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Abstract

Since financial markets react to news very quickly it is necessary to react even quicker in or-
der to make money. Normal text data has very high dimensionality and reducing the number
of features needed to classify a document reduces the time needed to do so. This thesis looks
at a way to reduce the feature space by use of Conditional Random Fields. To do this, a new
data set is made using mandatory stock messages released to the Oslo Stock Exchange. The
messages are combined with financial data on all trades completed in a three-year period. A
Conditional Random Field is trained on the textual data and used to extract important fea-
tures. The features are then used to train a Support Vector Machine classifier and a Random
Forest classifier. Both are evaluated against using all features and using randomly selected
features. The thesis find that reducing the number of features results in a 4 percentage point
reduction in accuracy and a 81,25% reduction in run time. We conclude that it is possible
to reduce the feature space without significant reduction in accuracy. We also conclude that
using this method is not good enough for making a significant profit on the financial market.
This is consistent with earlier work on feature reduction.
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Sammendrag - Norwegian Abstract

Aksjemarkeder reagerer lynraskt på ny informasjon. Det er derfor nødvendig for et program
som skal tjene penger på nyheter å reagere enda raskere. Klassifiseringstid er avhengig av an-
tall features som må evalueres og en reduksjon i antall features vil derfor kunne øke ytelsen.
Denne rapporten forsøker å gjøre dette ved hjelp av et Conditional Random Field. Oppgaven
består av å lage et nytt data sett ved å kombinere tekstlig data fra Oslo Børs med numerisk
data på alle handler utført i en treårs periode. Et Conditional Random Field blir trent opp
på den tekstlige dataen og brukes til å hente ut viktige ord og uttrykk som beskriver teksten
kortfattet. Disse ordene og uttrykkene blir brukt til å trene en Support Vector Machine og
en Random Forest klassifiseringsmodell. Begge blir evaluert mot andre systemer i littera-
turen, mot samme algoritme med alle ord som features og mot algoritmene med tilfeldig
utvalgte features. Rapporten finner at en reduksjon av antall features fører til en 4 prosent-
poeng reduksjon i nøyaktighet og en 81.5 prosent reduskjon i tid brukt til å bygge modellen.
Vi konlkuderer med at det er mulig å redusere feature-rommet uten significant redusksjon i
nøyaktighet. Vi konkluderer også med at denne metoden ikke er god nok i seg selv for å tjene
mye penger på aksjemarkedet. Dette passer godt med tidligere arbeid på feature reduksjon.
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Chapter 1

Introduction

In this chapter the scope and limitations of the thesis will be presented, as well as previous
work on the problem and the structure of the report.

1.1 Background

The financial markets have many positive effects on the economy [7]. For as long as there
have been stock markets, there have been people who want to get rich by beating the market.
Many investors read news and make up their mind whether a stock price will go up or down.
People are steered by emotions and this is reflected in their investing [9][36][20]. If a terrible
news-story emerges the stock price might fall, albeit for only a short time. The fundamen-
tal value of a stock is not decided by emotions, but in a short window after a news story is
released the market could be influenced by impulsive investors. According to the Efficient
Market Hypothesis [22], the stock prices will incorporate all information about the stock as
soon as it is available. The hypothesis exist in three different forms: Weak, semi-strong and
strong. The weak form includes all historical information. The semi-strong form adapts
to both historical and current information and the strong form includes the same as semi-
strong in addition to insider information. Empirical studies support that EMH is true in its
semi-strong form [22]. Since markets need to adapt to the new information, there is a small
window of opportunity before the prices change. If a computer could predict this movement
and execute a sale or purchase before the price changes, then money can be made.

The number one reason why this is an interesting task is obviously a monetary one. Being
able to predict stock prices in real time could prove very profitable. On a more technical
level it is interesting to improve the techniques used in the classification of textual docu-
ments. Using all terms in a document collection could make the feature space used very big,
even though most of the terms will have little informational value. If the message could be
represented with the use of fewer terms, computational efficiency can be improved without
sacrificing accuracy.

Previous work in this field includes a number of different news traders. [12] uses a Support
Vector Machine to predict changes in the stock prices on the German stock exchange. The
paper manually divide the data set in to different categories of news and do a two stage clas-
sification. First they train a classifier that predicts the news category, and then they train a
classifier that predicts the trend in the 15 minutes following the release. [27] analyse a num-
ber of different text mining systems for stock markets. They also introduce their own system,
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NewsCAT [25], [26], [28]. They conclude that many of the prototypes have some weaknesses.
Ænalyst [19],[18], [31] is a system that uses 5 categories for classification; Surge, Slight+, No
recommendation, Slight-, and Plunge, to predict the intraday stock movement using news
from YAHOO!Finance. They use a Naive Bayes implementation for classification. A trend
in these systems is the granularity of the data. NewsCAT is the one with the shortest, and it
uses 15 seconds between price evaluation. It uses three categories; Buy, Short, and No Rec-
ommendation. [43] combines news with technical indicators to predict trends in the stock
market. Only closing prices are used for training and simulating. Support Vector Machines
are used for classification and they are able to make a modest profit. [39] combines text
learning with genetic algorithms. They use news specific to one stock to classify it. They find
that stocks with many news stories in the data set are predicted with higher accuracy.

[11] examines how selecting features impact the performance of Support Vector Machines.
The paper concludes that they only find one way of selecting important features that in-
creases performance compared to using all features. They found that Bi-Normal Separation,
a metric they introduce themselves, performs better than using all features. They only use
statistical metrics after the fact to filter the features, with no mention of using a sequence
problem solution.

[5] and [16] show that the run time of the Support Vector Machines are very dependent on
the memory requirements. Both in the training and the prediction phase a limiting factor
is the memory. In the end of the training part of the algorithm, all dot products between
the support vectors are held in memory. If the memory requirements exceed the available
memory, then the algorithm will slow down significantly. He also shows that most time in
each iteration is spent on evaluating Kernel functions. This step has a complexity og O(qlf)
where f is the maximum number of non-zero features in the training examples. This shows
that reducing the number of features will greatly speed up the run time. [41] shows that the
number of Support Vectors have a dramatic impact on the efficiency of SVMs and [37] shows
that the number of support vectors increase linearly with the number of training instances.
From the article it follows that the critical amount of memory needed scales at least like
B2n2 where n is the number of support vectors and B is the smallest classification error
achieved with a given kernel function. This means that for both large sets and noisy sets,
the memory complexity will be high. For time critical processes reducing the run time will
increase performance. Trading stocks is a time critical problem because the market reacts
quickly to news. [42] use a feature selection method for improving the run time of SVMs
using gradient descent and minimizing the bounds on the leave-one-out error.

1.2 Problem Formulation

Investigate whether classification accuracy is reduced when using only important features
as selected using information extraction methods for both Support Vector Machines and
Random Forest. Create a data set based on financial data in combination with news and
attempt to create a predicting system using a small subset of the term features in the corpus
and compare the results to other systems and algorithms. Compare the performance of this
system to using all term features and to using only random features.
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1.3 Objectives

1. Create data set for training and evaluation purposes

2. Train a Conditional Random Field to reduce features needed for classification

3. Compare Random Forest to Support Vector Machines

4. Compare best case with results in the literature

1.4 Structure of the Report

The rest of the report is structured as follows. Chapter 2 presents some relevant work for
our problem. Chapter 3 introduces the classification methods used for classifying the doc-
uments in the data set. It also describes the sequence problem and how it is solved using
Conditional Random Fields. Chapter 4 will describe the data set used for this thesis and the
processing of it. Chapter 5 describes how the empirical experiments were done and how the
results were collected. Chapter 6 presents the results of said experiments. Chapter 7 dis-
cusses the results before chapter 8 concludes and presents what further work can be done
on this problem.
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Chapter 2

Related Work

In this chapter, previous work on the problem will be presented in more detail. This is done
to find comparable results and to clarify what part of the problem is yet to be examined.
The section presents 4 different news traders that work on the principle of combining finan-
cial news with textual data. The section will also present different work done on reducing
features for the Support Vector Machine classifier.

2.1 News Traders

2.1.1 Ænalyst

[31] presented the system Ænalyst. A news trader that attempts to predict changes in trends
for single stock market prices. It uses a piecewise linear regression to model the market fluc-
tuations and attempt to both predict a change in trend and the reason for it. It links trends
to news messages from YAHOO!Finance. The textual data is processed by using a Part-of-
Speech tagger and a Named Entity Recognizer. It attempts to create links between entities by
combining the two methods. If two entities are separated by a verb, then that combination
is said to be linked. The example given in the paper is "Yesterday, Bill Clinton addressed the
United Nations about concerns over nuclear testing". The entities identified are Bill Clinton
and United Nations. They are separated by the verb "adressed". This is called a typed link.
Using these links they create a hierarchy of subsumptions which are relationships between
documents. They train a Naive Bayes classifier using entity pairs and the hierarchies as well
as word distributions. The difference between this approach and the approach presented in
this thesis is that our approach is to use the POS and NER tags to identify important features
that are independent of the Named Entities, but where the NER-tag can be used to identify
such features. This thesis also uses a Support Vector Machine and a Random Forest to clas-
sify documents. This thesis uses a naive way of representing trends with the simple goal of
predicting the short term change in trends.

2.1.2 NewsCAT

[28] presents a system called NewsCATS or News Categorization and Trading System. The
prototype of the program was created by the Institute of Information Systems of the Univer-
sity of Bern, starting in 2002. They attempt to predict the changes in trends in the period
of 15 minutes after a news story is released. The system is has three parts. First it prepro-
cessed the text documents collected as press releases. They use bag-of-words features and

7
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uses a Collection Frequency multiplied by Inverted document frequency to weight the fea-
tures. Where the system is different from similar work in the past, is where they introduce a
manually created thesaurus of features assumed to drive stock prices. The system then cate-
gorizes the texts into different types of news to single out news that are not relevant to price
setting. They use a heuristic to filter news that have led to higher volatility in the past. The
final trading phase classifies the system using three categories: good, bad and neutral based
on whether the trend in the period after release increases or decreases by 3% or more. The
system is created to be able to support multiple classification methods. They use a temporal
granularity of 15 seconds to measure stock prices. The thing done in this thesis as opposed to
NewsCATS is that our thesis uses a Conditional Random Field to create the thesaurus auto-
matically. In stead of having to come up with all the words and phrases, which has the risk of
missing many words, this thesis tries to find general patterns that indicate that the features
are important. This thesis also uses a smaller temporal granularity, actually considering all
trades. NewsCATS limits the number of features to 15% of the documents used. Our system
does not put a predefined number on the maximum features, but rather by coincidence the
important number of features extracted is close to 15%.

2.1.3 Rule based system created B. Drury and J. Almeida

[8] creates a system that uses quotations in news to predict stock movements. The rationale
behind the strategy is that influential people can make the stock move. They use an example
where the CEO of the Ratner Group told an audience that the reason their products were so
cheap was because they were "total crap". Obviously he meant that the products were not
meant to last, and customers should know that, but the quote made the company lose 500
million pounds in market value and they had to replace the CEO and change the name of the
company. Few examples are as drastic as the one they use, but the reasoning is solid. They
separate the speakers into biased and non-biased people with regard to the company. A CEO
of a company is expected to speak positively of their own company, while a analyst in a news
paper should be expected to give honest opinions. It uses a rule based classifier, created by
hand to see if a statement should lead to change in stock prices. They align all the news
with the stock prices by classifying a news as positive if it is released on a day when the price
increased by more than 1% and negative if the direction on the day of release was negative.
Movement smaller than the threshold was classified as neutral. This thesis does not use rule
based classifiers, as they have to be hand made and are dependent on the creator knowing
what will make the stock price change. A classification method used for stocks has to be
dynamic, and an automated system can be retrained every once in a while. Using closing
and opening price is considered too coarse a time interval to evaluate the significance of a
news story. In the news messages evaluated in this thesis, quotes are not prevalent, meaning
the data set would shrink significantly if it was the only thing considered. If the quotes has to
be collected from editorial news sites, then the news are already old when they are released.

2.1.4 Combining News with Technical Indicators by Y. Zhai et. al

[43] combines news with seven technical indicators. The textual data is preprocessed to
remove stop words. The special thing about their preprocessing step is that they do not use
each word directly, but they use a background thesaurus called WordNet that transforms the
words into higher level features. This is a way of both increasing the flexibility of the system
in regards to variation in vocabularies and it works to reduce the feature space. The news are



2.2. FEATURE REDUCTION 9

separated into two different categories; those corresponding to a specific stock and those
related to the market in general. A classifier is trained for each of the types and combined
with the indicators to predict the movement of the stock on the day after the message was
released. One of the indicators used is momentum: Ct −Ct−4 where Ct is the closing price at
day t. Another indicator is the rate of change: Ct

Ct−n
x100 which corresponds to the percentage

change over the last n days. This thesis again considers using temporal granularity of days
to be too coarse. [43] does not say why they want to reduce the feature space, only that it is
a consequence of using the WordNet system. Our system uses a different method to reduce
the features with the intent of reducing the run time while not reducing the accuracy. [43]
are able to do 11 trades that make a profit in total. This thesis considers the volume of news
messages used in the paper to be small and will use a significantly higher number to train a
classifier.

2.2 Feature Reduction

2.2.1 Using F-Score and Random Forest by Y. Chen and C. Lin

[6] uses several methods to reduce the feature space of the Support Vector Machine. The first
thing they do is rank the features using a F-Score, which is defined as:

F (i ) ≡
(
x(+)

i −xi

)2 +
(
x(−)

i −xi

)2

1
n+−1

∑n+
k=1

(
x(+)

k,i −x(+)
i

)2 + 1
n−−1

∑n−
k=1

(
x(−)

k,i −x(−)
i

)2 (2.1)

where xi .x(+)
i , x(+)

i are the a ith feature of the whole positive and negative data sets respec-

tively. k(+)
k,i is the ith feature of the kth negative instance. This measure indicates the dis-

crimination between the positive and the negative sets and the discrimination between each
individual instance within the sets. The F-score is calculated for every feature and several
thresholds are used to remove the features with low F-score. The features are then used with
a Support Vector Machine to find the best threshold. Their second and third method uses
F-score in combination with Random Forest and radius margin bound SVM. The Random
Forest algorithm can rank the features used. In this thesis the program Weka is used which
does not support this feature of the Random Forest algorithm.

2.2.2 Empirical Study of feature selection metrics by G. Forman

[11] does a empirical analysis of 12 metrics used for selecting features for Support Vector
Machines. The paper introduces their own metric called Bi-Normal separation, defined as:

|F−1(t pr )−F−1( f pr )| (2.2)

where F is the Z-score and tpr and fpr are the true positive rate and false positive rate respec-
tively. To find the best features, every feature is evaluated using the metric and then the best
k features are used for classification. The other metrics considered included accuracy, Chi-
Squared, Information Gain and random. Their own metric performs better than any other,
and in fact it is the only metric that performs better than using all features. They evaluate
all features according to the metrics, but this thesis attempts to find the features by solving a
sequence problem and only using important features.
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2.2.3 Convex optimization of feature selection by M. Nguyen and F. De la
Torre

[30] uses a convex energy-based method for combining feature selection and parameter
learning using Support Vector Machines. Because the problem is convex, the solution is a
global optimum. The mathematics are presented in [30] along with the proof. They are able
to perform as well as a normal Support Vector Machine with the use of significantly fewer
features. This thesis recognizes that the mathematical optimality is difficult to beat, but it is
interesting to see whether the use of a Conditional Random Field also can find good features
using a different approach.



Chapter 3

Classification and Information extraction

This section presents the algorithms that will be used in this thesis. Those are Support Vec-
tor Machines, Random Forest and Conditional Random Fields. Some other algorithms are
presented to make the presentation of the Conditional Random Field easier.

3.1 Support Vector Machines

Support Vector Machines SV M is a state-of-the-art classification method. The algorithm
works by creating a hyperplane that separates the data set into two classes with a maxi-
mum margin. This is a trivial task in a 2-dimensional system where the hyperplane will be a
straight line. Sometimes such a line is not present, but this is solved by mapping the whole
system into a higher-dimension.

The presentation of the Support Vector Machine follows the presentation in [23]. A hyper-
plane is defined by a intercept term b and a normal vector ~w perpendicular to the hyper-
plane. This vector is referred to as a weight vector [23]. A hyperplane perpendicular to a
normal vector means that all points ~x on the hyperplane satisfies ~w>~x = −b. A two class
system is the norm for Support Vector Machines, with one class being denoted as +1 and the
other as -1. To classify a data point, we check which side of the hyperplane it is. Formally,
with a data point D = {(~xi , yi )} where ~xi is the point in space and the yi is the class label.
Given this, a linear classifier is then:

f (~x) = si g n(~w>~x +b)) (3.1)

The sign operator outputs whether the argument is greater or lower than zero. The output is
either -1 or +1. This is used as the prediction, -1 means the classifier predicts the one class,
and +1 is an indication of another class. To have some metric as to how good a classification
is we can use the distance from the decision boundary. If the classification of the data point
is far away from the hyperplane, the confidence of the classification is good. [23] defines
the "functional margin of the i th example ~xi with respect to a hyperplane < ~w ,b > as the
quantity yi (~w>~xi +b). The functional margin of a data with respect to a decision surface is
then twice the functional margin of any of the points in the data set with minimal functional
margin." Because we can just replace ~w by 5~w or b = 5b to make the function margin as wide
as we want, we call the point~x ′ the closes point on the hyperplane to~x. Then

~x ′ =~x − yr
~w

|~w | (3.2)

11
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r denotes the distance from~x to the decision boundary and y is a factor that when multiplied
with only changes the sign of the two ~x on either side of the boundary. Since ~x ′ lies on the
decision boundary, it satisfies ~w>~x ′+b = 0. Since~x ′ =~x − yr ~w

|~w | then ~w>(~x ′− yr ~w
|~w | )+b = 0.

We solve this for r which gives us

r = y
~w>~x +b

|~w | (3.3)

We call the closest points to the hyperplane for support vectors, hence the name of the
method. [23] defines the "geometric margin of the classifier [as] the maximum width of the
band that can be drawn separating the support vectors of the two classes." This geometric
margin is invariant to scaling parameters, and so we can introduce any scaling parameter we
want and not affect the geometric margin. In order to make the maths prettier we impose
that all functional margins are at least 1 and for some data vectors are equal to one. This
means that yi (~w>~xi +b) ≥ 1 for all vectors in the set. Our goal is to maximize the geometric
margin, given as p = 2

|~w | which follows from the fact that all distances from the hyperplane is

ri = yi (~w>~xi+b)
|~w | . Maximizing p = 2

|~w | is equal to minimizing |~w |
2 . This gives us a minimization

problem where we want to find ~w and b such that:

• 1
2 ~w

>~w is minimized

• for all {~xi ,~yi },~yi (~w>~xi +b) ≥ 1

Solving this is solving a quadratic optimization problem. The procedure for solving it is to
rewrite it as a dual problem. In the dual problem we introduce a Lagrange Multiplier αi for
each constraint~yi (~w>~xi +b) ≥ 1 which transforms the problem into:

Find αi ,...αN such that
∑
αi − 1

2

∑
i
∑

j αiα j yi y j~x>
i ~x j is maximized, and

•
∑

i αi yi = 0

• αi ≥ 0 for all 1 ≤ i ≤ N

The solution is then:

• ~w =∑
αi yi~xi

• b = yk − ~w>~xk for any~xk such that αk 6= 0

This results in most αi to be zero. Those that aren’t zero, are support vectors. Finally we have
a classification function:

f (~x) = si g n(
∑

i
ai yi~x

>
i ~x +b) (3.4)

The problem with a solution like this is that it is prone to over fitting because it assumes that
the whole data set is separable with no noise. If you optimize this system to fit every data
point you would end up with something like Figure 3.1.
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Figure 3.1: When the hyperplane is made to fit the data set perfectly, we have a problem when we
introduce a new data point (square). Intuitively we would think that it should be a cross, given its
position on the right hand side in the vector space, but since the two noise stars made the hyperplane
curve, it is wrongly classified as a star.

To overcome the problem of over fitting, we have to accept some slack when we define the
hyperplane. If the algorithm accepts that some of the data points are present on the wrong
side of the hyperplane, the decision boundary becomes more general. This is often called
soft margin classification. It is done by introducing an error constant ξ that lets the algo-
rithm make mistakes in the initial creation of the hyperplane at a cost proportional to ξ. The
formula for the Soft Margin SVM is then according to [23]:
Find ~w , b and ξ≥ 0 so that:

• 1
2 ~w

>~w +CΣiξi is minimized

• and for all {(~xi ,~yi )},~yi (~w>~xi +b) ≥ 1−ξi

The soft margin SVM uses a trade-off between errors in classification and the width of the
decision boundary. Every point that is misclassified is penalized according to ξ. The param-
eter C is a "regularization term" [23] that is set by the user and tells the algorithm how to
deal with errors in training. A large C imposes a high cost for errors in classification, making
the decision boundary smaller. The dual problem formulation for a soft margin SVM then
becomes.

Find αi , ...αN so that Σαi − 1
2ΣiΣ jαiα j yi y j~x>

i ~x j is maximized and

• Σiαi yi = 0

• 0 ≤αi ≤C for all 1 ≤ i ≤ N

Notice that neither ξ or their Lagrange multiplier is in the formulation. We solve the dual
problem as:
~w =Σαyi~xi

b = yk (1−ξk )− ~w>~xk for k =argmaxkαk

Again we only need the dot product between data points to classify the elements. In the
standard SVM all non-zero αi indicates a support vector. This makes the computations sim-
pler, but in a soft margin classification the data points inside the boundary will also have a
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non-zero αi . If the data set is large this could lead to a problem with computational com-
plexity. Because linear SVMs complexity is dependent on both the number of features and
the number of instances, they can be quite slow on big data sets.[23].

Figure 3.2: The two classes UP and DOWN are linearly separable and so we do can simply draw the
line that creates the biggest margin.

Figure 3.3: The two classes are not linearly separable in the vector space it is mapped in, but by
mapping it to a higher dimension space we see that the classes become linearly separable and again
we can draw the line that separates them.

To train a classifier on a data set with many dimensions the algorithm maps all data points
into a very high dimension. The only thing that is needed in order to make the algorithm con-
verge is the dot product of the Support Vectors. Calculating the cross products of a very high
dimension system is complex and could not be done in reasonable time if done in the tradi-
tional way. This is where kernel functions come into play. They are functions where the value
equals the dot product of two points in an arbitrarily high dimension; k(x, y) =φ(x) ·φ(y)

This can be used in the classification formula for an SVM, giving us the power of raising the
data set to a high dimension and reduce the computational complexity. After the SVM has
been trained, classifying a new instance is pretty straight forward. We can simply raise it to
the dimension we want and see what side of the boundary it falls.

3.2 Random Forest

[4] introduces the Random Forest classifier. It is based on decision trees, but where other
classification algorithms train one tree to make its decisions the Random Forest algorithm
creates many.
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Figure 3.4: A single decision tree that evaluates three variables. An instance with the feature vector
(0.8,0.4,0.2) would be classified as Class 1, and an instance with feature vector (0.3,0.6.0.2) would be
classified as Class 2.

Figure 3.5: Random Forest generates multiple trees, where each node evaluates on a random variable.
The majority vote from all the trees are the prediction of the whole model.
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The trees are made as follows:

• Sample as many cases in the training set as there are instances, but do it with replace-
ment.

• Choose the number of random variables N to be evaluated in each node. N should be
much smaller than the total number of variables. At each node N random variables
are picked and the best split is performed on these variables.

• The trees are grown to their largest extent possible without pruning.

After the trees are created, classification is done using a voting scheme. Any new instance is
sent through every tree created and the output class of each individual tree is returned. The
class that gets the most votes is the classifiers returned prediction.

Random Forests are shown to be resistant to noise and need only a few variables in each tree
to perform well [4]. On some data sets the optimal solution is found using only one random
variable in each tree. On bigger and more complex data sets a larger amount of variables
lead to an increase in strength and a decrease in error-rates.

One of the strong features of the Random Forest algorithm is its ability to rank the impor-
tance of each feature. It does this by looking at the Out-of-bag-error OOB of the whole set
and compares it to the Out-of-bag-error if the one variable is removed. To calculate the OOB,
the algorithm reserves a part of the training set. These instances are sent down the trees. The
OOB is then the ratio of the times when the voted class is different from the real class. The
features that have the biggest impact on the OOB are most important to the classification.
This information can be used to reduce the features needed for classification. Unfortunately
the program Weka used in this thesis does not support feature ranking, and therefore this is
not done as part of the project

The error of the forest is dependent on two things: The correlation between any two trees and
the strength of each individual tree. Reducing the correlation or increasing the individual
strength of the trees will make the total error rate go down. Due to the Strong law of Big
Numbers the Random Forest algorithm does not overfit. This means that no matter how
many trees you create and how many variables you choose, the error-rate will converge to
an asymptote value. The proof of this is shown in [4] and the reader is encouraged to read
the paper themselves.

3.3 Conditional random Fields

To introduce the Conditional Random Fields, the general sequence problem that it solves is
presented as well as other solutions and the problem with them that CRFs solve.

3.3.1 Sequence problem

Many applications for classification are not compatible with the document classification
methods that are defined above. Often the state of the current node is dependent on the
surrounding states and it cant be evaluated on its own data alone. A very common problem
is Part-of-Speech tagging. The goal is to tag each word in a sentence or text with their lexical
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Figure 3.6: A Markov Model. Each arrow is a transition between states with a probability associated
with it. No arrows from one state to another indicates that the transitional probability is zero. The
sum of the probabilities in to a state is 1 and the same is true for all probabilities going out.

category. From basic grammar we have some notions of how a sentence is structured. To
identify what lexical class we need to look at the other words in the sentence. To formalize
this problem:

We have a set of nodes xi , ...xN . Find the states yi that maximizes p(yi |xi ...N ).

Solving sequence problems have been done using some different methods including Hidden
Markov Models - A generative model, meaning they assign a joint probability distribution to
pairwise observations trying to maximize the joint probability of the training set. According
to [17] these solutions are dependent on enumerating all possible observation sequences.
This makes them less useful for many interactive features and long range dependencies.

3.3.2 Hidden Markov Models

A well known approach to solving sequence problems is the Hidden Markov Model or HMM-
method. A Markov Model is a stochastic model that models N states and the probability of
the state changing from one to another from time ti to time ti+1 [34]. An example of a Markov
Model is shown in Figure 3.6.

Knowing the probabilities from one state to another, we can easily find the most likely state
to be in at time t. In a real world problem we usually don’t know the transitional probabili-
ties. In a sequencing problem we know the states at all times in our training set, but we don’t
know what model can explain these results. A HMM is a Markov Model where the transi-
tional probabilities are hidden. Solving a HMM-problem is maximizing the probability that
a model is correct given the observed states. This is done using the Baum-Welch reestimation
formulas [2]. This creates a model that can be used on new test examples. The classification
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happens by going through the model and find the label associated with the most likely state
at time t.

3.3.3 Maximum Entropy Markov Models

The Maximum Entropy Markov Models or MEHMM are conditional probabilistic sequences
[17] and retain all advantages of the HMMs [24] but are not generative. They are condition-
ally probabilistic and are able to find the next state by not only looking at the current state,
but also take into account previous observations. [17]: "In MEMMs, each source state has a
exponential model that takes the observation features as input, and outputs a distribution
over possible next states."

3.3.4 The Label Bias Problem

Many non-generative finite state models can have a problem called the label bias problem.
These models include; classical probabilitic automata [32], discriminating Markov models
[3], maximum entropy taggers [35] and Maximum Entropy Markov Models, in addition to
non-probabilistic sequence tagging and segmentation models with independently trained
next-state classifiers [33] [17]. The label bias problem occurs when state machine have few
outgoing transitions. Because the transition from a state only competes with other states
going from that state, there will be a bias towards states with few outgoing transitions. If the
state only has one out-transition it will all but ignore the observation. In Figure 3.7 a system
prone to the label bias problem is shown. Both state 1 and 4 each have only one output
transition. The node then has to transfer all its mass to the next state without regarding the
observation at all. We see that the end result is only dependent on the first node. When a
system like this is trained on a data set, if one of the words occur more often than the other,
that word will win in classification every time.

Figure 3.7: The label bias problem, after [17]. _ means the null output, meaning that no results are
given from that node.

3.3.5 Conditional Random Fields

[17] introduces a solution to the sequence problem that is unaffected by the label bias prob-
lem is called Conditional Random Fields. Over the sequence to be labelled, let X be a random
variable and Y is a random variable over the corresponding label sequence. For all Yi in Y,
Yi is part of a finite label alphabet Y . Like the problem of Part-of-Speech tagging, X can be
natural language words and sentences and Y ranges over all the possible Part-of-Speech tags.
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The goal is to construct a conditional model p(Y|X). In [17] a CRF is defined as:

Definition. Let G = (V,E) be a graph such that Y = (Yv )v∈V , so that Y is indexed by the ver-
tices of G. Then (X,Y) is a conditional random field in case, when conditioned on X, the ran-
dom variables Yv obey the Markov property with respect to the graph: p(Yv |X,Yw , w 6= v) =
p(Yv |X,Yw , w ∼ v), where w ∼ v means that w and v are neighbors in G.

Being globally conditioned on X, as opposed to the HMM local conditioning, the CRF is not
affected by the label bias problem. The simple form of CRF is the case where the CRF is a
linear chain where G = (V = 1,2, ...m,E = (i , i +1)). X does not need a graphical structure
and does not need to have the same structure as Y. For simplicity this paper considers X =
(X1,X2, ...,Xn) and Y = (Y1,Y2, ...,Yn).

A clique is defined in graph theory for undirected graphs G = (V,E), as a sub set of all vertices
where for every two vertices in the sub set, there exists an edge connecting the two. In a
tree structure and the simplest form of tree is a chain, the clique will be the edges and ver-
tices. [17] claims this makes the joint distribution over Y given X, as a consequence of the
fundamental theorem of random fields [14] have the form:

pθ(y|x) ∝ exp

( ∑
e∈E ,k

λk , fk (e,y|e ,x+ ∑
v∈V ,k

µk gk (v,y|v ,x)

)
(3.5)

where x is a data sequence and y is a label sequence and y|s is the set of components in y
associated with the vertices in subgraph S. fk and gk are features. An example of this could
be that Xi ends with "-ly" and the tag Yi is "Adjective". If the feature is present, then fk or gk

are 1 and if not they are 0.

Solving the problem is done by estimating the parameters θ = (λ1,λ2, ... : µ1,µ2, ...) from a

dataset D = (X(i ),Y(i ))
N
i=1 with the observed distribution p̃(x, y). This is done by maximizing

the log-likelihood objective function O (θ):

O (θ) =
N∑

i=1
log pθ(y(i )|X(i )) ∝∑

x,y
p̃(x,y) log pθ(y|x) (3.6)

Estimating these parameters is not in the scope of this thesis. To see how it is done in prac-
tice, see [17] and [38].
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Chapter 4

Collection and processing of data set

The data set is a combination of financial data and textual data. There were no easily availible
data set for this problem and therefore a new one was created. This chapter will present how
the data set was created and combined and how it was processed.

4.1 Financial Data

The financial data were a collection of all trades on the Oslo Stock Exchange (OSX) between
the second of November 2009 and the 25th of September 2012. In total there were 55415021
transactions in the period. The format of the original files where a text file for each ticker
symbol for every day that contained every transaction of that stock on that particular day.
Each trade was given like this:

time price quantity board source buyer seller initiator
20100208T090214 79. 72 Auto trade NON DNM S

Table 4.1: Trade: Aker Solutions on 2010-02-08 at time 09:02:14

In order to make the data easier to work with a program was written that parsed all the files
and saved the transactions on a time line for each ticker symbol. This resulted in 270 dif-
ferent time series. The number of trades for each stock varied greatly, from almost none
to millions of transactions. The time lines were made by creating a Trade object for each
transaction sorted by a unique ID number. Each time-line was saved as an ArrayList Java-
object. In order to work on the time line a binary search method was implemented to find
the closest transaction to a given time. To find the average price in a period after a message
was released, the transaction number was iterated until the last trade before the end of the
period.

4.2 Textual Data

The textual data were collected from the web-page NewsWeb1, which is an outlet for manda-
tory news released by the Oslo Stock Exchange. All companies on the OSE is required to no-
tify the market of many important events, i.e. insider trading and contracts of a certain size.
NewsWeb should be the first place such news are released, with the possible exception of

1www.newsweb.no
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the companies own web sites. The documents collected were all mandatory stock specific
messages published in the time windows of the financial data. This resulted in 74 392 mes-
sages. Each message was parsed from the pages HTML-code and the following fields where
extracted:

• Date: The time and date the message was published.

• Symbol: The ticker symbol indicating what company the message is concerning.

• Title: The title of the message.

• Message: The body of the message.

• Category: The type of message it is, i.e: Mandatory Notification of Trade

In order to further process the documents, the message and title parts where tokenized using
the Stanford Natural Language Processing pack (NLP). NLP was also used to find the Part-of-
Speech (POS) tag for each token and the Entity of the token was found using the NLP Named
Entity Tagger (NER).

4.2.1 On removal of stop words

Stop words are terms that contribute very little to the classification of a document. They
are words that occur extremely often in normal texts. It is common to remove these words
during the pre-processing stage. In this thesis a Conditional Random Field is to be trained
and used on proper sentences. In that regard, removing the stop words could deteriorate the
CRFs performance and stop words were not removed. The stop words are removed when
creating a baseline algorithm that uses all features.

4.2.2 On stemming and lemmatization

Stemming is a technique to reduce the feature numbers [21]. Only the stem of the word is
used and all variations of the words are counted as a single features. Run, Runs, Running
would all be instances of the stem Run. Lemmatization is very similar to stemming, but
instead of finding a stem it finds the normalized form of the word. An example where the
two are nor equal is the three words compute, computing and computer. The stem would be
comput, but the normalized form of the word is compute. With the same rationalization as
in the previous section, we do not perform stemming or lemmatization on the data set. It will
not be done for training the baseline algorithm either as it has been shown to not increase
performance [15].

4.3 Combining the two data sets

4.3.1 Tag the files according to stock movement

The class for the documents are defined according to the trends in the stock price after the
message was released. Two different methods for obtaining this trend were used. First a sim-
ple method was implemented that calculated the average price of the stock in a given time
frame after the news was released. If the average price was either significantly higher or lower
based on a given threshold the class was set accordingly as either ’pos’ or ’neg’. If the average
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price didn’t change more than the threshold value, then the document was classified as ’zero’.

The other method for obtaining the trends were implemented using linear regression. Linear
regression tries to find a straight line that models the correlation between one or more vari-
ables. In our data set the only variables are time and price. The resulting line is represented
as a y = Ax +B equation. Here A is the slope of the curve and B represents the intercep-
tion of the y axis, at the time of the released news. y is the price variable and x is the time
in seconds. We can find out how much the price has risen or decreased by solving for x. To
classify the documents we selected a threshold for what would be considered an increase or
decrease as a percentage. The change in price could therefore be found as 1− (y(x)/y(0).
Linear regression gives us the possibility of checking the significance of a model. This tells
us what probability the curve has of modelling the actual data. The lower the confidence
the better, as it tells us what percentage chance there is for the model to be wrong. By only
selecting the trends that have a significance lower than a given value, we can be confident
that the data we use are relevant. To classify the documents we say that those with a positive
trend and those with a negative trend and a satisfactory confidence are classified as such.
Any trend that deviates little from zero or are insignificant are classified as ’zero’. Using this
method performed much worse than the naive method of using average price, and therefore
the simple trend tagging was used in the rest of the report.

Many messages were removed from the corpus because there were not enough data to clas-
sify them. If there were less than 10 trades in a trading period, then the message was not clas-
sified. The same was true of messages that were released outside the OSE opening hours. The
only way to use them for classification would be to consider the closing price the day before
versus the opening price the next day, but for short interval trading purposes it is possible
that other factors influence the price change and therefore this report considered these news
to add uncertainty to the data set. The total number of instances in the data set after this was
27265.

4.3.2 Finding the optimal period to trade

The whole system is made with the goal of short term trading. Therefore it would be smart to
classify data using the time frame that gives the most money per transaction. In a real trading
situation a dynamic process might be better, but during preprocessing this has to be done
statically. To find the optimal point to hold the stocks, a program was created that checked
what duration in whole minutes after the release of all news would give the most profit, when
the criteria was that the average price was more than 0.5% higher or lower than the starting
price to indicate a trend. Simulating trades on all these trends resulted in 44 minutes to give
the best profit. Because of this result, the period of 44 minutes will be the one used in this
thesis and what the classification algorithms will be trained for.

4.3.3 Tag the messages for CRF

In order to make the Conditional Random Field work, the messages had to have a specific
format. In the training set the last class has to be the class to be trained for. In this training set
two classes were used. Important (I) or non-important (0). In order to classify the individual
documents two students agreed to help. They read through some of the articles and marked
the interesting terms and phrases that would have an impact on the stocks asking price.



24 CHAPTER 4. DATA SET

The terms were then tagged to comply with the format the program needed. A typical CRF
training file is presented in table 4.2:

Term PosTag Nertag Significance
Aker NNP ORGANIZATION O
Solutions NNPS ORGANIZATION O
wins VBZ O I
drilling NN O O
riser NN O O
contract NN O I

Table 4.2: Excerpt from CRF training file

4.3.4 Extract important features

The conditional random field found 3600 new terms based on the 392 terms tagged in the
training documents. A program was written that found all combinations of the features that
where found in close proximity of each other and checked the document frequency of all the
combinations and features. If all terms in a phrase was detected in close proximity to each
other, that would mean that the phrase was present. All features that occurred in less than 5
documents in the corpus was removed. The final number of features were 7690.

4.3.5 Creating feature vectors

A normal way to represent documents is by use of a vector, where each dimension represents
one feature. It is also normal to weight the terms using some different schemes. A normal
scheme would be the TFxIdf-weighting method. TF stands for term frequency and Idf means
inverted document frequency. Term frequency is the number of times the term occurs in the
specific document. This measure tells us how prevalent the term is in the document and it is
intuitive that the more often a term occurs in a document the better that term describes the
document. To define inverted document frequency we first define the document frequency
DF. DF is the number of documents in the whole collection that contains the feature. A term
that occurs in all documents will not give us much help in discriminating between classes.
We want terms that occur in few documents to be weighted higher. The inverted document
frequency does this, and is defined as:

I d f = log(
N

d f
).

Here N is the total number of documents in the collection and df is the document frequency.
By multiplying the TF with the Idf we get a weight that increases with many occurrences of
a term within a document and decreases with the number of documents that contain the
term. This was done for all the important features and all files were represented as vectors
in a feature space. Each dimension on the vector corresponds to a feature. This way, it is
possible to use spacial classification methods like Support Vector Machines.
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Approach

This section will present how the experiments will be done and how the algorithms are used
and configured. The implementation was done in Java.

5.1 Training CRF

To train a conditional random field two things are needed. Firstly, a set of features that de-
scribe the states of each word and secondly the dependencies between terms. In this thesis
the first is done by tagging each word with its Part-of-Speech tag and its Named Entity as
well as a manually annotated training set as seen in Table 4.2. The second is done using a
template file that tells the algorithm what nodes to look at in relation to the current one. A
section of the template file is shown in table 5.1.

# Unigram
U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]

U05:%x[-1,0]/%x[0,0]

Table 5.1: Excerpt from template file - U00: says that the current state should evaluate the term in the
second to last position before it. U05: says that the current state should both evaluate the term of the
previous state and its own in combination.

The actual Conditional Random Field implementation used for the work was CRF++ 1.

5.1.1 Part-of-Speech

The Part-of-Speech tag or PoS tag is the lexical group the word is a part of. Most people are
familiar with the structure of a sentence and the PoS-tag analyses this structure automati-
cally. It outputs whether a token is a verb, adjective, noun etc. and whether it is active or
passive among other things. This process can be done using a Conditional Random Field,
but this thesis have used a PoS tagger from the Stanford Natural Language Processing Group
2.[40]

1https://code.google.com/p/crfpp/
2http://nlp.stanford.edu
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5.1.2 Named Entity

The Named Entity of a token is a class label of what the word describes. It tells us whether
the token is an Organization, a place, a name, a date etc. Different models have a different
number of output classes. This thesis uses the Named Entity Recognizer bundled in the
Stanford Natural Language Processing Pack [10]. The model used only has the output classes:
Organization, Location and Person.

5.1.3 Manual tagging

To tag the corpus with important features, two students with an economical background
helped by manually reading through a number of articles and mark the terms and phrases
they considered to be important to convey whether the message is positive or negative. They
were given free reign over their process of evaluating the semantics of the documents. The
documents were not marked with the corresponding trends, meaning they had to make up
their own opinion as to the implication of the documents. There were some difference in the
way the two of them selected words. One of them looked mainly for economical terms and
noted that in order to make a qualified guess as to the impact of the news, some fundamen-
tal numbers for the company is needed. Some important features could still be extracted
just based on words. The other person put bigger weight on terms that occur early in the
document and in the title. Most documents had some terms that clearly stated the overall
semantics of the document. Terms like "Wins" and "Contract" will together indicate a posi-
tive news and "CEO" and "arrested" should imply a negative message.

5.2 Classifying documents

As written in section 4.3.1, the system uses trends in stock price to tag documents as either
positive, negative or neutral. Many files were removed from the data set because of lacking
data to classify it according to their trend.

The Conditional Random Field program returned a set of features. These were used to cre-
ate a feature vector for each document. By going through all the documents and recording
the frequency of the terms and weighting their importance using normal TFxIDF weighting.
These features were not only singleton words but also a combination of words occurring in
close proximity within the document.

The program Weka, developed by the University of Waikato [13], was used for the act of clas-
sification. It has built in support for both Support Vector Machines and the Random Forest
algorithm. It takes input in the form of a ".arff" file with a specific input format. The feature
vectors for the documents were loaded into the program and many iterations of the algo-
rithms were run. Information about each run was recorded, including run time and classifi-
cation accuracy. The algorithms were first used on a subset of the whole set, and then tested
on the whole data set to see whether the predicting power of the algorithm were good for
unknown vectors. Then the algorithm was trained and tested using 4 fold evaluation on the
wole data set.
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5.3 Baseline algorithm

To see whether the accuracy is reduced when fewer features are used, the results are com-
pared to the use of all features except stop words. In order to check the validity of the fea-
tures found using the Conditional Random Field, another baseline is made using the same
number of features, selected randomly from the full set of single term features found in the
whole data set. To make the comparison fair, stop words are removed before the random
features are selected. A program was written that checked the collection frequency of each
term, which is the total number of times a word is present in the whole data set. A word in
this case is a string of characters separated by a space or newline character. This resulted in
some words occurring very often. The most frequent words are removed. The selection of
random terms is done multiple times to ensure a non-biased result.
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Chapter 6

Results

This chapter will present the evaluation metrics used in the results of the experiments. This is
done to make the reader able to read the accuracy tables that are presented in the latter part
of the chapter. The chapter presents both the confusion matrices and the detailed accuracy,
both on a per-class basis and on the overall classification. The results are presented as is,
and will be further discussed in the next chapter.

6.1 Evaluation Metrics.

Precision is a very normal way to evaluate classification tasks. It says what fraction of the
returned documents are correctly classified.

Pr eci si on = T P

T P +F P
(6.1)

In the equation above, TP stands for True Positive, and FP stands for False Positive. A True
positive in this context means a correctly classified document in one direction. For exam-
ple. If a document that according to its trend is classified as positive, and the algorithm also
returns a positive, it is a true positive. On the other hand, if the true class of a document is
negative, and the algorithm returns a positive results, it will be a False Positive.

Recall is another standard metric. It tells us how many of the interesting documents are re-
turned. FN means a False Negative, which would be a document that is returned as negative,
but in reality is positive. TN is true negative and means that the algorithm correctly classified
a negative document.

Recal l = T P

T P +F N
(6.2)

F1-measure is the harmonic average between Precision and Recall. Because both precision
and recall is important metrics the F-measure combines them and it is one of the most im-
portant metrics used for evaluating classification results. It is defined as:

F1 = 2∗ Pr eci si on ∗Recal l

Pr eci si on +Recal l
(6.3)

To change the importance of Precision and Recall in this function, a more general F-measure
is defined as:

Fβ = (1+β2)
Pr eci si on ∗Recal l

(β2 ∗Pr eci si on)+Recal l )
(6.4)
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By adjustingβwe can adjust the importance of precision and recall after our own preference.
Setting β to one gives the standard F1-score.

The strategy supported by a news trader is two-fold: Either buy the stock when the indication
is positive or short sell the stock when the indication is negative. Shorting a stock is a form of
trade that profits from the stock price declining. It is done by loaning a set number of stocks
from a third party, and selling it for the current market price. After a agreed upon time the
stocks are to be paid back and are therefore bought in the market for the then current price.
A decrease in stock price would give a net profit. In regards to evaluation this means that we
should consider whether the system is able to predict with enough certainty to profit from
either of these strategies. The individual precision or rather the confusion matrices for each
class is therefore interesting.

6.1.1 Evaluating algorithm runs

We use two different evaluation methods. One of them is splitting the data set into one train-
ing set and a test set in a defined ratio. The other is using K-Fold evaluation. This means that
we run the algorithm K times and in each run we use the K-1 first parts as a training set and
test on the last part. We also shift what part of the set we use for testing. This reduces the
bias when the data set is not evenly distributed. If a certain class is under-represented in the
training set, it could impact the classification accuracy. Using K-fold evaluation reduces this
problem by averaging over many runs. For this thesis we use 4-fold evaluation.

6.2 Results for the Conditional Random Field

The manual tagging described in section 5.1.3 resulted in 392 tagged words. After the Condi-
tional Random Field had run its course, the total number of terms identified were 3600. Im-
portant features that occured in close proximity to each other were combined and any com-
binations of them were generated. These combinations were then regarded as new features.
Manual overlook of the returned terms showed both very relevant and some irrelevant terms.
Some of the terms returned were two terms put together either by mistake in the parsing of
the messages or in the original news. Some terms were also gibberish, i.e "no001.056444-6",
and some of the terms were non-descript, i.e a single character. To remove the features that
would give nothing to the classification, the terms that occured in less than 5 documents
were removed. The resulting number of features were 7690.

6.3 Results using All Features

First the algorithms are run using all single term features with stop words removed. The Ran-
dom Forest returned 10900 positive documents while the Support Vector Machine returned
9503. The overall difference in precision is 1.6% with the SVM being slightly better. Tables
6.1 - 6.3 show the confusion matrices and detailed accuracy for the two algorithms. The best
results are written in bold.
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a b c <– classified as
4777 1938 2787 a = pos
2976 2391 2319 b = neg
3147 1958 4972 c = zero

Table 6.1: All Features - Random Forest - 10 trees

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.503 0.345 0.438 0.503 0.468 0.611 pos
0.311 0.199 0.38 0.311 0.342 0.594 neg
0.493 0.297 0.493 0.493 0.493 0.639 zero

Weighted Avg. 0.445 0.286 0.442 0.445 0.442 0.617

Table 6.2: All Features - Random Forest - Detailed Accuracy By Class

a b c <– classified as
4324 1957 3221 a = pos
2467 2595 2624 b = neg
2712 1699 5666 c = zero

Table 6.3: All Features - Support Vector Machine

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.455 0.292 0.455 0.455 0.455 0.599 pos
0.338 0.187 0.415 0.338 0.372 0.594 neg
0.562 0.34 0.492 0.562 0.525 0.626 zero

Weighted Avg. 0.462 0.28 0.458 0.462 0.4581 0.608

Table 6.4: All Features - SVM - Detailed Accuracy By Class

6.4 Random Features

To evaluate the extracted features, both algorithms are run using the same number of fea-
tures as the Conditional Random Field extracted, selected at random. The selection was
done three times and the algorithms were run once for each collection of random features.
The accuracy for the runs fluctuated more using the Random Forest algorithm than using
the Support Vector Machine. The confusion matrices and detailed accuracy for all runs are
shown in Tables 6.5 - 6.16.

6.4.1 SVM

a b c <– classified as
3032 1092 5378 a = pos
1665 1116 4905 b = neg
1657 729 7691 c = zero

Table 6.5: Random Features - Support Vector Machine. Full set - Run 1
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.319 0.187 0.477 0.319 0.382 0.581 pos
0.145 0.093 0.38 0.145 0.21 0.536 neg
0.763 0.598 0.428 0.763 0.548 0.588 zero

Weighted Avg. 0.434 0.313 0.432 0.434 0.395 0.571

Table 6.6: Random Features - Support Vector Machine. Full set - Run 1 - Detailed Accuracy By Class

a b c <– classified as
3186 926 5390 a = pos
1783 1144 4759 b = neg
1612 707 7758 c = zero

Table 6.7: Random Features - Support Vector Machine. Full set - Run 2

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.335 0.191 0.484 0.335 0.396 0.584 pos
0.149 0.083 0.412 0.149 0.219 0.544 neg
0.77 0.59 0.433 0.77 0.554 0.595 zero

Weighted Avg. 0.443 0.308 0.445 0.443 0.405 0.577

Table 6.8: Random Features - Support Vector Machine. Full set - Run 2 - Detailed Accuracy By Class

a b c <– classified as
2991 1062 5449 a = pos
1672 1216 4798 b = neg
1671 698 7708 c = zero

Table 6.9: Random Features - Support Vector Machine. Full set - Run 3

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.335 0.191 0.484 0.335 0.396 0.584 pos
0.149 0.083 0.412 0.149 0.219 0.544 neg
0.77 0.59 0.433 0.77 0.554 0.595 zero

Weighted Avg. 0.443 0.308 0.445 0.443 0.405 0.577

Table 6.10: Random Features - Support Vector Machine. Full set - Run 3 - Detailed Accuracy By Class

6.4.2 Random Forest

a b c <– classified as
3988 1682 3832 a = pos
2390 1799 3497 b = neg
2583 1597 5897 c = zero

Table 6.11: Random Features - Random Forest - Run 1

The Random Forest runs had better F-measure, while the Support Vector Machine runs had
better Precision. Precision will be shown to be more important from a financial point of view
in the discussion section.
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.42 0.28 0.445 0.42 0.432 0.6 pos

0.234 0.167 0.354 0.234 0.282 0.582 neg
0.585 0.426 0.446 0.585 0.506 0.619 zero

Weighted Avg. 0.429 0.302 0.42 0.429 0.417 0.602

Table 6.12: Random Features - Random Forest - Run 1 - Detailed Accuracy By Class

a b c <– classified as
4360 2074 3068 a = pos
2664 2370 2652 b = neg
2906 2137 5034 c = zero

Table 6.13: Random Features - Random Forest - Run 2

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.459 0.314 0.439 0.459 0.449 0.599 pos
0.308 0.215 0.36 0.308 0.332 0.582 neg

0.5 0.333 0.468 0.5 0.483 0.623 zero
Weighted Avg. 0.431 0.293 0.428 0.431 0.429 0.603

Table 6.14: Random Features - Random Forest - Run 2 - Detailed Accuracy By Class

a b c <– classified as
4251 2362 2889 a = pos
2574 2611 2501 b = neg
2870 2312 4895 c = zero

Table 6.15: Random Features - Random Forest - Run 3

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.447 0.306 0.438 0.447 0.443 0.599 pos
0.34 0.239 0.358 0.34 0.349 0.582 neg

0.486 0.314 0.476 0.486 0.481 0.625 zero
Weighted Avg. 0.431 0.29 0.43 0.431 0.43 0.604

Table 6.16: Random Features - Random Forest - Run 3 - Detailed Accuracy By Class

6.5 Results using extracted Features

Both the Random Forest and the Support Vector Machine was run with the CRF-extracted
features. The total number of features were 7960. Multiple runs where run for each algo-
rithm. The different way the algorithms were evaluated were using 4-fold evaluation, first on
a small subset of the total data set, using only 6685 instances of the whole 27265. The algo-
rithms were also run, using the same number of instances for training and evaluating on the
rest of the full set. And finally the full set was evaluated using 4-fold evaluation. The Random
Forest algorithm was also evaluated on the small set using 4-fold evaluation, but increasing
the number of trees created from 10 to 100.
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6.5.1 SVM

The confusion matrices and detailed accuracy for the Support Vector Machine runs are pre-
sented in Tables 6.17 - 6.22.

a b c <– classified as
1112 445 831 | a = pos
647 539 733 | b = neg
694 368 1316 | c = zero

Table 6.17: SVM - Small set

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.466 0.312 0.453 0.466 0.459 0.594 pos
0.281 0.171 0.399 0.281 0.33 0.573 neg
0.553 0.363 0.457 0.553 0.501 0.606 zero

Weighted Avg. 0.444 0.29 0.439 0.444 0.437 0.592

Table 6.18: Support Vector Machine - Small Set - Detailed Accuracy By Class

a b c <– classified as
3034 1055 3287 | a = pos
1893 1314 2835 | b = neg
1997 958 4894 | c = zero

Table 6.19: SVM - 22% of full set used for training

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.411 0.28 0.438 0.411 0.424 0.582 pos
0.217 0.132 0.395 0.217 0.28 0.549 neg
0.624 0.456 0.444 0.624 0.519 0.591 zero

Weighted Avg. 0.435 0.303 0.428 0.435 0.418 0.576

Table 6.20: Support Vector Machine - Full Set 22% split - Detailed Accuracy By Class

a b c <– classified as
3572 1194 4736 | a = pos
2004 1559 4123 | b = neg
1992 943 7142 | c = zero

Table 6.21: SVM - Full set - 4 fold evaluation
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.376 0.225 0.472 0.376 0.419 0.593 pos
0.203 0.109 0.422 0.203 0.274 0.559 neg
0.709 0.515 0.446 0.709 0.548 0.603 zero

Weighted Avg. 0.45 0.3 0.448 0.45 0.426 0.587

Table 6.22: Support Vector Machine - Full Set - Detailed Accuracy By Class

6.5.2 Random Forest

Tables 6.23 - 6.30 shows the results for the Random Forest Algorithm. It is worth noting that
using 100 trees increased the accuracy of the classification, but running it on the whole data
set took to increase the number of trees further in this thesis.

a b c <– classified as
1258 492 638 a = pos
716 626 577 b = neg
813 512 1053 c = zero

Table 6.23: Random Forest - Small set - 10 trees

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.527 0.356 0.451 0.527 0.486 0.613 pos
0.326 0.211 0.384 0.326 0.353 0.581 neg
0.443 0.282 0.464 0.443 0.453 0.618 zero

Weighted Avg. 0.439 0.288 0.437 0.439 0.436 0.606

Table 6.24: Random Forest - Small Set - Detailed Accuracy By Class

a b c <– classified as
3647 1451 2278 a = pos
2475 1690 1877 b = neg
2712 1533 3604 c = zero

Table 6.25: RT - 22% of full set used for training - 10 trees

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.494 0.373 0.413 0.494 0.45 0.585 pos
0.28 0.196 0.362 0.28 0.315 0.566 neg

0.459 0.31 0.464 0.459 0.462 0.602 zero
Weighted Avg. 0.42 0.299 0.417 0.42 0.416 0.586

Table 6.26: Random Forest - Full Set 22% used for training - Detailed Accuracy By Class
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a b c <– classified as
4876 1948 2678 a = pos
3037 2302 2347 b = neg
3248 1901 4928 c = zero

Table 6.27: RT - Full set with 4 fold evaluation - 10 trees

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.513 0.354 0.437 0.513 0.472 0.612 pos

0.3 0.197 0.374 0.3 0.333 0.583 neg
0.489 0.292 0.495 0.489 0.492 0.634 zero

Weighted Avg. 0.444 0.287 0.441 0.444 0.44 0.612

Table 6.28: Random Forest - Full Set 10 Trees- 4 Fold Evaluation - Detailed Accuracy By Class

a b c <– classified as
1344 377 667 | a = pos
775 555 589 | b = neg
822 427 1129 | c = zero

Table 6.29: RT - Small set - 100 trees
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TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.563 0.372 0.457 0.563 0.504 0.627 pos
0.289 0.169 0.408 0.289 0.339 0.597 neg
0.475 0.292 0.473 0.475 0.474 0.632 zero

Weighted Avg. 0.453 0.285 0.449 0.453 0.446 0.62

Table 6.30: Random Forest - Small Set 100 Trees - 4 Fold Evaluation - Detailed Accuracy By Class

The tables show that the Random Forest algorithm performed better than the Support Vector
Machines, when using the extracted features from the Conditional Random Field. The best
results were from using 100 trees in the Random Forest, ant this run performed best overall
for Precision, Recall and F-Measure.
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Chapter 7

Discussion

This chapter will discuss the results presented in Chapter 6. The sources of error identified
for this thesis will be presented first, before discussing the implications of the results. This
chapter also discusses the big difference that small increases in accuracy make when apply-
ing a real trading strategy to the system. A higher precision is shown to be more important
than recall.

7.1 Sources of error

In Section 4.3.2 it was found that 44 minutes was the optimal time to hold stocks to maxi-
mize profits. This analysis was done in a rather crude way, and only looked at periods up
to 120 minutes. It is possible that the optimal period is not correct or that the optimal pe-
riod is outside the range examined. A classification algorithm is dependent on the classes
in the training set really being correct. Many news stories will undeniably contribute little
to the change in stock prices. Sometimes other occurrences could be the real reason a stock
has changed that is not covered by mandatory notifications. A message related to one stock
could have an impact on other stocks and so could make concurrently released notifications
hard to classify correctly. It is also possible that a message that would normally make the
stock move, does not on the account of high expectations etc. Such things can not be identi-
fied by the system in this thesis, but having a sufficiently big data set should overcome most
of these problems. A source of error would then be whether our data set is big enough to
correctly model the problem.

One problem that came up late in the project, was that the original parsing of the web pages
sometimes ended in two words occurring as one. This could result in the Conditional Ran-
dom Field training to be erroneous and the extraction of terms for the feature vectors to be
less accurate.

In a real world application there could be a problem with getting the information to a trader
fast enough. The stock prices change rapidly and if the system takes a long time to complete
its analysis and send its order to the broker, the system could miss the upswing.

39
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7.2 Compare the algorithms

When we look at the results from the Support Vector Machine versus the Random Forest, we
see that there is not a big difference between them result wise. The SVM has an F1-score of
45 % and the same is true of the Random Forest algorithm. They are both better at predicting
a positive class than a negative class. This could be the result of a skew in the distribution of
classes. There are less negative classes than positive and neutral classes. One could theorize
that having less of one class makes the algorithm worse at predicting that class. This is a
known problem with SVMs on very skewed distributions [1]. In these cases the distribution
are skewed on a more extreme scale, as much as 99.9 % towards one class. In our case it is
less extreme and we should think that there are enough training examples to properly train
the algorithm. One simple explanation for the skewness is that the differences between the
positive and the negative examples aren’t great enough. We know that "From buy to sell"
and "From sell to buy" would have the same feature vector if those were the only terms and
we only consider singleton terms. However the implications are obviously opposite. In our
way of considering multiple terms in a feature, we look at a distance of 10 between words.
Perhaps we would see better results by reducing the distance.

%

Figure 7.1: Precision, Recall and F-measure - Positive class
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Figure 7.2: Precision, Recall and F-measure - Negative class

Figure 7.3: Precision, Recall and F-measure - Neutral class
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Figure 7.4: Precision, Recall and F-measure - Overall
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From Figure 7.4 we see that a SVM taking all features into consideration perform better than
all the other instances for overall classification. The difference is quite small (note the scale
of the figure). From this we can take that using a Conditional Random Field does not improve
the results of the SVM algorithm. Indeed it seems to do the opposite. When comparing the
features extracted by the CRF with using random features (RS-SVM and RS-RF in the figures),
it is apparent that the Conditional Random Field performs better. The margins are not very
big, but both the RF and the SVM perform better on CRF features. When only looking at the
positive class in figure 7.1 it seems the random forest algorithm performs best when evalu-
ating over 100 trees. The recall of the random forest algorithm is higher in most of the cases
but has a lower precision. A reason why the Random Forest algorithm performs a little bet-
ter with the CRF features could be because the Random Forest in it self is selecting features
at random and creates a tree evaluating on these features. The CRF will in this case reduce
the space it selects features from, removing unnecessary features, which should improve the
result.

Although the difference in accuracy is relatively small, there is another aspect to be consid-
ered - time. The time it takes to build a model was very dependent on the number of features
as seen in figure 7.5. We see that the SVM model using the full set of features took 5 times
longer to make than the one with the conditional random field selected features. What is
somewhat surprising is that the Random Forest model for randomly selected features used
5 times longer than for the CRF selected features. The time was tested using three differ-
ent sets of randomly selected features and the shown time is the average of those runs. It
is probable that the reason for the big difference is that the random features have problems
splitting the data set properly and therefore has to build very deep trees in order to satisfy
the stop criteria. The SVM actually took less time to create on the random features than on
the CRF selected features. It is also possible that external factors had an impact on the run
time, like load on the system.

Being a system meant to predict stock movement, a good way to evaluate its real world appli-
cation would be to see whether it can make a profit. The system is trained a threshold of the
average price being 0.5 percent higher after 44 minutes. We can safely assume that the price
after 44 minutes will be more than 0.5 percent higher in the training set, and if we assume a
0.5 percent profit from the correctly classified positive examples, a loss of 0.5 from the ones
classified as positive but that in reality were negative, and no change from the ones that are
actually neutral, we can calculate the profit as (0.5∗T P )− (0.5∗F P ) = 0.5(T P −F P ). FP are
only the ones that are really negative. In a real world trading environment the neutral class
wrongly classified as positive will make us lose money in the form of transaction costs. This
means that the most important metric is average profit per transaction. There is also a strat-
egy called selling short, where you bet against the market. Consider if you borrow 100 stocks
from a third party and agree to pay him back 100 shares in 44 minutes. You sell the stock on
the market at the current price, predicting that the price will go down. After 44 minutes you
buy the stock back at market price and give them back to the third party. If the market goes
down profit is made. With the same assumptions as earlier this would yield profits in the
same way, but only for the negative class. A true positive here is then the times when stock
prices actually decline, and a false positive is a returned negative trends that turns out to be
positive. The results for the various algorithms are shown in 7.1 and 7.2.

From tables 7.1 and 7.2, it becomes clear that there is a big correlation between precision
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Figure 7.5: Time used for building model

Algorithm TP FP TP% FP% Additive profit% Avg Profit per trade% #OfTrades
AF-SVM 4324 2467 63.7 36.3 928.5 0.098 9503
AF-RF 4777 2976 61.7 38.3 900.5 0.083 10900
RS-SVM 3070 1707 64.3 35.7 681.5 0.106 6424
RS-RF 4200 2543 62.3 37.7 828.5 0.087 9529
SVM-SS 1112 647 63.2 36.8 232.5 0.094 2453
SVM-FS-22% 3034 1893 61.6 38.4 570,5 0.082 6924
SVM-FS 3572 2004 64.1 35.9 784.0 0.103 7568
RF-SS-10 1258 716 63.7 36.3 271.0 0.097 2787
RF-FS-10-22% 3647 2475 59.6 40.4 586.0 0.067 8834
RF-FS-10 4876 3037 61.6 38.4 919.5 0.082 11161
RF-SS-100 1344 775 63.4 36.6 284.5 0.097 2941

Table 7.1: Results for the positive class

Algorithm TP FP TP% FP% Additive profit% Avg Profit per trade% #OfTrades
AF-SVM 2595 1957 57.0 43.0 319.0 0.051 6251
AF-RF 2391 1938 55.2 44.8 226.5 0.036 6287
RS-SVM 1159 1027 53.0 47.0 66.0 0.022 2937
RS-RF 2260 2039 52.6 47.4 110.5 0.018 6314
SVM-SS 539 445 54.8 45.2 47.0 0.035 1352
SVM-FS-22% 1314 1055 55.5 43.5 129.5 0.039 3327
SVM-FS 1559 1194 56.6 43.4 182.5 0.049 3696
RF-SS-10 626 492 56.0 44.0 67.0 0.041 1630
RF-FS-10-22% 1690 1451 53.8 46.2 119.5 0.026 4674
RF-FS-10 2302 1948 54.2 45.8 177 0.029 6151
RF-SS-100 555 377 62.2 37.8 89.0 0.065 1359

Table 7.2: Results for the negative class
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and the average profit of the trades. The Support Vector Machines returned a better average
profit, with the exception being Random Forest with 100 trees for the negative class. There is
a big reason why average profit per trade is more important than total additive profit, namely
transaction costs. Transaction costs occur in every trade. Currently the lowest transaction
cost available from Nordnet 1 is 0.035%. From now on a basis point is 0.01% or one in ten
thousand. Transaction cost is deducted twice per round trip, once when buying and once
when selling. This means that a transaction have to make more than 7 basis points just to
make a profit. Slightly higher in reality because the transaction costs are calculated from the
selling price. Some of the algorithms are able to perform better than 7 basis points on the
positive class but none do on the negative class. The negative class will therefore not be con-
sidered any more. To see the difference between the different algorithms, a program is run
that calculates the end results after all the trades are done. The simulation assumes that we
use one fifth of our capital in every trade. The reason for this assumption is that there can oc-
cur multiple trades during the time we hold our stocks before selling. The results are shown
in figure 7.6 and 7.7. Without the transaction costs the extra recall of the random forest algo-
rithm makes up for the lesser average profit, but when the transaction costs are considered
the Support Vector Machine on the whole set is supreme. The random forest is penalized for
its many transactions that incur transaction costs.

Figure 7.6: Results without transaction costs

Using the best performing algorithm in Figure 7.6, we can see from Figure 7.8 that the profit
is very dependent on the size of the transaction costs. It is therefore imperative for a real
trading system to negotiate a lower transaction cost with the moving houses or trade directly
with the stock exchange.

An interesting point to consider is that the total money paid in transaction costs are less
dependent on the actual transaction cost percentage. If we look at Figure 7.9 we see that
the total paid transaction costs paid actually flatten out at around 0.05% and then start to
decline. This is because, when we look at Figure 7.8, we see that the system loses money

1www.nordnet.no
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Figure 7.7: Results with transaction costs

Figure 7.8: Results versus transaction costs

around the same point. When the capital goes down, so does the transaction costs paid
per investment. What is important to take away from these two graphs is that reducing the
transaction costs from 0.04% to 0.03% doubled our profits, but the total transaction costs
paid only declined by 11%. That means that it would be in both the brokers and our own
interest to pay the nominal difference in order to get a lower transaction cost.
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Figure 7.9: Total paid transaction costs over the duration of the trading divided by the starting capital

7.3 Compare with Random Features

We see from Figure 7.10 that the CRF features perform better using standard classification
metrics. This suggest that there is something to earn from using a CRF when we want to
reduce the feature space. However if we look at the profitability of each algorithm, we see
that Support Vector Machines greatly outperform Random Forests and that the result differ
for the two algorithms. The SVM perform better with the CRF-extracted features, while the
Random Forest perform best with the random features. This could simply be at random and
it could be that repeating the random selection enough times would make the results con-
verge.
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Figure 7.10: Precision, Recall and F-Measure for the positive class - Random versus CRF

Algorithm Simulated profit
RS-SVM 58,73 %
RS-RF 38,20 %
SVM-FS 64,70 %
RF-FS-10 30,60 %

Table 7.3: Random features versus CRF-extracted features - profit

7.4 Compare to other work

[27] compares a number of different systems for trading on the stock market and it is natu-
ral to compare our system to these. Of the systems surveyed only 5 report a profit in basis
points per round trip. NewsCAT [28] has the highest profit per round trip with 29 bps. The
system has less than 500 trades per year, which would not yield the as high a profit as a more
frequent trader system. Ænalyst [18] report a profit of 23 bps per round trip and more than
100000 trades per year. This seems very good, but [27] finds some weaknesses in the report-
ing, i.e. it being unlikely that as many news as reported is released for any one company as
frequently as the writer reports. Another weakness reported is that only the most profitable
stocks are reported. The actual profit in a real world scenario would probably be much lower.
The other three systems had a profit of 13, 10 and 10 bps per round trip. Our system has at
its best 10.6 bps per round trip. Our system is then comparable to these systems.

7.5 Final Thoughts

Although the simulations done indicates that the system can make a profit, one very impor-
tant aspect has not been discussed. If the system wants to trade a stock instantly it will often
have to pay more and when selling the same stock it would have to sell for less than the mar-
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ket price. Considering this and the transaction costs, the system presented in this thesis is
probably only good enough to break even.
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Chapter 8

Conclusion and Further work

This chapter will conclude on the material presented in this thesis and evaluate whether the
goals presented in Chapter 1 is completed. It will also present what the writer considers to
be an interesting continuation of this work and how the results could be improved.

8.1 Conclusion

This thesis set out to see if reducing the features used for Support Vector Machines and Ran-
dom Forest using a Conditional Random Field would reduce the performance of the clas-
sification. A data set was created that enabled analysis to be done on financial and textual
data combined. A Conditional Random Field was trained and executed that found impor-
tant features in the corpus. This thesis has shown that it is possible to reduce the number
of features used by a Support Vector Machine without significant loss in accuracy. The sim-
ulated results in chapter 7.2 shows that the difference between using all features and using
the extracted features were small. Using random features had a worse performance but also
performed relatively well. The Random Forest algorithm performed almost as good with the
CRF-extracted features as with all features. When it comes to using the system for trading,
Support Vector Machines outperform Random Forests. Using more trees increased perfor-
mance and using random features made the algorithm perform worse. The run time of the
algorithms were drastically reduces with the smaller number of features. In a system meant
to react instantly to news, reduction in time means increased profit.

The system perform on par with some news traders in the literature, but is not on par with
the best ones. Adjusting for transaction costs and the cost of trading instantly, the system is
probably only good enough to break even. Considering this being a student project and given
both the time limit and the experience of the writers of other systems, this is a satisfactory
result.

8.2 Further work

This thesis used a small training set for the Conditional Random Field. Some more work
should be done to see if manually tagging more texts would yield a greater result. The corpus
only used mandatory stock news which is a limited resource. Only about 70000 documents
were found in the period, and a classification algorithm could benefit from more training ex-
amples. Including other news sources would give the system a more varied data set. The fea-
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tures used in the Conditional Random Field were not numerous, only the term itself, PoS-tag
and NER-tag. It would be interesting to see whether including other features would change
the terms that are returned.

Support Vector Machines can be improved using a technique called boosting [29]. [4] claims
that the Adaboost algorithm introduced in [29] is a form or Random Forest. For that reason,
boosting was not included in this thesis, but it could be interesting to see whether using Ad-
aboost could improve the performance of the Support Vector Machines.

As it was shown in section 7.2, the monetary gain of a system based on this work is very de-
pendent on the transaction costs. From a more economical view, it would be interesting to
analyse what trading strategy would lead to the biggest profit and to find the optimal deal to
make with the broker with regard to both transaction cost and the frequency of the transac-
tion costs.
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