
Plagiarism Detection
An Overview of Text Alignment Techniques

Erisa Perleka

Master of Science in Computer Science

Supervisor: Bjørn Gamback, IDI
Co-supervisor: Erwin Marsi, IDI

Department of Computer and Information Science

Submission date: July 2013

Norwegian University of Science and Technology

Abstract

Plagiarism detection is the task of identifying documents that are derived from an original

source document, without giving credit to this last one. This act is aided by the modern

technology, but techniques for detecting it are also ameliorated.

In this thesis an overview of plagiarism, some detection systems and the theoretical

foundations, upon which they reside are discussed.

Preface

This report is the result of the requirements of the course TDT4900- Masters degree in

Computer science -with a specialization in Intelligent Systems.

I want to thank my supervisor, professor Björn Gambäck, for his advices, input and feedback

during this semester, and nonetheless for his patience in my delays.

I want also to thank Håkon Drolsum Røkenes for all his helpful explanations, and for

restarting the database every time it crashed.

Erisa Perleka

Trondheim, July 25,2013

Abbreviations

NLP - Natural Language Processing

IR – Information Retrieval

POS – Part Of Speech

Contents

List of Figures v

List of Tables vii

1 Introduction and Overview 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 3
1.4 Report Structure . 4

2 Theory and Background 5
2.1 Plagiarism . 5

2.1.1 The Concept . 6
2.1.2 Kinds of Plagiarism . 6
2.1.3 Artificial plagiarism . 9

2.2 Formal Representations of Natural Language 10
2.2.1 Basic Text Processing . 11
2.2.2 Bag of Words . 11

2.2.2.1 Standard Vector Space Model 12
2.2.2.2 Latent Semantic Analysis 13

2.2.3 N-gram Models . 14
2.2.4 Graph-based Representation 14
2.2.5 Dependency Parsing . 14

2.3 Plagiarism Detection Methods . 15
2.3.1 The Longest-shared-passage Problem 16

2.3.1.1 Sequence Alignment 17
2.3.1.2 N-gram Measures 17
2.3.1.3 Lexical Structural Approaches 18
2.3.1.4 Edit Distance for Dependency Graphs 18
2.3.1.5 Semantic Relatedness Approaches 18
2.3.1.6 Representing meaning 18
2.3.1.7 Meaning of a sentence 19
2.3.1.8 Calculating Semantic Similarity 19
2.3.1.9 Resnik Similarity 19

2.4 Performance Evaluation -PAN Evaluation 20

iii

Contents iv

3 Related Work 23
3.1 Plagiarism Detection based on Graph Edit Distance 23

3.1.1 Performance . 25
3.1.2 Further work . 25

3.2 DKPro Similarity . 26
3.3 Other . 27

3.3.1 Semantic Textual Similarity 27
3.3.2 PAIR and PhiloLine . 27

4 Implementation 31
4.1 Contribution to the Graph Edit Distance System 31

4.1.1 Using DKPro . 31

5 Evaluation 33
5.1 How does AI research proceed . 33

5.1.1 Refine a topic to a task . 34
5.1.2 Design the Method . 34
5.1.3 Build a Program . 35
5.1.4 Design Experiments . 35
5.1.5 Analyze the Experiment’s Results 35

5.2 Evaluation . 36

6 Conclusion and Further Work 37
6.1 Conclusion . 37
6.2 Further Work . 37

Bibliography 37

List of Figures

2.1 Document similarity measured by the cosine of the vector angles 13
2.2 An example of dependencies within a sentence 15
2.3 Classification of computer-assisted plagiarism detection methods 15
2.4 The Longest-shared-passage Problem 17
2.5 Fragment of the WordNet taxonomy. Solid lines represent is-a links;

dashed lines indicate that some intervening nodes were omitted to save
space. 20

2.6 Generic retrieaval process to detect plagiarism 21

3.1 Process view of the ”Detailed Analysis” 25
3.2 DKPro Similarity allows to integrate any text similarity measure(right)

which conforms to standardized interfaces into a UIMA-based language
processing pipeline (left) by means of a dedicated Similarity Scorer
component (middle). 26

v

List of Tables

1.1 Sources of documents with background knowledge. 4
1.2 Keywords used in search. 4

vii

Chapter 1

Introduction and Overview

1.1 Background and Motivation

Plagiarism is an old phenomenon. It has been present since humans started to tell stories
and write them down in words. It can manifest itself in different disguises, making it
sometimes difficult to infer a clear judgement about the originality of some work. The
question of under which systematic examination a work can be precisely doomed as pla-
giarised or not, doesn’t have a definite answer. It is of course easy for a human reader
to identify cases when the passage is a verbatim copy of another. This passage can be
a whole document or even a sentence, a phrase,or a mere metaphor or other figures of
speech. The act of detecting the misdeed boils down to identifying the lexical similarity
between the texts. Detecting paraphrases of original works also falls under the category
of simple tasks; here the problem is slightly more advanced as the content words may be
exchanged with words of different lexical form but same meaning, broadly referred to
as synonyms. Here the reader has to derive the judgement by calculating with the mean-
ing of words. Or we could face the case when the plagiariser has stolen the structure of
a passage or sentence, something which is up to some point or completely covered by
the syntax of the sentence, so here a syntactic analysis could reveal the similarity. The
more complicated case of whether a text shows clear features of influence by another,
falls outside the topic of this thesis.

The development of text processing and distributing technologies has given new advan-
tages to both the plagiarisers and the techniques for detecting plagiarism(Jones, 2009).
The web provides a vast amount of information, offering to a possible plagiarist what
he now may need about a specific topic. The increasingly improved search engines do
provide this information in critical time and the digitalized text is easily copied over in a
matter of seconds. But on the other hand, these same strengths of the technology can as-
sist a human detector in a plagiarism-hunt. It is impossible for a human to skip through
million of possible source documents in reasonable, practical time, while information
retrieval systems can complete the task in short time. It is also difficult for a human to
remember details of texts he has already read, and find these same details reproduced in
a plagiarised text, while a plagiarism detection system is better suited to find the needle
in the haystack. The qualities still lacking in plagiarism systems are those of identifying

1

Chapter 1. Introduction and Overview 2

similar meanings in acclaimed different texts, or detecting an overall similar structure.

In this thesis we focus on that part of plagiarism detection that has to do with finding
similar passages between two given texts, thus skipping the step of retrieving candidate
source texts on the basis of a given suspicious document. In the text alignment subtask
we follow the approach of combining various similarity measures in order to produce a
score on the similarity between two texts.

1.2 Goals and Research Questions

Goal 1 Find existing solutions and methods for the plagiarism detection systems in the
NLP literature.
This goal is reached by researching the literature available, about NLP and more specif-
ically automated plagiarism detection systems.
Goal 2 Enhance the performance of the system described in (Røkenes, 2012) by

• Implementing an intermediate step of paragraph retrieval and improve the weights
of the edit-distance function.

• Improve the precision of paragraph detection by accounting for sentences that are
part of plagiarised paragraphs but give low score of similarity.

• The system shall still scale to run and be tested on the data of the PAN1 challenge
which is to be introduced later in this paper.

In order to achieve this goal we have to acquire an insight into the workings of the
system, both in the overall architecture and the in the low level of the implementation.
We have, moreover, to do a survey of the theoretical background upon which the system
is build.
Goal 3 Combine the analysis of the (Røkenes, 2012) with the features obtained by
another plagiarism detection system that accounts for semantic similarity between text
snippets.
This goals fulfilment, requires that we investigate the workings of this other system, and
do the implementation that allows for an integration of these two systems.

Research question 1 Given a set of retrieved source documents, is it possible to reduce
the search space and consequently the number of times the algorithm is run, by doing
a further paragraph retrieval, i.e. filter out those paragraphs, in both the suspicious and
source documents that seem to be most similar? In that case, how can this best be done?
Research question 2 How to improve the detection of whole paragraphs, when sen-
tences adjacent to an already detected sentence, get a lower similarity score, even though
part of the plagiarised section?
Research question 3 Can graph edit distance methods, in particular the algorithm used
in the (Røkenes, 2012) approach, get combined with methods that measure semantic
relatedness/similarity of texts?

1http:pan.webis.de

Chapter 1. Introduction and Overview 3

1.3 Research Method

In order to attempt an experimentation in the field we had first to review the state of the
art of automatic plagiarism detection systems. This did also ask for a further review, that
of background material, most of which was unknown to us. Most of the basic knowledge
about NLP was derived from the Martin and Jurafsky’s book on the topic (mar, 2011),
which was curriculum for the TDT4275 course. The slides of the TDT132course were
also reviewed, when we wanted to learn more about Computational Semantics. Since
this work relies primarily on a previous master thesis3 and the prototype system that
was developed in its context, much of the initial research was constrained by the themes
covered in it. These themes included: graph-based representation of natural language
sentences, graph-edit distance algorithms and assignment problem. Since this system
is built on the assumption that it will be trained and tested by the datasets offered by
plagiarism detection competition held in the PAN workshop at CLEF4, we also had to
review the techniques and concepts relevant to this workshop.
The papers produced by the previous PAN participants, have also been an important part
of the curriculum, as PAN claims to promote a state of the art situation of the detection
techniques.
When using the web, the main keywords that were used in searching were :plagiarism,
plagiarism detection and text alignment. The subcategories that fall under these fields
are listed in the Table 1.2.
Of course when doing literature research one has to pick only a portion of the articles
retrieved on a given topic. When deciding which articles would be considered relevant,
the criteria that we used for the selection were:

1. Does the article describe a solution to the problem topic we have? And is it on
the front line of research?

2. Does the article provide commanding background material that underlies the un-
derstanding of the field? In other words, is the material was good enough to be
used in the theoretical part of the thesis?

Some of the articles that were cited in a given relevant article were also exploited for
gaining further insight. Sometimes this was necessary, as the understanding of a work
that relies on another craves knowledge of the latter one. The relevance of an article was
mostly judged by reading the abstract or introduction and/or the conclusion. When this
was not enough, we had to flip through the whole thing. Most of the articles retrieved
where provided from the sources given in Table 1.1.

2http://www.idi.ntnu.no/emner/tdt13/
3Røkenes,Graph-based Natural Language Processing,2012
4http://www.clef2013.org/

Chapter 1. Introduction and Overview 4

Source Url
IEEE Xplore http://ieeexplore.ieee.org/Xplore/guesthome.jsp
Springer Link http://springerlink.com
CiteSeerX http://citeseerx.ist.psu.edu

TABLE 1.1: Sources of documents with background knowledge.

Plagiarism Natural Language Processing Plagiarism Checker
Plagiarism Dependency Grammar CaPD
Automated Plagiarism Detection Parsing

Dependency Parsing
Semantic Similarity
Language Models

TABLE 1.2: Keywords used in search.

1.4 Report Structure

In this section we presented among others, the method used to explore the field. In
the following chapter we shall go through the concepts and definitions that we consider
necessary to comprehend the rest of the thesis. After we have understood the basic
concepts and principles that are important to automatic plagiarism detection systems
and natural language processing, we will present the prototype we have implemented to
test the ideas described in the background material. In the end we present an evaluation
of the system and close with our conclusions and proposals to further work.

Chapter 2

Theory and Background

Plagiarism detection by an application is a topic which subsumes the even more funda-
mental matter of how to make computers cope with natural language in general, may the
task include language understanding, language generation or both (Chowdhury, 2003).
The issue of natural language processing has been addressed, as an important aspect
of artificial intelligence, since the early years of computer science, the most impor-
tant milestone being Turing’s 1950 paper ”Computing Machinery and Intelligence”
(A.M.Turing, 1950), where the Turing-test1 is sketched and proposed. Using natural
language (besides reasoning, having knowledge and being able to learn) is one of the
criteria to be fulfilled in the test. This aim is hitherto addressed by trying to formalize
natural language down to the point of making it processable by the application (Jan Ha-
jic, 2009). In this chapter we show, among other things, some of these formalization
techniques.

Our plagiarism detection goal can thus be transfigured into the goal of finding similari-
ties between these formalized structures of language. How we define and measure the
similarity is strictly dependent on the specific representation chosen. Various plagiarism
techniques ask for different detection strategies. Plagiarism is a product of the human
mind; it is though a highly nondeterministic event. In this paper, we confine our goal to
detecting the plagiarism on document level, which means, finding which passages of a
suspicious document correspond to and can be claimed equivalent to passages that are
to be found in some source(original) documents. This task creates two subtasks: the
first is finding the source document from which the suspicious document has stolen the
passage. The second is pointing exactly to the passage plagiarised. Again, these two
tasks can be broken down into other tasks, but in the bottom of both of them, lie three
problems: the first, also mentioned above, that of representing natural language in com-
putational terms.The second that of determining when two passages are enough similar
for the case to be an instance of plagiarism (and this is discussable even in human terms)
and the third, to develop techniques that measure these similarities.

1http://plato.stanford.edu/entries/turing-test/

5

Chapter 2. Theory and Background 6

2.1 Plagiarism

This section presents what in general is understood by plagiarism and discusses some
instances of this phenomenon that are of interest to this thesis.

2.1.1 The Concept

The term plagiarism appears for the first time as late as in the 1st century, when it was
coined by the latin poet Martial, in the 1.52 passage of his ”Epistemmes” Seo (2009).
It has since then been used to define the theft of not only language artifacts, but of any
work that beares authorship and originality. We shall however confine our study to the
detection of plagiarism in texts.
Plagiarism is the act of using someone else’s work without giving a proper recognition
of its original author. Although the concept and its connotation are familiar, it has given
rise to a variety of definitions, thus making vague, the parameters that would decide
if a work can be considered as plagiarised or not.This lack of clarity of the definition
also contributes to the difficulty of automating plagiarism detection. Sometimes it can
be unambiguously clear that a certain piece of text is a mere copy of another. But
plagiarists often use techniques that alienate the new, plagiarised text from the source.
Here the problem becomes more intriguing, but it still remains decidable to a human
reader, when faced with both the source and the suspicious text. Here is a definition that
lies most nearly to our understanding of the concept:

”The wrong in plagiarism lies in misrepresenting that a text originated
from the person claiming to be its author when that person knows very well
that it was derived from another source, knows that the reader is unlikely to
know this, and hopes to benefit from the reader’s ignorance.” (Samuelson,
1994)

The core phrase that serves our purposes is stating that a plagiarised text is ”derived
from another source”. The task of an automatic plagiarism detector, is primarily to find
out from which source the text is taken, but also argue about the nature of the specific
derivation used. Showing what kind of plagiarism the text has been a victim of, is more
persuasive than giving a plagiarised/not-plagiarised binary classification. Upon which
rules a plagiarism checker should make its examination, is one of the oldest and still
relevant research problems. So one of the goals for the automatic detection is to find
suitable, quantifiable features that can be used as parameters in the detection (Clough,
2003). In the following we show some instances of plagiarism, to make concrete the
tasks a detector has to accomplish.

2.1.2 Kinds of Plagiarism

To illustrate the concept and the kind of problems we are faced with, we present here
some examples of plagiarising from a text, taken from the website of Georgetown Uni-
versity. 2 The recycled text is typed in red, the reformulated phrases or sentences are in

2http://gervaseprograms.georgetown.edu/honor/system/53501.html

Chapter 2. Theory and Background 7

blue:

THE ORIGINAL PASSAGE

This book has been written against a background of both reckless optimism
and reckless despair. It holds that Progress and Doom are two sides of the
same medal; that both are articles of superstition, not of faith. It was written
out of the conviction that it should be possible to discover the hidden me-
chanics by which all traditional elements of our political and spiritual world
were dissolved into a conglomeration where everything seems to have lost
specific value, and has become unrecognizable for human comprehension,
unusable for human purpose. Hannah Arendt, The Origins of Totalitarian-
ism (New York: Harcourt Brace Jovanovich, Inc., 1973 ed.), p.vii, Preface
to the First Edition.

EXAMPLE I: Verbatim plagiarism

This book has been written against a background of both reckless optimism
and reckless despair.It holds that Progress and Doom are two sides of the
same medal; that both are articles of superstition,not of faith.Interestingly
enough, Arendt avoids much of the debates found in some of the less philo-
sophical literature about totalitarianism.

EXAMPLE II: The Paraphrase

Hannah Arendt’s book, The Origins of Totalitarianism, was written in the
light of both excessive hope and excessive pessimism. Her thesis is that
both Advancement and Ruin are merely different sides of the same coin.
Her book was produced out of a belief that one can understand the method
in which the more conventional aspects of politics and philosophy were
mixed together so that they lose their distinctiveness and become worthless
for human uses

EXAMPLE III: The Mosaic

The first edition of The Origins of Totalitarianism was written in 1950.
Soon after the Second World War,this was a time of both reckless optimism
and reckless despair. During this time, Dr. Arendt argues, the traditional
elements of the political and spiritual world were dissolved into a conglom-
eration where everything seems to have lost specific value. In particular, the
separation between the State and Society seems to have been destroyed. In
this book, she seeks to disclose the hidden mechanics by which this trans-
formation occurred.

Chapter 2. Theory and Background 8

EXAMPLE IV: The “Apt Phrase”

Following the Second World War, scholars from a variety of disciplines
began to explore the nature of “totalitarianism.” One of the most pressing
issues for these writers was understanding the “essence” of totalitarianism.
How, for example, is a totalitarian regime different from an authoritarian
regime? Although authors disagree on the precise answer to this question,
a common thread running throughout most of the classic works on totalitar-
ianism deals with the relationship between State and Society. In a totalitar-
ian state, the traditional boundaries between State and society are dissolved
into a conglomeration so that the two become indistinguishable.

To define the plagiarism methods, we follow (Clough, 2003) who distinguishes six ways
of doing plagiarism. The list below is taken from (B.Martin, 1994):

1. Word-for-word plagiarism: direct copying of phrases or passages from a published
text without quotation or acknowledgement. This is what we see in Example I and is
also the easiest to detect. The algorithm could simply identify the perfect one-to-one
match between the lexemes of the text.

2. Paraphrasing plagiarism: is the case when words or syntax are rewritten, but the
source text can still be recognised. This is illustrated in Example II. The task is more
complicated for an automated detector as the phrases are lexically different. Here we
list the transformations:

• ”reckless despair and reckless optimism” −→ ”excessive hope and excessive pes-
simism”.
Here we have both a change of lexicon and a switch of the word-order inside the
phrase. In this case, the algorithm would have to know how to find out that ”de-
spair” → ”pessimism” , ”optimism” → hope and ”reckless” → ”excessive” are
pairs of synonyms. In order to give a high score of phrase similarity the algorithm
must also ignore the order of content words.

• ”progress and doom are two sides of the same medal ” −→ ”both advancement
and ruin are the merely different sides of the same coin”
In addition to reformulation of the phrases, here we have the insertion of ”merely”
and ”both”. Besides equating between ”progress” and ”advancement”, ”doom”
and ”ruin” and, ”medal” and ”coin”, the algorithm should assign very little im-
portance to the insertion of ”both” and ”merely”. One could for example argue
that ”both” is in the second sentence a semantic equivalent of ”two” in the first
sentence, which is deleted. While ”merely”, as an adverb, has little to add to the
meaning of the sentence. So the algorithm should be able to judge ”merely” as
redundant.
While the last sentence of the Example II is completely reformulated, asking for
the detector to disclose the similarities by detecting the similarities between the
two sentence meanings. Here we encounter the problem of defining the meaning
of a sentence computationally, which we shall talk about at a later point.

Chapter 2. Theory and Background 9

3. Plagiarism of secondary sources: When original sources are referenced or quoted,
but obtained from a secondary source text without looking up the original. We will not
pay much attention to this case, as it involves a chain comparison between texts. E.g,
comparing text1 with text2 which is in turn compared to text3.

4. Plagiarism of the form of a source: The structure of an argument in a source is
copied. This can be the same case as when paraphrasing by keeping the sentence struc-
ture and exchanging content words with synonyms as in Example II. Or merely copying
the syntactical content of a sentence, without regard to word meaning.

5. Plagiarism of ideas: The reuse of an original thought from a source text without
dependence on the words or form of the source. Assuming that ideas have a meaning,
we could count this case as paraphrasing with different words. This can be illustrated
by the last sentence of Example II.

Another method, that is not listed in (Clough,2003; Martin,1994), is that of Back Trans-
lation. This constitutes in translating a text, verbatim, from the original to another
language and then retranslating it back to the original with the structure, words and
meaning somehow changed. (Jones, 2009) argues that among other factors, this form of
plagiarism is encouraged from the easiness of pursuing it, given the continuously ame-
liorating state of the online automatic translation applications. For example, by using
Google Translate3. In the case below, the application obfuscates an english sentence by
translating it to Italian and than back to English:

”They have lived here all their lives, they know the land”−→ ”Hanno vissuto qui tutta la
vita, conoscono il territorio ”−→ ”They have lived here all my life, know the territory”
In this thesis, we try to address the Verbatim and Paraphrasing cases of plagiarism
since, as we shall see below, they are considered by the PAN challenge which we use as
an evaluation reference.

2.1.3 Artificial plagiarism

In order to develop an intelligent plagiarism checker, one has to train it on a large
amount of data. Test data is also needed when one has to measure the performance
of the system. It is, however, quite difficult to get hold of big sets of real plagiarism
cases, as these cases are often held secret and publishing them would ask for a permis-
sion from both the plagiariser and the author of the original Potthast (2011). The PAN
(Plagiarism analysis, Author identification and Near-duplicate detection) evaluation lab
proposes, after Potthast (2011) a corpus of suspicious and source documents, where the
suspicious documents are created utilising the source documents by using three obfus-
cation strategies. Here splg denotes the plagiarised passage and ssrc denotes the source
passage. The below definitions are taken directly from Potthast (2011):

3http://translate.google.com

Chapter 2. Theory and Background 10

• Random Text Operations : splg is created from ssrc by shuffling, removing, insert-
ing, or replacing words or short phrases at random. Insertions and replacements
are taken from the document dplg where splg is to be inserted.

• Semantic Word Variation: splg is created from ssrc by replacing words with their
synonyms, antonyms, hyponyms, or hypernyms, chosen at random. A word is
kept if none are available.

• POS-preserving Word Shuffling: The sequence of parts of speech in ssrc is deter-
mined and splg is created by shuffling words at random while retaining the original
POS sequence.

The drawback of the artificial plagiarism, is that is does not allow us to talk about
the meaning of the sentence as a whole. It is also not reasonable to try capturing the
meaning of a word by analysing its neighbours, as there is no intentional connection
between them. We show here a fragment taken from a plagiarised document of the
PAN13 data set, which has been prone of random obfuscation:

”table alcohol” in the sake existence, and make up about 80is added
with distilled amounts of copious concentrated intoxicant make to addition
give.

2.2 Formal Representations of Natural Language

In order for a computer application to use the knowledge that relies in a natural lan-
guage utterance, it must have it represented in a way that is suitable for processing.
Representing linguistic knowledge is a subtopic of the the problem of knowledge rep-
resentation in computer science. As (Davis et al., 1993) argue, one of the properties of
knowledge representation is that of being a surrogate, which means, being an incom-
plete representation of a real world concept. This quality (or lack of a quality) is also
true for the problem of representing natural knowledge. What makes this problem even
more complicated, is the fact that natural language is prone of ambiguities which cross
it through all levels. These ambiguities are a source of confusion not only for a com-
puter application, but even for humans. The list below, taken from Allen (2003), states
some of the ambiguities.

• Lexical ambiguity: appears when a given morpheme can take on different part-
of-speech roles, depending on the context. For example, ”light” can be a noun,as
in ”the light is on” or an adjective, as in ”the package is light”.

• Structural or syntactic ambiguity: has to do with finding out in which phrase
group a word belongs to. For example, ” I saw a man with a telescope”, here
the telescope could ”be held” by the subject or by the object, and we could argue
what the sentence actually denotes.

• Semantic ambiguity: many words have more than one meaning, like for example
the verb ”go”, which has ten meanings listed in the dictionary.

Chapter 2. Theory and Background 11

• Pragmatic ambiguity: sometimes it is confusing what a phrase or sentence is
hinting to. For example, ”Can you lift that rock?” could be a yes/no question or a
request to lift the rock.

Another feature of language, is that of being redundant,which means that phrases or
whole passages have elements that they can exist without both semantically, syntacti-
cally and grammatically. Like in the Example II above where deleting ”merely” from
the sentence wouldn’t harm it by any way.

2.2.1 Basic Text Processing

Expressing linguistic knowledge in a way that it can be processable by formal means, is
a continuously developing trend as (Jan Hajic, 2009) argue. Below are listed the most
widespread techniques of text processing that are shared the majority of systems that do
some natural language processing. More explicitly, these are fundamental techniques in
IR (?).

• POS-tagging : Part-of-speech tagging is also known as word-category disam-
biguation, as it assigns a corresponding part-of- speech tag to every word in a
sentence. This is done based on the word’s definition and on the context where it
is declared. In compuational linguistic, POS-tag algorithms are divided into rule-
based and stochastic. The first peform the tagging based on a set or rules, similar
to the rule-based expert systems, while the second ones rely on probabilistic mod-
els.

• Lemmatisation: Is the process of determining the lemma of a word. Lemma
denotes the cannonical or dictionary form of a word. For example the past tense
”fed” has as lemma ”feed”.

• Parsing: This is a more complicated task as it requires both the pos-tag prepro-
cessing step and the lemmatisation of the text as a prerequisite for its own process-
ing of the sentence. Parsing means to do a grammatical analysis of the sentence
and this requires a definition of the language grammar. The three main categories
of approaches to parsing are those of :formal grammars(?), head-driven phrase
structure grammar(hea) and dependency parsing. A detailed representation of
dependency parsing is going to be carried later on.

2.2.2 Bag of Words

The bag-of-words model is a very plain representation used in both natural language
processing and in information retrieval(Wikipedia: Bag of Words). In this model, a text
(such as a sentence or a document) is represented as an unordered collection of words,
disregarding even the grammar of the sentence. The bag-of-words model is commonly
used in methods of document classification, where the occurrence of each word is used
as a feature for training a classifier. It is the simplest of the representations as of the
information of a sentence or document it only preserves the words that are contained in
it. For example, the sentence:

Chapter 2. Theory and Background 12

Example:

Some students study in the mornings.
Other students prefer the afternoon.

These two sentences can be first represented as a list of strings(words), to build the
dictionary of distinct terms.

"Some"
"students"
"study"
"in"
"the"
"mornings"
"Other"
"prefer"
"afteroon"

The vectors here stand for the number of times that each dictionary word appears in
the sentences. The first vector represents the first sentence, and the other the second
sentence.

[1, 1, 1, 1, 1, 1, 0, 0, 0] (2.1)

[0, 1, 0, 0, 1, 1, 1, 1, 1] (2.2)

Term Weighting
In the example above, the sentence vectors contain term frequencies. Even though
this approach may seem appropriate in the case of such short texts, it is not widely
used when dealing with long text documents that are part of a large corpus. One of
the most popular schemes in weighting term frequencies is tf*idf, the so called term
frequency- inverse document frequency scheme. This method reveals the saliency of a
word in a text compared with the use of this word in the whole collection of texts that
the document is part of. As the name denotes, one takes the number of occurrences of
a term in a document and roughly said, divides it by the number of times that this word
appears in the corpus. If the word has a high frequency relative to the document and
low relative to the corpus, than it is surely representative for the document. This scheme
can be used for example to filter out the so called stop-words, words of common usage
like ”the”, ”and” etc that don’t give much information about the semantic content of a
text. For the mathematical derivations and the formula see (Baeza-Yates, 2011)

Chapter 2. Theory and Background 13

2.2.2.1 Standard Vector Space Model

The Vector Space Model (VSM), first used in the SMART information retrieval system
(Wikipedia :Vector Space Model), is an algebraic model for representing text docu-
ments as vectors of terms. Both documents and queries are represented as vectors. The
notation below shows the document dj and the query qj:

dj = (w1,j, w2,j, . . . , wt,j) (2.3)

q = (w1,q, w2,q, . . . , wt,q) (2.4)

Here each dimension corresponds to a separate term whose value is different from zero
only when the term exists in the document. Here is again the term-weighting problem
encountered, which is on what basis should the value of an occurrence be set. The tf*idf
scheme is used also here. In fact this model is tightly coupled to that of Bag-of-words,
as it does treat the documents as such. In (Baeza-Yates, 2011) VSM is presented as the
classic model of the algebraic frameworks but also as a standard information retrieval
algorithm. Since the text is presented as a vector one can utilize the mathematical
properties of standard vector algebra, the most releant of them in these case, being to
calculate the similarity between two vectors which is done by calculating the cosine of
the angle between the vectors.
The figure below shows the graphical representation of the cosine similarity for two
documents in a corpus.

FIGURE 2.1: Document similarity measured by the cosine of the vector angles

2.2.2.2 Latent Semantic Analysis

Until now, the similarity measures that are presented dealed only with the lexical sim-
ilarities between texts, which is, how may terms they share. Latent Semantic Analysis

Chapter 2. Theory and Background 14

(LSA)is a method for disclosing the meaning of words in a context, by applying some
statistical computations on a text corpus (lsa). The base idea of this method is, that
accounting for all the contexts in which a word occurrs (and consequently for those
where it doesn’t occurr) one can trace some information about what semantic similar-
ity between two words (or sets of words) by this context-information. As a practical
method for assessment of word meaning, LSA can produce measures of word-word,
word-passage and passage-passage relations.

2.2.3 N-gram Models

N-gram models are probabilistic language models. By means of a probability distribu-
tion, they assign a probability to a given sequence of words:P (xi|xi−(n−1), . . . , xi−1).
For practical reasons, the independence assumptions are made such that a word depend
only on the last n-1 words. It answers the question: what is the probability that word w1,
is followed by w2 which is followed by anoter one and so over. In NLP they are widely
used in statistical natural language processing, like could be the case of a POS-tagger,
when this model could say what part-of-speech follows after another. So the n-gram
models reduce the problem of learning the language model from the data. An n-gram of
one word is called a unigram. When n equals two it is a bigram, when three, we call it a
trigram. These are also the most common form of n-grams. However when discussing
the issue of plagiarism detection, the n-gram models can be used to find overlapping
sequences of words that exist in different text.

2.2.4 Graph-based Representation

One of the ideas behind graph-based representation of natural language is to transfer
the notion of dependency between syntactical elements in sentences to the notion of
directed edges in graphs. In this way, an edge pointing from a node to another would
denote that the first node is dependent on the second. Graph-edit distance algorithms
are used also outside graph theory. The Levenshtein edit distance algorithm is one of
the oldest and most widespread ones. It is used as a similarity metric when calculating
the distance between strings. It is defined as the least amount of operations needed to
transform one string to the other. These operations can be deleting, inserting or editing
(which is deleting and inserting). The edit distance on graphs employed by (Røkenes,
2012), employs somehow the same ideas.

2.2.5 Dependency Parsing

Dependency parsing stems from the notion of dependency grammars, which is a class
of grammar formalisms. Here the syntactic structure of a sentence is described purely
in terms of words and binary semantic or syntactic relations between these words. The
theoretical framework of dependency grammars assumes that an essential part of the
syntactical information of the sentences resides in the binary relationships between the
lexical parts of the sentences, these relationships being called dependencies. To illus-
trate the idea, we give here the dependency graph of the sentence
1. I shot an elephant in my pajamas

Chapter 2. Theory and Background 15

FIGURE 2.2: An example of dependencies within a sentence.

The edges are labelled with the dependency relations, the arrow pointing from the head
to the dependant. What we can learn from dependency graphs is the syntactical structure
of the sentence. As (Røkenes, 2012) concludes, these graphs are suitable for computing
syntactic similarities between two sentences as the problem of measuring the similarity
(or dissimilarity) between them can be transformed to that of finding the last cost for
an assignment of changes, thus to the assignment problem. But we come nearer to this
in he section on Plagiarism Detection Methods. Another convenience that follows from
dependency parsing, according to (Covington, 2001) is that dependency links are close
to semantic relationships needed for the next step of interpretation. This could somehow
be true because

2.3 Plagiarism Detection Methods

The advantage of automatic detection is that of being able to determine the authenticity
of a given text by comparing it with a large amount of other texts in a reasonable time
span, something which is not feasible for a human detector. A plagiarism checker can
be classified as a specialized IR system, which is built to perform the task of detecting
plagiarism (Wikipedia:Plagiarism Detection). There are two major approaches to de-
termining the originality of a document. The first is the internal detection. When one
can judge it from detecting a change of style and vocabulary within a document, thus
discovering inconsistencies which can be interpreted as signs of plagiarism. The other
approach is that of comparing a given text, spoken of as the suspicious text with another
one, which is regarded as the source text where the first one is possibly plagiarised
from. This is called the external plagiarism detection. This latter form for detection
uses many techniques from the area of information retrieval, as it comprises the steps
of finding out relevant original documents and thereafter performing on them a detailed
comparison analysis which aims to detect the concrete instance of plagiarism. The fig-
ure below shows an overview of the detection methods. In this thesis, we are concerned
with the external,monolingual, local similarity assessment and somehow with the term
occurrence analysis as it is employed in some systems that are described in Chapter 3.
It is inherent that plagiarism detection systems do some natural language processing,
since even IR is considered as a subfield of NLP. Ideally, a system should manage to
have a thorough linguistic cognition, but given the the ambiguity and the ever-changing
vocabulary of natural language this is yet not feasible. The most severe challenges
posed to automatic detectors come from the changes made to the original text. (Mi-
randa Chong, 2010) list some strategies of rewriting an original text:

Chapter 2. Theory and Background 16

FIGURE 2.3: Classification of computer-assisted plagiarism detection methods.

• Lexical changes.
With lexical changes is understood the substitution of content words with respec-
tive synonyms or related concepts.

• Structural changes.
These changes may include a transformation from active to passive voice. Chang-
ing the word order without affecting the meaning of the sentence, like changing
the order of the tokens that constitute an enumeration. Another technique is that
of splitting long sentences or merging short ones.

• Textual Entailment.
The authors employ this term to mean paraphrasing as discussed above in the list
from (Clough, 2003)

In general the changes, or the similarities, could be grouped in two sets: semantic sim-
ilarities, when the texts say quite the same thing, and structural similarities, when the
texts are t
These challenges lay the foundations for the requirements that a detector should satisfy,
namely: it should capture lexical changes, structural variations and detect paraphrases
that are derived from some other text. One question that arises in this context is, can a
detector employ strategies for all these tasks at once? Or can it only accomplish one task
at a time. We shall later present the system of Kong Leilei (2012) which employs both
semantic and structural similarities to detect plagiarised passages. Moreover, there are
systems which employ different semantic features in order to assess the semantic sim-
ilarity of two texts, like (Erwin Marsi, 2013) and (Eneko Agirre, 2012). The notion of
similarity is central to the detection task. There are several comparison methodologies
that can be employed to calculate similarities. The list below gives some of them:

• N-gram similarity measure

• Language Model probability measure

• Longest Common Subsequence

Chapter 2. Theory and Background 17

2.3.1 The Longest-shared-passage Problem

This problem is formulated like this: given a document that contains plagiarised text
and another one from which the plagiarised passage is derived, how to detect which
passage is plagiarised from which passage. The figure below is used to illustrate the
case:

FIGURE 2.4: The Longest-shared-passage Problem

Since the scope of plagiarism can vary from that of a phrase to a whole text, it makes
sense to start calculating similarities from a phrase or sentence level, and then merge
these discovered sentences into a paragraph, if they are consecutive, thus discovering
entire plagiarised passages in a given text. How this goal can be achieved, depends
on the formal representation of language that we choose, and the respective algorithms
that we can apply to that representation. This problem of detecting whole passages
may these be a perfect copy of each other or a blurred one, is referred to as the longest
common subsequence problem, which is discussed below.

2.3.1.1 Sequence Alignment

Sequence alignment is also cited as the longest common substring problem. This defini-
tion is somehow borrowed from the field of bioinformatics because the techniques used
to solve the problem stem from there where it is used in the Genome project, in order to
identify regions of repeated genetic sequences (Wikipedia: Sequene Alignment).(gus)
But it is also used in plagiarism detection for both text documents and program code, as
(lyo) argue.
(Olsen, 2009) lists a number of advantages to using sequence alignment algorithms as a
generalised technique to identify small regions of similarity, ignoring large expansions
of difference:

• Respects text order of documents.

• Does not require pre-identified blocks for comparison

• Can align similar passages directly, not as a region or block

• Not confused by extraneous similarities, like document topic.

• Spans variations in similar passages reflecting insertions and deletions.

Chapter 2. Theory and Background 18

• Core functions are language independent.

2.3.1.2 N-gram Measures

There are several approaches to employing the traits of a n-gram representation, but
here is discussed only the approach taken by (Alberto Barron-Cedeno, 2009).

2.3.1.3 Lexical Structural Approaches

With this name are labelled the approches that consider structural similarities between
texts, while also checking for the occurrence of common words between them. Here
only the graph-edit-distance approach is presented

2.3.1.4 Edit Distance for Dependency Graphs

Syntactic and structural similarity of words. How similar are two words with respect
to their syntactic function. Words that have similar syntactic roles, e.g. all personal
pronouns, all verbs etc. Quantitative measure of the exact syntactic similarity between
two words.
The idea here is that similar texts may preserve syntactic similarity while exchanging
only content words. Structural similarity between texts can be computed, for example,
by comparing sets for stopword n-grams(Stamatatos, 2011).
Assignment matrix→ Assignment problem.

2.3.1.5 Semantic Relatedness Approaches

Semantic similarity or semantic relatedness is a concept whereby a set of documents
or terms within term lists are assigned a metric based on the likeness of their meaning
or semantic content (Wikipedia Semantic Relatedness) Concretely, this can be achieved
for instance by defining a topological similarity, by using ontologies to define a dis-
tance between words (a naive metric for terms arranged as nodes in a directed acyclic
graph, like a hierarchy, would be the minimal distance in separating edges between the
two term nodes), or using means such as a vector space model to correlate words and
textual contexts from a suitable text corpus. The concept of semantic similarity is more
specific than semantic relatedness. However, much of the literature uses these terms
interchangeably, along with terms like semantic distance.
In essence, semantic similarity, semantic distance, and semantic relatedness all mean,
”How much does term A have to do with term B?” The answer to this question is
usually a number between -1 and 1, or between 0 and 1, where 1 signifies extremely
high similarity/relatedness, and 0 signifies little-to-none.
Semantic relatedness determines how word senses are related to each other. These rela-
tions can be the: synonymy, antonymy, hyponymy, hypernymy or meronymy. The most
computationally developed of these is synonymy, which for computational purposes is
made equivalent to the less accurate metric of word similarity or semantic distance ()
(Martin og Jurafsky, 2011). Semantic similarity is a concept that tries to answer the
question: are these two phrases saying the same thing? Thus, it asks for an appropriate
representation of the meaning of a word.

Chapter 2. Theory and Background 19

2.3.1.6 Representing meaning

The field of computational semantics is concerned with the question of representing
meaning in computationally friendly representations. One central concept is that of
word meaning. But of course it alone is not sufficient for practical purposes. So the
notion of greater structures of text are also of research concern.
Computational approaches to deriving word meaning.
1.Dictionary approaches. When one could use the definition of the dictionary 2.Distri-
butional
Word-sense disambiguation is the process of defining the meaning of a word in a par-
ticular context.

2.3.1.7 Meaning of a sentence

An application should take into account all of these relations, in order to determine
the semantic relation between to sentences. It can be useful for example, when two
sentences have basically the same structure but are talking about two very different
things. One classical approach has been Frege’s principle of compositionality : Does the
meaning of a sentence flow from using the rules of combining the words that constitute
it?

2.3.1.8 Calculating Semantic Similarity

There are several approaches to calculating semantic relatedness. Semantic relation-
ships between words
Topological Similarity

• Node Based

• Edge Based

• Pairwise

• Groupwise

Statistical Similarity

• Latent Semantic Analysis

• Explicit Semantic Analysis

Chapter 2. Theory and Background 20

2.3.1.9 Resnik Similarity

(Resnik, 1999)
Is a measure of semantic similarity in a IS-A taxonomy based on the notion of shared
information content. It is based on the idea of evaluating semantic relatedness using
network representations. A natural way to evaluate semantic similarity in a taxonomy is
to evaluate the distance between the nodes corresponding to the items being compared-
the shorter the path from one node to another, the more similar they are. Given multiple
paths, one takes the length of the shortest one (Lee et al., 1993). Resnik argues about the
problems with edge counting method:Edge counting method is sensitive to varying link
distances. In addition,by combining a taxonomic structure with empirical probability
estimates, it provides a way of adapting a static knowledge structure to multiple con-
texts. Let C be the set of concepts in an is-a taxonomy, permitting multiple inheritance.
Intuitively, one key to the similarity of two concepts is the extent to which they share
information in common, indicated in an is-a taxonomy. Below is shown a piece taken
from the WordNet semantic resource.

FIGURE 2.5: Fragment of the WordNet taxonomy. Solid lines represent is-a links;
dashed lines indicate that some intervening nodes were omitted to save space.

The Resnik similarity is defined by this equation:

sim(c1, c2) = max
c∈S(c1,c2)

[− log p(c)] (2.5)

Where S(c1, c2) is the set of concepts that subsume both c1 and c2. Notice that al-
though similarity is computed by considering all upper bounds for the two concepts, the
information measure has the effect of identifying minimal upper bounds, since no class
is less informative than its superordinates. For example, in Figure 1, coin, cash, etc. are
all members of S(nickel, dime), but the concept that is structurally the minimal upper
bound, coin, will also be the most informative. This can make a difference in cases of
multiple inheritance; In practice one often needs to measure word similarity, rather than
concept similarity. Using s(w) to represent the set of concepts in the taxonomy that are
senses of word w, define:

Chapter 2. Theory and Background 21

2.4 Performance Evaluation -PAN Evaluation

PAN4 is an evaluation lab for plagiarism detection systems that is held every year as part
of the CLEF5 conference. The PAN challenge offers a corpus of documents for both
training and testing the approach. The corpus consists of a set of suspicious documents,
hereafter referred as Dsusp, a set of source documents, Dsrc, and a sets of XML document-
pairs listing the suspicious and source documents that are related to each other, with
pointers to the plagiarised passages. As stated in (Martin Potthast, 2012) the majority
of the systems that were delivered to be tested on the task, implement three basic steps
which are shown in the 2.6, taken from (Benno Stein, 2007). These steps are seen as
standard for all the detectors.

FIGURE 2.6: Generic retrieaval process to detect plagiarism

These steps consist in:

1. Candidate retrieval, which is the process of selecting a set of documents from the
source documents corpus that most likely correspond to the source documents
from which the suspicious documents have been derived.

2. The detailed comparison phase where each retrieved source document is com-
pared to the plagiarised document, and passages of high similarity are extracted.

3. In the last phase the results go through a kind of post-processing where they are
cleaned and filtered.

Before, the detectors were evaluated as a whole in their performance, but since many
contestants were dropping the candidate retrieval step, given the relatively small amount
of source documents available, the evaluation was changed to a stepwise one, where the
candidate retrieval and the detailed analysis are judged separately. Here the focus shall
be only on the measures used for the detailed analysis stage.
First, it is important to give a summary description of the text corpus which is used as

4http://www.pan.webis.de/
5Conference and Labs of the Evaluation Forum

Chapter 2. Theory and Background 22

input in training and in a possible cross-validation. This corpus contains documents
grouped into two categories: suspicious-documents and source documents, where the
suspicious documents are derived by obfuscating the source ones by the methods de-
scribed in Section 2.1.3. It does also contain sets of XML documents, similar to those
that a detection system conforming to the PAN criteria should produce as a result,
grouped by the kind of plagiarism that they point to.
The plagiarism disclosed can be one of these cases:

• No-plagiarism. These documents point exactly to the passages that have nothing
to do with each other.

• No-obfuscation. These are the passages that are copied verbatim.

• Random obfuscation. These passages are obfuscated by using artificial plagiarism
and are of the kind of the text snippet shown in 2.1.3.

• Translation obfuscation. These are passages that are obfuscated by the method of
back translation.

• Summary obfuscation. These are the ones that are paraphrased.

In 2012(Martin Potthast, 2012), the organizers of PAN changed their submission re-
quirements from that of delivering submission results, to delivering the detection soft-
ware itself. This was justified by the gains in the overall and continuous evaluation, as
by getting hold of the system one could check the runtime, could give as input real pla-
giarism cases and it could be exposed to evaluation of later data sets,as for example that
of PAN13. This last thing allows for a more fair comparison between the the systems
that were originally tested on different data sets. Since the participants were allowed to
deliver systems based on whatever programming language, the The TIRA (tir) platform
was used for dealing with the complexity of the organizational issues. TIRA was also
used in the training phase, as it returned the performance value for the submitted results
after the system was run on the corpus described above.
Granularity measure:

gran(S,R) =
1

Sr

∑
s∈Sr

| Rs | (2.6)

The plagdet measure combines the aforementioned scores, together with the F-measure,
denoted below, in order to provide a unique ordering of the participant’s results.

plagdet(S,R) =
F 1

log2(1 + gran(S,R))
(2.7)

F-measure:

F 1 =
2

1
r
+ 1

p

(2.8)

The pros and cons about the plagdet score and a more thorough evaluation of this mea-
sure are to be found in (Martin Potthast, 2012).

Chapter 3

Related Work

The previous chapter presented some of the theoretical foundations of natural language
processing that are to be found as initial or intermediate steps in all NLP applications.
Moreover, it listed some algorithms that addressed the questions of structural -Graph
Edit distance - or semantic - Resnik (1995), Lin (1998), LSA - similarity. But we
have not yet discussed systems that employ specific strategies to complete the whole
task of plagiarism detection on document level. Now we shall present some of the
applied approaches to plagiarism detection which are related to our concern. We shall
describe two full fledged detection systems and an overview of the solutions provided
by the PAN12 participants. In the end we describe a system originally designed to
handle tasks from digital humanities. These tasks are not directing the problem of
plagiarism specifically but since they aim to find a multitude of relationships between
texts, a solution of detecting plagiarism comes as a technical consequence.

3.1 Plagiarism Detection based on Graph Edit Distance

In Chapter 2. we mentioned the graph-based representation of natural language sen-
tences. Here we discuss the plagiarism detection system described in (Røkenes, 2012)
whose detection algorithm is based on this representation. The system implements func-
tionality for reading files and processing them by NLP techniques; does some document
retrieval on the basis of the post-processing format, a detailed analysis and outputs re-
sults of the analysis.
The data set used is that provided by PAN (experiments run on PAN10, PAN11), as
described in Chapter 2. As it is based on the graph representation and dependency pars-
ing whose scope is the sentence, the comparison algorithm should return a similarity
value that denotes the similarity distance between two sentences. So, the first step in
processing, is partitioning the documents into sentences. These sentences are then sent
further to a processing pipeline that consists of these steps:

1. POS-tagging

2. Lemmatising

3. Dependency Parsing

23

Chapter 3. Related Work 24

The model used in POS-tagging is the english-left3words-distim.tagger, one of the mod-
els of the Stanford Part-Of-Speech Tagger1.While the dependency graphs are created by
the MaltParser2, which is data-driven. The parsed sentences are then put in the database;
the database used is MongoDB3. After these steps, each sentence in the database exists
as a list of lemmatised tokens. To each token there is assigned a POS-tag, and an id,
integer value, that denotes which token in the sentence it is dependent on. In the case
when it is not dependent on any, this id is set to 0.
So when talking about ”a sentence” hereafter, we intend this structure, shown below.
This sentence is taken from the PAN13 set:

"id": ObjectId("51ec1e1ee4b029dcab101afc"),
"id": "suspicious-document00006.txt-135",
"filename" : "suspicious-document00006.txt",
"sentenceNumber": 135, "offset": 14156,
"length": 112,
"tokens": ["id": "1", "word": "In", "lemma" : "in", "pos": "IN",
"rel": "8", "deprel" : "prep" , "id": "2", "word": "addition",
"lemma": "addition",
"pos": "NN", "rel": "1", "deprel" : "pobj"]

The main idea of the detection strategy goes like this: Let GED decide the similarity
between each suspicious sentence and each source sentence and use this information
to report for each suspicious document, which passages where plagiarised from which
passages of one or more source documents.
As is also argued in (Martin Potthast, 2012) doing an exhaustive all-to-all comparison,
does increase the recall of the result but the strategy is far from optimal given a set of
source documents as large as the web for instance. In order to reduce the amount of
sentences that each sentence of the suspicious documents is going to get compared to,
the GED system employs a candidate retrieval phase, during which an amount of source
sentences are discarded as not relevant for the analysis carried by the algorithm. After
this retrieval step, the database elements have this form:

"source_file: source_documentxxxxx.txt, suspicious_sentence: xxx,
candret_score: x.x, source_sentence: xxx,
suscpicious_file :"suscpicious_documentxxxxx"

This is the input handed over to the ”Detailed Analysis” phase whose main processing
steps are pictured below:
As the internal workings of the program are described in (Røkenes, 2012) ,we shall
not delve into many details here. The important thing to mention is that the distance
calculation between these graph-sentences, is reduced to an assignment problem for a
cost matrix, as described in Chapter 2. The cost matrix itself is a sentence-sentence
matrix, where the cells represent the cost of substituting, deleting or inserting a node in
a sentence.

1http://nlp.standford.edu/software/tagger.html
2http://maltparser.org
3http://www.mongodb.org/

Chapter 3. Related Work 25

FIGURE 3.1: Process view of the ”Detailed Analysis”

3.1.1 Performance

As (Røkenes, 2012) describes in the resutls analysis, the system was tested on the
PAN10 and PAN11 datasets. The plagdet score described in Chapter 2 is used to
measure the performance. The system performes well enough to have been ranged 4th

among the PAN11 participants, when only precision and recall scores are considered.

3.1.2 Further work

The system exhibits two main problems:

1. It does often not detect the sentences that lie near an already judged-as-plagiarised
sentence as part of the plagiarised passage, even though they in reality are. (Røkenes,
2012) argues that the approach taken by the ”Passage Merging” package, by glu-
ing together all sentences that are within a given distance, called mergedist, in
order to reduce the granularity which is hold as an important trait by the PAN
challenge, does not solve this problem. These sentences could in the first place,
have been left out of the ”Detailed Analysis” phase by the ”Candidate Retrieval”
phase. (Røkenes, 2012) thus proposes, to lower the grade of similarity required
to classify sentences as plagiarised, for the sentences in the original suspicious
douments (not the truncated ones) that lie after a detected sentence. The problem
could be however solved by increasing the recall of the ”Candidate Retrieval”
case. We also discuss another solution in Chapter 4.

2. Does not account for the semantics of the word tokens. The example below shows
how the algorithm gives the same similarity match for the verb-pairs: feed vs
nourish and keep vs abandon. This problem could be solved by integrating a
semantic similarity measurement, as we again discuss in Chapter 4.

Mary fed the cat. Mary nourished the cat.

GED for the two graphs: 0.25.
Normalised: 0.0625
Edit-path:(feed→ nourish) = 0.25

Mary kept the cat. Mary abandoned the cat

GED for the two graphs: 0.25.
Normalised: 0.0625
Edit-path:(keep→ abandon) = 0.25

Chapter 3. Related Work 26

3.2 DKPro Similarity

DKPro Similarity4 is an open source framework that contains a variety of text similarity
measures (Daniel Bär, 2012). DKPro Similarity comprises a wide variety of measures,
from ones based on simple n-grams and common subsequences to high-dimensional
vector comparisons and structural, stylistic, and phonetic measures.Daniel Bär (2012)
It was developed to work as a complement to the DKPro Core system which is in turn
based on the Apache UIMA framework (David Ferrucci, 2004), but it is designed to be
used also in a standalone mode. This thesis would be concerned with the latter, but in or-
der to understand how DKPro Similarity can be part of another system, it is reasonable
to present how DKPro Similarity and UIMA (Unstructured Information Management
Architecture)5 are coupled, as described in Daniel Bär (2012). The authors call this
the ”UIMA-coupled mode” as DKPro adheres to the UIMA-based language processing
pipeline. DKPro Similarity does not support basic language processing techniques,i.e
lemmatisation, POS-tagging etc, but it allows for using the components as part of exist-
ing experimental setups.
The picture below shows an architectural overview of this integration.

FIGURE 3.2: DKPro Similarity allows to integrate any text similarity measure(right)
which conforms to standardized interfaces into a UIMA-based language processing

pipeline (left) by means of a dedicated Similarity Scorer component (middle).

As showed in the figure, in this mode the text similarity computations of DKPro can
be integrated directly in the UIMA pipeline. This does it easier to combine the DKPro
functionalities with that of UIMA. As the authors argue, one could for example run a
classification algorithm to some already generated UIMA similarity. The text similarity
measures on the right can be easily exchanged since the system invokes them through a
standardised interface, like in the code snippet below:

{ TextSimilarityMeasure m = new ResnikComparator();
double similarity = m.getSimilarity(text1,text2);

4http://code.google.com/p/dkpro-similarity-asl/
5http://en.wikipedia.org/wiki/UIMA

Chapter 3. Related Work 27

The UIMA pipeline conforms to a standardized pipeline for text processing, as is also
mentioned in the section above and in Chapter 2. That of reading a corpus, preprocess-
ing (tokenization, POS-tagging,lemmatization, stopword filtering) and then the similar-
ity calculation step.

3.3 Other

3.3.1 Semantic Textual Similarity

Semantic Textual Similarity(Eneko Agirre, 2012) (STS) measures the degree of seman-
tic equivalence between two sentences. STS is related to both Textual Entailment (TE)
and Paraphrase (PARA). STS differs from TE in as much as it assumes symmetric
graded equivalence between the pair of textual snippets. In the case of TE the equiva-
lence is directional, e.g. a car is a vehicle, but a vehicle is not necessarily a car. Addi-
tionally STS differs from both TE and PARA in that, rather than being a binary yes/no
decision STS incorporates the notion of graded semantic similarity. STS provides a uni-
fied framework that allows for an extrinsic evaluation of multiple semantic components
that otherwise have tended to be evaluated independently and without broad character-
ization of their impact on NLP applications. Such components include: word sense
disambiguation and induction, lexical substitution, semantic role labeling, multiword
expression detection and handling, anaphora and coreference resolution, time and date
resolution, named-entity handling, underspecification, hedging, semantic scoping and
discourse analysis.
example, for the measures that rely on path lengths (lch, wup, path) the tracing shows
all the paths found between the concepts. Tracing for the information content measures
(res, lin, jcn) includes both the paths between concepts as well as the least common
subsumer. Tracing for the hso measure shows the actual paths found through Word-
Net,while the tracing for lesk shows the gloss overlaps in WordNet found for the two
concepts and their nearby relatives. The vector tracing shows the word vectors that
are used to create the gloss vector of a concept. We have incorporated WordNet Sim-
ilarity into a generalized approach to word sense disambiguation that is based on se-
mantic relatedness (Patwardhan, Banerjee, Pedersen 2003). This is implemented in the
SenseRelate package. The premise of this algorithm is that the sense of a word can be
determined by

3.3.2 PAIR and PhiloLine

PAIR6 is a project of digital humanities with the goal of discovering similar passages in
different texts. Here plagiarism is understood as only one of the many ways in which
texts can be in relationship with each other. As the authors claim, the links that can
exist between different texts are complicated and multifaceted, starting from pure stolen
quotations to the more vague allusions and traces of influence. The aim of PAIR is to
discover as many of these relations as possible, subsuming thus the highlighting of
similar passages which can be cases of plagiarism. The implementation is based on a

6http://code.google.com/p/text-pair/

Chapter 3. Related Work 28

sequence alignment algorithm which is designed to identify similar passages in large
corpora. There are two distinct streams of PAIR:

• PhiloLine: designed to perform all-against-all comparisons between documents
loaded ina a PhiloLogic database. An entire corpus is indexed and compared
against itself or another database to find text reuse. PhiloLine (PhiloLogic Align-
ment), a batch mode many-to-many aligner that compares all documents or doc-
ument parts to all other documents or parts in the same database or between two
collections. PhiloLine generates output either as static alignment reports or as
structured data for subsequent search and analysis and is lightly dependent on
PhiloLogic, our primary text analysis system.

• Text::PAIR : without specific bindings to PhiloLogic, supporting one-against-
many comparisons. A corpus is indexed and incoming texts are compared against
the entire corpus for text reuse.

Main goal of the project was sourcing l’encyclopedie : ”It is our expectation that sys-
tematic identification of the sources of the Encyclopédie will shed considerable light on
the relationship of Enlightenment thought to French intellectual traditions, and also to
currents of thought from classical antiquity to contemporary Western thinking.”

PAIR works by treating documents as ordered sets of n-grams or ”shingles” formed by
each overlapping sequence of n words in the document. Preprocessing, such as the re-
moval of function words and short words and the reduction of orthographic variants is
performed during shingle generation. This has the effect of folding numerous shingles
into one underlying form for matching purposes, thus eliminating minor textual vari-
ations, which makes matching more flexible or ”fuzzy.” It also somewhat reduces the
overall number of unique shingles, which aids speed of search.

Here are some important conclusions from the project:

• Adjusting the match parameters does that the matching sequences can have a
degree a variation. This variability is required to identify possible borrowings
which have significant errors, insertions, deletions, or other modifications.

• Detecting the full borrowing: Relaxing the maximum shingle gap to 8 or more
allows for the identification of the full borrowing.

• how to solve the problem between detecting strict matches and matches that span
between gaps : The available parameter adjustments for PhiloLine, and to a lesser
degree for PAIR, are designed to balance the overall number of matches detected
against the number of matches that a user would consider similar enough and
salient enough to be of interest. If the matching is set too loosely, the user
will have to wade through a large collection of short matches or common, stock
phrases. If the settings are too strict, however, interesting matches that are short
or heavily reworked may be missed. Speed and memory-use constraints also play
a role in tuning the parameters for an optimal run. For PhiloLine, there are two
sets of parameters to be adjusted. The first is for n-gram or shingle generation
and the second for the matching process itself.

Chapter 3. Related Work 29

• While, as this experiment suggests, our approach is generally quite productive,
success in sequence alignment is dependent upon using appropriate settings for
the size of the passages to be aligned.

• One may set parameters to permit matches on small passages, but this increases
the likelihood of aligning unrelated passages or generating too many trivial align-
ments.

• PAIR is a system which builds a database of shingles to be aligned against an
unknown document, submitted by users

• Using VSM to detect similar docs. In a previous work (Allen, et al.), they ex-
amined the relationship of the Encyclopédie to a single contemporary reference
work, the Jesuit Dictionnaire universel françois et latin (colloquially known as the
Dictionnaire de Trévoux). It was widely assumed during the 18th century that the
philosophes made extensive use of the Dictionnaire de Trévoux in the compila-
tion of their work. Indeed, Jesuit critics of the Encyclopédie complained loudly
of the extent to which entries were copied from earlier works, although among
the possible sources of plagiarism the Trévoux dictionary was never explicitly
mentioned. In order to attempt to detect possible borrowings, we used a general
document similarity measure—the Vector Space Model (VSM)—to identify arti-
cles in the Encyclopédie which may have been borrowed, in whole or in part, from
the Trévoux. The work used the text mining and machine learning extensions to
PhiloLogic called PhiloMine

Chapter 4

Implementation

4.1 Contribution to the Graph Edit Distance System

The original idea of the contribution in form of implementing code, is that stated in
Chapter 1. That formulation will not be changed since it can serve as a basis for further
work, after the work done in this thesis.
The PAN organizers, had changed this years ”Text Alignment” task such that an im-
plementation of the Candidate Retrieval phase could be omitted, given that one could
integrate in the system, the pairs.txt file handed out with the rest of the training corpus.
This text file holds a list of suspicious-document - source-document pairs which tells
which suspicious documents shall be compared with which source documents. The little
script provided as a zip file accomplishes this task by reading pairs line for line, splitting
each line in two variables sus and src and gathering all src that belong to a susp in one
vector called sources such that for every unique susp there is a coresponding vector of
source documents. When the program is run with readpairs.bash then it traverses all the
5 steps for each document, before it proceeds with the next.
By this approach, at least we are sure that the suspicious sentences are only going to get
compared with sentences that are real candidates. The task of detecting the passages
exactly is then handed over to the Detailed analysis step, which is unchanged.

4.1.1 Using DKPro

As mentioned in Chapter 3., DKPro in its standalone mode, offers a repository of text
similarity algorithms, that can be integrated in an existing project.
If DKPro should be integrated with the system of (Røkenes, 2012), the LSR (Lexical
Semantic Resources).The reason for choosing the Lexical Semantic Resource package
is that of wanting to compare the semantic contents of the sentences. The module offer-
ing the LSA (Latent Semantic Analysis) would maybe work as well but there are two
reasons for not choosing it: it would require much more recoding of the base system,
and it is better suited to analyse the semantic content of whole documents, while PAN,
as discussed in Chapter 2, is using artificially obfuscated documents, that in fact have
no meaning.

31

Chapter 4. Implementation 32

There are several packages inside the LSR package: aggregate, gloss andpath. The pre-
ferred package is that of path which contains the Resnik similarity algorithm (ResnikCom-
parator.java) and the Lin similarity algorithm (LinComparator.java) among others.

Chapter 5

Evaluation

Every scientific work is justified by the results of its evaluation. The nature of this eval-
uation depends on the project itself and different disciplines impose different evaluation
methods. Computer science is mostly concerned with delivering technological products
that are usable in pragmatic contexts. Therefore it is natural to think of the evaluation
of an AI project, in terms of the performance of the product that it has created. This
performance could be judged by the professionals in a qualitative analysis, or we could
measure it by how much it is widespread among the targeted users. This chapter em-
ploys the evaluation method proposed by the ”How Evaluation Guides AI Research”
(Paul R. Cohen, 1988) paper. The stages proposed for an evaluation process are first
presented, then a short overview of how an evaluation plan for this work could have
been set up, follows.

5.1 How does AI research proceed

The Paul R. Cohen (1988) presents a framework for doing AI research.The authors ad-
vocate from the start the importance of evaluation not only as a performance measure
but also as an answer to a series of questions: why we are doing the research, why
the tasks we choose are illustrative, why our views are avant-guard. Moreover they
emphasize the necessity of showing how these planned tasks are implemented by the
resulting system, how this system works and whether there are possibilities of improve-
ment or the system has reached its best performance. A thorough answering of these
questions would illuminate the audience of prospective researchers not only about the
workings of the system, but more importantly how research of a particular topic should
proceed. Besides this, evaluation is seen as a basis for accumulation of knowledge as
documenting not only the answers that the project delivers but also the new questions
that are produced on the way, it gives rise to new paths or other research topics. On the
other hand, if a work is not evaluated, it would be difficult to replicate its results. The
authors base their proposed framework of evaluation, on the five stages of a research
process: refining the topic to a task; refine the view into a specific method; implement
the method; design experiments to test the implementation; run the experiments. This
is of course a bit idealized, they argue, but it can still work as a reference for standard
AI research. In the following the evaluation of each of these steps is described.

33

Chapter 5. Evaluation 34

5.1.1 Refine a topic to a task

The first stage presented is to refine the topic at hand to a task and a view. The ask
itself is what we want the computer to do while the view is an imprecise idea of how
we expect accomplish the task. The questions listed below are supposed to guide this
process. These questions and the ones belonging to the other steps, are formulated
by the authors. We have merely tried to understand their importance to the research
activity.

1. Is the task significant and why?

2. Is your research likely to meaningfully contribute to the problem? Is the task
tractable?

3. Is the task representative of a class of tasks?

4. Have any interesting aspects been abstracted away or simplified, if this prob-
lem has been previously defined?

5. What are the subgoals of the research? What key research tasks will be or
have been addressed and solved as part of the project?

6. How do you know when you have successfully demonstrated a solution to
the task? Is the task one in which a solution can be demonstrated?

Asking for the significance of a task is asking if the completion of the work is at all
meaningful. If the specific problem addressed has been defined before, this would make
the task not worthy of accomplishment. After the task has been formulated one has to
make sure that it is tractable and how the solution could be classified as successful or
not. It should also be clear what aspects have been left out or made simpler.

5.1.2 Design the Method

The questions of the second phase ask for a researcher to get to know the field and the
latest results concerning the task at hand. In the case of producing a system for the PAN
challenge, one has for example to review the approaches taken by the participants of the
previous year. It would be rare if a given task in AI wouldn’t rely on other methods, so it
is important to explicitly denote which methods are relying on. The assumptions made
do also need a clarification as the falsity of one of them would be disastrous during
the development. One should also count with not getting excellent results, but its also
important to distinguish poor results from results that mirror a total failure.

1. How is the method an improvement over the existing technologies?

2. Does a recognized metric exist for evaluating the performance of your
method?

3. Does it rely on other methods?

Chapter 5. Evaluation 35

4. What are the underlying assumptions?

5. What is the scope of the method?

6. When it cannot provide a good solution, does it do nothing or does it provide
a bad solution?

7. How well is the method understood?

8. What is the relationship between the problem and the method?

5.1.3 Build a Program

1. How demonstrative is the program?

2. Is it specially tuned for a particular example?

3. How well does the program implement the method?

4. Is the program’s performance predictable?

5.1.4 Design Experiments

This phase could be totally omitted if we were going to evaluate by the PAN measures,
as the experiments are alredy set up.

1. How many examples can be demonstrated?

2. Should the program’s performance be compared to a standard such as another
program, or experts and novices, or its own tuned performance?

3. What are the criteria for good performance? Who defines the criteria?

4. Does the program purport to be general?

5. Is a series of related programs being evaluated?

5.1.5 Analyze the Experiment’s Results

This stage is what most people regard as evaluation, thats why the previous stages and
the questions they come with are often left out or not even considered as part of the
evaluation. In addition to presenting the performance by the measures of evaluation,
like for example using the plagdet value, one could oversee other important factors like
the resources used to achieve those results.

Chapter 5. Evaluation 36

1. How did the program performance compare to its selected standard?

2. Is the program’s performance different from predictions of how the method
should perform?

3. How efficient is the program in terms of space and knowledge requirements?

4. Did you learn what you wanted from the program and experiments?

5. Is it easy for the intended users to understand?

6. Can you define the program’s performance limitations?

7. Do you understand why the program words or doesn’t work?

5.2 Evaluation

As the implementation that this thesis provides is almost inexistent, there is not much to
evaluate in terms of products or performance. The script talked about in Chapter 4 does
actually integrate the pairs.txt file that would make up for the deficiencies stemming
from the Candidate Retrieval phase. It’s running time though its quite long, and it
doesn’t account for other exceptions originating from the system, that can show up
during the running.
In terms of doing research in the field of AI, this work has been cause to two conclu-
sions:
1. A hands-on approach is much more clarifying than reading theory whose answers
one still doesn’t have a question to. Even though no results were produced, trying to
understand the coding of the Graph-edit-distance-based system and the approaches to
change or contribute to it, were a basis for structuring the theoretical research. I guess
that this research would have been much more thorough if coupled to an implementation
problem at hand, as was the original plan.
2. When however, starting the work by exploring the theoretical foundations, it was
found out that a top down approach was favourable. Which means, that reading about
plagiarism detection systems and getting an understanding of their working in a high,
use-case level created the necessity, and nonetheless the curiosity for the theoretical
foundations that had given rise to these systems. The other problem with only reading
theory without a specific task to be accomplished in mind, is that it never ends. It is
actually one of the cases when more is more, because one paper asks to review another,
and that maybe would lead one astray from a particular and somewhat narrower path.

Chapter 6

Conclusion and Further Work

6.1 Conclusion

The main goal of this thesis, was to explore ways of detecting plagiarised passages,
by finding corresponding original passages from which they have drawn their form,
content or both. Our first subgoal was to improve the performance of the GED system
by attacking its two main shortcomings:

1. Making it recognize word replacement, i.e. detecting synonyms

2. Provide a smarter method for detecting plagiarism in sentences that lie near an
already detected sentence

Neither of these goals were fully accomplished so they remain for a future work.

6.2 Further Work

37

Bibliography

Michael Jones. Back-translation: The latest form of plagiarism. University of Wollon-
gong, 2009.

Håkon Drolsum Røkenes. Graph-based natural language processing:graph edit distance
applied to the task of detecting plagiarism. 2012.

SPEECH and LANGUAGE PROCESSING An Introduction to Natural Language Pro-
cessing, Computational Linguistics, and Speech Recognition. Pearson, 2011.

Gobinda G. Chowdhury. Natural language processing. University of Strathclyde, Glas-
gow G1 1XH, UK, 2003.

A.M.Turing. Computing machinery and intelligence. Mind , 59, 433-460
http://www.loebner.net/Prizef/TuringArticle.html, 1950.

Alexandr Rosen Jan Hajic, Eva Hjicova. Formal representation of language structures.
Charles University, Prague, Czech Republic, 2009.

Mira Seo. Plagiarism and poetic identity in martial.
http://muse.jhu.edu/journals/ajp/summary/v130/130.4.seo.html, 2009.

Paul Clough. Old and new challenges in automatic plagiarism detection. University of
Sheffield, 2003.

B.Martin. Plagiarism:a misplaced emphasis. Journal of Information Ethics, Vol.3(2),
36-47, 1994.

Martin Potthast. Technologies for reusing text from the web. Faculty of the Media,
Bauhaus-Universität, Weimar, Germany, 2011.

James F. Allen. Natural language processing. 2003.

Ribeiro-Neto Baeza-Yates. Modern information retrieval. 2011.

Ruslan Mitkov Miranda Chong, Lucia Specia. Using natural language process-
ing for automatic plagiarism detection. 4th International Plagiarism Confer-
ence;Northumbria University, Newcastle upon Tyne, UK., 2010.

39

Bibliography 40

Wang Shuai Du Cuixia-Wang Suhong Han Yong Kong Leilei, Qi Haolian. Approaches
for candidate document retrieval and detailed comparison of plagiarism detection.
Notebook for PAN at CLEF, 2012.

Lars Bungum Gleb Sizov-Björn Gambäck Andre Lynum Erwin Marsi, Hans Moen.
Ntnu-core:combining strong features for semantic similarity. Norwegian University
of Science and Technology, Department of Computer and Information Science, 2013.

Mona Diab Aitor Gonzalez-Agirre Eneko Agirre, Daniel Cer. A pilot on semantic
textual similarity. First Joint Conference on Lexical and Computational Linguistics,
2012.

Mark Olsen. Sequence alignment and the discovery of intertextual relations. ARTFL
project, 2009.

Paolo Rosso Alberto Barron-Cedeno. On automatic plagiarism detection based on n-
grams comparison. Natural Language Engineering Lab, 2009.

Philip Resnik. Semantic similarity in a taxonomy: An information-based measure and
its application to problems of ambiguity in natural language”, volume 11, pages 95-
130. 1999.

Matthias Hagen Jan Grassegger-Johannes Kiesel Maximilian Michel Arnd Oberländer
Martin Tippmann Alberto Barron-Cedeno Parth Gupta Paolo Rosso Benno Stein
Martin Potthast, Tim Gollub. Overview of the 4th international competition on pla-
giarism detection. CLEF Evaluation Labs and Workshop, 2012.

Martin Potthast Benno Stein, Sven Meyer zu Eißen. Strategies for retrieving plagiarized
documents. 30th International ACM Conference on Research and Development in
Information Retrieval (SIGIR 07), 2007.

Iryna Gurevych Daniel Bär, Torsten Zesch. Dkpro similarity: An open source frame-
work for text similarity. 2012.

Adam Lally David Ferrucci. Uima:an architectural approach to unstructured in-
formation processing in the corporate research environment. Natural Language
Engineering,10(3-4):327-248, 2004.

Adele E. Howe Paul R. Cohen. How evaluation guides ai research. AI Magazine Volume
9 Number 4 AAAI, 1988.

	Abstract
	Preface
	Abbreviations
	main_3
	List of Figures
	List of Tables
	1 Introduction and Overview
	1.1 Background and Motivation
	1.2 Goals and Research Questions
	1.3 Research Method
	1.4 Report Structure

	2 Theory and Background
	2.1 Plagiarism
	2.1.1 The Concept
	2.1.2 Kinds of Plagiarism
	2.1.3 Artificial plagiarism

	2.2 Formal Representations of Natural Language
	2.2.1 Basic Text Processing
	2.2.2 Bag of Words
	2.2.2.1 Standard Vector Space Model
	2.2.2.2 Latent Semantic Analysis

	2.2.3 N-gram Models
	2.2.4 Graph-based Representation
	2.2.5 Dependency Parsing

	2.3 Plagiarism Detection Methods
	2.3.1 The Longest-shared-passage Problem
	2.3.1.1 Sequence Alignment
	2.3.1.2 N-gram Measures
	2.3.1.3 Lexical Structural Approaches
	2.3.1.4 Edit Distance for Dependency Graphs
	2.3.1.5 Semantic Relatedness Approaches
	2.3.1.6 Representing meaning
	2.3.1.7 Meaning of a sentence
	2.3.1.8 Calculating Semantic Similarity
	2.3.1.9 Resnik Similarity

	2.4 Performance Evaluation -PAN Evaluation

	3 Related Work
	3.1 Plagiarism Detection based on Graph Edit Distance
	3.1.1 Performance
	3.1.2 Further work

	3.2 DKPro Similarity
	3.3 Other
	3.3.1 Semantic Textual Similarity
	3.3.2 PAIR and PhiloLine

	4 Implementation
	4.1 Contribution to the Graph Edit Distance System
	4.1.1 Using DKPro

	5 Evaluation
	5.1 How does AI research proceed
	5.1.1 Refine a topic to a task
	5.1.2 Design the Method
	5.1.3 Build a Program
	5.1.4 Design Experiments
	5.1.5 Analyze the Experiment's Results

	5.2 Evaluation

	6 Conclusion and Further Work
	6.1 Conclusion
	6.2 Further Work

	Bibliography

