
Computational Materials: Experimental
Platform

Ole Petter Skarre Lund

Master of Science in Computer Science

Supervisor: Gunnar Tufte, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description

In this research project we try to exploit computational properties of un-
conventional materials (materials usually not considered as a computa-
tional substrate). Such materials may offer computation at extreme low
cost and may also enable us to do computation that is hard (or impossible)
on a von Neumann stored program machine. Currently we explore possible
computational properties of carbon nano tubes.

In 2010 a first version of a platform was made. This system consists of a
PCB, including an Atmel microcontroller and a Xilinx FPGA, that acts
as an interface between a PC and a micro electrode array. The array
interfaces the material under investigation.

In this project the experimental platform will be extended. There are
several possible directions. As such there is a possibility for several students
pursuing different directions. Possible directions:

a) Extending the software, microcontroller and PC (mostly c-programming).

b) Extending the FPGA interface to the material (VHDL and c-programming).

c) Design of additional interface circuits between the FPGA and the micro
electrode array (PCB-design, digital/analogue design).

i

Abstract

The field of evolution in materio is a branch of unconventional computing
that uses artificial evolution to manipulate materials so that the emergent
properties can be used for computation. Some materials may have very
complex properties and this could be utilized to do computation faster
and/or more energy efficient than today’s computers. The purpose of this
master’s thesis is to extend an already existing prototype system, called
Mecobo, that is used for evolution in materio. The prototype system is
currently only able to apply digital signals to the materials, i.e. high and
low voltage, but with this new extension it will also be able to apply an
arbitrary waveform in addition to reading the response from the materials.
The main components of the extension are digital-to-analog converters that
together with an FPGA functions as a frequency synthesizer. An analog-
to-digital converter is also used for sampling the response signal. Some
initial experiments are presented, where the linearity/nonlinearity of the
response signal is investigated when analog signals are applied to carbon
nanotubes. The results shows that carbon nanotubes are able to influence
the signals, as they pass through it.

iii

Sammendrag

Forskningsfeltet evolution in materio er en gren av feltet ukonvensjonell
databehandling som bruker kunstig evolusjon for å manipulere materi-
aler slik at egenskapene som oppst̊ar kan benyttes til å gjøre signal- og
databehandling. Noen materialer kan ha veldig komplekse egenskaper og
dette kan bli utnyttet til å gjøre beregninger raskere og/eller mer energi-
effektivt enn hva dagens datamaskiner kan. Hensikten med denne mas-
teroppgaven er å utvide et allerede eksisterende prototype-system, kalt
Mecobo, som blir brukt til evolution in materio. Prototype-systemet er
foreløpig bare i stand til å anvende digital signaler p̊a materialer, med
andre ord høy og lav spenning, men med den nye utvidelsen vil det bli
mulig å andvende vilk̊arlige bølgeformer i tillegg til å kunne lese responsen
fra materialet. Hovedkomponentene i den nye utvidelsen er digital-til-
analog konvertere som sammen med en FPGA fungerer som en frekvens-
synthesizer. En analog-til-digital konverter blir brukt for å lese respon-
ssignalet fra materialet. Noen innledende eksperimenter presenteres, hvor
lineæriteten/ikke-lineæriteten til responsen fra nanorør av karbon blir un-
dersøkt, n̊ar analoge signaler blir andvendt. Resultatene viser at materialet
er i stand til å p̊avirke signalene, idet de passerer gjennom det.

v

Acknowledgments

I would like to thank my supervisor Gunnar Tufte. His knowledge in
signal processing, analog/digital electronics and evolvable systems has been
very helpful during the process of designing and evaluating the system
and in analyzing the results of the experiments. Also, thanks to Odd
Rune Strømmen Lykkebø for helping me with the various problems that I
encountered.

vii

Contents

Problem Description i

Abstract iii

Sammendrag v

Acknowledgments vii

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Unconventional Computation 1
1.2 Evolution In Materio . 3
1.3 Thesis Outline . 4

2 Background 7
2.1 Previous Work . 7

2.1.1 Pioneer Work . 7
2.1.2 FPGA Tone Discriminator 8
2.1.3 Liquid Crystals . 9

2.2 Existing Platform . 11

3 System Overview 15
3.1 The Experimental Hardware 15
3.2 Extension . 18

3.2.1 Direct Digital Synthesizer 19
3.2.2 Signal Sampling . 20

4 Design and Implementation 21
4.1 DA/AD Converter . 21
4.2 FPGA . 25

4.2.1 Original Design . 25
4.2.2 DAC SPI Controller 26
4.2.3 ADC SPI Controller 28
4.2.4 Numerically Controlled Oscillator 29

ix

CONTENTS

Phase accumulator 30
Phase-to-Amplitude Converter 32
Channel Grouping 36

4.2.5 Wave Control . 37
4.2.6 Sample Register . 38
4.2.7 User Module Changes 38

4.3 Microcontroller . 39
4.3.1 Address Room . 39
4.3.2 Busy Line to Microcontroller 39

4.4 libEMB . 41
4.5 PCB . 46
4.6 Low-pass Filter . 47
4.7 Error sources . 48

4.7.1 Phase Truncation 48
4.7.2 Quantization . 51

5 Testing and Evaluation 53
5.1 System Tests . 53
5.2 FPGA Tests . 53
5.3 Digital/Analog Converter Evaluation 54

5.3.1 Integral Nonlinearity 55
5.3.2 Differential Nonlinearity 57
5.3.3 Frequency Domain Analysis 59

Digital-to-analog Converter 61
Analog-to-digital Converter 62
Closed-loop . 63

6 Experiments 67
6.1 Trial and Error . 67
6.2 ADC Adding Noise To The Output 68
6.3 Frequency Response . 69
6.4 Phase Response . 70

6.4.1 Experiment 1 . 71
6.4.2 Experiment 2 . 72

6.5 Amplitude Response . 74

7 Conclusion 79
7.1 Further Work . 80

Bibliography 83

x

CONTENTS

Appendices 86

A Test Plans 87
A.1 System Tests . 87

A.1.1 libEMB . 87
A.2 FPGA Design Tests . 89

A.2.1 SPI DAC Controller 89
A.2.2 SPI ADC Controller 89
A.2.3 Sine LUT . 90
A.2.4 Sine LUT Wrapper 90
A.2.5 Configuration Register 90
A.2.6 Wave Configuration Register 90
A.2.7 Wave Memory . 91
A.2.8 Wave Generator . 91
A.2.9 Sample Register . 92
A.2.10 Wave Controller . 93
A.2.11 Wave Module . 93
A.2.12 Toplevel . 93

B Finite State Machines 95

C Test Equipment 99

D Bill of Materials 100

E Schematics 101

xi

List of Figures

1.1 Visualization of evolution in materio 4
1.2 Adrian Thompson’s experiment setup 5

2.1 Gordon Pask’s schematic 8
2.2 Adrian Thompson’s experiment setup 9
2.3 Evolvable motherboard . 10
2.4 Liquid crystal evolvable motherboard 11
2.5 Robot controller . 12
2.6 System overview without the extension 12
2.7 Picture of Mecobo . 13
2.8 Carbon nanotubes . 14
2.9 Gold particles . 14

3.1 System overview with the analog board 15
3.2 Mecobo interfacing . 16
3.3 Prototype system . 17
3.4 Experimental setup . 18
3.5 Desired Waveforms . 19
3.6 Sampling example . 20
3.7 Direct digital synthesizer 20

4.1 Analog board overview . 22
4.2 DAC block diagram . 23
4.3 ADC block diagram . 24
4.4 Analog board with communication 25
4.5 FPGA design overview . 26
4.6 Extended FPGA design overview 27
4.7 DAC SPI controller . 28
4.8 ADC SPI controller . 29
4.9 Wave module . 30
4.10 Numerically controlled oscillator 31
4.11 Phase accumulator output 32
4.12 Sine symmetry . 33
4.13 NCO wave output . 34
4.14 Sawtooth to triangle wave 35
4.15 DAC channels . 37
4.16 Address rooms . 40
4.17 Analog board ground . 46
4.18 DAC schematic . 47

xiii

LIST OF FIGURES

4.19 DAC schematic . 48
4.20 Picture of the analog board 50
4.21 Low-pass filter . 50
4.22 Phase truncation error . 51

5.1 Ideal vs. measured plot of DAC 55
5.2 Ideal vs. measured plot of ADC 56
5.3 DAC integral nonlinearity 57
5.4 ADC integral nonlinearity 58
5.5 DAC differential nonlinearity 59
5.6 ADC differential nonlinearity 60
5.7 DAC dynamic performance 61
5.8 DAC signal-to-noise ratio vs. input frequency 62
5.9 ADC dynamic performance 63
5.10 ADC signal-to-noise ratio vs. input frequency 64
5.11 Closed-loop dynamic performance 65
5.12 Closed-loop signal-to-noise ratio vs. input frequency 65

6.1 Carbon nanotubes and MEA used in experiments 68
6.2 Trial and error experiment setup 69
6.3 1000 Hz input . 70
6.4 1000 Hz and 800 Hz as input 71
6.5 Weighted sum . 71
6.6 Material response without noise 72
6.7 Material response with noise 73
6.8 Frequency response experiment setup 73
6.9 Frequency in vs. frequency out 74
6.10 Waveform plot at 500 Hz and 750 kHz 75
6.11 Waveform plot at 1000 Hz and 1250 Hz 75
6.12 Waveform plot at 1500 Hz 76
6.13 Phase response 1 . 76
6.14 Phase difference calculation 76
6.15 Phase response 2 . 77
6.16 Frequency (1 kHz - 1 MHz) vs. peak-to-peak amplitude . . 77
6.17 Frequency (10 Hz - 1 kHz) vs. peak-to-peak amplitude . . 78

B.1 FSM of the ADC SPI controller 95
B.2 FSM of the DAC SPI controller 96
B.3 FSM of the NCO . 97
B.4 FSM of the sample register 98

E.1 Analog board PCB schematic 102

xiv

List of Tables

3.1 EA genome example . 18

4.1 DAC SPI commands . 28
4.2 DAC channel grouping . 36
4.3 Channel group frequencies 37
4.4 New user module commands 38
4.5 New libEMB functions . 42
4.6 Argument constraints . 45
4.7 PCB design rules . 49

A.1 libEMB function tests . 88
A.2 SPI DAC controller tests 89
A.3 SPI ADC controller test 89
A.4 Sine look-up table test . 90
A.5 Sine look-up table wrapper test 90
A.6 Configuration register test 90
A.7 Wave configuration register test 90
A.8 Wave memory test . 91
A.9 Wave generator test . 91
A.10 Sample register tests . 92
A.11 Wave controller tests . 93
A.12 Wave module tests . 93
A.13 Toplevel tests . 94

C.1 Test equipment . 99

D.1 Bill of materials for the analog board 100

xv

Acronyms

FPGA field programmable gate array

PCB printed circuit board

EA evolutionary algorithm

SPI serial peripheral interface

DDS direct digital synthesizer

NCO numerically controlled oscillator

INL integral nonlinearity

DNL differential nonlinearity

DAC digital-to-analog converter

ADC analog-to-digital converter

PA phase accumulator

PAC phase-to-amplitude converter

SNR signal-to-noise ratio

SFDR spurious-free dynamic range

MSB most significant bit

LSB least significant bit

FSM finite state machine

LUT look-up table

ROM read-only memory

xvii

1
Introduction

This master’s thesis is a about unconventional computation and uncon-
ventional computational machines. It is a part of a Future and Emerging
Technologies project called NAnoSCale Engineering for Novel Computa-
tion using Evolution (NASCENCE). This project is funded by EU’s Sev-
enth Framework Programme (FP7). From the projects website we can
read that: ”The aim of this project is to model, understand and exploit the
behavior of evolving nanosystems (e.g. networks of nanoparticles, carbon
nanotubes or films of graphene) with the long term goal to build informa-
tion processing devices exploiting these architectures without reproducing
individual components. With an interface to a conventional digital com-
puter we will use computer controlled manipulation of physical systems to
evolve them towards doing useful computation.” [nas]

1.1 Unconventional Computation

As Moore’s law is expected to collapse sometime in the future, we need a
new way to do computation to be able to continue the increase in speed
and energy efficiency that we see in computers today. In the past, most
of the improvements came from new microarchitectures that exploited
instruction-level parallelism and from higher clock speeds. Unfortunately,
these improvements cannot continue indefinitely because of the serial na-
ture of the uniprocessor and the heat it generates at high frequencies. So
for the last ten years, the processor industry has shifted the focus from
single-core processors towards multi-core processors to take advantage of
data-level and thread-level parallelism [HP12]. Although this is an impor-
tant step, it is not enough to overcome the ever-increasingly demand for
more speed and energy efficiency. Projects like NASCENCE is hopefully

1

CHAPTER 1. INTRODUCTION

the start of a transition from conventional to unconventional computers in
areas that needs the computational strength of a unconventional computer
to solve difficult problems faster or where low energy consumption is cru-
cial. The goal is not necessarily to replace all conventional computers, but
instead be a supplement.

Today, the word computation is something that most people associate with
the traditional electronic computer based on von Neumann’s stored pro-
gram machine, consisting of silicon transistors. However, a lot of physical
processes can be viewed as a computational process. Maybe the most
apparent one is the biological process where an organism is developed
from a zygote to a fully grown individual [KB03]. Another example is the
Belousov-Zhabotinsky reaction. This is a nonlinear oscillating chemical re-
action that creates complex patterns. It is an example of non-equilibrium
thermodynamics that can be used to manipulate and process information
and it is a subject of study in the field of reaction-diffusion computing
[JHJ10]. A common denominator for these physical processes is that there
is no central control. The system where the computation takes place is
distributed and consists of many small parts that interacts locally with
the nearest neighbors [SLHR06]. The system is parallel by nature and it
often exhibits complex and non-linear properties that emerges from this
interaction. This could be very useful. For example, small perturbations
may cause great effect on the system as opposed to a system with lin-
ear properties where the effect usually is proportional to the perturbation
[JHJ10].

We want to exploit this computational capability to do computation much
faster and/or more energy efficient than what is possible with a conven-
tional computer. Problems that are considered impossible to solve on
the traditional computer may be solvable using such an unconventional
computer. These systems may also offer other desirable properties such
as robustness and adaption because of its decentralized structure [Hey].
There is no central processor or control that needs to function correctly
so that the rest of the system can work correctly. All the small parts con-
tribute equally and if some of them are disturbed or destroyed, the rest of
the system may continue to function properly together. This is an exam-
ple of robustness. Adaption may help the system to function correctly in
different environments, by reorganizing and stabilize in a new state while
maintaining its original operation or function.

While a conventional computer can be controlled and programmed using a
large number of different programming languages that works as digital ab-

2

1.2. EVOLUTION IN MATERIO

straction layer for a processor that we know all about, this is not the case
with unconventional computers. They are often distributed and consists of
a vast number of processing elements that together creates the emergent
computational properties. The implementation could be a number of dif-
ferent physical and distributed systems where there is no obvious way to
specify the systems operation or function. In such a distributed system, the
programming techniques can be separated into two categories [Sip02]. The
first one is direct programming where the programmer completely specifies
the interaction/connection between the parts and each parts function, etc.
If we do not have any knowledge about the systems internal structure and
we don’t know how the desired properties emerges or if it is to complicated
to use direct programming, we could use an adaptive method such as artifi-
cial evolution [Dow10]. In this method, the system is specified to a certain
extent before the adaptive process of evolution develops or produces the
functionality we want.

1.2 Evolution In Materio

Evolution in materio is a field of research that uses artificial evolution to
control or manipulate materials to do some form of computation. The ma-
terial can be solid, liquid or gas. The idea is to use artificial evolution to
change the physical or electrical configuration of the material and exploit
the emergent properties to do the computation. The physical system, in
this case some type of material, may have very complex and unpredictable
properties. It may be very hard or even impossible for humans to under-
stand how the system works and we therefore need a way to overcome this
problem. The power of evolution is that it does not have to know anything
about the problem it tries to solve. We can therefore use artificial evolution
as tool to solve complex problems we humans have little or no knowledge
about [Har06]. By mimicking nature, we can configure the system without
knowing how it works internally. We can view it as a black box. The ma-
terial we are currently experimenting with is carbon nanotubes. We now
little about the internal workings of the material and how its properties
emerges and therefore we use artificial evolution to investigate this.

Figure 1.1 shows how one may visualize evolution in materio. The physical
or electrical configuration of the material is changed and an input signal
is processed by the material. The modified output signal is tested and
its fitness is measured according to a fitness function. The fitness score

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Visualization of evolution in materio.

is then used by the evolutionary algorithm to change the configuration
using different genetic operators (such as mutation and crossover). The
evolutionary algorithm moves through the solution space in search for a
possible solution.

Evolution in materio has been successfully applied to several problems.
For example, Simon Harding has used the technique to evolve a robot con-
troller using liquid crystals as material [Har06]. Another example is Adrian
Thompson’s experiment where he evolved a tone discriminator circuit on
a field programmable gate array (FPGA). The setup of the experiment
is shown in figure 1.2. The FPGA acts as the material and the desktop
PC runs the evolutionary algorithm and applies the different configura-
tions to the FPGA. The tone generator is used to test the circuit and
the integrator is for measurements that is used in the fitness calculation.
The evolved circuit could discriminate between two different tones and it
exploited the inherently analog nature of the silicon transistor [Tho96].
More about these experiments in chapter 2.

1.3 Thesis Outline

This master’s thesis describes an extension to the evolution in materio pro-
totype system developed by Odd Rune Strømmen Lykkebø, as part of his
master’s thesis [Lyk10]. The system is currently only able to apply digital
signals to the material, but we also want it to have the ability to apply
dynamic signals, e.g. a sine wave or triangle wave, and sample the output
response signal. The reason for this is simple; we are searching for an

4

1.3. THESIS OUTLINE

Figure 1.2: Adrian Thompson’s experiment setup. Illustration taken from
[Tho96].

electrical configuration(s) that manipulates the material so that computa-
tional properties emerges. By extending to analog signals we get a much
larger set of possible configurations. The extension is therefore a printed
circuit board with digital-to-analog and analog-to-digital converters that
connects to the material, in addition to necessary software and hardware
needed for the communication between the prototype system and the new
extension.

Chapter 2 describes some previous work done in this field and a brief
overview of the work done by Odd Rune Strømmen Lykkebø. Chapter 3
gives and overview of the system, both the original system and the new
extension. In chapter 4 we dive into the details of the system and look
how it really functions, its capabilities and its limitations. The testing and
evaluation is described in chapter 5. Chapter 6 presents initial experiments
where we test the response of the material. Chapter 7 ends this master’s
thesis with a conclusion.

5

2
Background

This chapter presents background information on the earlier work done in
the field of evolution in materio. In addition, it gives an overview of the
existing platform that this thesis is an extension of.

2.1 Previous Work

2.1.1 Pioneer Work

The English cybernetician and psychologist Gordon Pask was a pioneer
in the fields of evolvable and self-organizing systems. In the 1950’s he
conducted experiments where he tried to evolve a complex system that
was capable of perceiving sound or magnetic fields. The system’s parts
was not fully specified and the thought was that the system was able to
create its own ”relevance criteria”, meaning that it would discover on its
own the observables that was required to perform a given task [Car93].
This was a very different engineering approach at the time. Usually, each
component in a system has its position and behavior specified.

Gordon Pask used an electrode array that was suspended in a dish that
contained an acidic aqueous metal-salt solution. This type of solution
has the potential to behave in a very complex way [Car93]. By applying
current on the electrodes, wires can self-assemble in the metal-salt solution.
Figure 2.1 illustrates the experimental system with wires forming between
electrodes in the chemical solution at the bottom. A network of these wires
forms and together they can perform signal processing. Gordon Pask’s
system did manage to discriminate between 50 Hz and 100 Hz tones.

7

CHAPTER 2. BACKGROUND

Figure 2.1: Schematic Gordon Pask’s electrochemical system. Illustration
taken from [Car93].

To train or program the system so that the desired behavior emerged,
Pask used a set of resistors and changed their values using probabilities.
This can be seen as a precursor to or a crude version of an evolutionary
algorithm [Har06]. So in essence, what Gordon Pask did in his experiments
is very similar to what we today call evolution in materio.

2.1.2 FPGA Tone Discriminator

Closely related to evolution in materio is the field of intrinsic hardware
evolution. It uses artificial evolution to evolve electronic circuits. Adrian
Thompson was in the mid 90’s the first to use artificial evolution to evolve
an FPGA configuration that could discriminate between two square waves
of 1 kHz and 10 kHz without any clock source [Tho96]. The evolved
circuit consisted of 10 × 10 logic cells that were connected together. A
number of cells were removed without affecting the behavior of the circuit.
Figure 2.2 shows the resulting functional part of the circuit. The gray
boxes are cells that cannot be removed without affecting the behavior of
the circuit. This is strange since these cells cannot influence the output
via a connected path. These cells have some effect on the other cells, but

8

2.1. PREVIOUS WORK

Figure 2.2: Functional part of the evolved circuit with gray cells that
cannot be removed without affecting the behavior. Illustration taken from
[Tho96].

not through wiring. Thompson suggested that this effect could come from
power-supply wiring or electromagnetic coupling.

Even though we humans think of the FPGA as a digital device, under
the hood it is analog, just as the rest of the world. The evolutionary
algorithm don’t care about this abstraction and exploits everything to
find a candidate solution. In this way, Thompson’s experiment can be
viewed as evolution in materio since it exploited the analog properties of
the silicon transistors in the FPGA to evolve a working circuit.

2.1.3 Liquid Crystals

Another more recent example of evolution in materio is the work done
by Simon Harding where he used liquid crystals as material [Har06]. The
hardware platform he used for these experiments was a liquid crystal evolv-
able motherboard. It was based on previous motherboards that has been
used for intrinsic hardware evolution. An example of such a previous moth-
erboard is shown in figure 2.3. This motherboard was constructed by Paul
Layzell. He was motivated by Adrian Thompson’s work on intrinsic hard-
ware evolution, but he wanted to be able to monitor the whole system
during the evolutionary process. Since you cannot monitor signals inside
an FPGA he developed a system where you can do that. The figure shows
many switch arrays where each crosspoint can be controlled individually.
At the sides, discrete components can be connected and thus it is possible

9

CHAPTER 2. BACKGROUND

Figure 2.3: Evolvable motherboard constructed by Paul Layzell. Illustra-
tion taken from [Har06].

to monitor the evolutionary process. Several successful experiments were
conducted.

Simon Harding created his evolvable motherboard by connecting an off-
the-shelf liquid crystal display to switch arrays as shown in figure 2.4.
The switches are controlled by a computer and this computer also reads
the response from the liquid crystal display. By using an evolutionary
algorithm that applied voltages to the connections he was able to evolve
complex material behavior. Among the successful experiments was the
evolved real-time robot controller that could navigate around in a simu-
lated environment. Signals from two sensors was fed to the liquid crystal
and the response was used to control the robot using two motors as shown
in figure 2.5. The sensors measured the distance to an obstacle and was
instructed to output a square wave signal with a frequency that was pro-
portional to the straight line distance. Then, the liquid crystal did some
form of signal processing with the square wave signals coming from the
sensors and controlled the motors by setting the voltage to high or low.
According to [Har06], this is the first time liquid crystal has been used to
control a robot.

10

2.2. EXISTING PLATFORM

Figure 2.4: Liquid crystal evolvable motherboard constructed by Simon
Harding. Illustration taken from [Har06].

2.2 Existing Platform

As stated in chapter 1, the work presented in this thesis is based on Odd
Rune Strømmen Lykkebø’s master’s thesis. In his thesis, he designed and
implemented a prototype system for evolution in materio. The overview
of the system is shown in figure 2.6. It consists of a host computer, a
microcontroller, an FPGA and a material bay for interfacing with the ma-
terial. The main part in the system is called Mecobo, and this is where the
microcontroller and the FPGA are located. It connects the host computer
with the material bay. Figure 2.7 shows what Mecobo looks like. The
laptop acts as the host computer where the evolutionary algorithm runs.
On the right we have Mecobo and in the middle is the material bay that
can contain different materials.

To communicate with Mecobo and set a voltage pattern on the electrodes
in the material bay you have to use a C library specifically made for
this system, called libEMB. This library contains different functions to

11

CHAPTER 2. BACKGROUND

Figure 2.5: Setup for the evolved robot controller. Illustration taken from
[Har06].

Figure 2.6: System overview without the new extension.

set and read the electrodes, in addition to other functions. Calling these
functions will cause the host computer to communicate with the micro-
controller on Mecobo which in turn will communicate with the FPGA.
When Mecobo has done its work, the function that was called on the
host computer returns. An example of how to use the setPattern func-
tion is shown in listing 2.1. The function has two arguments, where one
(pinconfig_t *config) specifies which pins is output and the other argu-
ment (pattern_t *pattern) specifies the pattern to apply to the output
pins. As we can see, the use of this function is fairly easy.

Listing 2.1: setPattern code example
// Create a pin configuration with 2 pins
// Set both as output
pinconfig_t * config = init_config (2);

12

2.2. EXISTING PLATFORM

Figure 2.7: 1: Host computer. 2: Mecobo. 3: Material bay. Picture taken
from [Lyk10].

set_pin_mode (0, PIN_OUT , config);
set_pin_mode (1, PIN_OUT , config);

// Generate a random pattern
pattern_t * pattern = generate_random_pattern (2);

// Set pattern
setPattern (pattern , config);

The material currently used in experiments is carbon nanotubes and it
is shown in figure 2.8 This material was constructed by spreading out
the nanotubes using a probability distribution. This causes the nanotube
density to be nonuniform. The idea is that the nonuniform density will
provoke nonlinear properties in the material. There are also plans to use
the gold particles, shown in figure 2.9, sometime in the future.

13

CHAPTER 2. BACKGROUND

Figure 2.8: Nanotubes made of carbon. Electrodes for interfacing with the
material is clearly visible as dark lines going towards the center.

Figure 2.9: Picture of gold particles that will be used as material under
test in the future.

14

3
System Overview

In this chapter we will explain the main parts of the original system and
the new extension/daughterboard (just called analog board) and give an
overview of its capabilities. Figure 3.1 shows where the analog board fits
in the original system. As we can see from the figure, the analog board is
connected to the FPGA on one side and to the material bay on the other
side. This is illustrated in more detail in figure 3.2. The connectors shown
in this figure is not necessarily what we actually use, but it gives us an
idea of the connection between Mecobo and a daughterboard.

Figure 3.1: System overview, including the analog board.

3.1 The Experimental Hardware

The purpose of Mecobo is to be able to apply electric current to some
kind of material. Since the FPGA is a digital device it can only set the
voltage on the electrodes in the material bay to digital high or low, which
decreases the search space for the evolutionary algorithm (EA). With the
analog board however, we can choose between many more voltage levels.
This will greatly increase the search space of the EA. Figure 3.3 shows
the system we want and how the information flows. Here, we are using

15

CHAPTER 3. SYSTEM OVERVIEW

Figure 3.2: Mecobo and how it interfaces with the daughterboard. Picture
taken from [Lyk10].

both analog and digital stimuli as the input signal or configuration. The
stimuli is first set and then the response is read back and used as input to
the fitness function in the EA that is running on the host computer. This
is repeated until the EA terminates because of a predefined termination
criterion that has been met, such as a fitness threshold, elapsed time or
number of iterations or generations.

As a more detailed example, we can define two outputs from the analog
board as input to the material and three outputs as a part of the config-
uration. We can also define one input to the analog board as the output
from the material which we will use to measure the response from the ma-
terial. Four pins on the FPGA might be define as the second part of the
configuration. The goal could be to double the frequency of one of the
input signals and sum the amplitude of the two input signals. Figure 3.4
illustrates this proposed experiment setup and its final configuration where
the goal is met. We can see that the two input sine signals has the same
fixed amplitude and frequency. The part of the configuration coming from
the FPGA is expressed as a bit-pattern and in this case equal to 0100. The
second part of the configuration is coming from the analog board. The two
first signals is just static voltages. The third configuration signal is a reg-
ular sine wave. From the output signal we can see that the material has
doubled the frequency of the input signals and summed their amplitude.
To actually reach the goal function, we can use a (1+4)-ES (evolutionary

16

3.1. THE EXPERIMENTAL HARDWARE

Figure 3.3: The prototype system and the main flow of information be-
tween the components.

strategy). This is a simple evolutionary algorithm with one parent and
four children. The expanded view of the host computer in figure 3.4 shows
the main steps in the EA. First, we generate a random population of 4
individuals. Each of these individuals has its own configuration that is
applied to the the material. This configuration acts as the genome. An
example of how it can be represented is shown in table 3.1. The configura-
tion for the three analog inputs are expressed as the amplitude, frequency
and phase of a sine wave. The configuration for the digital inputs are just
a bit pattern. For each individual, the response from the material is read
back and the fitness is calculated so that we can rank the individuals and
select the best one to be the parent for the next generation. Choosing the
right fitness function is often the hardest part in an evolutionary approach.
It has to be defined properly so that it takes into account those parameters
and properties that makes the algorithm converge to a good solution. Af-
ter the selection process, the individual that was selected is now a parent
and is used to generate four new individuals or children. This is done by
using genetic operators to alter the parent’s genome. The cycle continues
until one of the individual’s fitness value has reached a certain threshold.

17

CHAPTER 3. SYSTEM OVERVIEW

Figure 3.4: One possible experiment setup.

Analog stimuli Digital stimuli
Amplitude (V) Frequency (Hz) Phase (◦) Bit pattern

1 1.23 100 0
00012 2.5 0 90

3 0.34 587 245

Table 3.1: Example genome for the evolutionary algorithm.

3.2 Extension

As already stated, we want to be able to apply multiple analog signals, both
dynamic and static, and read the response from the material. We decided
that 12 output signals together with 8 input signals are enough for now.
We want four different wave types: sawtooth wave, sine wave, triangle
wave and square wave. These waveforms are shown in figure 3.5. For
these waves we want to control the frequency, amplitude and phase offset.
This will greatly increase the search space since every new variable adds
a new dimension to the search space. The frequency range requirement is
quite loose, but a range from 0 Hz to several kilo hertz should be sufficient
and the frequency resolution should be less than 10 Hz. The phase offset
range should be from 0◦ to 360◦ with at least one degree resolution. The
amplitude range should go from 0 V to a variable voltage level that we can
change if we want to. The amplitude resolution should be high enough
so that we get a smooth wave at high frequencies and amplitudes. Static

18

3.2. EXTENSION

Figure 3.5: Waveforms we want the system to generate.

signals can be expressed as a sine wave of zero hertz and a phase offset.
The sampling part of the system should be able to sample a dynamic signal
with a frequency of several kilo hertz. Figure 3.6 illustrates the sampling of
signals from the material. The response is converted from analog voltage
to a digital code on request from the FPGA and then it is sent to the host
computer via Mecobo. Because we don’t know all the properties of the
material or the configuration(s) needed to manipulate it, we define these
somewhat loose requirements.

To reach the specified requirements, we need a suitable digital-to-analog
converter (DAC) and a analog-to-digital converter (ADC). The converters
are to be connected to the FPGA on Mecobo. Using the FPGA as a
controlling unit gives us great flexibility in the design and it is easier to
meet timing constraints. It also makes the pairing with the old design
much easier. What we essentially want is an arbitrary waveform generator
or a direct digital synthesizer (DDS).

3.2.1 Direct Digital Synthesizer

A DDS is a type of frequency synthesizer that can create arbitrary wave-
forms with a wide range of frequencies and phase offsets, using a single
fixed-frequency oscillator [dds]. The DDS consists of a numerically con-
trolled oscillator (NCO), a digital-to-analog converter and a low-pass filter,
as shown in figure 3.7. The NCO is implemented on the FPGA while the

19

CHAPTER 3. SYSTEM OVERVIEW

Figure 3.6: Sampling the response from the material.

Figure 3.7: Main components of a direct digital synthesizer.

DAC is on the analog board. The low-pass filter is not on the analog
board, but implemented as a separate part. By doing this, we can change
the filter to another one with different characteristics. The next chapter
will give a detailed explanation of the different components.

3.2.2 Signal Sampling

Generating waveforms is not enough. We also have to be able read the
response from the material. So in addition to the DDS, we created a
way to sample signals using an ADC. The design of such a system is less
complicated than the DDS, but just as important. The FPGA controls
the ADC and instructs it to send new samples, which the FPGA stores in
a shared memory. The microcontroller can then read these samples and
send them to the host computer.

20

4
Design and Implementation

This chapter explains in detail how the system works. The system must be
able to set and read analog signals and the main parts on the analog board
are therefore three digital-to-analog converters (DAC) and one analog-to-
digital converter (ADC), where the DACs sets the analog signals and the
ADC reads the response. To control the analog board we use an FPGA
which gives us great control and flexibility when it comes to the design of
the DAC and ADC controllers and the design of the NCO. Communica-
tion between the FPGA and the analog board happens constantly during
operation since the NCO always has a new wave sample for the DAC(s)
and because the FPGA instructs the ADC to sample the response signal
when the user of the system requests it.

First, we will describe the DA/AD converters in section 4.1. In section 4.2
comes an explanation of the FPGA design and especially the design of the
parts that together makes up the NCO. Section 4.3 describes the changes
in the microcontroller design while the new functions in the libEMB library
is described in section 4.4. Then comes the PCB design section 4.5. After
that, in section 4.6, comes a short description of the low pass filter that is
used during testing and experimentation. In section 4.7, we will describe
the most important known error sources of the system.

4.1 DA/AD Converter

Figure 4.1 shows the analog board and its main components at a high level
of abstraction. The exact chips used are AD5684R (DAC) and AD7888
(ADC) from Analog Devices. The block diagram of the DAC chip is shown
in figure 4.2 and the block diagram of the ADC chip is shown in figure 4.3.

21

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.1: Analog board overview.

Each DAC has 4 channels and the board can therefore set 12 different
signals. The ADC has 8 channels. Both DAC and ADC has a 12-bit
resolution. Using 12-bit gives a sufficient resolution for our purposes. It
means that the ADC can detect a voltage change of

∆V = VREF
4096 (4.1)

where 1.2 V ≤ VREF ≤ VDD, when the reference source is external. Using
the internal reference source gives VREF = 2.5 V. The external voltage
reference pin is connected to VDD, but an optional resistor can be used
to adjust the external reference to the desired voltage. Each DAC has an
output amplifier which is controlled by the gain pin. When the gain pin is
tied to ground, the four output voltages can span between 0 V and VREF
1. If it is tied to VDD, the voltage span between 0 V and 2×VREF . The
(ideal) output voltage is calculated using

VOUT = VREF ×Gain
[
D

4096

]
(4.2)

where 0 V ≤ VREF ≤ VDD with an external reference or VREF = 2.5
V with the internal reference. As with the ADC, the external voltage
reference pin on the DACs are connected to VDD with an optional resistor
for adjustment. Disabling of the internal voltage reference is done by
writing to the configuration register, for both the DAC and ADC. Gain is
1 or 2 depending on whether it is tied to ground or VDD (as stated above).
The variable D is the base 10 converted binary value written to the DAC,
and 0 ≤ D ≤ 4095.

1Not the same VREF as the ADC uses.

22

4.1. DA/AD CONVERTER

Figure 4.2: Block diagram of the digital-to-analog converter (AD5684R).
Source: http://www.analog.com/static/imported-files/images/
functional_block_diagrams/AD5684R_fbl.png.

Figure 4.4 shows the analog board at a more detailed level when it comes to
the digital communication. Both the DACs and ADC uses serial peripheral
interface (SPI) for communication. This is a full duplex synchronous serial
communication interface, with only four signals. This means that it is
relatively easy to implement an SPI controller on the FPGA that can
communicate with these devices. The four signals are clock (SCLKD/A),
slave select (DAC: SYNC, ADC: CS), serial in (DAC: SDIN, ADC: DIN)
and serial out (DAC: SDO, ADC: DOUT).

The DAC features a daisy-chain mode, which means that you can connect
several DACs together by connecting the serial out pin on one DAC to the
serial in pin on the next DAC. Data is first clocked into the first DAC.
The command register is 24 bits and when more than 24 bits is clocked
in, bits will be clocked out of the first DAC and into the second. So when
there is three DACs the clock has to run for 3 × 24 = 72 clock cycles so
that all three DACs receives their command. This makes it easy to scale
up and add more DACs since you only need one serial line for input and
one for output. It is especially useful when I/O-pins on the FPGA are
scarce, since no matter how many DACs you add, only two I/O-pins is
needed for data transfer (you also need clock and select of course). The
serial out pin on the last DAC provides readback for the FPGA.

All the DACs share the same select signal called SYNC. This signal is low

23

http://www.analog.com/static/imported-files/images/functional_block_diagrams/AD5684R_fbl.png
http://www.analog.com/static/imported-files/images/functional_block_diagrams/AD5684R_fbl.png

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.3: Block diagram of the analog-to-digital converter (AD7888).
Source: http://www.analog.com/static/imported-files/images/
functional_block_diagrams/AD7888_fbl.png.

when bits are clocked into the configuration register, and then it is taken
high to signal that a new command is in the register. This command is
then executed. The LDAC signal is also shared. When you want to set a
new output voltage on the DAC channels, you can use the LDAC signal
to specify when the channels should be updated. Each DAC channel has
two registers where the digital voltage code is stored. One is called input
register and the other is called DAC register. The output voltage is only
update when the DAC register is updated. Holding LDAC high during
transfer will only update the addressed input register, while holding it low
will update both registers. Holding it high during transfer, but taking
it low at the end of the transfer (LDAC is pulsed low) will update all
channels asynchronously regardless of which channel was addressed. So,
for example writing a new voltage code to three of the DAC channels while
holding LDAC high and then write to the last channel and pulse LDAC
low when the transfer is finished will update all channels asynchronously.
All three DACs also share the same reset signal. More information about
the specifications can be found in the datasheets [dac, adc].

24

http://www.analog.com/static/imported-files/images/functional_block_diagrams/AD7888_fbl.png
http://www.analog.com/static/imported-files/images/functional_block_diagrams/AD7888_fbl.png

4.2. FPGA

Figure 4.4: Block diagram of the analog board with communication lines.

4.2 FPGA

To be able to use the analog board we have to extend the FPGA design.
Figure 4.5 shows the original FPGA design. In figure 4.6, we have added
two SPI controllers, a wave module and a multiplexer. We have also ex-
tended the user module. Next, we will explain the new parts in detail. We
will also give a brief explanation of the parts in the original design. Also,
the new design is expecting an FPGA frequency of 50 MHz.

4.2.1 Original Design

The memory controller controls the access to the shared memory for both
the microcontroller and the user module. The user module is implemented
as a finite state machine (FSM) and its purpose is poll the shared memory
to see if the microcontroller has written a new command to the command

25

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.5: FPGA design overview.

memory location. The command is either to configure the I/O pins (decide
which one is input or output and set output pins to high or low) or read
back the response from the material for those pins that are designated as
input. More information on the original design can be found in [Lyk10].

4.2.2 DAC SPI Controller

The DAC SPI controller takes care of the communication with the three
DACs. Figure 4.7 shows the block diagram. The controllers FPGA inter-
face includes a clock (CLK), reset (RST), enable (EN) and busy (BUSY) signal.
In addition we have a command signal that tells the controller which com-
mand it should execute when EN is asserted. The DATA in signal contains
the data that is written to the DACs and the LDAC signal determines if the
LDAC pin should be high or low when writing to the DACs.

The DAC interface contains a serial clock (SCLK), slave select (SS), DAC
reset (RESET),LDAC (LDAC), serial in (MISO) and serial out (MOSI). The
serial in or MISO signal is currently not in use. The DAC supports a
readback command which clocks the register content out on MISO, but the
DAC SPI controller does not support this since it’s a feature we actually
don’t need.

26

4.2. FPGA

Figure 4.6: The extended FPGA design overview.

To prevent signal glitches, we added registers that works as buffers for the
SPI output signals. The combinatorial logic in the finite state machine may
cause glitches, but adding the registers (flip-flops) at the output prevents
this glitches to propagate further. Adding these registers causes the signals
to have a delay of one clock cycle.

Looking at table 4.1 we see that the controller has three write commands.
It also has a daisy-chain enable implemented in hardware, that writes
the daisy-chain command to the first two DACs. The last command is a
reset command that resets the digital-to-analog converters. Their output
voltage after a reset depends on whether RSTSEL is connected to ground
or VDD. The serial clock (SCLK) is running at a frequency of 25 MHz. The
controllers finite state machine can be found in appendix B.

27

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.7: Block diagram of the DAC SPI controller.

Command Description
CMD_SPI_NOOP No operation
CMD_SPI_WRITE_1 Write to DAC 1
CMD_SPI_WRITE_2 Write to DAC 1 and 2
CMD_SPI_WRITE_3 Write to DAC 1, 2 and 3
CMD_SPI_ENABLE_DC Enable daisy-chaining
CMD_SPI_RESET Reset DACs

Table 4.1: Overview of DAC SPI commands.

4.2.3 ADC SPI Controller

The ADC SPI controller is less complicated than the DAC SPI controller.
Figure 4.8 shows the input and output signals of the module. Just as the
DAC SPI controller it has a clock (CLK), reset (RST), enable (EN) and busy
(BUSY) signal. No command signal is needed since it only performs one
command and that is to clock out 8 bits and clock in 16 bits. The DATA in
signal provides the 8 output bits while the DATA out signal has the response
ready when the controller goes idle and the BUSY signal is low. The 8 data
bits being clocked out specifies the ADC channel to read next, enabling
or disabling the internal reference voltage and power management. Since
the voltage conversion is ready and clocked out on the next transfer, the
first read after power up will always be zero. The ADC interface has
the four standard SPI signals (serial clock, slave select, data in and data

28

4.2. FPGA

Figure 4.8: Block diagram of the ADC SPI controller.

out) and the serial clock runs at frequency of 2 MHz. As with the DAC
SPI controller, registers were added at the output to prevent glitches in
the communication. The controllers finite state machine can be found in
appendix B.

4.2.4 Numerically Controlled Oscillator

The NCO is the component that provides the DAC with samples. The
NCO can be configured digitally, hence the name numerically controlled.
The wave module shown in figure 4.9 consists of a wave control, several
wave generators, a sine look-up table (LUT) and a sample register that
communicates with the DAC SPI controller. The wave generators and
the sine LUT is what actually makes up the NCO and there is one wave
generator for each DAC channel. Figure 4.10 shows the block diagram of
the NCO. This a very basic implementation of an NCO and it is based on
the design in [Van96].

The first part is the phase accumulator (PA). At each clock cycle the phase
increment (also called frequency control word) is added to the accumulator
register. This produces a linearly increasing digital value or a sawtooth
wave. Additionally, we can add a phase offset. Note that the phase offset
is not accumulated like the phase increment. The accumulated value or
phase, is then truncated and used in the phase-to-amplitude converter
(PAC). The PAC outputs the phase value as it is for sawtooth waveforms

29

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.9: Block diagram of the wave module.

or converts the phase value into other waveforms by either using a look-
up table or doing some calculations. The output value (amplitude) from
the PAC is sent to the DAC, which converts this digital value/code to an
analog voltage.

Phase accumulator

The accumulator register is N bits wide. At each clock cycle, the phase
increment ∆P is added to the accumulator register. When the register
reaches 2N − 1, it overflows and starts from the beginning. Equation 4.3
gives the rate of overflow and thus also the frequency of the desired wave

fout = fclk
2N ∆P ∀ fout ≤

fclk
2 (4.3)

where fclk is the frequency of how often the FPGA is able to update
the DACs. Remember that the DACs uses serial communication and the
FPGA has to transfer 3×24 = 72 bits when communicating with the three
DACs. The FPGA will also add some overhead (e.g. starting and stopping

30

4.2. FPGA

Figure 4.10: Block diagram of the numerically controlled oscillator.

a serial transfer), but the serial communication will be the limiting factor
of fclk. While the DAC SPI controller is busy transferring data, the wave
generators will calculate the next sample and as long as the calculations
take less time than the serial transfer, they will not limit fclk. The limi-
tation in equation 4.3 says that the equation is true for all fout below or
equal to the Nyquist frequency. From equation 4.3 we can derive

∆P = 2N
fclk

fout (4.4)

which is used to calculate the phase increment value based on the desired
output frequency. By setting ∆P = 1 in equation 4.3, we get the minimum
possible change in frequency, also called the frequency resolution

∆fout = fclk
2N (4.5)

The phase accumulator width in our system is set to N = 16 bits which
is the same as the shared memory word size. Higher N -value will give us
better frequency resolution, but with N = 16 we get around 5 Hz which is
sufficient.

When the accumulator register overflows, the remainder Rn is stored in
the register and the next cycle will then start at Rn. This is shown in
figure 4.11. At sample seven, the accumulator register has almost reached
the its highest value (2N−1) and at sample eight it overflows. The remain-
der Rn is now the starting value. Overflows may also occur when adding
the offset, but the remainder Rn is not stored. After a certain number of
cycles the initial remainder value R0 will be reached. The number of cycles
it takes to reach R0 is called the numerical period or grand repetition rate.
It is given by

Pe = 2N
GCD(∆P, 2N) (4.6)

31

CHAPTER 4. DESIGN AND IMPLEMENTATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

P
h
a
se

 (
cy

cl
e
s)

Sample

ΔP/2N

2N-1
Rn

Rn

Figure 4.11: Normalized phase accumulator output. Illustration inspired
by http://en.wikipedia.org/wiki/File:Phase_Accum_Graph.png.

where GCD(∆P, 2N) is the greatest common divisor of ∆P and 2N . Since
it does not take the exact same number of cycles each time to overflow the
accumulator register for a given ∆P , we are more interested in average
overflow rate and this is what equation 4.3 tells us.

Phase-to-Amplitude Converter

While the PA determines the phase of the waveform, PAC determines
the amplitude. This is done differently for different waveforms, but the
truncation between the PA and PAC is common for them all. The width
of the phase accumulator register is usually too large to be used directly as
an index to a look-up table or directly as the amplitude of e.g. a sawtooth
wave, because it may require too much memory space to store the look-up
table in the first case and because it may be wider than the DAC resolution
in the second case. Instead we use a fraction of the most significant bits.
This means that the last W = N −M bits of the PA output has to be
removed. We are then left with an M bit wide value as input to the PAC.

For the sine wave we use a LUT to find the right amplitude. This sine
LUT is located on the FPGA and is implemented as a single port read-
only memory (ROM). The memory requests from the wave generators are

32

http://en.wikipedia.org/wiki/File:Phase_Accum_Graph.png

4.2. FPGA

-A

0

A

2M-2 (T/4) 2M-1 (T/2) (3T/4) 2M (T)

y
 (

A
m

p
lit

u
d
e
)

x (Index)

1. 2.

3. 4.

MSB = 0

2nd MSB = 0 2nd MSB = 1 MSB = 1

2nd MSB = 0 2nd MSB = 1

Figure 4.12: The four quadrants of a sine wave showing how the symmetry
can be exploited.

processed sequentially and when all requests are handled, the values are
presented to all wave generators at the same time. To save space we just
store the first quadrant of the sine wave and exploit the sine wave symmetry
to get the amplitudes for the second, third and fourth quadrant. Storing
the whole period requires 2M ×K bits where M is the width of the index
or address and K is the width of the amplitude. By storing only the first
quadrant we will use 2M−2×K bits which is four times less. We will have
to add more logic to compensate for this, but smaller ROM means lower
access time which is important since all the reads are handled sequentially.

If we look at figure 4.12 we see the four quadrants and the value of the
most significant bit (MSB) and the 2nd most significant bit of the index
when indexing the different quadrants. Looking at figure 4.10 we see that
the first complementor uses the 2nd MSB to decide the index. For the first
and third quadrant it will go through the indexes from 0 to 2M−2−1, while
for the second and fourth quadrant it will go from 2M−2−1 to 0. This gives
us a full rectified sine wave. The second complementor uses the MSB to
decide the sign of the amplitude and invert the third and fourth quadrant
to get a normal sine wave. In our implementation, the value of both M
and K is set to 12 as this is the same as the DAC resolution. This gives
us 4096 sine amplitude values that varies from 0 to 4095. Any wave will

33

CHAPTER 4. DESIGN AND IMPLEMENTATION

0

2047

4095

0 1023 2047 3071 4095

A
m
p
lit
u
d
e

Index

1

0

2047

4095

0 1023 2047 3071 4095

A
m
p
lit
u
d
e

Index

2

0

2047

4095

0 1023 2047 3071 4095

A
m
p
lit
u
d
e

Index

3

0

2047

4095

0 1023 2047 3071 4095

A
m
p
lit
u
d
e

Index

4

Figure 4.13: 1: Stored quadrant and full period sine wave. 2: Full rectified
sine wave out from the sine LUT. 3: Third and fourth quadrant inverted.
4: DC offset added to the first and second quadrant.

have a DC offset of 2048 and a peak-to-peak amplitude of 212 − 1 = 4095.
So to further reduce the size of the sine LUT, we store the sine amplitude
from 0 to 2047, instead of 2048 to 4095, using

2047× sin
(

π

2048x
)

(4.7)

where x goes from 0 to 1023 (2M−2− 1). Numbers from 0 to 2047 takes 11
bits to represent, while 12 bits is needed when representing numbers from
2048 to 4095. This means that we can save 1 bit of space for each LUT
entry. Figure 4.13, graph 1, shows the stored quarter sine wave and the
full period sine wave that we want. Since we store the amplitude from 0 to
2047, we have to add the DC offset of 2048 to the amplitude for the first
and second quadrant to get the correct wave form. This is done by the last
complementor (in figure 4.10). Graph 2 shows the full rectified sine wave
we get from the sine LUT. In graph 3, the third and fourth quadrant has
been inverted and in graph 4 the DC offset has been added to the first and
second quadrant. With this last storage reduction the sine LUT will use
2M−2 × (K − 1) bits, and with M = K = 12 we get 210 × 11 = 11264 bits.

For the sawtooth wave we just truncate the PA value and use it as output
from the PAC. The triangle wave is also quite easy to make since it’s

34

4.2. FPGA

Figure 4.14: Making a triangle wave from a sawtooth wave by frequency
doubling and inverting the second sawtooth.

basically a sawtooth wave with double frequency and an inverted second
sawtooth. This is illustrated in figure 4.14.

For the square wave, the amplitude depends on the value of the MSB as
this indicates half a period. Equation 4.8 shows this.

ASquare =
{

2M − 1 if MSB = 1
0 if MSB = 0 (4.8)

Up till now we have assumed that the waveforms have a fixed peak-to-peak
amplitude of 2M − 1. To change the amplitude of the sine wave we just
shift the output value of the PAC n bits to the right. This is equivalent to
dividing the value by 2n and it’s the easiest way to change the amplitude
since the values in the sine LUT are set to the highest possible amplitude
and there is no division unit on the FPGA. There are of course downsides
with this method. First of all, we get very coarse amplitude levels since we
are halving the amplitude for each shift to the right. Secondly, we loose
accuracy since we are doing division of integers. The quotient will be an
integer only if the dividend is greater or equal to the divisor and if it is
even.

Changing the amplitude of the square wave is just as easy. We just need
to output the desired amplitude a when MSB equals 1, instead of 2M − 1
as is done in equation 4.8.

For the sawtooth and triangle waves, it is a little bit different. Here we use
the truncated PA value directly as output (amplitude) from the PAC. So

35

CHAPTER 4. DESIGN AND IMPLEMENTATION

to get the correct amplitude we have to substitute 2N in equation 4.3 and
4.4 with the desired amplitude a+ 1. For the triangle wave and sawtooth
wave, we have to make sure that the offset is less than or equal to the
amplitude. If not we will get an incorrect waveform since PA-value will
overflow all the time. This check is done in software by the host computer.
Note that this limitation does not apply to the square wave or the sine
wave, since they map the PA value to amplitude and don’t use the value
directly as amplitude.

For more detail on how the NCO is implemented in VHDL, see figure B.3
in appendix B. This figure shows the finite state machine.

Channel Grouping

Since there are 12 DAC channel in total we have grouped them into 4
groups. Figure 4.15 shows the DAC channels and their identification. In
table 4.2 we can see how the channels are grouped. The number of bits
transferred for each group is

b = 3× 24× (g + 1) (4.9)

where g is the group number. So higher group number means lower fclk
which in turn means lower wave frequency (fout). To always send data to
all three DACs even though just one or two of them is in use may seem like
a waste, but it is easier to implement. The maximum output frequency we
get is high enough for our use, so that is not a problem.

To get the exact frequencies for each group we simulated the wave module
design and counted how many FPGA clock cycles it took between each
time the FPGA was ready to transfer a new set of samples. Using this
information, equation 4.10 and fFPGA = 50 MHz we can calculate fclk and
maximum fout (Nyquist frequency).

Group Channels
0 A1, A2, A3
1 A1, A2, A3, B1, B2, B3
2 A1, A2, A3, B1, B2, B3, C1, C2, C3
3 A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, D3

Table 4.2: DAC channel grouping.

36

4.2. FPGA

Figure 4.15: Overview of the channel identification numbers.

fclk = 1
1

fF P GA
× CCFPGA

(4.10)

The results is shown in table 4.3 and with channel group 0 we can output
a waveform with a frequency of approximately 160 kHz which is the high-
est frequency, but wave frequencies over 70 kHz will probably look very
distorted.

Group CCFPGA fclk Max fout
0 154 324675, 3247 Hz 162337 Hz
1 302 165562, 9139 Hz 82781 Hz
2 450 111111, 1111 Hz 55555 Hz
3 598 83612, 04013 Hz 41806 Hz

Table 4.3: DAC channel group sample frequencies.

4.2.5 Wave Control

The wave control in figure 4.9 has three tasks to do. The first is to enable
the whole wave module. When the user module wants to enable the wave
module it talks to the wave control which in turn forwards the enable signal
to the rest of the modules inside the wave module. The second task is to
store the wave group which is needed by the sample register to know how
many channels it should send new samples to. The third task is to control
the select line on the multiplexer (see figure 4.6). When the wave module
is enabled, the multiplexer should select the signals coming from the wave
module. Otherwise it should select the signals from the user module.

37

CHAPTER 4. DESIGN AND IMPLEMENTATION

4.2.6 Sample Register

When the wave generators are ready with a new sample, the sample reg-
ister reads the new samples and initiates a transfer to the DACs. While
the sample register and DAC SPI controller are transferring data, the
wave generators are calculating new sample values. The number of bits
transferred depends on the selected channel group and even though not
all channels may be in use, the wave generators corresponding to unused
channels will still calculate new samples, but the sample register just don’t
transfer these samples to the DACs. To make sure that the DAC channels
updates at the same time (but asynchronously), the sample register in-
structs the SPI DAC controller to pulse LDAC, as described in section 4.1.
Figure B.4 in appendix B shows the FSM of the sample register.

4.2.7 User Module Changes

To be able to use the new modules, we expanded the FSM of the user
module. The new commands are shown in table 4.4. Except for the three

Command Description
Write 1 Write to DAC 1.
Write 2 Write to DAC 1 and 2.
Write 3 Write to DAC 1, 2 and 3.
Read Read ADC voltage.
DCen Enable daisy-chain
Reset Reset DACs.

Enable wave Enable the wave module.
Disable wave Disable the wave module.

Wave conf Write wave configuration to the
corresponding wave generator.

Wave group Write wave group to the wave
controller.

Table 4.4: New user module commands.

write commands, there are a one-to-one correspondence between the user
module commands and the commands/functions in the microcontroller and
libEMB software.

When one of the write commands are executed, the FSM will first read
the DAC data to transfer, from the shared memory. Then it enables the

38

4.3. MICROCONTROLLER

DAC SPI controller and waits until the transferring is finished, before it
clears the command register and returns to idle state. The DCen and reset
commands will immediately enable the DAC SPI controller and execute
the corresponding command. All four wave commands are similar to the
write commands, except that the enable and disable wave commands does
not involve reading from shared memory first. Also, none of the wave com-
mands involves external communication. The read command will read the
ADC data bits from memory in addition to the number of samples. Then
it will repeatedly enable the ADC SPI controller and write the response to
memory, until it has the number of sample we want. With an ADC serial
clock frequency of 2 MHz and the current FSM, we get a sample frequency
of 111111.111 Hz.

4.3 Microcontroller

The microcontroller software has been extended to be able to use the new
FPGA commands. Since there is a one-to-one correspondence between the
microcontroller functions and the libEMB functions, we will not explain
the functions here, but instead explain other microcontroller changes and
extensions. Section 4.4 will address the software changes.

4.3.1 Address Room

The original FPGA address space had 212 = 4096 addresses. Since we
want to be able to get a lot of samples from the ADC, we expanded the
address space by two bits. This gives us 214 = 16384, where the first 384
addresses are reserved for command and configuration data and the last
16000 addresses are for ADC samples. The organization of the address
space is shown in figure 4.16.

4.3.2 Busy Line to Microcontroller

When we want the ADC to convert the analog voltage on one of its chan-
nels, we have to have some way of knowing when the ADC and the FPGA
are finished executing the command so that we can read back the volt-
age samples from memory. The time it takes may vary depending on how
many samples we want. In the original Mecobo design there is no easy

39

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.16: Microcontroller and FPGA address rooms

way to signal the microcontroller that the FPGA is finished. We could
for example let the FPGA write to a specific memory address and let the
microcontroller read this memory address to see if the FPGA is finished,
but the problem is that the shared memory controller gives priority to
the microcontroller. This means that we cannot let the microcontroller
poll the memory repeatedly as this would limit and in worst case stop the
FPGA from accessing the memory (writing samples), depending on the
clock frequency of the microcontroller and the FPGA. Adding a delay in
the polling loop or just let the microcontroller wait some amount of time
until we are certain that the FPGA is finished could work, but it is not a
good solution. So what we did was to take the RS232 transmit pin on the
FPGA and connect it to pin 0 on the microcontroller’s PB header (PBH0).
This works now as a busy line that signals when the FPGA is busy execut-
ing a command. Since neither the RS232 pin nor the PB header were in
use, it causes no problem to use these pins for this purpose. The microcon-

40

4.4. LIBEMB

troller can now poll this busy line as much as it wants without interrupting
the FPGA’s memory accesses.

4.4 libEMB

To use the new functionality, we had to extend the libEMB software li-
brary. The new functions are listed in table 4.5. The first function is for
reading the voltage level on one of the ADC channels. The number of
samples can be between 1 and 16000. During testing we discovered some
problems that causes the read_voltage function to hang. The problem
seems to depend on the number of samples and it may be related to the
USB communication between the microcontroller and the host computer,
since the debug communication (RS232) between the microcontroller and
the host computer tells us that the FPGA has finished executing and the
microcontroller reaches the point where it starts to send back data to
the host computer. When it happens we have to use the reset-button on
Mecobo. To avoid this problem altogether, it is best to set the number of
samples to 16000 since we know that this works.

The read_voltage function also has two arguments called ref and pm.
The first one is used to enable (ref = 0) and disable (ref = 1) the internal
reference. When using an external reference voltage, the internal reference
should be disabled to obtain best performance [adc]. The second argument
is used for power management. There are four different power modes
and these are called normal operation, full shutdown, autoshutdown and
autostandby. Every time a conversion is completed, the ADC enters the
specified power mode and waits for the next command. The shutdown
and standby modes needs some time to wake up and this is not taken
into account when it comes to the FPGA implementation of the ADC SPI
controller. Therefore, one should use the normal operation mode (pm = 0)
to make sure that the system behaves correctly. The energy consumption
of the prototype system is not our first concern so it should not be a
problem that the ADC cannot enter power saving modes. An example of
how to use the read_voltage function is shown in listing 4.1.

Listing 4.1: Read voltage example
1 # include "emb.h"
2

3 void get_voltage (void)
4 {

41

CHAPTER 4. DESIGN AND IMPLEMENTATION

Function Arguments Description
read_voltage uint16_t channel

uint16_t samples
uint16_t * buf
uint8_t ref
uint8_t pm

Gets samples samples from
ADC channel channel.
Stores them in buf. ref
turns on or off the internal
reference while pm is the
power management.

write_dac dac_config_t * conf
uint16_t ldac

Write conf to the DACs and
use the LDAC-state ldac.

enable_daisy_chain void Enable DAC daisy-
chaining.

reset_dac void Reset all DACs.
enable_wave void Enable the wave module.
disable_wave void Disable the wave module.
set_wave_config uint16_t channel_id

uint16_t wave_type
uint16_t amplitude
uint16_t offset
float freq
int channel_group

Configure wave channel
channel id using wave type,
amplitude, offset and freq.
channel group is used
when calculating the phase
increment.

set_channel_group uint8_t group Set DAC channel group to
group. Default is group 0.

Table 4.5: New libEMB functions implemented for the analog board.

5 // Set configuration variables
6 uint16_t channel = ADC_CHANNEL_1 ;
7 uint16_t samples = 16000;
8 uint16_t * buffer = malloc (sizeof (uint16_t) * samples);
9 uint8_t ref = 0; // Internal reference

10 uint8_t pm = 0; // Normal operation mode
11

12 // Read voltage
13 read_voltage (channel , samples , buffer , ref , pm);
14

15 // Use the samples
16 do_some_calculations (buffer , samples);
17

18 free(buffer);
19 }

The write_dac function is used to write all kinds of commands to the

42

4.4. LIBEMB

DAC(s), including setting the voltage level on one or more channels. The
first argument is a pointer to a structure called dac_config which again
points to three different structures, called dac_reg_content, that holds
the register content to be written to each DAC. It contains the command,
the channel and data. Note that not all commands require channel or data
information. More about this can be found in the datasheet [dac]. Two
auxiliary functions called create_dac_config and create_dac_reg_content
are used to create the structures. Listing 4.2 shows an example on how
to use write_dac. In this example we set the output voltage on channel
B and D on DAC 1 to 1.25 V. Note how we specify the channels by using
the bitwise OR operator in line 7. In line 8, we shift the data bits four
bits to the left since the four least significant bits are not in use. Also note
that the configuration for DAC 2 and 3 is a NULL pointer. The write_dac
function will detect the pointer that are NULL and choose the right write
command (write 1, write 2 or write 3) on the FPGA. When writing to just
e.g. DAC 1 and DAC 3, the pointer to the DAC2 configuration cannot
be NULL. It has to point to a valid configuration since the FPGA will
transfer 72 bits to configure DAC 3.

The argument called ldac is used to specify the LDAC-signal during trans-
fer. It could be set to low, high, pulse or don’t care. Setting it to don’t care
is the same as setting it to high. Note that the ldac argument only applies
to one command (0x0001), where you set the output voltage.

Listing 4.2: Write DAC example
1 # include "emb.h"
2

3 void static_voltage (void)
4 {
5 // Set configuration variables
6 uint8_t command = DAC_CMD_UPDATE_CHANNEL ;
7 uint8_t channel = DAC_CHANNEL_B | DAC_CHANNEL_D ;
8 uint16_t data = (voltage_to_data_conv (1.25) << 4); // 4

LSB are not in use
9

10 // Create a DAC config structure
11 dac_config_t * c = create_dac_config ();
12

13 // Create the register content
14 c-> dac1_reg = create_dac_reg_content (command , channel ,

data);
15 c-> dac2_reg = NULL;
16 c-> dac3_reg = NULL;
17

18 // Apply command

43

CHAPTER 4. DESIGN AND IMPLEMENTATION

19 write_dac (c, DAC_LDAC_PULSE);
20

21 free_dac_config (c);
22 }

Listing 4.3 shows how to initialize the analog board and the wave module.
It is wise to always make sure that the wave module is disabled, since
reset_dac and enable_daisy_chain won’t be executed when it is en-
abled. Disabling the wave module also resets all the registers in the wave
generators, so that when the module is enabled next time, the waves starts
at the beginning. This is useful when two or more equal waves has a phase
difference. By disabling and enabling the wave module, they will become
synchronized. The wave configurations will not disappear when the wave
module is disabled.

Listing 4.3: Analog board setup example
1 # include "emb.h"
2

3 void analog_board_setup (void)
4 {
5 disable_wave (); // Make sure the wave module is disabled .
6 reset_dac (); // Reset the DACs.
7 enable_daisy_chain (); // Enable daisy chain.
8 }

The last code example in listing 4.4 shows how to set the wave config-
uration. Line 8 sets the channel group. It is not necessary to call this
function if you only want to use group 0, since this is the default group.
The call to enable_wave in line 12 could be moved to after the calls to
set_wave_config to synchronize the waves. Table 4.6 shows the con-
straints on the wave configuration arguments.

Listing 4.4: Wave configuration example
1 # include "emb.h"
2

3 void generate_wave (void)
4 {
5 // Set channel group.
6 // The default group is 0.
7 int channel_group = CHANNEL_GROUP_1 ;
8 set_channel_group (channel_group);
9

10 // Enable the wave module . This function could also
11 // be called after set_wave_config ().
12 enable_wave ();

44

4.4. LIBEMB

13

14 // Set configuration variables
15 uint16_t channel = 0; // Channel A, on DAC 1
16 uint16_t wave_type = SINE_WAVE ;
17 uint16_t amplitude = 0; // Zero shifts to the right
18 uint16_t offset = 1024; // Set phase offset to T/4
19 float frequency = 500.0;
20

21 // Apply first configuration
22 set_wave_config (channel , wave_type , amplitude , offset ,

frequency , channel_group);
23

24 // Set new configuration
25 channel = 4; // Channel B, on DAC 2
26 wave_type = SQUARE_WAVE ;
27 amplitude = 4095 // Full amplitude
28 offset = 0;
29 frequency = 1000.0;
30

31 // Apply second configuration
32 set_wave_config (channel , wave_type , amplitude , offset ,

frequency , channel_group);
33 }

Argument Constraint
channel_id 0 ≤ channel_id ≤ 11
wave_type SAWTOOTH_WAVE, TRIANGLE_WAVE,

SINE_WAVE or SQUARE_WAVE
amplitude 0 ≤ amplitude ≤ 12 for sine

wave, else 0 ≤ amplitude ≤ 4095
offset 0 ≤ offset ≤ 4095 for sine and

square wave, else 0 ≤ offset ≤
amplitude

freq 0 ≤ freq ≤ max fout (see ta-
ble 4.3)

channel_group 0 ≤ channel_group ≤ 3

Table 4.6: Argument constraints for the wave configuration.

45

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.17: Splitting of analog and digital ground.

4.5 PCB

When designing a mixed signal PCB we have to take into consideration
that noise and interference between analog and digital signals may occur.
The analog board is a mixed signal PCB with four layers where the signals
are separated. The top layer is the digital and analog ground, in addition
to analog signals (also some short digital traces). The first internal layer
is for digital signals in the horizontal direction. Second internal layer is
the power plane. The bottom layer is for digital signals in the vertical
direction. The reason for dividing the digital signals is to make the routing
easier. Separation of the digital and analog signals gives less interference
in the analog signals, and thus makes them more stable. This is especially
important when the digital signals have a high frequency.

As stated above, the ground is split into analog ground (AGND) and digital
ground (GND), as illustrated in figure 4.17. The reason for splitting the
ground into an analog and digital part is to try to reduce the digital signals
interference on the more fragile analog signals. They are connected in one
place with a ferrite bead that suppresses high frequency noise which may
come from the digital ground. The DACs and ADC has been placed on the
board so that most of the analog pins are soldered on the analog ground
side, while the digital pins are soldered on the digital ground side.

Figure 4.18 and 4.19 shows the schematics of the DAC and ADC, respec-
tively. VDD is the regular power supply while Vlogic is the power supply for

46

4.6. LOW-PASS FILTER

Figure 4.18: DAC schematic.

the digital logic inside the DAC. Vxx is connected to the external reference
pin on both the DACs and ADC. All three power supply inputs VDD, Vxx
and Vlogic are connected to the internal power plane.

Every power supply input on the DACs and ADC has two capacitors con-
nected in parallel. Their purpose, together with a parallel resistor, is to
smooth out any voltage spikes that may occur with both high and low
frequencies. The diodes connected to the VREF pins are used as current
generators. After a certain voltage threshold, they give a constant current
which together with the resistor creates a fairly good voltage regulator. By
using VREF as the voltage reference, we can trade range for resolution and
vice versa depending on what we need. Figure 4.20 shows the final board
with most of the components soldered on. The jumpers on the board can
be used to select the gain and the value on the DAC channels after a reset.
Table 4.7 lists the different PCB design rules for the analog board.

4.6 Low-pass Filter

The last part of the direct digital synthesizer is the low-pass filter. As the
name suggests, this filter lets the low frequencies pass through, but reduces
the high frequency noise above the cutoff frequency. The easiest filter to
create is a first order passive RC filter and its circuit drawing is shown
in figure 4.21. This is the type of filter we have used during testing and
evaluation of the system. Equation 4.11 gives us the cutoff frequency for

47

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.19: DAC schematic.

the low-pass filter
fcutoff = 1

2πRC (4.11)

where we use R = 4.7 kΩ and C = 470 pF. This gives fcutoff = 72048 Hz.
These values were chosen based on how good the the output waveform
looked on the oscilloscope.

4.7 Error sources

Throughout the system, errors in the form of distortion and noise will
be introduced and it will degrade the generated wave(s). We will in this
section explain the main errors introduced in the NCO and the DAC/ADC.

4.7.1 Phase Truncation

The first error is the phase truncation distortion or spur. This happens
when we, as the name suggests, truncate the phase accumulator value. Fig-
ure 4.22 illustrates the effects of this truncation. It shows a phase wheel
with the outer circle representing the values of a 5 bit phase accumulator

48

4.7. ERROR SOURCES

Rule Value Description
Current requirement 4.6 mA (minimum) Trace current
Trace width 0.254 mm ≈1.55 A tolerance [pcb]Trace thickness 0.2 mm
Via 1 Inner diameter: 1

mm. Outer diameter:
0.2 mm

Power via. Based on
[BG].

Via 2 Inner diameter: 0.254
mm. Outer diameter:
0.2 mm

Digital signals. Based
on [BG].

Via 3 Inner diameter: 0.4
mm. Outer diameter:
0.2 mm

Connecting analog
ground islands. Based
on [BG].

Table 4.7: PCB design rules.

(N = 5) and the inner circle represents the 3 bit truncated value (M = 3)
we get from removing the 2 least significant bits from the phase accumula-
tor value (W = 2). One revolution of the phase wheel is equivalent to one
period of the wave. In the figure, the phase increment is 3 (∆P = 3) and
the first four phase accumulator steps are marked. The first step adds 3
to the phase accumulator, but since the value does not reach the red dot
representing the value 1 for the truncated value, we get a phase error E as
shown in the figure. This phase error is the number of dots between the
phase accumulator value and the truncated value and in the first step it is
equal to 3 or 3

16π radians. The second step gives us a phase accumulator
value of 6. It has moved past the first red dot and therefore the truncated
value equals 1. The phase error is now 2 or π

8 radians. So in the third step
we get a phase error of 1 or π

16 radians. The fourth step on the other hand,
hits both the blue and the red dot meaning that there is no phase error.
This error pattern will repeat itself and since the truncated value is con-
verted to amplitude (or used directly), the phase errors will cause errors in
the amplitude. These errors are periodic in the time domain, which means
that it shows up as distortion or spurs in the frequency domain.

The magnitude and distribution of the distortion is determined by the
number of bits in the phase accumulator (N), the number of bits in the
truncated phase value (M) and the phase increment (∆P). Some phase
increment values gives no phase errors and therefore no distortion in the

49

CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.20: The analog board with most of the components soldered on.

frequency domain of the signal. These phase increment values all satisfies

GCD(∆P, 2W) = 2W (4.12)

At the opposite end we have phase increment values that gives the highest
distortion level and they satisfy

GCD(∆P, 2W) = 2W−1 (4.13)

When the number of truncated bits W ≥ 4, which is true for our system,

Figure 4.21: First order passive low-pass filter used at the DAC outputs.

50

4.7. ERROR SOURCES

00

2
8

416

6
24

E

03

1
6

2
9

3
12

Figure 4.22: Illustration of phase truncation error. Blue dots represents
the phase accumulator value and the red dots represents the truncated
value. Illustration inspired by [dds].

the maximum distortion level could be estimated with

ζmax = −6.02M (4.14)

where the answer is given in dBc, which is the power ratio of the distortion
and the carrier signal [wik]. So for our system with M = 12, the maximum
phase truncation distortion will be approximately -72 dBc. For more in-
formation about phase truncation error, see [dds], which is the source used
in this subsection.

4.7.2 Quantization

The DA/AD converters in our system has a resolution of 12 bits which
means that they can differentiate between 4096 voltage levels. Together
with the internal voltage reference of 2.5 V, we get the lowest possible
voltage change of VLSB = 600 µV. This means that if the signal to be
converted by the ADC is changing with less than VLSB, the ADC will
not be able to detect this change and there will be a difference between
the actual voltage level and the converted voltage level. For the DAC,
we get the same effect when we want to create a sine wave signal with

51

CHAPTER 4. DESIGN AND IMPLEMENTATION

voltage changes less than VLSB, but have to round the the values so that
the voltage changes is equal to or larger than VLSB. This difference is
called the quantization error and happens because we are using rounding
to map a large set of input values to a smaller set. Since the sine samples
stored in the LUT is rounded to the nearest integer, the stored sine wave
will therefore deviate from a perfect sine wave and the error will manifest
itself as distortion or spurs in the frequency domain [dds].

52

5
Testing and Evaluation

To test and evaluate the new extended system, we conducted several dif-
ferent tests. These can be categorized into system tests, FPGA tests and
analog/digital converter tests.

5.1 System Tests

To test all the new functions in libEMB, we created different C programs
that called the function(s) under test and verified the result of the call.
This was either a visual verification with an oscilloscope or an automatic
one where the test program measured for example voltage via a multime-
ter. The system tests verifies that the system as a whole works correctly
and is basically black box testing. Some of the functions under test were
tested together, such as enable_daisy_chain and write_dac, because
their functionality is closely related. The tests and their results can be
found in appendix A.1.

5.2 FPGA Tests

Testing the FPGA modules was mostly done by using automated func-
tional simulation. The exception was the the tests where we generated
waves, which were verified visually. This was done by writing every wave
sample to file and then use Gnuplot to plot the samples. For the au-
tomated functional simulation we created random stimuli using built-in
VHDL functions or we used fixed stimuli. The output of the module was

53

CHAPTER 5. TESTING AND EVALUATION

then compared to the expected output and the simulation stopped or gave
a warning if the comparison failed.

5.3 Digital/Analog Converter Evaluation

To test and evaluate the DA/AD converters we did several measurements.
These measurements can be categorized into static and dynamic tests or
measurements. The first tests are called integral nonlinearity (INL) and
differential nonlinearity (DNL) and they fall into the category of static
tests. We also did frequency domain analysis which is dynamic testing.
All measurements were done using channel A on the DAC 1 and channel
1 on the ADC. The test equipment used can be found in appendix C.

To test the DAC, we wrote a C program that iterates through all the digital
voltage codes, i.e. from 0 to 4095. Each code gets written to the DAC
which outputs the corresponding voltage. This voltage is then measured
by a digital multimeter, that communicates with the computer running the
program. The measured value is then converted back to digital code. The
result of this measurement is shown in figure 5.1, where the code written
to the DAC is along the x-axis and the measured value is along the y-axis.
Here, the measured values are overlapping the ideal values. The INL and
DNL can now easily be calculated using the data plotted in this figure.

A similar approach was used for measuring the ADC. Here, we used a DC
power supply to output the voltage corresponding to the voltage code and
the ADC converted this voltage back to digital code. The power supply
we used had an accuracy of 10 mV, while the ADC has an accuracy of
0.6 mV. This means that the measurements gets noisy and inaccurate. To
decrease the error introduced by this problem, we used the average value
of several samples. Equation 5.1 shows the exact formula used

AV Gc =

20∑
r=1

(1
2000

2000∑
s=1

Samples

)
20 (5.1)

where the subscript c denotes the decimal code of the voltage, i.e. 0 ≤ c ≤
4095. As we can see from figure 5.2, the measured values is not that far
away from the ideal ones.

54

5.3. DIGITAL/ANALOG CONVERTER EVALUATION

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

S
a
m

p
le

Code

Ideal
DAC

VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.1: Plot of the ideal vs. measured DAC value.

5.3.1 Integral Nonlinearity

Integral nonlinearity, also called relative accuracy, tells us how much the
measured transfer function deviates in least significant bits (LSBs) from
the ideal transfer function of a DAC or ADC. The INL is calculated after
the gain error and offset error has been removed. The best straight-line
INL approach is used in this case, because it usually gives better results.
Details of the method are presented in [max].

Figure 5.3 shows the INL plot for the DAC. The x-axis is the digital
voltage code sent to the DAC and the y-axis is the deviation from ideal
output. As we can see, the deviation is very small, mostly between 0 and
-0.9 LSB. The average deviation is -0.479 LSB, which means that the
measured voltage is on average approximately 300 µV lower than the ideal
output voltage (this is after gain and offset error has been removed). This
is a very low voltage difference and the measurement may therefore not be
completely accurate, but it gives us a picture of the characteristics of the
DAC. The reason why the value drops may be due to the fact that the
multimeter changes the voltage reference and thus changes the accuracy
[mul]. We do not know the reason why the curve is generally increasing, but
we have had some electromagnetic interference with an unknown source(s)
that may affect the measurement. Luckily, since the curve only increases

55

CHAPTER 5. TESTING AND EVALUATION

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

S
a
m

p
le

Code

Ideal
ADC

VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.2: Plot of the ideal vs. measured ADC value.

by approximately 1 LSB over the interval from 0 to 4095, it can be ignored
and we can conclude that the nonlinearity in DAC’s transfer function is
close to zero when it is compared to the ideal transfer function.

In figure 5.4, we can see the INL plot of the ADC. The x-axis is the digital
voltage code that was converted and sent to the power supply and the y-
axis is the difference between the measured voltage and the ideal voltage.
Here the deviation is much greater. As mentioned above, the power supply
we used when measuring the ADC performance had lower accuracy than
the ADC and this will show up as noise in the measurement. It is in
general more difficult to get an accurate ADC than an accurate DAC since
the ADC has to convert a potentially noisy analog voltage to digital code,
while the DAC converts an unambiguous digital code to an analog voltage.
Additional noise could of course in both cases be introduced due to e.g.
noisy ground or reference voltage. So even though the ADC measurements
is not completely accurate, we get a picture of how it performs.

The average deviation is 22.5 LSB which means that the measured voltage
is on average approximately 14 mV greater than the ideal voltage. The
deviation is also generally increasing. Over the interval from 0 to around
4000, the INL goes from approximately 0 to 60 LSB which means a voltage
increase of 36 mV. This tells us that the nonlinearity in the ADC’s transfer
function is quite high when compared to the ideal transfer function. The

56

5.3. DIGITAL/ANALOG CONVERTER EVALUATION

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 500 1000 1500 2000 2500 3000 3500 4000

IN
L

(L
S
B

)

Code

VDD = 3.3 V
VREF = 2.5 V (internal)
Min = -0.907
Max = 0.0342
Avg = -0.479

Figure 5.3: Plot of the DAC integral nonlinearity.

reason for this increase is unknown, but it might be a combination of the
power supply accuracy and, as mentioned earlier, some electromagnetic
interference.

5.3.2 Differential Nonlinearity

The DNL is a measurement of how much difference there is between the
measured step width and the ideal step width of 1 LSB (2.5

4096 ≈ 600 µV),
between two contiguous codes. Ideally, the DNL should be equal 0 LSB as
this is when the step width equals 1 LSB. Gain error has been removed
before calculating the DNL. The exact formula used can be found in [max].

Looking at figure 5.5, we can see the DNL of the DAC. The x-axis is
the digital voltage code sent to the DAC and the y-axis is the difference
between the measured voltage step and the ideal voltage step. The largest
difference is approximately -0.6 LSB, which is very small. The fact that
the largest difference is less than or equal to 1 LSB (in absolute value) is no
surprise since this means that the DAC has a monotonic transfer function
with no missing codes, which is guaranteed by the design according to [dac,
p. 18].

Figure 5.6 shows the DNL of the ADC. The x-axis is the digital voltage

57

CHAPTER 5. TESTING AND EVALUATION

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

IN
L

(L
S
B

)

Code

VDD = 3.3 V
VREF = 2.5 V (internal)
Min = -19.8
Max = 63.8
Avg = 22.5

Figure 5.4: Plot of the ADC integral nonlinearity.

code that is converted to voltage and sent to the power supply and the
y-axis is the difference between the measured voltage step and the ideal
voltage step. According to [max], the transfer function of an ADC is
monotonic with no missing when the DNL value is between -1 and +1
LSB. Just a monotonic tranfser function is guaranteed when the digital
output code is non-decreasing when the input voltage is increasing, i.e. the
DNL value is greater than -1 LSB. This prevents changes of the sign of the
transfer curve’s slope. A DNL value of 0 means that the voltage step equals
exactly 1 LSB, while a value greater than 0 equals a voltage step that is
greater than 1 LSB. If the value is -1 it means that the voltage step is zero,
i.e. the measured voltage is the same as the previously measured voltage.
A value less than -1 LSB on the other hand means that the voltage step is
less than 0 LSB or a decrease in the measured voltage and this violates the
requirement for monotonicity. As we can see from the figure, the ADC’s
transfer function is clearly non-monotonic and is missing codes since a lot
of the DNL values are less than -1 LSB and greater than +1 LSB. A non-
monotonic ADC with missing codes implies lower effective resolution. High
DNL values will in general limit the performance by reducing the signal-
to-noise ratio (SNR) and spurious-free dynamic range (SFDR) [max].

58

5.3. DIGITAL/ANALOG CONVERTER EVALUATION

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

D
N

L
(L

S
B

)

Code

VDD = 3.3 V
VREF = 2.5 V (internal)
Min = -0.619
Max = 0.193
Avg = -4.01e-08

Figure 5.5: Plot of the DAC differential nonlinearity.

5.3.3 Frequency Domain Analysis

In addition to static measurements like INL and DNL, it is also important
to do frequency domain analysis of the system. Frequency domain analysis
can tell us how the energy of our signal is distributed over the different
frequencies and the amount and distribution of unwanted noise and distor-
tion. Since both the ADC and DAC may introduce noise and distortion,
we measured them separately in addition to closed-loop measurement (the
whole system). By measuring separately, we can more easily find out where
the noise gets introduced into the system and thus it’s easier to track down
a noise source.

Two types of graphs are presented. The first is the dynamic performance
of the component when the input/output sine wave signal has a frequency
of 10 kHz and the second is the signal-to-noise ratio of the component as a
function of frequency. This was also a measured using sine wave signal. We
used the low pass filter described in section 4.6 for all the measurements.
To calculate the frequency spectrum, we used a C library called FFTW
(Fastest Fourier Transform in the West) [fftb]. This a well known open-
source library that is licensed under GNU General Public License. The
discrete fourier transform (DFT) requires a periodic signal (continuous
endpoints) as input or else we will get spectral leakage where the power

59

CHAPTER 5. TESTING AND EVALUATION

-30

-20

-10

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

D
N

L
(L

S
B

)

Code

VDD = 3.3 V
VREF = 2.5 V (internal)
Min = -32.1
Max = 30.2
Avg = -1.63e-06

Figure 5.6: Plot of the ADC differential nonlinearity.

of the input signal will be spread over all the frequencies. Since the FFT
algorithm is an implementation of DFT, we have to make sure that our
input signal is periodic. We don’t necessarily know if the acquired signal
has an integral number of periods and we therefore have to apply a window
function to the data points. There are several different window functions
to choose from, all of the them with different pros and cons. We used
the Hanning window since it is fairly easy to implement and it has good
frequency resolution, spectral leakage is low and the amplitude accuracy
is sufficient according to [ffta].

After the FFT was calculated, we divided the power spectrum into four dif-
ferent frequency components. These were DC, the fundamental frequency,
harmonics and noise. Due to windowing and other reasons, the power
of a frequency component is spread across several FFT bins. Because of
this we used a frequency range to determine the power of the components.
For example, if the fundamental frequency is 100 Hz, we might classify
the frequencies from 95 Hz to 105 Hz as the fundamental frequency and
use the sum of their powers as the fundamental frequency’s power. The
range was set manually, depending on the frequency resolution of the FFT.
The frequency of all four components are defined pretty easily. The DC
component, which is the average of the input, has a frequency of 0 Hz.
The fundamental frequency f is the frequency we want. The harmonics

60

5.3. DIGITAL/ANALOG CONVERTER EVALUATION

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0 20000 40000 60000 80000 100000

A
m

p
lit

u
d
e
 (

d
B

)

Frequency (Hz)

2000 points FFT
FS = 200 kHz
FIN = 10 kHz
Signal power = 11.93 dB
SNR = 30.72 dB
VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.7: Dynamic performance of the DAC.

are the integer multiples of the fundamental frequency (the fundamental
frequency is sometimes called the first harmonic). We only used the first
four harmonics, i.e. 2f, 3f, 4f and 5f . Lastly, the frequencies that was not
a part of the DC, fundamental or harmonics components were classified
as noise. The SNR value is defined as the power ratio between the funda-
mental frequency and the noise. A high SNR value means that it is easier
to distinguish between the fundamental frequency and the noise compared
to when the SNR value is low.

Digital-to-analog Converter

In figure 5.7, we can see the typical dynamic performance of the DAC. The
measurements was taken using an oscilloscope with a maximum of 2000
datapoints and a sample frequency of 200 kHz. This gives a low frequency
resolution (100 Hz), but it is sufficient. As we can see from the figure, the
SFDR is around 50 dB and the SNR is almost 31 dB which is quite good.
The noise looks like white noise and there is no obvious harmonic distortion
which is good since this indicates that the DAC’s transfer function is linear.

If we look at figure 5.8, we can see the SNR of the DAC as a function of the
frequency. We only measured until the input frequency was 50 kHz since

61

CHAPTER 5. TESTING AND EVALUATION

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
N

R
 (

d
B

)

Frequency (Hz)

FS = 200 kHz
VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.8: SNR vs. input frequency of the DAC.

this the around the Nyquist frequency of the ADC (which is 55.555 kHz).
The SNR is decreasing as the frequency is increasing, which is probably
due to the fact that the sine wave gets more distorted as the frequency
increases and this causes the peak-to-peak amplitude to drop. The result
is that the power of the fundamental frequency decreases towards the noise
power and we get an SNR value that becomes smaller and smaller.

Analog-to-digital Converter

Testing the dynamic performance of the ADC was done by using a wave-
form generator connected to the ADC. The peak-to-peak amplitude was
set to 2.5 V, the same as the ADC voltage reference. The maximum
number of samples the Mecobo system can get is 16000 and the sample
frequency is 111111.111 Hz. This gives us an FFT frequency resolution of
approximately 7 Hz.

Figure 5.9 shows the the typical dynamic performance of the ADC. The
SFDR is around 70 dB and the SNR is almost 55 dB, which is very good.
As we can see, there are some periodic distortion or spurs. The distance
between the spurs seems to be 1

100 of the sample frequency, i.e. 1111
Hz. This might be deterministic jitter where the most likely causes either
are cross-coupling or electromagnetic interference, or asymmetrical clock

62

5.3. DIGITAL/ANALOG CONVERTER EVALUATION

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 10000 20000 30000 40000 50000

A
m

p
lit

u
d
e
 (

d
B

)

Frequency (Hz)

16000 points FFT
FS = 111111.111 Hz
FIN = 10 kHz
Signal power = 75.92 dB
SNR = 54.98 dB
VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.9: Dynamic performance of the ADC.

cycles.

Figure 5.10 shows the SNR of the ADC as a function of frequency. The
SNR is quite high and stable, with only a small decrease as the frequency
increases. The source of the fluctuations from 0 to 8 kHz is unknown.

Closed-loop

In the last measurements we tested the whole system by connecting the
DAC to the ADC via a low pass filter. Figure 5.11 shows the dynamic
performance at 10 kHz. The SFDR is around 55 dB and the SNR is 31
dB which is the same SNR value as the DAC has in figure 5.7. The noise
floor has now increased by approximately 20 dB compared to figure 5.9
and the periodic distortion is more or less drowning in random noise. The
INL and DNL measurements of the DAC (figure 5.3 and 5.5) shows that
it is pretty accurate so it may look like the NCO is the limiting factor in
the closed-loop.

The SNR versus frequency of the closed-loop is shown in figure 5.12. The
fluctuations seems to be around 5-6 dB with some occasional spikes with
larger values. It looks like some kind of period noise or distortion that re-
duces the signal-to-noise ratio. The general decrease is probably caused by

63

CHAPTER 5. TESTING AND EVALUATION

 49

 50

 51

 52

 53

 54

 55

 56

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
N

R
 (

d
B

)

Frequency (Hz)

FS = 111111.111 Hz
VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.10: SNR vs. input frequency of the ADC.

the fact that the sine wave gets more and more distorted as the frequency
increases, as mentioned in section 5.3.3.

64

5.3. DIGITAL/ANALOG CONVERTER EVALUATION

-60

-40

-20

 0

 20

 40

 60

 80

 0 10000 20000 30000 40000 50000

A
m

p
lit

u
d
e
 (

d
B

)

Frequency (Hz)

16000 points FFT
FS = 111111.111 Hz
FIN = 10 kHz
Signal power = 75.89 dB
SNR = 31.06 dB
VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.11: Dynamic performance of the closed-loop.

 5

 10

 15

 20

 25

 30

 35

 40

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
N

R
 (

d
B

)

Frequency (Hz)

FS = 111111.111 Hz
VDD = 3.3 V
VREF = 2.5 V (internal)

Figure 5.12: SNR vs. input frequency of the closed-loop.

65

6
Experiments

This chapter deals with initial experiments, where we look at the linear-
ity/nonlinearity in the response from the material when applying analog
signals to it. By applying different analog signals and changing their pa-
rameters, e.g. frequency, we can get an impression of the basic properties
and behavior of the material. The material we used in the experiments
was the carbon nanotubes, shown on the left side in figure 6.1. To the
right is the multielectrode array that used to interface with the material.
By identifying the main characteristics of the material, we might be able
to tell what kind of functions the material is usable for and we might use
it to narrow down the search space of the evolutionary algorithm by using
this knowledge to set constraints on the evolution.

6.1 Trial and Error

One of the first things we did was to generate arbitrary signals with the
Mecobo system and play around with the material by using different elec-
trodes as input and output. The setup is shown in figure 6.2. The green
circle illustrates the material and all the sides of the multielectrode array
has electrode connections that may be defined as either input or output.
By conducting this experiment, we got a picture of which electrode combi-
nations that gave the best output, considering both amplitude and shape
of the output signal.

The results we got was quite interesting. Looking at figure 6.3, we can
see a screenshot of the oscilloscope when applying a 1000 Hz sine wave
with a peak-to-peak amplitude of 2.5 V to the material. The signal at
the bottom is the input and the signal at the top is the output from the

67

CHAPTER 6. EXPERIMENTS

Figure 6.1: Carbon nanotubes and multielectrode array used in experi-
ments.

material. The frequency of the output signal is very close to the frequency
of the input signal and the peak-to-peak amplitude is 869 mV. As we can
see, the shape of the output signal is different from the input signal. It
resembles the input sine wave, but it has a quite steep incline from the
bottom which decreases when it comes closer to the top.

We also tried two input signals where one was a 1000 Hz sine wave and
the other was a 800 Hz sine wave, both with a peak-to-peak amplitude of
2.5 V. Figure 6.4 shows the response from the material. Using two input
signals with different frequencies results in what looks like a weighted sum
of the two inputs as shown in figure 6.5. More specifically, the response
signal is close to the function

Out = c× (x+ 0.4y) (6.1)

where x is the 1000 Hz input signal, y is the 800 Hz input signal and c is
the gain. This functions is plotted in the right panel of the figure. Looking
closer, we can see something that looks like a ”swelling” on the graph. This
is probably due to an oscillating effect in the material.

6.2 ADC Adding Noise To The Output

The next step was to use the ADC to sample the output signal instead of
the oscilloscope. Figure 6.6 shows a screenshot of the oscilloscope before
connecting the ADC. The input sine wave signal is at the bottom and the

68

6.3. FREQUENCY RESPONSE

Figure 6.2: Setup used for trail and error experiments where the goal is to
find the best input/output electrodes.

output signal is at the top. The output signal is close to the input signal in
regards to frequency and shape. When connecting the ADC to the output
signal, we get a high frequency noise signal as shown in figure 6.7. It
may look like the ADC connection is enabling an oscillator circuit in the
material that is sensitive to impedance.

6.3 Frequency Response

For the first experiment we wanted to see the response from the material
when two sine waves was applied to it and we did a frequency sweep on
one of them. Since the ADC added too much noise to the output signal,
we used an oscilloscope instead to sample and measure the frequency. One
input signal was set to a fixed frequency of 1000 Hz while the other input
varied from 500 Hz to 1500 Hz. The setup is shown in figure 6.8. The
number after the arrow is the electrode number.

Figure 6.9 shows the second frequency plotted against the output fre-
quency. At 500, 1000 and 1500 Hz, the output frequency is what we
expect when superpositioning two sine waves with these frequencies. Fig-
ure 6.10, 6.11 and 6.12 shows the output waveforms when channel 1 has a
frequency of 500, 1000 and 1500 Hz, respectively. Again, the waves looks

69

CHAPTER 6. EXPERIMENTS

Figure 6.3: Oscilloscope screenshot showing the response of the material
when applying a 1000 Hz sine wave as input.

like a weighted sum of the amplitude of the two input wave. The output
frequency at 800 Hz is more interesting. Here, it suddenly increases to
approximately 800 Hz, but same input frequencies was used in figure 6.4
where the output frequency was 200 Hz. There could be a lot of reason for
this, e.g. different electrodes used, temperature etc. In the ranges from 500
Hz to 900 Hz and 1100 Hz and 1500 Hz, the output frequency is unstable
with a lot of rapid fluctuations. The cause of this is unknown.

If we look closely at figure 6.10, 6.11 and 6.12 we can see that the small
peaks are increasing and decreasing in amplitude. For example, in fig-
ure 6.12, the amplitude of left peak is increasing while the right peak is
decreasing. This is probably the same effect as we saw in figure 6.4.

6.4 Phase Response

In the second experiment we wanted to see how the phase of the output
signal changed when we changed the phase of one of the input signals. We
did two experiments to see if the results from the first experiment changed
if we changed input and output electrodes.

70

6.4. PHASE RESPONSE

Figure 6.4: Oscilloscope screenshot showing the response from the material
when applying a 1000 Hz sine wave and a 800 Hz sine wave as input.

6.4.1 Experiment 1

For the first experiment, we used the same electrodes as in the frequency
response experiment (figure 6.8). Both channels had a fixed frequency of
1 kHz and channel 0 had no phase offset. On channel 1 we did a phase
sweep from 0◦ to 360◦ . Figure 6.13 shows the results. The phase offset on
channel 1 is on the x-axis and the phase difference between channel 1 and
the output is on the y-axis. The phase difference increases almost linearly
until approximately 170◦ and from approximately 190◦ it increases in the

Figure 6.5: Left: response signal when applying 1000 Hz and 800 Hz sine
waves to the material. Right: the function (x + 0.4 ∗ y) with x being the
1000 Hz input signal and y being the 800 Hz input signal. Illustration
taken from [Tuf].

71

CHAPTER 6. EXPERIMENTS

Figure 6.6: Oscilloscope screenshot showing material response without
noise. The wave at the bottom is the input and the wave at the top is
the output from the material.

same linear way. The phase difference is probably caused by a changing
delay in the material or equivalently, different paths that the current takes.
In the short interval between 170◦ and 190◦ , the phase difference goes from
+160◦ to -160◦ with a lot of fluctuations in the middle. These fluctuations
are probably caused by instability or an oscillating effect in the material.

6.4.2 Experiment 2

In the second phase response experiment, we changed the electrodes to
see if we could get the same results as in experiment 1, but with different
electrodes (channel 0 → 41, channel 1 → 44 and out → 43). The results
can be found in figure 6.15. Here, the phase difference is much closer
to a horizontal line which suggests that the properties of the material is
nonuniform. Around 180◦ , we can see that the phase difference is very
large, almost -1000◦ . The phase difference is calculated using the following
equation [osc]:

Phase difference = Delay
Channel 1 period × 360 (6.2)

72

6.4. PHASE RESPONSE

Figure 6.7: Oscilloscope screenshot showing material response with noise.
The wave at the bottom is the input and the wave at the top is the output
from the material with the ADC channel attached to it.

Figure 6.8: Frequency response experiment setup.

where the period and delay is measured according to figure 6.14. The delay
can be calculated by rearranging equation 6.2:

Delay = Phase difference
360 × Channel 1 period (6.3)

and with a phase difference of -1000◦ and a channel 1 period of 1
1000 Hz =

1 ms, this gives us a delay of -2.77 ms. A negative delay means that rising
edge of the output occurred before the rising edge of channel 1. A delay
of almost 3 ms is quite big and it is interesting to note that the maximum
positive phase difference is only 400◦ .

73

CHAPTER 6. EXPERIMENTS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 600 800 1000 1200 1400

Fr
e
q
u
e
n
cy

 o
u
t

(H
z)

Channel 1 frequency (Hz)

Channel 0 = 1 kHz (fixed)

Figure 6.9: Frequency in vs. frequency out. One input was a fixed 1 kHz
sine wave. The second sine waves input frequency is shown on the x-axis.
The response from the material is the y-axis. Both input waves have a
peak-to-peak amplitude of 2.5 V.

6.5 Amplitude Response

In the last experiment, we wanted to see how the peak-to-peak amplitude
changes as a function of frequency. For this experiment we used a waveform
generator from HP (see appendix C) because the signal from our waveform
generator gets too distorted when the frequency gets above 60-70 kHz. We
defined one input (84) and one output (74) on the material and did two
frequency sweeps. The first one was from 1 kHz to 1 MHz and is shown in
figure 6.16. We can see that the peak-to-peak amplitude decreases as the
frequency increases.

The second frequency sweep was from 10 Hz to 2000 Hz and is shown in
figure 6.17. Here, the curve increases rapidly at the start before it starts to
flatten out. The material reduces the amplitude of the lower frequencies,
just like conventional high-pass filters.

74

6.5. AMPLITUDE RESPONSE

-200
-150
-100

-50
 0

 50
 100
 150
 200

 0 400 800 1200 1600 2000

A
m

p
lit

u
d
e
 (

m
V

)

Sample

500 Hz in (ch1)

-250
-200
-150
-100

-50
 0

 50
 100
 150
 200
 250

 0 400 800 1200 1600 2000

A
m

p
lit

u
d
e
 (

m
V

)

Sample

750 Hz in (ch1)

Figure 6.10: Top: output waveform when channel 1 has a frequency of 500
Hz. Bottom: output waveform when the frequency is 750 Hz.

-80
-60
-40
-20

 0
 20
 40
 60
 80

 100

 0 400 800 1200 1600 2000

A
m

p
lit

u
d
e
 (

m
V

)

Sample

1000 Hz in (ch1)

-250
-200
-150
-100

-50
 0

 50
 100
 150
 200
 250

 0 400 800 1200 1600 2000

A
m

p
lit

u
d
e
 (

m
V

)

Sample

1250 Hz in (ch1)

Figure 6.11: Top: output waveform when channel 1 has a frequency of
1000 Hz. Bottom: output waveform when the frequency is 1250 Hz.

75

CHAPTER 6. EXPERIMENTS

-250
-200
-150
-100

-50
 0

 50
 100
 150
 200
 250
 300

 0 400 800 1200 1600 2000

A
m

p
lit

u
d
e
 (

m
V

)

Sample

1500 Hz in (ch1)

Figure 6.12: Output waveform when channel 1 has a frequency of 1500 Hz.

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350

P
h
a
se

 d
iff

e
re

n
ce

 o
u
t

(d
e
g
re

e
s)

Channel 1 phase offset (degrees)

Channel 0 = 1 kHz, Channel 1 = 1 kHz (both fixed)

Figure 6.13: Phase response, experiment 1: channel 1 phase offset vs. the
phase difference between channel 1 and the output.

Figure 6.14: Period and delay measurements used for calculating the phase
difference. Illustration taken from [osc].

76

6.5. AMPLITUDE RESPONSE

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 0 50 100 150 200 250 300 350

P
h
a
se

 d
iff

e
re

n
ce

 o
u
t

(d
e
g
re

e
s)

Channel 1 phase offset (degrees)

Channel 0 = 1 kHz, Channel 1 = 1 kHz (both fixed)

Figure 6.15: Phase response, experiment 2: channel 1 phase offset vs. the
phase difference between channel 1 and the output.

 280

 290

 300

 310

 320

 330

 340

 350

 360

100 200 300 400 500 600 700 800 900

A
m

p
lit

u
d
e
 (

p
e
a
k-

to
-p

e
a
k)

 (
m

V
)

Frequency in (kHz)

Figure 6.16: Input frequency vs. output peak-to-peak amplitude. The
frequency sweep goes from 1 kHz to 1 MHz.

77

CHAPTER 6. EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 350

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

p
lit

u
d
e
 (

p
e
a
k-

to
-p

e
a
k)

 (
m

V
)

Frequency in (Hz)

Figure 6.17: Input frequency vs. output peak-to-peak amplitude. The
frequency sweep goes from 10 Hz to 1 kHz.

78

7
Conclusion

The purpose of this master’s thesis was to create an extension to Mecobo
that was able to generate dynamic signals and read the response from
the material. This was successfully achieved by using digital-to-analog
converters and a analog-to-digital converter together with the FPGA on
Mecobo to create a direct digital synthesizer that works as an arbitrary
waveform generator and to create a sampling system. The already existing
C library called libEMB was also extended with new functionality to be
able to control and change the wave parameters. The system requirements
in section 3.2 have been met and the system performs reasonable well
according to the measurements in chapter 5. The measurements gives us
an indication on when experimental results becomes uncertain due to the
limited accuracy of the system. Some noise problems with an unknown
source(s) seems to be present, but this should not be a problem as long as
we are aware of it.

We did some initial experiments to investigate the response from the car-
bon nanotubes. By applying analog signals to the material, we were able
to get some interesting responses showing that the material is capable of
letting the signals propagate almost unchanged through it and capable of
influencing the signal (see figure 6.6 and 6.3 for examples). The experi-
ments also show that it is possible to influence the signal externally. The
experiments does not give an answer on whether the carbon nanotubes can
be programmed or not.

The material may be equivalent to a configurable network of resistors and
capacitors. If this is true, the increase and decrease in the amplitude of
dynamic signals causes the capacitors to remain discharged and this puts
the network in a sort of high impedance state. If this hypothesis is true, it
means that response we measure from the material actually is the voltage

79

CHAPTER 7. CONCLUSION

change in the input(s) signal, i.e. the measured response is Vout = dVin/dt
[Tuf].

7.1 Further Work

There are several improvements that can be done to the extension, espe-
cially to the NCO. One improvement could be to add a dither to the NCO,
between the phase accumulator and the truncation. The dither adds white
noise to the W+1 least significant bits of the PA value, to reduce the phase
truncation spurs. Over time the average of the truncated value will be close
to the PA dither value and the error will be random (or pseudorandom)
[dds].

Another improvement is to find a new method for changing the sine wave
amplitude. The current method only shifts the amplitude to the right to
reduce it, but this is not the best way since the amplitude is halved for
each shift. This gives few amplitude levels. The best way would be to use
an embedded division core, but this requires a new FPGA.

The way we sample the ADC could be more parallel. Now, the ADC SPI
controller has to wait while the user module is writing a newly acquired
sample to memory. Instead it could start a new sample request while the
user module are doing memory operations. This way, the ADC could run
at full speed with a 125 kSPS throughput rate instead of the current 111
kSPS.

The constructed NCO uses a straight forward architecture to create the
waves, with a sine look-up table that is shared between the wave genera-
tors. To make the generators more independent of each other and not be
constrained by a shared resource, a new architecture like modified Sunder-
land architecture or Taylor series approximation could be used to reduce
the needed look-up table size [Van96]. With a reduced look-up table size
each wave generator can have its own look-up table. The penalty is of
course more logic to compensate for the smaller tables, but this is a trade-
off that one has to consider.

The DA/AD converters clock signal is currently generated by the FPGA
by using a counter to reduce the FPGA clock frequency before it is sent
to the DA/AD converters. This can be a source of jitter in the DA/AD
converters performance because of phase distortion in the generated clock

80

7.1. FURTHER WORK

signal. Instead, one could use an external clock signal that generates a
more reliable clock signal.

81

Bibliography

[adc] AD7888 Datasheet. http://www.analog.com/static/
imported-files/data_sheets/AD7888.pdf.

[BG] Doug Brooks and Dave Graves. Current Carrying Capacity of
Vias. http://www.pcbcic.com/docs/viacurrents1.pdf.

[Car93] Peter Cariani. To Evolve an Ear: Epistemological Implications
of Gordon Pask’s Electrochemical Devices. 1993.

[dac] AD5686R/AD5685R/AD5684R Datasheet. http:
//www.analog.com/static/imported-files/data_sheets/
AD5686R_AD5685R_AD5684R.pdf.

[dds] A Technical Tutorial on Digital Signal Synthesis. http://www.
ieee.li/pdf/essay/dds.pdf.

[Dow10] Keith L. Downing. Introduction to Evolutionary Algorithms.
2010.

[ffta] Application Note - Understanding FFT Windows.
http://www.physik.uni-wuerzburg.de/˜praktiku/
Anleitung/Fremde/ANO14.pdf.

[fftb] Fastest Fourier Transform in the West (FFTW). http://www.
fftw.org.

[Har06] Simon Harding. Evolution in Materio. PhD thesis, University
of York, Feb 2006.

[Hey] Francis Heylighen. The Science of Self-Organization and Adap-
tivity.

[HP12] John L. Hennessy and David A. Patterson. Computer Architec-
ture - A Quantitative Approach. Elsevier, Fifth edition, 2012.

[JHJ10] Larry Bull Ben De Lacy Costello Julian Holley, An-
drew Adamatzky and Ishrat Jahan. Computational Modalities
of Belousov-Zhabotinsky Encapsulated Vesicles. 2010.

[KB03] Sanjeev Kumar and Peter Bentley, editors. On Growth, Form
and Computers. Elsevier Limited Oxford UK, 2003.

83

http://www.analog.com/static/imported-files/data_sheets/AD7888.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7888.pdf
http://www.pcbcic.com/docs/viacurrents1.pdf
http://www.analog.com/static/imported-files/data_sheets/AD5686R_AD5685R_AD5684R.pdf
http://www.analog.com/static/imported-files/data_sheets/AD5686R_AD5685R_AD5684R.pdf
http://www.analog.com/static/imported-files/data_sheets/AD5686R_AD5685R_AD5684R.pdf
http://www.ieee.li/pdf/essay/dds.pdf
http://www.ieee.li/pdf/essay/dds.pdf
http://www.physik.uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf
http://www.physik.uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf
http://www.fftw.org
http://www.fftw.org

BIBLIOGRAPHY

[Lyk10] Odd Rune Strømmen Lykkebø. Design and implementation of
a prototype platform for evolution in materio. Master’s thesis,
NTNU, Jul 2010.

[max] INL/DNL Measurements for High-Speed Analog-to-Digital
Converters (ADCs). http://www.maximintegrated.com/
app-notes/index.mvp/id/283.

[mul] Agilent 34410A/11A user’s Guide. http://cp.literature.
agilent.com/litweb/pdf/34410-90001.pdf.

[nas] NAnoSCale Engineering for Novel Computation using Evo-
lution (website). http://nascenceproject.blogspot.no/p/
background.html.

[osc] Agilent 54621D/22D/41D/42D Mixed-Signal Oscilloscopes -
User’s Guide. http://cp.literature.agilent.com/litweb/
pdf/54622-97036.pdf.

[pcb] Pcb trace width calculator. http://www.
circuitcalculator.com/wordpress/2006/01/31/
pcb-trace-width-calculator/.

[Sip02] Moshe Sipper. The Emergence of Cellular Computing. Com-
puter, 32(7):18–26, 2002.

[SLHR06] Julian F. Miller Simon L. Harding and Edward A. Rietman.
Evolution in Materio: Exploiting the Physics of Materials for
Computation. 2006.

[Tho96] Adrian Thompson. An evolved circuit, intrinsic in silicon, en-
twined with physics. 1996.

[Tuf] Gunnar Tufte. NASCENCE Draft Experimental Work. Draft,
NTNU.

[Van96] Jouko Vankka. Methods of Mapping from Phase to Sine Am-
plitude in Direct Digital Synthesis. In IEEE International Fre-
quency Control Symposium, 1996.

[wik] Wikipedia - dbc. http://en.wikipedia.org/wiki/DBc.

84

http://www.maximintegrated.com/app-notes/index.mvp/id/283
http://www.maximintegrated.com/app-notes/index.mvp/id/283
http://cp.literature.agilent.com/litweb/pdf/34410-90001.pdf
http://cp.literature.agilent.com/litweb/pdf/34410-90001.pdf
http://nascenceproject.blogspot.no/p/background.html
http://nascenceproject.blogspot.no/p/background.html
http://cp.literature.agilent.com/litweb/pdf/54622-97036.pdf
http://cp.literature.agilent.com/litweb/pdf/54622-97036.pdf
http://www.circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator/
http://www.circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator/
http://www.circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator/
http://en.wikipedia.org/wiki/DBc

Appendices

85

A
Test Plans

A.1 System Tests

A.1.1 libEMB

read voltage
Generate 1000 random numbers D, where 0 ≤ D ≤ 4095. Convert
them to voltage (V = 2.5

4096D). Use a DC power supply to output
the voltages, then read back the voltage using read_voltage. For
each random number, take 16000 samples. Calculate the average
of the 16000 samples and check if it is between ±100 of the original
value (due to the lower resolution of the power supply used and ADC
measuring error).

enable daisy chain, write dac
Call enable_daisy_chain . Then write 1000 random voltages to
DAC 1 using command DAC_CMD_WRITE_INPUT_REG (0001) and chan-
nel A. The LDAC state should also be random (0,1 or 2). Verify with
a voltmeter that the output on the channel changes depending on the
LDAC state and that the measured voltage is between ±5 of the orig-
inal voltage. Repeat for DAC 2 and DAC 3. If this test succeeds,
it’s assumed that all other DAC commands will also succeed.

reset dac
Write and output 2.5 V (D = 4095) on channel A on all three DACs.
Connect the RSTSEL pins to ground. Verify with a voltmeter that
the voltage on all three DACs falls down to 0 V.

enable wave, set wave config
Call enable_wave and write an arbitrary configuration to all three

87

APPENDIX A. TEST PLANS

channels (channel group 0: A1, A2 and A3). Verify with an oscil-
loscope that a waveform is present on each channel, and that it has
the correct frequency and amplitude.

set channel group
Do the same as in the test above, but also change the channel group.
Channel group 0 gives output on A1, A2 and A3. Channel group 1
gives output on channel A1, A2, A3, B1, B2 and B3. Channel group
2 adds the C channels and lastly, group 3 adds the D channels.

disable wave
Use enable_wave and set_wave_config to output an arbitrary wave-
form. Use an oscilloscope to verify that the waveform disappears
when disable_wave is called.

Function Passed Comment
read_voltage Yes None

enable_daisy_chain Yes None
write_dac
reset_dac Yes None

enable_wave Yes None
set_wave_config Yes None

set_channel_group Yes None
disable_wave Yes None

Table A.1: libEMB function tests

88

A.2. FPGA DESIGN TESTS

A.2 FPGA Design Tests

A.2.1 SPI DAC Controller

Test Description Passed Comment
Write to 1, 2 and 3 DACs with 100 ran-
domly generated DAC configurations
each and verify that the correct output
is clocked out on the serial output line
(MOSI). Also verify that LDAC has the
correct value and that SS stays low dur-
ing transmission.

Yes None

Execute daisy-chain command and ver-
ify that the serial output line outputs
correct command. Also verify LDAC
and SS

Yes None

Execute the reset DACs command and
verify that the reset line goes low.

Yes None

Table A.2: SPI DAC controller tests

A.2.2 SPI ADC Controller

Test Description Passed Comment
Generate 100 random ADC configura-
tions (MOSI) and 100 random ADC
output values (MISO) and verify that
the controller transmits and receives
the values correctly. Also, verify that
SS goes low during transmission.

Yes None

Table A.3: SPI ADC controller test

89

APPENDIX A. TEST PLANS

A.2.3 Sine LUT

Test Description Passed Comment
Iterate through all addresses (0 →
1023) and verify that the correct sine
value is presented at the data out line.

Yes None

Table A.4: Sine look-up table test

A.2.4 Sine LUT Wrapper

Test Description Passed Comment
Generate 1000×12 random addresses,
and verify that the correct sine value is
presented on the 12 different data out
lines.

Yes None

Table A.5: Sine look-up table wrapper test

A.2.5 Configuration Register

Test Description Passed Comment
Write 1000 random DAC/ADC config-
urations and check the output.

Yes None

Table A.6: Configuration register test

A.2.6 Wave Configuration Register

Test Description Passed Comment
Write 1000 random wave configurations
and check the output.

Yes None

Table A.7: Wave configuration register test

90

A.2. FPGA DESIGN TESTS

A.2.7 Wave Memory

Test Description Passed Comment
Write 1000 random wave configurations
and check the output.

Yes None

Table A.8: Wave memory test

A.2.8 Wave Generator

Test Description Passed Comment
For sawtooth, triangle and square
waveforms, generate waves with the fol-
lowing amplitude and offset:

1. Amp: 0, Off: 0
2. Amp: 2048, Off: 0
3. Amp: 2048, Off: 2048
4. Amp: 4095, Off: 0
5. Amp: 4095, Off: 2048
6. Amp: 4095, Off: 4095

For the sine waveform:
1. Amp: 12, Off: 0
2. Amp: 1, Off: 0
3. Amp: 1, Off: 2048
4. Amp: 0, Off: 0
5. Amp: 0, Off: 2048
6. Amp: 0, Off: 4095

Use a frequency of 10 kHz. Write the
output to files and plot it using a plot-
ting program. Verify visually that the
waveforms are not deformed.

Yes No defor-
mation
other than
what one
would ex-
pect (due
to the way
the waves
are made).

Table A.9: Wave generator test

91

APPENDIX A. TEST PLANS

A.2.9 Sample Register

Test Description Passed Comment
Set enable line to high and low and verify
that the busy line changes.

Yes None

Enable the module and write the values 0→
11 to s data 0 → s data 11, i.e. write the id
to the corresponding sample data line. When
channel group is 0, verify that spi data out-
puts:

1.
DAC3︷ ︸︸ ︷

1︸︷︷︸
cmd

1︸︷︷︸
ch

002︸︷︷︸
id

0︸︷︷︸
padding

DAC2︷ ︸︸ ︷
110010

DAC1︷ ︸︸ ︷
110000hex

Channel group 1 should give:
1. 110020110010110000hex
2. 120050120040120030hex

Channel group 2 should give:
1. 110020110010110000hex
2. 120050120040120030hex
3. 140080140070140060hex

Lastly, channel group 3 should give:
1. 110020110010110000hex
2. 120050120040120030hex
3. 140080140070140060hex
4. 1800B01800A0180090hex

The first 8 bits are command and channel,
then comes 12 bits of id/data and the last 4
bits are padding.

Yes None

Table A.10: Sample register tests

92

A.2. FPGA DESIGN TESTS

A.2.10 Wave Controller

Test Description Passed Comment
Write 1 and 0 to the enable register
and verify that the enable output line
changes to the value in the register.

Yes None

Enable the module and toggle the busy
input line. Verify that the multiplexer
select line has the correct value.

Yes None

Write 100 random values to the channel
group register and verify that the chan-
nel group out line has the same value.

Yes None

Table A.11: Wave controller tests

A.2.11 Wave Module

Test Description Passed Comment
Enable the module. Verify that the
busy line line goes high. Disabling the
module should make them go low.

Yes None

Set the channel group to 3. Configure
every wave generator with an arbitrary
waveform. Split up the the value on
the SPI data line into three values and
write the output to file. Plot the data
and verify visually that the waveforms
are not deformed.

Yes None

Table A.12: Wave module tests

A.2.12 Toplevel

To test the toplevel module (called mecobo_with_analog_board) the tests
for testing individual modules were used. When testing the toplevel the
user module and memory was also tested. This was done by writing data
and commands to memory and verify that the user module executed the
commands correctly.

93

APPENDIX A. TEST PLANS

Test Description Passed Comment
Command CMD_WRITE_1 Yes None
Command CMD_WRITE_2 Yes None
Command CMD_WRITE_3 Yes None
Command CMD_READ Yes None
Command CMD_DCEN Yes None
Command CMD_RESET Yes None
Command CMD_ENABLE_WAVE Yes None
Command CMD_DISABLE_WAVE Yes None
Command CMD_WAVE_CONF Yes None
Command CMD_WAVE_GROUP Yes None

Table A.13: Toplevel tests

94

B
Finite State Machines

Idle

Transceive
8 bit

EN = 1

bit < 8

Receive
8 bit

bit < 8

Done

Figure B.1: FSM of the ADC SPI controller.

95

APPENDIX B. FINITE STATE MACHINES

Start

Idle

Write 1

cmd = Write 1

Write 3

cmd = Write 2

DCEN 1
write

cmd = DC enable

Reset
DACs

cmd = Reset DACs

Write3

cmd = Write 3

bit < 24

Write
LDAC
pulse

LDAC state
=pulse

Done

LDAC state
!=pulse

bit < 48

LDAC state
=pulse

LDAC state
!=pulse

Write
LDAC

pulse 2

bit < 24

DCEN 1
wait

DCEN 2
write

bit < 48

DCEN 2
wait

LDAC state
=pulse

LDAC state
!=pulse

bit < 72

Figure B.2: FSM of the DAC SPI controller.

96

Idle en = 0

Sawtooth
sum

en = 1
AND

wave_type = SAWTOOTH

Triangle
sum

en = 1
AND

wave_type = TRIANGLE

Sine sum

en = 1
AND

wave_type = SINE

Square sum

en = 1
AND

wave_type = SQUARE

Sawtooth
sum overflow

Sawtooth
accumulator

Sawtooth
offset

Sawtooth
offset

overflow

Sawtooth
write

sample
ack = 1

Finished

ack = 0

Triangle
sum overflow

Triangle
accumulator

Triangle
offset

Triangle
offset

overflow

Triangle
write

sample
ack = 1

ack = 0

Sine
accumulator

Sine
offset

Sine
lookup

sine_rdy = 0

Sine
write

sample

sine_rdy = 1

ack = 1

ack = 0

Square
accumulator

Square
offset

Square
write

sample

ack = 1

ack = 0

en = 0

en = 1
AND

wave_type = SAWTOOTH

en = 1
AND

wave_type = TRIANGLE

en = 1
AND

wave_type = SINE

en = 1
AND

wave_type = SQUARE

Figure B.3: FSM of the NCO.

97

APPENDIX B. FINITE STATE MACHINES

Idle en = 0

Start

en = 1en = 0

Read
samples

en = 1

Read
samples

ack

ch_group = 0 AND
new_sample = 000

ch_group = 1 AND
new_sample = 000000

ch_group = 2 AND
new_sample = 000000000

ch_group = 3 AND
new_sample = 000000000000

SPI write
wait ch A

spi_busy = 1

SPI write
ch A

spi_busy = 0

spi_busy = 0

SPI finished
ch A

spi_busy = 1 AND ch_group = 0

SPI write
wait ch B

spi_busy = 1 AND ch_group != 0

spi_busy = 0

spi_busy = 1spi_busy = 1

SPI write
ch B

spi_busy = 0

spi_busy = 0

SPI finished
ch B

spi_busy = 1 AND ch_group = 1

SPI write
wait ch C

spi_busy = 1 AND ch_group != 1

spi_busy = 0

spi_busy = 1spi_busy = 1

SPI write
ch C

spi_busy = 0

spi_busy = 0

SPI finished
ch C

spi_busy = 1 AND ch_group = 2

SPI write
wait ch D

spi_busy = 1 AND ch_group != 2

spi_busy = 0

spi_busy = 1spi_busy = 1

SPI write
ch D

spi_busy = 0

spi_busy = 0

SPI finished
ch D

spi_busy = 1

spi_busy = 0

spi_busy = 1

Figure B.4: FSM of the sample register.

98

C
Test Equipment

Type Manufacturer Model
DC power supply Agilent 6612C

Multimeter Agilent 34410A
Waveform generator Hewlett Packard 33120A

Mixed signal oscilloscope Agilent 54622D

Table C.1: Test equipment

99

D
Bill of Materials

RefDes Description Value Qty. MPN

U1/U2/U3 Digital-
to-analog
converter

3 AD5684RBRUZ

U4 Analog-
to-digital
converter

1 AD7888ARUZ

C1/C3/C5
C7/C9/C11
C13/C15

Capacitor 10µF 8 TCJA106M016R0200

C2/C4/C6
C8/C10/C12
C14/C16

Capacitor 100 nF 8 MCCA000416

R1 Resistor 1
R2 Resistor 1
R3 Resistor 1
R4 Ferrite bead 1
R5/R6 R7/R8 Resistor 4
R9 Resistor 1
R10/R11/R12 Resistor 3

Table D.1: Bill of materials for the analog board

100

E
101

APPENDIX E. SCHEMATICS

Schematics

11

22

33

44

D
D

C
C

B
B

A
A

T
it
le

N
u
m
b
er

R
ev
is
io
n

S
iz
e

A
4

D
at
e:

2
3
.1
1
.2
0
1
2

S
h
ee
t
 o

f

F
il
e:

Z
:\
p
ro
sj
ek
t\
..
\a
n
al
o
g
_
b
o
ar
d
.S
ch
D
o
c

D
ra
w
n
 B
y
:

V
L
O
G
IC

1
1

S
Y
N
C

1
3

S
D
IN

1
4

S
D
O

8

S
C
L
K

1
2

L
D
A
C

9

R
E
S
E
T

1
5

R
S
T
S
E
L

1
6

G
A
IN

1
0

G
N
D

4

V
O
U
T
C

6
V
O
U
T
D

7
V
O
U
T
B

2
V
O
U
T
A

3

V
R
E
F

1

V
D
D

5

U
1

A
D
5
6
8
4
R
B
R
U
Z
-R
L
7

V
L
O
G
IC

1
1

S
Y
N
C

1
3

S
D
IN

1
4

S
D
O

8

S
C
L
K

1
2

L
D
A
C

9

R
E
S
E
T

1
5

R
S
T
S
E
L

1
6

G
A
IN

1
0

G
N
D

4

V
O
U
T
C

6
V
O
U
T
D

7
V
O
U
T
B

2
V
O
U
T
A

3

V
R
E
F

1

V
D
D

5

U
2

A
D
5
6
8
4
R
B
R
U
Z
-R
L
7

V
L
O
G
IC

1
1

S
Y
N
C

1
3

S
D
IN

1
4

S
D
O

8

S
C
L
K

1
2

L
D
A
C

9

R
E
S
E
T

1
5

R
S
T
S
E
L

1
6

G
A
IN

1
0

G
N
D

4

V
O
U
T
C

6
V
O
U
T
D

7
V
O
U
T
B

2
V
O
U
T
A

3

V
R
E
F

1

V
D
D

5

U
3

A
D
5
6
8
4
R
B
R
U
Z
-R
L
7

A
G
N
D

S
C
L
K
_
D
A
C

S
Y
N
C

L
D
A
C

R
ea
d
b
ac
k

V
D
D

A
G
N
D

A
G
N
D

A
G
N
D

V
D
D

V
D
D

V
lo
g
ic

V
lo
g
ic

V
lo
g
ic

A
G
N
D

A
G
N
D

V
O
U
T
C
2

V
O
U
T
D
2

V
O
U
T
B
2

V
O
U
T
A
2

V
O
U
T
C
1

V
O
U
T
D
1

V
O
U
T
B
1

V
O
U
T
A
1

V
O
U
T
C
3

V
O
U
T
D
3

V
O
U
T
B
3

V
O
U
T
A
3

S
D
IN

123

P
4

123

P
3

R
E
S
E
T

123

P
1 123

P
5

123

P
6

123

P
2

V
D
D

G
N
D

V
D
D

A
G
N
D

V
D
D

V
D
D

V
D
D

V
D
D

G
N
D

A
G
N
D

G
N
D

A
G
N
D

A
G
N
D

V
x
x

V
x
x

V
x
x

A
G
N
D

A
G
N
D

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

P
B
1

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

P
A
1

S
D
IN

S
Y
N
C

S
C
L
K
_
D
A
C

R
E
S
E
T

R
ea
d
b
ac
k

L
D
A
C

C
S

1

S
C
L
K

1
6

D
IN

1
4

A
IN

1
5

A
IN

2
6

A
IN

3
7

A
IN

4
8

A
IN

5
9

A
IN

6
1
0

A
IN

7
1
1

A
IN

8
1
2

V
D
D

3

R
E
F
IN
/R
E
F
O
U
T

2

D
O
U
T

1
5

A
G
N
D
_
2

4

A
G
N
D

1
3

A
D
7
8
8
8
A
R
U
Z

U
4

D
IN

C
S

A
IN

1
A
IN

2
A
IN

3

A
IN

4
A
IN

5
A
IN

6
A
IN

7
A
IN

8

A
G
N
D

A
G
N
D

D
O
U
T

V
D
D

A
G
N
D

C
S

D
IN

D
O
U
T

S
C
L
K
_
A
D
CG
N
D

A
G
N
D

S
C
L
K
_
A
D
C

D
1

D
2

D
3

D
4

V
x
x

A
G
N
D

M
ec
o
b
o
 D
A
C
/A

D
C
 B
o
ar
d

1
.0

O
le
 P
et
te
r
S
k
ar
re
 L
u
n
d

1
1

0
.1
u
F

C
2

0
.1
u
F

C
4

0
.1
u
F

C
6

0
.1
u
F

C
8

1

2
02 3 4 5 6 7 8 9
1
0
1
1

1
2
1
3
1
4
1
5

1
6
1
7
1
8

1
9

3
0
2
9
2
8
2
7

2
6
2
5
2
4

2
3
2
2
2
1

4
0
3
9
3
8
3
7

3
6
3
5

3
4
3
3

3
2
3
1

5
0
4
9
4
8
4
7
4
6

4
5
4
4
4
3

4
2
4
1

6
0
5
9
5
8

5
7
5
6
5
5
5
4

5
3
5
2
5
1

6
1
6
2

6
3
6
4
6
5

6
6
6
7
6
8

70

69

J1 C
o
n
n
ec
to
r
6
8

A
IN

1

A
IN

2

A
IN

3

A
IN

4

A
IN

5

A
IN

6

A
IN

7
A
IN

8

V
O
U
T
C
1

V
O
U
T
D
1

V
O
U
T
B
1

V
O
U
T
A
1

V
O
U
T
C
2

V
O
U
T
D
2

V
O
U
T
B
2

V
O
U
T
A
2

V
O
U
T
C
3

V
O
U
T
D
3

V
O
U
T
B
3

V
O
U
T
A
3

12

P
7

0
.1
u
F

C
1
0

A
G
N
D 0
.1
u
F

C
1
2

A
G
N
D 0
.1
u
F

C
1
4

A
G
N
D

V
lo
g
ic

V
x
x

V
D
D

A
G
N
D

0
.1
u
F

C
1
6

+
5
V

?
O
h
m

R
1
0

?
O
h
m

R
1
1

?
O
h
m

R
1
2

?
O
h
m

R
5

?
O
h
m

R
6

?
O
h
m

R
7

?
O
h
m

R
1

?
O
h
m

R
2

?
O
h
m

R
3

?
O
h
m

R
8

?
O
h
m

R
4

?
O
h
m

R
9

1
0
u
F

C
1
5

1
0
u
F

C
7

1
0
u
F

C
1

1
0
u
F

C
3

1
0
u
F

C
5

1
0
u
F

C
1
3

1
0
u
F

C
1
1

1
0
u
F

C
9

A
IN

1
A
IN

2

A
IN

3
A
IN

4
A
IN

5
A
IN

6
A
IN

7

A
IN

8

V
O
U
T
C
1

V
O
U
T
D
1

V
O
U
T
B
1

V
O
U
T
A
1

V
O
U
T
C
2

V
O
U
T
D
2

V
O
U
T
B
2

V
O
U
T
A
2

V
O
U
T
C
3

V
O
U
T
D
3

V
O
U
T
B
3

V
O
U
T
A
3

D
1

D
2

D
3

D
4

D
6

D
7

D
8

D
1
0

D
1
1

D
1
2

D
5

D
9

D
1
3

D
1
4

D
1
5

D
1
6

D
1
7

D
1
8

D
1
9

D
2
0

D
2
1

D
2
2

D
2
3

D
2
4

D
2
5

D
2
6

D
2
7

D
2
8

D
2
9

D
3
0

D
3
1

D
3
2

D
3
3

D
3
4

D
3
5

D
3
6

D
3
7

D
3
8

D
3
9

D
4
0

D
4
1

D
4
2

D
4
3

D
4
4

D
4
5

D
4
6

D
4
7

D
4
8

D
2
1

D
2
2

D
2
3

D
2
4

D
2
5

D
2
6

D
2
7

D
2
8

D
2
9

D
3
0

D
3
1

D
3
2

D
3
3

D
3
4

D
3
5

D
3
6

D
3
7

D
3
8

D
3
9

D
4
0

D
4
1

D
4
2

D
4
3

D
4
4

D
4
5

D
1
6

D
1
7

D
1
8

D
1
9

D
2
0

D
4
7

D
4
6

D
1
5

D
1
4

D
1
3

D
1
2

D
1
1

D
1
0

D
9

D
8

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
4
8

Figure E.1: Analog board PCB schematic.
102

	Problem Description
	Abstract
	Sammendrag
	Acknowledgments
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Unconventional Computation
	Evolution In Materio
	Thesis Outline

	Background
	Previous Work
	Pioneer Work
	FPGA Tone Discriminator
	Liquid Crystals

	Existing Platform

	System Overview
	The Experimental Hardware
	Extension
	Direct Digital Synthesizer
	Signal Sampling

	Design and Implementation
	DA/AD Converter
	FPGA
	Original Design
	DAC SPI Controller
	ADC SPI Controller
	Numerically Controlled Oscillator
	Phase accumulator
	Phase-to-Amplitude Converter
	Channel Grouping

	Wave Control
	Sample Register
	User Module Changes

	Microcontroller
	Address Room
	Busy Line to Microcontroller

	libEMB
	PCB
	Low-pass Filter
	Error sources
	Phase Truncation
	Quantization

	Testing and Evaluation
	System Tests
	FPGA Tests
	Digital/Analog Converter Evaluation
	Integral Nonlinearity
	Differential Nonlinearity
	Frequency Domain Analysis
	Digital-to-analog Converter
	Analog-to-digital Converter
	Closed-loop

	Experiments
	Trial and Error
	ADC Adding Noise To The Output
	Frequency Response
	Phase Response
	Experiment 1
	Experiment 2

	Amplitude Response

	Conclusion
	Further Work

	Bibliography
	Appendices
	Test Plans
	System Tests
	libEMB

	FPGA Design Tests
	SPI DAC Controller
	SPI ADC Controller
	Sine LUT
	Sine LUT Wrapper
	Configuration Register
	Wave Configuration Register
	Wave Memory
	Wave Generator
	Sample Register
	Wave Controller
	Wave Module
	Toplevel

	Finite State Machines
	Test Equipment
	Bill of Materials
	Schematics

