
Automatic road network generation with 
L-systems and genetic algorithms

Bjørn Gunnar Eilertsen

Master of Science in Computer Science

Supervisor: Pauline Haddow, IDI

Department of Computer and Information Science

Submission date: Januar 2013

Norwegian University of Science and Technology



 



i

Sammendrag

Denne oppgaven er et forskningsprosjekt innunder datateknikk og kunstig in-
telligens, da n�rmere bestemt bio-inspirert kunstig intelligens. Prosedurelle
teknikker, inspirert av biologiske utviklingsmodeller, er kjent for generere
komplekse strukturer fra kompakte beskrivelser. Dette motiverer utforskn-
ing av prosedurelle teknikker i bruk for �a automatisk generere tredimen-
sjonale veinettverksmodeller. I denne oppgaven er L-systemer brukt til �a
prosedurelt utvikle vide veinettverk, og genetiske algoritmer er brukt til �a
�njustere prosedyren etter gitte m�al. Den endelige l�sningen innbefatter
ogs�a en maksimal 
yt-algoritme kombinert med en genetisk algoritme for �a
�njustere veikryss i veinettet.
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Abstract

This thesis is a research in computer science and arti�cial intelligence, more
precisely a research in biologically inspired methods. Procedural techniques,
inspired by biological developmental models, are known to create complex
structures from compact descriptions. This motivates exploring procedural
techniques on the subject of automatically generating 3D road network mod-
els. In this thesis are L-systems applied to procedurally develop vast road
networks, and genetic algorithms (GAs) are applied to tune the procedure
to target outcomes. The �nal solution also incorporates a maximum 
ow al-
gorithm combined with a genetic algorithm to tune intersections in the road
network.
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Chapter 1

Introduction

1.1 Background and Motivation

This thesis is a research and implementation of methods that are capable of
automating 3D road network generation. The methods chosen are mainly in
the �eld of bio-inspired arti�cial intelligence. The motivation for automating
and easing the process of generating 3D road network models is driven by
the slow process of manually generating 3D models with generic modelers.

The Norwegian Public Roads Administration (NPRA) expressed a need
of such automation. They are currently using a 3D studio application, but
the creation time of a high detail road network is long, and it would be
highly bene�cial to automate this process. This motivates for a research in
methods capable of automatically creating road network models with the
desired detail.

This thesis is an implementation and research project of methods and
theory found in a prior specialisation project, written by the author in prior
semester.

1.2 Goals and Research Questions

For this project and thesis, a upper goal with underlying research questions
has been de�ned. The goal of this research project and thesis is to apply L-
systems, combined with genetic algorithms, in an attempt to automatically
create 3D road network models.

Goal Automatic road network model generation by combining L-systems
and genetic algorithms.

Following is a list of research questions that will be adressed:

1



2 CHAPTER 1. INTRODUCTION

Research Question 1 What are the minimal and required features of an
L-system to create valid road network models?

Research Question 2 Can an L-system be guided by a genetic algorithm
in search of better automation of road network models.

Research Question 3 What �tness measures can guide the genetic algo-
rithm?

Research Question 4 Will a maximum 
ow-driven GA be able to tune

ow transitions in the interpreted road network?

To achieve automation in this way, a speci�c L-system must be found, or
L-system template. L-systems come in great variations, so a leading question
is what are the essential features needed to be present in an L-system to
generate valid road network models.

Road network models are complex. Procedural systems, such as L-systems,
promise complex models made from small descriptions. The same develop-
mental nature make it di�cult to predict the �nal outcome of small input
parameters. A genetic algorithm is applied in attempt to optimise these
initial parameters, towards �nal goals. This leads to a question concerning
which features of an L-system can be successfully tuned, and an additional
question of which features of the interpreted L-system are helpful to steer
the tuning. These two research questions concern both ends of the genet-
ic algorithm, and both ends of the L-systems, and how these points should
be linked to give the best results. While an L-system combined with a ge-
netic algorithm may come far concerning the initial macroscopic layout of
roads, setting transitions such as intersections may be better of analysing a
simulation of 
ow through the network.

1.3 Research Method

This research implements a theoretic model and continuously conducts exper-
iments with the implementation, to analyse and step-wise extend the imple-
mented model. For extensibility he model is implemented as a framework of
modules, which was iteratively improved throughout the project, and extend-
ed as testing gave satisfying results. A potential pitfall genetic algorithms
and L-systems especially is that there are so many variations, combinations
and parameters to tinker with, that the research progress demands sub-goals
and milestones to be followed.
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1.4 Thesis Structure

The thesis structure is as follows:

Chapter 1 gives a introduction to the thesis and problem description.

Chapter 2 describes the background theory and motivation for this project.

Chapter 3 describes the theoretical model and framework that is imple-
mented.

Chapter 4 presents a series of experiments and discussion of results.

Chapter 5 gives an evaluation and conclusion of the work done, and de-
scribes possible future work.
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Chapter 2

Background Theory and
Motivation

2.1 Background Theory

This section aims to provide the background knowledge,terminology and
foundation to understand the implemented model and framework. Those
familiar with road network theory, L-systems, genetic algorithms and 
ow
networks may skip ahead to Chapter 4.

2.1.1 Roads, streets and motorway networks

A road network is often best viewed on a map, di�erent colored lines meet
at crossings. On the road segment level, a road may be one of many cate-
gories. These categories vary from country to country, and apply in di�erent
contexts and settings. This thesis will focus on the Norwegian road network-
s, and take use of Norwegian law and guidelines in design. The Norwegian
Public Road Association's (NPRA) manuals for road design [Veg08] describe
road categories, road measures and design principles. For each speci�c road
category there are various conditions that in
uence the aestetic design and
layout of roads. A few example conditions are transport function, tra�c load,
safety and environment. Most prominent and visual di�erences in road de-
sign may be features such as road width, number of lanes, turns and lenghts.
The former features are the most apparent design features, concerning the
basic 3D structure.

In the scope of this project, the basic di�erences between roads,street
and motorways are the most important. This is to keep the complexity and
detail level down, but complexity should be a goal in mind for later potential
extensions.

5



6 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

The following theory is adapted from [Veg08].

Figure 2.1: Common road and street di�erences. Road and street examples
are shown in di�erent settings in the left and right columns respectively
[Veg08]. The �rst row show cross-section di�erences. The second row show
macroscopic pattern di�erences. The third row show typical adjacent objects.

2.1.2 Roads

Roads are commonly found outside urban areas. Buildings are beside such
roads are not rarely so close that they obstruct vision. See Figure 2.1. Roads'
main purpose is moving heavy tra�c, and often allow higher speed limits than
streets.

Roads normally allows a speed limit between 50-100 km/h and maximum
rise of 8% elevation. Roads may have several subcategories that each de�ne
subrestrictions for junctions and their exiting/entering roads.

For both streets and roads the cross section design is greatly a�ected by
speed limit and tra�c density. See Figure 2.2.

2.1.3 Streets

Streets are commonly found in urban areas, and may often contain mixed
tra�c, such as pedestrians and cyclists in addition to vehicles. This forces
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Figure 2.2: Shown are typical road and street cross sections. The top is a
road cross section. The bottom is a street cross section. Units displayed are
in meters. Adapted from [Veg08].

speed limits down, and often demand pavements that are adjacent to the
streets. Streets may also be found in outer-city residental areas. Typically
streets are developed after the principle of mixed tra�c and crosses at grade,
i.e. roads cross at the same level, with the need of for example, tra�c lights.

Street normally demands a speed limit between 30-50 km/h and a maxi-
mum rise of 8% elevation. In practice these demands are di�cult to satisfy,
especially the elevation maximum as Norwegian terrains are rough to come
by, so exceptions exsist.

2.1.4 Motorways

Motorways are roads of high speed limits whose main purpose is to lead tra�c
e�ciently between major cities. Motorways have additional designs to mend
high speed risks, such as seperate on- and o�-ramps. The directional lanes
are often seperated with a delimiter or space for safety reasons. Motorway
junctions (interchanges) are typically designed to permit tra�c on at least
one motorway to pass through the junction without directly crossing any
other tra�c stream. Interchanges are often used when at least one of the
roads is a limited-access divided motorway, but may also be used at junctions
between two leveled streets. Interchanges are large and complex structures,
but contribute to tra�c 
ow e�ciency and safety.

2.1.5 Junctions

A road junction is where two or more roads either meet or cross at grade
(same level). Street crosses are often prone to accidents, and countermeasures
are added such as physical narrowings and additional markings. T-junctions
and X-junctions are the most common in streets, and often have pedestrian
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Figure 2.3: A common four-way roundabout on the left, with gray lines
indicating two possible driving paths through it. On the right is a motorway
overpass with roundabout junctions [Veg08].

crossings. Road junctions often have yield and channelised lanes in addition,
as opposed to streets that have lower speeds. Roundabouts may replace
either where applicable, and are often preferable with positive e�ects on
safety, tra�c 
ow and maintenance cost. Roundabouts di�er from the other
junctions, as they usually has a directed one-way cycle between the entering
roads. Roundabouts are preferred when the tra�c 
ow from all entering and
exiting lanes are even. Note that T-junctions can also be called Y-junction or
fork when it splits and resembles the Y shape. The overall design of junctions
are greatly a�ected by the number of entering and exiting lanes.

2.1.6 Tra�c Flow

Tra�c 
ow is the 
ow of vehicles through a network. Three variables are re-
quired to visualise a tra�c stream, which are speed, density and 
ow [GH75].

Flow = speed � density

The speed variable is the speed of vehicles or objects passing a point, or
the average speed over a given length. The density variable is the number of
vehicles passing a single cross-section of a network.

Network 
ow throughout a network can be measured by the maximum

ow theorem, from the �eld of optimisation theory. Ford-Fulkerson is the
�rst known maximum network 
ow algorithm, described in [For56]. This
theorem measures the networks ability to move tra�c from a source node
to a sink node, over edges of the network. The requires edges to have an
associated maximum capacity.

The maximum 
ow algorithm:

1) Search for a path from source to sink with still available capacity.
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2A) If available capacity: Add to total 
ow the minimum remaining capac-
ity, and subtract capacity from all edges in the path. Return to step
1.

2B)If no more available capacity, then return the total 
ow value.

Figure 2.4: A maximum 
ow example. The 
ow goes from the source to the
sink.

In Figure 2.4 a maximum 
ow problem example can be seen. The dis-
played circles represent nodes and the lines are undirected edges. The source
gives out an in�nite 
ow. The 
ow is limited by the maximum capacity,
speci�ed on every edge. Similar to road networks, this graph is a undirected
graph, which means there is possible to 
ow either way over an edge. In this
example, the maximum 
ow into the sink becomes 10, as the bottleneck is
the edges BE, CE and DE.

This theorem can be extended into a multi-source and multi-sink problem
by adding a consolidated source and sink, with imaginary edges of in�nite or
high capacity connected to all sink and source vertices respectively.

Figure 2.5 show an multi-sink example. In the example, the maximum

ow becomes 19, where all the outgoing C (source) edges are the bottleneck.

It is also possible to put the capacity limit on the nodes of the network,
where as outgoing thoughout can not be higher than the node capacity.

Note that there are more time and memory e�cient variations available
than Ford-Fulkerson, but are on the other hand much more complex in im-
plementation. See [GR98] for a comprehensive list on complexity variations.
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Figure 2.5: A maximum 
ow example. The 
ow goes from the source to the
many sinks connected to the supersink.

2.2 L-systems

L-systems were �rst introduced in 1968 by Aristid Lindenmayer [Lin68], as a
class of formal models called rewriting systems, to describe the developmental
process. The rewriting systems were later adopted as 'L-systems' and is now
a common developmental representation. The main bene�t of such develop-
mental representations provide means of de�ning potentially complex struc-
tures with compact descriptions. Other advantages may be scalability, self-
organisation, robustness, adaptability and evolvability [FM08]. L-systems
have been proven to excel on representing and simulating growth in 3D struc-
tures, especially plant ecosystems and organisms [PL90, PJM94, PHHM96]
[DHL+98].

Since its introduction, L-systems have been extended with many varia-
tions. The following sections cover di�erent L-systems used in this project.
Most of them are adapted from the comprehensive book

The Algorithmic Beauty of P lants by the inventor [PL90].
An L-system is a rewriting system that operates on strings of symbols.

The system is de�ned by assigning an alphabet of symbols, an initial string
of symbols, and a set of rewriting rules. The initial string of symbols is
also referred to as the axiom, whereas the rewriting rules are also called
productions.
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The productions specify how a symbol is replaced by a single or a string
of symbols at each rewriting step. As symbols stem from a �nite alphabet,
a string of symbols is commonly refered to as a word [PL90]. The alphabet
can be de�ned explicitly or implicitly in the set of productions.

One single iteration of the L-system consists of an attempt to rewrite
every symbol with a production rule once.

The axiom represents the initial state of the L-system, and productions
de�ne the development of the string. The development is simulated by a
sequence of discrete derivation steps. For each step, every symbol is rewritten
in a conceptually parallel manner, using the �rst applicable production in the
set. If no productions apply, the symbol rewrites into itself, simulating no
change with what is called an indentity production.

The stopping condition on development can be a prede�ned number of
rewriting steps or iterations, or the observation that the structure has not
changed between two iterations.

De�nition. An L-system in its simplest form is context-free and determin-
istic [PL90]. A deterministic 0L-system ( 0 notes zero-context ) is de�ned as
the ordered triple G = f�; !; Pg where:

� = fs1; :::; sng is the alphabet composed of a set of distinct symbols, si.

! 2 �, is the non-empty axiom, made from symbols in �.

P � � � ��, an endomorphism de�ned on ��, known as the �nite set of
productions.

A production (s, �) 2 P is written in the form s ! �, where the symbol
s is known as the predecessor and the word � 2 �� the successor of the
production. An 0L-system is deterministic if, and only if, each symbols A in
the alphabet, have exactly one corresponding production which gives A! �.

An example of a deterministic 0L-system (D0L) with three iterations of
G = f�; !; Pg:

G = ffA;Bg; AB; fA! AB;B ! Agg:

!: AB

i1: ABA

i2: ABAAB

i3: ABAABABA
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Figure 2.6: A derivation tree showing the development of an example axiom
AB.

2.2.1 Bracketed

In bracketed L-systems, branching constants are used to start and stop
branches, commonly noted with '[' and ']'. The '[' notes the start of a branch
and the ']' notes the end. The start of a new branch indicate the start of
a subgroup of symbols, and branches may exsist inside other branches. In
topological representations, the branching symbols function as push/pop s-
tack operators where the new branch will inherit the current position of its
originating branch. It is possible for a branch to additionally inherit other
attributes from its parent and / or adjacent symbols.

The following example shows a bracketed L-system in three iterations:

! : A

P : A! B[A]

i0:3 : A) B[A]) B[B[A]]) B[B[B[A]]]

Other brackets such as curly brackets fg can be used to call external
functions. Curly brackets can alternatively be used to prevent rewrite of the
contents between the curly brackets.

2.2.2 Stochastic (s0L)

A stochastic L-system associate multiple production rules to a single prede-
cessor symbol, where each production rule has an associated probability of
�ring. The set of associated production rules usually share a probabilistic
sum of 1 for the same predecessor symbol. If multiple predecessor symbols
exists in the production set, each symbol may have its own associated proba-
bilistic sum of 1. In cases where there is a single production and a probability
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bound to it, the rest sum of the probability is assumed to be the probability
of an identity production.

A stochastic 0L-system is an ordered quadruplet G� = f�; !; P; �g with
the extension � : P ! (0; 1]. � is the probabilistic distribution that maps
a set of probabilities to a set of productions. In the example below the
production probabilities are added at the end of the derivation symbol !:

� = A; [; ]

! : A

p1 : A!:5 A[A]

p2 : A!:5 AA

Two full iterations with the above rule set may result in one of the strings:
AAAA, A[A]AA, AAA[A], A[A]A[A], AA[AA], A[A][A[A]], A[A][AA] or
AA[A[A]]

2.2.3 Parametric (p0L)

A parametric L-system extends symbols with the possiblity of holding mul-
tiple parameters in parantheses following a symbol. Formally, a parametric
p0L-system is de�ned as an ordered quadruplet G = f�;�; !; Pg, extended
with the set of formal parameters �. Example parametric production rules:

A(x)! A(x+ 1)B(x� 1)

A(x; y)! B(x)C(y)

where x; y belongs to a formal set of parameters �.

Parametric symbols allow for further control of growth rates, which can
be speci�ed by parameters. For instance if the growth length is de�ned as x,
a rule of type A(x/2) would halve the length for each derivation.

An additional degree of 
exibility can be added through admitting con-
ditions within the production rules, as in:

A(x) : x > 1! A(x+ 1)B(x� 1)

where the production rule is applied only if the condition stated between the
symbols : and ! is true for the actual value of the given parameter x. It
is possible to mix parametric and nonparametric rules. The symbol = may
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be added to separate the predecessor, condition and successor. The compare
symbols < > must be set before the = sign.

The conditionals may contain arithmetic operators (+;�; �; =), logical
operators (&; !; j), relational operators (>;<;>=; <=;=) and parentheses (
), which all can be added to the set of formal parameters �.

A production matches a module in a parametric word if the following
conditions are met [PL90]:

1. the symbol in the module and the symbol in the production predecessor
are the same

2. the number of actual parameters in the module is equal to the number
of formal parameters in the production predecessor

3. the condition is true if the actual parameter values are substituted for
the formal parameters in the production.

2.2.4 Context sensitive (IL)

Context-free L-systems ignore the context in which a symbol appears. Con-
text sensitivity can be added to the production rules with the symbol < for
left context and > for right context. Context sensitive L-systems can be di-
vided into two classes; 1L-system and 2L-system. The 1L-systems considers
either the left or the right context of a symbol. The 2L-systems considers
both left and right context.

left context < strict predecessor > right context ! successor

1L-systems have one-sided context only and are in either of the forms:

BLeft < A! � or A > BRight ! �

The following is a signal propagation example to show how context sen-
sitivity can simulate signals, adapted from [PL90]:

! : BAAAA

p1 : B < A! B

p2 : B ! A

The resulting word in two iterations:

BAAAA) ABAAA) AABAA
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Note the signal b in the example above, that moves across the string
through iterations.

When combining context-sensitivity with brackets, the brackets originat-
ing from the same level as the strict predecessor can be ignored. In the
example below the production p1 applies to the symbol a in the axiom:

p1 : B < A > C[D]E ! G

! : UB[V [WX]]AC[DY ]EZ

Additionally, context-sensitivity can be combined with parametric L-
systems. Example parametric context-sensitive production rule:

A(x) < B(y) > C(z)! F (x; y; z)

2.3 Interpretation of L-systems

The symbol topology of L-systems is semantically agnostic, which means
that without interpretation an L-system remains an abstraction of structural
transformation. Interpretations di�er greatly depending on the �eld and
need of output. An interpretation can generate visual graphics [PL90] or
even music [Man06].

For each application a parser is needed to map the string output in a
meaningful way. For describing geometric structures, such as 2D/3D com-
puter graphics, the following pipeline may be used:

L-system ) word ) graphic interpreter ) geometric structure

The most basic and common graphical interpretation of L-system strings,
called turtle interpretation, is described by [Pru86]. The principle of turtle
interpretation is imagining a turtle seen from above, walking about and draw-
ing a line in the path it has covered. The turtle has a position in Euclidean
space, represented by the Cartesian coordinates x,y, and an orientation angle
�. Given the initial parameters (x0; y0; �0), with start coordinates x0; y0 , the
initial heading �0, a stepsize d and an angle increment � , the turtle can be
moved with the following symbols and constants:

F : move forward with the length of d. The turtle moves to the point
(x0; y0; �), where x0 = x+ d cos(�) and y0 = y+ d sin(�). The result is
a drawn line segment between points (x,y) and (x',y').

f : same as above, but without the drawing of the segment.
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Figure 2.7: Turtle interpretation movement.

+ : the turtle turns left, with the angle �. The turtle is now facing (x; y; �+
�).

- : the turtle turns right, with the angle �. The turtle is now facing (x; y; ��
�).

For example, the string F+F+F+F would display a closed square when
interpreted with increment � = �

2
(90 degrees).

The interpreter interprets symbols one at a time as they are found in the
symbol string. Symbols not in the interpreter set will not be interpreted,
which permits use of auxiliary symbols that help de�ne the growth process
without interfering with the graphical interpretation [FM08].

The turtle interpreter also interprets branching, with the corresponding
symbol meanings:

[ - Saves the current state of the turtle onto a pushdown stack.

] - Restores a state from the stack and makes it the current state of the
turtle (last-in �rst-out). No line is drawn, but the position and angle
of the turtle changes.

In Figure 2.8, various plant geometry, drawn by using bracketed turtle
interpretation, can be seen. Under each plant is the number of iterations and
turning angles speci�ed, along with the used axiom and productions.

The basic turtle interpretation can also be extended to form 3D models
[PL90].

When using parametric L-systems, the moving and turning of the turtle
in interpretation can be set by modules:

F (�) - move forward with � distance/steps and draw a line.

f(�) - move forward with � distance/steps and do not draw a line.
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Figure 2.8: A turtle interpretation visualising plant geometry, adapted from
[PL90]

R(�) - rotate the turtle clockwise with angle �.

L(�) - rotate the turtle counter-clockwise with angle �.

This approach avoids the problem of self-cancelling and unneccesary long
strings, such as: F ++++���+��+��+F

2.4 Genetic Algorithm

Genetic algorithms (GA) were introduced by [Hol75] and are a sub-class of
evolutionary algorithms (EA). Common to the class of EAs is the use of
techniques inspired by natural evolution to generate and �nd solutions to
optimisation problems.

2.4.1 Overview

The canonical genetic algorithm consists of a population of strings (geno-
types), which encode candidate solutions (phenotypes) to an optimisation
problem. The candidates are combined and evolved in generations. In each
generation, the fitness of every string individual in the population is e-
valuated. Multiple individuals are stochastically selected from the current



18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.9: A simple genetic algorithm 
owchart.

population, with a higher chance of being selected with higher �tness. The
selected individuals have their gene strings recombined and/or mutated to
form a new population. The new population, as a result of a generation, is
used as input for the next iteration round of the algorithm. The algorithm
loops until it terminates due to a stopping critera. See Figure 2.9 for the
common GA loop. The main steps of a GA are described in the following
sections.

2.4.2 Initialisation

Traditionally individuals are randomly generated to form the initial popu-
lation. That means the strings are built by randomly combining allowed
values. The size of the population depends on the problem domain, and
could be a single individual to tens, hundreds or thousands of individuals.
Alternatively the solutions can be seeded or aided into search space areas
where the optimal solution is more likely to be found.

Candidates are encoded as genetic representations, often in binary code
as strings of 0 and 1, but other encodings such as character, number or
tree-based are possible. Below is a binary code encoding example, with
corresponding decoded number phenotype:

Genotype example : 1100 0110 1010
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Phenotype example : 12 , 6 , 10

2.4.3 Selection

During a single generation's lifetime a group of individuals will be selected
for reproduction. The selection is a �tness-based process, where the �ttest
inidividuals have the higher chance of being chosen. There are many varia-
tions of �tness-functions used to perform the selection. The generic �tness
function credits a �tness value to each individual solution, which afterwards
is normalised over the whole population.

The following list describe a few common selection mechanisms adopted from
[FM08]:

Fitness proportionate selection , also known as roulette-wheel selection,
assigns a probability to each individual which corresponds to the ratio
between the individuals �tness value and the sum of all �tness values
in the population.

Figure 2.10: Fitness proportionate roulette-wheel example. In this example
the probability p is highest for individual 5.

p(i) = f(i)P
N

i
f(i)

The probability p(i) that an individual i is selected, is based on the
ratio between the individual �tness f(i) and the sum of the �tness in
the population (see Figure 2.10). O�spring is selected by spinning the
roulette wheel N times, where N is the population size or the number
of o�spring to be produced.
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Rank-based selection assigns a rank to every individual based on its �t-
ness value. The higher rank will always have the slightly higher proba-
bility of being selected than the succeeding rank. This selection evens
out the �tness di�erences, and helps hinder the search to narrow down
too quickly, as might happen with �tness proportionate selection.

Rank 10 > 9 > 8 > 7 > 6 > 5 > 4 > 3 > 2 > 1

Tournament selection involves running "tournaments" with sub-sets of k
individuals chosen at random from the population. k is known as the
tournament size, and the selection pressure is adjusted by changing the
tournament size. The winner individual of each tournament (the one
with the best �tness) is selected as a parent. This continues until the
su�cient number of parents is selected. Tournament selection achieves
a good compromise in maintaining both selection pressure and genetic
diversity in the population [FM08].

Elitism can additionally be used to automatically push forward the best
individual of the population into the next generation directly. Elitism works
as a safety mechanism to ensure that the single best solution is not lost from
generation to generation.

2.4.4 Reproduction

After a group of individuals are selected for breeding they reproduce new
population members using genetic operators. Common genetic operators
are crossover and mutation. Parents are chosen in pairs to produce chil-
dren/o�springs. The o�spring will inherit any characteristics from its parents
determined by a crossover function. Mutation will result in a new gene which
is not directly inherited. The reproduction may continue until an entire new
population is �lled, or until all parents have bred. The new population can
either be merged with the existing population or entirely replace it.

Crossover Crossover functions crosses the gene strings of the parents into
a new string for the o�spring. The crossover might be one-point, multi-point
or uniform crossover. The o�spring should at least have genes from each
parent, otherwise it will be a copy of either. One-point crossover simply
divides both parent's genotype in two parts and exchange one part with the
other to create two new genotypes, each with a part from each parent. Multi-
point crossover divides the parents genotype into n segments and exchange
corresponding segments. Uniform crossover exchange the genetic content at n
random chosen positions. This crossover can be used on modules, exchanging
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modules one-to-one. A single point crossover example can be seen in Figure
2.11 where two parents do a crossover and create two o�spring whom are a
mix of both parents.

Figure 2.11: Shown above is a single point crossover. The two parents on
the left cross over and produce the o�spring on the right both having a mix
of parent genes, split by the point.

Mutation Mutation is the random alteration of a gene during the pro-
duction of o�springs. The mutation might be limited to a chance of only
one gene in total being altered, which would be a minimal mutation. The
mutation operator must be adapted to the genetic representation used, such
as binary, real number, symbol or tree-based. The mutation operator must
be designed to reach every possible value in the genetic representation space.
Mutation helps to avoid local minima, but too high mutation may scramble
the search and work against its purpose.

Example string before mutation:
1100 1011 0110 1001
Example string after mutation:
1100 1111 0110 1001

2.4.5 Termination

Common termination criterias are:

- a �xed number of generations

- a found optimal solution

- an observation that the highest ranking �tness has hit a plateau and stag-
nated (local minima).

If the algorithm has terminated due to a maximum number of generations,
a satisfactory solution may or may not have been reached.
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2.5 Motivation

The wide motivation behind this thesis is the need of automatic procedural
generation, often found in computer graphic �elds, where very high detailed
models come closer and closer to reality. Constructing large,complex and
highly detailed models is very time-consuming by hand, and the bene�t of
automatisation is quite clear. The Norwegian Public Roads Administra-
tion expressed the same need of automisation of content for their simulation
environment and studio application. This situation motivated for research
towards �nding an automation alternative �t for their purpose and on Nor-
wegian road network models.

Parish and M�uller's article on Procedural Modeling of Cities [PM01] is
one of few publications covering automatic road generation using L-systems.
Their work is the main motivator for using L-systems to generate road net-
works in this thesis. The work of [PM01] is, in summation, the most relevant
work to this thesis, and close to the problem at hand.

The proposed system in [PM01] uses a procedural approach based on L-
systems to model cities, and thereunder connected road networks. For their
system to create cities, various input image maps are given as inputs, such
as land-water boundaries and population density. Based on these inputs
the system generates a system of roads and streets, divides the land areas
into lots, and creates the appropriate geometry for urban buildings on the
respective allotments. For the generation of transport networks, their L-
system is extended with a module that allows the consideration of global
goals and local constraints such as external functions. Locally these functions
will prune, extend or merge road segments into nearby segments, to make
crosses/junctions and road patterns. An impressive reinvention of Manhattan
done by their system can be seen in Figure 2.12.

Parish and M�uller's system succeed in generating good basic road net-
works, but the realism in the model is still far from simulation quality. E-
specially the junctions are far from realistic, and there are no roundabouts.
Additionally their approach need global parameters, patterns and layers of
images as input. As with [PM01] and other L-system applications, there is
much tuning of initial parameters to be done to get the correct output.

The multiple inputs needed for Parish and M�uller's system, motivated a
search for other possiblities to shape road networks. Genetic algorithms are
well known means of optimisation, and have the bonus of being bio-inspired
as with L-systems. This motivated for a evolutionary L-system solution.

Several works show combining genetic algorithms with L-systems can
be successful, when tuning parameters by scoring solutions during run-time
[NSW03] [RLFS02] [RCB+02] [HP01] [Och98].
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Figure 2.12: An example road network generated by an L-system. The im-
ages are adapted from [PM01]. The top image shows a road network generat-
ed inside the Manhattan island contour with speci�ed patterns. The bottom
image shows a drawn version of the actual Manhattan road network.

[Och98] show that it is possible to count and use aesthetic features as
�tness, which speaks in favour of road networks where you have statutory
and de-facto rules that de�ne the structure. Ochoa applies multiple �tness
measures on plants drawn by L-systems, in an attempt to eliminate human
participation when picking phenotypic traits. This motivates for applying
similar functions to road networks. Also in [RLFS02] the authors were faced
with the di�culty of constructing suitable L-system production rules for gen-
erating a leaf shape. By specifying the contour of the leaf, they successfully
drew a leaf form by combining GA and L-system. See Figure 2.13

The authors of [PM01] state that since there is no underlying model of
transportation 
ow simulation on their roadmap, they can ignore the im-
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Figure 2.13: An example leaf generated by an L-system tuned by a genetic al-
gorithm. The images are adapted from [RLFS02]. The left hand image show
the �rst generation of an GA tuning an L-system that draws a leaf shape..
The right hand image show the best optimised leaf after 200 generations.
Images are adapted from [RLFS02].

plications on street capacity. In road networks used for simulation, such
implications must be addressed or eventually be used as a measure of qual-
ity. This motivated for experiments with 
ow measures, to optimise a road
network into a higher detail level than just by L-system geometry.



Chapter 3

Architecture / Model

The model is implemented as a framework with a high degree of 
exibili-
ty. The framework consists of several modules that communicate with each
other. Each main concept is implemented as an individual module. This
means there is one module for each of the L-system, the genetic algorithm,
the interpreter and the 
ow algorithm. The following sections elaborate on
the various modules.

3.1 L-system

The L-system used to represent a road network is kept simple, and is designed
to take advantage of the simplicity of the common turtle interpretation. The
main alphabet of this L-system is, but not limited to:

F ,+, ,#,[,],(,)

The above alphabet consists of both variables and constants, and some
symbols that can be both, depending on the context it appears. The un-
derscore replaces the minus sign in the alphabet, as to avoid confusion with
negative values in parameters. Positive values do not have a pre�x '+', i.e.
values without a pre�x are positive. The variables of the alphabet are treat-
ed as parametric modules, and may contain numeric or constant parameters.
Variables are implemented as symbol modules, which means that each sym-
bol is an unique object and may hold several hidden parameters. This allows
for 
exibility towards keeping pointers to neighbouring symbol modules. Ad-
ditionally does symbolic and synthatic encoding ease use and implementation
[Och98] [Jac01] [RCB+02].

The F symbol is pre-set in the interpreter and represents a road segment,
which corresponds to a line as in the common turtle interpretation. All sym-
bol modules may also have multiple parameters in succeeding parantheses,

25
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such as: F(1,2,3). These parameters may de�ne and take advantage of both
interpretation features and production rule features.

Branching of road segments are described by brackets [ and ]. Any sym-
bols that appear between brackets belong to a new branch. The way this is
implemented is that the �rst bracket [ is implemented as a module, which
may have children (a sub-string of modules), and the ] is a constant that
notes the end of the sub-string. This additionally allows for the branch to
have parameters, which are listed in parantheses behind the end constant as
such:

F [F ](1; 2; 3)F

Though branches are independent in the string, the geometric location
for the stem origin of the branch is set by the preceeding module or symbol,
i.e. F [: : :] the branch stems from the end position of F .

The L-system must be initiated with one to multiple rules, an iteration
number and an axiom. Symbols not speci�ed in the alphabet, besides [,],+,�,
will not be added to the interpreters search alphabet.

In this framework a mix between stochastic, parametric and deterministic
rules may be used. Up to 2L-context sensitivity may be used, that is; 0L,1L
or 2L context-sensitivity.

When using multiple rules that share a precedessor, they are grouped to
share a probability of 1 (100%). In example, three production rules with
a shared predecessor F will be assigned a 33,333. . .% probability and be
grouped, forcing atleast one to be applied. If a stochastic production rule
does not share a predecessor symbol with any other rule, the remaining prob-
ability of 1 counts for the probability of the identity production being applied.

Once a production rule �res for a symbol, the symbol is replaced and the
iteration continues to the next symbol.

A special twist to the implementation is the use of empty parentheses
and empty brackets. They note that the successor with the empty clauses
should copy and aquire all of the precedessors parameters or children.

Empty parentheses example:

Production rule: A! B()

In use: A(1; 2; 3)! B(1; 2; 3)

Empty brackets example:

Production rule: A! D[]
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In use: A[BC]! D[BC]

Stochastic production rules would in a true random implementation pro-
duce di�erent results on each run. To make runs reproducible a random
seed can be set. This pseudo-random seed is implemented in the production
rule picking process, which will make stochastic productions �re at the same
frequency on consecutive runs. The default seed value is 0.

3.2 Interpreter

The interpreter interprets the L-system string into nodes and edges with
Cartesian coordinates (2D). The road segments, the F symbols in the L-
system, are drawn in their simplest form, as a line. From the L-system F
symbol, the interpreter creates an segment object, which hold values beyond
what is visible in the simpli�ed 2D interpretation. The line is the only visible
part of a road segments in interpretation, but the road segment object may
still hold multiple hidden parameters, describing road length, neighbours,
number of lanes, and more. The curvning of segments is ignored in this
implementation, as two cartesian coordinates are only a function away from
being a polynomial curve. Figure 3.1 shows two ways of drawing a curved
road segment on a line with two endpoints.

Figure 3.1: Shown above is a partial circle curve and a polynomial curve.

The interpreter is initiated with a vector containing a starting point and
a starting direction. The direction is in the interval [0; 360], and is initially
set to 0 (east).

In example: a F symbol equals a straight line, whereas if a parameter is
speci�ed such as F (90), the current direction is changed by rotating the line
around its starting point with 90 degrees. A negative parameter value would
rotate clockwise, and a positive value would rotate counter-clockwise.
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A constant parameter such as # is used to rotate a random amount of
degrees upon interpretation. This random value's range can be preset in the
interpretation, in example [30; 150] to prevent too small angles on branching
segments and segment chains curling in on themselves. As with the stochastic
L-systems, this random turning behavior can be subject of a pseudo-random
seed, instead of true randomness, to be able to produce the same result on
consecutive runs on the same L-system string. The default seed value is 0.

Once the interpreter has interpreted the entire L-system string, it contin-
ues to search for intersections. To �nd and generate intersections as objects,
the interpreter searches the list of segments after line-line intersections. The
interpreter splits found intersecting segment pairs at the intersection point,
creating up to four new segments. Once no segments intersect each other
beside at the end points, the interpreter creates intersection objects where
three or more segment endpoints meet. Each intersection object holds point-
ers to connected segments. Each segment has a connection to up to two other
segment endpoints.

For the 
ow network phase, additional information needs to be extracted
from the network. For this phase the interpreter prepares the intersections by
following neighbouring segments from each intersection. This maps connect-
ed intersections to each other, and adds an imaginary edge between them,
which represents the connected path between them.

3.3 Genetic Algorithm

A genetic algorithm (GA) is used to �nd a set of parameter values that will
be used as input to the candidate L-systems. The same GA is also used in
optimising intersections for maximum 
ow. The main di�erence is in the
�tness functions used.

Individuals of the GA carry the genome parameters, a simple list of inte-
gers that are in a given range. For the �rst phase, the range is normalised to
[0; 100] which correlates to a precision of 0,01 or 1% percent if the parameter
is used as a probability value. For the second phase, the range is set between
the number of intersection types that is speci�ed.

Each individual of the GA population consists of an L-system, or a link
to an L-system template, and a parameter chain. The L-system of each
individual have the same features and a common interpreter. The L-system
is a template of production rules, axiom and alphabet, to give each individual
the same building blocks.
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Fitness For the L-system tuning phase,the �tness score of an individual is
determined by applying its genome parameters to the L-system, and measur-
ing features in the interpretation domain. For the 
ow network tuning, there
is only one �tness function that is applying intersections to the interpreted
network and measuring maximum 
ow.

The following are possible �tness features that can be activated in the
framework for the L-system tuning:

� Road length. The sum of road segment lengths combined can be used
as a �tness feature. This favoures L-systems that create road networks
with higher total length. If the parameters of the genome directly
in
uence the length of each segment as a symbol parameter F(length),
this �tness has a great impact. This �tness value increases at a rate:
number of segments * segment length.

� Intersections. This �tness function measures the number of intersect-
ing road segments in the interpretation. The way this is measured is
by comparing each segment with every other, to see if they intersect
between their endpoints given two sets of x,y coordinates. When com-
paring, a segment can only intersect an other segment once, at any one
point. When an intersection is found, the two segments are divided
into four new segments. Segments that meet in their endpoints get
converted into interpreted intersections (junctions).

� Intersection-Segment Ratio. This function is essentially a mix of the t-
wo preceding functions. This ratio would re
ect if the road network cre-
ates blocks, large or small, or spreads without generating intersections.
In example, 1 minimal single block would have 4 segments and 0 inter-
sections. 4 adjacent blocks could have 10 segments and 5 intersections.
In result, an urban neighbourhood would have a intersection-segment
ratio of approximately 1:2.

� Closed loops. The measure of closed loops can be used to determine
the realism of the road network. Loops, or lots, are common in road
networks. In cities, blocks and loops are common, encapsulated by 3
or more intersections. Lots closed in by long roads on the country side
would be much larger. The number of fully closed loops, and their
average length case be used to re
ect wether the created network as an
accessability and block patterns.

� Network circumference. The total approximate circumference of the
city can be used as measure of how widespread the network is. The total
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distance around the interpreted network's outer points is calculated.
This is easier to calculate when intersections have been found and the
di�erence between inner and outer points are clear. This �tness would
prefer a road network that is evenly spread out, and not in a narrow
long shape.

� High degree intersections. Very high degree intersections may arise
depending on the rule set used. High degree intersections are not very
realistic and should recieve a penalty. Combining this measure with a
negative weight gives a penalty for every found intersection above the
degree of 4.

Any number of the �tness functions that are activated are combined into
one formula. Weights w are added to allow setting the importance of each
contributing feature. Below is the �nal �tness formula shown with fn as a
function, with corresponding weight wn.

Fitness = f1�w1+f2�w2+f3�w3+f4�w4+f5�w5+f6�w6
w1+w2+w3+w4+w5+w6

As the di�erent �tness functions give out very di�erent value ranges, care
must be given to the weights, but also concerning the importance of each
�tness function used.

Selection The �tness is used in the chosen selection mechanism, which
can be any one of the three speci�ed in Chapter 2. For the tournament
selection a tournament size has to be additionally speci�ed, which de�nes
the number of individuals pulled into a sub-tournament. Depending on how
the �tness function values arise, di�erent selection mechanisms may be used
with di�erent outcomes.

Crossover The selected parents are put through a crossover mechanis-
m, combining genome parameters from two parents, which results in two
children. With a small genome, 1 crossover point can be used, but larg-
er genomes bene�t from multiple or uniform crossover points. For small
genomes the crossover mechanism can be skipped, as long as there is su�-
cient mutation, which would produce similar results that of crossover. The
crossover is controlled by a set rate, which corresponds to how many percent
of the population should go forth to recombination, in range 0-100
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Mutation The mutation rate is a probability for each genome parameter
to mutate. A mutation range must be set, in where the mutation can mutate
within. The allowed value range of the genome parameters will dictate the
resulting value after mutation, if the mutation happen to land outside the
allowed range then the value will be cropped.

Termination A maximum number of generations can be speci�ed to halt
the loop, if a maximum �tness/sought �tness (perfect solution) individual is
not found, which is most likely when dealing with road networks.

3.4 Maximum 
ow

The maximum 
ow module takes an interpreted L-system as input. From
this the module �nds all intersections that are linked to each other. The mod-
ule adds multiple sink intersections on lone edges around the road network.
These become the exiting roads of the network.

A single high-degree intersection is selected as the source intersection.
The implementation consists of a simple model using only two di�erent in-
tersection types, where one is more e�ective than the other. These two types
are randomly assigned on intersections in the network, and capacities are
computed based on the speed limit of segments times the modi�er speci�ed
by the intersection type the segments are leaving. The default settings for
the types are: 1 = 0.5 multiplier and 2 = 0.75 multiplier. This means, for
every intersection the the throughput tra�c 
ow is reduced by the multiplier.
This simulates crosses where hinders such as crossing tra�c and tra�c lights
a�ect the 
ow.

This allows for a genetic algorithm to optimise the series of paths spread-
ing from the picked source to the sink. These paths will e�ectively be the
main roads leading in and out of the city. In this simple model, the road
segments get initially assigned a default 30 speed limit, so that the capacity
gets modi�ed by the type of connecting intersection only. This leaves the
density from Section 2.1.6 at 1.
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Chapter 4

Experiments and Results

This section describes the experimental setup and plan, and continues to list
experiments and results. The experiments are presented one by one and the
results are successively discussed.

4.1 Experimental Plan

The experimental plan for this project is very straight forward, and can be
broken down to milestones outlined by the research questions. The research
questions are divided into three phases, as the presence of, and the genetic
algorithms vary between these phases.

To sum up the research questions, divided in phases:

Phase 1

� What are the minimal and required features of an L-system to create
valid road network models?

Phase 2

� Can an L-system be guided by a genetic algorithm in search of better
automation of road network models.

� What �tness measures can guide the genetic algorithm?

Phase 3

� Will a maximum 
ow-driven GA be able to tune 
ow transitions in the
interpreted road network?

33
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4.2 Experimental Setup

The framework is implemented in Python and run on a MacBook from 2009
running with a 2,26 GHz dual-core processor and with 8 GB of memory. The
input parameters to the system vary from experiment to experiment, and is
described at each experiment where it di�ers.

This implementation uses Python version 2.7.1 to run the algorithms, and
the Matplotlib library to visualise the results.

The shared input parameters to the experiments are:

Interpreter settings

Initial direction: 0 degrees (east)

Straight length (F): 10 units

Random angle (#): range [30; 150] in CC or CCW direction

4.3 Experimental Results

The experimental results are presented in sections, divided by progression
and included modules. The experiments do loosely follow the research ques-
tions in a chronological manner.

4.3.1 Experiments Part 1 - L-System

Early experiments showed that a simple deterministic L-system was decent
for generating very basic road networks. This could already be seen in related
work, such as [PL90], where plants already resemble road networks, but this
was the �rst milestone. The simplest L-system consists of only three rules,
with the actions branch/stretch/turn which are the main components needed
to make a road network.

D0L-system :

Axiom : X

Rule 1 : F ! F#X

Rule 2 : X ! F [Y ]Y

Rule 3 : Y ! #F
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After 5 full iterations:

F#X#F [Y ]Y#F#X[#F ]#F#F#X#F [Y ]Y [#F#X]##F#X

[#F#X#F [Y ]Y#F#X[#F ]#F ]###[#F ]#F#X#F [Y ]Y#F#X[#F ]#F

The main drawback of this rule set is its deteministic nature and that a
branching pattern will be repeated through the string, making intersections
appear at a given frequency. Note that the derivation is deterministic, but
the interpreted angle # is stochastic between the set value range. A drawback
is the redundant constants # that appear in series, which replace each other
in the interpretation and counts only to excess computation.

Figure 4.1: Figure shows a graph representing a road network. A simple
deterministic L-system is used, where intersections are found by searching in
the interpretation domain. Intersections are noted with green circles.
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From Figure 4.1 one can see the resulting interpreted network resembles
a map for a road network. Four-way intersections (or higher degree) appear
when lines cross in the interpretation domain.

By adding the turning action # as a parameter of the road straight mod-
ule F , the redundancy of the # constant is removed.

D0L-system 1 :

Axiom : X

Rule 1 : F ! FX

Rule 2 : Y ! F (#)

Rule 3 : X ! F [Y ]Y

Through 5 full iterations:

F (#)XF [Y ]Y F (#)X[F (#)]F (#)F (#)XF [Y ]Y [F (#)X]F (#) . . .

The above setup give the same interpretation results as the previous set-
up. Experiments with the deterministic rule set show a need for stochastic
behavior to get a more natural look on the road network. Note the triple
dots mark that the L-system word continues beyond.

SP0L-system 2 :

Axiom : F

Rule 1 : F ! F (#)F (#)

Rule 2 : F ! F (#)[F (#)]

After 5 full iterations:

F (#)[F (#)][F (#)F (#)][F (#)[F (#)][F (#)[F (#)]]] . . .

The system above use a set of rules which share a stochastic probability
of 0:5. The stochastic feature of the rule set make intersections appear of
the structure F [F ][F ] : : :. The drawback is that since the branch is rooted
to the predecessor F module, more branches than 2 might appear, giving
intersections of degree 4 and higher, which are rare in real road networks.

SP2L-system :
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Axiom : F

Rule 1 : F > ()! F ()F (#)

Rule 2 : F > F ! F ()[F (#)]

Rule 3 : F < [] > F ! 0:2[][F (#)]

After 5 full iterations:

F [F (#)]F (#)F (#)F (#)[F (#)]F (#)F (#)[F (#)F (#)][F (#)]F (#)[F (#)] . . .

To mend the high degree branching and to keep a stochastic nature, the
above changes was made to the rule set. The �rst rule applies only to end
stubs, that is, F modules at the end of a substring inside a branch, or the
F module at the very end of the entire string. The two �rst rules share a
probability of 0:5. The second rule only applies to a F module, followed by a
F module, in attempt to hinder the rule rewriting is own structure such as:
"F[]" to "F[][]". The third and last rule is a rule designed to extend 3-way
crosses into 4-way crosses. It also has an additional overriding probability
to prevent it from �ring too frequently. The uniqueness of implementing
the bracket as a module, allows it to have children (and let them be moved
entirely as a list), and double-sided context to both its endpoints which is a
strong bene�t.

The stochastic probabilities of this rule set can be used to create dif-
ferent road networks, concerning branching degrees, and road-segment-to-
intersection ratio.

SP2L-system :

Axiom : F

Rule 1 : F > ()! F ()F (#)

Rule 2 : F > F ! F ()[F (#)]

Rule 3 : F > F ! F ()X

Rule 4 : F < X > ()! [F (90)X][F (�90)X]F ()

After experimenting with the previous setups, it proved di�cult to make
squared block-patterns emerge in clusters, as with real dense urban cities. By
adding the rule F < X >00! [F (90)X][F (�90)X]F () and a trigger constant
X, the system is able to create urban block patterns.
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Figure 4.2: The network shown above has a city block sub-pattern generated
by adding a single special rule, distinct from previous networks. Intersections
are not marked by green circles in this �gure.

Figure 4.2 shows the pattern made in the network. This rule set allows for
city centers to emerge at di�erent locations in the network. This is achieved
by setting a small chance for the trigger symbol to appear, and then a high
chance of replacing it with the pattern rule. In this way the pattern repeats
itself outwards from the source. A drawback with this very rule is that it
circles in on itself with the same turning angle and segment length, making
redundant overwrites of itself in interpretation. These redundant segments
are removed under interpretation as a special case.

The interpreted road network as it is displayed here, has no set width or
scale on the road segments. This means that some spaces between connected
road segments (inner polygons) might be too small compared to the overall
set scale.
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4.3.2 Experiments Part 2 - GA + L-System

Initial experiments showed that stochastic L-systems are hard to measure
consistently, as the same set of rules can give quite diverse results. Using
seeded random probability in the L-system and interpretation proved to give
consistent results. 1 The following experiment was run with the following
L-system and GA setup:

SP0L-system :

Axiom : F

Rule 1 : F > ()! F ()F (#)

Rule 1 : F > F ! F ()[F (#)]

Rule 1 : F > F ! F ()X

Rule 1 : F < X > ()! [F (90)X][F (�90)X]F ()

GA :

Population size : 50

Generations : 100

Genome length : 4

Crossover rate : 50 %

Mutation rate : 25 %

Selection type : Rank

For this setup a full mutation range was used. Only one �tness function
was used, which measured the total length of the interpreted network.

Figure 4.3 shows the resulting �tness graph of the GA after doing a seeded
run. A high �tness individual is early found and held for many generations
until a better individual is found. The average �tness keeps steady through-
out the generations. This behavoir might be from the fact that crossovers
split the shared probability of the rules sharing a predecessor.

Seeded - Last generation :

Generation 100, Average �tness 106.80, Top �tness 940.00
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Figure 4.3: Fitness graph of a seeded run. The graph shows the result of
running a seeded setup. The Y axis is the total �tness score. The X axis is
the generation number. The red line is the average �tness of the generation.
The blue line is the top �tness of the generation.

Figure 4.4: Fitness graph of an unseeded run. The graph shows the result
of running an unseeded setup. The Y axis note the �tness value, and the X
axis note the generations. The blue line is the best �tness and the red line
is the average for the generation.
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Best individual: [21; 92; 85; 95]

From the seeded run, the best individual has the values [21; 92; 85; 95].
Note that the highest score is 940, while the average is 106.80 in this run.

The resulting graph of the unseeded run can be seen in Figure 4.4. The
di�erences is clear, as the unseeded top �tness varies greatly from generation
to generation.

Unseeded - Last generation :

Generation 100, Average �tness 173.00 Top �tness 880.00

Best individual: [45; 98; 97; 93]

Both versions mostly agrees on the �nal value set through multiple runs.
The unseeded version managed to hit a higher �tness than the seeded version
on several occations:

[71][98][48][92] = Fitness: 1010.0

[30][95][90][94] = Fitness: 980.0

[7][95][24][95] = Fitness: 970.0

Additionally, the average �tness is generally higher on the unseeded ver-
sion, which can stem from a weakness in the seed's number series in the
seeded version.

None of the parameter values get higher �tness by being 0, so it is proven
that all the rules are needed, but a tendency is that the 2nd and 3rd rule is
more important than the 1st rule, and therefore often get high-end values in
high �tness sets.

This initial experiment used only the �rst and simplest of �tness func-
tions, which favoured rule sets that produced the most road segments. The
following experiment apply two �tness functions, total length and average
lot size. The weights used were 1 for length and 10 for average lot size, in
attempt to favour creating lots. The result can be seen in Figure 4.7 and
Figure 4.8

Through many test runs with having all �tness functions activated, the
results are very spread for non-seeded runs. With seeded runs and evenly
weighted �tness functions, the GA seems to favour the last rule. This may
stem from the fact that once this rule �res at a frequency higher then the
�rst two it will dominate a large the portion of the combined �tness function.
This frequently results in road networks similar to that of Figure 4.7
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Figure 4.5: The resulting network by running a seeded setup.

Figure 4.6: The resulting network by running a unseeded setup.
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Figure 4.7: Network graph of a seeded run. The network is the result of
running a seeded setup, with two �tness functions.

Figure 4.8: Fitness graph of an unseeded run. The graph shows the result
of running a seeded setup, with two �tness functions. The Y axis note the
�tness value, and the X axis note the generations. The blue line is the best
�tness and the red line is the average for the generation.
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4.3.3 Experiments Part 3 - GA + Flow

The following experiments use a prede�ned L-system from the previous ex-
periments as an individual template for the GA individuals. The maximum

ow algorithm determines the individuals �tness. Experiments show that
in some networks, multiple optimal solutions may exists. In very large and
complex networks there might be down to one single better solution.

The following experiment uses a previous L-system setup:

SP2L-system :

Axiom : F

Rule 1 : F > ()! 0:6F ()F (#)

Rule 2 : F > F ! 0:5F ()[F (#)]

Rule 3 : F < [] > F ! 0:3[][F (#)]

This L-system generates the network seen in Figure 4.9. Seeding is used
to get a consistent network.

GA :

Population size : 20

Generations : 20

Genome length : 10

Crossover rate : 90 %

Mutation rate : 10 %

Elitism : True

The GA converged immidiately on the best solution, as this is a simple
network with only 10 intersections.

Best individual: [2][2][1][1][1][2][1][2][1][2] - Fitness = 29.00

The Figure 4.9 shows the result of the GA. Three sinks are used, but
only two sinks are needed for a optimal result, as a bottleneck is close to the
source.

A second run with the same GA, but with di�erent L-system:
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Figure 4.9: Figure shows a simple 
ow network result. The source is noted
by the pink circle, and the sinks are noted by the light blue circles.The red
path simulates the 
ow, with 
ow/capacity notations on the endpoints.
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SP2L-system :

Axiom : F

Rule 1 : F > ()! 1:0F ()F (#)

Rule 2 : F > F ! 0:6F ()[F (#)]

Rule 2 : > F ! 0:4F ()X

Rule 3 : F < X > ()! 0:7[F (90)X][F (�90)X]F ()

Figure 4.10: Figure shows a simple 
ow network result. The source is noted
by the pink circle, and the sinks are noted by the light blue circles.The red
path simulates the 
ow, with 
ow/capacity notations on the endpoints.

Best individual: [2][2][2][1][2][1][2][2][1][2][2][2][2][2][1][2][1][2][2] - Fitness
= 29.00
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Figure 4.11: Figure shows a simple 
ow network GA result. The Y axis is
the maximum 
ow, and the X axis is the generation.
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Chapter 5

Evaluation and Conclusion

This chapter evaluates the work, answers the research questions and presents
possible future work.

5.1 Evaluation

After a wide series of experiments and tuning, the experiments showed no
real breakthrough results. The �rst phase, the L-system alone, shows good
results when generating road networks, and yet there is much room for im-
provement. There is potential in L-systems and how local patterns in the
road network can be arise without external functions, as opposed to the L-
system in [PM01], that uses external functions such as successor correction.

The experiments run with the L-system and genetic algorithm combina-
tion showed it was di�cult to �nd single optimal solutions without seeding,
but the GA was often able to �nd a value range where it is inbetween more
likely to get decent results.

Lastly the tuning of intersections helped map main road artheries into the
network, which adds more a realism and surpasses [PM01]. It seems di�cult
to measure network 
ow inside the productions of L-systems, so the addition
of intersection tuning proved to be a decent addition.

Following are conclusions and answers on the research questions posed at
the beginning of this thesis:

Q : What are the minimal and required features of an L-system to create
valid road network models?

A : From the experiments it could be observed that the rule sets needed
to be stochastic, as to prevent unwanted patterns, but also include a
chance to start a chain of more or less deterministic patterns areas.

49
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Context sensitivity and parameters combined with a symbol module
interpretation proved to be a strong feature.

Q : Can an L-system be guided by a genetic algorithm in search of better
automation of road network models?

A : The research showed that it is possible, but theres is still much room
for improvement and adaptation.

Q : What �tness measures can guide the genetic algorithm?

A : The research showed that a few �tness functions worked alone, though
combining di�erent �tness functions was more di�cult and required
alot of weight tuning.

Q : Will a maximum 
ow-driven GA be able to tune 
ow transitions in the
interpreted road network?

A : Maximum 
ow driven GA proved to be able to tune intersections
through a network.

5.2 Discussion

Due to the near endless possibilities in tuning L-systems and tweaking pos-
sibilities of genetic algorithms, the experiments had to be kept simple. Even
with a simple L-system, good GA parameters were di�cult to derive. The
simple L-system might have been a key issue. Dividing an L-system into more
distinct rules and parameters, might help a GA to easier distinguish between
which rules are good or bad. An potential drawback with the L-systems used
in the experiments is that they share a normalised probability that is widely
a�eted by the GA mutation and crossover. Additionally, the implementation
of L-system functionality, its interpretation and the maximum 
ow support
was complex and time-consuming. This contributed to the project barely
touching the potential of these methods.

5.3 Future Work

With the discussion and limitations of the proposed system in mind, this
section presents possible future work. The implemented system alone has
already many extension possibilities and already implemented 
exibility.

Possible extensions and ideas are listed in the following:
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� The genetic algorithm and L-system combination can be explored fur-
ther by adding series of parameters to the F() modules, and corre-
sponding interpretation functionality. It would be interesting to see
how a genetic algorithm would respond to higher degrees of tuning
capabilities.

� A large expansion concerning the genetic algorithm, would be to see
how a GA would be able to fully generate the production rules of an
L-system from a pool of template rules.

� The last maximum 
ow phase may also be extended, by adding more
intersection types such as yield intersections, where one or more di-
rections have right of way, and the others must yield. The yielding
directions get a 
ow penalty, which will allow the GA to �nd a 
ow
path through the network similar to that of real motorways or right
of way transport roads. This may require an additional graph layer
where a set of an incoming lane, an outgoing lane and the inbetween
intersection is combined into an imaginary intersection directly con-
nected to the next intersection with holds a similar triplet. This is so
that tra�c from incoming ABC lanes, each only occupy 1/3 of the 
ow
going through the outgoing lane D.

� Lastly the presented application must be extended with a parser to
actually generate the 3D road network models from the object state in
the application.
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