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In gratitude to Jesus,

who pin-pointed answers
unkown to researchers.

Where then does wisdom come from?
And where is the place of understanding?

Thus it is hidden from the eyes of all living
and concealed from the birds of the sky. [...]

God understands its way, and He knows its place.
For He looks to the ends of the earth

and sees everything under the heaven.
Book of Job 28; 20-24
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Sammendrag

Det finnes i dag ingen gode verktøy for søk i bioemedisinske ontologier. I denne mas-
teroppgaven presenterer vi et verktøy kalt ontoWiz, som gir en ytelsesforbedring på mer
enn seks størrelsesordner. Vår tilnærming har forsøkt å forenkle anvendelsen av verktøyet
gjennom et brukervennlig grensesnitt uten å gå på bekostning av korrekthet, ytelse, eller
tilpasningsevne til fremtidige krav, derav ontoWiz som er utformet for søk biomedisinske
ontologier uten å være begrenset til disse.

Programvaren som er utviklet i løpet av arbeidet har blitt tilgjengeliggjort via world

wide web, i den hensikt å fremme reproduserbarhet for andre forskere, samt å gjøre ytelses-
vurderingene relaterbare til egenskaper ved praktisk anvendte ontologier.

Ytelsen i ontoWiz stammer fra vår integrasjon av algoritmer og minneaksess-teknikker.
OntoWiz støtter ontologiresonnering med høy ytelse, som er oppnådd gjennom forhånds-
beregning av spørringer før de blir stilt, dvs. igjennom pre-prosessering av ontologier.
I denne masteroppgaven utvikler vi en algoritme for slik pre-prosessering. Algoritmen
senker antallet minneaksesser vesentlig i sammenligning med tidligere tilnærminger, dvs.
en betydelig ytelsesforbedring for ontologiresonnerings-oppgaver.

Grensesnittet til ontoWiz tillater brukere å tilpasse regler for pre-prosesseringen, for
slik å støtte viktige oppgaver innenfor ontologiressonering. Selv om regelanvendelser ikke
utgjorde del av den opprinnelige oppgaven, forsto vi underveis i vårt arbeide betydningen
av denne utvidelsen, dvs. innenfor bruksområdet til vårt program. Resultatet av vårt
arbeid er et program som dekker oppgaver som vanligvis regnes for uhåndterbare, slik
som konstruksjon av komplekse tillukninger av ontologirelasjoner i sanntid.

Masteroppgavens Oppgavebeskrivelse

ONTO-PERL (OP) er et program skrevet i Perl, et program som kun tillater enkle søk i

ontologier som har egenskapene til et partielt ordnet set. Eksempler på enkle søk som OP

støtter er å finne skjæringspunktet, uionen eller korteste stier mellom et gitt antall vertexer.

OP ble opprinnelig laget som et program for å konvertere mellom ulike ontologiformater,

men blir nå brukt som verktøy for å søke i store ontologier. Som en konsekvens av dette

går OP veldig tregt. Denne masteroppgaven vil foreslå og teste en forbedret algorithme og

programvarearkitektur for søk i store ontologier. Spesifikt skal algoritmen og programmet

som blir utviklet klare å svare på søk vedrørende skjæringspunkt, uion og korteste-sti i et

partielt ordnet set.
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Summary

The field of biomedical ontology reasoning is hampered by the limitations of slow tools.
In this master thesis we present a novel tool named ontoWiz, which outperforms other
software by more than six orders of magnitude. Our approach has sought to balance a user
friendly interface without compromising correctness, performance or adaptability for fu-
ture requirements, ontoWiz is designed for biomedical ontologies without being constrained
by them.

The software developed in the course of this work has been made available on the
world wide web, in the interest of enabling other researchers to reproduce our results, or
relate the performance analysis to properties of real-world ontologies.

The performance of ontoWiz stems from our integration of algorithms and memory
access techniques. ontoWiz supports high-performance ontology reasoning through calcu-
lation of subsets of queries before they are asked, i.e. through an ontology pre-processing.
This thesis develops an algorithm to perform such pre-processing. The algorithm lowers
the number of memory accesses significantly in comparison to previous approaches, which
provides significant performance improvements for ontology reasoning tasks.

Through the application interface of ontoWiz we allow the user to configure the rules
of the pre-processing, without limiting the set of pre-computed queries. Although rule
application was not considered in the original task description, it was found in the course
of this work that including rule applications was necessary in order to cover common tasks
in the problem domain. With this extension of the scope, we have constructed a program
which covers tasks commonly held to be intractable, such as the construction of complex
closures of ontology relations in real-time.

The Task Description of the Master Project

ONTO-PERL (OP) is a Perl software for basic querying in ontologies that are represented

as partially ordered sets. Examples of such queries are finding intersections, unions, or

shortest-paths given a set of vertices. OP was originally designed for the purpose of pars-

ing ontology specifications, but is currently used to query large ontologies. Consequently,

OP currently has severe performance issues. This master project will propose and test an

improved algorithm and software architecture for querying large ontologies. Specifically,

the algorithm and software should handle intersections, unions, and shortest-path queries
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in partially ordered sets.
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Chapter 1
Introduction

1.1 Motivation

Ontologies constitute an indispensable component of modern knowledge management.
An ontology holds a set of collected facts, and the relations between these facts[33]. An
example of an ontology is a tree of individuals, such as human diseases or feeding patterns
of animals. Ontologies are amenable to computation and thus provide a way of answering
complex questions. Example of questions are:

1. What are the components of a cell that are directly involved in the cell’s metabolism?

2. How many generations have elapsed on average since the first Norwegian entered
Norway?

3. Does the West Nile virus[44] infect squirrels?

Answering the above questions implies an investigation of the relatedness of the indi-
viduals in the ontology. The investigation implies following all of the relations until the
answer is found.

The mathematical model underlying ontologies is the graph, which is a set of rela-
tions, where a singular relation is understood as a pair of connected individuals from the
ontology. A graph uses the term vertex to describe ontology’s individuals. Edges in a
graph represents the linkage between the vertices. When a direction is important to the
edges, they are denoted as arcs. An ontology is understood as a graph with arcs, i.e. a
directed graph. A properly designed ontology should not contain cycles, in this case it is
a directed acyclic graph (DAG). , This is because cycles make inferencing and querying
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hardly possible. Often we are interested in relating vertices connected through particular
types of arcs. An arc is given a label in order to provide an interpretation of the relation,
e.g. a Norwegian is a human or a Norwegian is part of humanity.

Connecting different types of arcs requires a set of connectivity rules. As various re-
search communities are involved in both ontology engineering and exploitation, different
standards expressing the connectivity rules evolved[41]. Each standard represent an on-
tology format, and each ontology format provides a syntax defining (among others) the
arc labels. Examples of ontology formats are the Open Biological and Biomedical On-
tologies Format (OBOF), Ontology Web Language (OWL) or the Resource Description
Framework Schema (RDFS). .

Handling of ontologies requires awareness of:

1. the differences in the ontology structures, e.g. as seen for the ontologies stored in
OBO, OWL or the RDFS format.

2. how ontologies are translated into graphs without loss of information.

3. the set of rules defining the connectivity between distinct arc labels.

4. knowledge of what makes the process of reasoning slow.

5. approaches for reducing the time cost of reasoning (in the ontology) and how the
approaches may be translated into high performing tools.

The importance of ontologies and efficient handling thereof increases every year [15,
41]. Both the number of ontologies in use and the sizes thereof are constantly growing.
The steadily growing impact of ontologies can be illustrated by the fact that the volume
of genome annotations with terms from Gene Ontology, the most widely used biomedical
ontology, has risen from 6.0 M in 2006 to 77.8 M in 2012 [56]. This makes highly efficient
automated ontology reasoning of utmost importance.

However, currently reasoning in large and complex ontologies is often extremely time
consuming. The computationally demanding parts of reasoning in ontologies stem from
the complexity and number of interrelated vertices. Examples of time/memory consuming
operations are:

1. finding the intersection of union of sets of vertices,

2. discovering the ancestors and descendants of a vertex,

3. finding the shortest path(s) between two arbitrary vertices.
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The bottlenecks, the computationally demanding parts of ontology reasoning, make rea-
soning on large ontologies at best semi-tractable[39].

At the same time, applications in bioinformatics are often developed in high level
languages by people without knowledge of well established algorithms. Therefore, we
expect the suboptimal performance to be additionally confounded for by:

1. problems with efficient handling of big data sets, i.g. the number of relations to
evaluate,

2. performance lag (i.e. overhead) due to the programming languages abstraction from
the memory layout of modern computers (e.g. the high level implementation of as-
sociative arrays in Perl),

3. failure to use well established in the field of computer science algorithms for high
performance querying.

Indeed, our preliminary observations confirm a wide spread incidence of random memory
access and redundant operations in some applications (Supplementary material).

Therefore, we decided to develop a new approach to querying knowledge in (biomed-
ical) ontologies. The objective was to build a high performance generic tool that could
be plugged in a variety of exiting applications, including those developed in high level
languages. This would combine very efficient querying with the ease and convenience of
maintenance and further development.

1.2 Concept

The key component in our approach is an engine designed to deliver maximal performance
by making use of highly optimized data structures to target the computationally most in-
tensive elements of logical reasoning in ontologies, addressing specific cost constraints.

Naive data structure implementations are poorly suited to the hierarchical memory
structure of contemporary computers, affecting the observed performance of algorithms
with regard to the number of operations (e.g. the “Quick Sort” algorithm[34] for the task
of hierarchical sorting). When working on data, each processor loads from the memory,
and the rate of data transfer can affect execution speed dearly. In recent years this per-
formance issue has grown more acute, and the problem is expected to continue for years
to come [8] – since 1970s the processor speed has annually increased by a factor of 50%
while the performance of memory speed has increased by only 7% [48]. To address the
performance limitations of accessing large memory, modern computer architectures store
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smaller subsets of data in a hierarchy of successively faster, but smaller, cache memories
[1, 8]. The most immediate optimization strategy for memory intensive operations is to
arrange tool’s memory accesses in order to maximize the utilization of this hardware (i.e.
the cache memory). One technique is to exploit the high probability of spatial proximity
in hardware near-future-accesses. Applying the principle of accessing memory which has
spatial proximity, implies accessing a set (e.g. of ontological relations) in the same order
as it was stored. For operations on data sets exceeding the cache limit, differences in the
memory access patterns can account for a significant part of the run time. With appropriate
spatial locality in the access pattern, it is possible to maximize the utilization of hierarchi-
cal cache memory. This implies that future requests can be pre-loaded in cache memory,
from which we surmise that the design of the data structure is an important performance
consideration. Fitting cache-aware access patterns into an efficient algorithm enables min-
imizing the number of cache misses. A cache miss is understood as a memory request
which was not found in the hierarchical cache structure, and therefore is retrieved from
the considerably slower main memory. Improving the memory access patterns requires
systematizing of the data, which is a pre-condition for exploiting the likelihood of spatial
locality.

Reduction of the cache miss frequency does not directly translate into an efficient
data structure for reducing query time due to the added work of ordering the data. The
tractability of an improved approach therefore depends on the total running time of the
alternative to be lower, i.e. compared with the naive implementation. Looking at the set of
operations required for our proposed cocO(n) structure (see below), an important operation
is comparison of lists. When unordered lists are compared, both of length |V | with each
element vi ∈ V tested against vk ∈ V, i 6= k, the approximate running time becomes |V |2,
corresponding to a naive algorithm performing intersection or union of related vertices on
a set of vertices. Given the importance of the performance impact, a refined algorithm
would address the option of list sorting at building time vs at reasoning time.

Improving the speed of calculating intersections, efficient memory representations
have been proposed by Briggs et al.[18]: when storing the relations in a bit vector, op-
erations of the type intersection and union are performed fast, however at the cost of high
implementation complexity. Briggs et al. discuss the alternative of combining a matrix
representation of the relations with a dense set, i.e. for providing fast look up to impor-
tant fields in the matrix representation. The benefit of this approach is a lower operation
cost for finding the intersections or unions, and finding the ancestors or descendants. The
problem however with both approaches is the use of non-contiguous memory, resulting in
unpredictable cache access patterns, which increases the running time of the software.
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Considering the added complexity of finding the shortest/longest path between two
arbitrary vertices, the need for an alternative structure is further underlined. We expect
the optimized queries on such a structure would be of a complexity far lower than |E|
operations, i.e. compared to the naive implementation where in a worst case all of the E
relations in the ontology must be explored before the longest path is calculated. With dis-
tinct parts for building and reasoning, the resulting implementation should offer efficient
execution using known memory handling approaches[25]. By carefully building the data
structure using predictable memory access patterns, a considerable speed improvement in
the resulting reasoning is expected.

Thus, the speed improvement is due to a transformation of (a subset of) ontology into
a special purpose data structure. The data structure is generated once by iterating through
the ontology and extracting relevant properties. Afterward it could be used repeatedly to
answer queries (i.e. reasoning tasks). The procedure of ontology iteration is what we call
pre-processing. The pre-processing results are expected in a running time ofO(n) for each
distinct query performed, where O is the upper bound of the asymptotic running time, and
n is the number of |V | vertices in the ontology.

The core engine was developed as a C++ library supporting multithreading, which we
call cocO(n) (pronounced k@ku:noet, where the letters correspond to the International Pho-
netic Alphabet (http://en.wikipedia.org/wiki/International_Phonetic_
Alphabet)). To be used cocO(n) should be integrated into a three tiered application as
exemplified below.

We have chosen the ONTO-PERL[4] library as our use case to demonstrate the validity
of our approach. ONTO-PERL is a generic API for handling ontologies which provides
rather comprehensive functionality for ontology engineering and also some querying ca-
pability. However, the latter suffers from the performance issues described above. We
developed an application that emulates ONTO-PERL taking the advantage of cocO(n),
whose architecture is explained in Table 1.1:

Ti
er

Description

1 Using the existing ONTO-PERL user interface for parsing, exporting and user
interaction,

2 A middle layer designed as a loose coupling between the different layers of the
user-interface and memory schemes for ontology storage.

3 The C++ core performing the time-consuming operations, named cocO(n).

(Continued on next page.)

http://en.wikipedia.org/wiki/International_Phonetic_Alphabet
http://en.wikipedia.org/wiki/International_Phonetic_Alphabet
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Table 1.1 – continued from previous page.
Ti

er

Description

Table 1.1: The three tiered architecture of ontoWiz.

1.3 Outline

Below is an outline of what follows this Introduction. Chapter 2 explores the features of
ontologies most relevant in the context of the concept presented above and concludes with
concrete decisions on the implementation of the concept. Chapter 3 contains a brief study
of applications in the field of reasoning, in order to identify algorithms and applications
that seem applicable. Providing a framework for investigating these assumptions, chapter 4
provides the design of micro benchmarks measuring the effect of memory access patterns.
Chapter 5 describes conclusions drawn from this, i.e. the description of important attributes
of ontology-access-patterns.

Chapter 6 describes the cocO(n) algorithm and data structure, which is inspired by the
work presented in the pre-project. Chapter 7 includes a description of ontoWiz. Highlight-
ing the knowledge gained from the above chapters, chapter 8 summarizes the important
findings of our study. The report spans the domains developments, practices, techniques,
solutions, etc. At the end a bibliography, the list of external tools which we use is pro-
vided in Appendix D. An analysis of ONTO-PERL’s implementation and functionality is
provided in Appendix B. Appendix C provides a brief summary of the basics in the field
of computational algorithms, before including the Index at the reports last pages.



Chapter 2
Assessment of the

domain of discourse

Given the goal of this project, the development of a high performance tool for inferencing
in ontologies, the domain of discourse is naturally the domain of ontologies taken as such.
It is obviously mandatory to carefully explore the domain of discourse before embarking
on the development. As the complete domain is really too broad it was important to choose
a representative set of ontologies. We opted for ontologies developed in the area of the life
sciences because of their wide spread use and diversity. More specifically we focused
on ontologies which are members or candidates of the OBO Foundry[63], which mostly
follow closely good principles of ontology design. The most relevant metrics obtained for
these ontologies were used in the subsequent decision making. The conclusions of this
analysis are expected to be broadly applicable.

Note: the definitions of ontology related terms used in this chapter can be found in the
Glossary.

2.1 Ontologies and metrics

Our main objective for ontology benchmarking was to provide estimates of memory con-
sumption. More precisely, we wanted to see if it would be possible to load all the necessary
information either into the cache or at least the main memory. The estimates were made on
the basis of a number of ontology metrics that were deemed most relevant with respect to
memory consumption. All memory estimates presumed 4B per term and 12B per relation.
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From the list of ontologies featuring on the web site of the OBO Foundry we selected
66 which are used in the Biogateway project[6], since those all passed rigorous quality con-
trol within the project. Nevertheless, 4 ontologies were found to contain cycles and thus
were excluded from further analysis. The complete set of ontologies is found at https:
//code.google.com/p/ontowiz/source/browse/#hg%2Fml_ontology%

2Fsample_data. A detailed study of the ontology metrics and the 128 parameters we
analyze are included at https://code.google.com/p/ontowiz/wiki/
PerformanceBenchmark. When considering the details of all the 62 analyzed on-
tologies, we observed several requirements regarding our implementation. Below is a
brief summary of our observations.

First of all we quantitated the most basic metrics - the number of terms, relations,
instances and relation types (Figure 2.1).

0 10 20 30 40 50 60
0

20,000

40,000
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Figure 2.1: Number of terms, relation, instances (left y-axis) and relations types (right
axis) per ontology.

Firstly, we observe that the number of relations relative to the number of terms is
rather low. Secondly, all the ontologies are completely devoid of instances, except the
Teleost Taxonomy Ontology. In the latter, for the total of 36,665 terms there exists only
8 instances (or objects in the owl-language). Thus, the structural evaluation of ontologies
will be limited to linkage between terms (denoted as classes in the owl language). Finally,
while the vast majority of ontologies use only a very limited number of relation types,
there are just a few which use a staggeringly broad range of relation types (up to 366).

https://code.google.com/ p/ontowiz/source/ browse/#hg%2Fml_ontology%2Fsample_data
https://code.google.com/ p/ontowiz/source/ browse/#hg%2Fml_ontology%2Fsample_data
https://code.google.com/ p/ontowiz/source/ browse/#hg%2Fml_ontology%2Fsample_data
https://code.google.com/p/ontowiz/wiki/
PerformanceBenchmark
https://code.google.com/p/ontowiz/source/browse/ml_ontology/sample_data/teleost_taxonomy.obo
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Storing the complete set of relation type transformations in memory would require a 366-
dimensional matrix. The memory required for such a matrix amounts to:

366366

1024 ∗ 1024
MB = 1, 6 ∗ 10932MB (where 1MB is 1024*1024B) (2.1)

which is astronomical and therefore prohibitive.

Our next concern was the memory footprint of storing all the explicit relations in mem-
ory, which is addressed in Figure 2.2:
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Figure 2.2: Stack plot of the size of memory required to store relations and terms.

The results presented in Figure 2.2 afford a couple of useful conclusions:

1. The complete ontology may reside in the memory, but not always in the smallest
cache.

2. Memory consumption is clearly dominated by relations.

Finally, we evaluated the tractability of building the collection of all possible paths
(CAPP). CAPP is calculated by first finding for each vertex all the paths in the ontology
containing the vertex and then aggregating the paths for all vertices, therefore CAPP is
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not a set and requires much more memory than terms and relations. Since each vertex
may belong to any number of paths the total number of paths can grow very high and thus
this operation may easily be the most memory intensive. If building CAPP is tractable
memory-wise, then it is safe to assume that building the ancestors/descendants set is also
feasible. The construction of CAPP is expected to be tractable if the memory growth is
below polynomial. Polynomial growth is understood as

ση (2.2)

where σ represents the average number of added paths and η the number of parent vertices
having the average number of paths. We estimate the local complexity (entropy) of the
paths as

∀i ∩ (paths(vi))

∀i ∪ (paths(vi))
=

∑
((vk ∈ ω)→ 1) , vk ∈ Φ[vi] , ω ∈ Ω[vj ]∣∣Φ[vi]

∣∣ (2.3)

where

• vi and vk are arbitrary vertices in the ontology.

• Ω holds the set of paths to the roots and

• ω is a simple path (i.e. set of vertices without furcation) to the root.

For each ontology Equation (2.3) is applied to every node and the complexity of CAPP
is produced by averaging over all nodes. The evolution of CAPP complexity is seen in
Figure 2.3:
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Figure 2.3: The relationship of CAPP complexity with ontology size.

Figure 2.3 clearly demonstrates the lack of polynomial growth (or any for that matter)
of the paths complexity with the size of the ontology and consequently we conclude that
storing all paths for each vertex in memory is likely to be possible.

2.2 Impact of Inference Rules

The ontologies in our benchmark set are identified by a set of of terms and relationships.
If the semantics of relation types are properly specified it is possible to define additionally
a set of inference rules, which allow to make implicit knowledge explicit. The ontologies
in the previous section were evaluated without applying rules. In this section we evaluate
the possible impact of application of rules on the design of cocO(n).

Our analysis capitalizes on the works by Smith et al.[62], Boeker et al.[17], Hoehndorf
et al.[35], Aranguren et al.[7] and Blonde[15] and attempts to:

1. support property-based evaluation of the benchmark ontologies (i.e. to validate con-
clusions drawn in the previous sub-section),

2. enhance algorithmic design by providing concrete examples of usage,

3. define the axioms required for proofs of correctness of of rule based queries.

Below we will be using the following notation:

• Latin capital letters denote vertices (terms/classes), and
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• Greek letters alphabet denote relation types.

As the assessed ontologies don’t use instances (see the previous section) we consider
only class-class relations. The definitions of semantics of relations are universally based
on instances. In the absence of instances the semantics must be specified explicitly in the
ontology, which is the case with the ontologies under investigation.

Description Logic’s inferencing is inherently based on the notion of all-some semantics
[62], therefore all relations in a properly designed ontology are expected to bear all-some
semantics. Informally, this means that if class A relates to class B by an all-some rela-
tion R then all instances of A must relate along R to at least one instance of B (a more
formal definition will be given later on in this section). Formally, the all-some property is
understood as

A
β−→ B ≡ a β,t−−→ b, ∀ {(a, t) ∈ A} ∧ ∃ {b ∈ B} (2.4)

where all of vertex A’s instances (i.e. individuals in DL) have at least one relation to B
(i.e. the rightmost vertex) at time t.

Below we define the semantic properties that will be used for making inferences.

Definition 2.2.1 of the anti-symmetric property:

Definition 2.2.1 (the anti-symmetric property).

{A,B} ∈ V is the vertices related by (2.5a)

{α} ∈ R with the property (2.5b)

(α ∩ {anti-symmetry}) 6= ∅ then α is anti-symmetric for (2.5c)

A
α−→ B which is not equal to (2.5d)

B
α−→ A illegal from anti-symmetry. (2.5e)

Rule: If vertex A is related to vertex B by an anti-symmetric relation α, and given the fact
that there does not exist any relation from vertex B to vertex A, then vertex B is not related
to vertex A.

Equation (2.5d) is an example of a relation. A relation is sometimes called a triplet,
i.e.
(
A,B, α

)
. From our study of ontologies, we know that the anti-symmetric property

from Definition 2.2.1 is covered by most of the ontologies in our benchmark set: a rela-
tion type is anti-symmetric if not stated as symmetric (http://oboedit.org/docs/
html/An_Introduction_to_OBO_Ontologies.htm#symmetry). The sym-
metric property is given by Definition 2.2.2:

http://oboedit.org/docs/html/An_Introduction_to_OBO_Ontologies.htm#symmetry
http://oboedit.org/docs/html/An_Introduction_to_OBO_Ontologies.htm#symmetry
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Definition 2.2.2 (the symmetric property).

{A,B} ∈ V are the vertices related by (2.6a)

{α} ∈ R with the property (2.6b)

(α ∩ {symmetry}) 6= ∅ then α is symmetric for (2.6c)

A
α−→ B which is equal to (2.6d)

B
α−→ A the result from symmetry. (2.6e)

Rule: If vertex A is related to vertex B by an symmetric relation α, then vertex B is related
to vertex A by relation type α.

Definition 2.2.2 implies that a symmetric relation provides the correct meaning irre-
spective of the interpretation order (i.e. the order in which the vertices are read). An
example is the relation “men are related to squirrels”, which also holds for “squirrels are
related to men”. The symmetric property describes knowledge between two entities (i.e.

vertices). When the knowledge of a relation describes the vertex itself, the relation is said
to be reflexive:

Definition 2.2.3 (the reflexive property).

{A,B} ∈ V is the vertices related by (2.7a)

{α} ∈ R given relation (2.7b)

A
α−→ B which has the property (2.7c)

(α ∩ {reflexive}) 6= ∅ then α is reflexive, with the implication (2.7d)

A
α−→ A the result from reflexivity. (2.7e)

Rule: If vertex A is related to an arbitrary vertex B by an reflexive relation type α, then
relation type α describes a property of itself (i.e. vertex A).

The properties covering symmetry, anti-symmetry and reflexivity describe inferences
regarding a single relation.

The type of inferences we are mostly interested in is generally referred to as rule chains
or compositions. Here is the most generic formulation of the chain rule: Definition 2.2.4:
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Definition 2.2.4 (the property of chains).

{α, β, µ} ∈ R is the set of relation types, (2.8a)

{α, β} ≺ µ where µ holds over α and β, and given relations (2.8b)

A
α−→ B

β−→ C then the new relation becomes (2.8c)

A
µ−→ C where µ is the result from property of chains. (2.8d)

Rule: If A is related to relation type B by α, B is related to C by relation type β, and
relation type µ holds over both α and β, then A is related to C by relation type µ.

The rule above has a number of very important sub-rules. Among those we are partic-
ularly interested in the rule known as ’priority over is a’: Definition 2.2.5:

Definition 2.2.5 (the priority over is a rule).

A
β−→ B

ζ−→ C are two concrete relations defined by (2.9a)

β ∈ {all-some} where β describes a set of relation types, and (2.9b)

ζ ∈ {is a, sub-class} the set of ζ relation types, (2.9c)

ζ ≺ β where relations described by β are also described by ζ: (2.9d)

A
β−→ C the result from the all-some property. (2.9e)

Rule: If A is related to B by an all-some relation type β and B is related to C by the
sub-class relation (is a) ζ, then A is related to C by β.

Another very important sub-rule of the rule of chains is the transitivity rule.

Definition 2.2.6 (the transitive property).

{A,B,C} ∈ V is the vertices related by (2.10a)

{α} ∈ R applied to the relations (2.10b)

A
α−→ B

α−→ C implicates (2.10c)

A
α−→ C the result of transitivity. (2.10d)

Rule: If A is related to B by a transitive relation α and B is related to C by a transitive
relation α then A is related to C by a transitive relation α.

If the transitive relation in question is ’is a’ we have the all important class subsump-
tion hierarchies.
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Similarly to class subsumption we can define property subsumption:

Definition 2.2.7:

Definition 2.2.7 (the property subsumption).

β ⊂ µ where β is a sub-relation of µ, and given relation (2.11a)

A
β−→ B then the relation becomes (2.11b)

A
µ−→ B where µ is the result from property-over-subsumption. (2.11c)

Rule: If vertex A is related to vertex B by a relation type β, and β is a sub-relation type of
relation type µ, then vertex A is related to vertex B by the relation type µ.

The rules formulated above form a minimal set of design requirements for supporting
inferencing in cocO(n)/ ontoWiz.

Now we estimate the impact of implementing rule support in cocO(n) on memory
consumption. Finding all ancestors and descendents for a term is an essential inferencing
operation which form the basis for numerous other reasoning tasks, therefore we estimated
the amount of memory required to store for each term in the ontology the complete sets of
ancestors and descendants (Figure 2.4:
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Figure 2.4: Memory requirements for storing ancestors and descendants for each term.
Estimates are given for all ancestors/descendants and for those along the relations ’is a’ or
’part of’ only.

In the previous section it was shown that storing information for each of the relation
types separately is out of reach. Consequently, we computed ancestors/descendants with-
out regards to the relation type (All ancestors/descendants in Figure 2.4). Yet, it is often



16/138 Chapter 2. Assessment of the domain of discourse

desirable to restrict the ancestry to a particular relation type. Therefore, we estimated as
well the additional memory cost of storing ancestors/descendants for a few selected rela-
tion types. The Figure show results for the two by far most important relation types in
ontologies - ’is a’ and ’part of’, which combined contribute more that 90% of the bench-
mark ontology’s relations. It is easy to see there are no hardware limitations for storing
ancestors and descendants in memory.

The analysis above confirms the feasibility of pre-processing ontologies and storing in
memory for each vertex the sets of:

1. ancestors and descendants without regard to relation type,

2. ancestor and descendant’s which are connected through distinct relation types, and

3. all possible ancestor paths.

The structural evaluation of the pre-processing suggested to stored the set of all unique
vertices and (non-rule-based) paths in memory, organized in contiguous memory blocks
to optimize the utilization of cache. The result of the analysis of the application of rules
indicates that it does not increase the memory consumption in a dramatic way, but that
it does increase the complexity of the algorithm. We conclude that the analysis of our
benchmark ontologies allowed us to define a practical design of cocO(n) (Chapter 7).

2.3 Structural requirements

The previous subsections evaluated structural features of benchmark ontologies, and im-
plications of applying rules to the benchmark ontologies. Translating this knowledge,
resulted in a set of structural requirements for ontoWiz and cocO(n), as outlined in Table
2.1:
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id

Background Description of Requirement Package

SR1 Identifiers in the ontology
are represented by strings.

Separate internal representa-
tion from actual implementa-
tion, e.g. map a Terms string
identifier into a number.

ontoWiz

(Continued on next page.)
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Table 2.1 – continued from previous page.
R

eq
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id

Background Description of Requirement Package
SR2 The front end ontology

model is not designed for
ontology reasoning.

Separate the internal ontology
representation from the repre-
sentation used in the task of
reasoning.

cocO(n)

SR3 Naive algorithms are used
for ontology reasoning.

Design specific algorithms
reasoning with minimal over-
head, and document both
their correctness and speed-
improvement.

cocO(n)

SR4 Implementation in our
use-case (ONTO-PERL) is
specifically designed for a
limited set of ontologies.

Design the packages using
strict separation between the
layers.

ontoWiz

and
cocO(n)

SR5 ONTO-PERL is integrated
in several packages.

Provide a functional interface
equal to ONTO-PERL, while
not constraining future devel-
opments of the API nor its in-
ternal representation.

ontoWiz

SR6 Build new ontologies from a
rule-set.

Enable the pre-processing to
build new ontologies from
user-applied rule-sets.

cocO(n)

SR7 Deliver high-performance
reasoning-support to op-
erations on arbitrary set
of vertices, such as find-
ing all connecting paths,
intersection, union, etc.

Build, for each vertex, ordered
sets of related vertices and
paths.

cocO(n)

(Continued on next page.)
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Table 2.1 – continued from previous page.
R
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id

Background Description of Requirement Package

Table 2.1: The structural requirements that is fulfilled during our implementation of
ontoWiz and cocO(n).

Table 2.1 defines the structural requirements of our implementation, i.e. the blueprint for
our work. All these requirements should ideally be met by ontoWiz and cocO(n). Essen-
tially we have now defined a layered set of system requirements, but not yet the interaction
between ontoWiz and cocO(n). Before we discuss that, we will first summarize what we
have stated so far:

1. Getting the content of an ontology, a parser is required. As we consider ONTO-
PERL efficient enough for ontology parsing, the ontology is parsed by ONTO-
PERL.

2. The ontoWiz interface is written in Perl, while ontoWiz’ underlying core is in C++;
the Perl–C++ conversion requires special purpose code to support the communica-
tion between the programming languages.

3. The task of ontology reasoning is performed by cocO(n). ontoWiz therefore sends
a simplified ontology-model to cocO(n), which generates an image of the ontology
for efficient support of ontology reasoning.

The layered interaction (between ontoWiz and cocO(n)) is defined by the steps of build-
ing the ontology model, and retrieving results from operations of ontology reasoning. The
first task is translating the data structure of the parser (e.g. ONTO-PERL) into accessible
data for ontoWiz. We expect the parser to store ontologies in sets of (complex Perl) objects.
Below we describe the overall details of the (back-and-forth) format conversion:

Step 1 The Perl part, i.e. the upper fragment of ontoWiz, performs a for-each call iterating
through the parsed ontology-object (i.e. the ONTO-PERL object):

Ontology transfer: The ontoWiz Perl object initiates its underlying C++ data object
(i.e. the one holding the complete ontology), by iterating through the parser’s
ontology object, and inserting each item in the C++ data object.



2.3. Structural requirements 19/138

Ontology gathering: The C++ data object is accessed from Perl using shallow
Perl-classes. A shallow Perl class stores only an index-reference to the un-
derlying C++ code. Explicit item-knowledge (e.g. of a Terms synonyms) is
retrieved using function-calls to the underlying C++-code (i.e. the Perl object
does not store the ontology).

Step 2 The C++ part interacts directly with a cocO(n) object. The process of transforming
the receiving Perl ontology consists of three sub-steps:

Step 2.1 Gathering data from the Perl part of ontoWiz and storing the objects using a
special-purpose generic model. For effective look-up and higher search speed,
the strings are converted into hashes, i.e. generation of name-index correspon-
dence is performed.

Step 2.2 The pre-processing step is executed when the complete ontology is re-
ceived, upon which a limited ontology model is sent to cocO(n). cocO(n) it-
erates systematically through the ontology, and for each vertex constructs and
stores in memory a set of ancestor paths and a set of related ancestors/descen-
dant vertices.

Step 2.3 Reasoning tasks are answered by a call to the cocO(n) object. As the glue
connecting the programming languages of Perl with C++ does not support
transfer of sets, set-items are transferred one-by-one (i.e. to the caller.) This ap-
proach makes it independent of the upper-level programming languages (sup-
ports calls made by programming-languages such as Python, Java, C#, etc.)

Step 3 At the time of query, the C++ part of ontoWiz returns the answer to the Perl-layer.
The Perl-layer translates the returned answer into objects with functionality similar
to what ONTO-PERL returns.

The above outline of the interface together with our specified requirements are suffi-
cient to start our first steps in building a tool for fast reasoning in ontological data.
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Chapter 3
Related Work

Ontology reasoning involves searches in massive graphs having on average a limited depth
and broad width. Ontology reasoning poses a special case in the field of algorithmic
design. Algorithmic design covers a broad field. The importance of ontology reasoning
prompted the development of several applications and algorithm. A short summary of our
findings from the literature review indicates that:

1. There does not yet exist an application for high-performance reasoning in biomedi-
cal ontologies.

2. Algorithms exist for general cases of biomedical ontology engineering. None of
these, however, are implemented in ONTO-PERL. The main reason for this was
the unawareness of the speed-impact of existing algorithms (which we know from
discussions with the authors of ONTO-PERL).

3. To our knowledge, there does not exist a specific algorithms or data-structure de-
signed to enhance the tasks encountered in ontology reasoning, for instance to per-
form operations of intersections, unions and longest paths.

Existing software approaches are examined (i.e. with regard to data structures and ability
for reasoning), followed by a survey of relevant algorithms and data-structures, where parts
of the survey are based on our previous work[24]. Combined with analysis of approaches
for speeding up memory handling (as seen in the next sections), the content of this section
forms the basis for our cocO(n) ontology reasoning algorithm.
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3.1 Software for Reasoning in Biomedical Ontologies

Supporting ontology construction/modeling, the Protege-2000 software does not focus on
performance (in the context of ontology reasoning). In the work of Berry et al.[14], a
query library for semantic graphs is presented: the library does not include data-structures
for cache-efficient data-access (i.e. in order to maximize utilization of computers). On
the other hand the HDT (Header-Dictionary-Triples) provides a tight representation of
semantic RDF graphs, without adding capability for reasoning. (Description of the HDT
algorithm is found at http://www.w3.org/Submission/2011/
SUBM-HDT-20110330/).

Limiting the set of operations, Harispe et al.[32] provides a tool measuring the se-
mantic relatedness between vertices. In a similar fashion Hollunder et al.[36] identify
graph patterns using substructure-frequency-counting. At the user application level the
java package OWL API supports operations similar to ontoWiz. In handling of the data, the
two packages differ, as the ontoWiz uses a special-purpose reasoning tool for shortening
the time of queries (i.e. the cocO(n) package). This is in contrast to the generic data model
of the OWL API. Handling huge RDF graphs, Priete et al.[53] propose the rdfhdt software,
but with its limited set of integrated queries, its expression-power is considerably lighter
compared to both ONTO-PERL and OWL-API.

Optimizing the speed of reasoning without concern about memory access patterns,
Haarslev et al.[31] presents an algorithm for rule-based calculation, e.g. of transitivity.
The approach applies pre-processing, but only to a limited degree, by caching results
for improving the query-speed (of similar queries). Extending the set of optimization-
techniques to the set of sub-sumption rules, Horrocks et al.[38] provide a set of algorithm
which deliver a substantial performance impact, without proposing nor comparing the im-
plementation to approaches for optimal memory accesses.

Combining a tightly coupled data model with full-fledged reasoning, Metarel[16] is
developed for ontology reasoning. Making ontologies consistent, and preparing ontolo-
gies for efficient reasoning, Metarel utilizes ONTO-PERL’s functionality for transitive
closures[5]. Comparing Metarel with ontoWiz, Metarel accepts a higher overall time and
memory consumption for the benefit of allowing more specific queries. This is in contrast
to ontoWiz’ limited, but time and memory efficient, set of queries. Of special interest in this
context is the choice of internal structures representing the data, where Metarel uses the
RDF-triple-store and SPARQL (http://www.w3.org/TR/sparql11-query/) as
its knowledge representation language, while ontoWiz uses a special-purpose structure (i.e.

the cocO(n) package) and Perl function calls for the task of answering queries.

A scalable implementation of RDF inferences on a huge number of CPUs is described

http://www.w3.org/Submission/2011/
SUBM-HDT-20110330/
http://www.w3.org/TR/sparql11-query/


3.2. Algorithm and Memory Structure 23/138

by Goodman et al.[29]. The implementation, which is dedicated to the architecture of Cray
XMT supercomputers, provides functionality similar to Metarel. The major weakness
of Goodman’s tool, is its focus on hiding memory latency through a large number of
streams on a given processor, as commodity processors with complex core designs do
not provide optimal conditions for this technique[29]. In contrast, both Metarel and our
implementation does not depend on special-purpose hardware, making both tools available
for integration into existing pipelines.

3.2 Algorithm and Memory Structure

We provide here an analysis of the applicability of known algorithms and data-structures
in the field of computer science, given the context of biomedical ontology reasoning. For
those readers un-familiar with graph-theories, we recommend reading our brief summary
of algorithms and data-structures (found at page 123). But first an overview of the known
facts regarding the costs and types of memory handling.

Chilimbi et al.[20] provides conceptualized argumentation for the weakness of pointer-
based implementations of graphs in a general context. Looking at the specific systems,
Bader et al.[9] discuss the difference of memory architecture, stating how efficient im-
plementations depend on a given system such as the Cray MTA-2[2]. Stressing this con-
cept, the point of sustaining the ability in increasing memory bandwidth is promoted[50].
Techniques utilizing the hardware operations for pre-fetching and caching are discussed
in several papers[40, 26] and books[64, 21]. In a general case typical graph implemen-
tations have irregular structure, causing pre-fetching to not give any improvement on the
performance[9].

Methods have been proposed to combine a low-latency data structure with specific al-
gorithms for solving performance issues. An interesting alternative which partially covers
our work, is described in implementations of single source shortest paths problems (page
126). The algorithm described by Bellman and Ford (BF)[13] evaluates all of the edges
as an alternative to the above greedy approach, answering the problem of finding all paths
given a single source. A weakness of the BF algorithm in our context is the concatenation
of temporary paths, as it imposes the requirement of frequent updating for each of the
vertices involved.

Single source shortest paths problems are generally described by the Bellman-Ford
and Dijkstra’s algorithm[22]. The former accepts negative weights on an arc connecting
two vertices, giving that Dijkstra’s algorithm is most similar to our work. In comparison to
the others, BF does not use a greedy approach, nor does it only find the best path, but as its
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approach uses concatenation of temporary paths, it imposes a requirement frequent updat-
ing for each of the vertices involved. Extending the problems size to cover all sources, the
work of Floyd and Warshall[27] and Johnson[42] (i.e. Johnson’s algorithm) suggest alter-
natives, but as both accept negative edges and the first expects a dense graph of vertices, an
overhead compared to our problem exists: None of the above described algorithms suggest
methodology for calculating paths between all vertices (and not only the shortest).

Neither the algorithms by Floyd and Warshall nor Johnson suggest methods for calcu-
lating paths between all vertices (and not only the shortest). Given the problem of finding
the path of minimal length connecting vertices (s, t) in large graphs, Berry et al.[14] pro-
pose using the “Breadth-First-Search” (BFS)[46, 55] from both ends.

3.3 Recommendations for the Algorithmic Structure of
cocO(n)

We have now reviewed and inspected a set of:

1. important applications,

2. techniques for memory handling and

3. algorithms for generic cases of ontology reasoning.

The result of our above analysis is a method for finding both the set of related vertices, and
all paths interconnecting all sources: the set of all paths between all vertices is calculated
by replacing the “best-first” approach in Dijkstra’s algorithm with “evaluate all”.

Using Johnson’s algorithm as our model, the edge-adjusting inclusion of the BF al-
gorithm is avoided, as the arc-weights are non-negative. Our approach is inspired by the
effort by Berry et al. of maximizing ontology reasoning through ontology heuristics, i.e.

by designing the ontology pre-processing for which the ontology reasoning tasks is ap-
plied to. Making the modified algorithm of Dijkstra perform the calculation of shortest
paths, the result is an implementation without the memory/time cost of the non-matrix
algorithms described above.

The algorithms of Dijkstra and Prim apply a heap as their memory storage scheme,
which is a tree shaped memory storage scheme applied with properties, such as the sorted
property. The cost of our approach is further reduced if we replace the heap with a dy-
namically sized list for storing and extracting intermediate data, which is implemented
combining the BFS with a queue for each vertex accessed in cocO(n).
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Incorporating into our approach a selection of the discussed algorithms and memory
structure, we are able to meet the algorithmic requirements (i.e. SR7 from Table 2.1 at
page 18) for the cocO(n) algorithm. The pre-processing algorithm that we suggest:

• is an adoption of Dijkstra’s algorithm, where the “best-first” approach is replaced
by an “evaluate all” strategy;

• applies Johnson’s algorithm, which is run without the adjustment of the negative
cycles;

• avoids the memory/time cost having a heap storing/extracting intermediate data, as
the non-matrix algorithms of Dijkstra and Johnson do.

Before outlining the details of the cocO(n) algorithm, and its formal proof, we are inter-
ested in evaluating the cost of memory access for our ontology benchmark set. The pre-
processing of our cocO(n) algorithm implies storing ontological properties in memory. In
the next section we provide a methodology of testing beneficial access-patterns. The goal
is to assess the usefulness of our suggested approach, i.e. with regard to the importance of
the structure storing the pre-processed results.
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Chapter 4
Test Methodology for Impact of

Data Representation

In this chapter we provide methodology for analyzing the cost of storage schemes, includ-
ing the random-access-pattern performed for ONTO-PERL, before applying the method-
ology to different data-sets in the next chapter. The methodology covered in this chapter
was also presented in our previous work[24].

4.1 Why a Benchmark Analysis is of Importance

Until now we have assumed that the design of a data structure has a relative high impact
on an algorithms performance. These assumptions are based on

1. informal observations of running-time (when reasoning on big ontologies),

2. analysis of our ontology-benchmark and

3. a review of important research in the field of memory handling.

Accepting correctness of these assumptions, the implicit conclusion (that a well-implemented
data structure speeds up the software’s performance) might still be wrong:

1. The long running time may be due to hidden complexity unrelated to memory han-
dling.

2. The relative path-length may overall be short. One of cocO(n)’s goals is reducing
the time for finding longest paths: if the speed-improvement increases with longer
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path-lengths, short paths would decrease the performance impact. We expect a se-
quence of connectivity-queries to be called by the user. As the order in which terms
are queried (for their paths) are unknown, the users access pattern can not be in-
corporated into the design, thereby the benefit of the pre-processing (i.e. improved
memory handling) may also be unknown.

3. To our knowledge, no research exists regarding analysis of memory handling[9, 40,
26, 64, 21]. It is therefore unknown how this research (discussed at page 23) relates
to access patterns in biomedical ontologies.

Evaluating the arguments (in the above list), we observe the requirement of a proper
analysis of the impact of memory access-patterns on the handling of biomedical ontolo-
gies. A methodology is therefore needed to determine the type of memory-access patterns
which cover our requirement (i.e. SR7 from Table 2.1 at page 18). Our goal is to construct
an efficient algorithm extracting important ontology facts for fast look-up (i.e. retrieval).
A short summary of what we know:

1. a complete ontology may reside in memory, i.e. without passing the memory thresh-
old;

2. the number of terms grows approximate linearly, i.e. both with regard to time-
consumption and relative path lengths (given the ontologies in our benchmark-set);

3. we expect the sequences of visited relations in the ontology to result in a non-
predictable access pattern, i.e. at random (which is illustrated in Table B.1 at page
121).

As a first approach to estimate the cost of random access, we may use data from our
ontology-benchmark (as seen in section 2.1 at page 7). Assuming that relations from the
ontology are stored at random locations in the memory, the probability of finding a relation
for pro-reasoned-v24.0..obo is

100 ∗ 1

|V |
% = %(chance) (4.1)

100 ∗ 1

27869
% = 0.0036% chance, (4.2)

which is the likelihood of the computer to randomly find a term in memory (i.e. given
an ontology consisting of 27.869 terms). This formula is only an estimation of the like-
lihood. Estimating the benefit of storage schemes, we need concrete measurements. The
measurements target optimization strategies for improved usage of low-latency cache.

https://code.google.com/p/ontowiz/source/browse/ml_ontology/sample_data/pro_reasoned_v24.0..obo
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4.2 The Targets for our Memory Access Benchmark

When the number of cache misses in a function is considerable compared to its number
of accesses, it is worth investigating. Statistics tying cache usage and number of misses
to particular parts of a memory access pattern are therefore of interest. The “Cachegrind”
program (http://valgrind.org/docs/manual/cg-manual.html) provides
such functionality, integrated as an extension to the binary analysis tool “Valgrind” (http:
//valgrind.org/).

During our memory benchmark, we explore efficient representations for ontology rea-
soning. The benchmark set consist of a subset of commonly used data structures for ontol-
ogy iteration. The data structures are analyzed with regard to time and memory footprint.
Tests enabling parametrization are therefore of importance. In order to capture the influ-
ence of data access patterns, and the consequence of using relative memory addresses (i.e.

pointers).
For the purpose of comparison, we perform a set of operations for each alternative:

1. allocate memory;

2. add data;

3. extract data;

4. reallocate memory.

Testing the benefit of structure reuse, we explore adding- and extracting of data without
reallocating memory, i.e. running the second and third operation multiple times.

The preferred access patterns we intend to identify, will not translate directly into com-
putational time costs performing the operations of interest. Comparison of naive imple-
mentations against our cocO(n) library may give indications of the actual cost-difference
in reasoning. The latter approach implies an ambiguity. A full-fledged study is therefore
recommended, as stated in the list of future work on page 111.

The micro-benchmarks we describe, are written in C++. The source code is made
accessible through flow diagrams and summaries (at our repository https://code.

google.com/p/ontowiz/), using the Doxygen tool (http://www.stack.nl/

˜dimitri/doxygen/).

4.3 Configuration of the Benchmark

The systems of interest consist of two hardware cache layers in each of the CPUs two
cores. The first layer is divided into disjoint parts handling instructions and data, while the

http://valgrind.org/docs/manual/cg-manual.html
http://valgrind.org/
http://valgrind.org/
https://code.google.com/p/ontowiz/
https://code.google.com/p/ontowiz/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
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latter is unified. If not explicitly stated, we choose to abstract both cache levels as unified.
The purpose of pre-fetching is to reduce the delay factor for memory loading. The

instructions executed (fetched) by the CPU depend on the state (conditions) of the soft-
ware at a particular execution point. Examples of such conditions are “if”, “else” or
“switch”. If the computer could have by-passed the waiting time, the cost of memory
fetches is reduced. This is made possible using instruction-level parallelism (ILP) on mod-
ern cores. Similar to the data access, there also exists support for memory-level parallelism
(MLP)[26].

The operations we test make it hard for the processor to execute instructions out-of-
order. Simplifying the analysis, the data will not exceed the physical memory on the test
platforms, i.e. the additional complexity of disk access is not explored. Restricting our
scope, we choose not to discuss the more complex case of thread parallelism. For future
work we would recommend investigate this, i.e. adding the latter as part of an extended
parameter space.

The CPU behavior is isolated in our experimental setup. The tests we provide have a
low computational intensity, compared to the complexity of memory access. In practical
terms, we perform a basic sum of all the vertices regarded as a member of the result, e.g.

the sum of vertex keys classified as ancestors for a given vertex. This simple computational
task of arithmetic/floating point operations is executed in order to assert correctness, and
prevent other factors from obscuring the result.

Complexities in underlying hardware- and specifics of environment the system runs in,
make the details of the tests system-specific. An example of the latter is cache optimiza-
tion techniques, which are first of interest when the data set exceeds the size of the cache.
Investigating a Dell Latitude E6510 laptop machine, we observe the smallest Data cache
L1 and the unified last-level (L2) cache, respectively to be 32KB and 3072KB. Bench-
marking the Dell laptop will therefore require data sizes greater than 32KB. Studying the
effects on different systems, additional measurements are made on a the NTNU kongull
server and the special-purpose biogw-db system:

http://docs.notur.no/Members/hrn/kongull.hpc.ntnu.no
http://docs.notur.no/Members/hrn/kongull.hpc.ntnu.no
http://docs.notur.no/ntnu/norstore-ntnu
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(Tikanga)

125GB Intel Xeon
X7460
2.66GHz,
FSB 1066
MHz
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Table 4.1: The micro benchmark platforms, identified at the leftmost column, are those
we conduct our study at. Evaluating the properties of the platforms, we observe the size of
L1 cache in column two and size of L2 cache in column three. Column four describe the
architecture of the platforms, while column five the operating systems (OS) of them. The
memory/RAM of a platform is given in column six, a memory which is distributed among
the processors, with properties of the processors listed in column seven and the processor
count in column eight.

Studying the above systems, the core architectures are similar. In general terms, those
pieces of main memory most recently accessed are found in the cache. When a processor
requires instructions or data, a request is made to the cache. If not found, its fetched from
memory and counted as a miss, i.e. not a cache hit. Software with high cache hit rates
decrease the running time. The latter parameters do not provide the complete picture, as
the amount of accessed data may influence the result, i.e.

requestCost(x) = |x| ∗ χ ∗ ψcache + |x| ∗ (1− χ) ∗ ψmemory
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= |x| ∗ (χ ∗ ψcache + (1− χ) ∗ ψmemory) (4.3)

where |x| describes the amount of data to retrieve, χ the likelihood of a cache hit and ψ the
fetch-time of the data to retrieve. In this model we assume cache optimal data structures
to be of increasing importance as the relation between memory access costs decreases, i.e.

ψcache
ψmemory

→ 0 (4.4)

Combining Cachegrind with a high resolution time measurement and using the number
of clock ticks from the start of an operation- to its end, it is easy to measure the relative
time of an operation. The return value from the program “clock t times(struct tms *buf);”
provide such data. An approach using system ticks has several disadvantages:

1. dependency on systems makes it improper for cross-system comparison;

2. the low resolution of the time-measurements hides variability due to multiple runs
on the same code;

3. it does not distinguish between the time spent on I/O-waits versus the CPU time.

The latter issue (3) is solved by filling the cache with random numbers before each mea-
surement. The standardized hardware-to-second conversion value “ SC CLK TCK” is
used for converting from the internal time representation- to seconds. Including the user-
and system time in our measurement, using data from the updated parameter, the problems
of system-dependency and I/O waiting are rectified.

Observing the Cachegrind output, the measurements are the sum for each code block.
This makes it impossible to distinguish which of the implementations caused the cache
misses, e.g. when performing memory allocations.

The alternatives are therefore run separately, merging them later into a result table.
Using a Perl script, the collection process is automated. Including the graph library in our
script, a subset of the latter table is visually presented. The Perl-script calls the micro-
benchmark code with a specific operation- and range. A Perl-function wraps the set of
calls. Prior to the micro benchmark, the source is compiled in a mode discarding internal
tests used only for logical validation. System specific setup of the compilation process is
made using the CMake tool[52].



Chapter 5
Practical Benchmark Results

The structural ontology evaluation in section 2.1 at page 7 proposes to store the complete
set of implicit relations from an ontology. From the structural ontology evaluation, and
recommendations presented for a pre-processing algorithm in section 3.3 at page 24, we
suggest to store all the precomputed queries in ordered arrays by their access patterns.
Building these arrays has a pre-processing cost. The benefit of our approach versus the
alternative is explored in this section. We measure the optimization-effect for the oper-
ations investigated. An example of this is the time finding all the 60M ancestors related
to a vertex in an ontology. To enhance the benefit of a data structure, we are interested
in locating the bottlenecks. In this study the components are looked at, first in isola-
tion, and then in the context of ontology reasoning, i.e. subsets of the result data are
represented in the graphs, while the complete set is found at our repository (https:
//code.google.com/p/ontowiz/source/browse/datasets). Most of the
results in this chapter are based on our previous work[24].

5.1 The Isolated Component Representations

Exploring the data structures, we investigate the behavior with regard to time, memory
consumption and cache utilization. Comparing different approaches, strengths becomes
visible. An example is the linked list, which avoid the cache read misses upfront by allo-
cating memory on a demand basis. The alternatives we are interested in testing, is:

Ordered List: All the addresses are adjacent. A negative effect is the upfront allocating of
memory. Illustrating the latter, we explore memory reuse and the option of gradually

https://code.google.com/p/ontowiz/source/browse/datasets
https://code.google.com/p/ontowiz/source/browse/datasets
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memory allocation. Verifying the independence of incremental and reverse access
order, both are analyzed.

Random List: corresponds to the ontology input expected for our structure, i.e. an adja-
cency list. The randomness is due to the unordered criteria when relations are stored,
e.g. when iterating through the relations in an OBO or OWL file. The random list
accesses its elements either directly, or with an additional pointer based memory
reference.

Stacks and Queues: important for graph searches. Uses absolute memory addresses (point-
ers) as index items. Testing the optimal case, we have not introduced any noise in
the cache while building it. This gives a high likelihood that the addresses will be
adjacent, with the negative side effect that the higher complexity of the structure
gives a higher memory footprint. The stacks and queues provided by C++ Standard
Library (STL) are of interest, and are therefore used as benchmark.

Linked Lists: an experimental alternative to the STL stacks and queues. The lists are
of length corresponding to the cache size, and connected by head and tail to the
others. The purpose is to test the benefit of hiding the cost of memory allocations,
as the memory-allocations are performed on a need basis, when compared to an
upfront allocations of memory as seen for the ordered lists. We expect the extra
complexity overhead of the program to be marginal when compared with the number
of elements in the lists.

The alternatives we test are a subset of the relatively large space of data structures avail-
able. Our goal is to find the best implementations for ontology handling. Bare-bone data
structures simplify the mapping between source code and measurable results. Addition-
ally, corresponding structures form the STL are tested in order to estimate the performance
impact of using generic implementations.

When iterating through vertices, we intend to extract specific values, e.g. a vertex
name-space. These data may either be stored together, or in separate lists. Including an
optional padding for each element, we test the effect of vertex compression. It is worth
noticing that the extra bytes an item is padded with, are not accessed by the benchmark
code if otherwise not explicitly stated.

The importance of factoring out highly accessed items in separate lists is therefore
analyzed. Implementation details are provided in the benchmark-documentation at http:
//folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/

dir_2df16cb89d4b3d202e1759e8becf8da0.html.

http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/
dir_2df16cb89d4b3d202e1759e8becf8da0.html
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5.2 Data Representations in the Context of Ontology Rea-
soning

Investigating the representations, a fixed number of accesses are performed for each. A
problem with analyzing the current results is the complexity of the data structures involved.
For each of the sub-cases, we therefore decompose the micro-benchmark results.

The relevance of pre-processing is due to the size and format of the ontologies used as
input. In our investigation, we focus on minimizing the memory access overhead, i.e.

minimum

(
α

βi

)
(5.1)

where α corresponds to the time cost of the arithmetic operation, and β describes the time
cost of the operations using memory accesses. The arithmetic operation in this context is
the ideal situation, i.e. it is not possible on computers to find a set of numbers in memory
faster than the time summing the set of numbers. Figure 5.1 illustrates the relative cost of
memory accesses:
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Figure 5.1: The result comparing arithmetic operations with or without additional mem-
ory accesses. Only the relative measurement is given, using the ordered list as basis for
comparison.

The curve in Figure 5.1 corresponds to the cost of memory accesses, where we explore
the relative difference in time when iterating through a fixed space of integers. Comparing
the optimal alternative, we use a statically ordered list as comparison. From the figure
we observe a performance difference of approximately 2x when memory is accessed, in



36/138 Chapter 5. Practical Benchmark Results

comparison with a statically ordered list. We regard this overhead as low, also in the
context of discussions provided by e.g. Tumeo et al.[66] and Ferdman et al[26].

The statically ordered list-access-pattern corresponds to our resulting data-structure,
i.e. of our pre-processing. The benefit of pre-processing is illustrated comparing with
alternatives. Figure 5.2 shows the running time for a subsets of our measurements:
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Figure 5.2: Time measurements of different memory access patterns on the biogw system
described in Table 4.1 at page 31, having hardware similar to our Dell Laptop. We have
accessed 4 Byte elements in range [1,000,000:60,000,000] iteratively increasing the size
by 1M for the access patterns that we had a look at. The highlighted yellow text (at the
rightmost part of the figure) is a classification of the clusters which the measurements
form.

The curved lines correspond to different data access patterns. From the bottom legend
in Figure 5.2, we observe the best-performing access patterns. The lines in Figure 5.2 are
clustered in sets, where each cluster is highlighted in yellow at the rightmost part of the
figure. In the ontology simulation (i.e. as seen in Figure 5.2) only a subset of the result is
presented. The ontology access cost is illustrated through mapping the user experienced
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time along the vertical axis with list length along the horizontal line, i.e. for iteration
through a graph of similar size.

We observe how the time difference increases with the ontology size:

1. In the ordered list we find the best performing memory access pattern, i.e. the most
beneficial access pattern. The ordered list is found in the cluster closest to the
bottom of the figure. Measurements for the ordered list are included in two fla-
vors: static and dynamic list size. The static list size has optimal length, while
the dynamic list iteratively increases it by a factor of two. From the underlying
benchmark-data we observe a periodic variety in its performance, which is in cor-
respondence with our expectation. The upper time limit for the latter correspond to
the stack-version of the Linked List (LL). The LL consists of static memory blocks
knotted together. Experimentation with different block sizes gives a variety in per-
formance. LL performs best when the static block fits into the smallest cache. De-
tails are tabulated at (https://code.google.com/p/ontowiz/source/
browse/#hg%2Fmeasurements_memory).

2. The second cluster, seen from the bottom, describes the STL stack performance.
In our measurements we have experimented with integers of size 4 Bytes, and an
optional padding of 48 Bytes: a padding of 48 Bytes is of interest as it correspond
to our knowledge from Figure 2.1 at page 8, i.e. padding a vertex with two triplets
of 12 Bytes for both the vertex child relations and parent relations of a vertex. We
observe a negligible difference in user experienced time, e.g. a 10 percent difference
for 60M vertices. Factoring out the padding (e.g. a vertex meta data) in separate
structures therefore gives a low optimization benefit. The stack-alternatives differ
by 2.4x for 60M elements. Simplifying our experiments, we assume that the LL
and STL queues correspond in complexity and operation pattern to the stacks. We
therefore infer that the 2.4x improvement also holds for the queues.

3. In the third cluster, accessing data at random is measured. The additional cost of
padding data to the vertices corresponds to the STL stacks. In contrast with this and
LL, the degree of relative memory accesses (pointers) is lower for this representa-
tion. On the other hand, the randomness makes the pre-fetching hard for the system,
degrading the performance.

Stressing the importance of the latter observations in the above list, we measure a
structure that arbitrary accesses all its memory at random, i.e. a representation using both
random and pointer based access, which correspond to Cluster 4 in Figure 5.2. The con-
sequence is a 66x performance-degradation, compared to the optimal case. Similar to the

https://code.google.com/p/ontowiz/source/browse/#hg%2Fmeasurements_memory
https://code.google.com/p/ontowiz/source/browse/#hg%2Fmeasurements_memory


38/138 Chapter 5. Practical Benchmark Results

STL stacks and random lists, the cluster consists of measurements testing the implication
of additional padding. In contrast with this, padding extra memory to it has no extra cost.
We attribute this to locality of the padding, as it is stored along the same memory refer-
ence as the integer we retrieve, i.e. the cost of padding is hidden in the unpredictability of
access.

The above analysis depends on the result found when measuring the user time for each
of the representations. The use of this generalizes the underlying data. Shifting our focus
towards the system time in Figure 5.3, we observe that the number of instruction fetches
increases when pointer-based representations are used:
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Figure 5.3: System time versus number of 4B elements. The individual graphs are de-
scribed in the text box in the top of the figure. The plot shows three clusters (Schemes)
related to specific operations (see text).

In Figure 5.3 we study the system time, which provide an indication of an access
patterns system-dependency and I/O waiting. The best-performing access-patterns have a
slight shift, compared to the previous user time. From the above figure we can classify
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three schemes:

1. Low intensive pointer based operations, e.g. a single pointer, as for “Random list”
and “List”. Both use fixed-size memory. If we instead dynamically allocate it, a
fluctuation between this and the next cluster is observed.

2. Medium intensive pointer based operations: each access requires at least one un-
predictable pointer-memory access, e.g. as illustrated using “STL Stack” and “LL
stack”. Interestingly we observe that the number of cache misses increase with the
object size. The latter is illustrated when the random structure is provided with a
padding. We attribute this to the ratio of cache misses, i.e. that the provided padding
decreases the MLP-effect.

3. High intensive pointer based operations. The access patterns covered by this scheme,
have two unpredictable memory look-ups for each value to retrieve. In contrast with
the latter scheme, padding has no effect. This is explained by the lack of locality for
the random accesses, i.e. with regard to the systems MLP ability.

Understanding the significance of the system time for the overall software perfor-
mance, we compare it in Figure 5.4 with the user time i.e.

Time(systemi)

Time(useri)
(5.2)
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Figure 5.4: The significance of memory delays. In the graph we observe that all mea-
surements are below one, i.e. the CPU stalls due to lag in memory transfer. We therefore
denote the operations as memory intensive. Of special interest is how the higher complex-
ity of the LL is reflected by a score similar to the ordered list.

In the Figure 5.4 the system-time is mapped against the user time along the vertical
axis. The curve located on the top reflects the relation for the LL stack. On the opposite
end the random access patterns are found. The individual graphs are described in the text
box in the top of the figure.

All the measurements have a values lower than one. The importance of low system-
dependency and i/O waiting is therefore out-weighted by the lag in memory retrieval.

The LL-stack is represented by the first curve, counted from the figures top. LL man-
ages relative well to balance the CPU operations with the system load. But as we observe,
this does not tell the whole story, i.e. the high utilization of system calls reflects the com-
plexity in the source code of LL.

At optimum, the system time would correspond to the user time. The curves fluctuating
in the middle of the graph, represent variations of the ordered list. The third curve from the
figures top represents the fixed-size memory allocation allocation, i.e. the best alternative
looses approximate 4x of the CPUs maximum performance.

Reflecting our analysis, we compare in Figure 5.5 the above results with the optimal
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case, i.e. as before, Figure 5.5 normalizes the results to the optimal case

Time(useri)

Time(ordered list)
(5.3)

where the numerator correspond to each of the identity labels in the graphs above:
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Figure 5.5: The cost of the different memory accesses is illustrated comparing each of the
memory access patterns with the optimal case, in which we apply Equation (5.3) on the
data sets in Figure 5.2. The individual graphs are described in the text box in the top of the
figure.

Returning to the measurement of user time, we here visualize the difference between
the alternatives, given the best performing result. The order and clustering in the graph
corresponds to our earlier discussion, e.g. that the linked list and dynamically sized list
are among the best-performers, while the random accesses perform worst. The clear dis-
tinction between memory offset and pointer based random access is of interest, which our
comparison underlines. Confirming earlier observations, the type of representation is more
important than the amount of memory padding added. This importance of access patterns
suggests that our focus on data structure is worth investigation further, i.e. that bench-
marking of the complete set of operations is of interest. These results correspond to those
for memory reads, shown in Figure 5.6.
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Figure 5.6: The relative memory traffic, compared to the linear lists access pattern. The
individual graphs are described in the text box in the center of the figure.

In the graph we observe the relative memory traffic. The lowest curve, represented as
a solid black line of asterisks, defines the usage for the linked list, Fluctuating along the
latter, is the dynamically sized list, i.e. the dashed red curve. Above the fluctuating curve,
we observe the random-accessed list using memory offsets. After a leap in the memory
consumption, the usage for the random pointer accessed list, the STL stack and STL stack
with offset are included.

The periodic fluctuations of the dynamically allocated list is expected, due to doubling
of its memory usage when the list size passes a certain threshold. For the other access
patterns, we observe a constant relation to their level of memory usage, i.e. a vertex
accounts for a fixed number of memory reads.

In representations using unpredictable access patterns, we have in Figure 5.6 visualized
the insignificance of adding a 48B padding. As we observe, a padding of 48B does not
change the number of reads. We assume this is due to the pre-fetching effort giving an
overhead, camouflaging our introduced padding.

In contrast the predictable access pattern followed by the STL stack gives an increase
in memory usage similar to the time measurements: When a padding of 48B is added, we
get an increase of 10 percent in both running time and memory consumption.

The results in Figure 5.7 indicates a compression-technique for random accesses:
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Figure 5.7: The compressing opportunity using short segments of sequential accesses
is here illustrated. The individual graphs are described in the text box in the center of the
figure. For each of the data structure elements we access the padding, which is the memory
overhead we provide for each access.

In Figure 5.7 we have plotted actual memory consumption along the x-axis. The
results correspond to difference as is earlier seen. The relation between memory and time
consumption is of interests, as it indicates a dependency between cache hits and non-
contiguous memory accesses.

Verifying our assumption of a large number of data misses for the random accesses,
we compare the number of cache data misses with the optimal case, i.e.

ρi
ρµ

(5.4)

where ρ corresponds to the number of data misses, µ the ordered representation and i to
the access patterns in our benchmarking. Comparing the data sets using Equation (5.4),
the result is illustrated in Figure 5.8 below:
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Figure 5.8: Relative data cache read misses, compared to the linear access pattern. The
individual graphs are described in the text box in the center of the figure. The plot shows
three classes of relationships with high internal similarity: cluster 1, cluster 2 and cluster
3.

In the above Figure 5.8 we observe a familiar performance of access patterns, i.e. the
pointer based random access patterns as the worst, and LL-stack and dynamically list as
the best-performing. The value along the vertical axis corresponds to the total relative
count of misses in both L1 and L2 cache are compared the the ordered list. The curve
pattern we observe indicates that the amount of data found in cache is largely constant.

As earlier, we observe clusters in the graph. The clusters correspond to our earlier
observations. We observe a high cache miss rate for the random structures, i.e. that data
structures with a predictable access pattern behave better compared to the random alter-
native. This indicates a performance reduction when pre-fetching is used. The result
correlates with observation by others, such as Tumeo[66]. On the other hand pre-fetching
optimizes highly predictable structures. Our LL-stack implementation illustrates this. We
observe that the LL stack has approximately 100 percent hits on its memory accesses. For
the latter we infer a relation between the number of reads and cache misses. The optimal-
ity of LL visualizes the cost of the the best approach, i.e. the upfront allocation of a large
buffer.

Comparing the dynamically sized list, we observe a 2.7x increase in cache misses
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when 60M elements are accessed. The reason for this relative high rate, is the need for
copy operation we perform during list extension, i.e. the hardware accesses all elements
when the new list is filled with the old values. The periodicity of the curve is continuous.

In the graph, most curves are horizontally aligned, i.e. the miss rate stabilizes, and
becomes constant. This correspond to both to the relative user and system time, and the
amount of memory read performed.

The importance of data cache misses indicates a low benefit regarding structure reuse,
i.e. to use allocated data containers multiple times, in order to avoid the upfront allocation
cost. Figure 5.9 we shows this approach:
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Figure 5.9: Relationship between Overhead time and 4 Byte elements. The individ-
ual graphs are described in the text box in the center of the figure. Studying the best-
performing structures in our benchmark, we test the benefit of memory re-usage, and
compare the results to the linear access pattern.

In Figure 5.9 we compared a subset of the representations. Testing the benefit of
structure-re-usage, the same allocated memory was used multiple times for a given access
pattern:

1. The STL stack accessed size times are the top curve.

2. Close to the middle of the figure, the LL-stack with six accesses.

3. The STL stack accessed a single time is the densely dashed brown line.
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4. Second from the bottom the ordered list accessed six times.

5. At the graphs bottom the STL stack’s performance is observed.

In the result data we observe an difference of 4.3x when six times as many items are
accessed, i.e. a relative improvement for multiple accessed using the latter alternative.

The result corresponds to our expectations, i.e. that the upfront cost of memory allo-
cation is small, compared with the cost of cache misses. The latter implies that the cost of
memory allocations does not affect the result. Studying the background result material, we
observe this holds for all the representations we test. The pre-fetcher is therefore not able
to utilize its internal software statistics to optimize the accesses. Further, the difference in
ability reusing structures fit our expectations. This due to the number of pointer references
required in the access procedure degrades the efficiency of reuse.

5.3 Analysis of the Result Material

We observe that the program speed is clearly affected by cache utilization. Validity of the
findings is ensured by a measurement difference of less than 10%, as seen in the measure-
ments ( https://code.google.com/p/ontowiz/source/browse/
datasets). From the results in our analysis of data access patterns, we conclude that
complexity in access patterns is an important parameter for the performance of software
tools. In this context, the deviation between user and system time highlights the difference
between CPU speed and memory fetching.

The two structures we propose, i.e. the LL and the ordered lists, perform best in our
measurements, both with regard to actual time and cache utilization: the ordered list using
statically allocated memory, performs best.

Using different metrics, we have examined tendencies in the results, e.g. between the
worst-performers of user time and data cache misses. We attribute this to a dependency
on memory access patterns. To validate this assumption, random access patterns are in-
vestigated for comparison. In the result graphs we find a considerable increase in the
load factor for each memory request, e.g. as highlighted when normalizing to the optimal
access pattern.

The extra cost of accessing vertices with meta data included depends on how it is
stored, i.e. the number of memory requests which is required need to locate it (i.e. the
data in question). In our measurements, we placed the padded information adjacent to
the data of primary interest. This approach gave a difference of 10 percent when the data
set increased by a factor of 13x. We therefore regard memory adjacency to be of higher
importance than compression techniques.

https://code.google.com/p/ontowiz/source/browse/
datasets
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(1− χ)
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STL Stacks yes no low med. high low low med.

LL Stacks yes no low med. high low low low

Random Lists yes yes med. low med. low med. high

Random Lists no yes high high low low high high

Ordered List yes no low low high nil low med.

Reversed List yes no low low high nil low med.

Table 5.1: Parameters of two micro-benchmarks. The terms low, med. and high are used
for classification. The terms reflect the relative importance, given the complete set of mea-
surement data. Column one are the identities we have used to explain the representation of
memory access patterns, which is described by its access patterns: column two describes
the case where an additional pointer based memory reference is required to identify a
value, while column three if the accessed memory addresses are adjacent. The user time
is given in column four and system time in column five. In column six to column nine we
include the impact of specific properties: column six compare the implication of padding
(i.e. compression), column seven the consequences of a allocated memory space at start of
executing the software, column eight the likelihood of a cache miss and column nine the
chance of CPU stalls.

In Table 5.1 we observe the efficiency of the access patterns. A comparison of the time
cost columns provides an overview of important observations. Our results illustrate the
benefit of graph pre-processing in the context of ontology reasoning. The cache-efficient
data structure utilizes the performance of commodity hardware, as documented in the re-
sults. Approximating a value for the difference, Equation (4.4) is used:

ψcache
ψmemory

≈ 0.84

38.04
= 0.022 = 2.2% (5.5)

In Equation (5.5) the ordered list is used as an estimate of ψcache and the pointer-based
random list for ψmemory , i.e. in correspondence with the importance of explicit storage
and access-pattern. The numbers correspond to values measured on systems of interest
(see Table 4.1). As the measured systems differ in their cache sizes, we assume that the
cache size is of minor importance compared to the access pattern.

With the presented approach, we identify a reduction in the complexity of memory
accesses. The observation is of importance for tools were the number of memory accesses
is (considerably) larger than the number of arithmetic operations, such as for ontology
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reasoning. We therefore regard non-random accesses in ordered list with explicit storage
as a principle component in ontology reasoning tools.

The difference we have identified (i.e. between the random and ordered accesses) in-
dicates a preference for it (due to the approximate performance-gain of 50x for a random-
access-application which changes its access-pattern to the ordered-access-path). Given this
knowledge, we suggest application of this storage-scheme in memory-intensive software,
such as the cocO(n) software described in the next section.



Chapter 6
cocO(n);

A High-Performing Ontology API

cocO(n) in the core of our approach for high-speed ontology reasoning. The library (i.e.

cocO(n)) applies knowledge gathered in the master thesis’ previous sections. What we
intend to cover in this chapter is complex. Simplifying the complexity of our algorithms,
without loosing its important details, cocO(n) is an algorithm/software/library where:

1. The algorithms that contribute to the high performance are knotted into the cache-
efficient storage scheme by accessing memory through ordered list accesses, i.e.

using the best access pattern as described at page 46. Examples of procedures that
utilize the memory-scheme in cocO(n) are those calculating the longest path or in-
tersection/union of vertices.

2. The cache-efficient storage schemes are built during the pre-processing, where each
vertex in the ontology is provided with an explicit coverage, i.e. a representation of
its (the vertex) implicit relations. This representation holds both the set of non rule
based paths connecting a vertex to any of its ancestors, and the set of ancestors/de-
scendants, i.e. as we stated at SR7 in Table 2.1 at page 18.

3. The cocO(n) library is accessed through its Application Process Interface (API). The
API of cocO(n) provides access to complex ontology properties. Examples of such
are intersection and union of a terms ancestors or descendants, transitive closures,
longest paths to a root vertex, etc. OntoWiz interacts with cocO(n) using this API.
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Reaching this goal, this chapter is organized starting with a gentle introduction to how
cocO(n) treats ontologies, then moving into algorithmic descriptions, before giving con-
clusive evidence as to why cocO(n) qualifies as a high-speed ontology reasoning tool. In
short this chapter approaches the internal milestones in the below order:

1. a brief overview of the ontology-input for cocO(n)’s algorithm: while ontoWiz works
on the complete ontology, cocO(n) only looks upon subsets of it.

2. steps of the pre-processing, which is the process translating an ontology into data-
structures for short look-up-time.

3. support rule-based extensions and contractions, such as transitive closures and tran-
sitive reductions: presents algorithmic extensions of the pre-processing which does
not increase the time of the pre-processing of an ontology.

6.1 The ontology given as input

An ontology in its simplest form is a set of unrelated vertices (i.e. without relatedness). As
an example, we look at a small subset of an on ontology, i.e. as seen in Figure 6.1(a).

(b) The input ontology with inverse relations.

part_ofis_a

(a) Input Ontology with relations reflecting the relational properties.

BA C D E F G

part_ofis_a

BA C D E F G

a.

b.

Figure 6.1: Schematic ontology depiction. We observe a set of vertices (circles) and arcs
(arrows): cartoon show both ontology’s two relation type, i.e. the is_a and part_of
relation type. The cartoons refer to the same ontology. In sub-figure (a) the ontology with
the correct arc-direction is included. In sub-figure (b) the mirror of the input ontology is
provided.
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The ontologies in Figure 6.1 illustrate what cocO(n) takes as input: we observe that
inverting the arc-direction of the first ontology yields the second ontology (i.e. Figure
6.1(b)). For the two ontologies, which both are without cycles, i.e. directed a-cyclic graph
(DAG), we assign the properties of reflexivity, anti-symmetry and transitivity to each of
the relations, which correspond to the definition of a partially ordered set (poset)[69].
When translating an ontology into a poset we loose important attributes of the ontology,
such as the underlying meaning of inferred relations. The application of a poset allows us
to construct super-sets of ancestors and descendents, which we use in operations such as
building rule-based cover, sub-ontologies, comparison of sub-ontologies, etc. To simplify
our discussion we assume that an ontology is a poset if we not explicitly states the proper-
ties of the ontology’s relation types (e.g. anti-symmetric without the transitive property).

The ontology which cocO(n) takes as input is a limited set of a biomedical ontol-
ogy. We observe this by the attributes which are present in Figure 6.1, exemplified by the
Example-Ontology 6.1:

Example-Ontology 6.1: Extract from taxonomic-rank.obo.

[Term]

id: TAXRANK:0000001

name: phylum

synonym: "division" EXACT []

xref: http://rs.tdwg.org/ontology/voc/TaxonRank#Phylum

xref: NCBITaxon:phylum

is_a: TAXRANK:0000000 ! taxonomic_rank

[Term]

id: TAXRANK:0000000

name: taxonomic_rank

def: "A level of depth of a taxon in a taxonomic hierarchy."

[TAXRANK:curator]

Comparing Example-Ontology 6.1 with Figure 6.1 we observe that cocO(n) performs
reasoning on a limited set of the properties of an ontology. From our knowledge of the
limited ontology which cocO(n) takes as input, we are ready investigating the properties
of our high-speed ontology handling software.

https://code.google.com/p/ontowiz/source/browse/ml_ontology/sample_data/taxonomic_rank.obo


52/138 Chapter 6. cocO(n); A High-Performing Ontology API

6.2 The Pre-Processing:
Algorithms and Proofs of Correctness

The high performance of cocO(n) is achieved by the pre-processing. The pre-processing
is about making all vertices aware of its connections. The connections are those other
vertices a vertex is linked to, i.e. given one or more relations, such as

A
is a−−→ B

part of−−−−−→ C
is a−−→ D (6.1)

which implies that vertex A is connected to both vertex B, vertex C and vertex D. This is
understood as an explicit representation of the implicit knowledge in Equation (6.1). With-
out translation-rules, the relations in Equation (6.1) do not provide any deeper meaning,
i.e. of the implicit relations in the underlying data. For this purpose rules of inference are
needed, e.g. those covering transitivity and anti-symmetry: details of relation types were
given in section 2.2 at page 11. Providing an example of implicit relations, we apply the
rules of transitivity and anti-symmetry to the explicit relations in Equation (6.2):

A
is a−−→ B A

part of−−−−−→ C A
part of−−−−−→ D (6.2a)

B
part of−−−−−→ C B

part of−−−−−→ D C
is a−−→ D (6.2b)

Equation (6.2) transforms the implicit representation of the relations from Equation
(6.1) into its explicit representation. We call the transformation an expansion of the ontol-
ogy, as the number of ontology-relations increases. When inference-rules are applied to
the set of related vertices, the result is a deeper understanding of each vertex (e.g. term or
instance) in the ontology. Our goal is building the explicit representation (of the ontology)
during the pre-processing. We expect the pre-processing to result in explicit representation
of the implicit knowledge. This explicit representation of implicit knowledge is important
for high-speed reasoning.

High-speed reasoning depends on easy access to information, which in this context is
about giving each vertex an awareness of its implicit relations. From our ontology and
memory access benchmarks we have seen preferences for ordered representations of an
ontology’s internal structure. The high-speed access to query results is due to our pre-
processing: while traversing the ontology awareness, the implicit knowledge of related-
ness is propagated along the arcs. Achieving awareness throughout the ontology therefore
requires all vertices to systematic be visited. An example of such a systematical approach
is seen in the ontology pre-processing in Figure 6.2:
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(d) Step three of descendants pre-processing. (h) At the end of descendants pre-processing.

(c) Step two of descendants pre-processing.

(e) Step four of descendants pre-processing.(a) Before pre-processing of the descendants.
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D E F G
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B C

D E F G

A

B C

D E F G
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D E F G
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D E F G

(b) Step one of descendants pre-processing.

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

(f) Step five of descendants pre-processing.

(g) Step six of descendants pre-processing.

$

$$

$ $= vertex '$' is covered.

= vertex '$' is in transfer mode.= vertex '$' is in receive mode.

= vertex '$' not visited.= vertex '$' is partially covered.

describes vertices connected through the ontology.$ &

is a concrete relation, i.e. between '$' and '&' in set, while$ &

Figure 6.2: Schematic ontology pre-processing. We observe the steps of the cocO(n)
algorithm. The input is an ontology, shown in sub-figure (a). At the end of of the pre-
processing, all vertices have awareness of their relations, i.e. as illustrated in sub-figure
(h). In each of the sub-figures [(b)....(g)] a vertex updates a child with its own awareness.
An example of such an awareness-transfer is seen in sub-figure (d), were vertex C becomes
aware of its connection to vertex A. In sub-figure (c) vertex B is colored dark blue. With
this we mean that its awareness is not completed: after it has received all the data from C
it is completely covered, i.e. as illustrated in sub-figure (d).
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The result of the pre-processing algorithm is seen in Figure 6.2. The figure conveys
an high-level understanding of the cocO(n) algorithm. We observe the sequence by which
the vertices were visited. The sequence corresponds to the BFS algorithm. The BFS
algorithm is explained in chapter C at page 123, while a brief summary of our usage of the
BFS is provided in section 3.3 at page 24. The dashed arrows in Figure 6.2 propagate the
knowledge of the implicit relations:

• the continuous black arrows are the ontology’s explicit relations;

• the dashed green arrows are understood as arrows propagating relational awareness;

• the colors are the awareness-state of each vertex.

In Figure 6.2 we observe that the dashed arrows never penetrate a vertex. We under-
stand the arrows as those propagating information. Therefore, if the vertices found along
the arrows length had penetrated the arrow, path-awareness would have been the result. By
not penetrating the vertices along the arrows length, a vertex knows nothing about interme-
diary paths. Path-awareness is interesting as it enables finding the shortest path between a
set of vertices. Achieving this, we slightly extend our procedure by adding an extra set of
arrows with the task of remembering the vertices along the paths. This extension requires
cocO(n) to store three types of knowledge:

1. The set of unique vertices explicitly or implicitly related to a vertex, henceforth, its
unique set.

2. Subsets of unique sets, restricted by relation type or sub-name-space.

3. Sets of concrete paths, storing not only the related vertices, but also how they related
(i.e. their intermediate vertices).

Highlighting the concept, we investigate the pre-processing in the mirror ontology of Fig-
ure 6.2, as seen in Figure 6.3:
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(i) Before pre-processing of the ancestors.

(j) Step one of ancestors pre-processing.

(k) Step two of ancestors pre-processing.

(l) Step three of ancestors pre-processing.
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(p) At the end of ancestors pre-processing.

(m) Step four of ancestors pre-processing.

(n) Step five of ancestors pre-processing.

(o) Step six of ancestors pre-processing.

$

$$

$ $= vertex '$' is covered.

= vertex '$' is in transfer mode.= vertex '$' is in receive mode.

= vertex '$' not visited.= vertex '$' is partially covered.

describes vertices connected through the ontology.$ &

is a concrete relation, i.e. between '$' and '&' in set, while$ &

Figure 6.3: Schematic ontology pre-processing. Overview of the pre-processing steps
when starting from the leafs of an ontology, which is the mirror of the ontology described
in Figure 6.2.

From Figure 6.3 we observe the result of the pre-processing algorithm of cocO(n) when
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the algorithm starts from the leaf vertices, which is the mirror of the ontology described
in Figure 6.2. In the applied algorithm a vertex parent knows everything about its de-
scendents, but is limited about its parents. When combining the knowledge from Figure
6.3 with 6.2 we observe that this, i.e. the limited knowledge of a vertex descendents and
ancestors, is true until the two pre-processed input-ontologies are combined. An issue
of confusion in this context, is that the ancestors pre-processing describes the set of de-
scendants, and the descendants pre-processing describes the ancestors. If this during the
reading becomes unclear, remember the opposite direction of the dashed versus the contin-
uous arrows seen in Figure 6.3: translating Figure 6.3 into a tangible algorithm, the result
is Algorithm 6.1:
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Algorithm 6.1: A tangible algorithm for making each vertex aware of its relations.

/* Globally accessible result containers. */

global inputParents ←new Set();

3 global inputChildren ←new Set();

global parentsReceived ←new Set(); // the number of received

parents.

/**
brief: The main-method for the pre-processing.

param: <cocoOn> the object containing the set of inputs.

8 **/

class cocoOnPreProcessing(cocoOn) {

/* Set the algorithmic input. */

inputParents ←cocoOn.getInputParents();

inputChildren ←cocoOn.getInputChildren();

13 /* Declare internal variables. */

global childCount ←new set(); // number of times a child is added.

global queue ←new Queue; // should be empty at end of for-each.

global rootSet ←new Set();

/* Builds the set of roots. */

18 for each root ∈ {inputChildren} {

if(inputParents[root] = ∅ ) {

//! A root is a vertex without outgoing relations:

rootSet ←{rootSet ∪ root}; // updates the set.

}

23 }

//! Start with vertices already covered, i.e. the roots:

for each root ∈ rootSet {

//! The root adds data; colors it red.

for each relation ∈ {inputChildren[root]} then {

28 //! The child is aware of a parent; colors it with yellow;

global child ←relation.tail; // color the child in yellow.

queue ←{relation ∪ queue}; // updates the set.

childCount[child] + = 1; // The number of children.

} // The root is now safe to extend; color it green.

33 }

//! Sets the ancestor coverage for each vertex:

setAncestorCoverageForEachVertex(childCount, queue);

Algorithm 6.1 both initiates the result-containers which are used to answer queries in
cocO(n), and iterate through the roots of the ontology, i.e. the vertices without ingoing
arcs. Each of the roots is added to the queue (which is accessed in a first-in-first-out access
pattern). When the roots are visited, cocO(n) builds the ancestor coverage for each vertex,
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as explained in Algorithm 6.2:

Algorithm 6.2: Sets the ancestor coverage for each vertex.

/**
brief: Sets the coverage for each vertex.

param: <childCount> counts the number of times a vertex is added.

param: <queue> stores the next relations to be processed.

5 **/

void setAncestorCoverageForEachVertex(childCount, queue) {

//! Iterate through the internal vertices using a modified BFS:

while(queue 6= ∅) {

//! Gets relation at front of queue:

10 global transferRelation ←queue.front;

global head ←transferRelation.head;

global type ←transferRelation.type; // i.e. the relation type.

queue ←queue - transferRelation; // removes relation from queue.

if(childCount[head] 6= inputParents[head].size) then {

15 //! The parent is not covered:

add the transferRelation to the queue; // color it blue.

} else { // we color the tail with red;

parentsReceived[tail]++; // received one more parent relation.

global tail ←transferRelation.tail; // the relation type

20 //! Update the data-structures:

updateAnswersToReasoningTasks(head, tail, type);

//! First add the children when the tail has a parent-coverage:

if(parentsReceived[tail] = inputParents[tail].size) then {

//! Iterate through tails immediate descendants:

25 for each relation ∈ {inputChildren[tail]} then {

//! Update the child with the tails own awareness:

queue ←{relation ∪ queue};

childCount[child] + = 1; // The number of children added.

} // The tail-vertex is now safe to extend; color it green.

30 }

}

}

}

Algorithm 6.2 covers all of the ontology’s relations: each vertex stores the set of im-
plicit relations. We denote this process as a “transfer-receive” operation, as the implicit re-
lations are received from the parents of a vertex through a data transfer operation. The use
of a queue makes Algorithm 6.2 similar to the BFS algorithm, where the BFS algorithm
describe the order in which the vertices are processed in the transfer-receive operation.
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The set of implicit relations are stored in function
updateAnswersToReasoningTasks(head,tail,type), which is called from
line 21 in Algorithm 6.2. The data-structure in which cocO(n) stores the implicit relations
is a set of lists with relations ordered to support memory efficient access of the result.
When a vertex receives a set of implicit relations from a parent, cocO(n) uses three different
operations to concatenate the received set with existing sets of implicit relations:

• “∪s” is a union-operation applied with sorting. An example is υ = α∪s β, where υ
holds holds a sorted set of both α and β.

• “∪a” is a binary operator appends the rightmost item to the end of the leftmost set.
An example is υ = α ∪a β, where υ = {αβ}.

• “= ∪” is a syntactic sugar for concatenation of sets. An example is υ = ∪ α which
corresponds to υ = υ ∪ α.

In the structure of our correctness arguments, which the above notation serves, we gen-
erally follow the approach of stating properties of ontology subsets that the pre-processing
should compute. We relate the properties of ontology subsets to expressions which are
derived from specific points in stated algorithms, such as Algorithm 6.3 for for updating
the data-structures holding the implicit relations:
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Algorithm 6.3: Logic for storing important results of the pre-processing

/* Globally accessible result containers. */

2 global uniqueSet ←new Set(); // the set of ancestors for each

vertex.

global restrictedSet ←new Set(); // the restricted set of ancestors

for each vertex.

global pathSet ←new Set(); // the vertices simple paths to the

roots.

/**
7 brief: Logic for storing important results of the pre-processing.

param: <head> The head of a given relation, i.e. the parent

vertex.

param: <tail> The tail of a given relation, i.e. the current

vertex.

param: <type> The relation type linking the head with the tail.

**/

12 void updateAnswersToReasoningTasks(head, tail, type) {

//! Get the the parents complete coverage, and sort (s) the set:

uniqueSet[tail] ←uniqueSet[tail] ∪s head ;

//! Concatenate the tails restricted set with the parents:

restrictedSet[tail][type] ← ∪s head ∪s restrictedSet[head][type];

17 global space ←head.subNameSpace; // i.e. for the restricted space.

restrictedSet[tail][space] ← ∪s head ∪s
restrictedSet[head][space];

for each path ∈ {pathSet[head]} then { // update the path set:

global extended ←path ∪a (head, type); // extends the path.

//! Adds the new path to the set:

22 pathSet[tail] ←pathSet[tail] ∪ extended;

}

}

Algorithm 6.3 updates three data sets. The algorithm is performed on both ontologies,
i.e. the two ontologies respectively representing the ancestors and descendants, which we
explained in Figure 6.1 at page 50. The three data sets which are updated by Algorithm
6.3 are:

1. the set of unique vertices (uniqueSet), which for each vertex stores a sorted repre-
sentation of all the ancestors in the ontology.

2. the set of restricted vertices (restrictedSet), which is similar to the set of unique
vertices, with the exception that the set of ancestors are limited to a given type, i.e.
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a specific relation type or sub-name-space which must hold for all the ancestors in
the set.

3. the set of the concrete paths (pathSet), which stores a vertex’ concrete path(s)
to the root(s). The concrete paths are only built for the descendant’s ontology-
representation, i.e. iterating backwards from the leafs of the ancestors ontology-
representation.

The above listed data sets are the core of our reasoning-approach. They therefore need
evaluation of their formal correctness in order to know that they formally cover associ-
ated tasks, such as the operations of union, intersection and shortest/longest path. In our
notation

vi ⊂β vk, {vi, vk} ∈ V (6.3)

denotes a vertex vi which is the descendant of vertex vk by the relation type β.

6.2.1 Building the Set of Unique Vertices

The set of unique vertices are used in operations such as intersection and union. The set of
unique vertices consist of all the ancestors for a given vertex, and is formally defined[65]
as

Ancestors(vi) =
{
vk ∈ V

∣∣∣ vi ⊆β vk && vk 6= vi

}
(6.4)

where vi and vk are vertices in the Ontology V , and β an arbitrary relation type connecting
vertex vi to vertex vk. When building the sets of unique vertices (i.e. of the given ontol-
ogy’s ancestors), Algorithm 6.1 is run twice, in order to handle the two representations of
the ontology. We therefore have two disjoint sets of unique vertices, i.e. for the ancestors
and descendants, denoting a vertex’ set of ancestors as the vertex’ complete cover of its
parents:

Lemma 6.2.1 (A parent covers the ancestors). For each visited vertex, a complete cover-

age for the data sets exists, i.e. from the parents, through its parents intermediate ances-

tors, and to the roots.

We will later prove the correctness of Lemma 6.2.1, but first a summary of the algo-
rithm’s properties.

From Lemma 6.2.1 and the properties of Algorithm 6.1, we observe that each vertex
is aware of its relations. The awareness (i.e. the relational knowledge) is stored in sets.
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The sets are built iteratively. Structural features of the ontology, which we discussed in
section 2.3 at page 16, suggests the use of precomputed sorted lists. Reducing the time
cost of memory accesses, the access pattern of our sets will therefore replicate the ordered
list accesses, i.e. as seen at page 46. The benefit of applying the sorted property to the
unique set, constitutes the efficiency when searching for a vertex or comparing sets. A set
M of unique vertices is sorted with respect to vertex identifiers k

∀k∈[2,|M |−1]vk−1 < vk < vk+1 (6.5)

We require that all unique sets are sorted. The sorting is performed for each parent-child
relation by line 14 in Algorithm 6.3 (i.e. list concatenated with the ∪s operator). The
child relations of a vertex are added at the lines [17....31] in Algorithm 6.2. The building
of the unique vertices is therefore an algorithm for stepwise add/merge. This makes our
algorithm similar, but not equal, to Dijkstra’s algorithm, which was discussed in section
3.3 at page 24. Formalizing our approach, we combine the knowledge from Lemma 6.2.1
with Algorithm 6.1, Algorithm 6.2 and Algorithm 6.3:

Φ [vi] = ∅ vi ∈ Roots initializes root/start vertices. (6.6a)

Φ [vi] =
⋃
s


∀vk∈π(vi)

vk ∪s Φ [vk]︸ ︷︷ ︸
∆2

︸ ︷︷ ︸
∆1


(6.6b)

where

• Φ defines the unique set (i.e. uniqueSet in the algorithm,

• vi a vertex in the ontology (graph),

• π(vi) the set of parents for vi,

• ∪s and is a union-operation applied with sorting,

• π(vi) the set of parents for vi,

• ∆1 correspond to the lines [25 .... 29] found in Algorithm 6.2, and

• ∆2 correspond to the line of code 14 found in Algorithm 6.3.
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Comparing Equation (6.6) with Algorithm 6.2 and Algorithm 6.3, which is their for-
malized representation, we note that both the algorithms and the equation uses the ∀ (i.e.

for-all) approach; difference is in their order. The algorithms implements Lemma 6.2.1:
while Equation (6.6) implicitly assumes that a vertex has its parents covered, i.e. Algorithm
6.3 explicitly performs the task. We therefore assume that the vertices in the ontology have
a complete coverage of its ancestors denoted by Φ in Equation (6.6). From the assumption
we hypothesize that a vertex has a complete coverage of its ancestors, which we prove
below:

Proof of vertex coverage. We will now show that Algorithm 6.2 and Algorithm 6.3 visit
every vertex in the ontology, and construct complete paths to their roots, proving Lemma
6.2.1:

Reference-id Statement Reference

OLC1 Add its children to the queue after it has received
all of its parents vertices.

Algorithm 6.2,
line 23.

OLC2 Stops modifying its internal data-structures (rep-
resenting the set of simple paths and set of
unique vertices) when the vertex child-relations
are added to the queue: a vertex first starts the us-
age of a parents data-set when the parent is cov-
ered.

Algorithm 6.2,
lines [17....31].

OLC3 Propagates the parents knowledge (i.e. the set of
data-structures) into all of its children: a vertex’
parents therefore have a complete coverage for
their own parents.

Algorithm 6.3.

Table 6.1: The set of observations used in the process of deducing the correctness of
Lemma 6.2.1. We observe that the reference-id (in the leftmost column) consists of a
prefix (i.e. OLC) and a number: construction of the proof will refer to the reference-id.

Table 6.1 lists three implications of the algorithms in question. The implications sup-
port the proofs of the generalized BFS algorithm[46, 55], i.e. that all of the vertices in the
ontology are visited. A simplification of the latter is seen in Equation (6.7)

∀ (vi ∈ π̃ (vk)) (6.7)
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where vi and vk are vertices in the ontology (graph), and π̃(vi) represents the set of chil-
dren for vk. The observation in Equation (6.7) implies that a vertex has received data from
all of its parents, i.e.

∀ (vk ∈ π (vi)) (6.8)

where vi and vk are vertices in the ontology (graph), and π(vk) represents the set of parents
for vi. The latter (i.e. that a vertex has received data from all of its parents) is in accordance
with OLC1.

To prove the correctness of a vertex coverage, we observe that each of the vertex’ par-
ents has a set of unique vertices representing its ancestors, where the received set of unique
vertices is copied into the vertex’ own data-structure. Correctness of the operation require
that (a) the parent does not modify its own data-structure and (b) that copy-operation is
correct. Requirement (a) is covered by OLC2 while requirement (b) is covered by the
properties of the union-operator. If the parent has coverage for all its ancestors, the cov-
erage of an arbitrary vertex is correct. From the additional knowledge stated in OLC3 the
latter is verified. Lemma 6.2.1 is therefore proven. �

The set of distinct vertices support operations such as intersection and union. The
intersection of vertices’ unique sets is understood as

ψ(vi, vk) = {y ⊇β vk && y ⊇β vi} (6.9)

where vi and vk are the vertices which get intersected, β an arbitrary relation type con-
necting vertex vi to vertex vk, and ψ the intersected set of vi and vk. The intersection
may use either the complete set of unique vertices, or the restricted set (i.e. a subset of
the unique vertices). The sets may use either the ancestors or the descendants’ version of
the ontology. For brevity we omit including the algorithm for intersection. From Lemma
6.2.1 we conclude that a vertex has complete coverage of its ancestors. The operation of

intersection is performed as

ψ(vi, vk) = Φ [vi] ∩s Φ [vk] (6.10)

where ∩s is the set-operator resulting in a sorted subset of distinct elements from the
operations.

Corollary 6.2.1 (Correctness of the intersection algorithm). The property’s of the inter-

section is defined in Equation (6.9). From the definition in Equation (6.9), we observe

that finding the intersection ψ(vi, vk) require examining all ancestors of vertices vi, vk.
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Lemma 6.2.1states that these are completely covered by the unique sets Φ [vi], Φ [vk], so

it follows that their intersection is computed in Equation (6.10).

Similar to the operation of intersection is the task of calculating the union between two
sub-ontologies of vertex vi and vk:

ψ̃(vi, vk) =
{
y ⊇β vk

∣∣∣∣ y ⊇β vi} (6.11)

where vi and vk are the vertices which receive the union, β an arbitrary relation type con-
necting vertex vi to vertex vk, and ψ̃ is the union of vi and vk. Applying the definition in
Equation (6.11) to the pre-processed data-structure in cocO(n), the algorithm is described
as

ψ̃(vi, vk) = Φ [vi] ∪s Φ [vk] (6.12)

where ∪s is the set-operator resulting in a sorted super-set of distinct elements from the
operations.

Corollary 6.2.2 (Correctness of the algorithm for union). The difference between the al-

gorithms of union and intersection is found in the set-operator, i.e. ∩s versus ∪s as seen

in Equation (6.11) and Equation (6.12). From Corollary 6.2.1 we have proven the correct-

ness of the intersection algorithm. Therefore the algorithm for the union-operation is also

correct.

6.2.2 Building a Restricted Set of Unique Vertices

The set of unique vertices consists of all linked vertices. In some contexts it is of interest
restricting the set. Examples of such a restriction are for subsets were all the descendants
have the sub-name-space ’P’, or the stretch of vertices only connected by the “part of” rela-
tion type. A restricted set of unique ancestors (henceforth the restricted set) is understood
as

Ancestors(vi) =



{vk, vl} ∈ V where

vi ⊆β {vk, vl} and

vl 6= vi and

vl 6= vk and

vk
β−→ vl holds.

(6.13)
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where vi, vk and vl are vertices in the Ontology V and β a sub-name-space/relation type
connecting two vertices. When initializing Equation (6.13) with vk = vi, the implication
is an explicit linkage between vertices of the same type, i.e. as required by the vk

β−→ vl

property. The latter condition separate the restricted set from a unique set. The difference
is seen when comparing Equation (6.13) with Equation (6.4), where the latter does not
apply conditions for testing the type of relatedness. From the executing algorithm we
observe the similarities of the approaches (i.e. equations):

• the sets (of the unique and restricted set) are constructed in Algorithm 6.3.

• the unique set uses a one-dimensional list, i.e. as specified in Equation (6.6) and at
line 14 in Algorithm 6.3.

• the restricted set uses a two-dimensional list for storing the relations, i.e. as seen at
lines 16 and 18 in Algorithm 6.3 .

Formalization of the algorithm for restricted set therefore implies a modification to Equa-
tion (6.6):

{relation type, sub-name-space} ∈ τ (6.14a)

Φ [vi]τ = ∅ vi ∈ Roots initializes root/start vertices. (6.14b)

Φ [vi]τ =
⋃
s


∀vk∈π(vi,β)

vk ∪s Φ [vk]τ,β︸ ︷︷ ︸
∆2

︸ ︷︷ ︸
∆1


(6.14c)

where

• τ is a function representing the restricted set.

• Φ is modified to the unique set (i.e. uniqueSet in Algorithm 6.3),

• π(vi, β) is extended with the properties of relation types/sub-name-space,

• ∆1 correspond to the lines [25 .... 29] in Algorithm 6.2, and

• ∆2 correspond to the line 16 (in the code) for the relation type and line 18 for the
sub-name-space, both found in Algorithm 6.3.

The similarity between the set of ancestors with/without restrictions, indicate correct-
ness of the restricted set:
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Lemma 6.2.2 (A vertex has a complete coverage for its restricted set). For the restricted

set, a vertex has a complete coverage for all its ancestors. The cover is defined by Equation

(6.13), and holds for every vertex in the ontology.

Correctness of the assumption in Lemma 6.2.2 is indicated by the similarity between
Equation (6.6) and Equation (6.14)), and verified by the following proof:

Proof for the correctness of restricted sets. Proving the correctness of the restricted set,
we observe similarities and differences with the unique set of vertices, i.e. as seen in Table
6.2:

Reference-id Statement Observation

OLR1 Definitions of the restricted and unique set differ
only in their requirement of explicit linkage, i.e.

the vk
β−→ vl requirement.

Equations (6.13)
and (6.4).

OLR2 The unique and restricted sets differ only in their
extra relation type/sub-name-space identifiers β
and τ .

Equations (6.6)
and (6.14).

OLR3 The relation type/sub-name-space identifiers are
defined for both the unique and restricted sets: if a
vertex has a complete cover of its ancestors, then
the properties of them must be correct, implying
that the identifiers are correctly set.

Lemma 6.2.1,
line 12 in Algo-
rithm 6.2 and line
17 in Algorithm
6.3.

OLR4 The algorithm for updating restricted sets only
differs from (the algorithm of) updating the
unique set with regard to the extra dimensions of
their set: if the unique set is correctly updated,
then the restricted set is correctly updated.

Lines 14, 16 and
18 in Algorithm
6.3.

Table 6.2: The set of observations used in the process of deducing the correctness of
Lemma 6.2.2. We observe that the reference-id (in the leftmost column) consists of a
prefix (i.e. OLR) and a number: supporting the operation of deduction, the proof will
refer to the reference-id.

From OLR1 and OLR2 in Table 6.2 we induce that correctness of the identifier (e.g.

relation type/sub-name-space) gives correctness of Lemma 6.2.2, i.e. as the set of opera-
tions which are equal between the restricted and unique set is proven for Lemma 6.2.1.
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Our task is therefore to prove the correctness of both the identifiers and algorithmic modi-
fications to the code for updating the restricted set.

If the identifiers are set correctly, the restricted set is correct. Assuming that the vertex
does not hold a cover, it must not hold a cover for its ancestors, and therefore have been
updated incorrectly. This would contradict Lemma 6.2.1 and our statement in OLR3,
which imply that the identifiers are correct.

The second difference between the restricted and unique set is due to procedures for
updating the sets them self. From OLR4 we observe that correctness in updating the
unique set implies correctness in updating the restricted set, which implies correctness for
the algorithm of updating the restricted set. �

6.2.3 Building of the Concrete Paths

The set of (all) concrete paths provide answers to algorithms such as shortest or longest
paths between arbitrary vertices. The set of all concrete paths is constructed in order to
answer problems related to a term’s linkage, i.e. the implicit relations of an ontology. A
short summary of general properties regarding path-construction:

1. each vertex has zero or more paths to a root.

2. each path involves at least one vertex.

3. a vertex position in the path corresponds to its distance from the root.

The paths (i.e. the implicit relations) are the possible linkages between a vertex vi and
a root rn. The linkage is constructed without taking into account the rules covering the
relation types. Given the latter simplification, the existence of a path between the two
vertices vi and vk is understood as

{vi  vk} ⊆β {vi  vk  rn} (6.15)

where β denotes an arbitrary relation type connecting two vertices, implies an implicit
relation and the path vi  vk is covered by the set of paths from a vertex vi to a root rn.
From the observation we get Lemma 6.2.3:

Lemma 6.2.3. If a vertex vi has a coverage of all concrete paths to a root, then vi has

coverage of all concrete paths to any of its vertices that is member of the set covered by

Lemma 6.2.1 (i.e. its ancestor-set).
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A proof of Lemma 6.2.3 require a definition of the path-set in an ontology. General-
izing the observation of Equation (6.15), we observe that the set of root-paths contain the
set of paths linking all vertices

Ω [vi] = ∅ for vi ∈ Roots initializes the root/start vertices. (6.16a)

Ω [vi] =
⋃
ae

Ω [vk] ∪ae (vk, β)︸ ︷︷ ︸
∆1

 for each vk,β ∈ π (vi)︸ ︷︷ ︸
∆2

(6.16b)

where

• Ω hold the set of all paths to the ancestors,

•
⋃
ae appends the set of recursive paths (generated by Ω[vk]) to the end of each of

the paths stored at a vertex (e.g. for Ω[vi]),

• vi, vk are members of the ontology,

• β is a relation type connecting vi with vk,

• πvi,β is the set of concrete parent-relations for vertex vi,

• ∆1 performs the task the task of concatenating the ancestor-paths and

• ∆2 represents the immediate ancestors which are explored.

The formalization of all paths in Equation (6.16) define the set of all concrete paths from
a vertex to its set of ancestors:

Proof of a Lemma 6.2.3. From ∆2 in Equation (6.16) we observe that a all of a vertex vi’s
ancestors are visited. The equation construct path-sets, i.e. those labeled with ∆1. When
a root ri is a member of the ancestors of vi, we have

vi ⊂β vk ⊂β ri (6.17)

where vk is an arbitrary ancestor of vi and β an arbitrary relation type connecting two
vertices. Given the pre-condition in Equation (6.17) the resulting sets of paths Ω[vi] are
given by

∃
ωn∈Ω[vi]

(
∃

ωp∈Ω[vk]

ωn(0) = ri && ωp ⊂β ωn

)
(6.18)
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which implies that any vertex along the path from vi to ri is covered by a concrete path.
�

Constructing a path set ωn ∈ Ω[vk] connecting a vertex to a root ri we append a
vertex’ own identity at the end of parent vertex vi path list ωp ∈ Ω[vi], as outlined in line-
block [19....23] in Algorithm 6.3. A formalization of the procedure in which we iteratively
construct vertex’ path-set is given in Equation (6.19):

Ω [vi] = ∅ vi ∈ Roots initializes root/start vertices. (6.19a)

Ω[vi] =
⋃

∀(vk,β)∈π(vi)

∀ω∈Ω[vk]

ω ∪a (vk, β)︸ ︷︷ ︸
∆3

︸ ︷︷ ︸
∆2


︸ ︷︷ ︸

∆1


(6.19b)

where

• π(vi) is the set of parents for vi,

• β is a relation type connecting vi with vk,

• Ω holds the set of paths to the roots,

• ω is a simple path (i.e. set of vertices without furcation) to the the root,

• ∪a appends the rightmost item to the end of the (path) set,

• ∆1 correspond to the lines [25 .... 29] in Algorithm 6.2,

• ∆2 correspond to the lines [19 .... 23] in Algorithm 6.3, and

• ∆3 correspond to the line 20 and 22 (in the code), both found in Algorithm 6.3.

Evaluating the correctness of the path-construction, Equation (6.19) is compared with
our similar algorithms for pre-processing: the algorithms which build the unique and re-
stricted set iterate through the set of parent-relations, appending their parents coverage to
their own. Corollary 6.2.3 formalizes the latter observation:

Corollary 6.2.3 (Path-coverage for each vertex). The all-path implementation visits all of

a vertex’ ancestors. We observe that the for-each loop in Equation (6.19) corresponds to

Equation (6.14). From the proof of Lemma 6.2.2 we conclude that all ancestor-relations
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are visited. Therefore the set of paths for a vertex vi contains a coverage for all of its

ancestors.

Corollary 6.2.3 prove the correctness of a vertex’ coverage. The corollary assume
correctness of internal attributes of a path. Example of such an attribute is the distance-
measurement, which is important when calculating the shortest and longest paths between
arbitrary vertices. Lemma 6.2.4 formalizes the assumption of correctness with regard to a
path’s property:

Lemma 6.2.4. A concrete path ωi holds a string of connected vertices without branches,

i.e.

{vi  vj  vk} ⊆ ωn ⊆ Ω[vi] (6.20)

where the positions in ωn (i.e. the path), which is a member of the path-set Ω[vi] for vertex

vi, correspond to the distance from the root.

An implication of Lemma 6.2.4 is that a root is stored as the paths first index,

ωn(0) = ri (6.21)

where ri is an arbitrary root stored on the arbitrary path ωn. The task is to prove the
correctness of a concrete path, i.e. to verify that a path is a true member of an ontology G.

Proof of Lemma 6.2.4. The paths are built from a successive number of set-concatenations.
We observe the use of the ∪a operator in the definition at Equation (6.16) and implemen-
tation in Equation (6.19). The ∪a operator pushes a relation at the end of a list. The first
vertex which the BFS visits is the root. The implication of the ∪a operator is

id (ωn(0)) = ri which is the first vertex along a path, (6.22a)(
id(ωn+1)

β(ωn)−−−−→ id(ωn)

)
∈ E for n ∈ [1 . . . (|ω| − 1)] (6.22b)

where id(ωn) describes the vertex-id at index n in the path. The vertex-pairs in Equation
(6.22) represent a concrete relation. Construction of the path-set correspond to the lines
20 and 22 in Algorithm 6.3. An illustration of the path-set construction is provided in
Equation (6.23): π (vi) 3 vk︸ ︷︷ ︸

d(vk,π(vi))=3

 ⊂β
 π (vk) 3 vl︸ ︷︷ ︸
d(vl,π(vk))=2

 ⊂β
 π (vl) 3 ri︸ ︷︷ ︸
d(ri,π(vl))=1

 (6.23)
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where d (vi, vk) represents the length (i.e. number of relations) connecting two arbitrary
vertices along the path vi  ri, and β an arbitrary relation type linking two vertices. From
Equation (6.23) we observe that the distances from a vertex vi to any of its roots rn is given
by

d (vi, rn) equals

(d (vj , rn) + 1)

∀ω∈Ω[vk] (|ω|+ 1)︸ ︷︷ ︸
∆1

where vk ∈ π(vi, β)︸ ︷︷ ︸
∆2

(6.24)

where |ω| describes the length of the ω set and d (vj , rn) the distance from vertex vi to the
root rn. Proof of the latter is by contradiction. Let the ontology G be a DAG, and assume
that

d(vi) < d(vk) (6.25)

represent the ancestor distance between vi and vk, where

vk ∈ Ω[vi] (6.26)

which implies that there exists a path (either implicit or explicit) connecting vi to vk. From
Lemma 6.2.4 and assumption of the DAG, this is a contradiction, i.e. part ∆1 of Equation
(6.24) is proved. Correctness of the ∆2 part regards the property of a vertex coverage.
Correctness of the path-coverage is given by Lemma 6.2.5. From Equation (6.22) we
observe that all vertices are connected in the same order as they are stored in the path-set,
i.e. as a pair of neighboring vertices in the path correspond to a concrete relation in set
E of arcs in the ontology. The root is the first inserted vertex. As the paths are concrete
and the order corresponds to concrete relations, the implication is that an index in the
path corresponding to the vertex distance from the root. An illustration of this is given in
Equation (6.23). Lemma 6.2.4 is therefore proven. �

The proof of Lemma 6.2.4 describe properties of a concrete path. Operations such as
finding the shortest path between arbitrary vertices require a complete coverage for all the
possible paths, i.e. as formalized in Lemma 6.2.5:

Lemma 6.2.5. The set of of all concrete paths Ω[vi] for an arbitrary vertex vi cover all

the possible paths connecting a vertex to any of its ancestors.

From the proof of Lemma 6.2.4 we know that a path is a true member of an ontology
G. Our task is to prove that all paths are member of the path-set Ω.
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Proof of Lemma 6.2.5. Corollary 6.2.3 states that all vertices are covered during the path-
construction. Therefore if each of the paths for vertex vk are correctly extended at its
child vi, the set of paths correspond to those found in G, i.e. as stated in the proof of
Lemma 6.2.5. The task is to prove correctness for the inner for-each loop (i.e. ∆2) in
Equation (6.19). The for-each loop corresponds to the lines [19 .... 23] in Algorithm 6.3.
From these lines we know that, given correctness of the path extension, a set is correctly
copied. As the path extension were proven for Lemma 6.2.4, we have therefore proven the
correctness of Lemma 6.2.5 . �

The proof of Lemma 6.2.5 states that a vertex vi holds a complete coverage of its
implicit ancestor-paths. The implication is that the distances to any of vi’s ancestors are
pre-computed. Formalizing the latter, we get Corollary 6.2.4:

Corollary 6.2.4. The set of distances from a vertex vi to any of its ancestors vk is

d (vi, vk) =

∀ω∈Ω[vi]

∣∣∣ω (|ω|) . . . (id (ω(k) = vk))︸ ︷︷ ︸
∆1

∣∣∣
 (6.27)

where d (vi, vk) describe the length of the sub-set, and ∆1 the number of vertices in the

subset. From the proof of Lemma 6.2.4 we know that a path’s distance corresponds to the

number of vertices along it. The latter is identical to ∆1 in Equation (6.27), which prove

this corollary.

Corollary 6.2.4 define the correctness of the ordered access to any of a vertex vi’s
concrete relations. From this we know the correctness of the algorithm for finding the
paths, and their length, i.e. between arbitrary vertices. Proving the correctness of extracting
the shortest and longest paths is therefore straightforward. The operations are defined as

ω [vi] =
⋃
ae

ψ (ω [vk]) ∪ae (vk, β)︸ ︷︷ ︸
∆1

 for each vk,β ∈ π (vi)︸ ︷︷ ︸
∆2

(6.28)

where ψ is an arithmetic operator either selecting the shortest or longest path(s), i.e. of
those found in the ancestors path-set ω[vk]. The path-length between the vertices is given
by Equation (6.27) in Corollary 6.2.4. Applying the min operator to ψ in the equation, we
have a function in Equation (6.29) describing the shortest or longest path:

d (vi, vk) = ψ

∀ω∈Ω[vi]

∣∣∣ω (|ω|) . . . (id (ω(n) = vk))︸ ︷︷ ︸
∆1

∣∣∣
 , 0 < n < |ω| (6.29)
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The correctness of the shortest and longest path operation is given by Corollary 6.2.5:

Corollary 6.2.5. Corollary 6.2.4 states the correctness of finding the set of distances be-

tween two arbitrary vertices vi and vk. Equation (6.29) selects either the shortest or

longest path using the basic arithmetic operator named ψ. As we assume the correctness

of the basic arithmetic operators, the extension provided by the shortest and longest path

algorithm is correct.

6.2.4 Summary of Operations During The Pre-Processing

The procedures for calculating the set of unique sets, restricted sets and path sets are
similar:

1. from Lemma 6.2.2 we know that all the relations are visited in the ontology;

2. from Lemma 6.2.1 we know that all the vertices have a complete coverage of their
data-structures;

3. from Table 5.1 (at page 47) we know that the approach of storing data in lists implies
a highly efficient utilization of memory (i.e. reduced running-time of the software).

The operations were given separate descriptions due to their differences:

The number of sets: while a single set represents a vertex’ related vertices (i.e. in the
context of unique and restricted sets), on average more than one concrete path
will link a vertex to the roots. (For details about the latter, see description of our
benchmark-ontologies in section 2.1 at page 7.)

The order in which the vertices are stored: the index (location) of a vertex in a concrete
path correspond to its distance from the root.

Type of set-concatenation: The modified union ∪a operator appends a vertex to the end
of the list, this in contrast with the sorting-operator ∪s in the building of the unique
and restricted sets.

In this section, we explored the non-rule based pre-processing algorithms, and veri-
fied correctness of the algorithms in the pre-processing. The pre-processing algorithms
assumed that an arc connecting two vertices was both anti-symmetric, reflexive and transi-
tive, i.e. did not cover specific rules for each relation type. The queries which is understood
as the most time consuming operations in biomedical reasoning concerns the application of
inference rules, such as the operation of building of all-some closures, which we described
in section 2.2.5 at page 14.
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6.3 Efficient Support of Rule-Based Querying

We have recognized opportunities for increasing the performance of rule-based ontology
queries, an algorithmic extension which is presented in this section. The extended pre-
processing is motivated both by our initial performance analyze of ONTO-PERL, as seen
in Table B.1 at page 121, and a description of the cocO(n) algorithm, as given in the
previous section. When designing the rule-based extension, we restrict our scope to the
cases of ontology contraction and expansion: an ontology is

• contracted (i.e. reduced) when it holds the minimal path-set and

• expanded (i.e. closed) when the new ontology holds all possible paths.

If the rules of ontology contraction and expansion cover all of an ontology’s relation
types, we might think that there will only be one path connecting two arbitrary vertices V
and S. In some cases the latter assumption is wrong. The special case occurs when none
of V’s children is the subset of the other. To highlight the cases regarding the rule-based
reduction, we include them in Figure 6.4:
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(b) The cover of T is empty.

S

T U

V

is a transitive relation-type, while is not transitive.
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(a) The cover of T is a subset of U.

(c) None of V's children is a subset of the other.

Figure 6.4: Rule-based ontology reduction. We observe the rule-based ontology reduction
we observe the rule-based expansion for three sub-ontologies. To generalize our represen-
tation, the relation types are not explicitly stated: the green arrow symbolizes the relation
types covered by the rule, while the dotted red arrow are those not to be expanded.
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Figure 6.4 illustrates an ontology’s special cases with regard to the rules of reduction.
Making our illustration less abstract, we have applied the rules of transitive reduction, i.e.

from the left to the right sub-figures. The three situations provided illustrate cases handled
by our ruled-based algorithmic extension:

Sub-figure 6.4a: if one of the vertex-child T is the rule-based sub-set of the others (named
U), then the descendants of T are completely covered by the rules for U.

Sub-figure 6.4b: if the rule-based cover of V’s child T is empty, then V’s rule-based cover
is not extended.

Sub-figure 6.4c: if neither the descendants of U nor T provide a complete subset of the
other, the contracted ontology is not updated: this implies that there exists more than
one path connecting the vertices V and S.

The red arrows in Figure 6.4 are not part of a vertex’ rule-based cover. For some
ontologies this considerably reduce the number of paths connecting two vertices. The
ontologies in our benchmark-set do not provide such challenges. (For details about the
path-growth in our benchmark-ontologies, see Equation (2.3) at page 10.) If our bench-
mark ontologies were expanded before applying the pre-processing, the opposite would
be true (i.e. an intractable amount of paths connecting two vertices). Ontology reduction
provides an option of considerably reducing the number of paths connecting two arbitrary
vertices. The reduction-factor depends upon the fraction of relation types covered by the
applied rule (e.g. using the rule for transitivity instead of rules for the all-some property).

Illustrating the above cases, Figure 6.5 presents the query-result of ontology contrac-
tion and expansion:



78/138 Chapter 6. cocO(n); A High-Performing Ontology API

(b) Expansion of the Ontology

part_ofis_ais_a

(a) Input Ontology

BA C D E F G

part_ofis_a

BA C D E F G

part_ofis_a part_ofis_a

Inferred pathsConcrete paths

(c) Contraction of the Ontology

BA C D E F G

part_of

Inferred pathsReduced paths

Figure 6.5: Ontology contraction and expansion. We observe here the contraction and
expansion on the input ontology. To simplify our representation, we have chosen to use
only two relation types: part_of and is_a. The input ontology is illustrated in sub-
figure (a) with the concrete arrows connecting the vertices. Inferences are made in sub-
figure (b) and (c). An inference is illustrated using a dotted arrow: for each vertex the
resulting set of paths consists of both the inferred and concrete arrows: the expanded
ontology is illustrated in sub-figure (b), while the contracted ontology is included in (c).

Ontology expansion and contraction are visualized in Figure 6.5. A short re-statement
of the basics:

• the task of contraction is to remove concrete relations, while

• expansion (in most cases) increases the set of concrete relations.
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From the figure we observe that

r ∈ R is the set of query-rules, and (6.30a)

H[vi]r =



{vk, vl} ∈ V where

vi ⊆r(β) {vk, vl} and

vl 6= vi and

vl 6= vk and

vi
β∈R−−−→ vk and

vk
ζ∈R−−−→ vl and

vk
r(β,ζ)−−−−→ vl

holds. (6.30b)

where

• vi, vk and vl are vertices in the Ontology V ,

• β and ζ are relation types covered by a rule r found in the rule-set R, and

• H[vi]r is the set of reachable relations, given rule r, for vertex vi.

Similar to Equation (6.13) at page 65 we initialize Equation 6.30 with vk = vi. In short
H[vi] represents the set of inferred paths which are reachable from a vertex vi.

The set of inferred paths require a translation of relation types, as seen for vk
r(β,ζ)−−−−→

vl in Equation 6.30, where the rule r translates the relation type β into a new relation
type. Looking at the inferred paths in Figure 6.5, we observe that a single relation type
results from concatenation of multiple relation types. Until now we have ignored the
relation types in our algorithmic description. Without explicit translation rules it is difficult
to correctly concatenate the relation types. Why awareness of the relations types is of
importance now becomes obvious: in Figure 6.5 the relation types is_a and part_of
were concatenated. An example of a correctly applied translation of Definition 2.2.4 (at
page 13) is seen in Equation (6.31):

A
is a−−→ B

part of−−−−−→ C a set of relations, where

A
part of−−−−−→ C is the ruled-based translation.

(6.31)

We have here used the rules for property chains. When only the relations affected by the
property of chains are covered by the contraction and expansion rules, they are respectively
denoted as the operations of chain reduction and chain closure. In Algorithm 6.4 the chain-
rules for the relation types part_of and is_a are translated into an algorithm:
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Algorithm 6.4: Ontology-rules for the part_of and is_a relation type.

1 /* Extends the algorithmic input with the set of rules. */

global inputRules ←cocoOn.getInputRules();

/**
brief: Get the inferred relation type using the input-rule.

param: <types> are set of connecting relation types.

6 return: the relation type inferred by the input-rule.

**/

relationType getRelationTypeByRule(types) {

if(types ∈ inputRules) {

if(types ∈ {’is_a’}) then {return ’is_a’;}

11 if(types ∈ {’part_of’}) then {return ’part_of’;}

else {

if(types ∈ {’is_a’ ∪ ’part_of’}) then {return ’part_of’;}

}

} else {

16 return ∅; // the relation types were not covered by the rules.

}

}

The concatenation rules are defined by the user. The provided example of chain-based
rules (for the relation types part_of and is_a) is a simplification. Real-world ex-
pansion and contraction rules are more complicated. At page 84 we provide a detailed
algorithm for the rules regarding chain-based expansion and closure: before the example
is presented, the context of the rules and their application should be clear:

r ∈ R the query-rules, (6.32a)

vk ∈ V the ontology, (6.32b)

H(vk)r ∈ H(vk) reachable vertices, (6.32c)

Υ (vk)r = π(vk)−
{
∀r∈R∀(vi,β)∈π(vk)r (H (vi)r , β)

}
the contracted set, (6.32d)

Ξ (vk)r = π(vk) +
{
∀r∈R∀(vi,β)∈π(vi)r (H (vk)r , β)

}
the extended set. (6.32e)

Equation (6.32) define the contracted and expanded sets where

• Υ covers the contracted set,

• Ξ the extended set,

• H(vk) the set of reachable vertices for a vertex vk, which was defined in Equation
6.30.
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• π(vk) the set of parents for vk, and

• r the rule which is applied.

Equation (6.32) applies the translation rules for relation types, which was defined in sec-
tion 2.2 at page 11. The rule-based ontology may either be built separately, i.e. before the
generation of all paths is applied, or used directly as part of the path-building operation.
The provided option when running the cocO(n) algorithm therefore becomes:

1. either be part of the pre-processing (default option),

2. the only part of the pre-processing or

3. built from the ontology or a sub-part (sub-ontology) of it.

An example of the provided user-convenience is seen in above point (3), where cocO(n)
support ontology reduction using multiple reduction rules.

From the the acquired understanding of the query-rules, and the different sub-ontology
cases they are to be applied on, we are able to formulate an algorithm: translating the
acquired knowledge into an high-level algorithm, the result is seen in Algorithm 6.5:
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Algorithm 6.5: An algorithmic extension performing a rule-based pre-processing.

/* Extend the algorithmic output containers. */

2 global relatedRules ←new Set; // reachable parent-vertices.

global contractedParents ←new Set; // immediate parent-vertices.

global expandedParents ←new Set; // immediate parent-vertices.

/**
7 brief: Builds the set of rule-based relations.

param: <current> is the vertex in question.

param: <parent> is a vertex who added current to the queue.

param: <type> The relation type linking the head with the tail.

remarks: is the new function we have extended the algorithm with.

12 **/

void insertRuleBasedRelation(current, parent, type) then {

if(parent = ∅) then { // it is a root.

relatedRules[current] ←{}; // initiates it.

} else {

17 if(expandedParents[current] = ∅) then {

//! Add relations both following- and not following the rule:

{contractedParents[current]} ←inputParents[current];

{expandedParents[current]} ←inputParents[current];

}

22 for each rule ∈ {inputRules} then {

if(current.relationType ∈ rule) then {

//! Remove reachable relations:

contractedParents[current][rule] ←
contractedParents[current][rule] -

rule(relatedRules[parent][rule],type);

//! Append reachable relations:

27 expandedParents[current][rule] ←
expandedParents[current][rule] +

{rule(relatedRules[parent][rule],type)};

//! Update the reachable set:

relatedRules[current][rule] ←relatedRules[current][rule]

∪s {rule(relatedRules[parent][rule], type)} ∪s rule(parent,

type);

} // else the relation is not part of the accepted set.

32 }

}

}

From Algorithm 6.5 we observe the application of query rules, such as for line 25,
which corresponds to vk

r(β,ζ)−−−−→ vl in Equation 6.30. To verify correctness of the reachable
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set (i.e. relatedRules in Algorithm 6.5), we formalize the algorithm:

r ∈ R is the set of query-rules in R, (6.33a)

H [vi]r = ∅ vi ∈ Roots initializes root/start vertices. (6.33b)

H [vi]r =
⋃
s


∀(vk,β)∈π(β)

(vk, r(β)) ∪s {r (H [vk]r , β)}︸ ︷︷ ︸
∆2

︸ ︷︷ ︸
∆1


(6.33c)

where

• H[vi]r holds the reachable set,

• ∆1 corresponds to the lines [25 .... 29] in Algorithm 6.2, and

• ∆2 corresponds to the line 30 in Algorithm 6.5.

If the reachable set has a complete coverage of its ancestors, given a rule r, we assert
it to be correct:

Corollary 6.3.1. A reachable set for a vertex has a complete coverage of its ancestors

when given a query-rule.

Comparing Equation (6.33) with Equation (6.14), the difference is found in the ∆2 part

of the equations, which concern translation of relation types: if the rules are correctly

applied, and the restricted set is correctly updated, then the reachable set is correct. From

the proof of Lemma 6.2.2 we know the correctness of a restricted set’s coverage. Appli-

cation of a query-rule is given by its definition, which we outlined in section 2.2 at page

11. We therefore assert the correctness of a reachable set’s coverage for a vertex, given a

query-rule “r”.

From the correctness of the reachable set in Corollary 6.3.1 we are ready proving the
correctness of the extended and contracted sets:

Corollary 6.3.2 (Correctness of the extended and contracted sets). Given the similarities

of the extended and contracted set, we first prove the correctness of the extended set before

inducing the correctness of the contracted set.

Comparing our algorithm to the definition of the expanded set, we observe that

• line 20 in Algorithm 6.5 correspond to π(vk) in Equation (6.32e), i.e. the expanded

set is correctly initiated.
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• line 27 in Algorithm 6.5 correspond to r (H (vk)r , β) in Equation (6.32e), i.e. that

the expanded set is correctly updated if our reachable set is correct.

From Corollary 6.3.1 we have correctness of the reachable set, therefore the expanded set

is correctly updated, i.e. given the above two points.

Comparing the expanded set to the contracted set, the difference is seen in the “+” vs

“−” operator, i.e. the contracted set is correctly updated.

6.3.1 Example: A Rule-set for Biomedical Ontologies

Until know we have vaguely described the rules of relation type translation. In short, the
rules have been described as a change from one relation type to another. To highlight the
operations of the rule-based algorithm, we use the rule set covering life science ontologies.
To limit our scope, we specify the rules for the set

{A,B,C,D,E} ∈ V and V is the set of vertices in our scope, (6.34a)

{α, β, ζ} ∈ R where R is the set of relation types. (6.34b)

{α, β} ∈ RT where RT is the transitive sub-set. (6.34c)

α ≺ β implying that β is a sub-chain of α: (6.34d)

Equation (6.34a) forms the basis for our example of rule-based querying. The equation
covers the sets of the relation types and vertices: α may in this context be substituted
by is_a and β for part_of. The rule-based translation is important as it provides
knowledge of the

• extended set which relations are member of,

• contracted set which relations are member of, and

• relation types connecting the inferred relations in the extended set.

The rules have the goal of identifying (a) the members of the set and (b) the translation
of relation types. Our example uses the definitions outlined from pages 11...16:

• The connectivity of relations (i.e. transitivity) is defined in Definition 2.2.6.

• Definition 2.2.5 (the all-some property at page 14) covers the changes in relation
types.

• Definition 2.2.7 explicitly states how super-sets are a generalization of subsets.
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To simplify our case, our example is limited to the two relation types α and β, i.e.

A
α−→ B

β−→ C which is our example, (6.35)

A
β−→ C is the result of the mapping from Equation (6.34d). (6.36)

Equation (6.35) illustrates the case looking at only two of the immediate relations. It
might be of interest considering more than two immediate relations. The latter is therefore
included as part of our future-work.

We have here covered the translations using generalized representation of the relation
types. The set notation does not explicitly specify the priority of specific relation types
(e.g. is_a or part_of). The concrete mapping require knowledge of:

1. the relation type along the first relation, e.g. α in Equation (6.35),

2. the relation type along the second relation, e.g. β in Equation (6.35),

3. the inferred relation type, e.g. β in Equation (6.36),

4. the related-rule-set the mapping is a member of, e.g. 1 (as there exists only one
possible set of inferences), and

5. if the rule covers chains (i.e. ≺) or sub-classes (i.e. ⊂), e.g. ≺ in Equation (6.34d).

The above examples (of relation type knowledge) is translated into a four-tuple, i.e.

(β, β, 1,≺) (6.37)

We observe that the new four-tuple consists of the last four points in the above list. Equa-
tion (6.34a) (at page 84) a presented a set of rules. Translating the rule-set into triplets, the
result is seen in Table 6.3:
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Relation-Head Mapping of Relation-Tail

α (β, β, 1,≺) , (α, β, 1,≺) , (α, α, $,≺)

β (β, β, 1,≺) , (β, β, $,≺) , (α, β, 1,≺)

ζ ∅

Table 6.3: Translating rule-sets into triples. Using four-tuplets to translate set-notation
into explicit syntax. The last row represents inferences for relation type ζ; the set of
inferences is defined using ∅, which implies that it has no inferences. For the other relation
types α and β, inferences are defined. Each inference is a member of an inference-set.
The membership is defined by the four-tuplets rightmost symbol. CocO(n) already stores
knowledge of closed set of relation types: for details, see section 6.2.2 at page 65. The
closed set is identified by the $ symbol. An example of such is seen for the four-tuplet
(β, β, $,≺).

Table 6.3 illustrates the explicit translation of set-based knowledge. The inferences are
ordered. The order is seen in column two of the table: from the most generalized relation
type at left, into the most specific case at the leftmost side. For two relations connected
by relation type α, two translations exists. Equation (6.38a) provides an example of such
a case:

A
α−→ B gives the two alternative translations (6.38a)

A
α−→ B which is the first alternative (6.38b)

A
β−→ B which is the other solution. (6.38c)

In the process of contraction we choose alternative in Equation (6.38c), while in the pro-
cess of expansion both alternatives are used. The latter is due to the all-some property in
Definition 2.2.5. We observe that the translations are used both in operations of contraction
and extension: for contraction a single relation type is to be chosen.

6.4 CocO(n)’s Implementation and Future Work

In this chapter we have presented an approach for making ontology reasoning fast. The
chapter has applied the knowledge of properties regarding ontology benchmarks, algo-
rithms with the task of reducing redundant operations, and the knowledge of preferred
memory access patterns:

1. implemented in C++ using the principles of efficient memory access patterns;
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2. applied in the pre-processing algorithms discussed at page 24;

3. consists of approx. 17.000 lines of code distributed on 43 distinct classes;

4. accessible through its (library) API, which is located at https://code.google.
com/p/ontowiz/source/checkout and described at http://folk.ntnu.
no/olekrie/ontowiz_cocoon_documentation/classcocoOn.html;

5. extensively documented at http://folk.ntnu.no/olekrie/ontowiz
_cocoon_documentation/annotated.html;

Through the pre-processing, CocO(n) has followed the design criteria outlined in the
previous chapters, by taking the approach of storing data sequentially in ordered lists. Im-
plementations of all the discussed algorithms are found at https://code.google.
com/p/ontowiz/source/checkout, with the sole exception of the API support for
rule-based querying, which still poses some restrictions on the expressive power of rule-
based definitions at the time of writing. Since implementing the full range of desirable
options for ontology reasoning would be a significant additional undertaking, we regard
extended API support for rule-based querying as part of our future work.

The performance impact of our approach has not been evaluated. Such an approach
requires cocO(n) to be glued to an ontology-parser. In the next chapter we describe this
part, i.e. ontology reasoning through the ontoWiz API, where ontoWiz enables performance
testing.

https://code.google.com/p/ontowiz/source/checkout
https://code.google.com/p/ontowiz/source/checkout
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/classcocoOn.html
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/classcocoOn.html
http://folk.ntnu.no/olekrie/ontowiz
_cocoon_documentation/annotated.html
https://code.google.com/p/ontowiz/source/checkout
https://code.google.com/p/ontowiz/source/checkout
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Chapter 7
ontoWiz; Implementation and

Performance Analysis

OntoWiz is an engineering tool for biomedical ontologies that uses cocO(n) for high-speed
ontology reasoning. As the performance measurements of cocO(n) depend on the inter-
connection between the ontology-parser and ontology-interaction (both written in Perl), in
section 7.1 we describe the interplay, in more detail.

It is obvious that in order to be useful our ontoWiz implementation should produce cor-
rect results correspond to the operations that are described in the software-documentation.
The C++ source code is documented at http://folk.ntnu.no/olekrie/ontowiz_
cocoon_documentation/, while the documentation for the Perl code is found in each
source-code file at https://code.google.com/p/ontowiz/source/browse/
#hg%2Fml_ontology%2FOntoWiz.

The approach for validating correctness, which we discuss in section 7.2, concerns
both ontoWiz and cocO(n), we therefore omitted a separate discussion of correctness of the
cocO(n) implementation in the previous chapter. Our assessment of assuring correctness
in ontoWiz, show that the implementation is trustworthy. Therefore, measuring the the
performance impact (i.e. processing time) of the ontoWiz approach becomes relevant and
highly interesting. From the measurements in section 7.3 we observe that the processing-
time of ontology-reasoning stems from three aspects:

1. the number of memory accesses,

2. the type of memory accesses, and

http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/
https://code.google.com/p/ontowiz/source/browse/#hg%2Fml_ontology%2FOntoWiz
https://code.google.com/p/ontowiz/source/browse/#hg%2Fml_ontology%2FOntoWiz
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3. the size of the ontology.

By analyzing these aspects we are able to assess their contribution to the processing time-
With a summary in section 7.4 of both the implementation and the performance analysis,
we suggest extensions to our implementation/performance analysis.

7.1 Implementation

OntoWiz is written in both C++ and Perl, using SWIG’s auto-generated Perl and C++ code
as a glue (i.e. for interconnection between the two programming languages). The main use
of ontoWiz is to provide an interface for cocO(n). The layered division of their relationship
is shown in Figure 7.1:

ontoWiz

cocoO(n)

AlgorithmsData Structures

C++ library interface

Storage scheme for biomedical ontologies

Interconnection between Perl and C++

Perl library interface

library

library

Figure 7.1: Layered work-division of
ontoWiz and cocO(n); dependencies are to be
read from top to down of the figure, i.e. Perl
library interface is dependent on fields below
it, such as the cocO(n) library.

From Figure 7.1 we observe how
cocO(n) is an integral part of ontoWiz. The
ontoWiz interface is specially designed for
tasks of interest in biomedical ontology
engineering.

Users interact with ontoWizthrough an
API. The interface is similar to ONTO-
PERL.

The storage scheme (for biomedical
ontologies as described in Figure 7.1) re-
quires a design which is flexible w.r.t. the
ontology-formats (i.e. given requirements
SR1 and SR2 in Table 2.1). As an on-
tology consists mostly of relations and at-
tributes (i.e. compositions of strings), it is
therefore possible to develop two parallel
storage schemes:

• relations, such as for the (Term, Term, relation-type) triple, and

• sets of strings, such as (database, accession number, description, modifier).

ONTO-PERL stores the data in structures corresponding to the grammar of each ontology
(i.e. linked lists of indirect memory references), resulting in a high number of cache misses
for each operation (i.e. as mentioned in Table B.1 at page 121). In contrast to ONTO-
PERL, ontoWiz separates the data storage and access routines:



7.1. Implementation 91/138

• attributes for Terms, Instances, Relation-types, and general properties of the ontol-
ogy are stored/accessed using the same underlying class/functionality, an approach
which differs from ONTO-PERL’s strategy;

• the list of relations (which is the input for cocO(n)) is stored in one continuous
memory block, i.e. designed for reducing the number of cache misses;

• the user-based interaction (e.g. retrieval of a term’s attributes) is independent of
the data storage scheme, i.e. changes in interaction-pattern will not affect the data-
storage routines.

From these facts we observe that the ontology storage scheme used by ontoWiz is capable
of handling any type as long as they are of OWL, OBO and RDFS, that may be divided into
sets of relations and sets of attributes. Our approach depends upon a generalized grammar
of the biomedical ontologies.

Each of the OBO, OWL and RDFS ontology formats has a grammar specified in the
Extended Backus Naur Format (EBNF) language (https://en.wikipedia.org/
wiki/Extended_Backus%E2%80%93Naur_Form), such as for the OBO Format at
http://oboformat.googlecode.com/svn/trunk/doc/obo-syntax.html.
Building a generalized grammar is the core of our approach (i.e. for ontology storage with-
out loss of expressivity), as formalized in EBNF Grammar 7.1:

EBNF Grammar 7.1: Grammar for generic storage of ontology attributes.

<attribute_set> : := {<attribute>
(<internal_set>)? <attribute_delimiter>}∗
<attribute> <attribute_end>

<attribute> : := {<string>}
<internal_set> : := {<string>} <end_of_internal_set>

<attribute_delimiter> ::=\4

<internal_delimiter> : :=\5

<end_of_internal_set> ::=\6

<attribute_end> : :=\0

EBNF Grammar 7.1 defines the generic scheme for storage of ontology attributes. Our
grammar uses the W3C EBNF flavor (http://www.w3.org/TR/REC-xml/#sec-
notation). From the grammar we observe that an attribute is either

1. a composition of other attributes,

https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
http://oboformat.googlecode.com/svn/trunk/doc/obo-syntax.html
http://www.w3.org/TR/REC-xml/#sec-notation
http://www.w3.org/TR/REC-xml/#sec-notation
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2. a string (i.e. a set of chars), or

3. a digit starting with the \ symbol (in our grammar), which correspond to a non-
printable symbols in the American Standard Code for Information Interchange (ASCII).

The implication from EBNF Grammar 7.1 is that our internal representation is a gener-
alized representation of the ontology models. We therefore avoid the problem of having the
data storage structure explicitly bound to the ontology-grammars in question: the applica-
tion of four distinct delimiters (i.e. attribute delimiter, internal delimit-or, end of internal set,
attribute end in EBNF Grammar 7.1) makes it possible for cocO(n) to describe all types of
attribute-compositions in the ontologies. If we know that the grammar, and the handling
of the grammar (i.e. as concrete code in the C++ language) is correct, it opens opportu-
nities to extend it to new components (i.e. a shorter implementation time when extending
the software to new ontology-formats). For further understanding of the attributes storage
scheme, it is of interest looking at the ontology’s dependency scheme, which is illustrated
in Figure 7.2:



7.1. Implementation 93/138

storeAndExtract

Attribute storage scheme. The layered implementation.

*_properties

Singular Items

booleans Integers

Multiple Items

Strings Integers

Term
properties

Ontology
properties

Ontolome
properties

Instance
properties

properties

ml_ontology

SWIG

OntoWiz

Term Ontology

The Perl code

Code produced 
by the SWIG 

library

The C++ code

Ontolome Instance Relationtype

Relationtype
properties

Figure 7.2: Conceptual organization of ontoWiz’ dependency scheme for handling of
biomedical ontologies; in the below text we explain the figure.

Figure 7.2 illustrates the dependencies of ontology storage: we observe a tree with two
boxes at each side of it. The tree describes a simplified architectural design of ontoWiz1.
In short:

• the tree describe access and storage of an ontology; the top blue vertex (named
storeAndExtract) stores and extract ontology properties applying the memory access
pattern in Table 5.1 at page 47; the red vertices at the tree’s bottom represent the Perl
interface modules in ontoWiz.

• the left square represent the four data structures which is used to densely store the
ontology properties when using EBNF Grammar 7.1.

1Both documentation and the (complete) dependency graph of ml ontology is located at http://folk.
ntnu.no/olekrie/ontowiz_cocoon_documentation/ml__ontology_8h.html.

https://code.google.com/p/ontowiz/source/browse/#hg%2Fml_ontology%2FOntoWiz
https://code.google.com/p/ontowiz/source/browse/#hg%2Fml_ontology%2FOntoWiz
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/ml__ontology_8h.html
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/ml__ontology_8h.html
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• the color scheme in the right square provides an organization of the programming-
languages and glue (i.e. as described in the layered division in Figure 7.1).

From the dependencies we observe that it is easy to extend with new objects such as
property-sets (i.e. by appending a new vertex to the second and last row of the dependency
tree in Figure 7.2). We therefore argue that it is a flexible storage scheme. The approach
has sought to balance a generic approach with error-checking and correctness of usage,
and integrates the benefits of cache efficiency into the resulting interface.

The SWIG provides two alternative approaches:

• transfer of complex data-objects (such as 3-dimensional lists) without adding a state-
dependency in the C++ ontology object, or

• use of state-dependency, which implies (in this context) that multiple calls are made
to insert and retrieve a complex object, such as a variable-sized 3-dimensional list.

OntoWiz uses the state-dependency-approach. The approach of applying state-dependencies
avoids the need for a high-level language-specific setting, as language-specific settings re-
quire detailed domain knowledge of the given languages to support: for Perl see http://
www.fnal.gov/docs/products/perl/pod.new/5.00503/pod/perlguts.

html .

The downside of our approach is a higher complexity of the C++ code. The support
of state-dependency requires a framework for identification of the order and meaning of
an inserted object (i.e. implementation of EBNF Grammar 7.1). An example of this is
functionality for explicit marking of the start of a table-row. A challenge is to detect
erroneous usage, such as when values in a new row are inserted without first marking the
explicit start of the new row. The problem is minimized by separating the operations in
their own class, i.e. using scopes to clarify the operations. We therefore need an approach
to evaluate correctness, both with regard to internal logic and correctness of usage of
ontoWiz.

7.2 Correctness of Executing Code in ontoWiz and cocO(n)

Trustworthiness, extendability and performance-measurements of ontoWiz and cocO(n)
all rely on correctness of the executing/implemented code. Correctness of the pack-
ages syntax (i.e. that the language is expressed in accordance with the languages rules)
is evaluated through the Perl-interpreter/C++ compiler. Correctness is understood as a
match between the documented behavior of each component (i.e. class/function) versus

http://www.fnal.gov/docs/products/perl/pod.new/5.00503/pod/perlguts.html
http://www.fnal.gov/docs/products/perl/pod.new/5.00503/pod/perlguts.html
http://www.fnal.gov/docs/products/perl/pod.new/5.00503/pod/perlguts.html


7.2. Correctness of Executing Code in ontoWiz and cocO(n) 95/138

the actual behavior (i.e. the output returned from the objects/functions input parameters).
Documentation of the behavior of each component is found in the C++/Perl source files
(located in the repository https://code.google.com/p/ontowiz/). Improv-
ing the readability of this, we provide a structured version (of the documentation for
improved readability) at http://folk.ntnu.no/olekrie/ontowiz_cocoon_
documentation/annotated.html.

The task of evaluating this correctness is organized in three levels:

The functionality level: Asserts correctness of each function. Example of evaluations
are those of validating correctness of list extensions, copying of data structures and
performing sub-set operations. Such tests are implicitly performed at all stages dur-
ing debug-mode (i.e. when compiled with the “./install debug.bash” script), while
a limited set of tests are active during run-time mode (i.e. when the packages are
compiled with the “./install.bash” script).

The class level: Included in the static routine “[class name]::assert class(...)”. Uses known
input to validate the output. Tests are bundled together in the executable found in
each of the source-code sub-directories.

The API level: Compares the results of ontoWiz with ONTO-PERL using the benchmark-
ontologies; validates the result of ontology-querying, both with regard to attribute-
storage and reasoning, i.e. correctness is evaluated for both ontoWiz and cocO(n).
Class level tests are found in the ontoWiz source directory (https://code.google.
com/p/ontowiz/source/browse/#hg%2Fml_ontology%2FOntoWiz).
An example of a class-level test is AssertTermModule.pm, which asserts the correct-
ness of retrieving ontology-properties. The API Level tests are performed for each
of the files in our benchmark-ontologies.

The above three levels of inspection apply knowledge from the object-oriented approach
(http://www.mysciencedictionary.com/definition-of-object
-oriented-paradigm/) which is the paradigm applied by both ontoWiz and cocO(n).
The object-oriented approach implies that functionality/expressivity is increased for each
included component (e.g. for a class). When a component is tested at the above three
levels, we assert that it is safe to assume correctness of the component’s behavior.

The described tests of correctness are formal. From code inspection, we roughly esti-
mate that 50% of the code is designed for the task of validation. We know from experi-
ence that such tests does not give a 100% coverage of the logic’s involved in calculation
of queries. To catch errors not framed by the formal tests, we also perform an informal

inspection of the code, by evaluating:

https://code.google.com/p/ontowiz/
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/annotated.html
http://folk.ntnu.no/olekrie/ontowiz_cocoon_documentation/annotated.html
https://code.google.com/p/ontowiz/source/browse/install_debug.bash
https://code.google.com/p/ontowiz/source/browse/install.bash
https://code.google.com/p/ontowiz/source/browse/#hg%2Fml_ontology%2FOntoWiz
https://code.google.com/p/ontowiz/source/browse/#hg%2Fml_ontology%2FOntoWiz
https://code.google.com/p/ontowiz/source/browse/ml_ontology/OntoWiz/AssertTermModule.pm
http://www.mysciencedictionary.com /definition-of-object
-oriented-paradigm/
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1. the match between the components documentation and their implementation,

2. the coverage of tests versus the expected behavior given our ontology benchmarks,
and

3. the ability to catch and explain errors due to wrong usage, such as providing for
instance a cyclic ontology as input.

The informal inspection is supported by applying ontology-visualization, which is enabled
through the Visual Tool Kit (VTK) library[60, 61]. VTK is integrated in cocO(n), and en-
hances the identification of cyclic ontologies, multiple vertex linkage, vertex leafs, etc.
When errors are in the code are discovered through informal inspections, which we de-
scribed above, the formal tests are updated2. Supporting test-maintenance, simplicity is
balanced against complexity, giving the best specificity (i.e. as it is difficult to verify and
update complex test-code). From our measurements we know that application of function-

ality level tests during run-time reduces the performance by a factor greater than 3x. Most
of the tests are therefore de-activated at run-time mode, i.e. when the “./install.bash” script
is used for building libraries of ontoWiz and cocO(n).

7.3 Performance Measurements

Measuring the performance, we compare the performance of ontoWiz against ONTO-
PERL. One of the parameters we evaluate is the number of computed relations/terms.
From our performance measurements we observe that both tools calculate similar answers
to the same queries; interestingly, differences in the calculated answers are due to false
negatives in ONTO-PERL. The correctness of the ontoWiz tool provides us with confi-
dence to compare the performance of ontoWiz versus ONTO-PERL. We do this compar-
ison by measuring the performance on queries which we used to evaluate the structural
attributes of our ontology benchmark (as discussed in section 2.1 at page 7). The queries
we evaluate are those listed at https://code.google.com/p/ontowiz/wiki/
PerformanceBenchmark. The results may be reproduced using the benchmark script
at https://code.google.com/p/ontowiz/source/browse/bm_core/
benchmark.pl.

Surprisingly, a difference of more than six orders of magnitude is seen when com-
paring the performance difference between ontoWiz and ONTO-PERL. The difference is
evaluated with a methodology in sub-section 7.3.1. When applying this methodology in

2Error-tracking is supported by the “Issues” list in our code repository (https://code.google.com/
p/ontowiz/issues/list).

https://code.google.com/p/ontowiz/source/browse/install.bash
https://code.google.com/p/ontowiz/wiki/PerformanceBenchmark
https://code.google.com/p/ontowiz/wiki/PerformanceBenchmark
https://code.google.com/p/ontowiz/source/browse/bm_core/
benchmark.pl
https://code.google.com/p/ontowiz/issues/list
https://code.google.com/p/ontowiz/issues/list
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sub-section 7.3.2, we observe that this difference is due to the extremely high number of
redundant operations and large frequency of cache misses in ONTO-PERL. Sub-chapter
7.3.3 ends with a summary of the performance difference.

7.3.1 Methodology of the Performance Measurements

The purpose of the performance measurements is to evaluate the impact of the ontoWiz

approach, and empirically identify reasons for the observed difference. In our measure-
ment configuration we allow a number of distinct programs (i.e. background processes) to
execute simultaneously, from which we expect a variance in our measurements. Empirical
correctness of the measurements is therefore validated applying multiple measurements,
and for each measurement we discuss:

1. the averaged measurement-value for each ontology (e.g. the time finding the set of
descendants for the roots),

2. the variance of the measurement-value for each ontology, and

3. the outliers (i.e. the lowest and biggest values) in the measurement-value for each
ontology.

The number of multiple measurement samples differs both with regard to the type of
measurement (e.g. 1 measurement for querying the restricted set, while 10 measurements
for the task of finding all the roots) and the number of ontologies which is measured. As
some of the measurements takes days to complete, the most time-consuming ontologies
are evaluated with fewer overlapping sample-measurements than the smaller ontologies.

Correctness of each calculation (i.e. of the queries which we measure) is validated
by our correctness approach, which was described at page 94. For the ontologies with
a file size less than 2 MB we compared the results generated by ontoWiz and ONTO-
PERL. From the comparison we observed that ontoWiz found more paths than ONTO-
PERL. Investigating the difference, we discovered that ONTO-PERL was not able to infer
a subset of the paths. To test if this was the case for ontologies of a file size greater than
2 MB, we compared the path lengths generated by ONTO-PERL and ontoWiz: the paths
length detected by ontoWiz were always greater than the path lengths detected by ONTO-
PERL, which is in correspondence with the false negatives of ONTO-PERL discussed in
Table B.1 at page 121.

In chapter 5 at page 33 we presented measurement results collected by applying a
memory measurement tool. The memory-measurement is not suited for measuring Perl
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code. Memory-measurements are therefore done indirectly by applying the gathered knowl-
edge of how cache-misses correlates with both the user-time and number of cache misses
(as stated in Table 5.1 at page 47). In short, we investigate the memory access pattern of
the executing code and compare it with the number of memory accesses and the executing
time of the operation. Measuring the number of memory accesses, we count the number
of times a query in ONTO-PERL accesses the ontology. A query function accesses the
ontology through two distinct procedures:

1. access to the ontology object, e.g. set of relations, and

2. access to temporary storage containers, with tasks such as sorting the set of accessed
ontology objects.

We understand the number of redundant operations as the number of unnecessary memory
accesses, both with regard to the ontology object and accesses in the query-functions tem-
porary memory structure. The number of redundant operations in ONTO-PERL, and their
implication, is evaluated by including a counter to each of ONTO-PERL’s operations. The
counter measures the number of times the ontology is accessed (point (1) in the above list),
but not the number of internal accesses to temporary allocated memory by the functions
performing the querying (point (2) in the above list). Comparing the number of ontology
accesses through distinct queries, we get a relation between the number of operations and
the time performing them, which makes it possible to evaluate the impact of temporary
storage. We do not expect the operation-counter to reduce the performance of ONTO-
PERL, as the 8 Byte counter we apply will not occupy a significant part of the computers
cache, nor increase the processing time (i.e. due to its simple arithmetic nature).

Presenting the measurements, we use continuous trend-lines, which is different from
the alternative of using step-lines. Formally, as the ontologies are discontinuous, it would
be more correct using a step line. The problem when applying a step-line to the graph is
the clutter of the curves, which make it more difficult to visually tracking the trends of the
measurements.

The computer which we measure on is the Dell-laptop, described in Table 4.1 at page
31, which we use to evaluate all of the queries for ontoWiz and ONTO-PERL. When com-
puting the queries with ONTO-PERL, standard servers, such as the biogw-db, are used for
the CCO project. The short running-time of ontoWiz makes it tractable running the soft-
ware on a laptop, i.e. as the computation takes a negligible amount of time. We expect the
measurements on our laptop to correspond to other hardware, such as those listed in Table
4.1, due to our discussion of the memory access benchmark in section 5.3 at page 46.
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7.3.2 Analysis of the Performance Measurements

Measuring the performance-impact of ontoWiz, we evaluate 7 parameters to the 21 queries
on the 62 benchmark ontologies for both ontoWiz and ONTO-PERL3. The analysis we
present evaluates the result of all the parameters/queries/ontologies. To simplify our dis-
cussion, we highlight the important findings, i.e. only a subset of our measurements is pre-
sented. The under-performance of ONTO-PERL, when compared to ontoWiz, is explained
by the findings from our analysis of the performance-measurements, a measurement which
is illustrated in Figure 7.3:
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Figure 7.3: Comparison of ontoWiz and ONTO-PERL. The performance of the tools was
compared when executing 21 queries on 62 benchmark ontologies. For each of the bench-
marked ontologies we gave ontoWiz and ONTO-PERL an upper time threshold of 172,800
seconds for completing the queries, which is illustrated by the line.

Figure 7.3 shows that the relative time consumption of ONTO-PERL to ontoWiz reaches
the order of thousands for the larger benchmark ontologies. The limit of 172,800 seconds
corresponds to two days of computing, and the ontologies at indices 48, 59, 60 and 61
surpassed this threshold when running ONTO-PERL. Analysis of the underlying mea-

3For a list of parameters, queries and ontologies of the performance benchmark see https://code.
google.com/p/ontowiz/wiki/PerformanceBenchmark.

https://code.google.com/p/ontowiz/wiki/PerformanceBenchmark
https://code.google.com/p/ontowiz/wiki/PerformanceBenchmark
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surements for each of the 21 queries indicates that the performance difference exceeds six
orders of magnitude: increasing the threshold to 345,600 seconds we queried the ontology
at index 60 (the GO ontology) for the descendants roots, but was aborted as the processing
time passed our updated threshold. Given the result,

Time(ONTO-PERL) > 345, 600s

Time( ontoWiz) = 0.04s
>= 8.64 ∗ 106 (7.1)

is a lower bound of the performance difference.
From the underlying data we observe that the measurement error of each of our pro-

cessing time measurements is comparatively small, i.e. when compared to the performance-
difference between ontoWiz and ONTO-PERL. We have not managed to identify reasons
for the error, though we suspect a combination of:

1. system scheduling due to other programs which simultaneously uses the hardware,
and

2. granularity of the time-measurements.

The differences seemed to correlate with the number of parameters (in our benchmark
script) extracted for each ontology in our benchmark: the processing time increased for
unrelated measurements when the set of extracted parameters increased. We suspected
that the problem was linked to the re-use of data in cache from earlier computations, as we
changed the order and type of accessed data previous to a query. To investigate the effect,
we tried polluting the cache, i.e. to fill the cache with unrelated data. The cache-polluting
measurements did not produce any significant difference when compared to the maximum,
minimum and variance of the non-cache-pollution measurements.

The missing impact of polluting the cache is an indication that ONTO-PERL does not
utilize the cache when getting data, i.e. that ONTO-PERL does not manage to reuse pre-
loaded memory in cache when querying the ontology. Studying the underlying measurement-
data, we observe that the huge performance impact of our approach, is due to both the type
of memory access and the algorithmic overhead:

1. ontoWiz uses the pre-processed ontology for generating answers, while ONTO-PERL
iterates through an ontology using random access pattern;

2. a high number of redundant operations is seen for most of the queries performed by
ONTO-PERL;

3. the cost of redundant operations is amplified by the time cost of the cache misses
for each memory request.
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When the number of redundant operations is low, the number of operations performed
by ONTO-PERL maps roughly to the processing time, which can be seen in Figure 7.4:
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Figure 7.4: Impact of memory accesses for the query of finding all of the leafs ancestors.
We evaluate the processing time of ONTO-PERL along the left y-axis and compare it with
the total number of operations accessing the ontology (operations) along the right y-axis.

Comparing the number of memory accesses to the processing time, we observe from
Figure 7.4 a correspondence between the time-measurements and the change in the num-
ber of ontology memory access operations performed by ONTO-PERL. Given the large
variance in each measurement, we investigate the underlying data with respect the each
measurement sample. From the inspection we observe that the measurements follow the
same periodicity, from which we assess that there is a true periodic correlation between
the number of memory accesses and the execution time.

We understand a high-performance ontology reasoning tool as a tool which achieves
a performance close to the possible reasoning speed offered by commodity computers, as
discussed in chapter 1 at page 1. It is therefore of interest evaluating the performance of
ONTO-PERL against the memory speed of the laptop (where a laptop is understood as a
commodity computer). The timer we are using has a resolution of 0.01 seconds (i.e. as
seen by our underlying measurement data). The query time for the operation of finding
the leaf ancestors using ontoWiz takes less than 0.01 seconds, i.e. zero seconds. As the
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memory access speed of our hardware is greater than the memory access speed achieved by
ontoWiz/cocO(n), it is therefore hard to estimate a concrete number (other than infinite) for
the performance-difference between the memory speed of our hardware, the performance
of ontoWiz, and ONTO-PERL.

The infinite difference, which we observe when comparing the query time of ontoWiz

against ONTO-PERL in Figure 7.4, is due to memory accesses: even when there is a low
level of redundant operations, there exists an overhead with regard to time. From the un-
derlying data we observe that the number of leafs which is found maps to the number of
performed operations. The small difference implies that the number of redundant opera-
tions is low for finding the set of ancestors for each of the leafs, when seen in comparison
to the other queries which ONTO-PERL supports. Inspecting the effect for algorithms that
have a higher number of redundant operations and memory accesses, we analyze a query
designed for the task of finding all the descendants of the roots, as seen in Figure 7.5:
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Figure 7.5: Comparison of ontoWiz and ONTO-PERL. The impact of an increased num-
ber of memory accesses is analyzed by querying the roots for their descendants. The
processing time of ONTO-PERL is described by the left y-axis while the right y-axis de-
scribes the number of operations accessing the ontology (operations) and number of found
descendants.

From Figure 7.5 we observe a mapping between the number of operations and pro-
cessing time. In contrast, the number of returned items, measured along the left y-axis,
only partially follows the other curves, instead following a pattern which correspond to the
internal structure of the ontologies. In the measurements we observe insignificant differ-
ences, i.e. a difference on average less than 1%, and a maximum difference at benchmark-
ontology at index 48 with a measurement difference of 3.5% between the samples.

Evaluating the impact of an algorithms redundant operations, we observe that a high
number of redundant operations in ONTO-PERL translates into a significant increase in
processing time, as illustrated in Figure 7.5. The correlation we identify between the
processing time and number of operations an algorithm executes, provides an example
of consequences when not applying well-established algorithms for ontology reasoning.
Of special interest is the non-linear increase we observe between growth in the execution
time and the number of memory accesses. The observation highlights the cost of iterating
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through ontologies with a big internal relation-structure: the growth pattern in Figure 7.5
corresponds to the number of root-descendants, which we discussed in Figure 2.2 at page
9.

The benchmark ontologies with the biggest increase in measured processing time are
those above the Level 2 cache limit, i.e. the ontologies at index 52, 52, 59, 60 and 61 in
our measurements, where the last three ontologies were omitted due to our time threshold.
The observation of a correlation between processing time and cache usage seems logic;
when the chance of finding a given item in cache decreases, the processing time increases.
The observation relates to our measurements of memory access patterns, from which we
know that the running-time is bound to both the number of memory-accesses and the order
of the memory accesses.

Comparing the query time in Figure 7.5 with the time of applying the rule based ex-
tension of the transitive closure (described in section 6.3 at page 75), we observe a similar
pattern of performance:

1. the peaks in the measurements of performance are due to the number of ontology
memory accesses;

2. the difference in performance between ontoWiz and ONTO-PERL is of more than
six orders of magnitude in difference, which corresponds to the difference for the
query which we calculated when generating Figure 7.5;

3. the performance of ontoWiz is relatively close to the memory speed offered by our
test platform, which we observe from the underlying performance benchmarks (when
compared to ONTO-PERL). The difference between the performance of ontoWiz

corresponds to the number of executed queries, which is as expected given the dis-
cussion in section 4.1 at page 27.

The pattern of performance which we observe in the above list, correspond to the al-
ready discussed correlation between the number of operations an algorithm executes and
processing time for the queries we evaluate. Investigating our assertion we evaluate the
dependency between the number of relations in an ontology, the number of operations
performed by an algorithm and the execution time, which is presented in Figure 7.6:
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Figure 7.6: Comparison of queries showing correlation between memory accesses and
processing time for ONTO-PERL. Two queries are compared: Query 1 requests all the
roots on an ontology and Query 2 the descendents of the roots.

Figure 7.6 describe the impact of our queries using three parameters:

1. the number of explicit ontology relations using a color at each measurement-point;

2. the number of operations performed by an algorithm along the x-axis;

3. the execution time along the y-axis.

Given the color-scale (below the x-axis in the figure), measurement-points in a pink color
are those with the biggest memory-consumption (when looking at the explicit relations of
each ontology). To increase the level of details in our plot, we only present the 40 smallest
ontologies with respect to file size. Of special interest is the observation that both queries
we illustrate follow the same growth-pattern; a measurement point with a pink color has
higher processing time than a measurement point with a light blue color and equal number
of operations.

The execution time of a query depends on its number of operations and the size of an
ontology, as seen in Figure 7.6. Given our underlying data we observe that the impact of
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an algorithms operations and the size of the accessed ontology is influenced by a third pa-
rameter, i.e. the number intermediate memory accesses in a function. Inspecting the source
code of ONTO-PERL we observe a relative high degree of insert and extract operations
from a queue for Query 2, which correspond to the growth difference of the two queries in
Figure 7.6.

Evaluating the importance of the memory space consumed by the relations of an ontol-
ogy, we analyze the impact on processing time by reducing the area of Figure 7.6, which
is seen in Figure 7.7:
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Figure 7.7: Detail from Figure 7.6.

To show the sensitivity of memory load, Figure 7.7 enlarges the details of the lowest
measurements from Figure 7.6. The measurement point highlighted in yellow shows a cor-
relation between the number of operations, accessed relations, and time spent on a query.
When accessing small ontologies, it is more important to reduce the memory requirement
of an ontology than the number of times it is accessed. The importance of compressing
the set of relations for small ontologies, which we observe, correspond to how the cache
works: when the ontology does not fit into cache, parts of it is swapped out of cache, a
swapping which increases the cost of ONTO-PERL for accessing memory[40, 26, 64, 21].
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7.3.3 Summary of the Performance Measurements

The motivation of our performance analysis was to understand why ontology reasoning
tools under-perform. We have identified the components of the under-performance, i.e.

the memory access patterns, the number of memory accesses and the size of the accessed
memory space (i.e. size of the ontology).

A considerably waste of processing time was discovered when comparing the mem-
ory speed of the laptops hardware with the time for ONTO-PERL running a server and
calculating our queries for the benchmark ontologies. We observed that ontoWiz had an
processing time close to the memory speed of the hardware. We believe that other soft-
ware’s should apply our pre-processing approach in their own algorithms. From our mem-
ory benchmark at chapter 5 at page 33 we observed a large benefit from ordered list ac-
cesses, a conclusion which is supported in this section by the measurements of ontoWiz

and ONTO-PERL.

Building of the ordered lists depends on the pre-processing of the ontology. The time
of the pre-processing is considerably less than the time of parsing an ontology, i.e. the time
to read an ontology from a file and into a data-structure. In section 2.3 at page 16 we stated
that the parsing time is not regarded as a performance issue, from which we conclude that
the time of the pre-processing can be left out from our comparison.

The set of rules covering our benchmark ontologies was described in section 2.2 at
page 11. Rules are important for tasks such as hypothesis generation in the field of biomed-
ical ontology engineering, such as querying the GO ontology as part of drug discovery[47].
In short, application of ontology contraction and expansion rules increases the range of
possible queries. Given our measurements for transitive closures, and the rule based dis-
cussion in section 6.3 at page 75, we assess that the time cost of rule based queries for
ontoWiz will be considerably less than the parsing time of ontologies. At page 1 we pro-
vided an example of ontology knowledge gathering, asking “How many generations have
lapsed (in average) since the first Norwegian entered Norway?”. A similar query is “Find
all pairs of people where the first person is a (direct or indirect) ancestor of the second”,
which Hitzler et al.[33] describes as an intractable query with regard to processing time of
reasoning tools. Given the rule based nature of the query, we expect ontoWiz to answer the
query in a time similar to the time measurement for transitive closure, i.e. to be performed
in a negligible amount of time.

Each executed query introduces a chance for a cache miss: when the number of in-
dependent queries increases, the processing time of ontoWiz decreases. Compared to the
processing time of ONTO-PERL, the decrease in running time for ontoWiz is minimal,
though compared to the optimal case of memory handling we observe a small overhead.

https://code.google.com/p/ontowiz/source/browse/ml_ontology/sample_data/gene_ontology.obo
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From our knowledge of the queries and the implementations of ontoWiz we know that the
small overhead in memory handling for ontoWiz is due to the numbers of executed queries:
if we reduce the number of queries, the memory handling overhead of ontoWiz is low-
ered. We are therefore interested in reducing the number of executed queries for a given
task. An example from ONTO-PERL is the operation of intersecting ontologies, which
ONTO-PERL does not support; using ONTO-PERL an ontology engineer must first query
the ancestors/descendants before building an own algorithm intersecting the results, which
increases the number of cache misses. To solve the issue we therefore suggest to increase
the number of possible queries of our ontoWiz API by identifying dependencies among
queries executed by the user.

The performance measurements which we have presented were done on a Dell laptop.
We know from the research of Rivoire et al.[58] that a laptop uses considerably less energy
for the same computations compared to a standard server. The high energy efficiency of
laptops, when compared to the use of standard servers, implies that ontoWiz provides an
impact of reduced energy consumption greater than six orders of magnitude for each of
the computed queries. We therefore expect that ontoWiz can even contribute to reducing
the carbon footprint of biomedical ontology reasoning.

7.4 Summary of ontoWiz and Future Work

We have in this chapter presented ontoWiz, which applies the cocO(n) library. From the
presented facts we conclude that the cocO(n) software has great potential for high-speed
reasoning. The preference of integrating cocO(n) as part of an ontology handling software
is seen both with regard to the performance impact of ontology reasoning and the low
integration-cost into existing software.

OntoWiz provides support for more than 350 different functions in its API, meaning
most of the functions in ONTO-PERL. A subset of the functions covered by ONTO-
PERLis, however, not covered, and for some of these, ontoWiz may have a potential for
speed-improvement. Examples of such functions are comparison of ontologies with re-
gard to the ontologies attribute-set, or integration of a rule based pre-processing interface,
as discussed at section 6.3.1 at page 84. We regard both examples as possible parts of our
future work.

Our analysis of ontoWiz and cocO(n) indicate improvements in:

The running-time: Our benchmarks clearly states that ontoWiz is a high-performing tool
for ontology reasoning, i.e. giving a speed-improvement of six orders of magnitude
when compared to ONTO-PERL.
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The implementation/extension time: The properties are stored using an internal gram-
mar in our data storage scheme. Combined with the utilization of cocO(n), we assert
that ontoWiz is easy to extend, both with regard to new functionality and connection
to other program interfaces (e.g. to apply different front-ends than the ONTO-PERL
API).

The correctness of code: Comparing our approach to the likelihood of errors in our use,
by performing an informal evaluation of the tests coverage, we assert that both
ontoWiz and cocO(n) are more correct than ONTO-PERL: while ONTO-PERL only
performs a limited number of Class level tests, both ontoWiz and cocO(n) combine
a three-layered formal evaluation of correctness with informal inspections (i.e. to
detect errors).

Given this evaluation of ontoWiz, we conclude that ontoWiz covers the requirements (which
was stated in Table 2.1 at page 18). Analyzing the implications of our approach, we will
in the next chapter present the conclusions of our work.



110/138 Chapter 7. ontoWiz; Implementation and Performance Analysis



Chapter 8
Conclusions and Future Work

In this master thesis we have presented a tool for high-speed ontology reasoning, ontoWiz/
cocO(n). The ontoWiz/cocO(n) library is made freely available through our wiki (https:
//code.google.com/p/ontowiz/). The tremendous speed impact of six orders
of magnitude which we have achieved is due to our algorithm and memory structures
design, which is specially suited for biomedical ontologies. Its suitability and correctness
are validated using queries on real-world ontologies. The library is designed to work both
on commodity computers (e.g. a laptop) and advanced supercomputers, and is suitable
for integration in existing software-pipelines avoiding the cost of software adjustment.
Its ease and performance obviates expensive hardware and user threshold associated with
using special-purpose systems such as supercomputers.

The core of our high performance approach is the pre-processing algorithm of cocO(n),
which we presented in chapter 6 at page 49. The cocO(n) algorithm translates an ontology
into disjoint sets of memory chunks, where each memory chunk correspond to a subset
of a user-based query. Using the most beneficial memory access pattern, (discussed in
section 5.3 at page 46), we have reduced the impact of memory latency.

The programming effort which we have presented in this master thesis, depends on our
micro benchmarks. From the structural analysis of our benchmark-ontologies we formu-
lated properties of the pre-processing algorithm. Combined with our micro benchmarks of
memory access patterns, and our brief study of related work, we formulated the cocO(n)
algorithm. Connecting the ontoWiz interface to cocO(n), we micro-benchmarked the per-
formance of the cocO(n) algorithm. The performance analysis of ontoWiz/cocO(n) pointed
to conclusions which was similar to our initial micro-benchmarks, i.e. the cost of redun-
dant operations and type of memory access.

https://code.google.com/p/ontowiz/
https://code.google.com/p/ontowiz/
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In our work, both with regard to micro benchmarks and implementation, we have
focused on effective use of commonly available hardware. Combined with the approach
of rule based query support, ontoWiz/cocO(n) provides high-speed support of tasks which
due to their time-complexity used to be regarded as intractable by other software, i.e. as
described in section 7.3.3 at page 107.

In our discussion, we have spanned the fields of life-science, ontology reasoning and
hardware oriented programming techniques, such as pre-fetching, data-compression and
locality.

The high speed of our approach makes it interesting to extend our work to new cases.
In our work we have identified a set of properties that specify high-performance ontology
reasoning tools. For the future we suggest to refine our performance micro benchmark.
We have seen that the ability to profit from earlier measurements partly depends on the
internal structure of the ontology. Querying in biomedical ontologies are performed for
tasks such as hypothesis generation[12, 19], pattern identification[36] and reasoning in
transcriptional gene expressions, e.g. in GreXKB[67]. For future, we want to increase
the complexities of the supported queries and the number of ontologies to investigate the
promise of ontoWiz/cocO(n).
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Appendix B
An Analysis of ONTO-PERL’s

Implementation

In this appendix we briefly analyze ONTO-PERL with respect its implementation. From
our knowledge of related tools in biomedical ontology engineering, the problems faced by
ONTO-PERL are similar to those faced by other software (which was discussed in chapter
3 at page 21). It is therefore of interest gaining a proper understanding of the issues, which
implies an investigation into the behavior of our use-case (i.e. ONTO-PERL). The analysis
should cover the underlying source code, and actual performance with regard to running
time and correctness of results. The source code of ONTO-PERL is inspected with regard
to the type of memory storage scheme, the degree of indirect memory references (which
is the ability to predict future memory accesses), and the number of times the ontology
must be iterated in order to get the answers. The analyze makes it possible to evaluate the
impact of

1. random accesses, which indicates the likelihood of cache misses;

2. redundant operations, i.e. the waste of work by ONTO-PERL;

3. the degree of false negatives produced by ONTO-PERL, which is due to logical
errors in the Perl code.

The analysis is provided in Table B.1: for brevity we only include the result of our evalu-
ation.
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Get attributes for a Term. Hash High None Med. no no
Get the set of relations for
a given Term.

Hash High None Med. no no

Get ancestor Terms Hash High Med. Med. Med. no

Get descendant Terms Hash High Med. Med. Med. no
Get restricted set of an-
cestor Terms, given either
a relation-type of sub-
name-space.

Hash High Med. Med. Med. no

Get restricted set of de-
scendant Terms, given ei-
ther a relation-type of
sub-name-space.

Hash High Med. Med. Med. no

Get the paths connecting
two Terms.

Hash High Med. Med. Med. yes

Get the paths connecting
n Terms.

Hash High Med. High Med. yes

Get a sub-ontology from
a set of root Terms.

Hash High High High High no

Get union of two ontolo-
gies.

Hash High High. High High no

Get intersection of two
ontologies.

Hash High High High High yes

Get an ontologies transi-
tive reduction.

Hash High High High High yes

Get an ontology’s transi-
tive closure.

Hash High High High High yes

(Continued on next page.)
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Table B.1 – continued from previous page.

Table B.1: The table describe the subset of ONTO-PERL’s functionality which is regarded
as a performance issue. The analyze focus on the type of storage schemes, and the number
of ontology iterations (in the graph) which is required in order to answer a question (i.e.
given user-based parameters to an operation).

Table B.1 describes the subset of operations classified as performance-bottlenecks.
The classification combines inspection of the underlying source code, ONTO-PERL’s
documentation and discussion with the developers of ONTO-PERL. From the table we
observe that:

1. ONTO-PERL uses hashes where a key (e.g. a relation) is stored as a string. Perl
uses hashes as indirect memory references, which (with regard to running time)
correspond to random access of memory. The implication of this random access is
a high likelihood for accessing memory which is not pre-loaded into cache, i.e. of
cache misses.

2. ONTO-PERL stores each attribute as a set of linked hashes. As a consequence, each
operation require several indirect references (i.e. random memory accesses), as seen
for the operation of returning the set of immediate children.

3. when running queries (i.e. tasks of reasoning), ONTO-PERL iterates through the
ontology several times. Applying established algorithms it is possible to reduce
the number of operations. The naive algorithms of ONTO-PERL contribute to an
increased running time, among others due to the high number of redundant opera-
tions.

4. The simplification in the data-structure and complexity in the algorithms make ONTO-
PERL rather error-prone: true relations are sometimes missed, giving rise to false
negatives. We found no evidence that false positives are generated. These errors
were unknown to the developers of ONTO-PERL. Results generated by ONTO-
PERL should therefore be used with some care when verifying the result of ontoWiz.

The complexities of the approach that ONTO-PERL has followed make it hard to (a) ex-
tend its functionality, (b) verify correctness and (c) improve its performance. In short,
ONTO-PERL does not provide a separation between the front-end ontology (object) model,
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and the actual reasoning. An implication of the non-existing separation is the increased
likelihood of under-performing memory accesses, as the ontology is stored in an order
which is different from the order it is accessed.



Appendix C
Brief Survey of Graph

Representations and their

Application

The brief survey in this chapter was also presented in our previous work[24].

An ontology in a general form can be represented by a graph, offering a multitude of
different implementations. As ontology reasoning is a subset of graph operations, under-
standing important contributions is of importance. Surveying other representations, we
aim at extracting principles to be used in our suggested representation. With this purpose
we briefly introduce the area of graph representations.

A graph G=(V,E) is defined as a set of vertices V with a set of edges E, where E(V)
describes the set of edges incident on vertex v ∈ V . In this report all edges are assumed to
be directed, and are referred to as arcs. Traversing it in a particular manner, algorithms to
answer specific queries are equivalent to particular searches in ontological graphs.

Numerous ways exist to represent graphs and their components[21]. A tree in com-
puter science (CS) is a set of linked vertices (nodes) simulating a hierarchical structure. In
comparison with a tree, a forest does not limit the set of root vertices to one. A root-vertex
in this context is a data-structure-object without inbound arcs to itself. Requiring a tree to
comply with a property, a heap is formed. An example of such a property is the constraint
of a vertex’ children having a value equal- or less to itself, i.e. the max-heap property.
Limiting the set of operations to insert- and extraction, the stack-type is developed. A
stack is a data representation where the first element to be extracted corresponds to the last
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inserted, therefore referred to as a LIFO (Last In First Out) structure. A corresponding
data storage representation is the queue, where the last element to be inserted is the last to
be extracted, i.e. a FIFO (First In, First Out) policy.

Representing the above terms in memory, the basic types of either a linked list or
of an array is normally used. An array in this context constitutes a contiguous space in
memory, accessed using offsets from the first allocated bytes. In contrast, linked lists
(sometimes called adjacency list (http://www.boost.org/doc/libs/1_51_0/
libs/graph/doc/graph_theory_review.html) ) do not hold this linear order,
as they are determined by the pointer in each object. A pointer in this context may here
either be the offset in an array, or a memory address. Iterating through a linked list set
therefore involves higher memory complexity compared to the alternative.

Accessing sorted sets, several algorithms have been developed. A sorted set satisfies
the condition array[i−1] <= array[i] <= array[i+1], where ‘i’ represents the memory
offset. One such method is the “Insertion sort”, regarded as efficient for sorting small
sets, though for larger sets its O(|V |2) worst case running time makes it less tractable,
where the set length n = |V |. Instead of storing the set in an array, “Heap-sort”[70]
utilizes the max-heap-property, combining interchanging- and popping of vertices, with
an O (|V | ∗ log(|V |)) worst-case running time. Splitting the set into smaller parts before
sorting, “Merge-sort”[21] combines the subsets into a resulting order. A weakness of the
latter approach, though it manages the sorting in O(|V | ∗ log(|V |)), is the fact that it does
not operate in-place with regard to memory.

In contrast “Quick-sort”[34] handles the data in-place- and like Insertion-sort provides
a tight code, having an average-case running time of O(|V | ∗ log(|V |)). Like merge-
sort the latter is based on divide-and-conquer paradigm, conquering the subdivided arrays
by sorting using recursive calls to itself. In the above sorting algorithms, information
about the input sequence is gained comparing each element, i.e. they are classified as
part of the “comparison sort” methodology. In contrast “Counting sort” determines the
number of elements by counting the properties less than each of the values in the set. The
performance of the latter is (k+n), where ‘k’ is the number of possible values, i.e. highest
number in the set with zero as its lowest value. Including “counting sort” as a subroutine
in the related “Radix sort”, the range of the first is extended. Radix sort operates by
first sorting the values at the rightmost radix (http://en.wikipedia.org/wiki/
Radix) (i.e. least significant digit), and continues until all radices are in order. For
the special case when values are in a uniform distribution, bucket sort manages a time
complexity of O(|V |) as average case. Extending the problem to sort data larger than the
physical memory, Dittrich et al.[23] describes the “Progressive Merge-Join” method. In

http://www.boost.org/doc/libs/1_51_0/libs/graph/doc/graph_theory_review.html
http://www.boost.org/doc/libs/1_51_0/libs/graph/doc/graph_theory_review.html
http://en.wikipedia.org/wiki/Radix
http://en.wikipedia.org/wiki/Radix
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the Progressive Merge-Join method an initial parallel phase is combined with a serial stage:
For the parallel phase initial sorting is performed, e.g. using Quick-sort or merge-sort on
subsets, before merging the partially ordered sets at the serial stage.

Algorithms later to be introduced, depends on efficient methods for search. The “Breadth
First Search” (BFS)[46, 55] is an algorithm limited to the operations of exploring a vertex,
and visit neighboring vertices. For this purpose the BFS uses a queue to store/retrieve
the next vertex to process. A similar approach is followed by the “Depth First Search”
(DFS)[37], with the only exception that the queue is replaced by a stack. Combining both,
we get the iterative-depending algorithm[59].

Sorting a set in topological order, gives a horizontally aligned diagram with regard to
the order of the dependencies. A common implementation is using the DFS for the task.
The resulting diagram is when the vertices are found closest to the root at the leftmost
side- and those without outgoing arcs to the rightmost side.

Building data representations for specific algorithms, functionality is integrated with
the properties, such as maintaining a sorted order in a “binary search tree”. In a binary
search tree, the leftmost sub-tree has values less than- or equal to the rightmost sub-tree.
The problem in the latter approach is the possibility of unbalanced trees when insertion-
and deletions are performed. Solving this issue, “Red-black tree”[10, 30, 3] constrains
the path from root to leaf, making the red-black trees approximately balanced. Similar to
this approach, “B-trees”[11] were developed. Better optimized for I/O operations, they
exist in several flavors, such as the the “B(+)” tree. The “B(+)” tree stores all the satellite
information in the leaves, maximizing the branching factor. For the task of extracting the
minimum- or maximum of a set, heap representations are designed. “Binomial heaps”[68]
is a collection of binomial trees, i.e. an ordered tree defined recursively. A more complex
structure is the “Fibonacci heap”[28], desirable when the number of times minimum are
extracted- or an element is deleted is relatively few compared to other operations. In
contrast with binomial heaps, “Fibonacci heaps” are rooted, but unordered. Due to the
high programming complexity, the latter is rather to be regarded as of theoretical interest-
than of practical importance[21]. When a set consists of subsets to be searched for, e.g.

words in a dictionary, hashing is used.

A special case of hashing, i.e. of mapping subsets to numbers, is the concept of per-
fect hashing[49]. An interesting implementation is the cmph library (http://cmph.
sourceforge.net/). The efficiency of such implementations, depends on the subset
being static. A static set of subsets in this context implies that it is not changed, e.g. no
word is added after hash-table construction.

Studying the graph topology for extracting sub/super sets, several problems exist. One

http://cmph.sourceforge.net/
http://cmph.sourceforge.net/
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such is the task of finding a subset of edges including every vertex, i.e. the minimum
spanning tree. Kruskal[45] generates the solution using a set of trees, i.e. a forest. At
the running time of O (|E| ∗ log(|V |)) it greedily selects the smallest forest to extend. In
contrast Prim[57] maintains a single tree, starting at a given root vertex, using a depth-first-
search selecting the optimal edge. Similar to Kruskal, Prim uses a greedy approach for the
edge selection, thereby finding the edge giving the least increase in the total path length.
A greedy approach is here understood as taking the best choice based on knowledge at a
given instance.

Modifying the problem, we now require knowledge about the shortest paths linking a
given vertex to the other vertices in a graph. A famous work is the dynamic programming[43]
algorithm described by Dijkstra[22], where a greedy approach[43] is used solving the
problem. Studying the greedy step, we observe it is similar to the one found in Prim, but
with the exception that Dijkstra uses the total weight for evaluation, instead of Prims use of
individual arc weights. In contrast, the algorithm described by Bellman and Ford (BF)[13]
evaluates all of the edges as an alternative to the above greedy approach, answering the
wider problem of finding all paths given a single source. As the size of graphs passes the
size of physical memory, alternative algorithms are required. One such implementation is
proposed by Madduri et al.[51] using the ∆-stepping parallel algorithm of Meyer[54].

Extending the problems size of memory-fittable graphs to cover all sources, the work
of Floyd and Warshall[27] proposes an implementation using matrix-operations, with a
time complexity of θ(|V |3) comparisons in a graph. The problem with the latter algo-
rithm is the expectation of a dense graph of vertices for optimal performance, resulting in
an overhead compared to our expectation of sparse graph as input. Suggesting an alter-
native for dense graphs “Johnson’s algorithm”[42] combines the step of negative-weight-
adjustment using BF with the shortest-path-operation using Dijkstra for each vertex in the
graph.

Summing up the essential qualities of the above brief survey, we observe the usage
of important techniques, e.g. in-place memory handling and reuse of earlier calculations.
An interesting aspect is the back-bone integration of data model in some of the alterna-
tives. Regarding ontology reasoning, several representations describe approaches of ver-
tex search- and sorting, while the connectivity problem is outlined in different flavors. The
principles described in this section are therefore implemented in our suggested cocO(n)
representation, and outlined in the next sections.



Appendix D
List of External Tools

Our implementation depends upon several tools. Supporting re-production of our results,
we provide the extensive list of tools used during development, i.e. for

1. ontoWiz,

2. cocO(n) and

3. the memory-access-benchmark.

The set of tools, their task, accessibility and version number is provided in Table D.1:

Tag Description

Tool-name Cachegrind
Task Collects memory access patterns of a program. Its collected data forms the basis for

our memory-access-benchmark.
Homepage http://valgrind.org/docs/manual/cg-manual.html

Version (Part of the valgrind-installation-package; see Valgrinds version number.)

Tool-name CMake
Task Controls the software compilation process. Serves as the users interface during in-

stallation. Builds the releasable binaries (found at our home-page).
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage http://cmake.org/

Version 2.8.7

(Continued on next page.)

http://valgrind.org/docs/manual/cg-manual.html
http://cmake.org/
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Table D.1 – continued from previous page.
Tag Description

Tool-name Cmph
Task A library for generating of fast key-value (hash) look-up. Requires the keys to be

known before keys are mapped to the keys (i.e. strings). ontoWiz uses cmph to map
string identifiers (e.g. term-ids) into indices.

Homepage http://cmph.sourceforge.net/

Version 2.0

Tool-name Doxygen
Task Supports development and inspection of the ontoWiz, cocO(n)and benchmark-

libraries. Were used building the documentation.
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage http://www.stack.nl/˜dimitri/doxygen/.
Version 1.7.6.1

Tool-name g++
Task Translate the C++ source code into machine-readable syntax: The C++ code was

compiled with g++.
Homepage http://gcc.gnu.org/projects/cxx0x.html

Availability Either as package from the Ubuntu repository, or as source from the homepage.
Version 4.6.3

Tool-name Make
Task Organizes and improves the speed of software compilation.
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage https://www.gnu.org/software/make/

Version 3.81

Tool-name Mercurial
Task A repository tool. Supports consistency of source code and the content of this docu-

ment (i.e. the report).
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage http://mercurial.selenic.com/

Version 2.0.2

Tool-name Perl

(Continued on next page.)

http://cmph.sourceforge.net/
http://www.stack.nl/~dimitri/doxygen/
http://gcc.gnu.org/projects/cxx0x.html
https://www.gnu.org/software/make/
http://mercurial.selenic.com/
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Table D.1 – continued from previous page.
Tag Description

Task Interprets the Perl source code into machine-code.
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage http://www.perl.org/

Version 5.14.12

Tool-name SWIG
Task Glues programming languages together, e.g. Perl and C++. SWIG is used in our

project connecting the Perl layer into the C++ layer.
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage http://www.swig.org/

Version 2.0.4

Tool-name Time
Task Measures system and user time.
Availability As package from the Ubuntu repository.
Version 1.7-23.1

Tool-name Valgrind
Task Dynamically analyzes memory traffic on softwares. Used in our project to remove

memory leakages, bug tracking and bug fixing.
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage http://www.valgrind.org/

Version 1:3.7.0-0ubuntu3.1

Tool-name VTK
Task Visualizes scientific data. Used in this context to visualize ontologies of interest.
Availability Either as package from the Ubuntu repository, or as source from the homepage.
Homepage http://www.vtk.org/VTK

Version 5.10.1

Table D.1: The list of external tools, describing their accessibility. Included to support
re-producability of our work.

http://www.perl.org/
http://www.swig.org/
http://www.valgrind.org/
http://www.vtk.org/VTK
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Appendix E
Glossary

API Application Programming Interface; makes it possible for programs to communi-
cate.

Arc An arc is a directed edge connecting two vertices.

BF The algorithm described by Bellman and Ford (BF) evaluates all of the edges as
an alternative to the greedy approach, answering the problem of finding all paths
given a single source.

BFS The Breadth First Search (BFS) is an algorithm limited to the operations of ex-
ploring a vertex, visiting neighboring vertices.

C++ A programming language, which supports low-level implementations. The benefit
is higher speed of memory-sensitive operations at the cost of a longer implemen-
tation time (i.e. the time writing a software). Both cocO(n) and parts of ontoWiz

are written in C++.

Cache Cache (or CPU cache) is the high-speed memory found in a computer. The cache
is a physical component which is part of the CPU (core) architecture. When a
processor requires instructions or data, a request is made to the cache.

Class For ontologies in the OWL format, a class corresponds to a specific type of a
vertex, which in Description Logic (DL) is classified as a concept.

CPU The Central Processing Unit (CPU) is a physical component found in computers.
The CPU is often understood as the computers command center. All applications
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depends upon a CPU. A CPU may consist of several processors, which are con-
nected on the same chip through data-paths. A CPU has several sub-units. One of
them of them is the cache.

Depth The depth in one of our benchmark ontologies is the longest path connecting an
arbitrary leaf vertex to an arbitrary root vertex.

Description Logic (DL) DL is a group of languages in which knowledge is formally rep-
resented. DL is used for the task of formally evaluating ontology properties.

DFS The Depth First Search (DFS) is similar to the BFS. The difference is that the
queue (see Queue) is replaced by a stack (see Stack).

FIFO A First In, First-Out (FIFO) policy is a data storage representation where the last
element to be inserted is the last to be extracted

Forest A forest in computer science (CS) is a set of linked vertices. In contrast to a tree
(see Tree), a forest does not limit the set of root vertices to one.

Graph A graph is defined as a set of vertices V with a set of edges E, where E(V) de-
scribes the set of edges connected to a vertex v ∈ V .

Heap A heap is a tree shaped memory storage scheme in which the order of the elements
in the tree must comply with a given set of properties, called the heap properties.
An example of a property is the min-heap property, where the minimum value of
the data-set is found at the root, and the value of each vertex must be less than or
equal to its children.

ILP The Instruction-Level Parallelism (ILP) increases memory speed when instruc-
tions (i.e. set of commands which a program consists of) are transported from the
computers memory (see Memory) into the CPU. Similar to MLP.

Instance Given the context of ontologies in the OWL/OBO format, an instance corre-
sponds to a specific type of a vertex, which in Description Logic (DL) is classified
as an individual.

L1 cache The L1 cache is a part of a computers cache (see cache), where the L1 cache
is both the fastest and smallest cache: on our test platforms the L1 cache size is
either 32KB or 64KB (for details see Table 4.1 at page 31).

L2 cache The L2 cache is a part of a computers cache (see cache). Compared to the L1
cache (see L1 cache) the L2 cache is both slower and bigger, with a size on our
test platforms of either 512KB or 3072KB.
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Leaf A leaf (often denoted as root-vertex) is a data-structure-object without outbound
arcs.

LIFO A Last In First Out in a data storage is a representation where the first element to
be extracted corresponds to the last inserted. This is often denoted as a stack.

Memory The memory of a computer is often denoted as Random Access Memory (RAM),
and is a set of physical chips which is connected to the CPU through data-paths.
The memory size on our test platforms varies from 2.79GB on our Dell laptop to
125GB on the Biogw-db server (for details see Table 4.1 at page 31).

MLP The Memory-Level Parallelism (MLP) reduces delay when data (e.g. parts of an
ontology) are transported from memory (see Memory) into the CPU. Similar to
ILP.

Naive algorithm An algorithm which does not reuse knowledge (i.e. collected facts) from
earlier operations.

Node Corresponds to a vertex.

OBOF Open Biological and Biomedical Ontology Format (OBOF); one of the formats
which ontologies are written in.

OWL Ontology Web Language (OWL); like OBO, it is one of the formats that ontologies
can be represented in.

Path A path is a set of relations to traverse in order to get from one vertex to another in
the ontology.

Perl Perl is a programming language. Provides an abstraction from the memory lay-
out of modern computers, which implies ease of writing code at the cost of re-
duced speed when writing software dependent of fast memory access. Parts of the
ontoWiz library are written in Perl.

Poset A Partially ordered set (poset) is an ontology where all of the relations have the
properties of reflexivity, anti-symmetry and transitivity.

Queue A queue is a memory storage scheme applying the FIFO (see FIFO) order.

RAM See Memory.

RDFS Resource Description Framework Scheme (RDFS); like OWL and OBO it is one
of the formats that ontologies can be represented in.
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Relation A connection between vertices.

Relation type A relation type labels a relation with a set of properties. An example is the
is_a relation type, which labels the relation with the reflexivity, anti-symmetry
and transitivity properties.

Root A root (often denoted as root-vertex) is a data-structure-object without inbound
arcs.

Stack A stack is a memory storage scheme applying the LIFO (see LIFO) order.

Term For ontologies in the OBO format, a term corresponds to a specific type of a
vertex, which in Description Logic (DL) is classified as a concept.

Transitive The transitive property concerns relations. Illustrating the transitive property,
we provide an example: if vertexA relates to vertexB through a transitive relation
type α and vertex B relates to vertex C through a transitive relation type α, then
given transitivity vertex A relates to C through relation type α.

Tree A tree in computer science (CS) is a set of linked vertices (nodes) representing a
hierarchical structure.

Triplet An ordered 3-tuple to represent a relation, i.e. (vertex1, relation type, vertex2).

Vertex A vertex is an individual of a graph.

Vertex cover A vertex cover, in the context of ontology pre-processing, is understood as
the set of ancestors which a vertex relates to.

Vertices Plural for vertex. When two vertices are connected through a relation type, they
form a triplet of a relation.

VTK Visual Tool Kit (VTK); an open source visualization library covering a wide area
of fields (http://vtk.org/), used in this context to visualize ontologies of
interest.

Width The width in one of our benchmark ontologies is the number of leaf vertices in the
ontology.

http://vtk.org/
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CPU

Benchmark configuration, 30

Utilization, 40

Cray MTA-2, 23

Cray XMT supercomputers, 23

DAG

As input to cocO(n), 51

Definition, 1

Dell Latitude E6510 laptop, 30

Delta-stepping, 126

Dense set, 4
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Expansion, process of, 75

Fibonacci heaps, 125

FIFO, 124

Floyd and Warshall

related to cocO(n), 24

Definition, 126

Forest, 123

Graph, 123

Greedy algorithm, 126

Hashing, 125

HDT algorithm, 22

Heap

algorithm, 24

Definition, 123

Heap sort, 124

ILP, 30

Inference rules

Application of, 52

Insertion sort, 124

Johnson

Definition, 126

Related to cocO(n), 24

Knowledge gathering

cocO(n) algorithm, 49

Examples, 1

Performance, 96

Kruskal’s algorithm, 126

LIFO, 124

Linked list

Definition, 124

Impact of access pattern, 34

List, comparison of, 4

LL

see Linked list, 34

Low latency data structure, 23

Memory

hierarchical model, 3

Access overhead, 35

Benefit of reuse, 45

Configuration of micro benchmark, 29

Cost of padding, 41

ILP, 30

Importance of, 23

MLP, 30
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pointers, 124

Memory access pattern

ONTO-PERL, 102

Importance of, 46

In reasoning tools, 107

Micro benchmark, 27

Memory speed, historic development, 3

Merge sort, 124

Metarel, 22

Micro benchmarks

Core of our research, 111

Impact of memory access patterns, 27

Performance of ontology reasoning, 96

Structural evaluation of ontologies, 7

Minimum spanning tree, 126

MLP, 30

Object oriented approach, 95

OBOF

Example, 51

Introduction, 2

ONTO-PERL

Analyze of, 119

Cache utilization, 100

Example of usage, 22

Introduction, 5

Ontology

benchmark set, 8

definition, 11

Input for cocO(n), 50

Storage scheme, 90

Structural benchmark of, 7

Translation rules, 52

Ontology reasoning, time of processing, 89

ontoWiz

Comparison to similar tools, 22

Implementation, 90

Interaction with cocO(n), 18

Organized into distinct layers, 5

Preference of, 108

Requirements, 16

Ordered list

Definition, 34

Integration in cocO(n), 107

Ordered memory access, benefit from, 48

OWL, 2

OWL API, 22

Partially ordered set, see poset

Paths

From the pre-processing, 68

Polynomial growth of, 10

Reducing the number of, 77

Performance

Dell Latitude E6510 laptop, 98

Measure the impact of, 96

Reducing carbon footprint, 108

Perl

Connected to C++, 90

In ontoWiz, 6

Pointer, impact on execution time, 29

Pointer-based implementations, 23

Poset, 51

Pre-fetching, 23, 30

Pre-processing

Core of cocO(n), 111

Investigating the cost of, 33

Memory consumption, 9

Summary of related work, 21

The algorithm, 52

Prims algorithm, 126

Priority over subsumptions, 15

Progressive Merge-Join, 125

Property of chains, 13
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Protege-2000, 22

Querying
Chance of cache miss, 107
Performance of, 105

Queue
Definition, 124
Impact of access pattern, 34

Quick sort, 124

Radix sort, 124
Random list, 34
Random memory access

Approximation of cost, 47
Cost of, 48

RDF graphs, 22
RDFS, 2
Red-black tree, 125
Redundant operations

Implication, 98
Measuring, 112
Utilization impact on ONTO-PERL, 121

Reflexive property, 13
Relation

Definition of, 1
Implicit, 49

Relation type
Evaluated in the pre-processing, 79
number of, 8

Restricted vertices, in the pre-processing, 65
Rules

Application of in cocO(n), 84
Definition of, 11
Performance, 107
Support in cocO(n), 75

Semantic
graphs, 22

relatedness, 22
Sorted set, 124
SPARQL, 22
Stack

Definition, 123
Impact of access pattern, 34

Storage schemes
Brief survey, 123
Ontology, 90
Performance, 33

SWIG, 90
Symmetric property, 13
System ticks as time measurement, 32

Term
Definition, 1
Number of, 8

Topological sorting, 125
Transitive property, 14
Tree, 123

Unique vertices, in the pre-processing, 61

Valgrind, 29
Vertex

Cover of ancestors, 61
Definition, 1
Member of paths, 10

Vertices, 1
VTK (Visual Tool Kit), 96
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