
Use of Clustering to Assist Recognition in
Computer Vision

Ole Kristian Braut Grashei

Master of Science in Computer Science

Supervisor: Richard E. Blake, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description

Many important problems in computer visions are in NP time. Initial processing
using polynomial time algorithms can help reduce the search space for the main
NP problem. Clustering is a polynomial algorithm, recognition by graph matching
is an NP problem. The thesis will investigate the use of clustering to assist recog-
nition of objects.

Supervisor: Richard E. Blake

i

ii

Abstract

In computer vision many problems are of non-deterministic polynomial time com-
plexity. One of these problems is graph matching. Suboptimal solutions have been
proposed to efficiently do graph matching. This thesis investigates the use of unsu-
pervised learning to cluster structured graph data in polynomial time. Clustering
was done on attributed graph nodes and attributed graph node-arc-node triplets,
and meaningful results were demonstrated. Self-organizing maps and the minimum
message length program Snob were used. These clustering results may help a sub-
optimal graph matcher arrive at an acceptable solution at an acceptable time. The
thesis proposes some methods to do so, but implementation is future work.

iii

iv

Sammendrag

Mange problemer i datasyn er av ikke-deterministisk polynomisk kompleksitet. Et
av disse problemene er graf matching. Suboptimale metoder har blitt foresl̊att til å
gjennomføre graf-matching. Denne oppgaven undersøker bruken av ikke-veiledende
læring til å klassifisere strukturert graf-data i polynomisk tid. Klassifisering av
noder og av node-kant-node-grupperinger ble gjennomført, og meningsfulle resul-
tater ble demonstrert. Selv-organiserende kart og minimums beskjedlengde pro-
grammet Snob ble brukt. Disse klassifiseringsresultatene kan hjelpe en suboptimal
graf-matcher til å finne en akseptabel løsning p̊a en akseptabel tid. Oppgaven
foresl̊ar noen metoder for å gjøre s̊a, men implementasjon er fremtidig arbeid.

v

vi

Preface

This project was defined in consultation with my supervisor, professor Richard E.
Blake at the department of Computer and Information Science at the Norwegian
University of Science and Technology. I would like to thank him for his time used
to guide and help me during this project. This project was carried out during the
2013 spring semester.

I would also like to thank my family for support and encouragement during my
years in education.

Ole Kristian Braut Grashei
June 11, 2013

vii

viii

Contents

Problem Description i

Abstract iii

Sammendrag v

Preface vii

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 3
2.1 Complexity Classes . 3
2.2 Graphs . 3

2.2.1 Graph Matching . 4
2.3 Computer Vision System for Object Recognition 4

2.3.1 The Truck Dataset . 4
2.3.2 Image Segmentation and Graph Construction 5
2.3.3 Sorted Table Graph Matcher 7

2.4 Clustering . 7
2.4.1 Snob - Minimum Message Length Mixture Modeling 8
2.4.2 The Self Organizing Map . 9

2.5 Previous Work . 10

3 Methods and Implementation 11
3.1 Clustering With Snob . 11
3.2 Clustering with Self Organizing Maps 11
3.3 A Success Measure via Step Distance 12

4 Experiments and Results 15
4.1 Clustering Nodes . 15

4.1.1 Nodes from Two trucks . 15
4.2 Clustering Node-Arc-Node Triplets 16

5 Discussion and Conclusion 21
5.1 Individual Nodes . 21
5.2 Two Trucks . 21

5.2.1 Dissimilar Trucks . 21
5.2.2 Similar Trucks . 22

5.3 Node-Arc-Node Triplets . 22

ix

5.4 Application to Graph Matching . 23
5.5 Conclusion and Future Work . 23

References 25

x

List of Figures

1 Labeled Truck Graph . 3
2 Attributed Truck Graph . 4
3 Activities for model directed computer vision. 5
4 Toy truck from two angles. 5
5 Segmented version of toy truck. 6
6 Simple SOM Training Run. 9

xi

xii

List of Tables

1 Truck Structural Code . 6
2 Fragment of Attributed Relational Graph Code 7
3 Sorted Table for Graph Matching . 8
4 Matching example . 13
5 Snob all Nodes Clustering . 15
6 SOM all Nodes Clustering . 15
7 Random Nodes Clustering . 16
8 SOM Two Dissimilar Trucks Clustering 17
9 SOM Two Similar Trucks Clustering 18
10 Snob Triplet Clustering . 18
11 SOM Triplet Clustering . 19
12 Random Triplet Clustering . 19

xiii

xiv

1 Introduction

In many natural problems graphs can be used to model the knowledge. Protein
structure[1], communication networks such as the Internet, social networks, lin-
guistic structure, electronic circuits[2] and many more problems are modeled using
graphs. Graphs provide an intuitive way of modeling knowledge and the relation-
ship between entities that is close to real world representation. Unfortunately for
many graph problems there are no fast solutions known. One of these problems is
graph matching.

Graph matching is useful in many of the earlier mentioned areas e.g., predicting
protein behavior[3] and in computer vision an unknown object can be matched
with objects from a database. Graph matching can generally be said to be of non-
deterministic polynomial complexity, although certain instances of the problem
can be solved in polynomial time[4]. This means the problem of graph matching
belongs to a class of problems believed to be computably infeasible. Symbolic
vision systems based on graphs have for this reason met some resistance.

We know the human brain is excellent at object recognition and therefore sub-
symbolic methods are very interesting in this domain. We observe that the brain is
able to generalize over huge amount of data and recognize patterns, but its ability to
do exact calculations are less impressive. Some approximations in a vision systems
may therefore be acceptable and systems have been made that use approximation
techniques together with graph representation of the objects[5, 6].

In this thesis we will use clustering algorithms that are known to be of polyno-
mial complexity to assist a graph matching vision system. We hope that clustering
will be able to effectively reduce the input to graph matching algorithms and there-
fore effectively reduce run-time, and making the graph matching approach seem
more interesting.

We have selected two clustering techniques and applied them to a large dataset
of graph data constructed from a series of laboratory images of a toy truck. The
results were analyzed and we observe meaningful results by the measurement de-
fined.

1

2

2 Background

In this section we introduce some necessary concepts before we move on to imple-
mentation and experimentation. A short introduction to graphs is given, where only
the basics that will be needed for our reasoning are presented. Also an overview of
the dataset we will use and the computer vision system we want to improve upon
is given. An overview of the concepts of clustering and classification is given and
then finally we investigate if any similar work has been done.

2.1 Complexity Classes

In computational complexity theory, the complexity class P is solvable in deter-
ministic polynomial time. The complexity class NP is solvable in non-deterministic
polynomial time. By the definition of the Turing machines P is a subset of NP.
Some NP problems exists where there are no known P solutions, these are known
as NP-complete. Some problems are known to be at least as hard as the hardest
problems in NP, these are known as NP-hard.

One of the open questions of computer science today is whether P equals NP or
not. If P do equal NP a wide variety of problems will have a much faster solution
than we know of today.

For now we have no fast ways to solve problems that are NP-complete or NP-
hard.

2.2 Graphs

A graph G = (V,E) consists of edges and vertices. V is the set of vertices, some-
times also called nodes or leafs. E is the set of edges between the vertices, sometimes
also called arcs or links. |V | is the graph order (number of vertices), and |E| is the
size of the graph (number of edges). Edges may be directed or undirected.

Body

R.Rear
Wheel

R.Front
Wheel

Door

Figure 1: A simple vertex-labeled graph of a truck

Vertices and edges may contain information, if they have a simple label they
are known as labeled. See fig. 1 for a vertex-labeled graph. The vertices and

3

edges may also contain more information as attributes, they are then known as
attributed. Fig. 2 shows a vertex-attributed graph.

Body
Cr:red

Door
Cr:red

R.Rear
Wheel
Cr:black

R.Front
Wheel
Cr:black

Sz:254 Sz:268

Sz:3512 Sz:764

Figure 2: A vertex-attributed graph of a truck with size (Sz) and color (Cr)

2.2.1 Graph Matching

Matching two graphs G1 = (V1, E1) and G2 = (V2, E2), with |V1| = |V2| can be
defined as finding a one-to-one mapping f : V1 → V2 such that (u, v) ∈ V1 if
and only if (f(u), f(v)) ∈ V2. This is known as a graph isomorphism. If we have
|V1| 6= |V2| the matching will be a sub-graph isomorphism.

In a computer vision system with attributed graphs we cannot expect to have a
model that is isomorphic to the data observed (perfect match). The segmentation
process and feature extraction are inevitably subject to noise and inaccuracies. We
are therefore concerned with inexact sub-graph matching, meaning that we will
have graphs where no isomorphism exists and graphs that might be of different or-
der. Graph isomorphism has yet not been classified within a complexity class, while
inexact sub-graph matching is of NP-complete complexity [7]. For a discussion of
graph matching problems and complexity see [4, 8].s Various methods have been
researched for handling the NP-complete matching problem efficiently, [9] reviews
graph matching in pattern recognition.

2.3 Computer Vision System for Object Recognition

For object recognition a computer vision system will do a matching of an unknown
object to some known object in a database. In a structural computer vision system
graphs are used for knowledge representation, and graph matching is used to classify
the unknown object. See fig. 3 for an overview of such a system.

2.3.1 The Truck Dataset

In this thesis we will use a dataset that is generated from a series of photos of a toy
truck (see fig. 4). The image series was created by adjusting the camera height and
rotating the truck. We have images from 27 different camera height settings. For

4

Figure 3: Activities for model directed computer vision. Diagram reproduced from
[10].

(a) Truck Image 1004 (b) Truck Image 19006

Figure 4: The toy truck used as a base for our dataset from two views.

each of the 27 height settings, the truck was rotated at 19 intervals from 0 to 180
degrees. This yields in total 513 images of the truck. Each image and associated
data are labeled with the two angles used to capture the image. The two angles
are represented by numbers 1-27 and 01-19 the labels are built by joining them as
a string with a 0 separating them, e.g. ’19006’.This labeling is useful for evaluating
clustering as we will see in section 3.

2.3.2 Image Segmentation and Graph Construction

Via image processing techniques the photos of the truck have been segmented,
features extracted, and relational graphs constructed. See [11] for more information
on the feature extraction. Fig. 5 shows the truck in fig. 4b after segmentation and
node labeling. The color values in the segmented image are the mean color values
for the area found by the feature extractor. Table 1 shows machine code generated

5

Figure 5: The toy truck segmented and labeled, coloring done by feature extractor.

for each of the segments shown in fig. 5.

Node Label Machine Readable Code
A [A[@id=c19006;ext:sqr:aa(2155):px(16049,111794,9096):

mm(15570,43,2003,827):cg(51,69):cr(65,98,152)]]

C [C[@id=c19006;ext:sqr:aa(208):px(5377,4639,167):
mm(11747,54,2051,278):cg(83,54):cr(114,43,39)]]

D [D[@id=c19006;ext:sqr:aa(462):px(20388,8955,253):
mm(16087,85,783,62):cg(35,44):cr(156,163,166)]]

E [E[@id=c19006;ext:sqr:aa(122):px(21479,4424,13):
mm(11121,91,8,39):cg(67,44):cr(110,42,34)]]

F [F[@id=c19006;ext:tri:aa(386):px(14109,20081,1463):
mm(13046,55,37738,2479):cg(78,37):cr(169,134,27)]]

G [G[@id=c19006;ext:sqr:aa(199):px(22603,587,111):
mm(20638,43,331,30):cg(66,24):cr(166,173,176)]]

Table 1: Machine readable code representation of nodes with structural features.

The attributes in the code are:

1. External/internal contour flag, ext or int.

2. Shape classification, sqr, cir or tri.

3. Area, aa.

4. Three plane equation coefficients, px.

5. Four scale and rotation invariant moments, mm.

6. Centroid, cg.

6

7. Mean color values, cr.

Table 2 shows a node-arc-node triplet that is part of the relational graph. The
graphs in our dataset are fully connected, meaning a relational triplet exists for
all node pairs in both directions. The relation arc is attributed with a geometrical
relation between the nodes. 16 different directions are used, North, North by North
East, North East, North East by East and so on. The arc can also be attributed
with an inside or outside flag if one of the contours severely intrude on the other.

Our dataset in this thesis are the nodes and graphs in the form shown in table
1 and table 2 for each of the 513 truck images.

Graph Component Machine Readable Code
Leading Node [A[@id=c19006;ext:sqr:aa(2155):px(16049,111794,9096):

mm(15570,43,2003,827):cg(51,69):cr(65,98,152)]]

Relation (arc) [[5][@rep= 1]]

Trailing Node [C[@id=c19006;ext:sqr:aa(208):px(5377,4639,167):
mm(11747,54,2051,278):cg(83,54):cr(114,43,39)]]

Table 2: Machine readable code fragment of an attributed relational graph; a node
- arc - node triplet with attributes.

2.3.3 Sorted Table Graph Matcher

Blake proposes a way of handling the NP graph matching problem with the use
of a sorted table [12]. The table is a list of every node-arc-node triplet pairing
between the two graphs, with each row in the table is a column with the cost of
the matching. A control vector column is also inserted into the table, this vector
is a simple boolean structure. A one (true) means that this triplet pairing is part
of the match, and a zero (false) means the pairing is not part of the match. The
object of the matching is then to find a sequence of bits for the control vector that
will satisfy the termination criteria. The termination criteria include acceptable run
time, acceptable cost and acceptable way of matching, see [12] for a full description.

The table is sorted by cost, and the matching process will start biasing the
lowest cost pairings. Finding the sequence of bits for the control vector is of NP
complexity and therefore the termination criteria is needed. This method is sub
optimal because when the termination criteria is met there is no guarantee for the
solution to be a global minimum. See table 3 for an example of the sorted table
described here.

2.4 Clustering

Clustering is the process of grouping a set of items together so that they are more
similar to each other than they are to items of other groups. A supervised process
is provided with the knowledge of what class every item should go into and would
learn to classify items based on this information. Clustering, on the other hand, is

7

Arc/Nodes Arc/Nodes Cost Control Vector
A→C Z→X 320 1
B→C Y→X 320 1
A→B Z→Y 340 1
A→C Y→X 570 0
B→C Z→X 580 0
B→C Y→Z 652 0
A→B X→Y 794 0
A→B Y→Z 878 0
A→C Y→Z 902 0

Table 3: Eight top rows of a sorted table of associations. Reproduced from [12].

used when we have no class information on items and we want to discover under-
lying structures in the data set. Clustering is an unsupervised process as correct
classification is not known and the task of the clustering algorithm is to suggest
such a classification of the items.

Some methods will try to find representative items called exemplars in the data,
the exemplars are then used to represent the cluster of which it belongs. Unknown
items can be classified by comparing it to each of the exemplars by finding the
most similar one. A common similarity measure when the data is real-valued is
the negative Euclidean distance. Other similarity measures may perform better,
but Euclidean distance is simple and works well [13]. By this method we can often
reduce the search space required to find a good enough solution. This is one of the
ways we might be able to exploit clustering in a computer vision system.

In this thesis we will use two different methods for clustering, minimum message
length and self-organizing maps. Both methods have been chosen as they show good
results in the literature and for their favorable unsupervised learning process.

2.4.1 Snob - Minimum Message Length Mixture Modeling

Minimum message length (MML) is based on evaluating a model based on how well
it is able to compress a message containing the data. To communicate the data
the full message must contain both the model and the message given the model.
Therefore a more descriptive model will only be chosen if it reduces the total size
of the entire message. The function of the model is to provide a good probability
distribution for the data to be coded. A better model will reduce the second part
of the message.

In a clustering context, the model will describe the different classes. More or
less classes might lead to a better model and an overall shorter message. This is
how MML will automatically find a appropriate number of clusters. Strict MML is
NP-hard, but a heuristic can be used allowing an approximate solution to be found
in polynomial time [14, 15].

MML effectively embodies Occam’s razor as overly complex models with many
parameters will be discarded, even though their better fit of the data will give a

8

shorter seconds message [16].
MML was first described in 1968 by Wallace and Boulton [17]. Wallace’s own

implementation is the program known as Snob. Snob does Mixture Modeling (clus-
tering) via MML, see [18] for an overview. In 1996 Upal and Neufeld compared
several unsupervised classifiers and Snob was found to perform best [19].

In this thesis we have used Snob to run clustering experiments. The program
is available at the Monash University website [20].

2.4.2 The Self Organizing Map

The self-organizing Map (SOM) is a type of artificial neural network (ANN) that
is trained in an unsupervised process. SOMs are also known as Kohonen-maps as
Kohonen introduced the concept in 1982 [21]. SOMs map m-dimensional input
space vectors to an n-dimensional output space. One of SOMs features separating
them from other ANNs is their property to preserve topology from input space to
output space. For these two properties SOMs are well suited for visualization of
high dimensionality data [22]. The SOM is a map of nodes in the output space

(a) t=0 (b) t=7 (c) t=10

Figure 6: SOM with three nodes in one dimension trained over input of three
Gaussian distributions in two dimensions. (a) shows the network at random ini-
tialization, (b) after seven training runs, and (c) at convergence the SOM has found
each distribution’s center.

in n-dimensions, each node has a m-dimensional vector that are of the same di-
mension as the input space. Training is done by calculating a similarity between
the training vector (input space) to every node’s vector in the map. The most
similar node in the map is said to be the winner. The winning node will then move
its input space vector closer to that of the input vector by some learning rate.
Topology is preserved by that the nodes in the neighborhood of the winner will
also be moved toward the training vector. The training is done by starting with a
large neighborhood for global organization. Gradually the neighborhood size and
learning rate is lowered to allow local organization and finally convergence. After
training each node will be an exemplar of a class, inputs can be compared to the
nodes in the map, the winning node will then classify the input. With a learn-
ing rate of zero SOMs operates rigorously as the well known k-means clustering

9

algorithm, but SOMs may be better at exploring the full search space [23]. A full
overview of the map can be found in [24].

The SOM algorithm can be used on large datasets [25], it scales linearly with
the number of input samples and quadratically with number of nodes in the map
[26].

See fig. 6 for a simple training run of a SOM. Three Gaussian distributions
with different mean and variance was given as input. We can see that the SOM
converges to the center of each distribution. Each data point can then be assigned
to the cluster of the closest SOM node.

2.5 Previous Work

Graphs are studied widely in the literature, and much interests have been in the
domain of structured pattern recognition. In 2004 Conte et al. did a review named
Thirty Years of Graph Matching in Pattern Recognition [9]. They mention no work
done with clustering directly working to a assist a graph matcher, but clustering
was used to do the matching itself. In one paper clustering was used on spectral
information extracted from graphs [27], and then graphs was matched if they was
in the same cluster.

Graph kernels are used as a way to extract attributes from graphs that may be
used for clustering, this method may help in clustering full graphs [28].

A system that use clustering of nodes, but do not include edges in the process,
is described in [6]. Not including edges is a great sacrifice of accuracy for speed,
and once edges are not include it is no longer a graph being worked on.

To our knowledge there have not been any work done with clustering of graph
data including edges to directly assist a graph matcher.

10

3 Methods and Implementation

In this section we provide details to how we applied our methods to the clustering
problem and we introduce a measure for clustering success.

3.1 Clustering With Snob

One of the advantages to Snob is the lack of need for configuration. This makes the
method useful for an autonomous recognition system. Once data has been given
as input according to documentation, Snob will run the clustering without any
more specifications. Snob uses mixture modeling and supports a variety of data
types, continuous, discrete, Poisson, and circular. Most of our data variables are
of continuous type, although we have the direction of a relation between two nodes
that is circular, and we have the inside/outside flag of a relation that is discrete.

Snob will produce the same result given the same input every time, but initial
randomized classes can be used to obtain a different set of clusters. We use the
random initial classes approach to get more then one clustering result to see if there
are any trends.

3.2 Clustering with Self Organizing Maps

A basic SOM was implemented from scratch based on description by Kohonen[24].
The basic SOM use only continuous variables, our version was extended to also
support circular variables for the direction attribute.

Support for discrete variables was not implemented as their behavior is not
defined in the basic SOM framework. The basic operations in the SOM, moving
the vector and calculating similarity is not well defined for discrete states. We
therefore decided to ignore the discrete variable when clustering with a SOM. In
our implementation we normalize the input vectors, it is not principally needed,
but may increase numerical accuracy as the vectors will have same dynamic range
[24]. See algorithm 1 for a pseudocode overview of our training algorithm.

1: Normalize training data to [0, 1]
2: Randomize SOM input space vectors to [0, 1]
3: for N training runs do
4: for all training vectors do
5: Find most similar node in SOM
6: Move winning node and its neighborhood nodes closer to training vector

by learning rate
7: end for
8: Reduce neighborhood size and learning rate
9: end for

Algorithm 1: Pseudocode for training a Self Organizing Map

When running a SOM certain decisions must be made: A distance measure
must be chosen. We use the squared euclidean distance to compare our attribute

11

vectors. Note that the distance calculation has been adapted to support circular
variables (angles).

A map size must be chosen, this may be of any size in any number of dimensions.
As a general rule if we want the SOM to generalize over the training data we want
less nodes in the map than the number of training vectors. We ran our experiments
with different map sizes to gouge performance at various settings.

A learning rate and a neighborhood size must be chosen. We start with a some-
what arbitrary learning rate of 0.25 that seems to work well. Neighborhood size
was chosen so that its radius is the double of the size of the map. This size ensures
global organization from the start as the neighborhood is large enough to include
every node from every position in the map. According to [23] the learning rate and
neighborhood size must progressively be reduced to zero for robust performance.
We do this in a linear fashion.

A number of training runs must be chosen. We used various numbers but it
seems in our clustering we don’t need a high number of runs.

3.3 A Success Measure via Step Distance

The best way to evaluate a clustering method would be to know the true class of
every item clustered. The method’s success rate could then be calculated. For our
dataset or in general for an unsupervised automatic computer vision system, the
true class of items are unknown. Our data contains no class labeling of the nodes,
but we know the angles at which the pictures were taken. If we assume that items
(nodes or node-arc-node triplets) from pictures taken at approximately the same
angle will be more similar than items from pictures taken at less similar angles, we
can exploit this to quantify our results.

Lets introduce truck A with label 14005, items A1 and A2, truck B with label
14006, items B1 and B2, and truck C with label 15006, items C1 and C2. After
clustering of the items we get the following results:

Class 1 : A1, B1, C1

Class 2 : A2, B2

Class 3 : C2

We count the number of shared classes for the items for each truck. Truck A and
truck B got items in two of the same classes (Class 1 and Class 2) while Both Truck
A and B share only one class with Truck C. We then say that A is best matched
with B by two items, and then second to C with one item in this clustering.

Now we can use the labels to compute a step distance of the angles as a sim-
ilarity measure of two trucks. The step distance is equal to the sum of the dis-
tance in both camera height angle and truck rotational angle e.g., step(A,B) =
step(14005, 14006) = |14− 14|+ |5− 6| = 1 and step(A,C) = step(14005, 15006) =
|14− 15|+ |5− 6| = 2. By step distance A is more similar to B than it is to C and
this goes well with the clustering above.

To measure the success of a clustering we can run this procedure for every truck
used to extract data for the clustering process and obtain a mean step distance to

12

Object Label Matching Nodes
25016 10
3016 10
26015 9
26016 9
11015 8

...
2018 2
27003 1
27010 1
27014 1
27017 1

Table 4: Matching for object 27016 with a total of 20 nodes.

best match (B1). We have also in this thesis used step distance to best of 5 matches
(B5) and to best of 20 matches (B20). Mean step distances from several clusterings
can be compared to measure their relative success. We also randomized the clusters
and calculated mean step distance as a control. It should be noted that this is a
synthetic measurement of clustering success and may or may not correlate with a
real case correctness of the clustering.

Lets examine an example from one of our runs. At the top of table 4 are the best five
matchings, and at the bottom are five matchings with only one or two node matches.
In this example B1 = step(27016, 25016) = 2, B5 = step(27016, 26016) = 1 and
B20 = step(27016, 26016) = 1.

The method of counting cluster matchings used here can in itself be used as a
object matcher algorithm. We ran some test showing that mean step distance in-
creased as we went from best match to second best match, and increase even more
when testing the third best match and so on. This indicates that the method would
be at least a better object matcher then a random guess on our dataset.

13

14

4 Experiments and Results

In this section we describe the experiments we have done and the results we ob-
tained. Runtime numbers have been given, but they are mainly illustrational. It
should be noted that the two methods were run on separate hardware setups. All
Snob experiments used Ubuntu Linux 3.2.0-41-generic 64-bit with an Intel Xeon
E5440 CPU at 2.83GHz (shared server). All SOM experiments used Microsoft Win-
dows 7 (6.1) Home Premium Edition 64-bit Service Pack 1 with an Intel Pentium
SU4100 CPU at 1.3GHz.

4.1 Clustering Nodes

In this subsection we have clustered individual nodes. The nodes are areas found in
the segmentation process. Ideally each area (node) represents a part of the truck (a
wheel, cargo area, etc.), but the segmentation process is not flawless and sometimes
a logic part of the truck might be segmented into several areas. In total we have
3785 nodes from 513 truck images, this averages 7.38 nodes per truck.

See tables 5 for Snob and table 6 for SOM clustering results of the full individual
nodes dataset. Table 7 gives results after randomizing the content of clusters.

Clusters Found B1 B5 B20 Runtime (s)
93 7.61 2.82 1.32 35
98 8.1 2.94 1.31 30
102 7.82 2.89 1.31 26

Table 5: Snob all Nodes Clustering.

Map Size Clusters Training B1 B5 B20 Runtime (s)
Found Runs

63 196 10 8.170 3.074 1.394 6.24
702 1408 10 9.238 3.674 1.710 138
122 138 100 8.226 2.589 1.228 24.85
122 138 10 7.955 2.908 1.288 4.1
102 99 10 8.068 2.836 1.318 2.15
82 62 10 8.873 2.982 1.287 1.41
73 290 10 8.183 2.846 1.333 7.12

Table 6: SOM all Nodes Clustering.

4.1.1 Nodes from Two trucks

In this experiment we clustered nodes from two trucks. We expected to see similar
truck parts cluster together e.g., wheels with other wheels. Since we only used data
from two images, the step distance method is not applicable on this clustering as our

15

Classes B1 B5 B20

98 16.54 8.17 3.79
93 16.67 7.98 3.78
100 16.91 7.93 3.66
138 16.62 8.37 3.91
62 15.44 7.58 3.78
290 16.19 8.44 4.63
196 16.71 7.85 4.27
5 22.00 15.70 10.79
50 15.60 8.16 3.88
500 16.13 9.09 4.40
1000 17.34 9.25 3.58
5000 16.09 8.52 7.9

Table 7: Random Nodes Clustering.

dataset is too small. We can instead use manual inspection since the datasets are
only 13 and 14 nodes and will fit in print. We clustered nodes from two dissimilar
trucks (1004 and 19006) and two similar trucks (19005 and 19006). Snob was not
able to produce a meaningfull result for this small dataset, only one class was
found. The results are therefor only from the SOM. See table 8 and table 9 for a
visualization of the classes.

4.2 Clustering Node-Arc-Node Triplets

In this experiment we clustered Node-Arc-Node triplets. These triplets represent
two parts of a truck and the relation between them, e.g., a wheel below the truck
bed. We have in total 25922 triplets, each with 17 variables. Each truck averages
50.5 triplets.

In the previous section we clustered data from only two trucks, and used human
inspection to check the results data for meaning. It would be interesting to do the
same with triplets from two trucks, however as trucks have on average of over fifty
triplets it would be infeasible to include the visualization of the results in this
report.

See tables 10 and 11 for Snob and SOM clustering results of the full arc-node-arc
triplet dataset. Table 12 gives results after randomizing the content of clusters.

16

Class 1 Class 2 Class 3

Class 4 Class 5 Class 6

Class 7 Class 8 Class 9

Table 8: SOM clustering of the nodes from two dissimilar trucks. Colored parts
are the nodes, red for truck 1004 and blue for truck 19006.

17

Class 1 Class 2 Class 3

Class 4 Class 5 Class 6

Class 7 Class 8 Class 9

Table 9: SOM clustering of the nodes from two similar trucks. Colored parts are
the nodes, yellow for truck 19005 and blue for truck 19006.

Clusters Found B1 B5 B20 Runtime (s)
181 7.79 2.68 1.25 5061
125 9.42 3.49 1.46 3147
333 7.66 2.5 1.15 3252
66 10.22 3.53 1.48 19632
96 8.48 3.01 1.44 6780

Table 10: Snob Triplet Clustering.

18

Map Size Clusters Training B1 B5 B20 Runtime (s)
Found Runs

84 2555 10 6.573 2.207 1.086 1420
84 2518 50 6.402 2.279 1.086 8235
104 4399 10 6.630 2.090 1.105 3296
36 529 10 7.386 2.505 1.146 342
83 469 10 7.097 2.384 1.156 218
172 285 10 8.359 2.622 1.191 92
35 222 10 7.626 2.694 1.211 212
142 191 10 8.366 2.692 1.230 63
132 168 50 8.220 2.749 1.246 316
28 231 10 7.827 2.819 1.251 91
132 167 10 8.259 2.686 1.251 57
44 230 10 7.809 2.908 1.271 127
152 218 10 8.550 2.858 1.275 89
162 249 10 7.620 2.788 1.292 109
27 118 10 8.548 3.413 1.298 65
112 121 10 8.938 3.144 1.314 40
102 100 10 8.694 2.743 1.345 34
122 144 10 8.209 2.815 1.376 68
82 64 10 10.047 3.458 1.425 33
34 81 10 10.571 4.179 1.682 72
43 64 10 11.228 4.700 2.029 29
62 36 10 14.513 7.493 3.417 16
52 25 10 15.967 9.310 4.148 11
42 16 10 20.359 14.571 7.292 8
32 9 10 21.290 16.772 11.507 5

Table 11: SOM Triplet Clustering.

Classes B1 B5 B20

10 22.00 18.53 12.71
66 17.55 10.55 7.05
100 17.26 10.90 7.39
18 1 17.96 10.67 6.91
333 17.88 10.48 6.31
1000 17.62 9.91 5.41
10000 16.76 8.48 4.17
20000 16.04 8.53 4.12
40000 16.78 8.90 4.12
200000 15.93 8.92 7.72

Table 12: Random Triplet Clustering.

19

20

5 Discussion and Conclusion

In the previous section we have shown the clustering of structured image data to
be successful. In this section we will discuss the various results and performance
of the techniques used. We will also explore some possibilities for exploiting the
clustering in NP graph matching problem. Som future work will be discussed and
a conclusion will be given.

5.1 Individual Nodes

When clustering individual nodes we see consistent results from snob. About 100
clusters are found, the varying runtime is due to the different initialization done.
An initial set of randomized clusters lets Snob arrive faster to the final results than
when no initialization is done.

The SOM produces its best result when we use 144 nodes in the map. It should
be noted that after the training has been done, it is not guaranteed that every
node in the map will be a cluster representative for the training data used. In this
instance we see only 138 effective clusters after classification even though the map
has 144 nodes.

Using 100 training runs as opposed to only 10 improves the results for B5 and
B20, but worsens B1. The increased runtime of using more training runs seems
not to be worth it in our experiments. Our results are generally good with only 10
training runs. We did some runs with a SOM too large for this dataset consisting
of 4900 nodes, that is more nodes in the SOM than the number of training vectors
used. This large of a map should theoretically lead to over fitting, and the results
reflect this, the large map performed worst of all the SOMs.

For 100 nodes, which is about the amount of clusters snob found, the SOM
produces a clustering giving very similar B1, B5 and B20. Compared to random
clustering both Snob and SOM produces better scores, this helps validate the re-
sults.

5.2 Two Trucks

5.2.1 Dissimilar Trucks

The two trucks clustered in table 8 have different segmentations. Truck 1004 (fig.
4a) have 8 segments, and truck 29006 (fig. 4b) have 6 segments. We see that
because of the angle the front of truck 1004 have been segmented into several small
areas. These small areas are exclusive to truck 1004 and so they are all clustered
to class 3 without any nodes from the other truck.

In general this clustering would not be perfect by human standards, but we
do spot a trend toward similar nodes intraclass. We see that the cargo areas are
both in class 7 and most of the wheels go into class 9, except for 1 set of wheels
that go in class 5. Even though one set of wheels missed their class, the topology
conserving property of SOMs have likely helped keeping them not too far apart in
the map from the other wheels.

21

5.2.2 Similar Trucks

Once we clustered two similar trucks as in table 9 we see here a perfect clustering.
Class 1 got all cabin nodes, class 3 got all the cargo area nodes, class 7 got all the
bumper nodes and class 9 got all wheels.

5.3 Node-Arc-Node Triplets

This was the largest clustering experiment done. As we bring two nodes and the
relation into the clustering we have a quite more complex set of data then in the
previous nodes only experiment. Because the relation is brought into the clustering
we are in effect clustering small parts of the graphs. The clusters brought forward
here are likely to be of help to the sorted table graph matcher as it is matching on
arc-node-arc triplets.

Snob varies quite a lot in the number of clusters it produces here depending on the
initialization, this is likely due to a quite complex data set. We see in table 10 that
a run producing 333 clusters give the best average step distances. If we look at
12 we see that step distances are generally lower for randomized clusterings with a
high number of classes. Therefore we should not jump to the conclusion that the
333 classes run is really a better clustering then the one that produced 66 classes.
It is only by our average step distance synthetic measure that it performs better,
but as our measure is correlated to number of classes, comparing clusterings of
different class size via step distance might not be straight forward. The average
step distance method seems mostly useful to compare clusterings of the same size.

For the triplet dataset a large variety of SOM configurations was used, we wanted
to see how the SOM settings affected runtime and the results. We see in 11 that also
here a larger map gives better results, but as discussed earlier it might be mostly
due to the step distance method favoring a high number of classes. Using more
training runs, as in 50 instead of 10, does not produce a much better clustering. It
seems with our settings a low number of training iterations are sufficient.

Dimensionality seems not to matter much compared to the total number of
nodes in total. A map of size 35 produced a slightly better results compared to
one of size 28 even though it has less nodes. A map of two dimensions seems be
be sufficient, but we don’t have enough data to conclude on the perfect number of
dimensions.

In general our SOM implementation seems to produce equally good clusterings
at a much lower runtime compared to Snob. It should be noted Snob is an old pro-
gram and possibly not optimized for speed. The SOM is viable for large datasets
as it can be parallellized and shortcuts can be taken [25].

22

5.4 Application to Graph Matching

We have shown the clustering to give meaningful results, now we discuss some
possible methods for improving a graph matcher system

There are two levels where the clustering can help the matching process. The
first is at selecting appropriate graphs to be matched with the unknown graph.
It is preferable that a good enough match is found in the least amount of time.
Clustering can be done on all items, i.e., triplets or nodes in the database to find
clusters. Items from the unknown graph can be assigned to the clusters, and the
graphs that have items in the same classes can be prioritized for the matching
process. This should in effect reduce the average runtime of the graph matching
process as the least likely matches are put at the end of the matching queue.

The second level where clustering can be used is directly in the process of
matching two graphs. In the sorted table graph matcher, we can manipulate the
cost of each triplet matching. For instance if two triplets doesn’t belong to the same
cluster their cost of match may be increased. This method might work if clustering
are done with Snob or another clustering method that does not explicitly use a
similarity measure such as distance to do the clustering. Cost of match is also a
similarity measure of the two triplets.This means that the cost in the match table
and likeliness of the triplets to be in the same cluster are correlated. Therefore this
straightforward method might not improved the matching process.

Instead of the similarity measure other metrics can be used. Tightness of a
cluster could be tried to directly adjust the cost. Tightness is a vague term used
here, but for our methods there are certain ways a tightness or homogeneity might
be found. For Snob the tightness of a cluster could be measured using the message
length needed to encode that cluster, a shorter message length means a tighter
cluster. The std. dev. of the distributions used for a model is another way, low
std. devs. means a tighter cluster. For the SOM a std. dev. of a clusters members
variables could be used.

The topology preserving feature of the SOM can be exploited in a search process,
as neighboring clusters are more similar to each other then those far apart. This
can be taken advantage of if a good enough graph match is not found while being
supported by the first level SOM clustering. The SOM clusters can be expanded to
include its neighbors and therefore incrementally increasing search space. If a large
number of nodes are used in a SOM the neighbors might in fact be quite similar,
and in a clustering context they can themselves be clustered [26].

5.5 Conclusion and Future Work

We have in thesis demonstrated clustering of structural features in a computer
vision context. Both self-organizing maps and minimum message length approaches
produce meaningful clustering. The SOM seems more flexible as a magnitude of
parameters can be adjusted, but this comes at the expense of more involvement
needed for an expert. Methods for automating some of the parameters for the SOM
has been proposed in the literature and may increase the self-sufficiency of such a
system.

23

Especially interesting is the clustering of so called node-arc-node triplets that
are in fact subgraphs of the larger graphs in use. The clusters formed can then
be used in a graph matching system to reduce runtime required for an acceptable
match, and methods for doing so have been proposed. Clustering in itself has been
used before to classify images, but not in the context of helping a graph matcher
that is a process of NP runtime.

Future work would be to implement the use of clusters to support the graph
matching system. If the basic clustering techniques used here are able to improve
upon the NP system, further investigation into better clustering methods for the
domain at hand may also be investigated.

24

References

[1] Saraswathi Vishveshwara, K. V. Brinda, and N. Kannan. Protein structure:
Insights from graph theory. Journal of Theoretical and Computational Chem-
istry, 01(01):187–211, 2002.

[2] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Symbolic
model checking for sequential circuit verification. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 13(4):401–424, 1994.

[3] Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-
hydrophilic (hp) model is np-complete. Journal of Computational Biology,
5(1):27–40, 1998.

[4] E. Bengoetxea. Inexact Graph Matching Using Estimation of Distribution
Algorithms. PhD thesis, Ecole Nationale Supérieure des Télécommunications,
Paris, France, Dec 2002.

[5] Guido Del Vescovo and Antonello Rizzi. Automatic classification of graphs
by symbolic histograms. In Granular Computing, 2007. GRC 2007. IEEE
International Conference on, pages 410–410. IEEE, 2007.

[6] A Rizzi and G Del Vescovo. Automatic image classification by a granular
computing approach. In Machine Learning for Signal Processing, 2006. Pro-
ceedings of the 2006 16th IEEE Signal Processing Society Workshop on, pages
33–38. IEEE, 2006.

[7] Stephen A Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing, pages
151–158. ACM, 1971.

[8] Simon Thoresen. An efficient solution to inexact graph matching with appli-
cation to computer vision. PhD thesis, Norwegian University of Science and
Technology, 2007.

[9] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty
years of graph matching in pattern recognition. International journal of pat-
tern recognition and artificial intelligence, 18(03):265–298, 2004.

[10] Richard E Blake and Algimantas Juozapavicius. Convergent matching for
model-based computer vision. Pattern recognition, 36(2):527–534, 2003.

[11] Richard E Blake and Peter Boros. The extraction of structural features for
use in computer vision. In Proceedings of the Second Asian Conference on
Computer Vision, Singapore, 1995.

[12] RE Blake. Graph matching with a sorted table: a suboptimal method that
is effective and allows problem partitioning. In Proceedings of ICARCV, vol-
ume 90, pages 956–960, 1990.

25

[13] Kuang-Chiung Chang, CHENG WEN, Ming-Feng Yeh, and Ren-Guey Lee. A
comparison of similarity measures for clustering of qrs complexes. Biomedical
Engineering: Applications, Basis and Communications, 17(06):324–331, 2005.

[14] GE Farr and CS Wallace. The complexity of strict minimum message length
inference. The Computer Journal, 45(3):285–292, 2002.

[15] Christopher S Wallace. Statistical and inductive inference by minimum mes-
sage length. Springer Science+ Business Media, 2005.

[16] Rohan A. Baxter. Minimum message length inference: Theory and applica-
tions. Technical report, Monash University, Australia, 1996.

[17] C. S. Wallace and D. M. Boulton. An information measure for classification.
The Computer Journal, 11(2):185–194, 1968.

[18] Chris S. Wallace and David L. Dowe. Mml clustering of multi-state, pois-
son, von mises circular and gaussian distributions. Statistics and Computing,
10(1):73–83, 2000.

[19] M Afzal Upal and E Neufeld. Comparison of unsupervised classifiers. In
Proceedings of the First International Conference on Information, Statistics
and Induction in Science, pages 342–353. Citeseer, 1996.

[20] Monash university data mining centre software page - snob.
http://www.datamining.monash.edu.au/software/snob/. Accessed May
2013.

[21] Teuvo Kohonen. Self-organized formation of topologically correct feature
maps. Biological cybernetics, 43(1):59–69, 1982.

[22] Teuvo Kohonen, Erkki Oja, Olli Simula, Ari Visa, and Jari Kangas. En-
gineering applications of the self-organizing map. Proceedings of the IEEE,
84(10):1358–1384, 1996.

[23] Fernando Bação, Victor Lobo, and Marco Painho. Self-organizing maps as sub-
stitutes for k-means clustering. In Computational Science–ICCS 2005, pages
476–483. Springer, 2005.

[24] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–
1480, 1990.

[25] Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojarvi, Jukka
Honkela, Vesa Paatero, and Antti Saarela. Self organization of a massive
document collection. Neural Networks, IEEE Transactions on, 11(3):574–585,
2000.

[26] Juha Vesanto and Esa Alhoniemi. Clustering of the self-organizing map. Neural
Networks, IEEE Transactions on, 11(3):586–600, 2000.

26

[27] Serhiy Kosinov and Terry Caelli. Inexact multisubgraph matching using graph
eigenspace and clustering models. In Terry Caelli, Adnan Amin, RobertP.W.
Duin, Dick Ridder, and Mohamed Kamel, editors, Structural, Syntactic, and
Statistical Pattern Recognition, volume 2396 of Lecture Notes in Computer
Science, pages 133–142. Springer Berlin Heidelberg, 2002.

[28] Miguel Angel Lozano and Francisco Escolano. Graph matching and clustering
using kernel attributes. Neurocomputing, 2013.

27

