

CHAPTER 5. RESULTS

Figure 5.13: Another slice of liver volume, with leakage.

including the time used to read input, initialize and write result back to file.

Input image 2D serial 2D CUDA
5.1a Unmodified | Modified | Unmodified | Modified
Iterations 2300 320 2300 320
T 0.99 0.99 0.99 0.99
€ 0.15 0.15 0.15 0.15
e 0.80 0.80 0.80 0.80
Time (seconds) 1.31 0.37 2.56 0.14

Table 5.2: 2D perfromance results on figure 5.1a as input.

Table 5.4 describes the results for the 3D version for the aneurism volume

and the results (modified/unmodified) are equal.

CHAPTER 5. RESULTS

Input image 2D serial 2D CUDA
5.1a Unmodified | Modified | Unmodified | Modified
Iterations 6500 4000 6500 4000
T 0.99 0.99 0.99 0.99
€ 0.15 0.15 0.15 0.15
o 0.60 0.165 0.165 0.60
Time (seconds) 12.29 12.27 7.68 4.30

Table 5.3: 2D perfromance results on figure 5.3a as input.

Input volume 3D serial 3D CUDA
5.5 Unmodified | Modified | Unmodified | Modified
Iterations 3000 2100 N/A N/A
T 1.0 1.0 N/A N/A
€ 0.3 0.25 N/A N/A
Q 0.75 0.4 N/A N/A
Time (min/sec) 2.12 1.14 N/A N/A

Table 5.4: 3D perfromance results on figure 5.5 as input.

Chapter 6

Discussion

6.1 Modification of the speed function

Although the level set method is good at handling leakages when the cur-
vature term is taken into account, and naturally deals with merging and
splitting of the interface, it has its shortcommings. If for instance the ob-
ject to be extracted has a greater internal intensity difference than the
border of the object and neighbouring objects, the interface might leak out
of the object in one region and at the same time refuse to grow in another.
Figure 5.13 is an example of this behaviour. To reduce the effects of this
weakness it is possible to combine different segmentation methods to benefit
from their strengths and avoid their shortcommings. Better segmentation
using the level set method alone however might be possible by modifying
the behaviour of the speed function.

As mentioned when discussing the speed function in chapter 4 the data
function was modified a little from the one described in chapter 3. The
reason for this modification is that under certain circumstances the zero
level set moved very slow using the original speed function. This is true
especially when a low e value is used, because the maximum speed of the
data term (which was shown in figure 3.4) is e.

75

CHAPTER 6. DISCUSSION 76

0.8 1.0

Figure 6.1: Original data term, D(I), with € = 0.1.

Hence, with a small € and the data term weighted high (high « value)
the resulting speed is potentially only a fraction of its maximally possible
value. As an example, assume € = 0.1, which makes the maximum speed
resulting from D(I) equal to 0.1, this is shown in figure 6.1. In areas where
the curvature is low or D(I) is weighted heavily, the interface would be
moving at about 10% of max speed.

By dividing the data function by € its maximally positive value is in-
creased from € to 1. The new data function can be seen in equation 6.1.

e—|I—-T]
€

D(I) = (6.1)
The original data function’s smallest possible value is e-1. Thus, in the
modified data function e values smaller than 0,5 will result in values less

than -1. Hence, the result of the equation has to be clamped to -1 for
D(I) < -1.

CHAPTER 6. DISCUSSION 7

Figure 6.2: New data function

The graph in figure 6.2 illustrates the value of the new D(I) as the
intensity increases form 0 to 1. Threshold = 0.5 and € = 0.1 is chosen to
clearly show how negative values are clamped.

As an alternative to equation 6.1, D(I) could have two different functions
depending on whether it is positive or negative. Positive values would be
divided by €, and negative values would be divided by 1-e¢ to give both
positive and negative values a linear increase towards the maxmium value
of 1.

—I-T
e-ir=7l if Iisinside [T + ¢
D(I)={ e—|[I-T|

1 if Iisoutside [T £ ¢
—€

In practice however, this is not nescessarily as elegant as it looks. Even
though the maximal theoretical value of this D(I) function is +1 the con-
ditions required to get maximum speed is unusual and does not often occur
in practice. It requires the threshold and intensity to be on oposite sides
of the intensity domain, for instance 7" = 1 and I = 0. Because resulting
values from this D(I) function close to -1 only appear in extreme cases, the
interface will grow away from negative regions slower than it will grow into
positive ones.

CHAPTER 6. DISCUSSION 78

1.0¢ D(1)
0.8}

06}
04

0.2

0.8 1.0

Figure 6.3: Alternative D(I) function

Figure 6.3 shows this difference in growth for negative and positive
vaules. Although segmentations performed in this project uses equation
6.1, it does not mean that the alternative equation is inherently bad, it just
has a different behaviour.

Equation 6.1 was used in this project becuse of its constant change in
speed for both positive and negative values. This makes D(I) easier to
reason about in order to get good results. Because D(I) now has a much
higher max value it will contributes alot more to the speed and have a
greater impact on the result. The modified speed function will therefore
need different o values to reflect this change. To perform a segmentation
with this modified D(I) to get the same result as from a segmentation which
used the unmodified D(I), a needs to be smaller. Apart from the improved
execution time, using such an a value with the modified D(I), the end
results will not be affected.

As with the data term, the curvature term (C) can also be altered to
achieve different behaviour. The curvature term can for instance be multi-
plied by a factor n, before it is added to the data term in the speed function.
For n > 1 it would then have to be clamped to keep its maximal possible
value at 1.

CHAPTER 6. DISCUSSION 79

1.0
0.5
-1.0 -0.5 0.5 1.0
05 == Unaltered C
= Scaled C
-1.0

Figure 6.4: Scaled curvature function. Unaltered curvature is shown in blue
and altered is shown in red.

Such a curvature function is plotted in figure 6.4, where n = 4 to show
the increase in steepness. The old curvature is shown in blue and the scaled
in red. This type of scaling would make changes in curvature have a bigger
impact on the movement of the interface, so effectively it resembles the
effect of decreasing the o term to weigh the curvature more.

Another and perhaps more interresting way of altering C' is to approach
it from the same angle as the data term, and have it grow differently de-
pending on whether it is positive or negative. One of the problems with the
level set method, as mentioned in the section above, is its poor performance
when the difference in intensity within the object to be extract is greater
than the difference between pixels inside and outside the object. If the cur-
vature is scaled differently depending on whether it is positive or negative,
it could potentially force the interface into regions of the object it would
not normally grow into. It has the following definition:

C if Cis positive
D(I)=¢Cn if Cisnegative

The resulting graph is shown in figure 6.5.

CHAPTER 6. DISCUSSION 80

1.0+
0.5f
-1.0 -0.5 0.5 1.0
05! == Unaltered C
== Asymmetrical C
-1.0+

Figure 6.5: Asymmetrically scaled curvature function. Unaltered curvature
is shown in blue and altered is shown in red.

This alteration would cause the interface to grow into regions where the
curvature pushes it forward, and at the same time prevent the curvature
from restricting the growth too much. The level of detail would decrease
because holes in the segmentation would be filled more easily, but in return
the segmentation might include more of the object given that the space it
normally fail to grow into is at least partially surrounded by the interface.

6.2 Problems with the CUDA implementation

As described before, the updating process of the layers are dependent on
each other. Ln2 and Lp2 are dependent on Lnl and Lp1 respectively, while
Lnl and Lpl depends on Lz. Thus even if all the calculations in each el-
ement of the zero level set can be parallelized, all operations in the other
layers have to wait. One way to overcome this when in a parallel context
is to use barriers to synchronize. But even if all threads within a block are
synchronizable using the CUDA defined barrier __synchthreads(), there are
no native ways to synchronize blocks in CUDA. Some ways to manually
synchronize CUDA block exists, for example by using atomic functions to
increment a mutex and busy-waiting until the mutex reaches a predefined
value or by using lock-free sychronizing as described in [16]. But these meth-
ods are only applicable when the number of blocks and threads is less than
what can be run in parallel (hence no native CUDA block synchronization)
which is not the case in this project, where multiple full scale arrays are

CHAPTER 6. DISCUSSION 81

used. In this case, the only way to achieve the desired feature of ordered
execution is to seperate the code into different CUDA kernels. In the serial
versions the pseudocode in algorithms 1, 3 and 4 are all executed in the
same function, but in the CUDA version the code is split up into several
kernel functions. Having to re-create new threads for each iteration once for
all the CUDA kernels affects the performance greatly. However the global
memory is persistent between kernel launches, resulting in no data transfer
while segmenting. Because only a few neighbouring pixels are elements of
the same layer warp divergence will also be affecting the performance. Fur-
thermore, with the lack of shared memory usage and the bottleneck when
accessing the slow global memory the speedup gained is low.

Apart from the fact that shared memory is not utilized, it can be seen
from the results in tables 5.2 and 5.2 that thread creation by multiple kernel
launches at each iteration greatly affects the performance. From table 5.2
it can be seen that the execution time in the CUDA version nearly doubled
that of the serial version. But when using the modified speed function which
only needed 320 iterations for a full segmentation, the CUDA execution time
was less than half of the serial execution time.

A 3D version of CUDA was implemented in addition to the 2D version.
But various problems when implementing prevented a version able to seg-
ment correctly. A few hours with this code should make it able to correctly
extract out volumes. And by using the modified speed function, this version
of the program should be able to give better performance increases than the
2D CUDA version.

Chapter 7

Conclusion and future work

7.1 Conclusion

In this project we looked at the sparse field method and how it can be used
to segment medical volume data. We chose the level set method as the
focus of this project because it is widely used in the field of medical image
segmentation. The sparse field method was chosen because it is one of the
fastest and least computationally demanding of the approaches to the level
set method. In addition we explored the possibilities of parallelizing the
sparse field method to speed up computation time.

The implemented sparse field algorithm is very effective in handling large
data volumes and segmenting medical data by only handling a small portion
of the volume at each iteration.

We explored some modifications to a popular speed function used in
the segmentation of images and volumes. We concluded that one of the
modifications reults in a significant speedup of the execution time. We also
looked into parallilizing the sparse field method using CUDA. However, due
to the nature of the sparse field method it is not well suited to be parallelized.
Dynamic lists are one of the key features in the sparse field algorithm which
is not supported by current CUDA versions. To overcome this restriction,
the CUDA implementaton resembles more an extreme version of a narrow
band method, where the band is as small as possible without affecting the
accuracy of the result.

82

CHAPTER 7. CONCLUSION AND FUTURE WORK 83

7.2 Future work

7.2.1 Reduce leakage

Some weaknessse were mentioned in the discussion chapter. The scenario
where it fails to grow in one region of the image and simultaneously leaks
in another is one of the challenges with the level set method. A possible
solution is to run multiple segmentations. First, extract a rough shape of
the object by using a small «. The resulting surface is then used to confine
the second, more sensitive segmentation. Any leakage during the second
segmentation will be confined to the result of the first segmentation, and
thus heavy leakage is avoided.

7.2.2 Parallelization

GPU’s are great at parallelization, but are not as flexible as CPU’s. GPU’s
are dependent on the CPU to hand it instructions, and the data transefer
between them is a bottleneck. However, the continuously improving func-
tionality of GPU’s makes is feasible in the near future to implement the
sparse field method on the GPU without any major modifications to the
structures. The parallelized version was implemented in CUDA, which only
supports NVIDIA GPU’s. As an alternative to CUDA, the OpenCL plat-
form can be used to parallelize programs not only on NVIDIA systems, but
a wide range of GPU’s and CPU’s. Using OpenCL it would be possible
to parallelize the sparse field method on the CPU which might allow an
implementation using list structures. Using OpenCL will also allow for a
broader range of hardware.

NVIDIA has a library called NVIDIA Performance Primitives (NPP)
which is a collection of GPU-accelerated functions that can be used for
segmentation in CUDA. Using this library to implement the sparse field
level set method might be more compatible than plain CUDA.

Bibliography

1]

2]

Eng L. Wong, Linear Spectral Unmizing Approaches to Magnetic Res-
onance Image Classification. ProQuest, 2008.

S. Osher & James A. Sethian, Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi formulation.
Journal of computational physics 79.1, 1988.

David. Adalsteinsson & James A. Sethian, A fast level set method for
propagating interfaces. Journal of Computational Physics, 1994.

Dzung L. & Chenyang Xu & Jerry L. Prince, A Survey of Current
Methods in Medical Image Segmentation. Annual review of biomedical
engineering 2.1, 2000.

Stanley Osher & Ronald Fedkiw, Level set methods and dynamic im-
plicit surfaces. Vol. 153. Springer, 2002.

W. Mulder & S. Osher & James A. Sethian, Computing interface mo-
tion in compressible gas dynamics. Journal of Computational Physics
100.2, 1992.

Ross T. Whitaker, A level-set approach to 8D reconstruction from range
data. International Journal of Computer Vision 29.3, 1998.

Aaron E. Lefohn & Joe M. Kniss & Charles D. Hansen & Ross T.
Whitaker, A streaming narrow-band algorithm: Interactive computa-
tion and visualization of level sets. IEEE Transactions on Visualization
and Computer Graphics, 2004.

Aaron E. Lefohn & Joshua Cates & Ross T. Whitaker, Interactive,
GPU-based level sets for 3D segmentation. Medical Image Computing
and Computer-Assisted Intervention, 2003.

84

BIBLIOGRAPHY 85

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Lei Pan & Lixu Gu & Jianrong Xu, Implementation of medical image
segmentation in CUDA. Information Technology and Applications in
Biomedicine, 2008.

M. Roberts & J. Packer & Mario C. Sousa & Joseph R. Mitchell, A
work-efficient GPU algorithm for level set segmentation. Proceedings
of the Conference on High Performance Graphics, pp. 123-132, Euro-
graphics Association, 2010.

Shawn Lankton, Sparse Field Methods - Technical Report. Georgia in-
stitute of technology, 2009.

X.F Wang & D.S Huang & H Xu, An efficient local ChanVese model
for image segmentation. Pattern Recognition 43.3 pp. 603-618, 2010.

Peter S. Pacheco, An introduction to parallel programming. Morgan
Kaufmann, 2011.

Jason Sanders & Edward Kandrot, CUDA by example: An introduction
to general-purpose GPU programming. Addison-Wesley Professional,
2010.

Shucai Xiao & Wu-chun Feng, Inter-block GPU communication via fast
barrier synchronization. Parallel & Distributed Processing (IPDPS),
2010 IEEE International Symposium on. IEEE, 2010.

Paul Macklin, FasyBMP - Cross-Platform Windows Bitmap Library.
http://easybmp.sourceforge.net/

Erik Smistad, The Simple Image Processing Library. http://wuw.
thebigblob.com/simple-image-processing-library/.

NVIDIA Corporation, Thrust Quick Start Guide. http://docs.
nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf, version 5.0,
October 2012.

Dirk-Jan Kroon, Viewer3D. http://www.mathworks.com/
matlabcentral/fileexchange/21993-viewer3d, version 11, Januar
2011.

Andreas Loening, Amide. http://amide.sourceforge.net/index.
html, version 1.0.4, April 2013.

http://easybmp.sourceforge.net/
http://www.thebigblob.com/simple-image-processing-library/
http://www.thebigblob.com/simple-image-processing-library/
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://docs.nvidia.com/cuda/pdf/Thrust_Quick_Start_Guide.pdf
http://www.mathworks.com/matlabcentral/fileexchange/21993-viewer3d
http://www.mathworks.com/matlabcentral/fileexchange/21993-viewer3d
http://amide.sourceforge.net/index.html
http://amide.sourceforge.net/index.html

	
	
	
	

	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	

	
	

	
	
	
	

	
	
	
	

	
	
	

	
	
	
	
	

