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Abstract

The number of transistors per chip and their speed grows exponentially, but the
power dissipation per transistor is decreased slightly with each process generation.
This leads to increased power density and heat generation, meaning that only a
fraction of the chip can be active at any given time. To attack this problem,
heterogeneous systems-on-chip are developed. They consist of multiple specialized
cores, each optimized to perform a particular set of tasks. Delegating parts of the
application to run on specific, energy-efficient cores, allows more computations to
execute within the given power budget, increasing the overall performance of the
system.

This thesis proposes a methodology for developing a special-purpose accelerator
for a given application to create an energy-efficient heterogeneous system-on-chip
based on the Xilinx Zynq platform. This work introduces the Xilinx tool suite
used during development and defines the complete design work flow for implement-
ing the accelerator and running the application on the accelerated system. This
work evaluates the optimization techniques which lead to the most energy-efficient
implementation. The simulations show that pipelining, separate ports for reading
and writing data and a small, fast, local memory improves the performance of the
accelerator by a factor of 44.4x and the energy-efficiency by 379x.

The accelerator is physically implemented on the Xilinx Zynq SoC and acts as
a co-processor for the ARM CPU available on the system. This work proposes a
methodology for evaluating the physical power consumption and performance of
various configurations of the system. For the given application, the system with
the accelerator running at 125 MHz is 1.5x faster and 2.15x more energy-efficient
compared to the application executing only on the CPU at 666 MHz. If the clock
frequencies are matched at 100 MHz, the accelerated system is 3.6x faster and 3x
more energy-efficient.
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Chapter 1

Introduction

1.1 Motivation

Modern computing is largely influenced by power limitations. Following Moore’s
Law [16], the number of transistors per chip and their speed continues to increase.
However, the per-transistor switching power cannot be decreased by the same factor
any more, due to the limits of threshold voltage scaling [22]. The result is the
increased power density and heat generation, which cooling systems fail to remove
completely.

With fixed power and area budget, integrating more transistors on a die results
in need for under-clocking or under-utilizing a part of the chip. Ahn et al. [1]
introduced the term utilization wall to refer to the limit on the fraction of the chip
that can be used at full speed at any time. The remaining, passive silicon areas are
referred to as dark silicon [13].

Figure 1.1 illustrates the problem of the utilization wall. It is an example of
the current-generation 45nm-scale chip, which would shrink to a quarter size at
22nm and a sixteenth at 11nm. These chips would consume the same power for
22nm with 60% increase in peak frequency, and even drawing 40% less power with
2.4 times the original frequency. Future microcontrollers would be more efficient
in terms of performance, power and area. Keeping the original area constant, one
could pack 4 times the transistors at 22nm and 16 times at 11nm, thus increasing
the processing power. However the power constraint of the original 45nm chip
limits the 22nm and 11nm chips to use only 25% and 10% respectively. This means
that at any given time, up to 90% of the silicon will be “dark”.

Recently, a number of researches [7, 22, 23] showed that developing heteroge-
neous multi-core Systems-on-Chip (SoCs), containing specialized hardware, is an
effective solution to the problem of using the area budget to improve performance.
Choosing a heterogeneous architecture is driven by the fact that in most embed-
ded systems, there are a number of computationally intensive algorithms that can
be easily mapped to an individual processor that is highly tuned to running that
one particular type of algorithm. Such processors are generally referred to as

11
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Figure 1.1: Dark silicon increase with technology scaling [3]

Application-Specific Instruction-set Processors (ASIPs), co-processors or acceler-
ators. Instead of running the whole application on a single, big, general-purpose
core, different parts of the workload are delegated to specific co-processors. These
hardware units optimize per-computation power requirements, allowing more com-
putations to execute within the given power envelope [23]. The energy-efficiency
of these accelerators improve the overall performance of the system without vio-
lating the power constraint. The main challenge with such systems is the software
application, which should be aware of the heterogeneous nature of the underlying
hardware and partition its code accordingly.

1.2 Research Questions

This thesis addresses one of the most discussed problems in modern computing:

“How to improve the energy-efficiency of the system?”

It tries to experimentally discuss one of the aspects of this issue:

“Does moving to heterogeneous multicore systems improve energy-efficiency?”
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Figure 1.2: Design work flow

For this purpose a specialized accelerator is designed. During its development
the following questions arise:

1. How can Xilinx tools assist in developing a energy-efficient hardware
accelerator?

2. How can different optimization and architectural choices affect the
performance and energy-efficiency of the accelerator?

3. How can the performance and energy-efficiency be evaluated on Zynq?

4. How can the custom accelerator improve the energy-efficiency of the complete
system?

1.3 Accelerating Applications on Xilinx Zynq

This work presents the process of designing a hardware accelerator to improve the
energy-efficiency of a given application. It explores the effects of different architec-
tural techniques, like pipelining, caches and dynamic clock gating, to achieve the
optimal balance between performance, area and power consumption, which leads
to the most energy-efficient solution. This work also introduces a methodology
for measuring power and performance, deriving metrics for energy-efficiency and
comparing those for different system architectures.

The complete design flow is illustrated in Figure 1.2. It is based on High-Level
Synthesis (HLS) – an automatic process of creating a Register-Transfer Level (RTL)
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hardware representation of an algorithm, given its behavioural description. The
behavioural specifications are generally represented by a synthesisable subset of
ANSI C, C++ and SystemC programming languages. The first steps in the design
flow are choosing the right application and identifying the so called hot regions – the
most computationally intensive blocks of code, which will serve as input to the HLS
process. These code segments will then pass the pre-synthesis validation, to make
sure that all the constructs can be synthesised into a hardware representation. After
running the synthesis process, the resulting hardware description is verified against
the initial source code, to make sure it correctly implements the expected behaviour.
The work flow then continues with logic synthesis – a process of transforming the
RTL representation into a design implementation in terms of logic gates. The
accelerator is prototyped on a Field-Programmable Gate Array (FPGA) platform,
so the logic synthesis actually outputs a bitstream to program the device. Finally,
the application’s source code is adapted to make use of the hardware accelerator.

In order to find a suitable candidate for acceleration, I referred to the “Berkeley
Dwarves” classification, by Asanovic et al. [6]. Dwarves are equivalence classes of
applications that are believed to be the common computational patters of current
and future scientific computing [6]. This makes the result of current work appli-
cable for important, real-world scenarios. I chose the target application from the
“Structured Grids” dwarf.

In the applications belonging to the “Structured Grids” dwarf, data is arranged
in a regular multidimensional grid (most commonly 2D or 3D, sometime 4D, but
rarely higher). Computation is a sequence of grid update steps. In each iteration,
every node is updated using the values from a small neighbourhood. This algorithm
is highly vectorizable. The points can be visited in an order that provides spatial
locality to make good use of long cache lines and temporal locality to allow cache
reuse. Due to high spatial locality and predictable addressing pattern, hardware
or software pre-fetching can be used effectively. Temporal locality is limited and
depends on the size of the neighbourhood, as each data value is accessed once by
each neighbourhood that contains it [10].

In my previous paper [14] I identified the SPEC2006 implementation of Lattice
Boltzmann methods (LBM) to be the best candidate for acceleration out of all
Standard Performance Evaluation Corporation (SPEC) benchmark members of
the Structured Grids dwarf. Its method performStreamCollide takes more than
99% of the execution time. Due to its structured data organization, spatial and
temporal locality, application’s performance can potentially benefit from hardware
acceleration.

The accelerator is developed on a Xilinx Zynq System-on-Chip [31]. Zynq is
composed of a dual-core ARM-A9 CPU and a Field Programmable Gate Array
(FPGA), tightly integrated on a single die. The FPGA provides a flexible and
powerful environment for rapid prototyping and exploring different design decisions.
Coupled with the ARM cores, it creates a system well-suited for developing high-
performance accelerator applications.
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1.4 Contributions

This thesis proposes improving the system’s energy-efficiency by implementing the
most computationally intensive part of an application as a hardware accelerator.
In the process of developing the accelerator the following is achieved:

1. The complete tool suite for developing a hardware module, given the be-
havioural description of a program in C is defined (Chapter 3).

2. Different optimization techniques to improve accelerator’s energy-efficiency
are evaluated (Section 3.3).

3. The specific details of developing such an accelerator on Xilinx Zynq are
explained (Section 3.5).

4. The methodology for measuring power and latency is defined. These metrics
are used to compute system’s energy-efficiency (Chapter 4).

5. The results of the experiments are presented and analysed (Chapter 5).

1.5 Thesis Organization

The current thesis starts with Chapter 1, that presents the motivation, research
questions and contributions. Chapter 2 presents the background on energy-efficient
hardware accelerators, the Berkeley Dwarves and the Xilinx Zynq. Chapter 3
describes the design flow for implementing the accelerator, followed by Chapter 4
which presents the methodology for power measurements and describes how to
configure the system to explore the energy-efficiency of different setups. Chapter 5
summarizes the results of the experiments. Chapter 6 draws the conclusions and
discusses the future work. The Appendix lists the design files attached to this
work.
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Chapter 2

Background

2.1 Accelerating for Energy-Efficiency

At first, accelerators were concerned only about increasing the performance of the
system. Most of them are strongly application-specific and cover domains such as
cryptography [25], signal processing [11], vector processing [2] and computer graph-
ics [17]. However, of particular interest for this paper are the works of Venkatesh
et al. that focus on improving the energy-efficiency, while keeping the performance
constant [22,23] or increasing it [18]. In contrast to the above mentioned examples,
their approach is general and can target different applications. These papers are
discussed in more detail in the following.

To attack the utilization wall, Venkatesh et al. [22] present the conservation
cores or c-cores. C-cores have a different purpose than conventional accelerators
and focus primarily on energy reduction rather than performance. Conservation
cores that achieve a better performance are also possible, but the paper describes
those with similar performance. The focus on energy-efficiency allows the c-cores
to address a broader range of applications. Codes with large amounts of parallelism
and predictable memory access patterns map naturally to conventional accelera-
tors. On the other hand, their results show that irregular applications with little
parallelism and very poor memory behaviour are excellent candidates for conser-
vation cores. Their paper describes the tool chain for automatically synthesising
c-cores for any given C code base (Figure 2.1). First the tool analyses the input C
code and generates a set of c-cores. The custom compiler uses the descriptions of
the c-cores available on the chip and produces assembler code that utilizes them.
This means the C code should not be adapted to use the c-cores. The conser-
vation cores support load-time reconfigurability using patches. These introduce a
limited amount of flexibility, hence the applications should experience a high level
of maturity to be accelerated using c-cores. The results show an improvement in
energy-efficiency between 3.3x and 16.0x for targeted functions and up to 2.1x for
the full application.

17
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Figure 2.1: Automatic synthesis and compilation of c-cores [22]

The next paper by Venkatesh et al. [23] describes the Quasi-specific Cores (Qs-
Cores), specialized processors capable of executing several general-purpose compu-
tations, optimized for energy-efficiency. When carefully implemented, a relatively
small number of QsCores can potentially support a significant part of the compu-
tation. The design flow (Figure 2.2) is based on the observation that similar code
patterns exist within and across applications. QsCores exploit this similarity to
reduce the hardware redundancy of specialized cores by implementing a general-
ized functionality which is customized by parametrization. The authors develop
heuristics that analyse the energy-area trade-off to ensure that the QsCores fit the
area budget while providing a high degree of energy-efficiency. They evaluate their
solution by implementing the main operator functions, find, insert, delete of com-
monly used data structures like linked-list, binary and AA trees, hash table etc.
Using just 4 QsCores, they achieve 13.5x energy savings. On a general-purpose
workload consisting of different benchmarks, the energy-efficiency is improved by
a factor of 18.4x while reducing the number of specialized cores by 50% and area
by 25% compared to fully-specialized implementation. At the system level, the
energy-delay product is improved by 46% compared to general-purpose processors.

In the last paper [18], the authors optimize their earlier solution of c-cores with
two techniques to improve performance and energy-efficiency even further, Selec-
tive Depipelining (SDP) and Cachelets. These enhanced c-cores are called Efficient
Complex Operation Cores (ECOcores). SDP is a novel pipelining technique that
reduces both unnecessary clock power and time wasted due to poorly aligned oper-
ators within cycles. Several operations, including dependent memory accesses can
be performed in a single logical clock cycle. Selective depipelining exploits the fact
that datapath and memory operations have different needs. The datapath is inex-
pensive to replicate by adding more functional units, while the memory accesses are
centralized around a single bus. SDP allows the memory to run at a much higher
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Figure 2.2: Overview of QsCore-enabled system The figure overviews the
high-level design flow of a QsCore-enabled system (a) as well as the design flow for
generating QsCores (b) (Source: [23])

clock rate, which effectively replicates the memory interface in time. Slowing down
the datapath clock saves power and leverages ILP by replicating the computation
in space. The second technique, cachelets is a type of small, distributed, coherent
L0 cache that optimizes common load-store operations to reduce the memory la-
tency by up to 83%. Cachelets provide sub-cycle memory accesses, 6x faster than
L1 cache. Each cachelet serves a particular set of static operations. ECOcores
achieve a reduction of 2x for Energy Delay Product (EDP) and 35% for area rela-
tive to c-cores. Compared to an efficient MIPS processor, they achieve on average
a speed-up of 1.5x for targeted functions and 1.3x for the whole application, with
EDP reduction of 7.1x and 2.9x respectively.

2.2 Berkeley Dwarves

For many years the evaluation of architectural innovations was based on benchmark
suites like Standard Performance Evaluation Corporation (SPEC) and Embedded
Microprocessor Benchmark Consortium (EEMBC) [12, 20]. These are very well
suited for uni-processor systems, but there are no such standard benchmarks for
evaluating parallel applications on multi- and many-core architectures, hence a
higher level of abstraction is needed.

Researchers at Berkeley came up with the idea of “dwarves”, algorithmic meth-
ods that capture a pattern of computation and communication [6]. The initial
“Seven Dwarves” are based on the work of Phil Colella [8], who identified seven
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numerical methods that he believed will be important for science and engineering
for at least the next decade. Later, six more dwarves were identified. Table 2.1 is
adopted from [6, 10] and presents a brief description of the 13 Berkeley Dwarves.

“Dwarves are equivalence classes, where membership is defined by the similarity
in computation or data movement.” [6]. Dwarves define a higher level of abstraction
for a broad range of applications. Asanovic et al. believe that “although implemen-
tation of these programs may vary, the underlying patterns have persisted through
generations of changes and will remain important in the future.” [6]

Members of the dwarf “Structured Grids” are good candidates for acceleration,
due to their structured data organization, spatial and temporal locality. The accel-
erator implementation described in this thesis targets one of the members of this
dwarf – the SPEC2006 implementation of Lattice Boltzmann methods algorithm.

Table 2.1: The 13 Berkeley Dwarves

Name Description

Dense linear
algebra

Data are dense matrices or vectors, having little zero values,
typically laid out as a contiguous array. Computations are
performed on elements, rows, columns or partitions of matrices,
usually addition and multiplication.

Sparse linear
algebra

Data sets include vectors and matrices with few non-zero val-
ues. To reduce space and computation, they are stored in a
compressed form, as indexed lists.

Spectral
methods

Data is operated on in the spectral domain, often transformed
from either a temporal or spatial domain. During a transfor-
mation, spectral methods typically use multiple stages, where
the dependencies within a stage for a set of butterfly patterns.
Each butterfly operation has two inputs and two outputs (each
typically a complex number) and perform a set of multiply and
add operations.

N-body
methods

Depends on interactions between many discrete points. Varia-
tions include particle-particle methods, where every point de-
pends on all others, leading to an O(N2) calculation, and hier-
archical particle methods, which combine forces or potentials
from multiple points to reduce the computational complexity
to O(N log N) or O(N).

Structured
grids

Data is arranged in a regular multidimensional grid. Computa-
tion proceeds as a sequence of grid update steps. At each step,
all points are updated using values from a small neighbour-
hood around each point. These codes have a high degree of
parallelism, and data access patterns are regular and statically
determinable.

Continued on next page
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Table 2.1 – continued from previous page

Name Description

Unstructured
grids

An irregular grid where data locations are selected, usually by
underlying characteristics of the application. Data point loca-
tion and connectivity of neighbouring points must be explicit.
The points on the grid are conceptually updated together. Up-
dates typically involve multiple levels of memory reference indi-
rection, as an update to any point requires first determining a
list of neighbouring points, and then loading values from those
points.

MapReduce
(Monte Carlo)

This dwarf was originally called “Monte Carlo”, after the tech-
nique of using statistical methods based on repeated ran-
dom trials. The patterns defined by the programming model
MapReduce are a more general version of the same idea: re-
peated independent execution of a function, with results aggre-
gated at the end. Nearly no communication is required between
processes.

Combinational
Logic

exploits bit-level parallelism to achieve high throughput.
Workloads dominated by combinational logic computations
generally involve performing simple operations on very large
amounts of data.

Graph
Traversal

Visits many nodes in a graph by following successive edges.
These applications typically involve many levels of indirection,
and a relatively small amount of computation.

Dynamic
Programming

is an algorithmic technique that compute solutions by solving
simpler overlapping subproblems. It is particularly applicable
for optimization problems where the optimal result for a prob-
lem is built up from the optimal result for the subproblems.

Backtrack and
Branch-and-
Bound

These algorithms work by the divide-and-conquer principle:
the search space is subdivided into smaller subregions (this
subdivision is referred to as branching), and bounds are found
on all the solutions contained in each subregion under consid-
eration. Suboptimal solutions are discarded.

Graphical
Models

A graphical model is a graph in which nodes represent vari-
ables, and edges represent conditional probabilities. Graphical
models include Bayesian networks (also known as belief net-
works, probabilistic networks, causal network, and knowledge
maps). Hidden Markov models and neural networks are also
graphical models.

Finite
State
Machine

capture a system whose behaviour is defined by states, transi-
tions defined by inputs and the current state, and events asso-
ciated with transitions or states. These applications are mostly
sequential.
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Figure 2.3: Xilinx Zynq-7000 SoC overview [32]

2.3 Xilinx Zynq-7000 System-on-Chip

Zynq-7000 is a family of SoC platforms composed of a powerful dual-core ARM R©

Cortex
TM

A9 MPCore
TM

based Processing System (PS) and a 28nm Xilinx Pro-
grammable Logic (PL) on a single die. The PS also includes on-chip memory,
external memory interfaces and a variety of peripherals (Figure 2.3). The sys-
tem offers the scalability and flexibility of an FPGA, while providing performance,
power and ease of use typically associated with Application-Specific Integrated
Circuits (ASICs) and Application-Specific Standard Products (ASSPs) [32]. The
use of a powerful general-purpose processor allows developing both bare-metal and
Linux applications.

Tightly integrated on the same die is the PL part, which is used to extend the
PS. It is based on 28nm Artix-7 or Kintex-7 FPGA fabrics and comes in different
sizes to accommodate the needs of various use-cases and applications. Artix-7
devices offer lower power and lower cost, targeting high-volume applications, while
the Kintex-7 ones are used for high-performance and high I/O throughput [31].

The Zynq architecture enables software programmability in the PS and im-
plementation of custom logic in the PL. The software updates and the hardware
customization – whether static or dynamic, partial of full reconfiguration – can
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Figure 2.4: PL Interface to PS Memory Subsystem [32]

be accomplished under control of the ARM processing system [31]. This opens a
broad range of possibilities for hardware-software co-design. The integration of the
PS with the PL allows levels of performance that the two-chip solutions (e.g. an
ASSP with an FPGA) cannot match due to their limited I/O bandwidth, latency
and power budgets [32].

Figure 2.3 highlights the parts of the system that are used for configuring and
communicating with the custom logic implemented in the PL. Zynq is a processor-
centric system, with the CPU coordinating the work of all peripherals. Zynq
adopted the AMBA bus with AXI interface as the primary means of communi-
cation between the PS and the modules implemented in PL. The PS features two
32-bit general-purpose (GP) AXI Master ports to access the AXI Slave peripherals
in PL. Usually these peripherals contain a set of internal configuration and status
registers which are memory mapped to CPU’s address space.

Zynq features the ability to share processor memory (internal and external)
with the programmable logic, achieving high bandwidth with low latency. The
peripherals that implement the AXI Master interface can access processor memory
using the following ports [32]:

• Two 32-bit AXI Slave interfaces

• Four 64-bit/32-bit configurable, buffered AXI Slave interfaces with direct
access to DDR memory and On-Chip Memory (OCM), referred to as High-
Performance slave ports (HP).

• One 64-bit Slave Accelerator Coherency Port (ACP) for coherent access to
CPU memory.
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The two highest performance interfaces between PS and PL are the HP and the
ACP. The HP interfaces connect the PL to the memory interconnect via a FIFO
controller. Two of the three output ports go to the DDR memory controller and
the third goes to the dual-ported OCM (Figure 2.4). The Accelerator Coherency
Port (ACP) provides connectivity between the CPU and a potential accelerator
function in the PL. It directly connects to the Snoop-Control Unit (SCU) of the
ARM Cortex-A9 processors, enabling cache-coherent access to CPU data in the L1
and L2 caches [32].

Zynq allows fine tuning of the system power consumption via dynamic clock
gating. The different clocks in the system can be configured from software by
modifying the System Level Control Registers (SLCR) (Figure 2.3). The PL and
PS are on separate power domains, allowing to shut down the PL completely, when
not in use. The PL needs to be reconfigured after each power-on. The user should
take PL configuration time into consideration when using this power saving mode.
The PS cannot be turned off, but can be clocked down to 20 MHz. If the CPU
delegates a very time-consuming task to the accelerator, it can go to a low-power
sleep mode and be woken up by an interrupt, when the accelerator is finished.
Furthermore, for single-threaded applications it makes sense to disable one of the
cores to save energy.



Chapter 3

Implementation

This work explores the techniques and tools which are used to improve the sys-
tem’s energy-efficiency. My approach selects a particular application and develops
a special-purpose accelerator which offloads the CPU by implementing the most
computationally intensive part of the algorithm in hardware. The accelerator is
developed with the main focus on energy-efficiency, which in addition may or may
not improve the performance.

The purpose of this chapter is to present the complete design flow in detail (see
Figure 1.2 on page 13) and tools used for implementing the hardware accelerator.
Since the target device is a Xilinx Zynq platform, the Xilinx tool-chain is used. It
is composed of Vivado HLS (VHLS), for designing the accelerator, PlanAhead with
Xilinx Platform Studio (XPS) and ChipScope, for assembling and configuring the
target device, and the Xilinx Software Development Kit (SDK) for modifying the
original software to work on the accelerated system.

The first step of the design flow (Figure 1.2) is described in my previous pa-
per [14]. That work analysed the Standard Performance Evaluation Corpora-
tion (SPEC) benchmark suite to identify the SPEC2006 implementation of the
Lattice Boltzmann methods (LBM) algorithm as the best candidate for acceler-
ation. LBM is a class of computational fluid dynamics (CFD) methods for fluid
simulation [24]. It is the computationally most important part of a larger code
which is used in the field of material science to simulate the behaviour of fluids
with free surfaces, in particular the formation and movement of gas bubbles in
metal foams [21].

The most computationally intensive part of the algorithm is the performStream-
Collide method. This method maps very well onto a hardware implementation,
because it is self-contained, i.e. does not call other methods, and consumes more
than 99% of algorithm’s total execution time.

25
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This chapter describes the steps of the design flow (Figure 1.2) that start after
the function to develop a hardware accelerator for is chosen:

• Pre-synthesis validation (Section 3.2)

• High-Level Synthesis (HLS) (Section 3.3)

• Post-synthesis verification (Section 3.4)

• System assembly and logic synthesis (Section 3.5)

• Software design (Section 3.6)

The High-Level Synthesis (HLS) process uses the function’s source code to gen-
erate the RTL representation of the algorithm. The input to HLS should be adapted
to pass the pre-synthesis validation, to make sure it does not contain constructs
that cannot be synthesised, like recursive functions, dynamic memory allocation,
system calls, etc. During the HLS phase, the tool is instructed to perform certain
optimizations on the resulting RTL, like pipelining and loop unrolling, as well as
defines accelerator’s interface for communication with other modules in the sys-
tem. The resulting hardware description then passes the post-synthesis verification
against the source code, to prove it correctly implements the desired behaviour.

The complete system, containing the accelerator and all the necessary modules
and connections is assembled and fed into the logic synthesis tool, which generates
the bitfile to program the target FPGA device. Having the hardware system pow-
ered by the accelerator, the source code of the LBM algorithm is changed to use
the accelerator for computing the performStreamCollide function.

3.1 Preparing the Application

The default data type for input and output arguments, used in SPEC2006 imple-
mentation of LBM, is a four-dimensional grid, 100x100x130x20 of double precision
floating point numbers. In addition, the algorithm needs some margin space around
the grid to be allocated, which makes the total size for one grid about 205MB. The
method performStreamCollide operates on two grids, one source and one desti-
nation, which makes a total of 410 MB of memory needs to be allocated.

At first, I could not figure out how to access the DDR memory from the ac-
celerator, so Block RAM (BRAM) was used to store the data. This architectural
choice limited the size of the initial input set of application, because the maximum
size of BRAM that can fit on Xilinx Zynq is only 560 kB, part of which is used
internally by the accelerator. This restriction can be met using various techniques,
like prefetching or double buffering, but these come with the additional difficulties
when tracing the data movement in the algorithm.

Due to time constraints I decided to use a simpler method. The problem size
has been scaled to 10x10x13x20 of single precision floating point numbers, which
resulted in a total memory requirement of 266 kB. However the output of single
precision computation is different when running on the CPU compared to floating
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Listing 3.1: Remove dynamic memory allocation

1 /* dynamic memory allocation cannot be synthesised */

2 // char* foo = (char*)malloc(128 * sizeof(char));

3
4 /* use static memory allocation instead */

5 char _foo[128];

6 /* pointer in the original design using malloc should not be rewritten,

7 * make it point to the existing static resource */

8 char* foo = &_foo[0];

point cores used in the accelerator. This mismatch prevented proper verification
of the design, so I reverted back to double precision with a 10x10x5x20 grid. It
resulted in a memory consumption of 281 kB. The maximum size of a BRAM
module for Zynq is 256 kB, so I used two modules to store the grids.

Later in the design phase, I managed to access the DDR from the accelerator,
but still kept the reduced size of the input set, to be able to evaluate how different
memory systems affect performance and energy-efficiency.

3.2 Pre-synthesis Validation

Prior to synthesis, the C code should be validated by a test bench, which is nothing
but a normal C program, containing all the functions above the synthesised one
and a main function. The test bench should be self-checking, i.e. it should compare
the output of the function to be synthesised with a “golden” result. It returns zero
in case of success and a non-zero value, in case the outputs mismatch.

It is a good design practice to keep the functions used by the test bench in
separate files from the functions to be synthesised. If a file contains both, it should
be added to the project twice, once as a source file and once as a test bench file.
All the input and output files used by the test bench should also be added to the
project as test bench files.

Not every C/C++ function can be synthesised in VHLS. To be synthesisable,
the function and all other functions it calls should contain the entire functionality
of the design, avoiding system calls to the operating system. All its constructs
should be unambiguous and of bounded size. The following is a list of constructs
that cannot be synthesised:

• System calls cannot be synthesised, because they invoke OS routines which
cannot be part of the final hardware design. For example printf(), scanf(),
sleep(), time(), etc. should be removed from the functions to be synthe-
sised. Also functions that handle files are not allowed, because there will be
no concept of a file system in the final design. Access to external data should
be performed via top-level function parameters or global variables.

• Dynamic memory and functions. To be able to synthesise a hardware im-
plementation, the design must be self-contained, specifying all the required
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Listing 3.2: Implementing unsupported casts

1 union udouble {

2 double d;

3 u64 u;

4 };

5 union udouble ud;

6
7 u64 double2int(double d) {

8 ud.d = d;

9 return ud.u;

10 }

11
12 double int2double(u64 u) {

13 ud.u = u;

14 return ud.d;

15 }

resources with fixed sizes. Dynamic memory allocation violates this con-
straint. Code that uses calls to malloc(), calloc(), free(), etc. should be
adapted to use static allocation (see Listing 3.1). The same stands for virtual
functions in C++, which cannot be used because the actual function to be
executed is decided at runtime.

• General Pointer Casting - Pointer casting is not supported in general case,
only between native C types. The LBM algorithm uses unsupported casting
between double and long int. This casting is implemented using unions
(see Listing 3.2).

• Pointer Arrays - Arrays of pointers are supported for synthesis if each
pointer points to a scalar or an array of scalars.

• Recursive Functions - Recursive functions cannot be synthesised. This
refers to functions which can form endless recursion as well as tail recursions,
with a finite number of calls.

3.3 High-Level Synthesis (HLS)

High-Level Synthesis (HLS), also called behavioural or architectural-level synthe-
sis, is an automated design process which generates RTL designs from behavioural
specifications. These specifications are generally defined using a synthesisable sub-
set of ANSI C, C++ and SystemC languages. The HLS tools also allow to define
a cost function and a set of design constraints for area, performance, power con-
sumption, etc. The goal is to generate a RTL design that implements the specified
behaviour while satisfying the design constraints and optimizing the given cost
function.

The RTL design of the LBM accelerator is built using the Xilinx Vivado HLS
(VHLS) tool. It takes a C/C++ function as input and produces the equivalent
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Figure 3.1: Data type and interface synthesis support [28]

Verilog code, that implements the same logic in hardware. This particular function
is considered the top module and all the functions it calls are implemented as sub-
modules. To avoid compatibility issues between different tools of the suite, the
name of the top module should be in lower case characters. Otherwise, during
logic-synthesis the PlanAhead tool produces an error that tells nothing about the
cause of the problem and is it hard to figure out that the name of the module was
the reason of failure.

The following sections describe different types of interface protocols and bus
interface implementations that Vivado HLS can synthesise for a given module.
Later the implementation details of three versions of the accelerator are presented,
Default, Optim and Dual.

3.3.1 Interface Synthesis

When the method’s source code is synthesised into an RTL module, the method’s
arguments are synthesised into RTL data ports. Interface synthesis is used to
automatically add an interface protocol to the RTL data ports. The interface
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protocol could be as simple as an output valid signal indicating when an output is
ready or it could include all the ports required to interface a BRAM [28].

The type of interface depends on the C argument. For example, the array
arguments are the only ones that support a random access memory interface. This
interface is used to directly connect to memory elements. If the memory is accessed
via a bus interface, the argument should be a C pointer or a C++ reference variable.
Figure 3.1 summarizes the types of interfaces which are supported for each type of
C function argument. If no interface type or an unsupported type is specified for
a port, the default one will be implemented as detailed in Figure 3.1.

The notes in Figure 3.1 are explained as follows [28]:

1. The concept of inputs and outputs is somewhat different between the C func-
tions and RTL blocks. The following convention is used here for the purposes
of explaining interface synthesis:

• A function argument which is read and never written to, like an RTL
input port, is referred to as an input (I)

• A function argument which is both read and written to, like an RTL
inout port, is referred to as inout (IO)

• A function argument which is written and never read, like an RTL output
port, is referred to as an output (O)

2. A standard pass-by-value argument cannot be used to output a value to the
calling function. The value of an argument such as this can only be returned
(or output from the function) by the function return statement.

• Any pass-by-value function argument which is written to but never read,
like an RTL output port, will be synthesised as an RTL input port with
no fanout.

• Any pass-by-value function argument which is written to and read, like
an RTL inout port, will be synthesised as an RTL input port only.

3. The ap_ovld interface type is only valid for output ports.

4. The interface types ap_ctrl_none and ap_ctrl_hs are used to control the
synthesis of function level interface protocols. These interface types are speci-
fied on the function itself (all other interface types are specified on the function
arguments).

Table 3.1 summarizes the available interface protocols. There are two types of
interface synthesis, the one that is performed on C function arguments and the one
that is applied at the function or block level.
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Interface Description

ap none The simplest interface with no associated control signals. The producer
blocks are required to provide data to the input port at the correct time
or hold it for the length of the transaction. The consumer blocks should
read the output ports at the correct time.

ap stable Like ap none it does not add any interface control ports to the design. The
ap stable informs the High-Level Synthesis (HLS) that the data applied
to this port will remain stable during normal operation, but is not a
constant value which could be optimized, and the port is not required to
be registered.

ap ack Provides an acknowledge signal to say when data is consumed.
ap vld Provides a valid signal to indicate when the data is valid.
ap ovld The same as ap vld, but can only be specified on output ports. This is

a useful type for ensuring pointers which are both read from and written
to, will only be implemented with an output valid port (and the input
half will default to type ap none)

ap hs This interface provides both an acknowledge and a valid signal. It is a
superset of the ap ack, ap vld and ap ovld interfaces.

ap memory Used to communicate with memory elements (RAMs, ROMs) when the
implementation requires random accesses to memory locations. The
memory interface cannot be stalled by external signals. It provides an
indication of when output data is valid.

ap fifo Used when the access is performed only in a sequential manner. This
interface allows the port to be connected to a FIFO, supports full two-
way empty-full communication.

ap bus Used to communicate with a bus-bridge. The interface does not adhere
to any specific bus standard but is generic enough to be used with a bus
bridge which in-turn arbitrates with the bus system and is responsible to
cache all burst writes. It supports standard and burst modes of operation.

ap ctrl none
ap ctrl hs

Used to specify if the RTL is implemented with block-level handshake
signals or not. These signals specify when the design can start to perform
its standard operation and when that operation ends.

Table 3.1: Description of interface protocols supported in Vivado HLS

Standard port level interface synthesis is specified for each function argument.
A function argument which is both read from and written to is synthesised in the
following manner [28]:

• ap_none, ap_stable, ap_ack, ap_vld, ap_ovld, ap_hs – separate input
and output ports. For example, if function argument arg1 was both read from
and written to, it would be synthesised as RTL input data port arg1_i and
output data port arg1_o and any specified or default IO protocol is applied
to each port individually.

• ap_memory, ap_bus – a single interface is created. Both these RTL ports
support read and write.

• ap_fifo – read and write are not supported. There must be two separate
function arguments for reading and writing.
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Figure 3.2: Behaviour of ap ctrl hs interface [28]

Interface modes ap_ctrl_hs and ap_ctrl_none are applied on the function
or function return value to specify if the RTL is implemented with block-level
handshake signals or not. These signals control when the block can begin execution,
when it is ready for new data and when it completes. By default these signals are
made external to the module, but could be as well made accessible through an
internal control register.

The behaviour of the handshake signals created by the ap_ctrl_hs protocol is
illustrated in Figure 3.2 and presented in the following [28]:

• After reset, the block will wait for ap_start to go high before it begins
operation.

• Output ap_idle goes low when ap_start is sampled high.
• Data can now be read on the input ports. The first input data may be
sampled on the first clock edge after ap_idle goes low.

• When the block completes all operations, any return value will be written to
port ap_return. If there was no function return, there will be no ap_return

port on the RTL block. Other outputs may be written to at any time until
the block completes and are independent of this IO protocol.

• Output ap_done goes high when the block completes operation. If there is
an ap_return port, the data on this port will be valid when the ap_done is
high. The ap_done signal can therefore be used to show when the function
return value is valid.

• The ap_idle signal goes high one cycle after ap_done and remains high until
the next time ap_start is sampled high, indicating the block should once
again begin operation.

• If the ap_start signal is high when ap_done goes high: the ap_idle sig-
nal will remain low, the block will immediately start its execution (or next
transaction), the next input may be read on the next clock edge.



3.3. High-Level Synthesis (HLS) 33

RTL Interface
Protocol

Bus Interface Protocol

AXI4
Lite
Slave

AXI4
Master

AXI4
Stream

PLB
4.6

Slave

PLB
4.6

Master
FSL NPI

ap bus - X - - X - -
ap fifo - - X - - X -
ap ctrl hs
ap none
ap vld
ap ack
ap hs

X - - X - - -

ap ovld
ap memory

- - - - - - -

Table 3.2: RTL port to bus interface mappings

Listing 3.3: performStreamCollide initial interface

void performStreamCollide(double[SIZE] srcGrid, double[SIZE] dstGrid);

3.3.2 Specifying the Bus Interfaces

In addition to standard interfaces described in the previous section, VHLS can also
automatically add bus interfaces to the RTL design. The bus interfaces are added
to the design during the “Export RTL” process, so they are not present in the RTL
written after synthesis and do not appear in the synthesis reports.

The type of the bus interface depends on the protocol of the RTL port it is
applied to. Table 3.2 is adopted from Vivado User Guide [28] and shows the list
of the RTL interface ports and the available bus interfaces which can be connected
to them. The ap_memory interface does not require a bus interface and can be
directly connected to memories (BRAM). Any port with ap_ovld interface should
be modified to be one of the supported types, for example ap_hs, or it cannot be
connected to a bus interface.

3.3.3 Default Accelerator

The initial interface of the method performStreamCollide is shown in Listing 3.3.
The method arguments are two arrays of double floating point numbers, repre-
senting the source and destination grids. By default, arrays are synthesised into
memory ports (Figure 3.1). Their size should be fixed at compile time, otherwise
the function cannot be synthesised. Connecting an external memory with fixed size
directly to these ports results in a tight coupling of the system components and
makes the system less flexible. To achieve a modularized and extensible architec-
ture, the memory will be accessed via the bus. The address and location of the
grids will be stored in internal configuration registers.
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Listing 3.4: performStreamCollide with wrapper

1 void performStreamCollide(volatile double *p_srcGrid, volatile double *p_dstGrid) {

2 ...

3 }

4
5 void lbm_acc(volatile double *bus,

6 volatile u32 *srcAddr, volatile u32 *dstAddr) {

7
8 /* make sure the addresses are aligned */

9 if (*srcAddr % sizeof(double) != 0 || *dstAddr % sizeof(double) != 0) return;

10
11 performStreamCollide(bus + (*srcAddr)/sizeof(double),

12 bus + (*dstAddr)/sizeof(double));

13 }

14 }

Xilinx Zynq SoC is using the AMBA AXI bus interface for communication
between modules in the system. The accelerator implements two AXI interfaces,
an AXI master to access the memory and the AXI slave to give CPU access to its
configuration registers.

3.3.3.1 AXI Master Interface

Using the master interface, the Accelerator (ACC) accesses the memory controllers
to keep the data. The unified bus standard allows to attach different memory
controllers to the ACC, provided they all implement an AXI slave interface. This
allows a flexible design, in which the memory system could be replaced, without
modifying the ACC architecture.

In the current implementation of the system, the ACC will keep the data either
in BRAM or in the DDR. In the former case, the ACC accesses the AXI slave BRAM
controllers which in turn connect to the BRAM modules in the Programmable
Logic (PL). The second option is to connect the ACC to the AXI slave ports of
the Processing System (PS), which provide access to the DDR Controller.

The initial interface of the performStreamCollide (Listing 3.3) cannot be
mapped to a ap_bus port. Figure 3.1 suggests that to implement a bus proto-
col, the function argument should be a pointer. This will allow both reading and
writing to it. Vivado HLS (VHLS) requires the pointer to be declared volatile if
it will be accessed multiple times. Thus, the first modification is to convert the ar-
ray into a volatile pointer type (Listing 3.4 line 1). The modified interface remains
compatible with the initial one.

In the C program, the pointer values of srcGrid and dstGrid are the memory
locations of the source and destination grids respectively. However, when these
arguments are mapped to bus ports, in the resulting RTL there is no information
about the addresses of the grids. Both bus interfaces are implemented to have
a base address of zero. This means the actual addresses of the grids should be
explicitly added as an offset to srcGrid and dstGrid variables.
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The ACC accesses the memory through a single bus interface. This requires
changing the existing interface of performStreamCollide. To keep a clean coding
style and ensure backward compatibility, the original interface is left unaltered,
instead a wrapper lbm_acc is build around the original function (Listing 3.4).
The volatile double *bus variable represents the master port of the ACC. The
offsets specifying the addresses of source and destination grids are added to the bus
variable and the results are passed as arguments to the performStreamCollide.

3.3.3.2 AXI Slave Interface

The slave interface is used by the Processing System (PS) to set up and control
the Accelerator (ACC). As previously discussed, the wrapper function should at
least contain three arguments, the bus variable representing the master port and
two pointer variables srcAddr and dstAddr that would contain the addresses of
the source and destination grids respectively (Listing 3.4). Note that the value
referenced by the pointer contains the actual data.

The address variables implement the ap_hs protocol, that provides both a valid
and an acknowledge signal. By default each of them will be synthesised as separate
AXI slave ports. To save pins and simplify the design, all configuration variables
are bundled into a single AXI slave port. ACC stores these variables in internal
registers, that can be accessed by the slave interface, specifying the address of the
register.

The accelerator implements the so called “function level hand-shake protocol”.
The behaviour of this protocol is detailed in Figure 3.2. It specifies three sig-
nals, which describe the status of accelerator’s Finite-State Machine (FSM). These
signals are used by the PS to control when the ACC can start execution and to
be notified when the operation has finished. By default, these signals are syn-
thesised as external inputs and outputs. By specifying the register option on
the ap_ctrl_hs protocol, the control signals can be accessed using the accelera-
tor’s status register, which is also mapped to the AXI Slave interface. The control
signals are:

• ap_start - input signal. When set to “high”, accelerator starts its execution.

• ap_idle - output signal. Is kept “low” during accelerator’s execution and
“high” when it is idle.

• ap_done - output signal. Becomes “high” when the accelerator has finished
its execution. Cleared on read.

3.3.3.3 First Optimization

In the original SPEC implementation of LBM, the performStreamCollide is called
multiple times in a loop, swapping the source and destination grids after each
iteration (Listing 3.5). The call to performStreamCollide at line 11 is replaced
by the call to the accelerator (Listing 3.6). To reduce the overhead of setting up
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Listing 3.5: LBM original implementation

1 void LBM_swapGrids( LBM_GridPtr* grid1, LBM_GridPtr* grid2 ) {

2 LBM_GridPtr aux = *grid1;

3 *grid1 = *grid2;

4 *grid2 = aux;

5 }

6
7 int main() {

8 ...

9 int t;

10 for( t = 1; t <= param.nTimeSteps; t++ ) {

11 performStreamCollide(*srcGrid, *dstGrid);

12 LBM_swapGrids( &srcGrid, &dstGrid );

13 }

14 ...

15 }

Listing 3.6: Calling the accelerator

1 XLbm_acc_SetP_srcgrid(&acc, srcAddr);

2 XLbm_acc_SetP_dstgrid(&acc, dstAddr);

3 XLbm_acc_SetNsteps(&acc, param.nTimeSteps);

4 XLbm_acc_Start(&acc);

5 while (!XLbm_acc_IsDone(&acc));

and calling the accelerator in every iteration, the loop is moved inside the wrapper
and the number of iterations is passed as an argument.

Notice that the swapping is done in a “hardware-friendly” way (Listing 3.7).
Normally in software this is achieved by simply swapping the values of the vari-
ables (see LBM_swapGrids in Listing 3.5), but VHLS erroneously interprets it and
“optimizes the unnecessary” swapping by just assigning one variable to another.
The srcAddr and dstAddr are merged as if pointing to the same memory location,
which is not the expected behaviour. Instead, the swapping is done explicitly, by
changing the source and destination grid addresses every odd iteration (Listing 3.7
lines 12-18).

3.3.3.4 Synthesising the Accelerator

Vivado HLS (VHLS) uses special directives to set up the synthesis process. They
annotate function’s parameters, to specify the module’s interface, and pieces of
code, to implement loop unrolling, pipelining and other optimization features. The
VHLS directives can be specified in the source code, using #pragma pre-processor
directives, or in the directives.tcl file of the solution. The Tcl file should nor-
mally be modified using the GUI, but one could as well directly create his own
directives file and include it in the main script.tcl file of the solution.

Listing 3.8 presents the Tool Command Language (Tcl) script to configure the
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Listing 3.7: Moving the main loop inside the wrapper

1 void performStreamCollide(volatile double *p_srcGrid, volatile double *p_dstGrid) {

2 ...

3 }

4
5 void lbm_acc(volatile double *bus,

6 volatile u32 *srcAddr, volatile u32 *dstAddr, u32* nsteps) {

7 int i;

8 /* make sure the addresses are aligned */

9 if (*srcAddr % sizeof(double) != 0 || *dstAddr % sizeof(double) != 0) return;

10 for (i = 0; i < *nsteps; i++) {

11 /* do the swap */

12 if (i % 2 == 0) {

13 performStreamCollide(bus + (*srcAddr)/sizeof(double),

14 bus + (*dstAddr)/sizeof(double));

15 } else {

16 performStreamCollide(bus + (*dstAddr)/sizeof(double),

17 bus + (*srcAddr)/sizeof(double));

18 }

19 }

20 }

Listing 3.8: Tcl configuration script

1 # implement the function level protocol for lbm_acc

2 # and create a status register for the signals.

3 set_directive_interface -mode ap_ctrl_hs -register "lbm_acc"

4 # map the status register to the AXI Slave port

5 set_directive_resource -core AXI4LiteS "lbm_acc" return

6 # the "bus" parameter should implement the bus interface

7 # and specifically the AXI Master.

8 set_directive_interface -mode ap_bus -depth 36000 "lbm_acc" bus

9 set_directive_resource -core AXI4M "lbm_acc" bus

10 # the other parameters are mapped to AXI Slave

11 set_directive_interface -mode ap_hs "lbm_acc" srcAddr

12 set_directive_resource -core AXI4LiteS "lbm_acc" srcAddr

13 set_directive_interface -mode ap_hs "lbm_acc" dstAddr

14 set_directive_resource -core AXI4LiteS "lbm_acc" dstAddr

15 # ... other accelerator’s parameters are mapped in a similar way

synthesis process. For the sake of clarity, only the mapping for a few of accelerator
configuration parameters is illustrated, the others are mapped in a similar way.
The comments describe each command. The depth attribute at line 8 specifies the
maximum number of accesses to the bus. For two 10× 10× 5× 20 grids, each with
two 2× 10× 10× 20 margin spaces, the total number of bus accesses is 36000. This
attribute is used by the post-synthesis verification described in the Section 3.4.

The design is synthesised by pressing the respective button in the VHLS GUI
or calling the tool from the console:

$ vivado_hls -f <path to project>/solution/script.tcl
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Listing 3.9: Source grid buffer

#ifdef USE_BUFFER

uint8_t j;

/* buffer SRC grid accesses */

load_buffer:

for (j = C; j < N_CELL_ENTRIES; j++) {

srcBuffer[j] = LOCAL(srcGrid, j);

}

/* redirect all accesses to buffer */

#define LOCAL(g, e) srcBuffer[e]

#endif

Listing 3.10: Appendix to the Tcl configuration script

1 # loop that is loading the buffer can be unrolled completely

2 set_directive_unroll "performStreamCollide/load_buffer"

3 # pipeline the main loop

4 set_directive_pipeline "performStreamCollide/main_loop"

5 # spend more effort to find the best schedule

6 config_schedule -effort high

7 # binding with ’-effort high’ produces negligible difference,

8 # but takes too much time to complete.

9 # ’-min_op’ option is used to minimize the number of adders and multipliers.

10 config_bind -effort low -min_op add,mul

3.3.4 Optimized Accelerator

Vivado HLS (VHLS) can be instructed to perform certain optimizations when syn-
thesising the RTL. This is done by using directives, similar to the ones described
in the previous subsection.

The LBM algorithm is implemented as a loop that computes a new value for
every cell of the source grid and stores it in the destination grid. Because the com-
putations for every cell are similar and to some degree independent, the algorithm
could be optimized by a pipeline.

Pipelining is a technique that allows multiple instructions to simultaneously
execute in the data path. The efficiency of the pipeline is limited by the number
of inter-dependencies between instructions. To reduce those, memory accesses to
the source grid are buffered in a small, fast, multi-ported local memory. In every
iteration of the loop, the buffer contains the values of a small neighbourhood of
the current cell (see Listing 3.9). The neighbours of the current cell are stored
in consecutive memory locations, which would allow to read all the values in a
single burst transaction. To specify a burst read or write, the memory should
be accessed by the memcpy C function. Burst transactions are indeed faster than
the equivalent number of single transactions. However, the simulations showed
that using the burst read operation results in a less efficient design, because this
transaction cannot be pipelined.
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In addition to pipelining and buffering, the VHLS is instructed to perform
scheduling and binding in the most efficient manner. Listing 3.10 presents the direc-
tives to perform these optimizations, which are appended to the directives.tcl

file described in the previous subsection. Notice that the loops are addressed by
labels.

3.3.5 Dual-Port Accelerator

Xilinx Zynq features a multi-ported DDR controller, which enables the Processing
System (PS) and the Programmable Logic (PL) to have shared access to the DDR
memory [32]. The DDR controller features four AXI slave ports for this purpose
(Figure 2.3 page 22):

• One 64-bit port is dedicated for the ARM CPU(s) via the L2 cache controller
and can be configured for low latency.

• Two 64-bit ports are dedicated for PL access.

• One 64-bit AXI port is shared by all other AXI masters via the central inter-
connect.

The multi-ported architecture of the DDR controller allows multiple masters to
access the memory simultaneously or nearly simultaneously. This fact motivates
an accelerator implementation that would feature two separate AXI master ports
for reading from and writing to the memory. These ports could be connected to
the two slave ports dedicated for PL access.

The interface of performStreamCollide naturally maps onto a dual-ported
architecture. The accesses to source and destination grids are completely indepen-
dent:

• The grids are stored in different memory locations

• The source grid is only read from and the destination grid is only written to.

A dual-ported architecture eliminates some of the data dependencies by intro-
ducing separate channels for reading and writing data. This optimization enables
the pipeline to work more efficiently, since two memory accesses can occur simul-
taneously.

Listing 3.11 presents the top level function implementing the dual-ported ar-
chitecture. Separate bus ports are used for the source and destination grids. The
directives.tcl file is modified accordingly (Listing 3.12). Note that the depth

attribute for each bus port is half the original one, since it represents the maximum
number of accesses for only one grid.
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Listing 3.11: Wrapper with dual-port architecture

1 void performStreamCollide(volatile double *p_srcGrid, volatile double *p_dstGrid) {

2 ...

3 }

4
5 void lbm_acc(volatile double *src_bus, volatile double *dst_bus,

6 volatile u32 *srcAddr, volatile u32 *dstAddr, u32* nsteps) {

7 int i;

8 /* make sure the addresses are aligned */

9 if (*srcAddr % sizeof(double) != 0 || *dstAddr % sizeof(double) != 0) return;

10 for (i = 0; i < *nsteps; i++) {

11 /* do the swap */

12 if (i % 2 == 0) {

13 performStreamCollide(src_bus + (*srcAddr)/sizeof(double),

14 dst_bus + (*dstAddr)/sizeof(double));

15 } else {

16 performStreamCollide(dst_bus + (*dstAddr)/sizeof(double),

17 src_bus + (*srcAddr)/sizeof(double));

18 }

19 }

20 }

Listing 3.12: Tcl configuration script for Dual ACC

1 # implement the function level protocol for lbm_acc

2 # and create a status register for the signals.

3 set_directive_interface -mode ap_ctrl_hs -register "lbm_acc"

4 # map the status register to the AXI Slave port

5 set_directive_resource -core AXI4LiteS "lbm_acc" return

6 # the "bus" parameter should implement the bus interface

7 # and specifically the AXI Master.

8 set_directive_interface -mode ap_bus -depth 18000 "lbm_acc" src_bus

9 set_directive_resource -core AXI4M "lbm_acc" src_bus

10 set_directive_interface -mode ap_bus -depth 18000 "lbm_acc" dst_bus

11 set_directive_resource -core AXI4M "lbm_acc" dst_bus

12 # ... the other parameters are unchanged and omitted for brevity

3.4 Post-synthesis Verification

Verification in VHLS is composed of two steps. Pre-synthesis validation ( Sec-
tion 3.2) which ensures that the C program correctly implements the desired func-
tionality and the post-synthesis verification which proves the produced RTL code
is correct.

Post-synthesis verification of the produced RTL design is performed by means
of the co-simulation feature of VHLS. It uses the original C test-bench so there is
no need to manually write a RTL one. Co-simulation is 2 to 3 orders of magnitude
faster than ordinary RTL simulation [30].
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A design can be verified using co-simulation if the following conditions hold:

• The C test-bench is self checking, returning 0 on success and non-zero on
failure.

• It is required to use volatile qualifier on any function argument accessed
multiple times. The exact number of accesses should be specified by the
depth argument in the directives script.

• The synthesised function should implement the function-level hand-shake
protocol.

When the code is adapted to meet the above conditions, the co-simulation may
be started by using the respective button in the GUI or directly via the following
command. The verbose option is useful for debugging purposes.

$ cd <project directory>/solution

$ vivado_hls -flow cosim -flow_args "-verbose"

3.5 Hardware Design

The system assembly is done in XPS. It is used to configure and connect the
Zynq Processing System with the Intellectual Property (IP) cores from the Xilinx
Embedded IP catalogue as well as with custom IPs, like the LBM accelerator.

When the RTL is successfully verified by the post-synthesis verification, the
LBM accelerator can be exported in pcore format, to be used in XPS. This is done
by pressing the respective button in VHLS GUI. During the export process, the bus
interfaces are synthesised. The exported design should be copied to XPS’ global or
the project’s local IP repository, so it appears in the list of available IPs. All the
necessary components are added to the design and connected appropriately. To
make sure that all connections are correct and there are no conflicts in the memory
mapping of peripherals, one may use the Design Rule Check (DRC) feature of XPS.
If no errors are found, a bitfile is generated and the design is exported in the SDK.

The CPU and the accelerator should share a memory space to store the source
and destination grids, which is either the BRAM or the external DDR memory. The
ACC can access the DDR through the AXI slave ports of the Processing System
(PS) (Section 2.3). The two highest performance ports are the High-Performance
slave port (HP) and the Accelerator Coherency Port (ACP). This results in three
system architectures presented in this section:

• The BRAM implementation

• Accessing DDR with High-Performance slave port

• Accessing DDR with Accelerator Coherency Port
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Figure 3.3: System architecture using BRAM

3.5.1 The BRAM Implementation

Every Zynq-7000 SoC has between 60 and 465 dual-port Block RAMs (BRAMs),
each having 36 kB. Each BRAM has two independent ports that share nothing but
the stored data, with a port width of up to 72 bits. The size of the input for the
LBM accelerator is 281 kB (see Section 3.1). The maximum size of a single BRAM
module for Zynq is 256 kB. To store the data, two BRAM modules mapped to
consecutive addresses are added to the design.

Figure 3.3 shows the system architecture of the accelerator using the BRAM
to keep the data. The BRAM can be connected to be bus with the help of the
AXI BRAM controller. The dual-port nature of the BRAM, allows to share the
same block between the CPU and the ACC. One port is connected to the controller
accessed by the CPU and the other port is connected to the controller accessed by
the ACC. Each AXI master in the system should have its own AXI interconnect.
It can have several slave modules connected to it, but my experiments failed for a
multi-master design.

The Processing System (PS) provides four clock and reset signals that can be
used in the Programmable Logic (PL). It is important that all the components in
the system are connected to the same clock source and its respective reset signal.
This applies to the ACC, the AXI interconnects and the BRAM controllers. The
maximum clock frequency is 200 MHz, but in practice it is limited by the maximum
operating frequency of the accelerator.
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Figure 3.4: System architecture using HP

3.5.2 Accessing DDR with High-Performance Slave Ports

Figure 3.4 shows the block diagram of the dual-ported accelerator connected to
the DDR memory (the single ported version is connected in a similar way). Xilinx
Zynq features four configurable 32-bit/64-bit AXI slave interfaces optimized for
high bandwidth access from PL to external memory. These interfaces access the
memory interconnect which has two separate channels to access the DDR controller.
This allows for both single and dual-ported implementations of the accelerator to
efficiently access the data in the DDR.

While connecting to a BRAM controller using the accelerator’s AXI master
interface needs no special customization, accessing the HP ports does not work by
default. I could not find any documentation that would explicitly describe how to
access the HP ports. As far as the existing documentation is concerned, the HP
ports are regular AXI slave ports and they should be accessed no different than
an AXI slave BRAM controller. To analyse the problem, I consulted a reference
design.

The“Zynq-7000All Programmable SoC: Concepts, Tools and Techniques (CTT)”
[29] contains a reference design of an AXI Central DMA (CDMA) that is connected
to the HP ports of the PS. In this system, AXI CDMA acts as a master device
to copy an array of data from the source buffer location to the destination buffer
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Figure 3.5: ChipScope waveforms for AXI CDMA

location in DDR system memory.
To analyse the traffic on the master port of the CDMA I used the ChipScope [26]

tool. During system assembly in XPS, a ChipScope AXI monitor is added to the
design and attached to the AXI master port of the CDMA to intercept the values
of all associated signals. The relevant section of the waveforms is illustrated in
Figure 3.5. The highlighted signals are different than the defaults implemented by
the Vivado HLS:

# ACC AXI Master port # AXI CDMA Master port

AXI_CACHE = 0b0000 AXI_CACHE = 0b0011

AXI_PROT = 0b010 AXI_PROT = 0b000

The AXI_PROT is used to set the ARPROT and AWPROT signals. These bits are
known as the Non-Secure, or NS bits, and are defined in the public AMBA AXI
bus protocol specifications [4]:

• AWPROT[1]: Write transaction - low is Secure and high is Non-secure

• ARPROT[1]: Read transaction - low is Secure and high is Non-secure

All bus masters set these signals when they make a new transaction, and the
bus or slave decode logic must interpret them to ensure that the required security
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Figure 3.6: System architecture using ACP

separation is not violated. All Non-secure masters must have their NS bits set high
in the hardware, which makes it impossible for them to access Secure slaves. The
address decode for the access will not match any Secure slave and the transaction
will fail [4]. Apparently the HP ports are defined as Secure and this explains why
the default AXI Master port of the ACC failed to access these slave ports.

Xilinx recommends that master devices drive their AW/RCACHE outputs to 0b0011
to allow the AXI interconnect core to pack data while performing width conversion
and to allow store-and-forward in datapath FIFOs [27].

After setting the right values for AXI_CACHE and AXI_PROT parameters of the
AXI Master interface, the ACC worked as expected and was able to access the
DDR using the HP ports of the Processing System.

3.5.3 Accessing DDR with Accelerator Coherency Port

The Zynq-7000 Accelerator Coherency Port (ACP) is a 64-bit AXI Slave interface
that directly connects the PL to the Snoop-Control Unit (SCU) of the ARM Cortex-
A9 processors, enabling cache-coherent access to CPU data in the L1 and L2 caches.
The ACP provides a low latency path between the PS and the PL-based accelerator
when compared with a legacy cache flushing scheme [32].
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The read and write requests performed on the ACP behave differently depending
on whether the request is coherent or not. ACP requests behaviour is as follows [5]:

• ACP coherent read requests – An ACP read request is coherent when
ARUSER[0] = 1 and ARCACHE[1] = 1 alongside ARVALID. In this case, the
SCU enforces coherency.

– When data is present in one of the Cortex-A9 processors, the data is
read directly from the relevant processor and returned to the ACP port.

– When data is not present in any of the Cortex-A9 processors, the read
request is issued on one of the Cortex-A9 MPCore master ports, along
with all its AXI parameters, with the exception of the locked attribute.

• ACP coherent write requests – An ACP write request is coherent when
AWUSER[0] = 1 and AWCACHE[1] = 1 alongside AWVALID. In this case, the
SCU enforces coherency.

– When the data is present in one of the Cortex-A9 processors, the data
is first cleaned and invalidated from the relevant CPU.

– When the data is not present in any of the Cortex-A9 processors, or
when it has been cleaned and invalidated, the write request is issued on
one of the Cortex-A9 MPCore AXI master ports, along with all the cor-
responding AXI parameters with the exception of the locked attribute.

• ACP non-coherent read/write requests – An ACP read/write request
is non-coherent when A(R/W)USER[0] = 0 or A(R/W)CACHE[1] = 0 alongside
A(R/W)VALID. In this case, the SCU does not enforce coherency, and the write
request is forwarded directly to one of the available Cortex-A9 MPCore AXI
master ports.

The A(R/W)USER[0] bit defines if the memory region accessed by the AXI mas-
ter is shared by several processors (value 1) or is used only by a single processor
(value 0). The bits A(R/W)USER[4:1] have the following meaning [5]:

• 0b0000 – Strongly ordered: All memory accesses to Strongly Ordered memory
occur in program order. These address locations are not held in a cache and
are treated as Shared memory locations.

• 0b0001 – Device: Designed to handle memory-mapped peripherals. These
address locations are not held in a cache.

• 0b0011 – Normal Memory Non-Cacheable: Designed to handle normal mem-
ory. Memory accesses conform to Weakly Ordered model of memory ordering.

• 0b0110 – Normal Memory Write-Through
• 0b0111 – Normal Memory Write-Back no Write-Allocate
• 0b1111 – Normal Memory Write-Back Write-Allocate

The last three options are used when cached access is required and define the
respective cache policy.

Figure 3.6 illustrates the accelerator connected to the ACP port. It is config-
ured to use the cache and to issue coherent memory transactions by setting the
A(R/W)USER = 0b11111 and A(R/W)CACHE = 0b0011.
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Listing 3.13: Simple HelloWorld application for Zynq

1 /*

2 * helloworld.c: simple test application

3 */

4
5 #include <stdio.h>

6 #include "platform.h"

7
8 void print(char *str);

9
10 int main()

11 {

12 init_platform();

13 print("Hello World\n\r");

14 cleanup_platform();

15 return 0;

16 }

3.6 Software Design

The LBM application will be running bare-metal rather than as a Linux program.
This results in more precise performance and power measurements, because no
other application or OS routine will interfere with LBM. The software design is
performed using Xilinx Software Development Kit (SDK). It is used to compile a
software executable that could run on Xilinx Zynq. To be able to run the appli-
cation on the target device, a Standalone Board Support Package (BSP) is added
to the project. It contains all the necessary libraries for running the application
bare-metal along with configuration headers, that specify the addresses of the pe-
ripherals.

A simple “HelloWorld” Xilinx C application is created and linked to the previ-
ously added BSP (Listing 3.13). This program provides the basic functionality of
initializing the system, writing some text to the UART and cleaning up. It will
serve as a stub for the LBM application. LBM’s source files are adapted to be able
to run on the accelerated system. This mostly concerns the main function from
main.c which is presented in the Methodology chapter.
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Chapter 4

Methodology

The hardware accelerator is implemented on the Zedboard [35], that features a

Xilinx Zynq
TM

-7000 All Programmable SoC. The ARM Cortex
TM

-A9 together with
the FPGA on the same chip provide a powerful and flexible platform for imple-
menting high-performance accelerator applications. The OS running on the board
is Xillinux [34], a Linux distribution based on Ubuntu 12.04 and customized for the
Zedboard.

The development is done on a host machine, with Intel R© Core
TM

2 Quad CPU
Q9400 2.66GHz and 4 GB of main memory. It is running an CentOS 6.4 i686 Linux
and Xilinx Design Suite 14.2. Power measurements are performed using an Agilent
34410A multimeter.

The Zedboard features a UART and a JTAG controller to communicate with the
host computer. These controllers have a USB interface, so they can be connected
using simple USB cables. The UART is used for transferring messages between
Zynq and the development computer. The UART is configured with a baud rate of
115200 bps, 8 data bits, no parity and one stop bit. The host computer is running
minicom [15] to communicate via UART. The JTAG controller allows to program
and debug the Zynq from the host computer. The cable driver that comes with
the Xilinx tool suite does not work, so the Digilent plug-in should be installed [9].

4.1 Power Measurements

4.1.1 Measurement Setup

Zedboard features a 10mΩ, 1W current sense resistor. Header J21 straddles this
resistor to measure the voltage across it for calculating power. Every time this
voltage is sampled, the power is computed using the following formula:

P = (Vin − Vzed) ∗ (Vzed/R) (4.1)

where Vin is the input voltage 12V, Vzed is the voltage measured across the resistor
having R = 10mΩ.

49
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Figure 4.1: Power measurement setup

Figure 4.1 illustrates the power measurement setup. For sampling the volt-
age, an Agilent 34410A multimeter is used. It is connected to the host machine
through a USB cable. The multimeter is installed as a Linux character device. It
is programmed by means of Standard Commands for Portable Instruments (SCPI)
language [19]. To read the voltage measurements a bash script is executed (see
Listing 4.1). It sends a SCPI instruction, requesting a sample and outputs the
response. The start and end times are logged to measure the execution time. The
script runs continuously until it is interrupted by an external signal. Notice that
the interrupt should be “trapped” to allow a graceful termination of the script.
The sequence inside the while loop should be atomic, otherwise the device file may
become corrupt, leading to a “broken pipe” error.

After the measurement session is over, the output file is parsed to calculate the
average power consumption:

Pavg = (
n∑

i=1

Pi)/n (4.2)

where Pi is the power computed for every voltage sample, and n is the total number
of samples.
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Listing 4.1: Script to read the measurements

1 #!/bin/bash

2
3 trap ’setit’ SIGINT SIGTERM SIGQUIT

4 setit() {

5 stop="1"

6 }

7 echo "start "$(date +%s.%N)

8 while [ "$stop" != "1" ]; do

9 echo MEAS? > /dev/usbtmc1 #request a sample from the multimeter

10 voltage=‘cat /dev/usbtmc1‘ #read the response

11 echo $voltage

12 done

13 echo "stop "$(date +%s.%N)

4.1.2 Measuring Idle Power

Zedboard is not equipped for fine grained power measurements. It contains only
one current-sense resistor to measure the power of the complete board. To compare
the power consumption of different configurations of the system, the total power
consumption is broken down into idle and active parts.

The active power consumption is the one that will be used in all the energy
and EDP calculations. It is an approximation of the power added by a given
configuration of the system to the baseline idle power.

The idle power consumption serves as a common reference for all the mea-
surements in the experiments presented in this work. To measure idle power the
following steps are taken after the board is powered on:

1. The FPGA is programmed using the bitfile.

2. All the enabled peripherals are initialized and their clocks are powered on.

3. One of the ARM cores is disabled and the second one is clocked down to the
minimum value of 20 MHz.

4. The FPGA clock is turned off.

The CPU cannot be turned off completely, because it is the central master of
the system and coordinates the functionality of the whole design.

4.1.3 Measuring Application Power

The application code is running on Zynq bare-metal. To be able to debug it, Xilinx
Microprocessor Debugger (XMD) is used. Listing 4.2 shows the Tcl file used by
xmd to setup the Zynq. The lines starting with “#” are comments explaining every
instruction. After the Tcl file is sourced from the XMD console, it starts a gdb

(GNU Debugger) server. To measure the power consumed by the Zedboard when
executing LBM, the measurement script (Listing 4.1) should be launched at the
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Listing 4.2: XMD commands script

1 # program the FPGA

2 fpga -f <path to bitfile>/system.bit

3 # initialize the peripherals

4 source <path to hw folder>/ps7_init.tcl

5 ps7_init

6 # download the elf file

7 dow <path to executable>/lbm.elf

Listing 4.3: Debug with GDB

1 # read the executable

2 file <path to executable>/lbm.elf

3 # connect to xmd’s gdb server, by default it runs on port 1234

4 target remote localhost:1234

5 # put a breakpoint just before the algorithm starts

6 break main.c:100

7 # provide the shell commands to execute on hitting this breakpoint

8 commands

9 # remember to run it as a background process

10 shell <path to script>/get.sh > output.log &

11 # immediately continue execution

12 continue

13 end

14 # breakpoint just after the algorithm ends

15 break main.c:150

16 commands

17 # kill the script

18 shell killall get.sh

19 continue

20 end

21 # set program counter to 0

22 set $pc=0

23 # launch the executable

24 continue

beginning of the algorithm and killed at the end. This can be achieved by using
gdb and executing shell scripts when certain breakpoints are hit. Let’s say the
algorithm starts at line 100 and finishes at line 150 of main.c file. Listing 4.3
shows how to connect to xmd’s gdb server and setup the breakpoints for controlling
the measurement script. This file should be sourced from the gdb console. The
script will log all the voltage measurements together with the start and end times.
It is post-processed to compute the average power consumption.
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Listing 4.4: Compiling the application for different HW

1 int main() {

2 /* ... code omitted for brevity ... */

3 #ifdef USE_BRAM

4 /* Store grids in BRAM */

5 src_bus = (double*)XPAR_BRAM_1_BASEADDR;

6 #else

7 /* Store grids in main memory */

8 /* Add the offset for stack and heap */

9 src_bus = (double*)XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0xA00000;

10 #endif

11 src_bus += MARGIN; /* Allocate margin space */

12 /* Set address for the destination grid */

13 dst_bus = src_bus + GRID_SIZE;

14 srcGrid = &src_bus;

15 dstGrid = &dst_bus;

16 /* ... code omitted for brevity ... */

17 #ifdef USE_ACC

18 /* Setup the accelerator */

19 XLbm_acc_SetP_srcgrid(&acc, (u32)*srcGrid);

20 XLbm_acc_SetP_dstgrid(&acc, (u32)*dstGrid);

21 XLbm_acc_SetNsteps(&acc, param.nTimeSteps);

22 /* Start the accelerator */

23 XLbm_acc_Start(&acc);

24 /* Wait until the accelerator has finished execution */

25 while (!XLbm_acc_IsDone(&acc));

26 #else

27 int t;

28 for(t = 1; t <= param.nTimeSteps; t++){

29 performStreamCollide(*srcGrid, *dstGrid);

30 LBM_swapGrids(&srcGrid, &dstGrid);

31 }

32 #endif

33 /* ... code omitted for brevity ... */

34 }

4.2 Running on Different Hardware

To compare the performance and energy efficiency, the application is run on four
hardware configurations:

1. On ARM with data in DDR (main memory)

2. On ARM with data in BRAM

3. On Accelerator (ACC) with data in DDR

4. On ACC with data in BRAM

The code is parametrized using C preprocessor directives to either use ARM or
ACC, and either keep data in DDR or in BRAM. Listing 4.4 is an extract from the
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Figure 4.2: CPU clock generation and domains [33]

main function, showing the parametrization. Lines 18 to 25 show how the accelera-
tor is called by the CPU. First the source and destination addresses are configured,
along with the number of iterations the accelerator should perform. The CPU then
writes to the configuration register, to instruct the accelerator to start execution.
Afterwards, the CPU polls the status register until the done bit is set high. Since
the application is running bare-metal, there is no memory protection mechanism
and the CPU can access any memory location. The programmer is responsible for
ensuring that the code does not overwrite the stack and heap segments of the C
program. In this example, an offset of 10 MB is added to the DDR base address.

4.3 Tweaking Energy-Efficiency

Energy Delay Product (EDP) is used to measure the system’s energy-efficiency.
It is based on total execution time of the application and the power consumption
of the hardware system. The previous chapter focused on developing an energy-
efficient architecture, but clock speed has also a big impact on a component, both
when it is idle and fully operational. The speed of various clocks in the system can
be changed from software using dynamic clock gating.

In the current setup, two clocks are used to tweak the performance and power
consumption, the CPU (ARM_CLK) and the FPGA clocks. Zynq provides 4 differ-
ent clocks that can be used in the PL substrate, named FPGA_CLK[0..3]. The
FPGA_CLK0 is used for all core components: ACC, BRAM controllers and AXI
interconnects.

Clocks are generated by Phase Lock Loops (PLL). By applying different divi-
sors, one could dynamically change the clock frequency. Figures 4.2 and 4.3 show
the generation of ARM and FPGA clocks.

To minimize the power consumption of the system, regardless of whether the
accelerator is used or not, one of the two cores of the CPU is disabled, since the
LBM application is single-threaded.
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Figure 4.3: PL clock generation [33]

When running the application on the accelerated system, the CPU busy-waits
for the accelerator to finish its execution. To save power, the CPU is dynamically
clocked down during that period. It is important to mention that the ACC cannot
be clocked down when the algorithm runs on the CPU and keeps the data in BRAM,
since both BRAM and ACC are connected to the same clock source. Xilinx Zynq
allows software control over the clocks and other parameters of the PS by means
of SLCR. Different combinations of clock speeds for CPU and FPGA are used to
explore the design space to find the most energy-efficient configuration. Listing 4.5
shows the extract from the main.c that illustrates the functions used to control
the system clocks using SLCR. Note that before SLCR can be modified, it should
be unlocked. Dynamic clock gating is controlled by the power control register of
the System Control Coprocessor CP15. This register is not memory mapped and
should be accessed using assembly language.
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Listing 4.5: Controlling the system clocks from software

1 void disable_core() {

2 /* unlock SLCR */

3 Xil_Out32(SLCR_BASEADDR + SLCR_UNLOCK, 0x0000DF0D);

4 /* shutdown core #1 */

5 u32 a9_cpu = Xil_In32(SLCR_BASEADDR + A9_CPU_RST_CTRL);

6 Xil_Out32(SLCR_BASEADDR + A9_CPU_RST_CTRL, apply_mask(a9_cpu, A9_CLKSTOP1,

A9_CLKSTOP1));

7 /* lock SLCR */

8 Xil_Out32(SLCR_BASEADDR + SLCR_LOCK, 0x0000767B);

9 }

10
11 void slowdown_clk() {

12 /* unlock SLCR */

13 Xil_Out32(SLCR_BASEADDR + SLCR_UNLOCK, 0x0000DF0D);

14 /* enable dynamic clock gating */

15 u32 pwr_ctrl = 0;

16 asm volatile ("mrc p15, 0, %0, c15, c0, 0" : "=r"(pwr_ctrl) : : "cc");

17 pwr_ctrl |= 1;

18 asm volatile ("mcr p15, 0, %0, c15, c0, 0" : : "r"(pwr_ctrl) : "cc");

19 pwr_ctrl = 0;

20 asm volatile ("mrc p15, 0, %0, c15, c0, 0" : "=r"(pwr_ctrl) : : "cc");

21 /* increase the ARM clk divider */

22 u32 arm_clk_ctrl = Xil_In32(SLCR_BASEADDR + ARM_CLK_CTRL);

23 orig_arm_div = arm_clk_ctrl & DIVISOR;

24 arm_clk_ctrl = apply_mask(arm_clk_ctrl, DIVISOR, arm_div);

25 Xil_Out32(SLCR_BASEADDR + ARM_CLK_CTRL, arm_clk_ctrl);

26 /* increase the FPGA clk divider */

27 u32 fpga0_clk_ctrl = Xil_In32(SLCR_BASEADDR + FPGA0_CLK_CTRL);

28 orig_fpga0_div0 = fpga0_clk_ctrl & DIVISOR0;

29 fpga0_clk_ctrl = apply_mask(fpga0_clk_ctrl, DIVISOR0, fpga0_div0);

30 Xil_Out32(SLCR_BASEADDR + FPGA0_CLK_CTRL, fpga0_clk_ctrl);

31 }

32
33 void restore_clk() {

34 /* restore fpga0_div */

35 u32 fpga0_clk_ctrl = Xil_In32(SLCR_BASEADDR + FPGA0_CLK_CTRL);

36 fpga0_clk_ctrl = apply_mask(fpga0_clk_ctrl, DIVISOR0, orig_fpga0_div0);

37 Xil_Out32(SLCR_BASEADDR + FPGA0_CLK_CTRL, fpga0_clk_ctrl);

38 /* restore arm_div */

39 u32 arm_clk_ctrl = Xil_In32(SLCR_BASEADDR + ARM_CLK_CTRL);

40 arm_clk_ctrl = apply_mask(arm_clk_ctrl, DIVISOR, orig_arm_div);

41 Xil_Out32(SLCR_BASEADDR + ARM_CLK_CTRL, arm_clk_ctrl);

42 /* disable dynamic clock gating */

43 u32 pwr_ctrl = 123;

44 asm volatile ("mrc p15, 0, %0, c15, c0, 0" : "=r"(pwr_ctrl) : : "cc");

45 pwr_ctrl = apply_mask(pwr_ctrl, 1, 0);

46 asm volatile ("mcr p15, 0, %0, c15, c0, 0" : : "r"(pwr_ctrl) : "cc");

47 pwr_ctrl = 123;

48 asm volatile ("mrc p15, 0, %0, c15, c0, 0" : "=r"(pwr_ctrl) : : "cc");

49 /* lock SLCR */

50 Xil_Out32(SLCR_BASEADDR + SLCR_LOCK, 0x0000767B);

51 }
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Results

This chapter presents the results for performance and energy-efficiency of the exper-
iments conducted using different configurations of the hardware. The performance
is calculated as the inverse of the execution time. The most commonly used met-
rics for evaluating the energy-efficiency are the Energy (E), Energy Delay Product
(EDP ) and Energy Delay Squared Product (ED2P ), which depend on power (P )
and execution time (T ) and are calculated as follows:

E = P × T (5.1)

EDP = E × T (5.2)

ED2P = E × T 2 (5.3)

The choice of E gives and advantage to systems that stress energy consumption
over performance. The EDP favours systems that value both performance and
energy consumption, and ED2P favours high performance processors whose de-
sign allocates a large expenditure of energy in return for small improvements in
performance.

The accelerator presented in this work is designed with the focus on both energy
consumption and performance. This fact determined the choice of Energy Delay
Product as the metric used in the energy-efficiency calculations. In the following
the energy-efficiency refers to the inverse of the EDP.

The system can be logically divided into computation and communication parts.
In the following I will refer to computation part as either CPU or any of the three
versions of the Accelerator (ACC) (Default, Optim and Dual). Communication
will refer to the bus system and the storage device, BRAM or DDR. The terms
CPU and ARM are used interchangeably.

BRAM can only be accessed using an AXI BRAM controller connected to an
AXI interconnect. The CPU can access the DDR directly through the memory
controller with optionally disabling the L2 cache. To access the DDR, the ACC
can use the HP or ACP attached to the AXI interconnect. All the modules on
Programmable Logic (PL) (ACC, interconnect, BRAM controller) are powered by
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Configuration
CLK
(ns)

Power
Latency
gain

Energy
gain

EDP
gain

Default 8.75 3915 1.00 1.00 1.00
Default 4.55 10298 0.99 0.37 0.37
Buffer 8.75 - - - -
Buffer, pipeline 155 18 4062 1.59 1.53 2.44
Buffer, pipeline 155,
scheduler effort high

18 3824 1.59 1.63 2.59

Buffer, unroll 2, pipeline 310 18 4608 1.59 1.35 2.15
Buffer, unroll 3, pipeline 465 18 5401 1.58 1.14 1.81
No buffer, unroll 3 18 5105 0.73 0.56 0.40
Dual default 8.75 - - - -
Dual default 4.55 15067 1.87 0.48 0.91
Dual, pipeline 201 8.75 3257 7.25 8.72 63.30
Dual, pipeline 453 4.55 10338 13.95 10.84 73.75
Dual, buffer, pipeline 443 8.75 5972 23.96 15.70 376.41
Dual, buffer, pipeline 192,
scheduler effort high

8.75 5748 23.96 16.32 391.08

Dual, buffer, pipeline 443 4.55 21000 44.40 8.72 367.61
Dual, buffer, pipeline 192 4.55 20371 44.40 8.53 378.96

Table 5.1: Characteristics of different ACC implementations

the same clock source. In the following I refer to BRAM frequency as the frequency
of BRAM controller and that of the AXI interconnect.

To make a fair comparison, the results are grouped by the different computation
and communication setups in the following categories:

• CPU - BRAM vs DDR + L2 cache vs DDR no cache

• ACC - BRAM vs DDR + L2 cache vs DDR no cache

• BRAM - ACC vs CPU

• DDR - ACC vs CPU

5.1 Accelerator Implementations

Synthesis of the LBM accelerator takes just a minute in Vivado HLS. In addition
to the RTL description of the module, the tool also generates reports that contain
information about the minimum clock cycle period, latency, area and power estima-
tions. This information allows exploring the design space and evaluating different
optimization techniques very fast, without the need to physically implement the
design in hardware, which may take a couple of hours. Before performing system
assembly and logic synthesis, the accelerator passes the post-synthesis verification,
which may take another 20-30 minutes.

The purpose of this work was to accelerate an application of choice, while min-
imally altering its source code. Since changing the internal implementation is dis-
couraged, a wrapper was built to change the interface of the accelerator. Two
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architectures were designed, one having a single master port to read and write the
data and the other one with separate ports for source and destination grids. Since
the source grid is only read from and the destination grid only written to, the two
ports are synthesised as unidirectional.

Table 5.1 shows the characteristics of the two architectures and the impact
of various optimization techniques. The data in the table is based on the post-
synthesis reports generated by the VHLS. The red rows represent designs that
would not fit on the target device, and the green ones show the most energy-
efficient configurations of the single and dual-port architectures. The last three
columns, show the gain with respect to the Default ACC, single-port with no
special optimization directives applied. For example, the “Latency gain” is the
latency of Default ACC divided by the latency of that specific configuration.
The number next to “pipeline” shows the number of steps it contains, and the
number next to “unroll” specifies how many times is the main loop of the ACC
unrolled. The “buffer” optimization refers to the small local memory that buffers
the accesses to the source grid. The “scheduler effort high” option instructs the
HLS to spend more time to produce a better scheduling of operations.

The results presented in Table 5.1 reveal a couple of observations on how dif-
ferent settings and features of the accelerator affect its performance and energy-
efficiency.

The first observation is that increasing the clock frequency may indeed improve
performance but may as well result in a worse energy-efficiency. Only for the “dual,
pipeline” configuration, the EDP is improved when the clock speed is increased.
For the “Default” accelerator, the latency is not changed when increasing the clock,
which determined a worse energy-efficiency.

The second finding is that unrolling the loop does not increase the performance,
but only adds to the power consumption. The scheduler cannot extract more
parallelism from the unrolled loop, because of the data dependencies.

The third observation is that sometimes the optimizations can increase the
minimum clock period, due to dependencies in the pipeline. This phenomenon
happens in case of the single-port architecture. Even with a slower clock, the
resultant design runs faster and consumes less energy. I would expect VHLS to stall
the pipeline, when a dependency prevents the instruction to be fed in. Stalling could
be locally inefficient, but would avoid increasing the clock period, thus resulting in
a globally more efficient design.

The next observation is that the dual-port implementation does not in itself
make the accelerator perform better. The benefits of such an architecture are seen
when the pipeline is introduced. Having different ports for reading and writing
removes some of the data dependencies in the data-flow graph, thus allowing the
pipeline to work more efficiently. This results in a 14x speed-up and 73.75x better
energy-efficiency compared to the default, single-ported architecture.

Finally, introducing the small local memory for buffering the accesses to the
source grid increases the parallelism and lowers the access latencies. It gives the
pipeline even more freedom and results in an impressive 44.4x gain in performance
and 379x gain in energy-efficiency.
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Figure 5.1: Results for CPU with data in BRAM

5.2 LBM Running on ARM

The results in this and the following sections are based on the physical power
measurements of the system as detailed in Section 4.1. The purpose of this section is
to evaluate the initial system, without the accelerator. It discusses the performance
and energy-efficiency of the LBM application running on the CPU while keeping
the data either in BRAM or DDR. While accessing the DDR, L2 cache is optionally
disabled to match the cache-less BRAM configuration.

To compare the BRAM configuration with the DDR ones, I identified the most
energy-efficient combinations of CPU and BRAM frequencies (see Figure 5.1c).
The optimum for CPU running at 266 MHz is reached when the BRAM is at
166 MHz. In case of CPU at 333 MHz, there a negligible increase in EDP, when
speeding up the BRAM from 166 to 200 MHz, so the latter result is chosen, in
favour of better performance in terms of latency (see Figure 5.1a). Having these
results, I can assume that the most energy-efficient ratio between CPU and BRAM
frequencies is about 1.6:1, which means the CPU at 666 MHz would require BRAM
to run twice its maximum speed to reach the optimum.

Figure 5.2 compares the results for EDP and latency of different storage options
for LBM running on the CPU. For BRAM, the most energy-efficient configurations
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Figure 5.2: Results for CPU with data in BRAM or DDR

are chosen. These charts clearly show the supremacy of the L2 cache setup. With
CPU at 666 MHz it achieves a 34x better energy-efficiency and 7.6x better per-
formance compared to accessing the DDR directly and avoiding the cache. The
reason for such a great improvement is the reduced latency of the L2 cache and
the small size of the input set, that was scaled down to 281 kB from 405 MB to
fit into BRAM. The LBM algorithm makes 30000 iterations of grid updates, which
means after just 1 iteration the complete input resides in CPU’s 512 kB L2 cache.
To compete with such performance, the ACC should be able to access the CPU’s
memory hierarchy.

Analysing the EDP of the BRAM and DDR cache-less configurations (Fig-
ure 5.2a), it is of no surprise that the BRAM performs worse. The reason is that
the DDR cannot be removed from the system, so when running on the BRAM, the
unused DDR still adds to the power consumption. Even with such huge drawback,
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Figure 5.3: Results for ACC using the ACP

the BRAM scores almost the same EDP as DDR with CPU running at 666 MHz.
This is due to BRAM’s 34% better performance (Figure 5.2b). This fact is quite
surprising, since the DDR has two ports and runs at 533 MHz and BRAM has
only one and runs at 200 MHz. Smaller latencies for all CPU frequencies suggest
that the BRAM implementation would also be more energy-efficient, if the DDR
could be completely switched off. Switching to dual-port BRAM could potentially
improve the performance and energy-efficiency even further.

After analysing the performance and energy-efficiency of various configurations
of the initial system, I found that the BRAM performs better than the DDR, but
none of the two is even close to the speed and energy-efficiency of the system using
the L2 cache. To account for this difference, in the next sections, the ACC will be
compared to the CPU while keeping the same memory system.

5.3 LBM Running on ACC

This section explores performance and energy-efficiency of different memory sys-
tems that can be used with the ACC, together with a comparison of the three types
of the ACC: Default, Optim and Dual.

From the results of Section 5.2, it is obvious that using the L2 cache greatly
improves application’s performance and energy-efficiency. To access the CPU’s
memory hierarchy from PL, the ACP is the only solution, which enables coherent
access to CPU’s caches. I thought the accelerator connected to the ACP will
behave like ARM’s third core, and enjoy the benefits of a cached architecture.
In practice, however, the accelerator achieves no performance gain, when using
the ACP, actually getting much worse results compared to DDR cache-less access
through the HP (see Figure 5.3). The reason could be that the ACP only ensures
the coherency, but does not actually use the memory hierarchy. In other words,
when looking for data, it also checks the caches, invalidates the memory locations
when appropriate, but does not bring the data to cache after a miss. This may
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Figure 5.4: Results for different ACC implementations
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explain that using the ACP in case of LBM is actually an unnecessary overhead,
and that is it much faster to ensure the coherency in software. Only two operations
need to be done, flush the cache after the CPU prepared the data and invalidate
it when the ACC has done its work.

Figure 5.4 compares the metrics for the three ACC implementations accessing
the DDR, and the DDR vs BRAM configurations for the Optim ACC. These re-
sults confirm the findings in the previous section, that the BRAM implementations
perform better both in terms of energy-efficiency and performance. With respect
to EDP, it could have been even lower, if the DDR could be shut down completely.

The energy consumption of the BRAM implementation (Figure 5.4b) is linear
with respect to the frequency of the PL. However, the DDR implementations show
almost constant energy consumption across ACC versions and operating frequen-
cies. The reason is that the power consumption and performance of the BRAM
is dependent on the PL frequency, while the DDR is not influenced by this fac-
tor. This explains the fact that the BRAM implementation of the Optim ACC
performs worse at lower frequencies than its DDR version. However at about 90
MHz, the BRAM starts to improve energy-efficiency compared to DDR. At peak
frequency the BRAM version is 1.4x more energy-efficient and 1.8x faster than the
DDR version.

When the clock speeds are matched, Optim performs better than Default. It
proves that pipelining is indeed an effective technique of increasing the performance
and improving the EDP. However, when synthesised in VHLS, the Optim acceler-
ator had a maximum clock frequency of 50MHz, while Default was synthesised
with a target clock of 100MHz. Comparing these configurations, the Optim is
actually 1.5x worse in energy-efficiency and 1.4x slower in performance. This fact
shows that optimizations which lead to a slower clock should be avoided, since they
may results in a overall slower device. It was not the case for the Dual ACC.

Out of the three ACC implementations, the Dual performs best. Separating
the read and write ports, resulted in less data dependencies, making the pipeline
more effective. Since the DDR has two ports for accessing the memory, the ACC
could issue read and write operations simultaneously.

Of course the improvements in EDP and latency in the practical implementation
do not match the estimations from VHLS presented in Table 5.1, because they
represent different things. The results in Table 5.1 are based on simulations, while
the results in this Section are based on physical power measurements “out of the
wall”, of the complete development board. These measurements are offset by the
power consumption of an “idle” system as discussed in the Section 4.1.2 of the
Methodology Chapter. It is not possible to get a fine-grained, per-component power
consumption on Zedboard for a more precise analysis of the energy-efficiency.
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Figure 5.5: Results for LBM with data in BRAM

5.4 LBM with Data in BRAM

Figure 5.5 presents the results of running the application on both ACC and ARM
while keeping data in BRAM. These metrics were collected in the first, BRAM-
based implementation of the system (see Section 3.1). It uses the Optim version
of the ACC, which was synthesised with a target clock frequency of 50MHz, but
produced correct results up to 142MHz. The CPU frequency is kept constant at
its maximum value of 666MHz.

A limitation of the design is that the ACC, the AXI interconnect and the BRAM
controllers have all the same clock source. This prevents running the interconnect
and BRAM at the maximum speed of 200MHz. Even with such constraint, the
ACC is more energy-efficient than the CPU in all configurations of the two.

Comparing the ACC at 142MHz and the CPU at 666MHz with the interconnect
and BRAM at 200MHz, the former achieves a 3.5x increase in energy-efficiency
while improving the latency by 21%.
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Figure 5.6: Results for LBM with data in DDR

5.5 LBM with Data in DDR

Section 5.3 confirmed the results of HLS estimations, that the Dual implementa-
tion of the ACC is indeed the fastest and the most energy-efficient. Experiments
in Section 5.2 show that down-clocking the CPU does not improve the EDP in
case of LBM, and that a custom accelerator connected directly to DDR can hardly
compete with CPU using the complete memory hierarchy. Based on these findings,
this section compares the EDP and latency results for CPU without the L2 cache
and the Dual ACC connected to DDR through the HP port. The L1 caches are
still enabled and provide the CPU with shorter memory-access delays.
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The Dual ACC, just like the CPU, benefits from the dual-port DDR archi-
tecture. It allows two memory operations to be issued simultaneously. Figure 5.6
shows the results for latency and EDP for various clock frequencies of the ACC and
CPU. When both units run at their peak performance, the ACC proves to be 1.5x
faster and 2.15x more energy-efficient. If clock speeds are matched at 100 MHz,
the ACC is 3.6x faster and 3x more energy-efficient.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis evaluated how energy-efficiency of a system can be improved using
special-purpose accelerators. A literature survey on energy-efficient accelerators
was conducted. In contrast to the related work [18, 22, 23], that used simulators
to evaluate the energy savings, the results in this thesis were based on a physical
implementation of a hardware accelerator using the Xilinx Zynq SoC platform. The
accelerator was developed with the focus on energy-efficiency.

This section summarizes this work’s findings against the research questions that
were formulated in Section 1.2.

1. How can Xilinx tools assist in developing an energy-efficient hardware
accelerator?

This work defined the complete design work flow for developing an accelerator
for an application of choice. The accelerator was implemented on Xilinx Zynq using
the Xilinx ISE System Edition with Vivado HLS.

Xilinx Vivado HLS was used to develop the hardware accelerator. It eases the
development process by working on a higher abstraction level – the behavioural
specifications. The tool provides quality of results that rivals hand-coded RTL,
while decreasing the design time by a factor of 10 [30].

Vivado HLS enables early prototyping and evaluation of the design. The post-
synthesis reports estimate the utilization, power, throughput and latency of the
synthesised design. These metrics allow to evaluate the impact of various opti-
mization techniques on the energy-efficiency of the accelerator.

Vivado HLS accepts as input a synthesisable subset of C/C++/SystemC pro-
grams. If the algorithm is too complex and cannot be completely synthesised, it
can be broken down into simpler modules and the remaining non-synthesisable
logic can be implemented manually in RTL or left in software and executed by the
CPU.

69
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The main drawbacks of Vivado HLS are poor documentation and the difficulty
to debug. The tool may fail with a generic error message, that does not give any clue
what was the reason of the failure. The solution is either asking the community
(which is very limited) or trial-and-error. The lack of a detailed documentation
resulted in additional difficulties when implementing the LBM accelerator. The
reference designs for Vivado HLS are quite simple and do not address the issues of
connecting the accelerator to the DDR directly or using the cache hierarchy.

2. How can different optimization and architectural choices affect the
performance and energy-efficiency of the accelerator?

This thesis explored the effects of different optimization techniques on the ac-
celerator’s performance and energy-efficiency. The following findings are based on
the estimations from Vivado HLS post-synthesis reports:

• Increasing the clock frequency may indeed improve performance, but may as
well result in a worse energy-efficiency.

• Pipelining always improves performance and energy-efficiency. The improve-
ment is very much influenced by the dependencies in the algorithm.

• Having separate ports for reading and writing removes some data dependen-
cies and boosts the effectiveness of the pipeline. This results in a 13.95x gain
in performance and 73.75x gain in energy-efficiency.

• A small local memory to buffer read accesses enhances the pipeline even fur-
ther reaching a 44.4x gain in performance and 379x gain in energy-efficiency.

3. How can performance and energy-efficiency be evaluated on Zynq?
The accelerator was implemented and evaluated on the Zedboard development

board that features a Zynq-7000 SoC. Zedboard is not equipped for fine grained
power measurements. It contains only one current-sense resistor to measure the
power of the complete board. Zynq does not feature any energy counters that
would assist in evaluating the energy-efficiency of the system. This work proposed
a methodology to break down the total power consumption to estimate the energy
savings the accelerator brings.

4. How can the custom accelerator improve the energy-efficiency of the
complete system?

This thesis evaluated the energy-efficiency of the accelerated system under dif-
ferent architectural configurations of the system and the following conclusions were
drawn:

• Optimizations which lead to a slower clock should be avoided, since they
result in a overall slower device.

• Pipelining is a very good optimization technique, unless it results in a slower
clock.
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• With equivalent memory systems, the Accelerator achieves better perfor-
mance and energy-efficiency than the CPU implementation.

– For BRAM implementation, the ACC achieves 3.5x increase in energy-
efficiency and improves latency by 21%, even if accelerator’s frequency
is 4.7x less than that of the CPU.

– For accessing DDR directly, the dual-ported ACC proves to be 1.5x
faster and 2.15x more energy-efficient, even if the ACC runs at a fre-
quency 5.3x less than the CPU. If the clock frequencies are matched at
100 MHz, the accelerator is 3.6x faster and 3x more energy-efficient.

• The CPU using the L2 cache is the most energy-efficient configuration of
the system. Enabling the cache results in 7.6x better performance and 34x
better energy-efficiency. Such a great improvement is due to the reduced size
of the input data set, that can completely fit into the L2 cache. This result
illustrates that the LBM as a member of Structured Grids makes good use of
the cache hierarchy.

• The ACC can access the caches through the Accelerator Coherency Port,
but performs much worse than accessing the DDR directly through the High-
Performance slave ports. This may be explained by the fact that the ACP
only ensures coherency, without actually using the cache hierarchy. In other
words, it scans the caches on read, but does not write the data in the cache
after a miss.

As a general conclusion, moving to a heterogeneous multi-core system, contain-
ing special-purpose accelerators proved to be an effective solution to increase the
system’s performance and energy-efficiency.

6.2 Future Work

The results of this work clearly show that the cache hierarchy greatly improves
performance and hence energy-efficiency for a member of the Structured Grids
dwarf. To be able to accelerate such a system, the main step in future work is to
make the accelerator use the complete cache hierarchy, as if it was the third core
of the CPU.

The next step would be analysing the algorithms of different members of the
Structured Grids dwarf to identify commonalities which could be implemented as
hardware accelerators. These accelerators should be configurable to a degree that
they cover several use-cases without increasing their complexity too much. If the
accelerator becomes much bigger, it consumes more power and the gain in energy-
efficiency may be lost. Instead, another specialized core can be implemented.
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Appendix

Attached to this thesis are the Vivado HLS and the PlanAhead projects for the
different configurations of the system. The directory structure is presented below:

• planAhead – The PlanAhead project folder

– lbm_acp – The Optim Accelerator accesing the data in DDR using the
Accelerator Coherency Port

– lbm_ddr_default– TheDefaultAccelerator accesing the data in DDR
using the High-Performance Slave Ports.

– lbm_ddr_optim – The Optim Accelerator accesing the data in DDR
using the High-Performance Slave Ports.

– lbm_dual – The Dual Accelerator accesing the data in DDR using the
High-Performance Slave Ports.

– lbm_bram_optim – The Optim Accelerator accesing the data in BRAM

– get.sh – The bash script to log the voltage measurements.

– measure.c – The C program to post-process the voltage measurements
log file and calculate the execution time and average power consumption.

• vivado_hls – The Vivado HLS project folder

– lbm_dual – The Dual Accelerator

– lbm_optim – The Optim Accelerator

In each PlanAhead project, of particular interest are the following files and
directories:

lbm_dual.sdk/SDK/SDK_Export/ – The location of the software source files.

lbm_dual.sdk/SDK/SDK_Export/proc_module_hw_platform/system.bit– The bit-
stream to program the FPGA.

lbm_dual.sdk/SDK/SDK_Export/hw/ps7_init.tcl – The Tcl file sourced in the
xmd console to setup the system.
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lbm_dual.srcs/sources_1/edk/proc_module/pcores/ – The folder containing
the accelerator IP in pcore format.

xmd.tcl – This file is sourced in the xmd console to program and setup the Accel-
erator.

gdb.in – This file is sourced in the gdb console to upload the application executable
file and control the measurement scripts.
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J., Lefohn, A., and Purcell, T. J. A Survey of General-Purpose Com-
putation on Graphics Hardware. Computer Graphics Forum 26, 1 (2007),
80–113.

[18] Sampson, J., Venkatesh, G., Goulding-Hotta, N., Garcia, S., Swan-

son, S., and Taylor, M. Efficient complex operators for irregular codes. In
High Performance Computer Architecture (HPCA), 2011 IEEE 17th Interna-
tional Symposium on (2011), pp. 491–502.

[19] SCPI. Standard Commands for Programmable Instrumentation (SCPI) Con-
sortium. http://www.ivifoundation.org/scpi/, 2013.

[20] Standard Performance Evaluation Corporation (SPEC). http://www.spec.

org/, 2006.

[21] SPEC2006. Lattice Boltzmann Method (LBM). http://www.spec.org/

cpu2006/Docs/470.lbm.html, 2012.

[22] Venkatesh, G., Sampson, J., Goulding, N., Garcia, S., Bryksin, V.,

Lugo-Martinez, J., Swanson, S., and Taylor, M. B. Conservation cores:
reducing the energy of mature computations. In Proceedings of the fifteenth

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,768&Prod=DIGILENT-PLUGIN
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,768&Prod=DIGILENT-PLUGIN
http://view.eecs.berkeley.edu/wiki/Dwarfs
http://www.eembc.org
http://alioth.debian.org/projects/minicom
http://alioth.debian.org/projects/minicom
http://www.spec.org/
http://www.spec.org/
http://www.spec.org/cpu2006/Docs/470.lbm.html
http://www.spec.org/cpu2006/Docs/470.lbm.html


BIBLIOGRAPHY 77

edition of ASPLOS on Architectural support for programming languages and
operating systems (New York, NY, USA, 2010), ASPLOS ’10, ACM, pp. 205–
218.

[23] Venkatesh, G., Sampson, J., Goulding-Hotta, N., Venkata, S. K.,

Taylor, M. B., and Swanson, S. QsCores: trading dark silicon for scalable
energy efficiency with quasi-specific cores. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture (New York, NY,
USA, 2011), MICRO-44 ’11, ACM, pp. 163–174.

[24] Wikipedia. Lattice Boltzmann Method (LBM). http://en.wikipedia.org/
wiki/Lattice_Boltzmann_methods, 2012.

[25] Wu, L., Weaver, C., and Austin, T. CryptoManiac: a fast flexible ar-
chitecture for secure communication. In Proceedings of the 28th annual inter-
national symposium on Computer architecture (New York, NY, USA, 2001),
ISCA ’01, ACM, pp. 110–119.

[26] Xilinx. ChipScope Pro. http://www.xilinx.com/tools/cspro.htm, 2012.

[27] Xilinx. LogiCORE IP AXI Interconnect (v1.06.a). http://www.xilinx.com/
support/documentation/ip_documentation/ds768_axi_interconnect.

pdf, 2012.

[28] Xilinx. Vivado Design Suite User Guide: High-Level Synthesis. http://

www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/

ug902-vivado-high-level-synthesis.pdf, 2012.

[29] Xilinx. Zynq-7000 All Programmable SoC: Concepts, Tools and Techniques
(CTT). http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_3/ug873-zynq-ctt.pdf, 2012.

[30] Xilinx. Vivado Design Suite. http://www.xilinx.com/products/

design-tools/vivado/index.htm, 2013.

[31] Xilinx. Zynq-7000 All Programmable SoC. http://www.xilinx.com/zynq,
2013.

[32] Xilinx. Zynq-7000 Overview. www.xilinx.com/support/documentation/

data_sheets/ds190-Zynq-7000-Overview.pdf, 2013.

[33] Xilinx. Zynq-7000 Technical Reference Manual. http://www.xilinx.com/

support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf, 2013.

[34] Xillinux: A Linux distribution for the Zedboard. http://xillybus.com/

xillinux/, 2012.

[35] Zedboard. http://www.zedboard.org/, 2012.

http://en.wikipedia.org/wiki/Lattice_Boltzmann_methods
http://en.wikipedia.org/wiki/Lattice_Boltzmann_methods
http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/support/documentation/ip_documentation/ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2012_2/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug873-zynq-ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug873-zynq-ctt.pdf
http://www.xilinx.com/products/design-tools/vivado/index.htm
http://www.xilinx.com/products/design-tools/vivado/index.htm
http://www.xilinx.com/zynq
www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://xillybus.com/xillinux/
http://xillybus.com/xillinux/
http://www.zedboard.org/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Questions
	Accelerating Applications on Xilinx Zynq
	Contributions
	Thesis Organization

	Background
	Accelerating for Energy-Efficiency
	Berkeley Dwarves
	Xilinx Zynq-7000 System-on-Chip

	Implementation
	Preparing the Application
	Pre-synthesis Validation
	High-Level Synthesis (HLS)
	Interface Synthesis
	Specifying the Bus Interfaces
	Default Accelerator
	AXI Master Interface
	AXI Slave Interface
	First Optimization
	Synthesising the Accelerator

	Optimized Accelerator
	Dual-Port Accelerator

	Post-synthesis Verification
	Hardware Design
	The BRAM Implementation
	Accessing DDR with High-Performance Slave Ports
	Accessing DDR with Accelerator Coherency Port

	Software Design

	Methodology
	Power Measurements
	Measurement Setup
	Measuring Idle Power
	Measuring Application Power

	Running on Different Hardware
	Tweaking Energy-Efficiency

	Results
	Accelerator Implementations
	LBM Running on ARM
	LBM Running on ACC
	LBM with Data in BRAM
	LBM with Data in DDR

	Conclusion and Future Work
	Conclusion
	Future Work


