
Image-space Ambient Obscurance in
WebGL

Lorents Odin Gravås

Master of Science in Informatics

Supervisor: Theoharis Theoharis, IDI

Department of Computer and Information Science

Submission date: August 2013

Norwegian University of Science and Technology

Abstract

Image-space approaches to ambient obscurance have become the de-facto stan-
dard for realistic ambient lighting in real-time applications. This thesis in-
vestigates the potential applicability of such approaches for a WebGL-based
implementation. As image-space ambient obscurance has been an active �eld
of research in computer graphics the last few years, a lot of di�erent techniques
and enhancements have emerged. This thesis presents a systematic survey of
the current state of the art techniques, along with an assessment of their po-
tential for successful implementation using WebGL. Finally, I present a working
WebGL-based prototype, yielding good performance and acceptable quality.

Sammendrag

Tilnærminger til teknikken �image-space ambient obscurance� har blitt en de-
fakto standard for realistisk indirekt lsyssetting i sanntidsapplikasjoner. Denne
oppgaven utforsker den poteniselle muligheten for å bruke slike teknikker i en
WebGL-basert implementasjon. Denne oppgaven presenterer en systematisk
gjennomgang av eksisterende teknikker, sammen med en vurdering av deres
potensial for en implementasjon ved hjelp av WebGL. Avsluttningsvis presen-
terer jeg en fungerende WebGL-basert prototype, som demonstrerer god ytelse
og akseptabel kvalitet.

Preface

The work presented in this thesis was performed as part of my masters study
at the Norwegian University of Science and Technology (NTNU) in Trondheim.
The timeframe for this project has been two semesters. I would like to thank
my main advisor Theoharis Theoharis for help and support during the project,
and for giving me the opportunity to work on such an interesting and hot topic.

I would also like to thank Jonny Ree for providing me with the animated model
used in the prototype. The sibernik cathedral, also used in the prototype, was
downloaded from http://graphics.cs.williams.edu/data/meshes.xml .

i

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Structure of thesis . 1

1.3 Nomenclature . 2

1.3.1 Spaces and de�nitions . 2

1.3.2 A note about screen-, image- and object-space 3

1.4 Tools . 3

1.4.1 WebGL . 3

1.4.1.1 The WebGL graphics pipeline 3

1.4.1.2 Support . 4

1.4.2 Uno . 4

1.5 Background . 4

1.5.1 Illumination models . 5

1.5.1.1 Physically-based rendering 5

1.5.1.2 Local- and global illumination models 6

1.5.2 Ambient obscurance and occlusion 6

1.5.2.1 The secret behind its success 6

1.5.2.2 De�nition . 7

1.5.3 Image-space approximations 8

1.6 Related work . 9

2 An overview of the �eld 13

2.1 Challenges . 13

2.1.1 Approximation failures . 13

2.1.1.1 False occlusions 13

2.1.1.2 Missing occlusion e�ect 15

iii

2.1.2 Implementation challenges 15

2.1.2.1 Under-sampling 15

2.1.2.2 Performance swings 15

2.1.2.3 Self-occlusion . 15

2.2 Estimator functions . 16

2.2.1 Open volume-based estimators 16

2.2.1.1 Point sampels of surrounding sphere 16

2.2.1.2 Point samples of tangenting hemisphere 17

2.2.1.3 Line samples of surrounding sphere 18

2.2.1.4 Line samples of tangenting hemisphere 19

2.2.1.5 Line samples of tangenting sphere 20

2.2.2 Solid angle-based . 20

2.2.2.1 Monte Carlo integration based on point samples 20

2.2.2.2 Horizon-based AO estimator 21

2.2.2.3 Sphere caps . 21

2.2.2.4 Alchemy AO estimator 21

2.2.3 On sample locator schemes 22

2.2.3.1 Randomization 22

2.3 Enhancements . 22

2.3.1 Utilizing the low frequency nature of ambient light 24

2.3.1.1 Bluring . 24

2.3.1.2 Rendering AO in a lower resolution 24

2.3.1.3 Reading from a lower resolution G-bu�er 25

2.3.2 Utilizing temporal coherence 25

2.3.3 Aquireing more information about the geometry 26

2.3.3.1 Guard banding 26

2.3.3.2 Using multiple layers 26

2.3.3.3 Using multiple points of view 27

2.3.3.4 Real-time volexization 27

2.4 GPGPU-based approaches . 28

iv

3 Implementing ambient obscurance in WebGL 29

3.1 Implementation considerations 29

3.1.1 Deferred- versus Forward rendering 29

3.1.1.1 Bandwidth and G-bu�er rendering overhead . . 30

3.1.1.2 Antialiasing . 30

3.1.1.3 Experimental results 31

3.1.2 Pixel format limitations 31

3.1.3 Reconstructing view-space position in image-space 32

3.1.3.1 Using inverse projection directly 32

3.1.3.2 Storing linear depth 32

3.1.3.3 Interpolating the frustum corners 33

3.1.3.4 Interpolating the far plane vector 34

3.1.3.5 Special cases for the currently shaded pixel . . . 34

3.1.4 Reconstructing normal from depth 35

3.1.5 Storing compressed normals 35

3.1.5.1 Storing only two components 35

3.1.5.2 Sphere projections 37

3.2 Implemented solution . 37

3.2.1 Renderer overview . 37

3.2.2 Ambient obscurance estimator 38

3.2.3 G-bu�er layout . 38

3.2.4 Bilateral blur . 40

3.2.5 Considered enhancements 41

4 Results and discussion 43

4.1 Method . 43

4.1.1 Benchmarcing of performance 43

4.1.1.1 Sources of error 43

4.1.1.2 Test setup . 44

4.1.2 Assessment of quality . 44

4.2 Results . 45

4.3 Conclusion and further work . 46

4.4 A step back . 46

v

A G-bu�er packing and unpacking source code 53

A.1 Generated GLSL shader program for G-bu�er pass 56

B Ambient obscurance source code 59

B.1 Generated GLSL fragment shader for AO pass 62

C Bilateral blur source code 65

C.1 Generated GLSL fragment shader for bilateral blur pass 67

D Normal reconstruction source code 71

D.1 Generated GLSL fragment shader for normal reconstruction . . . 73

vi

Chapter 1

Introduction

1.1 Motivation

GPUs are everywhere. Powerfull high-end graphics accelerators have become
standard in about any desktop computer. At the same time, low-power embed-
ded graphics processors have found its way into an even wider range of consumer
devices, most notable smart phones and tablets.

With the emerging trend of �the cloud� being the next application platform, We-
bGL enters the scene as a standard for browser applications to directly harness
the power of GPUs found in most clients today. However, because portabil-
ity and avilability is the key selling point of browser based applications, the
core WebGL-standard only relies on the limited feature set available on mobile
devices.

The bleeding edge of research in computer graphics tend to focus on utilizing
new features found only in the latest high-end desktop platforms, in order to
push the limits of what is possible in real-time further. However, the recent
adaption of WebGL by most main-stream browser vendors opens an interessting
opportunity for exploration of advanced rendering techniques that are available
to a much broader audience.

This thesis will focus on one such technique, namely ambient obscurance and
occlusion, under the limitations set by the core WebGL-standard.

1.2 Structure of thesis

This thesis is structured as follows

Part 1 presents the motivation and background for this work.

Part 2 contains an overview of the �eld. The challenges of image-space ambient
obscurance and occlusion techniques are presented, followed by a study of
di�erent approaches to solving these, and their theoretical applicability to
a WebGL-based implementation.

1

Part 3 concerns implementation-speci�c considerations, and reasons for the
choices made during implementation. Finally, an overview of the imple-
mented prototype is provided.

Part 4 presents the results and conclusions from this work.

1.3 Nomenclature

Graphics applications often give rise to the de�nition of a handful of common
vector spaces. To complicate things even further, di�erent authors and APIs
often have di�erent names for the same space. For clarity, I will in this section
brie�y de�ne the notation and vector spaces used throughout this thesis.

I will use a right haneded coordinate system . All coordinates and direction will
be represented by column vectors, and transformation matrices are assumed to
be post-multiplied by vectors.

1.3.1 Spaces and de�nitions

Tangent-space The local coordiante system of a surface. Positive Z along the
normal, Positive X is along the tangent, Positive Y is the bi-tangent (also
called bi-normal). In this thesis i de�ne this space to be right-handed.

Object-space The local space unique to each object in the scene. This is
the space in which the geometry is de�ned, without any transformations
applied.

World-space The global absolute coordinate system, resulting from transform-
ing each object in the scene by its world-transformation. In OpenGL this
transformation is called the Model-transformation.

View-space The local coordinate system of the viewer. In some litterature
this is called eye-space or camera-space. I de�ned this space similarly
to OpenGL with the eye position (aka. camera or center of projection)
in origo, the view direction as the negative Z unit-vector, the right hand
direction as the positive X unit-vector, and the up direction as the positive
Y unit-vector. This space is a just world space rotated and translated
accorting to the View-matrix, with no projection or aspect scaling applied.

Clip-space Clip-coordinates are view-coordinates after multiplication by a pro-
jection matrix. In the OpenGL pipeline, this is the space of the output
from the Vertex Shader. The set of coordinates visible on the screen is
x, y, z ∈ [−w,+w], w ∈ <.

Normalized Device Coordinates (NDC) Normalized device coordinates re-
sults from dividing the X, Y and Z clip-coordinates by the W-clip coordi-
nate, also know as perspective-division. The set of coordinates visible on
the screen is the �unit cube�, i.e. x, y, z ∈ [−1,+1]. If homogenous coor-
dinates are used, the W-component can also be assumed to be divided by
itself and always be equal to 1 in this space.

2

Image-space In this thesis I will refer to image-space as the coordinate system
of a texture storing normalized linear depth values. This de�nition is
useful in the context of reconstructing view-coordinates from depth in
section 3.1.3, but is otherwise not commonly used.

1.3.2 A note about screen-, image- and object-space

In the context of distinguishing between techniques operating in image-space/screen-
space versus object-space, it is often arbitrary which coordinate system the tech-
nique actually operates in; rather it is used as a way of distinguishing between
methods having a discrete approximation of the geometry based on a certain
view compared to methods assuming full knowledge of the source geometry.

1.4 Tools

This section describes the tools used during the work on this thesis. It describes
WebGL, which have served as target platform, and whose limitations have been
de�ning for the scope of this work. Secondly, it describes Uno, a cross-compiling
programming language used as a tool during prototyping.

1.4.1 WebGL

WebGL is a JavaScript API that enables hardware accelerated rendering in the
browser. WebGL 1.0 is based upon the OpenGL ES 2.0 speci�cation, which is
a subset of desktop OpenGL aimed at embedded devices.

1.4.1.1 The WebGL graphics pipeline

WebGL can be described as a pipeline. The input to WebGL is a shader pro-
gram along with its input in the form of vertex bu�ers, samplers and uniforms.
The shader program de�nes the behavior of the programmable stages of the
pipeline, and the internal state of WebGL de�nes the behavior of the �xed-
function stages. Vertex bu�ers store per-vertex information such as position
and per-vertex normals. Uniforms store global information such as transfor-
mation matrices and information about global lighting. Samplers store grids
of data. While samplers typically store texture maps loaded from �les, image-
space ambient obscurance technques utilize this feature to gain random access
to output from a previous rendering pass.

There are two programmable stages in the WebGL pipeline: The vertex shader
and the fragment shader, whose respective domains are each vertex and each
rasterized fragment.

3

The vertex shader reads the data for the current vertex from the vertex bu�ers,
does some computation with the additional input of uniforms, and writes the
output to varyings. Varyings are variables representing values to be passed
further down the pipeline. Built-in varying are used to de�ne where the result-
ing primitives are rasterized. The per-vertex values of the varyings are then
interpolated across the rasterized primitives, and serve as input for the next
programmable stage: The fragment shader.

The fragment shader uses the interpolated values passed as varyings, in addition
to uniforms and samplers, as input to calculate the color of the shaded fragment.
Finally, the color of the fragment is blended according to the blending state of
WebGL to produce the color of the �nal pixel in the resulting framebu�er.

1.4.1.2 Support

According to statistics gathered from a range of sites by WebGLStats (2013),
almost three quaters of desktop clients support WebGL as of the time of writing.
If one include mobile devices the ratio is abut two thirds.

OpenGL ES 2.0 is allready supported by a wide range of mobile devices, which
can be exploited by vendors to hardware accelerate WebGL implementations on
these devices. On the desktop, WebGL is supported by a lot of browsers, most
notable Google Chrome and Mozilla Firefox.

1.4.2 Uno

Prior to and during the writing this thesis I have been working at the NTNU-
originated startup company Outracks Technologies AS, with the development of
a new programming language called Uno. Uno makes writing applications that
utilize hardware accelerated graphics less tedious by taking care of passing values
between the cpu, the vertex shader and the fragment shader. Furthermore, Uno
makes code in such applications more readable by using a single language across
all stages. The Uno compiler can translate Uno source code to a multitude of
di�erent platforms, including Javascript and WebGL.

I have used Uno as a tool to speed up prototyping during the writing of this
thesis. However, this has no e�ect on my results, as my �ndings are not related
to the language of the source code but rather the limitations of the target
platform.

In the appendices I have included both the Uno source code and the resulting
generated GLSL shader code for relevant parts of the prototype.

1.5 Background

This section describes explains the technical, physical and mathematical back-
ground for image-space ambient obscurance and occlusion.

4

1.5.1 Illumination models

Creating a model for everything you see is a demanding task. Illumination
models de�ne how light interacts with matter in a virtual setting. The ultimate
goal of an illumination model is to mimick the behavior of light in the real-world,
but most are just crude approximations. In this section I will introduce some
of the challenges motivating the de�nition of the particular illumination model
known as Ambient obscurance or occlusion.

1.5.1.1 Physically-based rendering

The rendering equation, introduced by Kajiya (1986a), describes the radiance
of light leaving a point in space in all directions, based on geometric optics. The
full equation can be formulated as follows:

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) +

ˆ
Ω

fr(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)(ωi · n)dωi

(1.5.1)

For simplicity, I rewrite this for a certain wavelength λ and at one point in time
t:

Lo(x, ωo) = Le(x, ωo) +

ˆ
Ω

fr(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi

Lo(x, ωo)is the readiance outwards from x in direction ω. Li(x, ωi) is the radi-
ance of light reaching x from direction ωi, Le(x, ω) is the emitted light radiance
of light emitted from x in direction ω. fr(x) is the bidirectional re�ection distri-
bution function (BRDF) at point x, describing how much light is re�ected from
direction ωi to ωo at x. Ω is the directions in the hemisphere around x.

For this thesis I will de�ne physically-based rendering as rendering techniques
that are derived from close-to-physical models such as the rendering equation.

Physically-based rendering can create images that are di�cult to distinguish
from photographs, and can to some degree even predict observations in the real-
world. E�ects such as re�ection, soft shadows and color bleeding, which other-
wise would need to be computed explicitly, are inherit side e�ects of physically-
based rendering.

With the rapid delvelopment in computer hardware, o�ine rendering solutions
have started to include physically-based rendering techniques such as path trac-
ing. We also see the emergance of real-time implementations of path tracing
and photon mapping (van Schijndel, 2013). However, these implementations
only run on high-end desktop workstations, and the quality is still greatly lim-
itated by the number of rays a�ordable per pixel. Real-time physically-based
rendering techniqus are in general plaged with severe noise artifacts, in cases
where empirical approximations can give convincing results at several orders of
magnitude higher frame rates.

5

All current successful implementations of real-time physically-based rendering
depend on the avialablility GPGPU, which makes them unsuitable for a We-
bGL implementation. Fortunately, there have been an enormous e�ort put into
the creation of empirical illumination models that, to various degrees of real-
ism, approximate the e�ects of physically-based rendering, without the choking
computational demands.

1.5.1.2 Local- and global illumination models

It is common to disguingish between local- and global illumination models.
Global illumination models consider the geometric surface- and volumetric prop-
erties of the entire scene in the shading of each point, while local methods only
consider the properties in the vicinity of - or at - the point to be shaded, under
the assumption that other properties are globally constantant. This distinction
is not very useful for physically-based illumination models as de�ned above, as
such are nessecarely global.

While global illumination models can produce renderings that are superior in
quality over local illumination models, they are often very expensive to compute.
Acceleration structures are required to achieve real-time frame rates for any
non-trivial dynamic scene. Unfortunately, such structures are often di�cult
to evaluate in a shader without hitting the limitations of shader length and
complexity allowed by WebGL.

1.5.2 Ambient obscurance and occlusion

Ambient obscurance and occlusion, or AO for short, is a non-physically based
local illumination model, that approximates some global illumination e�ects by
considering geometry within a bounded distance of the shaded point. Ambient
obscurance and occlusion speci�cally aims to approximate the amount of indirect
light that reaches a point from all directions on the point's hemisphere, assuming
no inter-re�ections.

AO is an emprical model, motivated by the observation that in an environment
under di�use lighting, corners and other obscured areas appear darker than open
areas (Zhukov et al., 1998). The locallity of the model bounds its computational
demands, while still providing plausible global illumination e�ects. In fact, in
the original paper by Zhukov et al. (1998), AO is described as a locally-global
illumination model.

While traditionally a popular technique in �lm for reducing rendering time
and ease creation of light environments (Christensen, 2003; Landis, 2002), the
technique is now also commonly used in games and other real-time applications
(Mittring, 2007, 2009; Filion and McNaughton, 2008; Scheer and Keutel, 2010;
Smedberg and Wright, 2009; McGuire et al., 2011, 2012).

1.5.2.1 The secret behind its success

Ambient obscurance and occlusion is a subtle e�ect, but it covers an aspect
of physical lighting that is important to human perception of scenery. Soft

6

shadows caused by ambient obscurance and occlusion enhance perception of
geometric detail, by darkening conave surfaces, cracks and corners. Contact
shadows give important visual cues of the spatial relationship between objects,
and the relative scale of soft shadows hint about the proximity of objects.

It is not surprising that AO is so commonly used in both real-time and o�ine
rendering. While shadow mapping can account for shadows cast by direct light,
AO accounts for shadows cast by indirect light, of which there tend to be most
of in common settings. E.g. in indoor scenes, most light tend to be re�ected o�
walls; in outdoor scenes, the sky cause ambient illumination.

In the absence of any ambient lighting, scenes look sharp, �at and unrealistic,
and the areas not reached by direct light would be pitch black. With the com-
mon approximation of constant ambient lighting, shadows are no longer pitch
black, but the scene will still look �at and unrealistic. Ambient obscurance and
occlusion gives a softer look to the scene while providing a whole new level of
realism.

Interestingly, even in scenarios where realism is not a key citeria, AO can ease
the understanding of 3D geometric data. Hence, the technique has a broad range
of applications in visualization outside games and �lm; including visualization
of seismic data, computer aided design, molecular visualization and medical
imaging, to mention a few.

1.5.2.2 De�nition

In this thesis i will use the original de�nition of ambient obscurance from Zhukov
et al. (1998), which can be formulated as follows:

AP =
2

π

ˆ
Ω

p(VP (ω)) cosαdω (1.5.2)

Informally, we integrate the visibility p(VP (ω)) of a point P over all direction ω
in the hemisphere Ω; taking into account the angle α between the direction and
the surface normal, similarely to the rendering equation. The calculated value
Ap is 1 for unobscured points, and 0 for totally occluded points. Further, we
de�ne

VP (ω) =

{
‖P − C‖ where C is the �rst intersection point of the ray P + ωt

+∞ if no intersection occured

and p(r) as a monotonically increasing bounded function, which is 1 for r >
rmax, where rmax is the maximum distance at which geometry can a�ect the
obscurance of the point.

Taking the distance of the �rst intersection into account is motivated by the
fact that surfaces not only occlude light, but also re�ect it. Ambient occlusion
is a special case of ambient obscurance that assumes the incident radiance from
a blocked direction on the hemisphere to be zero. I.e:

7

p(r) =

{
1 for r > rmax

0 otherwise

In general, this assumption produce darker but still convincing results (Vardis
et al., 2013), and is commonly used as a basis for implementations.

1.5.3 Image-space approximations

Ambient obscurance an occlusion is a purely geometric property, and hence not
dependent on view- and light direction. For static scenes it can be precalced
and stored in texture maps or as per-vertex information. However, for dynamic
scenes this is not an option. In addition, this is unconvenient for WebGL appli-
cations as it will greatly increase the number and size of textures that needs to
be downloaded. Hence approximating AO in real-time is of interest.

Calculating AO directly is still too computationally intensive to be done in real-
time for complex geometry, as any point can be obscured from any direction by
all geometry within a radius of rmax. In addition, this approach do not map
well to the capabilities of the rendering pipeline.

This has lead to the emergance and wide adoption of image-space ambient obscu-
rance and occlusion, also commonly refered to as Screen-space Ambient Occlu-
sion (SSAO). Image-space e�ects are typically applied as a post-process, using
results from earlier rendering passes as inputs, and can hence be considered a
special case of deferred shading (Hargreaves and Harris, 2004). This is further
discussed in section 3.1.1.

The core assumption of image-space AO is that a discretization of the currently
visible surfaces within the view frustum provide a good enough approximation
of the scene geometry to calculate ambient obscurance. In practice this is imple-
mented by �rst rendering the scene geometry to a so-called G-bu�er, a texture
containing geometric information. The information stored in a G-bu�er can
for instance be positions, normals, texture coordinates, re�ectivity, pixel depth,
and so on.

The main bene�t from the image-space approach is that the performance is
independent of the scene complexity, as it works solely on a discretisation of the
geometry. This makes it scale linearly with the number of visible pixels, instead
of being dependent on the number and complexity of all objects.

Another attractive features of image-space AO is that no precomputation is
needed, and there is no special cases for dynamic scenes. As an image-based
e�ect, it is relatively easy to implement in a fullscreen fragment shader. This
has lead the technique to become the de-facto standard for realistic ambient
lighting in games.

While image-space approximations makes AO feasible for real-time applications,
they have their own set of problems. Performance considerations cause under-
sampling, which can introduce noise or banding artifacts. Small details can be
missed if a large radius is used in combination with few sample points. Texture

8

cache trashing can result in huge performance swings. And as with all image-
space approximations, view-dependency is a major issue. Often the artist is
left tuning sub-intutive parameters such as epsilons and biases in order to hide
artifacts caused by the implemented algorithm. These problems are further
discussed in section �2.1.

In computer graphics, one is often left with a tradeo� between quality and per-
formance. I would further propose that this tradeo� includes a third variable,
how general - or �exible - the approach is. For very special cases, it is most cer-
tainly possible to get �perfect� ambient obscurance estimation while maintaining
high performance. For instance, one can analytically solve the ambient obscu-
rance integral for simple geometric shapes; or, as mentioned in the introduction
of this section, for static scenes the obscurance factors can be pre-calced. In
this sense, image-space approaches to ambient obscurance are very �exible and
yield high perforance, at the cost of visual quality.

1.6 Related work

This section gives a brief review of ambient occlusion and obscurance techniques
from a historical perspective. A more in-depth survey of the image-based ap-
proaches is given in section �2.2.

Miller (1994) de�ned accessibility as how easy it is for a spherical probe to reach
a point on a surface, �accessibility shading� has an e�ect similar to what will
later be known as Amient Obscurance. The de�nition of Ambient Obscurance
used today was introduced by Zhukov et al. (1998). Landis (2002) describes
the use of AO in a high-quality o�ine rendering environment. Pharr and Green
(2004) adapts the technique to real-time for static scenes by storing a pre-calced
ambient factor in texture maps, also known as �baking� AO.

Bunnell (2005) approximates the scene geometry with oriented discs that are
used as occluders to calculate per-vertex occlusion values on the GPU. This tech-
nique su�ers from problems handling dynamic scenes, and requires a relatively
expensive preprocessing step. As a per-vertex technique it also requires a high
tesseleation of the geometry. Kontkanen and Laine (2005) precomputes occlu-
sion values realtive to each object and stores them in textures. The values from
all objects in the scene is combined, in real-time, taking rigid transformations
into account, hence partly solving the problem of dynamic scenes. However,
this approach does not work for deformable objects, requires expensive prepro-
cessing, and is limited in the number of allowed dynamic objects.

Ren et al. (2006) proposes a di�erent de�nition of AO based on spherical har-
monics and assuming spherical occluders. This is implemented on the GPU
with support for dynamic scenes, only requireing a simple preprocessing step.
However, this has approach su�ers from performance problems with complex
scenes.

Luft et al. (2006)is the �rst to note that an unsharp masking of the depth bu�er
resembles ambient obscurance. Shanmugam and Arikan (2007) and Mittring
(2007) independently presented what can be considered the �rst image-space
ambient obscurance techniques.

9

Shanmugam and Arikan (2007) creates an analytic representation of the visible
geometry by assuming each pixel in a previous depth rendering to be the projec-
tion of a sphere. Their algorithm then uses the sphere cap projection onto the
hemisphere of the shaded surface patch to estimate the occlusion due to spheres
in its vicinity. Finally, a pre-calced approximation of the source geometry as
larger spheres is used to accumulate occlusions from large and distant occluders.

Mittring (2007) introduces the term Screen-Space Ambient Occlusion (SSAO).
Their technique simply projects random points within a sphere around the
shaded point on the view plane and accumulates the attenuated di�erence be-
tween the points' depth and the corresponding depth found in the G-bu�er.
In e�ect, this results in a fuzzy open volume estimation in the vicinity of the
point. Because it considers samples within a sphere rather than a hemisphere,
this technique produces a non-photorealistic look.

While Shanmugam and Arikan (2007) use the image-based approach only for
high-frequency occlusions, Mittring (2007) uses a much larger radius to capture
occlusions from large and distant objects aswell. To compensate for under-
sampling caused by the larger radius, an edge-preserving blur is applied to the
result.

Filion and McNaughton (2008) derives a more realistic variant of SSAO that do
not consider occluders behind hemisphere of the shaded point, as opposed to the
approach of Mittring (2007). Smedberg and Wright (2009) successfully applies
a varity of performance optimizations to SSAO, in order to make it suitable for
Xbox360-era consoles.

Szirmay-Kalos et al. (2010); Loos and Sloan (2010) improves upon open-volume
based obscurance estimators by using line-samples instead of point samples.

Fox and Compton (2008) describes a technique that bears similarity to both Mit-
tring (2007) and Shanmugam and Arikan (2007), but tries to approximate the
rendering equation with random single-sample rays and Monte Carlo-integration.
Dimitrov et al. (2008) and Bavoil et al. (2008) takes a more explicit approach,
interpreting the depth bu�er as a height �eld and tracing rays along a set of
azimuthal directions.

McGuire et al. (2011) introduces the Alchemy screen-space ambient obscurance
algorithm. An algorithm developed with the primary goal of estetics rather
than realism, and under the performance limitations of the Xbox360. However,
it is derived from the rendering equation, and bears some similarities to the
approach of Fox and Compton (2008). This algorithm is improved to scale with
better hardware and higher resolutions in McGuire et al. (2012).

In the last couple of years, there have been some GPGPU-based approaches
yielding promising results. Most notable, Timonen (2013) recently introduced
Line-Sweep Ambient Obscurance, the �rst algorithm for image-space ambient
obscurance with linear time complexity.

A set of techniques that are orthogonal to the above research have also emerged
since the �rst introduction of image-space ambient obscurance, further discussed
in section �2.3:

• Rendering in a lower resolution (Smedberg and Wright (2009), Ritschel
et al. (2009), Bavoil and Sainz (2009b), Hoang and Low (2010))

10

• Using a lower resolution depth G-bu�er (McGuire et al. (2012))

• Using several depth G-bu�ers rendred from multiple points of view (Ritschel
et al. (2009), Vardis et al. (2013))

• Using several depth G-bu�ers of di�erent depth-peeled layers (Ritschel
et al. (2009), Bavoil and Sainz (2009b))

• Utilizing temporal coherence (Smedberg and Wright (2009) , Mattausch
et al. (2010), Mattausch et al. (2011))

11

12

Chapter 2

An overview of the �eld

This chapter gives an overview of the �eld of image-space approaches to ambient
obscurance and occlusion, the challenges posed by such techniques, and the state
of the art methods for overcoming these.

2.1 Challenges

The advantages of image-space approaches to ambient obscurance and occlu-
sion are also the root cause of many of its problems. I would like to divide
these problems into two categories: Approximation failures and implementation
challenges.

2.1.1 Approximation failures

The core assumption of image-based approaches from section 1.5.3 fails for all
but the most trivial scenes. Fortunately the eye can be forgiving, and this ends
up not being the bane of such approaches. After all, it is still a lot better basis
for approximation of ambient lighting than knowledge only of the currently
shaded pixel (as in fully local models such as Phong (1975)).

Errors due to the missing information manifests itself as false occlusions, i.e.
occlusion by geometry that is not present in the real geometry, and missing oc-
clusion. These approximation failures are the cause of view-dependency artifacts
seen in image-space ambient obscurance and occlusion.

2.1.1.1 False occlusions

If one assumes that all visible surfaces are the front of closed solids extending to
in�nity in the view direction, the apprixmated geometry will always contain a
concave region where the object in front intersects the background, even though
the intersecting objects in reality are disconnected. This results in what can
be seen as a dark �halo� around the silhuette of objects disconnected from the

13

Figure 2.1.1: A cross section of a scene (light blue) and its image-space approx-
imation based on a pre-pass rendering (dark blue). View frustum is shown in
purple.

14

background. As the camera moves this e�ect gets more noticable, because the
calculated occlusion behind the silhuette will follow the object in front. It is
worth noting that the approximated geometry in this case will always have
more closed regions than the true geometry, and hence the resulting ambient
obscursion value will always be an overestimate of the correct occlusion.

2.1.1.2 Missing occlusion e�ect

Since false occlusions are generally more noticable than missing occlusions, im-
plementers often makes assumptions about the geometry that reduce the for-
mer at the expense of introducing missing occlusions. A common approach is
to ignore geometry outside of a given radius of the shaded point in view space.
Another common approach is to assume the visible surface to be an empty shell,
and hence underestimate the occlusion.

2.1.2 Implementation challenges

2.1.2.1 Under-sampling

One of the biggest performance killers for image-space approaches is the cost
of sampling of the depth bu�er many times per pixel. A perfect approximation
given the available information would in worst case require sampling all depth
values in the projected area of the hemisphere of the shaded point.

Noise and banding are common artifacts of under-sampling, depending on the
sampling scheme used. If a large sampling radius is desired, fewer sampling
points also means a higher chance of missing occlusions from high frequency
changes in the geometry.

2.1.2.2 Performance swings

In order to keep the radius of the AO-e�ect consistent in world-space, shad-
ing surfaces close to the viewer will require a much larger sampling radius in
image-space. This causes enormous performance swings as surfaces gets close
to the viewer due to trashing of the texture cache. This is solvable by limiting
the maximum allowed image-space radius, at the expence of inconsistensies as
objects get closer to the viewer.

2.1.2.3 Self-occlusion

Another common artifact found in some implementations of image-space ambi-
ent obscurance and occlusion is self-occlusion. This happens when a surface is
occluded by itself. The only good way to solve this problem is to take the surface
normal into account. Some techniques try to solve this problem by requireing
a minimum depth di�erence for a sample to contribute to the occlusion. How-
ever, the latter approach has the unfortunate side e�ect of �lifting� and o�seting
contact shadows.

15

A �nal problem, common not only to image-based approaches, is the fact that
ambient obscurance and occlusion can reveal the tesselation of curved surfaces.
This �artifact� is not really an artifact at all, but unfortunate due to the common
practice of using low-poly models with smoothed normals to imitate smooth
surfaces without the performance overhead.

2.2 Estimator functions

At the core of all implementations of image-space ambient obscurance is a func-
tion that estimates an obscurance factor for a point based on nearby samples.
I call this the estimator function. There are two main approaches to estima-
tor functions: solid angle-based estimators and open volume-based estimators.
Solid angle-based approaches try to estimate the integral over directions in the
hemisphere directly, and is closer to the de�nition in equation (1.5.1). Open
volume-based approaches exploit the correlation between the �openess� of vol-
ume in the vicinity of the receiving point and its visibility.

In this section I will examine some of the most common estimator functions.

2.2.1 Open volume-based estimators

2.2.1.1 Point sampels of surrounding sphere

One of the �rst approaches to image-space ambient occlusion is that of Mittring
(2007), developed for the computer game Crysis. Mittring (2007) estimates the
�openness� of a sphere surrounding the shaded point based on sparse random
sampling, and coins the term Screen-Space Ambient Occlusion (SSAO) for this
approach.

First, I will introduce point-based sampling in general. Let V (S) be a function
dividing a volume into a visible part and an occluded part, so that:

V (S) =

{
1 if S belongs to the visible part

0 otherwise

A fuzzy estimate of the openness of the volume can now be achieved simply by
averaging the result of random samples within the domain:

A =
1

N

∑
S∈Q

V (S) (2.2.1)

This is the technique exploited by Mittring (2007), which speci�cally de�ne Q
to be a set of N random 3D sample positions within a sphere surrounding the
shaded pixel, and let the visibility function be de�ned in terms of depth bu�er,
i.e:

V (S) =

{
1 for dS > SZ

0 otherwise

16

Figure 2.2.1: Point sampels of surrounding sphere. Note the gray dot behind
the tanget plane (purple).

Where S is the view-space position of the random test sample, and dS is the
view-space depth found in the depth bu�er at the projection of S.

Because the normal of the shaded surface is not taken into account, �at surfaces
will occlude themselves. This means that non-occluded surfaces have an occlu-
sion value of 0.5, resulting in the characteristic gray images with lighter concave
regions found in scenes shaded using this model. According to Kajalin (2009),
this was actually a design choice, as it enhanced geometric detail and they liked
the non-photorealistic look it gave. This design choice was not repeated in later
titles, though.

Kajalin (2009) gives a more in-depth explanation of the approach used in Cr-
ysis, and includes a compensation for �invalid ranges�, i.e. samples where the
di�erence in sample depth and depth found in the G-bu�er is too large. Based
on the source code listing from that paper, this attenuation coe�ccient can be
de�ned as the following:

F (dP , ds) = min(max(
dP − dS
dS

, 0), 1)

F ((dP , dS) is then used to interpolate between the visiblity value V (S) and
the �neutral� obscurance value of 0.5. Formally, the complete equation �nally
becomes:

A =
1

N

∑
S∈Q

(V (S) + (0.5− V (S))F (dP , dS)) (2.2.2)

To generate the 3D sample points Q, Mittring (2007) stores as set of randomly
distributed 3D positions within a sphere in constant memory, and uses them as
world-space o�set vectors of the position.

2.2.1.2 Point samples of tangenting hemisphere

A change commonly made to the method above is to generate 3D sampling
points within the point's tangenting hemisphere instead of a sphere centered

17

Figure 2.2.2: Point samples of tangenting hemisphere

around the point. This is more true to the rendering equation, which has a
positive cosine fallo� e�cently ignoring rays coming from �behind� the point's
tangent plane.

A naive approach is to store as random coordinates within a tangent hemisphere
as tangent-space vectors in constant memory, and rotate the vectors based on
the normal of the point. Filion and McNaughton (2008) suggests a much simpler
approach, however: Store random vectors within a sphere, and re�ect vectors
ending up behind the tangent plane across the tangent plane, e�ectively only
using points within the hemisphere, without the need for expensive rotation
of o�set vectors. This does however make the sampling pattern a bit more
predictable.

Since a non-occluded surface with this approach returns an obscurance of 1
instead of 0.5, the need for a linear interpolation to fade out the e�ect of invalid
ranges in equation (2.2.2) is removed, making the new equation:

A =
1

N

∑
S∈Q

V (S) (1− F (dP , dS)) (2.2.3)

2.2.1.3 Line samples of surrounding sphere

Loos and Sloan (2010) proposes to use line sampling instead of point sampling
to estimate the open volume:

A =
1

N

∑
s∈Q

max(min(ds, d
+
r (s)) + d+

r (s), 0) (2.2.4)

d+
r (x, y) =

√
1− x2 − y2

To simplify these equations, I de�ne all values to be in view-space o�set so the
shaded pixel is in origo, i.e. sampling points are 2D o�set vectors. (This is
similar to the original paper, where it is called �the coordinate system of the

18

Figure 2.2.3: Line samples of surrounding sphere

sphere�). d+
r (x, y)is the positive z value of the surface of sphere with radius 1

given x and y (i.e. one at origo and zero outside the unit circle in the xy plane).
Since line samples have no z-component, Q is here a set of 2D positions on a
disc in screen space. ds is the depth found in the depth G-bu�er at the sampled
position. As we can see, the estimated volume of each line sampled is the length
of the line bounded by the sphere of radius r and the surface de�ned by the
depth bu�er (see �gure 2.2.3).

2.2.1.4 Line samples of tangenting hemisphere

Loos and Sloan (2010) also proposed a way to incorporate the normal into
equation (2.2.4), making it an integral over line samples of the tangenting hemi-
sphere instead of a sphere. This is done by clamping the integration domain to
the depth of the tangent plane (see �gure 2.2.4). The following is one possible
formulation of this:

A =
1

N

∑
S∈Q

max
(
max

(
ds, d

+
r (s)

)
−min

(
dt(s),−d+

r (s)
)
, 0
)

(2.2.5)

dt(x, y) is the depth of the tangent plane at x,y. since the tangent plane is
de�ned by the normal and going through the origo we have:

dt(x, y) = −nxx+ nyy

nz

19

Figure 2.2.4: Line samples of tangenting hemisphere

Figure 2.2.5: Line samples of tangenting sphere

2.2.1.5 Line samples of tangenting sphere

Szirmay-Kalos et al. (2010) proposed a novel ambient occlusion estimator based
on estimating the open volume of a sphere tangenting the shaded point in the
direction of the normal. This inheritly integrates the positive cosine angle fallo�
from the rendering equtaion (1.5.1) and intrinsicly takes the surface normal into
account.

2.2.2 Solid angle-based

2.2.2.1 Monte Carlo integration based on point samples

The simplest solid angle-based estimator function is simply to approximate
equation (1.5.2) by Monte Carlo integration and approximate rays to the visibil-

20

ity of a single point sample, as applied in Ritschel et al. (2009) and Mattausch
et al. (2011), among others. This can be formulated as:

A =
1

N

∑
s∈Q

V (s)D (‖s− P‖) max (v · n, 0)

where vi = s−P
‖s−P‖ , Q are random sampling points in the vicinity of the shaded

point. I categorize this as a solid angle-based estimator mainly because it uses
the cosine angle between the normal and the vector to the sample point, other-
wise it has more in common with the open volume-based approaches.

2.2.2.2 Horizon-based AO estimator

Bavoil et al. (2008) also approximates equation (1.5.2) by Monte Carlo inte-
gration, but interprets the depth bu�er as a height �eld and does explicit ray
marching. To make it feasible in real-time the approximation that it is only nec-
essary to consider the tallest occluder along each azmuthal direction is utilized.

However, comparisons presented in McGuire et al. (2011) and other later papers
suggests that this approach - while more true to the rendering equation - is
rather expensive relative to the gained quality over fuzzy approaches. For this
reason I choose not to focus on horizon-based AO in this thesis, even though it
is most certainly an important piece of work in the �eld of image-space ambient
obscurance.

2.2.2.3 Sphere caps

The pinoeering work of Shanmugam and Arikan (2007) interprets random neigh-
bouring pixels as spheres that have a radius which project to a pixel, and sums
the sphere cap projection of a set of samples on the hemisphere of the shaded
point. This approach is, however, not of much interest as later solutions are both
faster and yield better results. However, it is included here for consistency:

A = 2π
∑
s∈Q

(
1− cos

(
sin−1

(
r

‖s− P‖

)))
max (n · vs, 0)

In addition to being somewhat di�cult to tweak, it uses arithmetic operations,
which are ALU-heavy.

2.2.2.4 Alchemy AO estimator

McGuire et al. (2011) derives an AO estimator with the goal of artistic expres-
siveness rather than realism.

A = max

(
0, 1− 2o

N

N∑
i=1

max(0, vi · n+ zCβ)

vi · vi + ε

)k

(2.2.6)

21

Intuetively, the core of this estimaor is the cosine of the solid angle in the
hemisphere with an inverse distance (not squared) attenuation. It features an
artist-tweakable angle bias that increses with depth of the shaded point, aimed
at getting rid of self occlusions due to percission issues and hiding tesselation
of curved surfaces. The result is multiplied by a constant and raised to the
power of another constant, to let artists tweak the brightness and contranst,
respectively.

The original paper uses a 3D sampling scheme, but in the later improvement of
the algorithm by McGuire et al. (2012), a similar 2D sampling scheme to that of
Loos and Sloan (2010) was adopted. Because of the aritst-friendly parameters
and simplicity, I have preferred this estimator.

2.2.3 On sample locator schemes

The choice of which neighbouring pixels to sample is very important for the
quality of the AO. It also has a surprisingly large impact on the performance of
a given technique, as shown in Part 4. This is likely due to the immense perfor-
mance gained from texture cache hits and coalescing texture reads on modern
GPUs. As mentioned in section 2.1.2.2, a large world-space radius can give
bad performance when it projects to a large area in image-space. In addition,
the pattern of consecutive texture reads should preferrably be predicted by the
texture cache.

I would like to refer to Loos and Sloan (2010) for a study of the performance
impact and quality of di�erent sampling patterns in 2D.

2.2.3.1 Randomization

While the banding artifacts caused by few sampling points are very noticable,
the eye is very forgiving for noise (see �gure 2.2.6). We can trade banding for
noise by randomizing the sampling points per pixel.

To randomize 3D sampling points within a sphere, Mittring (2007) proposes
to �ip the points around per-pixel random vectors. This has the advantage of
not requireing ALU-heavy rotation of vectors. The same is also possible in 2D,
however, if the sampling points are generated on the �y using a spiral-formula,
as suggested by McGuire et al. (2012), the initial angle in the disc formula can
simply be o�set with a per-pixel random angle. This is the approach I have
used in my implemenation.

2.3 Enhancements

There is a lot more to a sucessfull image-based AO technique than an estimator
function and a sampling scheme. In this section I will give an overview of
di�erent techniques for minimizing the inherit problems of image-based AO
outlined in section 2.1.2. Most of these techniques are orthogonal and not
dependent on a speci�c estimator function, and hence the possible combinations
of �tricks� with estimator functions and sampling schemes are in the hundreds.

22

Figure 2.2.6: Banding artifacts without per-pixel randomization (A), noise-
artifacts caused by per-pixel randomization (B). C, D: The respective results
after two 7 tap directional bilateral box blur �lters are applied. All images use
nine AO samples per pixel.

23

2.3.1 Utilizing the low frequency nature of ambient light

Ambinet light tends to be bounced from far away, and cast shadows of low fre-
quency. A handfull of techniques utilize this for enhancing quality or improving
performance of AO.

2.3.1.1 Bluring

Randomization sample positions per pixel removes banding issues, but intro-
duce high frequency noise. Because AO is a low-freqency phenomena, a simple
solution would be to just apply a low-pass �lter to the resulting image. How-
ever, bluring with a regular gaussian kernel will cause shadows to bleed between
surfaces at di�erent depth and orientation. I.e. an object in the front might get
a too dark outline and a white halo, or shadows from cracks might bleed onto
the cracked surface. To solve this, one can use a bilateral �lter.

A bilateral �lter is de�ned as a convolution with a kernel varying across the
�ltered domain, and is often known as a content aware �lter. My implementation
of such a �lter is thoroughly explained in section 3.2.4.

Bilateral blur is an enhancement used bymost real-life implementations of AO.
The improved quality it o�ers can be seen in �gure 2.2.6.

2.3.1.2 Rendering AO in a lower resolution

A trivial optimization of expensive rendering techniques is to render at a lower
resolution, and sacri�ce some quality. However, this sacri�ce is smaller for am-
bient lighting models than full lighting models, as ambient phenomena tend to
result in relatively low frequency images. To avoid the blockyness and shadow
bleeding caused by composing low-resolution AO into the higher-resolution �-
nal image, most techniques using this approach utilize some form of bilateral
upsampling.

Bavoil and Sainz (2009a) suggests to render the AO-pass in half resolution, and
then upsample it during the edge-preserving blur. The quality of this approach
is further improved by Bavoil and Sainz (2009b), which computes AO in full
resolution for pixels where the low resolution would be most noticable, using
the min-max range of low-resolution AO values in the vicinity of the shaded
pixel as a heuristic. However, both approachs might fail to capture occlusions
from objects too small to be rasterized in half-resolution.

Finally, Hoang and Low (2010) renders AO in a whole mip-chain of resolutions,
starting with the coarsest resolution and upsamples it using an edge preserving
�lter while rendering the next (�ner) resolution; in e�ect accumulating occlu-
sions from many levels of detail. The radius used in this approach is constant
in image-space, resulting in good texture cache utilization while still capturing
occlusions from both large, distant occluders and �ner details.

However, all approaches to rendering AO in low resolutions can cause temporal
�icker ; i.e. the ambient factor of a point dramatically changing from frame to
frame, due to the changing discretization of the scene being ampli�ed by the
low resolution.

24

2.3.1.3 Reading from a lower resolution G-bu�er

An alternative to rendering fewer pixels, is to minimize the cost per pixel. The
main bottleneck in AO is bandwidth. Speci�cally, the large and often random
image-space sampling pattern emplyed by AO makes the texture cache practi-
cally useless. If the read G-bu�er texture have a lower resolution, image-space
distances would naturally become smaller, and the chance of �nding the read
texel in the cache higher.

Filion and McNaughton (2008) observes that the low frequency nature of AO
makes it uneccessary to sample the G-bu�er at full resolution, and uses a down
sampled version as input to the AO-pass. The need for rendering the G-bu�er
in full resolution in the �rst place is caused by the G-bu�ers being used by
other passes in the presented pipeline. However, the cost of downsampling is
paid back by the improved texture cache usage.

This approach is taken even further by McGuire et al. (2012), who creates a full
mip-chain of the G-bu�er. The projected distance from the shaded pixel to the
sample point is used for deciding which mip-level to sample.

This approach is not plagued with the temporal �icker described in section 2.3.1.2.
In addition, the desired radius of the AO no longer has an impact on the perfor-
mance, and the desired quality/performance can be adjusted by a single variable,
namely at which radius to switch to a coarser mip-level.

The mip-chain-based enhancement of McGuire et al. (2012) is not directly ap-
plicable to a WebGL, as GLSL ES lacks functinality for fetching values from
an explicit mip-level of a mip-mapped texture (texelFetch). However, it might
be possible to use one sampler unit per mip-level, and hardwire distant texture
fetches to use the sampler units of the coarser mip-levels.

2.3.2 Utilizing temporal coherence

Most real time rendering applications tend to have a high degree of temporal
coherence. Viewer position and orientation vary little from a frame to the next,
and most dynamic geometry tend to change only by a small delta in position
and orientation each frame. A world-space point visible in a given frame is
hence likely to be visible in the previous frame, and shading caluclations can be
reused if stored between frames.

This temporal coherance have been used previously to enhance shadow mapping
in Scherzer et al. (2007). Nehab et al. (2007) formulates a general caching scheme
for utilizing temporal coherence in a deferred rendering setting, and introduce
the concept reverse reprojection for locating the currently shaded pixel in a
previously rendred frame. (Note that this is equvivalent to what was utilized in
Scherzer et al., 2007)

Let tf be the post-projection world space position of the current pixel, the rela-
tion to the post-projection position in the previous frame tf−1 can be formulated
as

tf−1 = Pf−1Vf−1V
−1
f P−1

f tf

25

where Vi and Pi is the view- and projection matrix for frame i, respectively. To
aquire the pixel position within the previous G-bu�er, simply perform perspec-
tive division on tf−1 and remap it to [0,1] range.

The matrix Pf−1Vf−1V
−1
f P−1

f is constant for the whole frame and can calcu-
lated once and passed as a uniform. This approach still requires one matrix
mutiplication per pixel, but the performance gain and increased quality far out-
weights this cost in the case of AO. Mattausch et al. (2010, 2011) uses the
reverse reprojection approach to re�ne AO estimation over time, interpolating
between new contributions and previous contributions stored in a history bu�er
based a calculated con�dence value.

As all caching schemes, utilizing temporal coherence can cause cache invalidation
issues. In this case this is caused by dynamic scenes, Mattausch et al. (2011)
discuss a possible solution to this problem by storing 3D optical �ow in the
G-bu�er.

There is theoretically nothing preventing a WebGL-implementation of this ap-
proach. However, due to the inherent complexity of the approach I have focused
on getting results from simpler enhancements.

2.3.3 Aquireing more information about the geometry

2.3.3.1 Guard banding

The intrinsic problem of missing information about the geometry out side of
the �eld of view can be solved quite successfully by simply rendering depth
information for a larger �eld of view. This technique is called guard banding.
The downside of guard banding is a relatively large memory footprint that scales
non-linearly with resolution, as discussed thoroughly in McGuire et al. (2012).

An alternative approach to hiding this artifact is to extrapolate based on the
values at the edge of the framebu�er, by setting sampler wrap-mode clamp-
to-edge (Mattausch et al., 2011). Alternatively, using texture border with the
color of distant samples will fade out the e�ect of most estimator functions. In
the prototype developed during this project I use the clamp-to-edge approach,
allthough there is theoretically nothing making guard-banding unsuitable for a
WebGL implementation. Texture borders are, however, not available in WebGL.

2.3.3.2 Using multiple layers

The typical approach to deferred shading exclusively use values from the front-
most layer of the rendered geometry, ignoring all surfaces occluded by surfaces
closer to the viewer. Depth peeling is an old technique for order-independent
transparency, Everitt (2001) explains how the technique can be accelerated using
the hardware depth/stencil bu�er. The muliple �layers� achieved through depth
peeling can be used to partly solve the problem of approximation errors due to
missing information.

This is implemented by Ritschel et al. (2009) and Bavoil and Sainz (2009b)
among others. Bavoil and Sainz (2009b) simply calculates the occlusion value of

26

the shaded pixel based on each individual layer, and uses the maximum (darkest)
of the calculated occlusion values. Ritschel et al. (2009) assumes closed meshes,
and counts a point as inside a solid if it lie behind a front-facing layer and
in front of a subsequent back-facing layer. This is a more conservative (and
correct) approximation based on the available information, but the requirement
of closed meshes can be problematic in cases such billboards commonly used for
vegetation (Bavoil and Sainz, 2009b).

While using multiple layers typically results in a better approximation, it intro-
duces overhead due to the requirement of rendering the full geometry for each
layer. It also makes the AO-pass heavier as all layers have to be sampled for
each AO-sample. A �nal consideration is that storing multiple layers of the
G-bu�ers will introduce a bigger memory footprint. Clever bu�er re-use could
possibly minimize this e�ect.

2.3.3.3 Using multiple points of view

In cases where many surfaces overlap, a large number of depth-peeling lay-
ers may be required to hide all artifacts. Ritschel et al. (2009) suggests to
instead use fewer layers rendered from di�erent points of view. Vardis et al.
(2013) demonstrates a general technique for combining information from dif-
ferent views, and speci�cally reuses information from shadow maps and other
views that are readily available when calculating the obscurance, hence avoid-
ing some of the negative performance implications of multi-view and multi-layer
rendering.

Similarly to techniques utilizing temporal coherence (section 2.3.2), the tech-
nique of Vardis et al. (2013) uses reverse re-projection to locate the shaded
point in di�erent views rendered at the same point in time. In addtion, the
technique utilize an importance sampling scheme to decide in which views to
place the AO-samples. This is done by calculating a con�dence value for the
point in the di�erent views based on relative orientation and proximity.

In addition to using existing views such as shadow maps, Vardis et al. (2013)
suggest to create a �rig� of phantom cameras at a �xed position relative to the
viewer.

2.3.3.4 Real-time volexization

An alternative to stroing the depth or position of the pixel in a G-bu�er, is to
interpret the pixel data as series of binary values, each represeting the occupacy
of a voxel along the pixel-ray. This makes it possible to implement an object-
space approach to ambient obsucrance in image-space (sic), as explained in
Reinbothe et al. (2009).

Unfortunately, the pixel formats available in WebGL would limit this approach
to 32 voxels along the z-axis, which would result in a prohibitively coarse dis-
cretization of the geometry. A last aspect making this approach di�cult in a
WebGL-implementation is the lack of binary operators in shader programs.

27

2.4 GPGPU-based approaches

Without the limitations of the standard graphics pipeline, it is possible to im-
prove image-space ambient obscurance further. Bavoil (2011) shows that HBAO
can be implemented using compute shaders. However, GPGPU does not only
o�er reudced overhead for existing algorithms, but also opens for new algorithms
with asymptopically better time complexity.

This is done in Timonen (2013) by realizing that image-space AO is separa-
ble in azimuthal directions across the depth G-bu�er. The presented algorithm
spawns one thread per azimuthal direction, and performs an incremental line-
sweep in each direction while maintaining a data structure that makes it possi-
ble to �nd the occluder casting the largest obscurance along the swept line in
amortized constant time. While a regular implementation of image-space AO
has a quadratic time complexity, the Line-sweep Ambient Obscurance-algorithm
achieves linear time. It relies on the simpli�cation that only the most signi�cant
occluder for a given point in each azimuthal direction needs to be considered,
but the results are practically indistinguishable from approaches evaluating the
full occlusion (Timonen, 2013).

As opposed to other enchancements listed in this thesis, line-sweep ambient
obscurance is not strictly orthogonal to the estimator function used. Timonen
(2013) demonstrates the technique using the horizon-based estimator of Bavoil
et al. (2008), but it can be combined with any estimator function that allows
evaluation as a combination of calculations done per azimuthal direction. This
is likely to include (at least) most solid angle-based estimators.

However, while there exists a draft for WebCL, a browser-based API for GPGPU,
the speci�cation is incomplete and largely unimplemented by most browser ven-
dors at the time of writing. This ultimately makes GPGPU-based approaches
less relevant for this thesis.

28

Chapter 3

Implementing ambient

obscurance in WebGL

In this part I will shed light on some of the considerations faced when imple-
menting ambient obscurance in WebGL, and present the prototype developed
during the work on this thesis.

Integrating image-space techniques in an application requires background knowl-
edge of deferred rendering techniques. In my experience, it is easy to get minor
things like the depth G-bu�er wrong, resulting in strange artifacts. For this
reason I hope this part may double as an implementation guide for future im-
plementers.

3.1 Implementation considerations

Even though Image-based e�ects are simple in theory, one is often faced with
challenges during implementation. Either due to limitations of the target plat-
form or because of its many pitfalls combined with the di�culty of debugging
shaders. While the major issues making some approaches unsuitable for We-
bGL have been accounted for in the previous sections, I here examine the more
low-level considerations and challenges.

3.1.1 Deferred- versus Forward rendering

Deferred shading is a concept that was introduced by Hargreaves and Harris
(2004), in order to decuple shading cost from geometry complexity. The tech-
nique can be summarized as the following: Instead rendering the geometry with
the �nal shading, render the surface properties to di�erent textures called G-
bu�ers, which acts as input to later passes that are combined to create the �nal
shading.

With reguar forward rendering, a pixel may be shaded multiple times due to
overdraw, and hence the worst case complexity of rendering is number of objects

29

× visible pixels × number of e�ects and lightsources. With deferred shading, all
e�ects and lights are applied at most once per visible pixel, and the worst case
complexity is reduced to number of objects + visible pixels × number of e�ects
and lightsources. However, this is not the key selling point of deferred shading,
as this can also be achieved using an �early-z pass�, i.e. a pass rendering the
scene only to the depth bu�er, prior to rendering the fully shaded geometry
with a less-or-equal depth comparison function.

A more compelling feature of deferred shading is that it allows a very large
number of light sources with great ease. This is done by calculating the lighting
contribution for a given light source on the screen-space projection of the ge-
ometry representing its light volume, and additively blend together the results.
While I am (in this thesis) not interested in an in�nite number of point light
sources, the introduction of deferred shading was partly motivated by the shader
length limitation found in the early programmable GPUs. A limitation that is
once again relevant today when targeting WebGL.

In addition to performance gain and increased scalability in number of mate-
rials and light sources, deferred shading provides a big architectural bene�t.
The shader programming is made simpler as the the G-bu�ers act as a com-
mon �interface� between e�ects and geometry/surface information. In forward-
rendering, each shader rendering geometry would have to be combined with
every e�ect it could possible be used with, known as the shader combination-
problem. An alternative approach partly solving this problem is to use a so-
called �übershader�: A single big shader with lots of preprocessor directives.
However, this approach results in an exponential number shaders that have to
be compiled load-time when using GLSL.

3.1.1.1 Bandwidth and G-bu�er rendering overhead

On mobile platforms, the greatest bottleneck is bandwidth (Lassen, 2010). This
greatly limits how much information can be read from G-bu�ers in a deferred
shader, and it becomes important to store as much information in as few bytes
as possible.

An additional consideration, is that while most modern desktop graphics hard-
ware support rendering to multiple render targets in one pass in hardware, this
is not common in current mobile hardware, and hence not possible in WebGL.
This poses a great challenge for deferred techniques, as the full scene geometry
will have to be rendered once per G-bu�er.

3.1.1.2 Antialiasing

WebGL lacks multisampled renderbu�ers, but many implementations provide
full-screen anti-aliasing of the backbu�er. The rendering to textures that de-
ferred shading implies means that we will have to sacri�ce the anti-aliasing we
get �for free� in a regular forward rendering.

However, rendering the ambient occlusion directly to the backbu�er also means
that we are unable blur the result, which would cause a severe drop in quality,

30

which is just what we are trying to avoid. During prototyping I have exper-
imented with multiple approaches: A full forward approach, a fully deferred
approach, and a hybrid approach multiplying deferred AO on top of a regular
forward rendering of the scene.

3.1.1.3 Experimental results

In terms of quality, I got best results with the hybrid approach, which combines
the bene�ts of bilateral blur with only visible aliasing artifacts between surfaces
of very di�erent ambient lighting (e.g. small cracks in a �at surface). In terms
of performance, it is di�cult to beat the deferred approach as long as we only
need the G-bu�ers already rendered for the AO. However, if texture mapping
or more advanced shading is desired, the deferred approach is likely to require
rendering of more G-bu�ers, and ultimately end up being both worse looking
and slower. The bene�ts of deferred shading in WebGL compared to the rather
large geometry rendering overhead per G-bu�er could be explored in a future
study. A supersampling-based approach for anti-aliasing could also be of interest
in that case.

To summarize, one should try to pack as much information as possible in as few
(and narrow) G-bu�ers as possible. However, it turns out that the pixel format
limitations of WebGL poses yet another challenge here, as I will discuss in the
next section.

3.1.2 Pixel format limitations

While most modern desktop computers support a variety of di�erent pixel for-
mats, including �oating point pixel formats, the core WebGL speci�cation only
provides pixel formats up to 32 bits per pixel. Further, WebGL only provides a
maximum of 8 bit per component, and up to four components (Khronos, 2013).

To circumvent the limitation of the maximum allowed bits per component, we
need to pack values across multiple components. A typical implementation
would just bit shift and mask the binary representation, however, WebGL does
not support bitwise operators, so it needs to be done with arithmetic instead.
The following equation packs a value between 0 and 1 into two 8 bit components,
resulting in 16 bit precission:

vpacked = vf −
[

(vf)y
255
0

]
(3.1.1)

vf = vs − bvsc

vs =

[
1

255

]
d

Intuetively, this stores the 1/255ths of the value in the Y-component and the
rest in the X-component. Unpacking the value requires just a dot product with
a scaling vector:

31

d =

[
1
1

255

]
vpacked (3.1.2)

3.1.3 Reconstructing view-space position in image-space

A requirement for most image-space ambient obsucrance and occlusion tech-
niques is to read the view- or world-space position of visible surface patches in
the pixel-neighbourhood. As explained in section 1.5.3, this is done by in an
earlier G-bu�er pass storing information about the geometry. The G-bu�er can
then be accessed randomly by the AO shader.

A naive approach is to store the world-space position of the pixels directly in a
G-bu�er. This is, however, a very bad idea in WebGL. The lacking of �oating
point textures would limit the possible size of the scene to a unit cube, and with
the pixel format limitations of WebGL you would have only 8 bit percission per
dimension, which is useless for most real use cases. Storing a (scaled) view-space
position would help on the former problem, but even more percission would be
lost as there would be a lot of range spent on space outside of the of the visible
frustum.

Storing the full position is actually redundant. Intuetively, we have already
limited two degrees of freedom by knowing the pixel position, we just need to
know the depth to be able to reconstruct an exact view-space position.

3.1.3.1 Using inverse projection directly

The straight-forward approach is to �rst reconstruct the NDC position, and
then use the inverse projection matrix to reconstruct view-position from NDC.

The x- and y-components of the NDC position are easily reconstructed from the
pixel position, simply by mapping it to [−1,+1] range. The NDC z-component
can be stored in a G-bu�er and remapped to [−1,+1] if needed. Finally, the
w-component is, by de�nition, always 1 for NDC. Multiplying the NDC-position
by the inverse projection matrix we get a 4D homogenous view-space position.
To aquire the regular cartesian view-space position we need to divide the vector
by its w-component. Careful readers might notice that we just skipped the
intermediate clip-space representation, however, this apporach is valid due to
the nature of projective spaces.

While an intuitive approach, this requires a 4x4 vector-matrix multiplication
and one division per pixel (in addition to some remapping). With knowledge of
how the projection matrix is contructed one could simplify this operation, but
we will see in the next section that there are more convenient ways to go.

3.1.3.2 Storing linear depth

It is tempting that the former approach seemingly do not require storing any
additional information other than what is readily available in the hardware z-
bu�er. However, a lot of hardware and APIs, WebGL included, will not give

32

the user direct read access to the z-bu�er. Additionally, storing non-linear z-
over-w values skews the precission heavily towards the near part of the view
frustum, and makes reconstructing the view-space position more complicated
than it needs to be.

Hargreaves and Harris (2004) sugested to instead store the distance from the
camera in a G-bu�er, and use it to scale the a unit view- or world-space ray going
through the pixel. While simple and intuitive, this is not the most convenient
approach in WebGL as the range of each component is still limited to [0,1].
Instead, we introduce a quantity commonly referred to as linear depth:

dp = −p
view
z − znear
zfar − znear

The linear depth is simply the relative z-location of the position inside of the
view-frustum, i.e. dp = 0 for points on the near plane, dp = 1 for points on the
far-plane, and dp = 1

2 for points right in the middle of the two.

3.1.3.3 Interpolating the frustum corners

On the same note as above, I de�ne image-space to be the full relative position
inside the frustum:

cimage =

 cclipx +1
2

cclipy +1

2
dp

 , x, y, z ∈ [0, 1]

This image-space vector can be used to do a plain old trilinear interpolation of
the frustum corners:

pview = Lerp(pviewfar , p
view
near, c

image
z)

pviewfar = Lerp(Lerp(fview+++, f
view
−++, c

image
x), Lerp(fview+−+, f

view
−−+, c

image
x), cimage

x)

pviewnear = Lerp(Lerp(fview++−, f
view
−+−, c

image
x), Lerp(fview+−−, f

view
−−−, c

image
x), cimage

y)

Each corner of the frustum are here notated as fview subscripted with the sign
of components of the coresponding NDC unit cube corner.

Further, we know the far plane and near plane are parallell to our coordinate
system's xy-plane, and that the x- and y-axis of all coordinate systems are
aligned, so we can simplify �nding the position on the near and far plane:

pviewfar = fview+++ +

(dviewfar)x
0
0

 cimage
x +

 0
(dviewfar)y

0

 cimage
y

33

pviewnear = fview++− +

(dviewnear)x
0
0

 cimage
x +

 0
(dviewnear)y

0

 cimage
y

where

dviewfar = fview−−+ − fview+++

dviewnear = fview−−− − fview++−

This approach maps well to a few of vector multiply-adds on modern GPUs.

3.1.3.4 Interpolating the far plane vector

It turns out we can do even better, by observing that the position on the near
plane in view-space is always on the line through origio that intersects the point
on the far plane. Just interpolating the ray from origo to the point on the
far plane by the depth stored in the linear depth G-bu�er will not be correct
though, as this would assume the near clip plane to be located at z=0. To solve
this we simply scale and o�set the linear depth value so the range [0, 1] maps
to the range[znear

zfar
, 1], and the formula for the view-space position becomes:

pview =

((
1− znear

zfar

)
cimage
z +

znear
zfar

)
pviewfar (3.1.3)

where

pviewfar = fview+++ +

(dview+)x
0
0

 cimage
x +

 0
(dview+)y

0

 cimage
y

This approach should require only about two or three multiply-add instructions,
which is pretty good. Storing the remapped linear depth value in the G-bu�er
directly would make this even cheaper, but at the cost of losing some depth
percission. Because of the problems with precision already posed by WebGL's
pixel format limitations, I stay with the normalized linear depth approach in
equation (3.1.3) for my implementation.

3.1.3.5 Special cases for the currently shaded pixel

Aquireing the view-space position of the currently shaded pixel can be further
optimized. If ambient occlusion is applied in a regular forward pass, getting
this value is trivial; simply provide the pixel shader with the view position as
a varying. In full deferred rendering this is not possible, as the shader is just
applied to a screen aligned quad, not the scene geometry itself. However, we
can get the vector from origo to the pixel projected on the far plane �for free�

34

by interpolating it in a varying: In the vertex shader, simply output the view
space position of the current vertex projected on the far plane and let hardware
interpolation do the job. A similar approach is used to reconstruct world-space
position in Wenzel (2006) and Filion and McNaughton (2008).

3.1.4 Reconstructing normal from depth

One technique to avoid a sperate full geometry pass to generate a normal G-
bu�er is to reconstruct it from the depth information. On desktop OpenGL, the
partial derivative operators dFdx and dFdy can be applied to a reconstructed
view position to aquite view-space tangent-vectors, and the cross product of the
normalized tangent-vectors would be the view-space normal. This technique is
used in e.g. Bavoil and Sainz (2009a).

Unfortunately, partial derivative operators are not supported by the current
version of WebGL. However, the same approach can be applied by explicitly
reconstructing the view space position of neighbouring pixels in the x- and
y-direction. A shader program implementing this approach is provided in ap-
pendix appendix D.

An artifact by this approach is visible 1-pixel errors at large discontinunities in
the depth G-bu�er. McGuire et al. (2012) shows that the artifacts cused by this
error can be completely hidden by the bilateral blur pass. For obvious reasons,
any technique reconstructing normals from depth information will reconstruct
face normals. For most ambient occlusion usages, this is a good thing, as in-
terpolated normals can cause self-occlusion. However, if the same normals are
used for direct light calculations, tesselation of smooth surfaces are likely to be
revealed.

A realization I made during implementation is that this technique is very sensi-
tive to the resolution of the depth G-bu�er. Ultimately, this made me decomis-
sion this approach, as G-bu�er precission is problematic in WebGL.

3.1.5 Storing compressed normals

When using two 8-bit components for depth as explained in section 3.1.2, we
have two 8-bit components available for other data. If we could �t the view-
space normal into these two components we can avoid having to render the
geometry twice, while at the same time not relying on reconstructing it from
depth information as explained in section 3.1.4.

Intuitively, we know that 3D normals have unit length and hence only has two
degrees of freedom, after all, they can be represented as spherical coordinates.
Storing normals as spherical coordinates, however, is not very attractive in this
case; the required trigometric operations are very ALU-heavy unless a lookup
table is used (Pranckevicius, 2010).

3.1.5.1 Storing only two components

Valient (2007) propses to store only the x- and y-components of the view-space

35

Figure 3.1.1: A case where cosine angle between the view-space normal (red)
and the view direction (blue) is positive

normal, and then reconstruct the last component assuming it is positive using
the following equation:

nz =
√

1− n2
x − n2

y (3.1.4)

The assumption of the z-component of the view-space normal being positive
tends to hold for most visible points due to backface culling. However, due
to the nature of the perspective projection, this is not true for all cases. A
quite common case of the latter is a viewer standing on the ground, looking
slightly above the horizon, with the ground is still inside his �eld of view (see
�gure 3.1.1). This will cause the cosine angle between the ground normal and
the view direction to become greater than zero (i.e. �facing away�), and hence
the assumption of the z-component always having the same sign fails.

I found that, when using this approach in combination with solid-angle based
estimators, changing the orientation of the camera would result in a sudden
darkening of surfaces just before the surface left the �eld of view. This artifact
is very disturbing, possibly ampli�ed by the human eye's sensitivity to rapid
change in the outer �eld of view.

Note that we still need to store the x and y components in normalized range

36

and map them back to [-1,+1] before we can reconstruct the last component
using equation (3.1.4).

3.1.5.2 Sphere projections

Rather than making assumptions about some of the componenents, we can use
a more traditional unwrapping approach. Mapping positions on a sphere to two
dimensions happens to be a well studied problem, possibly due to the fact that
our planet resembles one. As such, there exists a multitude of di�erent map
projection methods. For the problem at hand, however, almost any method
that is simple to compute will su�ce.

Mittring (2009) proposes the following projection:

v =

√
nz + 1

2

nxy
‖nxy‖

(3.1.5)

And the inverse:

nxy =
√

1− n2
z

v

‖v‖

nz = 2v · v − 1

Where n is the view-space normal and v its stored two-component representa-
tion. In e�ect, this is similar to the projection used for spherical environment
maps. Both techniques are in fact similar to a traditional map projection tech-
nique called Lambert Ezimuthal Equal-Area Projection.

For a comparison of performance and accuracy of di�erent techniques, I refer
to Pranckevicius (2010).

3.2 Implemented solution

This section gives an overview of the prototype implemented during the writing
of this thesis.

3.2.1 Renderer overview

The geometry is rendered to a texture with a combined depth and normal G-
bu�er shader (discussed in section 3.2.3). This texture is used as input to the
AO pass. The AO pass is rendered to a texture that is used as input to two
subsequent 7-tap directional bilateral box blur �lters (explained in section 3.2.4).
In additional to the result of the previous pass, the bilateral �lters need the
normal+depth G-bu�er as input to use as discriminator. The result of the last
blur �lter is then used to modulate the result of a regular forward lighting pass
using blending. For more advanced shading, the AO texture should be used as

37

input to the lighting pass, not simply modulated on top (shown as the dashed
black line in �gure 3.2.1). Note that all geometry passes perform GPU skinning
individually in the vertex shader for skinned models. However, for clarity this
is sown as only one box in the diagram.

During benchmarking, I rendred the �nal result to a texture which was blitted
on the backbu�er instead of rendering directly to the backbu�er, in order to
make switching between resolutions easy. In e�ect this resulted in supersampling
when rendering to resolutions higher than the resolution of the backbu�er. This
looked simply stunning, but was also correspondingly slow.

The point of this hybrid forward / deferred approach is to utilize FSAA of
the backbu�er combined with blurring of the AO result, as discussed in sec-
tion 3.1.1.3. A handfull other approaches were implemented and tested during
prototyping, these are shown with colored dashed lines in �gure 3.2.1, and will
be explained in the next sections.

3.2.2 Ambient obscurance estimator

The earliest implementation used a point-based sampling method similar to
that of Mittring (2007), but I failed to achieve good results using this approach
with a sensible number of samples. I ended up prefering the Alchemy estimator
due to its simplicity and ease of tweaking. The choice of implementing the
this estimator, over for instance a horizon-based approach, was partly due to
the promising performance and quality demonstrated in McGuire et al. (2011).
The fact that it was made for the Xbox 360 was also a big motivational factor
behind the choice, as the Xbox 360 has realtively low-end graphics hardware
with a limited feature set, similar to WebGL. Other estimators can be a relevant
subject of future studies.

The source of the implemented solution is provided in appendix B.

3.2.3 G-bu�er layout

The Alchemy ambient obscurance pass requires information enough to recon-
struct both the view-position of random samples and and the normal of the
currently shaded pixel.

My initial approach was rather trivial, using a full 32-bit RGBA texture for
both, and packing linear depth values using four components similarly to the
approach in section 3.1.2. This is illustrated with blue and purple dashed lines
in �gure 3.2.1.

A problem with this approach is that it requires two full geometry rendering
passes, as explained in section 3.1.1.1, and that it is wastful in terms of bandwith.
A temporary solution to the rendering overhead problem was implemented using
the technique described in section 3.1.4. This temporary solution is illustrated
with pink and purple dashed lines in�gure 3.2.1.

However, I soon found that linear depth values packed in only two 8-bit compo-
nents are good enough for AO, even for a view distances of over 300m. This fact

38

Figure 3.2.1: Overview of rendrer

39

was combined with the normal compression scheme outlined in section 3.1.5.2
to create the following G-bu�er layout:

R G B A

Normal Normal Depth (High) Depth (Low)

Because all required data now �ts in a single 32-bit RGBA texture, it only
requires a single geometry pass, and uses little bandwidth. The source of the
G-bu�er rendering pass is provided in appendix A.

3.2.4 Bilateral blur

Because of the immense enhanced quality o�ered by blurring the result of the
AO-pass (see �gure 2.2.6), I implemented a bilateral blur pass in the prototype.
Some experimentation lead me to the de�nition of the following �lter function,
which is a box �lter with bilateral weights based on normal and depth di�erences:

c′p =

∑
vi∈R cp+viw(p+ vi)∑

vi∈R w(p+ vi)
(3.2.1)

Where p is the coordinate of the current pixel, c is the values in the color bu�er,
and R is the set of sampling o�sets for the taps. To improve cache coherency and
performance, I separate the �lter into a horizontal and a versatical pass. While
not correct, it gives good results. Each pass uses R = {vdirt | t ∈ [−3,+3]} to
get a 7-tap directional blur in direction vdir. w(s) is my discriminator function,
taking both normal and depth di�erences into consideration:

w(s) = wnormal(s) ∗ wdepth(s)

wnormal(s) =

(
nc · ns + 1

2

)kn

(3.2.2)

wdepth(s) =

(
1

1 + |dc − ds|

)kd

(3.2.3)

It is important that the depth discrimnator uses a quantity in world- or view-
space. If normalized values are used directly it will be dependent on the near
and far plane of the view frustum, which is not a desirable feature. In equa-
tion (3.2.3) I use a function of the absolute di�erence in view-space euclidian
distance to the point from the camera. My experience with using a function of
only the distance or only the normal did not yield satisfying results.

In theory, equation (3.2.3) would have a problem with surfaces at steep angles
with the direction of the blur pass. However, this is not a visible problem, and
chances are good for that a second orthogonal blur pass will not to experience
the same problem.

For performance reasons I do not use a gaussian bilateral kernel, as the fallo�
caused by the gaussian wheights would decrease the blur e�ect per pass and

40

Figure 3.2.2: Plots of the normal discriminator function (3.2.2) for di�erent
values of kn. The horizontal axis is the cosine angle nc · ns, and the vertical
axis is the discriminator value wnormal. The normal discriminator is the most
important discriminator and least likely to cause artifacts, so I use a high value
for kn (e.g. 10).

Figure 3.2.3: Plots of depth discrimnator function (3.2.3) for di�erent values of
kd. The horizontal axis is absolute depth di�erence |dc − ds| in decimeters, and
the vertical axis is the discriminator value wdepth. I found that kd = 2 works
well for my test scene.

hence require multiple passes or a bigger kernel to achieve the same strength.
A future improvement should however consider this for increased quality.

For the �nal source code of the implemented bilateral blur �lter, see appendix C.

3.2.5 Considered enhancements

I did start some experimentation with using multiple views, but ultimately this
was put on hold due to concerns abut the overhead it would introduce when
rendering larger scenes, and the requirement of pixel shader branching for an
optimal solution. I might have put this away too early though, and it should be
considered in a future implementation.

Even though the technique used in Mattausch et al. (2010) is very promising
in terms of performance and quality, I chose to focus on simpler techniques due
to the inherent complexity of the approach. I would very much like to see an
implementation of this technique running in a browser in the future.

41

42

Chapter 4

Results and discussion

4.1 Method

Throughout this project I have prototyped multiple approaches to Image-space
Ambient Obscurance and Occlusion in WebGL. While a working prototype is a
testament to the applicability of a given technique in itself, quality and perfor-
mance have been the key criterias driving this work further.

4.1.1 Benchmarcing of performance

Figure 4.1.1: Plotting the observed dif-
ference in time from frame to frame

While a tool such as Nvidia Shader-
perf can be (and have been) used
to assess the complexity of a given
shader, it is unable to predict the ac-
tual performance when texture sam-
pling is involved. This is proba-
bly due to texture cache usage being
an unpredictable phenomena during
static analysis. This is one of the rea-
sons I have emphasised �real-life� per-
formance benchmarking of the proto-
type, running it in the browser, with a
fully animated scene of su�cient com-
plexity.

4.1.1.1 Sources of error

However, there are some gotchas
when doing benchmarking in the
browser. Many impelemntations of
WebGL (Chrome included) uses the
Angle, which translates WebGL shaders and commands to DirectX9 commands.

43

This include unrolling all loops and potentially changing the shaders in other
unpredictable (and unobservable) ways. I observed a lot better pixel throughput
when running the same fragment shaders on a native OpenGL implementation,
which can be a sign that something �shy is going on, and a further analysis of
how Angle transforms shaders could perhaps shed some light on this.

VSync poses a minor problem when doing benchmarking in the browser, as
it is impossible to measure higher framerates than the refresh rate, typically
60 frames per second (FPS). In addition, I observe that the measured frame
interval for a single frame is �snapped� to fractions of the refresh interval (See
�gure 4.1.1). To overcome this problem, I measure the number of rendered
frames over a period of about 8 seconds, I also measure the exact start and
end time to avoid errors caused by the fact that t=8 seconds might be in the
middle of a frame. An alternative approach would be to measure the time it
took to render a �xed number of frames, however, this will introduce unbounded
benchmarking times. The choice of 8 seconds is simply due to the animations in
the scene looping with an 8 second interval, and the performance being a�ected
by the proximity of visible surfaces.

For timing the internal JavaScript getTime() function was used.

4.1.1.2 Test setup

Most image-space e�ects scale lineary with the resolution of the rendered image.
It has also been of interest to see how the perfomance and quality of image-
space ambient obscurance scales with the number of sampling points. Because
of texture caching in modern graphics hardware, the pattern of sampling points
also plays an important role in the performance and quality of a technique,
which is re�ected in the benchmark results.

The test setup have been an Intel Core i7-3610QM (2.3 GHz) with the mid-range
dedicated graphics accelerator GeForce GT 650M (348 Cuda Cores), running
Chrome v. 28.0.1500.95m in Windows 7 Professional (SP1).

I tested resolutions ranging from 256^2 to 1792^2, using 3, 9 and 32 samples per
pixel, and for each con�guration measured the timings without AO (baseline),
with only AO, and with AO and bilateral blur.

4.1.2 Assessment of quality

As ambient occlusion is not a physically-based model, but rather an empirical
model seeking to produce visual cues that are easy to pick up by the human vi-
sual system, testing the di�erence between photographs and images synthesized
by my implementation is not very interesting. Testing against high-quality
rendred images could be of use when implementing realistic estimator func-
tions such as Bavoil et al. (2008), however, my choice of the esthetics-oriented
Alchemy estimator calls for a more subjective assessment of quality.

44

4.2 Results

The benchmarking results are pro-
vided in a digital attachment. The
main observations I would like to
draw from the testing and develop-
ment can be summarized as follows:

Performance is dependent on the
number of shaded pixels This
comes as no surprise, as ambient ob-
scurance is an image-space e�ect.

Performance is dependent on ra-
dius I found that the radius of the
AO has a great impact on the per-
formance, especially at higher reso-
lutions. This is likely due to the
radius being de�ned in world-space,
which projects to increasingly longer
distances in image-space with higher
resolutions.

Per-pixel randomization With per-pixel randomization of sampling points,
as little as 3 samples per pixel can give results recognizable as ambient obscu-
rance. Without per-pixel randomization two samples per pixel typically just
looks like a couple of incorrect hard shadows with a strange deformation.

Unfortunately, per-pixel randomized sampling points combined with samples
being far apart in image-space is a worst-case access pattern scenario for the
texture cache. However, the reduced number of required sampling points out-
wheights the increased per-sample cost, as evidenced by the attached results.

Bilateral blur has a neglectable overhead Blurring the result of the AO-
pass with the two 7-tap directional blur �lters presented in this thesis has a
neglectable overhead compared to cost of the AO-pass itself. According to
Nivida shaderperf, the blur shader is actually about as complex as the AO
shader in terms of cycles, but it has almost no performance implications due to
high cache utilization.

Number of samples It comes as no surpsise that the number of samples
a�ect the overall performance, as randomly sampling the G-bu�er is bandwidth
heavy due to the poor texture cache utilization.

However, I found that using per-pixel randomziation and bilateral blur, as few
as 3 AO-samples per pixel gives results recognizable as ambient obscurance for
a small radius (0.5m). In this case the perfomrance is well within real-time for
all tested resolutions.

45

A good tradeo� between performance and quality for radii up to 1m (which
is what I personally prefer) is 9 samples per pixel. This results in real-time
frame rates up to a resolution of 1280^2, at which it drops to 21.83 FPS. At
higher resolution I do not achieve acceptable performance. With a radius of 2,
no higher resolution than 1024^2 yield acceptable performance.

I also included test results for 32 samples, however, this is just for comparison,
and not a recommended setting, as the quality gained by multiple AO-samples
seems to decrease drasticly when passing 16 samples. This is somewhat surpris-
ing, considering that 16 samples is still a quite sparse kernel. However, this is
likely to be caused by the bilateral blur �lter being applied to the result. The
performance of 32 samples at 1m is acceptable up to a resolution of 1024^2.

Performance depends on the proximity of objects The observations
from my implementation is consistent with previous work in the �eld pointing
out this e�ect, whch is caused by the radius being de�ned in view-space. Clamp-
ing the radius to a maximum distance in screen-space is e�ecient for preventing
performance swings due to this, but the e�ect can be noticable.

4.3 Conclusion and further work

I have done a survey of current techniques in the �eld of image-space ambient
obscurance, and successfully implemented a working prototype in WebGL.

This thesis only touched the surface of the many possibilities that WebGL o�ers
for portable real-time rendering applications. A natural extension would be to
look more advanced global illumination approximations, for instance the screen-
space directional occlusion algorithm presented in Ritschel et al. (2009). As
mentioned in previously, a more thorough study of the performance implications
of deferred rendering in WebGL would be useful for future implementers.

Allthough a lot of work has been done since 2007, there are yet some opportu-
nities for more research into the �eld of image-space ambient obscurance and
occlusion. The pieces resulting from the dissection of current implementations
in chapter 3 can quite easily be combined in a variety of ways, possibly with in-
tereseting results. Trying out the hiearchical depth bu�er approach by McGuire
et al. (2012) in WebGL could be an interesting task in itself, as the retro�tting
needed to make it suitable for WebGL is likely to a�ect its performance and
applicability. Further, I believe combing this approach with other estimator
functions can yield interesting results. If this task is undertaken, the novel esti-
mator function of Szirmay-Kalos et al. (2010) should be considered as a subject,
to shed some light on how the technique interacts with volume-based estimators.

4.4 A step back

There is hope for global illumination methods and physically based rendering
such as path tracing, but as mentioned in the introduction we are not quite
there yet. In the meanwhile, we can have a lot of fun with our triangles and

46

image-space approaches. Maybe, as one today might marvel in amusement at
the arcane tricks of the software rendering-era, we might in the future look
back similarly at all the crazyness todays industry have gone through to achieve
realism on top of the great hack that is rasterized graphics.

47

48

Bibliography

Bavoil, L. (2011). Horizon-based ambient occlusion using compute shaders.
NVIDIA Graphics SDK 11 Direct3D, 2.

Bavoil, L. and Sainz, M. (2008). Screen space ambient occlusion. NVIDIA
developer information: http://developers. nvidia. com, 6.

Bavoil, L. and Sainz, M. (2009a). Image-space horizon-based ambient occlusion.
Shader X, 7:425�444.

Bavoil, L. and Sainz, M. (2009b). Multi-layer dual-resolution screen-space ambi-
ent occlusion. In SIGGRAPH 2009: Talks, SIGGRAPH '09, pages 45:1�45:1,
New York, NY, USA. ACM.

Bavoil, L., Sainz, M., and Dimitrov, R. (2008). Image-space horizon-based
ambient occlusion. In ACM SIGGRAPH 2008 talks, SIGGRAPH '08, pages
22:1�22:1, New York, NY, USA. ACM.

Bunnell, M. (2005). Dynamic ambient occlusion and indirect lighting. Gpu
gems, 2(2):223�233.

Christensen, P. H. (2003). Global illumination and all that. SIGGRAPH 2003
course notes, 9:31�72.

Cook, R. L. and Torrance, K. E. (1982). A re�ectance model for computer
graphics. ACM Trans. Graph., 1(1):7�24.

Dimitrov, R., Bavoil, L., and Sainz, M. (2008). Horizon-split ambient occlusion.
In Proceedings of the 2008 symposium on Interactive 3D graphics and games,
I3D '08, pages 5:1�5:1, New York, NY, USA. ACM.

Evans, A. (2006). Fast approximations for global illumination on dynamic
scenes. In ACM SIGGRAPH 2006 Courses, SIGGRAPH '06, pages 153�171,
New York, NY, USA. ACM.

Everitt, C. (2001). Interactive order-independent transparency. White paper,
nVIDIA, 2(6):7.

Filion, D. and McNaughton, R. (2008). E�ects & techniques. In ACM SIG-
GRAPH 2008 Games, SIGGRAPH '08, pages 133�164, New York, NY, USA.
ACM.

Fox, M. and Compton, S. (2008). Ambient occlusive crease shading. Game
Developer Magazine, pages 19�23.

49

Hargreaves, S. and Harris, M. (2004). Deferred shading. In Game Developers
Conference, volume 2.

Hoang, T.-D. and Low, K.-L. (2010). Multi-resolution screen-space ambient
occlusion. In Proceedings of the 17th ACM Symposium on Virtual Reality
Software and Technology, VRST '10, pages 101�102, New York, NY, USA.
ACM.

Hoberock, J. and Jia, Y. (2007). High-quality ambient occlusion. GPU gems,
3:257�274.

Kajalin, V. (2009). Screen space ambient occlusion. Shader X, 7:413�24.

Kajiya, J. T. (1986a). The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143�150.

Kajiya, J. T. (1986b). The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, SIGGRAPH '86,
pages 143�150, New York, NY, USA. ACM.

Khronos (2013). Webgl speci�cation version 1.0.2.
https://www.khronos.org/registry/webgl/specs/1.0.2/.

Kontkanen, J. and Laine, S. (2005). Ambient occlusion �elds. In Proceedings
of the 2005 symposium on Interactive 3D graphics and games, I3D '05, pages
41�48, New York, NY, USA. ACM.

Landis, H. (2002). Production-ready global illumination. Siggraph course notes,
16(2002):11.

Lassen, A. K. (2010). High performance mobile game graphics with mali. Pre-
sentation for ARM Norway.

Loos, B. J. and Sloan, P.-P. (2010). Volumetric obscurance. In Proceedings
of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and
Games, I3D '10, pages 151�156, New York, NY, USA. ACM.

Luft, T., Colditz, C., and Deussen, O. (2006). Image enhancement by unsharp
masking the depth bu�er. In ACM SIGGRAPH 2006 Papers, SIGGRAPH
'06, pages 1206�1213, New York, NY, USA. ACM.

Mattausch, O., Scherzer, D., and Wimmer, M. (2010). High-quality screen-
space ambient occlusion using temporal coherence. Computer Graphics Fo-
rum, 29(8):2492�2503.

Mattausch, O., Scherzer, D., and Wimmer, M. (2011). Temporal screen-space
ambient occlusion. Gpu Pro 2, 2:123.

McGuire, M. (2010). Ambient occlusion volumes. In Proceedings of the Con-
ference on High Performance Graphics, HPG '10, pages 47�56, Aire-la-Ville,
Switzerland, Switzerland. Eurographics Association.

McGuire, M., Mara, M., and Luebke, D. (2012). Scalable ambient obscurance.
In Proceedings of the Fourth ACM SIGGRAPH / Eurographics conference
on High-Performance Graphics, EGGH-HPG'12, pages 97�103, Aire-la-Ville,
Switzerland, Switzerland. Eurographics Association.

50

McGuire, M., Osman, B., Bukowski, M., and Hennessy, P. (2011). The alchemy
screen-space ambient obscurance algorithm. In Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics, HPG '11, pages 25�32,
New York, NY, USA. ACM.

Miller, G. (1994). E�cient algorithms for local and global accessibility shading.
In Proceedings of the 21st annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH '94, pages 319�326, New York, NY, USA.
ACM.

Mittring, M. (2007). Finding next gen: Cryengine 2. In ACM SIGGRAPH 2007
courses, SIGGRAPH '07, pages 97�121, New York, NY, USA. ACM.

Mittring, M. (2009). A bit more deferred�cryengine 3. In Triangle Game Con-
ference, volume 4.

Nehab, D., Sander, P. V., Lawrence, J., Tatarchuk, N., and Isidoro, J. R. (2007).
Accelerating real-time shading with reverse reprojection caching. In Graphics
Hardware, pages 25�35.

Outracks (2013). Uno - a new gpu-powered front-end programming language.
http://www.outracks.com/#services.

Pharr, M. and Green, S. (2004). Ambient occlusion. GPU Gems, 1:279�292.

Phong, B. T. (1975). Illumination for computer generated pictures. Commun.
ACM, 18(6):311�317.

Pranckevicius, A. (2010). Compact normal storage for small g-bu�ers.
http://aras-p.info/texts/CompactNormalStorage.html.

Reinbothe, C. K., Boubekeur, T., and Alexa, M. (2009). Hybrid ambient oc-
clusion. In Eurographics 2009-Areas Papers, pages 51�57. The Eurographics
Association.

Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P.-P., Bao,
H., Peng, Q., and Guo, B. (2006). Real-time soft shadows in dynamic scenes
using spherical harmonic exponentiation. In ACM SIGGRAPH 2006 Papers,
SIGGRAPH '06, pages 977�986, New York, NY, USA. ACM.

Ritschel, T., Grosch, T., and Seidel, H.-P. (2009). Approximating dynamic
global illumination in image space. In Proceedings of the 2009 symposium
on Interactive 3D graphics and games, I3D '09, pages 75�82, New York, NY,
USA. ACM.

Rosado, G. (2007). Motion blur as a post-processing e�ect. GPU gems, 3:575�
581.

Scheer, F. and Keutel, M. (2010). Screen space ambient occlusion for virtual
and mixed reality factory planning.

Scherzer, D., Jeschke, S., and Wimmer, M. (2007). Pixel-correct shadow maps
with temporal reprojection and shadow test con�dence. In Proceedings of
the 18th Eurographics conference on Rendering Techniques, EGSR'07, pages
45�50, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

51

Shanmugam, P. and Arikan, O. (2007). Hardware accelerated ambient occlusion
techniques on gpus. In Proceedings of the 2007 symposium on Interactive 3D
graphics and games, I3D '07, pages 73�80, New York, NY, USA. ACM.

Sloan, P.-P., Govindaraju, N., Nowrouzezahrai, D., and Snyder, J. (2007).
Image-based proxy accumulation for real-time soft global illumination. In
Computer Graphics and Applications, 2007. PG '07. 15th Paci�c Conference
on, pages 97�105.

Smedberg, N. and Wright, D. (2009). Rendering techniques in gears of war 2.
In Game Developers Conference.

Szirmay-Kalos, L., Umenho�er, T., Toth, B., Szecsi, L., and Sbert, M. (2010).
Volumetric ambient occlusion for real-time rendering and games. Computer
Graphics and Applications, IEEE, 30(1):70�79.

Timonen, V. (2013). Line-sweep ambient obscurance. Computer Graphics Fo-
rum, 32(4):97�105.

Timonen, V. and Westerholm, J. (2010). Scalable height �eld self-shadowing.
Computer Graphics Forum, 29(2):723�731.

Valient, M. (2007). Deferred rendering in killzone 2. In The Develop Conference
and Expo.

van Schijndel, J. (2013). The brigade renderer: A path tracer for real-time
games. International Journal of Computer Games Technology, 2013.

Vardis, K., Papaioannou, G., and Gaitatzes, A. (2013). Multi-view ambient
occlusion with importance sampling. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, I3D '13, pages 111�118,
New York, NY, USA. ACM.

WebGLStats (2013). Webgl stats. http://webglstats.com/.

Wenzel, C. (2006). Real-time atmospheric e�ects in games. In ACM SIGGRAPH
2006 Courses, SIGGRAPH '06, pages 113�128, New York, NY, USA. ACM.

Zhukov, S., Iones, A., and Kronin, G. (1998). An ambient light illumination
model. In Drettakis, G. and Max, N., editors, Rendering Techniques 98,
Eurographics, pages 45�55. Springer Vienna.

52

Appendix A

G-bu�er packing and

unpacking source code

using Uno ;
using Uno . Co l l e c t i o n s ;
using Uno . Graphics ;
using Uno . Scenes ;
using Uno . Scenes . P r im i t i v e s ;
using Uno . Scenes . Des igner ;
using Uno . Content ;
using Uno . Content . Models ;

using stat ic SSAO3 . BufferData ;
using stat ic SSAO3 . Sampling ;
using stat ic Math ;
using stat ic Vector ;

namespace SSAO3
{
public stat ic class BufferData
{
public stat ic f l o a t 3 ReadViewPos (f l o a t 4 packedData ,

f l o a t 2 texCoord , f l o a t 4x4 near , f l o a t 4x4 f a r)
{

var l inearDepth = Buf ferPacker . UnpackFloat16 (
packedData .ZW) ;

return ToViewSpace (f l o a t 3 (texCoord , l inearDepth) ,
near , f a r) ;

}

public stat ic f l o a t 3 ReadViewNormal (f l o a t 4 packedData
)

{
return BufferPacker . UnpackNormal (packedData .XY) ;

53

}

public stat ic f l o a t 3 ToViewSpace (f l o a t 3 imagePosit ion
, f l o a t 4x4 near , f l o a t 4x4 f a r)

{
f l o a t 3 farTL = f a r [0] .XYZ; f l o a t 3 farTR = fa r [1] .

XYZ; f l o a t 3 farBL = f a r [2] .XYZ; f l o a t 3 farBR =
fa r [3] .XYZ;

f l o a t 3 nearTL = near [0] .XYZ; f l o a t 3 nearTR = near
[1] .XYZ; f l o a t 3 nearBL = near [2] .XYZ; f l o a t 3
nearBR = near [3] .XYZ;

f loat farZ = farTL .Z ;
f loat nearZ = nearTL .Z ;
f loat r a t i o = nearZ/ farZ ;

var l inearDepth = imagePos i t ion . Z ;
var l i n e a rD i s t = (1 − r a t i o) ∗ l inearDepth + r a t i o ;

var farDiag = farTR .XY − farBL .XY;
var farPos = farBL + f l o a t 3 (farDiag ∗ imagePos i t ion

.XY, 0) ;

return farPos ∗ l i n e a rD i s t ;
}

}

public stat ic class BufferPacker
{
public stat ic f l o a t 2 PackNormal (f l o a t 3 n)
{

var f = Sqrt (8 ∗ n . Z + 8) ;
return n .XY / f + 0 .5 f ;

}

public stat ic f l o a t 3 UnpackNormal (f l o a t 2 enc)
{

var f enc = enc ∗ 4 − 2 ;
var f = Dot (fenc , f enc) ;
var g = Sqrt (1 − f /4) ;
return f l o a t 3 (f enc ∗ g , 1 − f /2) ;

}

public stat ic f loat UnpackFloat16 (f l o a t 2 rg_depth)
{
return rg_depth .X + rg_depth .Y ∗ 0.00392156862 f ;

}

public stat ic f l o a t 2 PackFloat16 (f loat depth)
{

54

var enc = f l o a t 2 (1 . 0 f , 255 .0 f) ∗ depth ;
enc = f l o a t 2 (Frac (enc .X) , Frac (enc .Y)) ;
enc −= f l o a t 2 (enc .Y ∗ 0.00392156862 f , 0) ;
return enc ;

}

public stat ic f l o a t 4 Frac (f l o a t 4 f)
{
return f l o a t 4 (Frac (f .X) , Frac (f .Y) , Frac (f . Z) , Frac (f .

W)) ;
}

public stat ic f loat Frac (f loat f)
{
return f − Floor (f) ;

}
}

}

55

A.1 Generated GLSL shader program for G-bu�er

pass

uniform mat3 ViewNormal_4_50_4 ;
uniform f loat LinearDepth_4_24_8 , LinearDepth_4_24_9 ;
uniform mat4 WorldViewProjection_4_41_12 , World_19_9_13 ,

WorldView_4_40_14 ;

a t t r i b u t e vec3 model_VertexPosition_13_2_0 ;
a t t r i b u t e vec4 model_VertexNormal_13_3_2 ;

vary ing vec3 ViewNormal_4_50_15 ;
vary ing f loat LinearDepth_4_24_16 ;

void main ()
{

vec4 ClipPosition_4_77_1 =
WorldViewProjection_4_41_12 ∗ vec4 (
model_VertexPosition_13_2_0 , 1 . 0) ;

ViewNormal_4_50_15 = normal ize (ViewNormal_4_50_4 ∗
normal ize (mat3 (World_19_9_13 [0] . xyz , World_19_9_13
[1] . xyz , World_19_9_13 [2] . xyz) ∗
model_VertexNormal_13_3_2 . xyz)) ;

LinearDepth_4_24_16 = (−(WorldView_4_40_14 ∗ vec4 (
model_VertexPosition_13_2_0 , 1 . 0)) . xyz . z −
LinearDepth_4_24_8) / LinearDepth_4_24_9 ;

g l_Pos i t ion = ClipPosition_4_77_1 ;
}

Listing A.1: Vertex shader

vary ing vec3 ViewNormal_4_50_15 ;
vary ing f loat LinearDepth_4_24_16 ;

vec2 PackNormal_0 (vec3 n) {
f loat f = sq r t ((8 . 0 ∗ n . z) + 8 . 0) ;
return (n . xy / f) + 0 . 5 ;

}

f loat Frac_2 (f loat f) {
return f − f l o o r (f) ;

}

vec2 PackFloat16_1 (f loat depth) {
vec2 enc = vec2 (1 . 0 , 255 . 0) ∗ depth ;
enc = vec2 (Frac_2 (enc . x) , Frac_2 (enc . y)) ;
enc = enc − vec2 (enc . y ∗ 0.00392156839 , 0 . 0) ;
return enc ;

}

56

void main ()
{

vec2 normal_22_1_6 = PackNormal_0 (ViewNormal_4_50_15)
;

vec2 depth_22_0_11 = PackFloat16_1 (
LinearDepth_4_24_16) ;

gl_FragColor = vec4 (normal_22_1_6 , depth_22_0_11) ;
}

Listing A.2: Fragment shader

57

58

Appendix B

Ambient obscurance source

code

using Uno ;
using Uno . Co l l e c t i o n s ;
using Uno . Graphics ;
using Uno . Scenes ;
using Uno . Scenes . P r im i t i v e s ;
using Uno . Scenes . Des igner ;
using Uno . Content ;
using Uno . Content . Models ;

using stat ic SSAO3 . BufferData ;
using stat ic SSAO3 . Sampling ;
using stat ic Math ;
using stat ic Vector ;

namespace SSAO3
{
public class AO : Node
{

/// Input to pass

public IProvideTexture GBuffer { get ; s e t ; }
public f l o a t 4x4 FarCorners { get ; s e t ; }
public f l o a t 4x4 NearCorners { get ; s e t ; }

/// tweaking parameters

[Range (0 ,10)]
public f loat Mul t i p l i e r { get ; s e t ; }

[Range (0 ,100)]
public f loat Exponent { get ; s e t ; }

59

[Range (0 , 0 . 1 f)]
public f loat Bias { get ; s e t ; }

[Range (0 . 0 f , 1 . 0 f)]
public f loat Eps { get ; s e t ; }

[Range (0 ,1000)]
public f loat Radius { get ; s e t ; }

[Range (0 ,2 f)]
public f loat MaxScreenRadius { get ; s e t ; }

/// drawable d e f i n t i o n

apply Quad ; // makes us a f u l l s c r e e n quad and
prov ide s us TexCoord , among o ther t h i n g s

f l o a t 2 ScreenCoord : f l o a t 2 (TexCoord .X, 1−TexCoord .Y)
;

f l o a t 2 Sc reenS i z e : f l o a t 2 (Uno . App l i ca t ion . Viewport .
S i z e .X, Uno . App l i ca t ion . Viewport . S i z e .Y) ;

f l o a t 4 Data : sample (GBuffer . Texture , ScreenCoord) ;
f l o a t 3 ViewPosit ion : ReadViewPos (Data , ScreenCoord ,

NearCorners , FarCorners) ;
f l o a t 3 ViewNormal : ReadViewNormal (Data) ;

f loat ScreenRadius : Min(MaxScreenRadius , Radius ∗
0 .01 f / −ViewPosit ion . Z) ;

f loat AmbientFactor :
{
const int s = 9 ;
f loat oneOverSampleCount = (1 . 0 f / (f loat) s) ;
f loat z = ViewPosit ion . Z ;
f loat ao = 0 .0 f ;
for (int i = 0 ; i<s ; i++)
{
f loat angu la rO f f s e t = ScreenCoord .X ∗ ScreenS i z e .

X ∗ 2.3734372915 f // exper imenta l va l u e s f o r
l e s s banding

+ ScreenCoord .Y ∗ ScreenS i z e .Y ∗
3.58540627421 f ;

f l o a t 2 sampleCoord = Sp i r a l (ScreenCoord ,
ScreenRadius , i , oneOverSampleCount ,
angu la rO f f s e t) ;

f l o a t 4 data = sample (GBuffer . Texture , sampleCoord
) ;

60

f l o a t 3 viewSample = ReadViewPos (data , sampleCoord
, NearCorners , FarCorners) ;

f l o a t 3 v_i = (viewSample − ViewPosit ion) ;
f l o a t 3 n = ViewNormal ;
ao += Max(0 , Dot ((v_i) , n) + ViewPosit ion . Z ∗

Bias)
/ ((Dot (v_i , v_i) + Eps)) ;

}
ao ∗= 2.0 f ∗ Mul t i p l i e r / (f loat) s ;
return Pow(Max(0 , 1 . 0 f − ao) , Exponent) ;

} ;

P ixe lCo lo r : f l o a t 4 (f l o a t 3 (AmbientFactor) , 1) ;

DepthTestEnabled : fa l se ;
WriteDepth : fa l se ;

public override void Draw(DrawContext dc)
{

i f (GBuffer == null) return ;
GBuffer . Draw(dc) ;
draw ;

}
}

public stat ic class Sampling
{
public stat ic f l o a t 2 Sp i r a l (f l o a t 2 xy , f loat radius ,

int sampleNo , f loat oneOverSampleCount , f loat
r o t a t i o nO f f s e t)

{
f loat alpha = oneOverSampleCount ∗ ((f loat)

sampleNo + 0 .5 f) ;
f loat theta = 2 .0 f ∗ Math . PIf ∗ alpha +

ro t a t i o nO f f s e t ;
var d i r = f l o a t 2 (Cos (theta) , Sin (theta)) ;
return xy + d i r ∗ rad iu s ∗ alpha ;

}
}

}

61

B.1 Generated GLSL fragment shader for AO pass

uniform mat4 ViewPosition_3_15_6 , ViewPosition_3_15_7 ;
uniform f loat ScreenRadius_3_17_9 , ScreenRadius_3_17_10 ,

AmbientFactor_3_18_22 , AmbientFactor_3_18_24 ,
AmbientFactor_3_18_26 , AmbientFactor_3_18_28 ;

uniform vec2 AmbientFactor_3_18_16 ;

uniform sampler2D Data_3_14_2 ;

vary ing vec2 ScreenCoord_3_12_31 ;

f loat UnpackFloat16_1 (vec2 rg_depth) {
return rg_depth . x + (rg_depth . y ∗ 0.00392156839) ;

}

vec3 ToViewSpace_2 (vec3 imagePosit ion , mat4 near , mat4
f a r) {
vec3 farTL = f a r [0] . xyz ;
vec3 farTR = fa r [1] . xyz ;
vec3 farBL = f a r [2] . xyz ;
vec3 farBR = fa r [3] . xyz ;
vec3 nearTL = near [0] . xyz ;
vec3 nearTR = near [1] . xyz ;
vec3 nearBL = near [2] . xyz ;
vec3 nearBR = near [3] . xyz ;
f loat farZ = farTL . z ;
f loat nearZ = nearTL . z ;
f loat r a t i o = nearZ / farZ ;
f loat l inearDepth = imagePos i t ion . z ;
f loat l i n e a rD i s t = ((1 . 0 − r a t i o) ∗ l inearDepth) +

r a t i o ;
vec2 farDiag = farTR . xy − farBL . xy ;
vec3 farPos = farBL + vec3 (farDiag ∗ imagePos i t ion . xy

, 0 . 0) ;
return farPos ∗ l i n e a rD i s t ;

}

vec3 ReadViewPos_0(vec4 packedData , vec2 texCoord , mat4
near , mat4 f a r) {
f loat l inearDepth = UnpackFloat16_1 (packedData . zw) ;
return ToViewSpace_2 (vec3 (texCoord , l inearDepth) ,

near , f a r) ;
}

vec3 UnpackNormal_4(vec2 enc) {
vec2 f enc = (enc ∗ 4 . 0) − 2 . 0 ;
f loat f = dot (fenc , f enc) ;
f loat g = sq r t (1 . 0 − (f / 4 . 0)) ;

62

return vec3 (f enc ∗ g , 1 . 0 − (f / 2 . 0)) ;
}

vec3 ReadViewNormal_3 (vec4 packedData) {
return UnpackNormal_4(packedData . xy) ;

}

vec2 Spiral_6 (vec2 xy , f loat radius , int sampleNo , f loat
oneOverSampleCount , f loat r o t a t i o nO f f s e t) {
f loat alpha = oneOverSampleCount ∗ (f loat (sampleNo) +

0 . 5) ;
f loat theta = (6 .28318548 ∗ alpha) + r o t a t i o nO f f s e t ;
vec2 d i r = vec2 (cos (theta) , s i n (theta)) ;
return xy + ((d i r ∗ rad iu s) ∗ alpha) ;

}

f loat Draw_AmbientFactor_90316d99_3_18_4_5(vec3
ViewPosition_3_18_13 , vec2 ScreenCoord_3_18_14 , vec2
AmbientFactor_3_18_15 , f loat ScreenRadius_3_18_17 ,
mat4 AmbientFactor_3_18_18 , mat4 AmbientFactor_3_18_19
, vec3 ViewNormal_3_18_20 , f loat AmbientFactor_3_18_21
, f loat AmbientFactor_3_18_23 , f loat
AmbientFactor_3_18_25 , f loat AmbientFactor_3_18_27) {
int s = 9 ;
f loat oneOverSampleCount = 0 .111111112 ;
f loat z = ViewPosition_3_18_13 . z ;
f loat ao = 0 . 0 ;

for (int i = 0 ; i < 9 ; i++)
{

f loat angu la rO f f s e t = ((ScreenCoord_3_18_14 . x ∗
AmbientFactor_3_18_15 . x) ∗ 2 .3734374) + ((
ScreenCoord_3_18_14 . y ∗ AmbientFactor_3_18_15 .
y) ∗ 3 .5854063) ;

vec2 sampleCoord = Spiral_6 (ScreenCoord_3_18_14 ,
ScreenRadius_3_18_17 , i , oneOverSampleCount ,
angu la rO f f s e t) ;

vec4 data = texture2D (Data_3_14_2 , sampleCoord) ;
vec3 viewSample = ReadViewPos_0(data , sampleCoord

, AmbientFactor_3_18_18 , AmbientFactor_3_18_19
) ;

vec3 v_i = viewSample − ViewPosition_3_18_13 ;
vec3 n = ViewNormal_3_18_20 ;
ao = ao + (max(0 . 0 , dot (v_i , n) + (

ViewPosition_3_18_13 . z ∗ AmbientFactor_3_18_21
)) / (dot (v_i , v_i) + AmbientFactor_3_18_23)) ;

}

ao = ao ∗ ((2 . 0 ∗ AmbientFactor_3_18_25) / 9 . 0) ;

63

return pow(max(0 . 0 , 1 . 0 − ao) , AmbientFactor_3_18_27)
;

}

void main ()
{

vec4 Data_3_14_5 = texture2D (Data_3_14_2 ,
ScreenCoord_3_12_31) ;

vec3 ViewPosition_3_15_8 = ReadViewPos_0(Data_3_14_5 ,
ScreenCoord_3_12_31 , ViewPosition_3_15_6 ,

ViewPosition_3_15_7) ;
f loat AmbientFactor_3_18_30 =

Draw_AmbientFactor_90316d99_3_18_4_5(
ViewPosition_3_15_8 , ScreenCoord_3_12_31 ,
AmbientFactor_3_18_16 , min (ScreenRadius_3_17_10 ,
ScreenRadius_3_17_9 / −ViewPosition_3_15_8 . z) ,
ViewPosition_3_15_6 , ViewPosition_3_15_7 ,
ReadViewNormal_3 (Data_3_14_5) ,
AmbientFactor_3_18_22 , AmbientFactor_3_18_24 ,
AmbientFactor_3_18_26 , AmbientFactor_3_18_28) ;

gl_FragColor = vec4 (vec3 (AmbientFactor_3_18_30) , 1 . 0)
;

}

64

Appendix C

Bilateral blur source code

using Uno ;
using Uno . Co l l e c t i o n s ;
using Uno . Graphics ;
using Uno . Scenes ;
using Uno . Content ;
using Uno . Content . Models ;

using stat ic Uno .Math ;
using stat ic Uno . Vector ;

namespace SSAO3
{
public class Bi l a t e r a lB l u r 2 : Node
{
public IProvideTexture Input { get ; s e t ; }
public IProvideTexture GBuffer { get ; s e t ; }

[Uno . Scenes . Des igner . Range (0 ,10)]
public f loat NormalEffect { get ; s e t ; }

[Uno . Scenes . Des igner . Range (0 ,10)]
public f loat DepthEffect { get ; s e t ; }

public f l o a t 2 D i r e c t i on { get ; s e t ; }
public override void Draw(DrawContext dc)
{
base . Draw(dc) ;
i f (Input != null && Input . Texture != null &&

GBuffer != null)
{

var s i z e = Appl i ca t ion . Viewport . S i z e ;
var c o l o rBu f f e r t = Input . Texture ;
var gBu f f e r t = GBuffer . Texture ;
var dex = DepthEffect ;

65

var nex = NormalEffect ;
var near = (f l o a t 4x4) dc ["NearCorners "] ;
var f a r = (f l o a t 4x4) dc ["FarCorners "] ;

draw Uno . Scenes . Pr im i t i v e s .Quad
{

TexCoord : f l o a t 2 (prev .X, 1−prev .Y) ;

f l o a t 2 l o l : f l o a t 2 (1 . 0 f) / f l o a t 2 (s i z e .X, s i z e .
Y) ;

f l o a t 2 Di rec t i onOverS i ze : D i r e c t i on ∗ l o l ;
P ixe lCo lo r :
{

var data = sample (gBuf fe r t , TexCoord) ;
var depth = Vector . Length (BufferData .

ReadViewPos (data , TexCoord , near , f a r)) ;
var normal = BufferData . ReadViewNormal (data) ;

var c o l o r = f l o a t 4 (0) ;
var weightSum = 0.0 f ;

for (int i =−3; i <= 3 ; i++)
{

var tc = TexCoord + Direc t ionOverS i ze ∗ i ;
var sampleColor = sample (c o l o rBu f f e r t , t c) ;
var sampleData = sample (gBuf fe r t , t c) ;
var sampleDepth = Vector . Length (BufferData .

ReadViewPos (sampleData , tc , near , f a r)) ;
var sampleNormal = BufferData .

ReadViewNormal (sampleData) ;
var weight = (Pow(1 . 0 f /(1+Math . Abs (depth −

sampleDepth)) , dex))
∗ (Pow(Dot (normal , sampleNormal) ∗

0 .5 f + 0 .5 f , nex)) ;
c o l o r += sampleColor ∗ weight ;
weightSum += weight ;

}
c o l o r /= weightSum ;
return c o l o r ;

} ;
} ;

}
}

}

66

C.1 Generated GLSL fragment shader for bilat-

eral blur pass

uniform mat4 PixelColor_6_4_8 , PixelColor_6_4_10 ;
uniform vec2 PixelColor_6_4_12 ;
uniform f loat PixelColor_6_4_14 , PixelColor_6_4_16 ;

uniform sampler2D PixelColor_6_4_2 , PixelColor_6_4_5 ;

vary ing vec2 TexCoord_6_1_19 ;

f loat UnpackFloat16_2 (vec2 rg_depth) {
return rg_depth . x + (rg_depth . y ∗ 0.00392156839) ;

}

vec3 ToViewSpace_3 (vec3 imagePosit ion , mat4 near , mat4
f a r) {
vec3 farTL = f a r [0] . xyz ;
vec3 farTR = fa r [1] . xyz ;
vec3 farBL = f a r [2] . xyz ;
vec3 farBR = fa r [3] . xyz ;
vec3 nearTL = near [0] . xyz ;
vec3 nearTR = near [1] . xyz ;
vec3 nearBL = near [2] . xyz ;
vec3 nearBR = near [3] . xyz ;
f loat farZ = farTL . z ;
f loat nearZ = nearTL . z ;
f loat r a t i o = nearZ / farZ ;
f loat l inearDepth = imagePos i t ion . z ;
f loat l i n e a rD i s t = ((1 . 0 − r a t i o) ∗ l inearDepth) +

r a t i o ;
vec2 farDiag = farTR . xy − farBL . xy ;
vec3 farPos = farBL + vec3 (farDiag ∗ imagePos i t ion . xy

, 0 . 0) ;
return farPos ∗ l i n e a rD i s t ;

}

vec3 ReadViewPos_1(vec4 packedData , vec2 texCoord , mat4
near , mat4 f a r) {
f loat l inearDepth = UnpackFloat16_2 (packedData . zw) ;
return ToViewSpace_3 (vec3 (texCoord , l inearDepth) ,

near , f a r) ;
}

vec3 UnpackNormal_5(vec2 enc) {
vec2 f enc = (enc ∗ 4 . 0) − 2 . 0 ;
f loat f = dot (fenc , f enc) ;
f loat g = sq r t (1 . 0 − (f / 4 . 0)) ;
return vec3 (f enc ∗ g , 1 . 0 − (f / 2 . 0)) ;

67

}

vec3 ReadViewNormal_4 (vec4 packedData) {
return UnpackNormal_5 (packedData . xy) ;

}

vec4 Draw_PixelColor_86984bb1_6_4_4_0 (vec2 TexCoord_6_4_6
, mat4 PixelColor_6_4_7 , mat4 PixelColor_6_4_9 , vec2
PixelColor_6_4_11 , f loat PixelColor_6_4_13 , f loat
PixelColor_6_4_15) {
vec4 data = texture2D (PixelColor_6_4_2 ,

TexCoord_6_4_6) ;
f loat depth = length (ReadViewPos_1(data ,

TexCoord_6_4_6 , PixelColor_6_4_7 , PixelColor_6_4_9
)) ;

vec3 normal = ReadViewNormal_4 (data) ;
vec4 c o l o r = vec4 (0 . 0) ;
f loat weightSum = 0 . 0 ;

for (int i = −3; i <= 3 ; i++)
{

vec2 tc = TexCoord_6_4_6 + (PixelColor_6_4_11 ∗
f loat (i)) ;

vec4 sampleColor = texture2D (PixelColor_6_4_5 , tc
) ;

vec4 sampleData = texture2D (PixelColor_6_4_2 , tc)
;

f loat sampleDepth = length (ReadViewPos_1 (
sampleData , tc , PixelColor_6_4_7 ,
PixelColor_6_4_9)) ;

vec3 sampleNormal = ReadViewNormal_4 (sampleData) ;
f loat weight = pow(1 . 0 / (1 . 0 + abs (depth −

sampleDepth)) , PixelColor_6_4_13) ∗ pow((dot (
normal , sampleNormal) ∗ 0 . 5) + 0 . 5 ,
PixelColor_6_4_15) ;

c o l o r = co l o r + (sampleColor ∗ weight) ;
weightSum = weightSum + weight ;

}

c o l o r = co l o r / weightSum ;
return c o l o r ;

}

void main ()
{

vec4 PixelColor_6_4_18 =
Draw_PixelColor_86984bb1_6_4_4_0 (TexCoord_6_1_19 ,
PixelColor_6_4_8 , PixelColor_6_4_10 ,
PixelColor_6_4_12 , PixelColor_6_4_14 ,
PixelColor_6_4_16) ;

68

gl_FragColor = PixelColor_6_4_18 ;
}

69

70

Appendix D

Normal reconstruction source

code

(not used in �nal prototype)

using Uno ;
using Uno . Co l l e c t i o n s ;
using Uno . Graphics ;
using Uno . Audio ;
using Uno . Scenes ;
using Uno . Content ;
using Uno . Content . Models ;

namespace SSAO3
{
public class NormalFromDepth : RenderToTexture
{
public IProvideTexture PackedLinearDepth { get ; s e t ;

}

public override void OnDraw(DrawContext dc)
{
base .OnDraw(dc) ;

i f (PackedLinearDepth == null) return ;
var depthBuf fer = PackedLinearDepth . Texture ;
i f (depthBuf fer == null) return ;

var nearCorners = (f l o a t 4x4) dc ["NearCorners "] ;
var fa rCorner s = (f l o a t 4x4) dc ["FarCorners "] ;
draw Uno . Scenes . Pr im i t i v e s .Quad
{

sampler2D depthSampler : p ixe l_sampler (
depthBuf fer) ;

71

TexCoord : f l o a t 2 (prev .X, 1 − prev .Y) ;

f l o a t 2 OneOverSize : f l o a t 2 (1 . 0 f / dc . Rect . S i z e .X
, 1 .0 f / dc . Rect . S i z e .Y) ;

f l o a t 3 c : BufferData . ReadViewPos (depthSampler ,
TexCoord , nearCorners , f a rCorner s) ;

f l o a t 3 dx : Vector . Normalize (BufferData .
ReadViewPos (depthSampler , TexCoord + f l o a t 2 (
OneOverSize .X, 0) , nearCorners , f a rCorner s) −
c) ;

f l o a t 3 dy : Vector . Normalize (BufferData .
ReadViewPos (depthSampler , TexCoord + f l o a t 2 (0 ,
OneOverSize .Y) , nearCorners , f a rCorner s) − c)
;

f l o a t 3 normal : Vector . Cross (dx , dy) ;

P ixe lCo lo r : f l o a t 4 ((normal ∗ 0 .5 f + 0 .5 f) , 1) ;
} ;

}
}

}

72

D.1 Generated GLSL fragment shader for nor-

mal reconstruction

uniform mat4 dx_7_5_8 , dx_7_5_9 ;

uniform sampler2D depthSampler_7_1_2 ;

vary ing vec2 dx_7_5_7 , dy_7_6_13 , TexCoord_7_2_17 ;

f loat UnpackFloat_2 (vec4 rgba_depth) {
return rgba_depth . x + (rgba_depth . y ∗ 0.00392156839) ;

}

f loat ReadLinearDepth_1 (sampler2D depthBuffer , vec2
texCoord) {
vec4 PackedDepth = texture2D (depthBuffer , texCoord) ;
return UnpackFloat_2 (PackedDepth) ;

}

vec3 ToViewSpace_3 (vec3 imagePosit ion , mat4 near , mat4
f a r) {
vec3 farTL = f a r [0] . xyz ;
vec3 farTR = fa r [1] . xyz ;
vec3 farBL = f a r [2] . xyz ;
vec3 farBR = fa r [3] . xyz ;
vec3 nearTL = near [0] . xyz ;
vec3 nearTR = near [1] . xyz ;
vec3 nearBL = near [2] . xyz ;
vec3 nearBR = near [3] . xyz ;
f loat farZ = farTL . z ;
f loat nearZ = nearTL . z ;
f loat r a t i o = nearZ / farZ ;
f loat l inearDepth = imagePos i t ion . z ;
f loat l i n e a rD i s t = ((1 . 0 − r a t i o) ∗ l inearDepth) +

r a t i o ;
vec2 farDiag = farTR . xy − farBL . xy ;
vec3 farPos = farBL + vec3 (farDiag ∗ imagePos i t ion . xy

, 0 . 0) ;
return farPos ∗ l i n e a rD i s t ;

}

vec3 ReadViewPos_0(sampler2D depthBuffer , vec2 texCoord ,
mat4 near , mat4 f a r) {
f loat l inearDepth = ReadLinearDepth_1 (depthBuffer ,

texCoord) ;
return ToViewSpace_3 (vec3 (texCoord , l inearDepth) ,

near , f a r) ;
}

73

void main ()
{

vec3 c_7_4_10 = ReadViewPos_0 (depthSampler_7_1_2 ,
TexCoord_7_2_17 , dx_7_5_8 , dx_7_5_9) ;

vec4 PixelColor_7_8_16 = vec4 ((c r o s s (normal ize (
ReadViewPos_0(depthSampler_7_1_2 , dx_7_5_7 ,
dx_7_5_8 , dx_7_5_9) − c_7_4_10) , normal ize (
ReadViewPos_0(depthSampler_7_1_2 , dy_7_6_13 ,
dx_7_5_8 , dx_7_5_9) − c_7_4_10)) ∗ 0 . 5) + 0 . 5 ,
1 . 0) ;

gl_FragColor = PixelColor_7_8_16 ;
}

74

