
sequence makes the output of the ESN seem less noisy. Plot (a)
shows the output of the ESN after training with one repetition and
plot (b) the ESN output after training on 5 repetition of the YMCA
movement.

TheNRMSE for each run was averaged over all time steps
andDOFs. ANRMSE = 0means no error, a random solution
would have NRMSE ≈ 0.5, and NRMSE = 1means opposite
solution.

5. Results

Each of the six experiments were repeated 20 times, and
the results are summarized in Table 2 and illustrated in
Figure 6.

The motor error of experiment 1 is close to 0.5, which
means that using the original training method on one
repetition of the YMCA sequence results in a network that
does not perform better than a random network. Repeating
the movement in the training sequence (experiments 2 and
3) helps, but note that the variance is pretty large.

Advances in Artificial Intelligence 7

Using the new training method makes a larger improve-
ment with a lower additional computational cost. From
the box and whisker plot in Figure 6(b) we see that the
worst ESN obtained by using the new method with 𝛽 =
0.1 (experiment 5) performed better than the best ESN
obtained with the original method trained on 5 repetitions
of the YMCA (experiment 2). Due to the computation time
of the pseudo-inverse calculations, the training time of a
sequence of length𝑚∗𝑛 is longer than training a sequence of
length 𝑚 𝑛 times [17]. This implies that the running time of
experiment 5 (sequence of 313 steps run 3 ∗ 10 times) is also
shorter than the running time of experiment 2 (sequence of
5 ∗ 313 steps run 10 times).

5.1. Why the New Method Outperforms the Original. To
understand the effects of the different experimental setups
we trained the same initial network with the setups in
experiments 1 (original, 1 rep.), 2 (original, 5 rep.), and 5 (new,
𝛽 = 0.1) and studied how the ESN output, the actual position
sequence, the estimated target, and the target used for weight
calculation evolved during the training epochs.
Figure 7 shows why experiment 1 fails. The estimated

target sequence is too noisy, and with the short training
sequence without any repetitions, the output from the ESN
becomes even noisier.
The output from the ESN after training becomes signif-

icantly less noisy when the movement is repeated several
times in the training sequence, as illustrated in Figure 8.
In this setup the target sequence does have a repeating
pattern, and since the error in each repetition will differ, the
weight calculation will average over these slightly different
representations.
When using the new training method, the approach for

making a smoother target is different. The new method is
apparently able to keep the smoothness of the output of the
first, random network and just gradually drives that solution
toward the target. As illustrated in Figure 9 the used target,
that is, the best target estimate combined with the previous
ESN output, appears much less noisy than the target estimate
alone.
The new method also results in better teacher forcing.

Figure 10 illustrates the quality of the teacher forcing for the
three selected experiments.

6. Discussion and Conclusion

This paper investigates using feedback-error learning to train
an ESN to learn the inverse kinematics of an arm movement.
When applying feedback-error learning, teacher forcing is
not perfect, and joint constraints on the simulator make
the feedback error inaccurate. A novel training method is
suggested, which uses a combination of the previous ESN
output and the estimated target to train the network. This
presumably keeps much of the smoothness of the output
from the initial, random network and avoids the unstable
output obtained when training with the estimated target
directly.

0 100 200 300

0

0.5

1

−0.5

−1

(a) Estimated target

0 100 200 300
−1

−0.5

0

0.5

1

(b) Used target

0 100 200 300

0

0.5

1

−1

−0.5

(c) ESN output after training with (b)

Figure 9: In experiment 5 the network is trained on one repetition of
the YMCAmovement with𝛽 = 0.1.The plots show (a) the estimated
target, (b) the used target, and (c) the ESN output after training with
(b). All the plots are from epoch 5, where the used target is starting
to look like the true target. Notice that the used target appears less
noisy than the estimated target.

8 Advances in Artificial Intelligence

Table 2:The mean NRMSE and variance for 20 repetitions of each experiment. All the networks were tested on one repetition of the YMCA
movement.

Experiment Position error Var Motor error Var
1 Orig. method, 1 rep. 0.4000 0.0024 0.4737 1.4𝐸 − 04
2 Orig. method, 5 rep. 0.1088 0.0125 0.2435 0.0071
3 Orig. method, 10 rep. 0.1193 0.0081 0.2500 0.0066
4 New method, 𝛽 = 0.3 0.0494 0.0018 0.1100 6.9𝐸 − 04
5 New method, 𝛽 = 0.1 0.0245 7.0𝐸 − 05 0.0717 1.4𝐸 − 04
6 New method, 𝛽 = 0.05 0.0385 0.0020 0.0669 9.2𝐸 − 04

0 100 200 300
−1

−0.5

0

0.5

1

(a) Desired position

0 100 200 300

0

0.5

1

−1

−0.5

(b) Original, 1 rep.

0 100 200 300

0

0.5

1

−1

−0.5

(c) Original, 5 rep.

0 100 200 300

0

0.5

1

−1

−0.5

(d) New, 𝛽 = 0.1

Figure 10: The figure illustrates the quality of the teacher forcing in experiments 1, 2, and 5. For each of these experiments the position
sequences in epoch 5 are plotted as the 8 coordinate values at each time step for one repetition of the YMCAmovement.

The new method requires extra training cycles to con-
verge, but we showed that this can be compensated by using
a shorter training sequence.

For benchmark sequences like generation of the figure-
eight [18] or a chaotic attractor like the Mackey-Glass system
[19], it will be interesting to see whether this new method

could be faster than the original method, as it can get the
same performance by training on a shorter training sequence.
Preliminary results on the generation of the figure-eight
verify that a shorter training sequence is needed with the new
method, but the potential computational benefits are not yet
extensively tested.

Advances in Artificial Intelligence 9

References

[1] K. Doya, “Universality of fully connected recurrent neural
networks,” Tech. Rep., University of California, San Diego,
Calif, USA, 1993, Submitted to: IEEE Transactions on Neural
Networks.

[2] M. Lukoševičius and H. Jaeger, “Reservoir computing
approaches to recurrent neural network training,” Computer
Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[3] T. Natschläger, W. Maass, and H. Markram, “The ”liquid
computer”: a novel strategy for real-time computing on time
series,” Special Issue on Foundations of Information Processing
of TELEMATIK, vol. 8, no. 1, pp. 39–43, 2002.

[4] H. Jaeger, “A tutorial on training recurrent neural networks,
covering bppt, rtrl, and the echo state network approach,” Tech.
Rep., Fraunhofer Institute for Autonomous Intelligent Systems,
Sankt Augustin, Germany, 2002.

[5] J. J. Steil, “Backpropagation-decorrelation: online recurrent
learning with O(N) complexity,” in Proceedings of IEEE Inter-
national Joint Conference on Neural Networks (IJCNN ’04), pp.
843–848, July 2004.

[6] B. Schrauwen, D. Verstraeten, and J. van Campenhout, “An
overview of reservoir computing: theory, applications and
implementations,” in Proceedings of the 15th European Sympo-
sium on Artificial Neural Networks, vol. 4, pp. 471–482, 2007.

[7] C. Fernando and S. Sojakka, “Pattern recognition in a bucket,” in
Advances in Artificial Life, Lecture Notes in computer Science,
pp. 588–597, Springer, Berlin, Germany, 2003.

[8] D. Nquyen-Tuong and J. Peters, “Model learning for robot
control: a survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–
340, 2011.

[9] M. Oubbati, M. Schanz, and P. Levi, “Kinematic and dynamic
adaptive control of a nonholonomic mobile robot using a
RNN,” in Proceedings of IEEE International Symposium on
Computational Intelligence in Robotics and Automation (CIRA
’05), pp. 27–33, June 2005.

[10] M.Kawato, “Feedback-error-learning neural network for super-
vised motor learning,” in Advanced Neural Computers, R. Eck-
miller, Ed., pp. 365–372, Elsevier, Amsterdam,TheNetherlands,
1990.

[11] M. I. Jordan and D. E. Rumelhart, “Forwardmodels: supervised
learning with a distal teacher,” Cognitive Science, vol. 16, no. 3,
pp. 307–354, 1992.

[12] M. Kawato, “Internal models for motor control and trajectory
planning,” Current Opinion in Neurobiology, vol. 9, no. 6, pp.
718–727, 1999.

[13] R. A. Løvlid, “Learning to imitate YMCA with an ESN,” in
Proceedings of the 22nd International Conference on Artificial
Neural Networks and Machine Learning (ICANN ’12), Lecture
Notes in Computer Science, pp. 507–514, Springer, 2012.

[14] R. A. Løvlid, “Learning motor control by dancing YMCA,” IFIP
Advances in Information and Communication Technology, vol.
331, pp. 79–88, 2010.

[15] A. Tidemann and P. Öztürk, “Self-organizing multiple models
for imitation: teaching a robot to dance the YMCA,” in IEA/AIE,
vol. 4570 of Lecture Notes in Computer Science, pp. 291–302,
Springer, Berlin, Germany, 2007.

[16] H. Jaeger et al., “Simple toolbox for esns,” 2009, http://
reservoir-computing.org/software.

[17] F. Toutounian and A. Ataei, “A new method for computing
Moore-Penrose inversematrices,” Journal of Computational and
Applied Mathematics, vol. 228, no. 1, pp. 412–417, 2009.

[18] F. Wyffels, B. Schrauwen, and D. Stroobandt, “Stable output
feedback in reservoir computing using ridge regression,” in
Proceedings of the 18th International Conference on Artificial
Neural Networks, Part I (ICANN ’08), pp. 808–817, Springer,
2008.

[19] H. Jaeger, “The echo state approach to analysing and training
recurrent neural networks,” Tech. Rep., GMD, 2001.

III

POSTSCRIPT

99

LIST OF FIGURES

2.1 A forward model predicts the outcome of a motor command in terms of a

position, and an inverse model calculates a motor command that will move

the limb to a desired position. 14

2.2 Feedforward control with internal models can be realized in three ways. . 15

2.3 Direct inverse modeling . 16

2.4 Distal teacher learning . 17

2.5 Feedback-error-learning . 18

2.6 The figure illustrates a basic RNN architecture. 20

3.1 The input and output to the control system. 25

3.2 The motor commands are the joint angle velocities. 26

3.3 The YMCA movement. 27

3.4 Position representation. 28

3.5 Two control architectures with delayed sensory input 31

3.6 The figure shows a comparison of the performance the control architecture

with and without a forward model for delayed sensory input. 32

3.7 The bimanual control architecture. 34

3.8 Results bimanual coordination. 35

3.9 The figure illustrates the feedback-error-learning architecture used for test-

ing generalization capabilities. 36

3.10 The control system does not have to train on the whole range of motion

for each degree of freedom in order to generalize to all movements. 37

3.11 The two architectures used to compare the original and the new training

method for ESNs. 39

3.12 Comparing performance of the novel training method versus the original . 40

3.13 The plots illustrate why the original method without repetitions fails. . . . 41

3.14 Adding more repetitions of the movement in the training sequence makes

the output of the ESN seem less noisy when trained with the original method. 42

3.15 The used target appears less noisy than the estimated target in the new

method for learning ESNs. 42

101

LIST OF FIGURES

3.16 The plots illustrate the quality of the teacher forcing when the ESN is

trained with the original method and the new method. 43

102

BIBLIOGRAPHY

[1] Michael A. Arbib, Giorgio Metta, and Patrick van der Smagt. Neurorobotics: From

vision to action. In Bruno Siciliano and Oussama Khatib, editors, Handbook of
Robotics, pages 1453–1480. Springer, 2008.

[2] Amir F. Atiya and Alexander G. Parlos. New results on recurrent network training:

unifying the algorithms and accelerating convergence. IEEE Transactions on Neural
Networks, 11(3):697–709, 2000.

[3] Arpan Banerjee and Viktor K. Jirsa. How do neural connectivity and time delays

influence bimanual coordination? Biological Cybernetics, 96(2):265–278, 2007.

[4] A. Baranes and P.-Y. Oudeyer. Intrinsically motivated goal exploration for active

motor learning in robots: A case study. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 1766–1773, 2010.

[5] Amy J. Bastian. Learning to predict the future: the cerebellum adapts feedforward

movement control. Current Opinion in Neurobiology, 16:645–649, 2006.

[6] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Robot pro-

gramming by demonstration. In Bruno Siciliano and Oussama Khatib, editors, Hand-
book of Robotics, chapter 59. Springer, 2008.

[7] E. Datteri, G. Asuni, G. Teti, C. Laschi, P. Dario, and E. Guglielmelli. Experimen-

tal analysis of the conditions of applicability of a robot sensorimotor coordination

scheme based on expected perception. In Intelligent Robots and Systems, 2004.
(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 2,

pages 1311–1316 vol.2, 2004.

[8] Edoardo Datteri, Giancarlo Teti, Cecilia Laschi, Guglielmo Tamburrini, Paolo Dario,

and Eugenio Guglielmelli. Expected perception: an aticipation-based perception-

action scheme in robots. In Intelligent Robots and Systems, 2004. (IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, 2003.

103

BIBLIOGRAPHY

[9] Edoardo Datteri, Giancarlo Teti, Cecilia Laschi, Guglielmo Tamburrini, Paolo Dario,

Eugenio Guglielmelli, and Scuola Superiore Sant’anna. Expected perception in

robots: a biologically driven perception-action scheme. In in Proceedings of ICAR
2003, 11th International Conference on Advanced Robotics, Vol.3, pages 1405–1410,

2003.

[10] Pierre Dauchez, Alain Fournier, and Rene Jourdan. Hybrid control of a two-arm

robot for complex tasks. Robotics and Autonomous Systems, 5(4):323 – 332, 1989.

[11] Yiannis Demiris and Anthony Dearden. From motor babbling to hierarchical learn-

ing by imitation: a robot developmental pathway. In Proceedings of the Fifth In-
ternational Workshop on Epigenetic Robotics: Modeling Cognitive Development in
Robotic Systems, pages 31–37, 2005.

[12] J. Diedrichsen, R. Shadmehr, and R. B. Ivry. The coordination of movement: optimal

feedback control and beyond. Trends in Cognitive Sciences, in press.

[13] Kenji Doya. Universality of fully connected recurrent neural networks. Technical

report, University of California, San Diego, 1993. Submitted to: IEEE Transactions

on Neural Networks.

[14] Kenji Doya. What are the computations of the cerebellum, the basal ganglia, and the

cerebral cortex? Neural Networks, 12:961–974, 1999.

[15] Kenji Doya. Complementary roles of basal ganglia and cerebellum in learning and

motor control. Current opinion in neurobiology, 10(6):732–739, 2000.

[16] Kenji Doya, Hidenori Kimura, and Mitsuo Kawato. Neural mechanisms of learning

and control. Control Systems, IEEE, 21(4):42–54, 2001.

[17] Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal. Learning inverse kinematics.

In Proceedings of the IEEE/RSJ International Conference on Intelligence in Robotics
and Autonomous Systems (IROS2001), 2001.

[18] Xavier Dutoit, Benjamin Schrauwen, Jan Van Campenhout, Dirk Stroobandt, Hen-

drik Van Brussel, and Marnix Nuttin. Pruning and regularization in reservoir com-

puting: a first insight. In Proceedings of the 16th European Symposium on Artificial
Neural Networks (ESANN 2008), pages 1–6, 2008.

[19] Herbert Jaeger et. al. Simple toolbox for ESNs. http://
reservoir-computing.org/software, 2009.

[20] Chrisantha Fernando and Sampsa Sojakka. Pattern recognition in a bucket. In

Advances in Artificial Life, Lecture Notes in computer Science, pages 588–597.

Springer, 2003.

104

BIBLIOGRAPHY

[21] Tamar Flash and Neville Hogans. The coordination of arm movements: An exper-

imentally confirmed mathematical model. Journal of neuroscience, 5:1688–1703,

1985.

[22] Ann M. Graybiel. Building action repertoires: memory and learning functions of the

basal ganglia. Current Opinion in Neurobiology, 5:733–741, 1995.

[23] Ann M. Graybiel. The basal ganglia and chunking of action repertoires. Neurobiol-
ogy of Learning and Memory, 70:119–136, 1998.

[24] Ann M. Graybiel. The basal ganglia. Current Biology, 10(14):509–511, 2000.

[25] Elena V. Gribovskaya and Aude G. Billard. Combining dynamical systems con-

trol and programming by demonstration for teaching discrete bimanual coordination

tasks to a humanoid robot. In Proceedings of the ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI), 2008.

[26] Horst-Michael Gross, Volker Stephan, and Torsten Seiler. Neural architecture for

sensorimotor anticipation. Cybernetics and Systems Research, 2:593–598, 1998.

[27] Heiko Hoffman. Perception through visuomotor anticipation in a mobile robot. Neu-
ral Networks, 20(1):22–33, 2007.

[28] Masao Ito. Control of mental activities by internal models in the cerebellum. Nature
Reviews Neuroscience, 9:304–313, 2008.

[29] Herbert Jaeger. The echo state approach to analysing and training recurrent neural

networks. Technical report, GMD, 2001.

[30] Herbert Jaeger. A tutorial on training recurrent neural networks, covering bppt, rtrl,

and the echo state network approach. Technical report, Fraunhofer Institute for Au-

tonomous Intelligent Systems, 2002.

[31] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems

and saving energy in wireless communication. Sience, 304:78–80, 2004.

[32] Michael I. Jordan. Chapter 2 computational aspects of motor control and motor

learning. In Herbert Heuer and Steven W. Keele, editors, Motor skills, volume 2 of

Handbook of Perception and Action, pages 71 – 120. Academic Press, 1996.

[33] Michael I. Jordan and David E. Rumelhart. Forward models: Supervised learning

with a distal teacher. Cognitive Science, 16:307–354, 1992.

[34] M. Kawato. Cerebellum and motor control. In Michael A. Arbib, editor, The Hand-
book of Brain Theory and Neural Networks, second edition, pages 190–195. The

MIT Press, 2002.

105

BIBLIOGRAPHY

[35] Mitsuo Kawato. Feedback-error-learning neural network for supervised motor learn-

ing. In R. Eckmiller, editor, Advanced Neural Computers, pages 365–372. Elsevier,

1990.

[36] Mitsuo Kawato. Internal models for motor control and trajectory planning. Current
Opinion in Neurobiology, 9(6):718–727, 1999.

[37] Mitsuo Kawato and Hiroaki Gomi. The cerebellum and vor/okr learning models.

TINS, 15(11), 1992.

[38] Mitsuo Kawato and Hiroaki Gomi. A computational model of four regions of the

cerebellum based on feedback-error learning. Biological Cybernetics, 68(2):95–103,

1992.

[39] Jon Klein. breve: a 3d simulation environment for multi-agent simulations and arti-

ficial life. http://www.spiderland.org/.

[40] Carl D. Kopf. Dynamic two arm hybrid position/force control. Robotics and Au-
tonomous Systems, 5(4):369 – 376, 1989.

[41] Cecilia Laschi, Gioel Asuni, Eugenio Guglielmelli, Giancarlo Teti, Roland Johans-

son, Hitoshi Konosu, Zbigniew Wasik, Maria Chiara Carrozza, and Paolo Dario. A

bio-inspired predictive sensory-motor coordination scheme for robot reaching and

preshaping. Autonomous Robots, 25(1-2):85–101, 2008.

[42] Mantas Lukoševičius. A practical guide to applying echo state networks, volume

7700 of Lecture Notes in Computer Science, pages 659–686. Springer Berlin Hei-

delberg, 2 edition, 2012.

[43] Mantas Lukoševičius. Echo state networks with trained feedbacks, school of engi-

neering and science. Techreport, International University of Bremen, February 2007.

[44] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recur-

rent neural network training. Computer Science Review, 3(3):127 – 149, 2009.

[45] Mantas Lukoševičius and Herbert Jaeger. Reservoir computing approaches to recur-

rent neural network training. Computer Science Review, 3(3):127–149, 2009.

[46] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing

without stable states: A new framework for neural computation based on perturba-

tions. Neural Computation, 14(11):2531–2560, 2002.

[47] Stephen Marsland. Support Vector Machines, chapter 5, pages 119–131. Chapman

& Hall, 2009.

[48] Biren Mehta and Stefan Schaal. Forward models in visuomotor control. Journal of
Neuropysiology, 88(2):942–953, 2002.

106

BIBLIOGRAPHY

[49] Andrew N. Meltzoff and M. Keith Moore. Explaining facial imitation: A theoretical

model. Early Development and Parenting, 6:179–192, 1997.

[50] R.C. Miall, D.J. Weir, Daniel M. Wolpert, and J.F. Stein. Is cerebellum a smith

predictor? Journal of Motor Behavior, 25(3):203–216, 1993.

[51] Frank A. Middleton and Peter L. Strick. Basal ganglia and cerebellar loops: motor

and cognitive circuits. Brain Research Reviews, 31:236–250, 2000.

[52] Vishwanathan Mohan and Pietro Morasso. Passive motion paradigm: an alternative

to optimal control. Frontiers in Neurorobotics, 5, 2011.

[53] Vishwanathan Mohan, Pietro Morasso, Giorgio Metta, and Giulio Sandini. A

biomimetic, force-field based computational model for motion planning and biman-

ual coordination in humanoid robots. Autonomous Robots, 27:291–307, 2009.

[54] Pietro Morasso, Vishwanathan Mohan, Giorgio Metta, and Giulio Sandini. Motion

planning and bimanual coordination in humanoid robots. In Frontiers in Artificial
Intelligence and Applications, volume 196 of Computational Intelligence and Bio-
engineering, pages 169–185. IOS Press, 2009.

[55] Thomas Natschläger, Wolfgang Maass, and Henry Markram. The "liquid computer":

A novel strategy for real-time computing on time series. Special Issue on Founda-
tions of Information Processing of TELEMATIK, 8(1):39–43, 2002.

[56] Fernando Passold and Marcelo Ricardo Stemmer. Feedback error learning neural

network applied to a scara robot. In Fourth International Workshop on Robot Motion
and Control, pages 1547–1554. MIT Press, 2004.

[57] B.A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: a

survey. Neural Networks, IEEE Transactions on, 6(5):1212–1228, 1995.

[58] Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Reinforcement learning for hu-

manoid robotics. In Humanoids2003, Third IEEE-RAS International Conference on
Humanoid Robots, 2003.

[59] Tony J. Prescott, Fernando M. Montes González, Kevin Gurney, Mark D. Humphries,

and Peter Redgrave. A robot model of the basal ganglia: Behavior and intrinsic

processing. Neural Networks, 19(1):31 – 61, 2006.

[60] R.F. Reinhart and J.J. Steil. Recurrent neural associative learning of forward and in-

verse kinematics for movement generation of the redundant pa-10 robot. In Learning
and Adaptive Behaviors for Robotic Systems, 2008. LAB-RS ’08. ECSIS Symposium
on, pages 35–40, 2008.

107

BIBLIOGRAPHY

[61] Matthias Rolf, Jochen J. Steil, and Michael Gienger. Efficient exploration and learn-

ing of whole body kinematics. In IEEE 8th International Conference on Develop-
ment and Learning, 2009.

[62] S. Schaal and C.G. Atkeson. Robot juggling: implementation of memory-based

learning. Control Systems, IEEE, 14(1):57–71, 1994.

[63] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout. An overview

of reservoir computing: theory, applications and implementations. In Proceedings
of the 15th European Symposium on Artificial Neural Networks, pages 471–482, 4

2007.

[64] Carol A. Seger. The basal ganglia in human learning. The Neuroscientist, 12(2),

2006.

[65] Burr Settles. Active learning literature survey. Technical report, University of

Wisconsin-Madison, 2009.

[66] R. Shadmehr and S.P. Wise. The Computational Neurobiology of Reaching and
Pointing: A Foundation for Motor Learning. MIT Press, 2005.

[67] Reza Shadmehr and John W. Krakauer. A computational neuroanatomy for motor

control. Experimental Brain Research, 185(3):359–381, 2008.

[68] Qingsong Song, Zuren Feng, and Mingli Lei. Stable training method for echo state

networks with output feedbacks. In Networking, Sensing and Control (ICNSC), 2010
International Conference on, pages 159 –164, april 2010.

[69] Jochen J. Steil. Backpropagation-decorrelation: online recurrent learning with o(n)

complexity. In Proc. IJCNN, 2004.

[70] Stephan P. Swinnen. Intermanual coordination: From behavioural principles to

neural-network interactions. Nature, 3:348–359, 2002.

[71] Axel Tidemann and Pinar Öztürk. Self-organizing multiple models for imitation:

Teaching a robot to dance the YMCA. In IEA/AIE, volume 4570 of LNCS, pages

291–302. Springer, June 2007.

[72] Deepak Tolani and Norman I. Badler. Real-time inverse kinematics of the human

arm. Presence, 5(4):393–401, 1996.

[73] Y. Uno, M. Kawato, and R. Suzuki. Formation and control of optimal trajectory in

human multijoint arm movement. Biological Cybernetics, 61(2):89–101, 1989.

[74] Patrick van der Smagt. Cerebellar control of robot arms. Connection Science,

10:301–320, 1998.

108

BIBLIOGRAPHY

[75] Patrick van der Smagt and Daniel Bullock. Extended abstracts of the nips*97 work-

shop - can artificial cerebellar models compete to control robots? Technical report,

DLR.

[76] Patrick van der Smagt and Gerd Hirzinger. The cerebellum as computed torque

model. In R.J. Howlett and L.C. Jain, editors, Fourth International Conference on
Knowledge-Based Ingelligent Engineering Systems & Applied Technologies, 2000.

[77] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental

unification of reservoir computing methods. Neural Networks, 20:391–403, 2007.

[78] Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An

o(n) algorithm for incremental real time learning in high dimensional spaces. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning (ICML
2000), 2000.

[79] Claes von Hofsen. An action perspective on motor development. TRENDS in Cog-
nitive Sciences, 8(6):266–272, 2004.

[80] Daniel M. Wolpert, Zoubin Ghahramani, and Michael I. Jordan. An internal model

for sensorimotor integration. Science, 269:1880–1882, 1995.

[81] Daniel M. Wolpert and Mitsuo Kawato. Multiple paired forward and inverse models

for motor control. Neural Networks, 11:1317–1329, 1998.

[82] Daniel M. Wolpert, R. Chris Miall, and Mitsuo Kawato. Internal models in the

cerebellum. Trends in Cognitive Sciences, 2(9), 1998.

[83] David H. Wolpert. The supervised learning no-free-lunch theorems. In Proceedings
of the 6th Online World conference on Soft Computing in Industrial Applications
(WSC 2006), pages 25–42, 2006.

[84] Francis Wyffels, Benjamin Schrauwen, and Dirk Stroobandt. Stable output feedback

in reservoir computing using ridge regression. In Proceedings of the 18th interna-
tional conference on Artificial Neural Networks, Part I, ICANN ’08, pages 808–817,

Berlin, Heidelberg, 2008. Springer-Verlag.

[85] Tadashi Yamazaki and Shigeru Tanaka. The cerebellum as a liquid state machine.

Neural Networks, 20:290–297, 2007.

109

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Subsample
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Subsample
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Subsample
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

