
Promoting reflection in agile software
development teams using GitHub data

Marius Nedal Glittum
Even Stene

Master of Science in Informatics

Supervisor: Monica Divitini, IDI

Department of Computer and Information Science

Submission date: May 2013

Norwegian University of Science and Technology

Preface

This is the Master’s thesis of IT3900, written by Even Stene and Marius
Nedal Glittum from August 2012 to May 2013 at the Norwegian University
of Science and Technology(NTNU).

We would like to thank our supervisor, Monica Divitini, for her valuable
guidance while writing the thesis. We would also like to thank all who partic-
ipated in the different evaluations, your comments and feedback was greatly
appreciated.

Marius Nedal Glittum Even Stene

i

Abstract

Agile software development teams work with several different artifacts on
a daily basis, and by interacting with these artifacts users are involved
in work related experiences. By revisiting these experiences and reflecting
upon them, users can evaluate and improve how they solve everyday working
tasks. Boud et.al defines reflection as a process where the experience is revis-
ited, feelings are re-attended and the experience is re-evaluated[Boud et al.,
1985]. Furthermore work and reflection on work are shown to be strongly
connected[Schön, 1983][Chaiklin and Lave, 1993]. Reflecting on work ex-
periences give a better understanding of the experience itself, allowing for
conclusions and lessons learned to be made. Reflection transforms experi-
ence into knowledge which can be applied to solve challenges in the everyday
working environment.

The main focus of this thesis was to develop a technological tool to collect
project artifacts and connect these to work experiences, in order to enhance
reflection both individually and collaboratively in agile software development
teams. The tool was developed using a daily delivery cycle. Design choices
were made on the basis of available theory, literature and related tools con-
cerning reflection and agile development. Three evaluations were conducted;
A usability study, an expert review with an expert in the field of agile soft-
ware development and a focus group evaluation consisting of eight software
developers working in an agile team.

The work conducted resulted in a Grails web-application, where users connect
their daily experiences with project artifacts collected from a Version-control
system. These daily reflection notes can be used both individually and col-
laboratively in a team as preparation for agile retrospective sessions. The
tool continuously collects work-related project artifacts and presents these in
order for users to revisit their work that day. The application aims to trigger
reflection on user experiences and storing the outcome in notes for later use
and sharing.

This thesis, the developed tool and its evaluation contributes with an in-
creased understanding of how reflection in agile software development teams
can be improved, by connecting experiences with work related project arti-
facts.

ii

Sammendrag

Smidig programvareutviklings team jobber med flere forskjellige gjenstander
p̊a en daglig basis, og ved å samhandle med disse gjenstandene brukerne er
involvert i arbeidsrelaterte erfaringer. Ved senere å gjennomg̊a disse erfarin-
gene og reflektere over dem, kan brukerne evaluere og forbedre hvordan de
løser dagligdagse arbeidsoppgaver. Boud et.al definerer refleksjon som en
prosess der opplevelsen er gjenskapt, følelser gjenskapes og opplevelsen er
re-evaluert [Boud et al., 1985]. Videre arbeid og refleksjon over arbeidet er
vist å være sterkt forbundet [Schön, 1983; Chaiklin and Lave, 1993]. Re-
flektere over arbeidserfaringer gir en bedre forst̊aelse av selve opplevelsen,
slik at konklusjoner og lærdommer kan trekkes. Refleksjon transformerer
erfaring til kunnskap som kan brukes til å løse utfordringer i et hverdagslig
arbeidsmiljø.

Hovedfokus for denne avhandlingen var å utvikle et teknologisk verktøy for å
samle prosjektet gjenstander og koble disse til å jobbe erfaringer, for å styrke
refleksjon b̊ade individuelt og i samarbeid i smidige programvareutviklings
team. Verktøyet ble utviklet ved hjelp av en daglig leverings syklus. De-
sign valg ble gjort p̊a bakgrunn av tilgjengelig teori, litteratur og relaterte
verktøy om refleksjon og smidig utvikling. Tre evalueringer ble gjennomført;
En brukbarhets studie, en ekspert gjennomgang med en ekspert innen smidig
soft-ware utvikling og en fokusgruppe evaluering som best̊ar av åtte program-
vareutviklere som arbeider i en smidig team.

Arbeidet resulterte i en Grails web-applikasjon, der brukerne koble sine daglige
erfaringer med prosjektet gjenstander samlet inn fra et system for versjon-
skontroll. Disse daglige refleksjonsnotatene kan brukes b̊ade individuelt og i
samarbeid i et team som forberedelse for smidige retrospektive økter. Verktøyet
samler kontinuerlig arbeidsrelaterte prosjekt gjenstander og presenterer disse
for brukerne for å revidere sitt arbeid den dagen. Applikasjonen har som mål
å utløse refleksjon p̊a brukeropplevelser og lagring av utfallet i notater for
senere bruk og deling.

Denne avhandlingen, prototypen og evalueringen bidrar med en økt forst̊aelse
av hvordan refleksjon i smidige programvareutviklings team kan forbedres,
ved å koble erfaringer med arbeidsrelatert prosjekt gjenstander.

iii

iv

Contents

1 Introduction 3
1.1 Context & Domain . 4

1.1.1 Core Concepts . 6
1.2 Research Question . 7
1.3 Research Method . 8

1.3.1 Design as a research process 8
1.3.2 Development process 9
1.3.3 Daily Delivery Cycle 11
1.3.4 Evaluation . 13
1.3.5 Research Contributions 15
1.3.6 Research Rigor . 15
1.3.7 Research communication 16

1.4 Outline . 17

2 Peaceful Banana - An overview 19
2.1 What is PeacefulBanana? . 19
2.2 What does it do? . 20

3 Background 25
3.1 Computer-supported reflection 25

3.1.1 The MIRROR model 26
3.2 Agile Software Development 30

4 State of the art 33
4.1 Literature Review . 33

4.1.1 Reflecting on reflection - Important Aspects 33
4.1.2 Tag Clouds . 34
4.1.3 Supporting retrospective reflection in student software

engineering teams . 35
4.1.4 The functions of multiple representations 35

v

CONTENTS

4.1.5 Agile Project Retrospectives 35
4.2 Related Work . 36

4.2.1 Reflection Approach 36
4.2.2 HackyStat . 36
4.2.3 GitHub tools . 37

4.3 Discussion . 39

5 Problem Elaboration 41
5.1 Problem Overview . 41
5.2 Github . 43

5.2.1 Authentication . 43
5.2.2 Repositories . 44
5.2.3 Commits . 44
5.2.4 Milestones and Issues 44

5.3 Using technology to promote learning from reflection 46
5.3.1 Agile Retrospective . 46

5.4 Scenarios . 48
5.4.1 Scenario 1 - Individual use on a daily basis 49
5.4.2 Scenario 2 - Team use after each iteration 50

6 Requirements 53
6.1 Functional Requirement . 53

6.1.1 General Requirements 54
6.1.2 GitHub Requirements 55
6.1.3 Architectural Requirements 59

6.2 Non Functional Requirements 63
6.2.1 Usability . 63
6.2.2 Availability . 64
6.2.3 Security . 65

7 Design 67
7.1 Responsive web design . 67

7.1.1 Fluid grid . 68
7.2 Mockups . 69

7.2.1 Smartphone App . 69
7.2.2 Web-Application tool 69

7.3 Twitter Bootstrap . 70
7.3.1 Bootstrap grid . 71
7.3.2 Bootstrap components 71
7.3.3 Icons . 72
7.3.4 Design Examples . 72

vi

CONTENTS

7.4 PeacefulBanana Design . 74
7.4.1 Icons . 74
7.4.2 MIRROR CSRL . 75
7.4.3 Plan and do work . 75
7.4.4 Initiate Reflection . 76
7.4.5 Conduct Reflection Session 77
7.4.6 Core Functionality . 78

8 Implementation 87
8.1 Application Architecture . 87
8.2 Technology . 88

8.2.1 Server and Database 91

9 Evaluation 95
9.1 Usability Evaluation . 95

9.1.1 Context . 96
9.1.2 Participants . 96
9.1.3 Procedure . 96
9.1.4 Roles . 97
9.1.5 Ethics . 98
9.1.6 Usability Tasks . 98
9.1.7 Usability Metrics . 100
9.1.8 General Usability Goals 101
9.1.9 Problem Severity . 102
9.1.10 Usability Test Results 103
9.1.11 Summary of Data . 107
9.1.12 Recommendations . 110
9.1.13 Conclusion . 114

9.2 Expert Review . 115
9.2.1 Overview . 115
9.2.2 Overall Feedback . 116
9.2.3 App-specific feedback 117
9.2.4 Suggested new features 121

9.3 Focus Group . 123
9.3.1 Focus group context 123
9.3.2 Ground Rules . 125
9.3.3 Data Collection and Analysis 125
9.3.4 Why they did not use it? 127
9.3.5 If they would have used it 127
9.3.6 Comments . 129

9.4 Discussion . 130

vii

CONTENTS

9.4.1 Sub RQ1 . 130
9.4.2 Sub RQ2 . 131
9.4.3 Sub RQ3 . 131
9.4.4 Main RQ . 132

10 Conclusion 135
10.1 Summary . 135
10.2 Discussion on our own work 136
10.3 Future Work . 137

Bibliography 139

Appendix A PeacefulBanana Quick Start 147
A.1 Getting started . 148

A.1.1 Registration . 149
A.1.2 Choosing team . 150
A.1.3 Repository tab . 151
A.1.4 Reflection & Reflection notes 155
A.1.5 Workshop tab . 156
A.1.6 Summary . 158

Appendix B PeacefulBanana Database Descriptions 161
B.1 User data . 161

B.1.1 GitHub data . 163
B.1.2 Collaboration data . 165
B.1.3 Reflection data . 166

Appendix C Usability Test-plan 169

Appendix D Usability Consent form 181

Appendix E Mirror-project Toolbox: Reflection scale 183

Appendix F Design-Science Research Guidelines 185

viii

List of Figures

1.1 Regulative cycle development in Design-Science research [Wieringa,
2009] . 9

1.2 The PeacefulBanana research model 10
1.3 The PeacefulBanana daily delivery cycle 12
1.4 Design Evaluation Methods 13
1.5 Reflection note statistics . 14
1.6 GitHub statistics . 15

2.1 PeacefulBanana Daily reflection note 22
2.2 PeacefulBanana Reflection Workshop - Generated Questions

based on project tags . 23

3.1 CSRL Cycle view [Krogstie and Prilla, 2011] 27
3.2 MIRROR CSRL model [MIRROR, 2013] 28
3.3 Agile software development poster [Ambler, 2013] 32
3.4 Example of scrum board [Kristin Knipfer, 2013] 32

4.1 GitHub Burn-down application 37

5.1 Overall application process . 42
5.2 Example of GitHub’s issue tracker overview [GitHub.com-TwitterBootstrap,

2013]. 45
5.3 Retrospectives in the agile iteration cycle [Derby and Larsen,

2006] . 47
5.4 Agile retrospectives - from beginning to end [Derby and Larsen,

2006] . 48
5.5 The user has clicked the notification icon and can see his new

notifications . 49
5.6 Example of a team mood-graph over a period of time. 51
5.7 Example of a team tag-cloud. 51

6.1 Client-server model [Robin, 2011] 59

ix

LIST OF FIGURES

7.1 Responsive layout, adapting the same content to different view-
ing experiences [Vinaganda.com, 2013] 68

7.2 Smartphone mockup . 69
7.3 Web-app mockup . 70
7.4 Example of Twitter Bootstrap button components [Twitter,

2013] . 71
7.5 Twitter bootstrap fluid layout with header and sidebar [Twit-

ter, 2013] . 72
7.6 Twitter Bootstrap fluid layout with responsive menu and con-

tent [Twitter, 2013] . 73
7.7 PeacefulBanana - Initial setup with Twitter Bootstrap 73
7.8 PeacefulBanana - Final home screen 74
7.9 Example of Twitter Bootstrap/Glyphicons use in Peaceful-

Banana [Twitter, 2013] . 75
7.10 Mirror CSRL Cycle - Plan and do work functionality & im-

plementations . 76
7.11 Mirror CSRL Cycle - Initiate Reflection functionality & im-

plementations . 77
7.12 Mirror CSRL Cycle - Conduct reflection session functionality

& implementations . 78
7.13 PeacefulBanana reflection note 79
7.14 PeacefulBanana Team Mood-graph 80
7.15 PeacefulBanana tag-cloud implementation 81
7.16 PeacefulBanana user notes . 82
7.17 PeacefulBanana shared team notes 82
7.18 PeacefulBanana - Repository milestone and issues 83
7.19 PeacefulBanana - Repository milestone tag-cloud 84
7.20 PeacefulBanana Workshop - Mandatory questions 85
7.21 PeacefulBanana Workshop - Generated questions based on ac-

tive tags . 86
7.22 PeacefulBanana Workshop - Possible questions based on tags . 86

8.1 Overview of system design. 88
8.2 Overview of Grails architecture [People10.com, 2013] 89
8.3 Model-view-controller paradigm [Ap and Frey, 2013] 90
8.4 GitHub domain classes . 93
8.5 User domain classes . 93

9.1 Scenario 1 Completion Rate 104
9.2 Scenario 2 Completion Rate 105
9.3 Time on task Scenario 1 . 106

x

LIST OF FIGURES

9.4 Time on task Scenario 2 . 107
9.5 Summary of Data . 108
9.6 Post task . 109
9.7 Task 1 changes and justification 111
9.8 Task 2.2 changes and justification 112
9.9 Task 3.3 changes and justification 112
9.10 Task 5.1 changes and justification 113
9.11 Task 5.3 changes and justification 113
9.12 Adding unshare functionality to reflection notes. 114
9.13 Remove commit impact. 114
9.14 Example of retrospective session questions to trigger reflection. 116
9.15 Roger’s Innovation Adoption Curve [Rogers, 2010] 118
9.16 Example of a project burn down-chart [Wenzel, 2013] 122
9.17 Reflection scale results . 124

A.1 PeacefulBanana Reflection tool 147
A.2 PeacefulBanana Landing Screen 148
A.3 PeacefulBanana Login screen 149
A.4 PeacefulBanana - GitHub application authorization 150
A.5 PeacefulBanana - Team page, currently no teams have been

created . 150
A.6 PeacefulBanana - Team page showing current team and avail-

able teams based on your repositories 151
A.7 PeacefulBanana - The main repository screen 152
A.8 PeacefulBanana - All the repositories’ milestones 153
A.9 PeacefulBanana - Single milestone 154
A.10 PeacefulBanana - Issue #20, listing comments, references and

events . 154
A.11 PeacefulBanana - Reflection tab with the currently shared notes155
A.12 PeacefulBanana - Reflection tab with the currently shared notes156
A.13 PeacefulBanana - Create a new workshop 157
A.14 PeacefulBanana - Workshop questions related to the most ac-

tive tags . 157
A.15 PeacefulBanana - List of tags to generate questions from . . . 158

E.1 Reflection Scale from the MIRROR evaluation toolbox 184

F.1 Design-Science Research Guidelines 185

1

LIST OF FIGURES

2

Chapter 1

Introduction

This thesis presents a design-science project where the goal was to design a
web-application tool as a support for learning and reflection in agile project
development teams. The tool was given the name PeacefulBanana and the
name has since remained unchanged. The purpose of the tool is to make
collection of experiences easier during a project development process, and
enhance learning outcomes from reflection sessions.

The tool collects data from the development process and presents them to
the users in a tailored way. Users can annotate these data with their own
experiences, including connecting feelings and emotions to these experiences.
The application presents these data and experiences for use in both indi-
vidual and collaborative reflection settings. The challenge will be to collect,
annotate and present the data in a way that helps the user understand what
they have experienced and learn from these experiences. That is helping
them reflect on the experiences made and learn from them. Boud et.al[Boud
et al., 1985] presents that;

Reflection is a process where the experience is revisited, feelings
are re-attended and the experience is re-evaluated

This means that it is important to tailor the reflection process in order to
support and achieve learning from experiences. Using technology to collect
data and experiences from everyday work, and the potential for using this
to support reflection has been shown to be growing [Li et al., 2011]. In this
thesis we utilize technology for promoting reflection, by trying to capture
everyday data related to work experiences, make them available for reflection
and store them for later use. The quality of data collected will have an
impact on how easy it is for users to revisit the experience and reflect upon

3

CHAPTER 1. INTRODUCTION

it. By using technology we hope to make the challenge of capturing the
experience with it’s ideas and feelings to support the reflective process easier
to overcome.

1.1 Context & Domain

For many years now, agile methods in software development have been widely
used in software development teams. Agile methodologies are software de-
velopment methods that is based on iterative and incremental development.
This means that requirements and solutions are dynamic and comes as a re-
sult of collaboration between self-organizing teams. Agile methods focuses on
adaptive planning, iterative development and encourages teams to respond
to changes in a flexible way. Agile development has been reported to have
major improvements over more traditional development methods [Dyb̊a and
Dingsøyr, 2008].

The agile manifesto presents a principle which states that an agile team
should regularly reflect on how to become more effective, and tune its behav-
ior accordingly[Beck et al., 2001]. Continuously improving through introspec-
tion is a vital part of agile methods and is applied i.e. retrospectives[Beck,
1999; Derby and Larsen, 2006; Maham, 2008]. Cockburn impose that a vital
part of agile practice should be conducting regular retrospective workshops
aimed at reflection and process tune-up[Cockburn, 2006]. Agile methods
focus on continuous iterations repeating the same development steps, and
thus progressing. Retrospectives in agile development processes are most
often performed after each iteration. This is done by gathering the team
and reflecting on their way of working, so that improvements for the next
iteration can be identified [Derby and Larsen, 2006; Drury et al., 2011]. This
enables agile self-governing teams to react quickly to changes, and make mod-
ifications accordingly[Drury et al., 2011]. Retrospectives could also support
communication and interaction within the team, which is important for agile
development.

There are however shortcomings of applying retrospectives in agile teams.
Three recurring challenges for agile teams have been discovered in [Gullik-
sen Stray et al., 2011]. Findings from the authors show that developers often
solve tasks according to what they find interesting, instead of solving tasks
with the highest priority which is a practice that does not align with the
agile focus of delivering the highest prioritized functionality. This also leads
to a low competence-overlap within the team. The authors also discuss the

4

1.1. CONTEXT & DOMAIN

challenge of communication problems within the team, concerning how crit-
ical decisions are taken by project management without involving the rest of
the team. Though often, team-members are unfocused and do not involve
themselves during meetings. Another challenge identified for teams, is the
missing ability to turn results from a retrospective analysis into applicable
knowledge, improving everyday tasks.

Agile teams tend to focus primarily on short-term issues that were identi-
fied for a single iteration, and not on long-term strategic issues[Drury et al.,
2011]. Reflection on work related experiences enables users to reflect and
derive conclusions from the reflection [Korthagen and Vasalos, 2005]. This
turns experiences into knowledge that can be applied to the everyday chal-
lenges of work and also creates an individual aspect, where the reflection on
previous work can be applied to future work challenges. In addition to this
individual aspect, reflection has been shown to have strong social aspects,
and is often accomplished collaboratively between users in such agile teams
[Høyrup, 2004]. Therefore a challenge will be to easily allow users to identify
their common tasks and shared work experiences. In software development
projects in the industry, it is often a challenge for teams to prioritize retro-
spectives, as there is other work that is seen as more important [Kasi et al.,
2008]. For students, revisiting experiences and reflecting on these is often
seen as unnecessary and in the way of other tasks, i.e. writing code, testing
or documentation. Another challenge is collecting data of sufficient quality
to support this reflection, and also how to share this data, experiences and
reflection with the rest of the team.

In this thesis we developed a tool in order to address the challenges of col-
lecting data of sufficient quality to support reflection and how to share these
data and experiences in order for users to revisit and reflect upon them. We
wish to allow teams to not only reflect on experiences for the last iteration
only, but also allow users to go back in time several iterations, in order to
identify long-term issues and trends within the team. The tool is aimed at
supporting reflection by scaffolding the collection of relevant project arti-
facts, and prompting users to annotate these artifacts with their experiences
and feelings. The tool is designed and developed for software development
projects using an agile development process, and will be evaluated with a
usability study, a focus group consisting of software developers and also an
expert in the field of agile methodologies.

5

CHAPTER 1. INTRODUCTION

1.1.1 Core Concepts

In this section we will briefly introduce some concepts which the application
developed for this thesis builds upon.

Learning from experience

According to David Kolb[Kolb D.A, 1975] for a learning experience to occur
there must exists certain abilities in the learner. First the learner must be
willing to actively be involved in the experience Secondly the learner must
be able to reflect on the experience and third, the learner must possess and
be able to use analytical skills to conceptualize the experience. Finally the
learner must have skills for decision making and problem solving to be able
to create new knowledge outcomes based on the experience.

Software development

Software developers generate a lot of data when developing software, when
committing data to version control systems or closing tasks and issues in a
project management tool. During an agile development cycle, tasks is dis-
tributed among the developers and they make decisions either individually or
collaboratively. Normally this data is never revisited, but they contain vital
information on choices the developers make daily. It is important to make
collection of information a part of developers normal day-to-day activities ,
as can be based on the model from [Krogstie and Divitini, 2009].

Version-control systems

Version-control systems is the management of changes to documents, source
files or other collections of information. These artifacts are usually identified
by a ’revision’1, when creating a revision a lot of data is stored together with
the revisioned files. I.e. who committed the data, when it was committed
and what files where affected by the change.

In software development, version-control systems can be used for documen-
tation and configuration of a wide variety of files as well as source code. As
teams develop software, it is common for developers to create and work on

1An unique identifier normally a number or string.

6

1.2. RESEARCH QUESTION

different versions of a system at the same time. Different versions can be
tagged in the version-control system, so it is easy to go back in time to a
specific state, i.e. looking up the tag for when the last stable version was
created.

1.2 Research Question

In this section we will describe the research questions for this master the-
sis:

Main RQ

• How to promote experienced-based reflection based on project artifacts
collected from version-control systems?

Sub RQ1

• How to scaffold collection of data in order to promote reflection?

Sub RQ2

• How to increase the tendency to reflect on experiences, both individu-
ally and as a team?

Sub RQ3

• How to bring together contributions from multiple users, and sharing
these in a collaborative environment?

7

CHAPTER 1. INTRODUCTION

1.3 Research Method

Design as an artifact

By definition, the result of design-science research in Information Science
is:

A purposeful IT artifact created to address an important orga-
nizational problem. It must be described effectively, enabling its
implementation and application in an appropriate domain. [Es-
earch et al., 2004]

Markus et al.[Markus et al., 2002] identified that a developed artifact is only
significant by looking at some significant questions:

• Can the artifact be constructed?

• Can the artifact perform appropriately?

• Is the result important to the information science community?

We will create a proof of concept prototype tool for promoting reflection on
work experiences experienced, by utilizing project artifacts collected from
version-control systems. Our goal was to create a tool that can discover
new capabilities in the domain of reflection on experiences and learning from
these, as well as support the existing capabilities in an efficient way. Eval-
uating the tool in real use situations is necessary in order to discover if the
artifact can enhance the reflection process as it is today.

Research Guidelines

The Design-Science Research Guidelines presented in [Esearch et al., 2004]
will serve as the basis of this design-science research. The guidelines were cre-
ated in order to assist researchers to understand the necessary requirements
for effective design-science research.

1.3.1 Design as a research process

Development of the application was done in development cycles, inspired be
the regulative cycle presented by Wieringa [Wieringa, 2009], and is shown in
Figure 1.1. The development process and the regulative cycle we adopted
for developing the application is further detailed in Section 1.3.2 and Section

8

1.3. RESEARCH METHOD

1.3.3. The early parts of the development process was used to develop ideas
and basic mock-ups of the application and its design. The initial prototype
design was based heavily on the first concept and mock-ups created, in ad-
dition to recurring feedback from users and our supervisor. Early parts of
development resulted in a prototype with functionality for individual reflec-
tion use. The next goal was to incorporate teams and support collaborative
reflection in the team, building and improving on the basic functionality
present in the tool. In the later parts of the development, the focus was the
integration of individual reflection notes, into the team collaborative areas.
This resulted in a tool for both individual and collaborative aspects for re-
flection and learning from experiences. We used the tool ourselves during
development, as it would be used in a real working environment. In this way
we ensure that all functionality is as expected, and also identify limitations
early in the design.

Finally we performed three different evaluations. First we conducted a us-
ability test with computer-science students, and also an expert review with
an expert in the field of agile software development. The last evaluation we
conducted was a focus group evaluation with an agile software development
team using GitHub as their main version-control system. Evaluating these
separately provided three sets of feedback which we could compare in order
to possibly see if any patterns emerged.

Figure 1.1: Regulative cycle development in Design-Science research
[Wieringa, 2009]

1.3.2 Development process

Figure 1.2 shows the research model used for the development of our proto-
type from initial concept and ideas, to the final implementation and evalu-
ation. The model depicts how we started the process by reading theory(top
part of model) in order to get a better understanding of the core concepts of
reflection on experiences(See Chapter 3 for the thesis background).

9

CHAPTER 1. INTRODUCTION

Figure 1.2: The PeacefulBanana research model

10

1.3. RESEARCH METHOD

We conducted a literature review (Section 4.1) and looked at related work
done on computer-supported tools for reflection and GitHub related tools
(Section 4.2). This gave us a basis on which to build a problem elaboration
on(See Chapter 5) and this stage can be seen as the second from the top in
Figure 1.2. The problem elaboration with our application scenarios, in addi-
tion to related tools, led us in turn to the process of creating the requirements
for the application (See Chapter 6). The initial design stage to the left in
the model, with the application concept and mock-ups also helped further
identify requirements for the application, together with feedback from our
supervisor.

Based on the stages from literature review to requirements in the model
shown in Figure 1.2, we started implementing the PeacefulBanana applica-
tion. These implementations were conducted using a daily delivery cycle,
which we used throughout the development phase of the application. This
cycle is further described in Section 1.3.3.

The last two stages of our research model is Evaluation and Result analysis.
Evaluation consisted of a usability study, an expert review and a focus group
(See Chapter 9). Based on the findings from these evaluations we were able
to perform a result analysis.

1.3.3 Daily Delivery Cycle

Figure1.3 shows an illustration of the daily delivery cycle used throughout
development. This daily delivery cycle was inspired by the regulative cycle
presented by Wieringa[Wieringa, 2009], shown in Figure 1.1. How this cycle
fits in the overall stages of research is shown in Figure 1.2.

The cycle starts with a set of requirements. These requirements are initially
based on user-stories and scenarios. In subsequent iterations of the cycle,
the requirements were then updated based on feedback from from experts
and users of the application. A task list is then created from the set of
requirements, where the highest prioritized requirements was implemented
first. This task list acts as a backlog 2 for the application. On GitHub we
created the more general tasks as Milestones and the more specific tasks as
Issues connected to these milestones3.

2The backlog is the list of work the developers must address during the current iteration
3GitHub Issues & Milestones: https://github.com/features/projects/issues

11

https://github.com/features/projects/issues

CHAPTER 1. INTRODUCTION

Figure 1.3: The PeacefulBanana daily delivery cycle

Development was conducted primarily using pair-programming4, so that we
could review each line of code as it was written. Whenever a task implemen-
tation was completed, it was tested manually in the application, as well as
by automatic tests. When a feature was accepted and working as intended,
we submitted the code to our project repository on GitHub. This ensured
an iterative approach to development, expanding our application with more
and more quality-assured functionality.

Dogfooding

While developing the application, we continuously used the application our-
selves, this is a concept called dogfooding.

Dogfooding is a concept where you ’eat your own dog food’, this means that
the developers are testing their own product while developing it[Harrison,
2006]. It is normally something larger software development teams are doing

4Pair programming is an agile software development technique in which two program-
mers work together at one workstation

12

1.3. RESEARCH METHOD

as a pre alpha-testing, this will help developers to discover eventual problem-
areas early.

1.3.4 Evaluation

The table shown in Figure 1.4 from [Esearch et al., 2004] serve as guidelines
for the different evaluations of the application. The evaluations and the
results from these are further described in Chapter 9. During the final focus
group evaluation we also made use of the evaluation toolbox published by
MIRROR5. This toolbox is a specification of evaluation methodology and
research tooling.

Figure 1.4: Design Evaluation Methods

1. Observational: Both in the usability study and the focus group eval-
uation we provided participants with a set of questions where they
evaluate the application. In the focus group evaluation we provided

5http://www.mirror-project.eu/showroom-a-publications/downloads/

finish/5/67

13

http://www.mirror-project.eu/showroom-a-publications/downloads/finish/5/67
http://www.mirror-project.eu/showroom-a-publications/downloads/finish/5/67

CHAPTER 1. INTRODUCTION

participants with application specific questions and the reflection scale
from the MIRROR toolbox [Appendix E]. The reflection scale assesses
participants’ general tendency to reflect and the importance they place
on reflection. Using this scale, allows us to see whether using the tool
prime people to reflect more, that is: Does the tool increase the users
tendency to reflect on experiences, both individually and as a team.

2. Analytical: A separate administration interface were implemented in
order to collect data usage statistics from users. These data could
provide simple usage-patterns during i.e. a future case-study of a de-
velopment team using the application. Examples of these data can be
seen in Figure: 1.5 and 1.6. Having such data might also provide a
basis for an analysis of the application’s performance as well as it’s
usefulness in the domain of reflection in software development teams.

3. Experimental: we performed a usability study as a controlled exper-
iment (See Section 9.1).

4. Testing: During development we continuously tested the tool to ensure
that the user experience is as expected, as a means of quality assurance.
White Box testing were used during development of the application
with artificial data to ensure functions are working properly and as
specified.

5. Descriptive: In order to demonstrate the usefulness of our applica-
tion we constructed two detailed scenarios, demonstrating it’s use for
tasks in a real work environment (See Chapter 5, Section 5.4). All
three evaluations used the context of these scenarios to evaluate the
application and provide feedback. In addition to these evaluations we
have continuously used the application ourselves in order to identify
any problems as we develop the application (See Section 1.3.3).

Figure 1.5: Reflection note statistics

14

1.3. RESEARCH METHOD

Figure 1.6: GitHub statistics

1.3.5 Research Contributions

The main goal was to create a proof of concept application that may help
users reflect on their past experiences, both individually and collaboratively
in reflection sessions, by collecting experiences daily, storing and revisiting
them at any time. The implementation of the application and the evaluation
of it gave us a foundation to answer our research questions, and also iden-
tify areas that can go into future research and development in the domain of
technology supported reflection and collaboration. Future work and the iden-
tified proposed features and improvements can be seen in Section 10.3 will
provide an increased understanding of how technology can support reflection
in software development teams, by collecting and revisiting experiences from
everyday work.

1.3.6 Research Rigor

The application was evaluated through a usability test, an expert review
with an expert in the field of agile software development and a focus group
consisting of a software development team. By evaluating the application
with experts in the relevant fields provides an indication for the usefulness
of the application.

15

CHAPTER 1. INTRODUCTION

1.3.7 Research communication

The proof of concept application have been released under the GNU Public
License v36 and the repository are located at GitHub:

• https://github.com/ekun/PeacefulBanana

Any limitations identified will be documented along with the research re-
sults.

6http://www.gnu.org/licenses/gpl.html

16

https://github.com/ekun/PeacefulBanana
http://www.gnu.org/licenses/gpl.html

1.4. OUTLINE

1.4 Outline

In this section we will describe the organization of the remaining chapters in
our thesis.

Chapter 2 gives a general overview of the PeacefulBanana application. The
intention is to present features and concepts of the application on an abstract
level.

Chapter 3 describes the theoretical background behind over thesis, includ-
ing reflection, experiences and experience based learning.

Chapter 4 describes our State-of-the-art, the literature review that was per-
formed and related work. The chapter presents some of the work performed
in the domains of technology for reflection and experience based learning,
with related work acting as a basis for our own implementation of technol-
ogy.

Chapter 5 presents the problem definition, an introduction to GitHub, user
stories and our scenarios.

Chapter 6 describes the requirements chapter, elaborated from problem
elaboration and the scenarios.

Chapter 7 describes the design choices behind the creation of the Peaceful-
Banana tool.

Chapter 8 describes how we implemented the PeacefulBanana tool.

Chapter 9 includes a description of the different evaluations of the applica-
tion, the usability study, the expert review and the focus group. The chapter
also presents a discussion of the results gathered and how they may answer
our research questions.

The last chapter of our thesis, is a conclusion with a summary, an evaluation
of our own work and ideas towards future work.

17

CHAPTER 1. INTRODUCTION

18

Chapter 2

Peaceful Banana - An
overview

In this chapter we introduce the PeacefulBanana tool, which is the prototype
we developed for our thesis. The purpose of this chapter is to explain the
concept of the tool, its features and the functionality it provides. The tool
will be presented at a high-level, as the process of how we developed the
prototype, design choices and implementation is further described in Chapter
7 & 8.

2.1 What is PeacefulBanana?

Peaceful Banana is a tool aimed towards aiding reflection in software devel-
opment teams. It integrates with version control systems(VCS)1, which is
commonly used in software development. The PeacefulBanana tool collects
project artifacts from such version control systems and scaffolds these in or-
der to trigger and promote reflection in teams. PeacefulBanana integrates
with VCS and provides a layer of features specific for aiding reflection in soft-
ware development projects. I.e. PeacefulBanana will not feature the same
functionalities that already exists in these systems, but rather contextualize
them and present the data in a manner that can help teams reflect on their
experiences. The tool will collect different data relevant for reflection, e.g.
prompting the user for their mood each day, which allows for both team-wide

1Version control is the management of changes to documents, computer programs,
large web sites, and other collections of information

19

CHAPTER 2. PEACEFUL BANANA - AN OVERVIEW

and personal mood-graphs over a period of time.

PeacefulBanana is developed as a web-application and will work in all modern
web-browsers running on platforms like PCs/MAC, smartphones and tablets.
The tool was developed with project artifacts collected from VCS in mind.
The PeacefulBanana tool is developed for use in software development teams
that have adopted an agile process model. Most agile process models feature
reflection sessions in some form, in which this tool is used in order to promote
and enhance the reflection that takes place in these sessions. Although it is
aimed at agile teams, any process model featuring some kind of reflection
session could benefit from using this tool. Similarly the tool can also be used
individually at any time as a more general project overview tool.

The goal of PeacefulBanana is to present software development teams with a
tool that can help them revisit and reflect upon their experiences in both an
individual and collaborative setting. Through the process of developing the
prototype, it has become a tool that also supports collection of project arti-
facts and the presentation of these to users, in order to connect to experiences
and trigger reflection.

2.2 What does it do?

PeacefulBanana is a tool that allows users to reflect upon and share their
individual and collaborative experiences from development projects. The tool
focuses on collecting project artifacts from VCS like code commits, milestones
and issues as well as comments and references. The tool then scaffolds these
data and presents them to the users, acting as input for users to revisit
experiences and trigger reflection upon these. The reflection that occurs will
be captured and stored as reflection notes so the user can review these at
a later date. These notes, containing a user’s reflection around that day’s
work experiences, can also be shared with the team and used by the user’s
team in reflection sessions. The tool is in this way designed to support both
individual and collaborative reflection around work experiences. It can be
used during the team reflection workshop or just browsed individually when
the user wishes to. The tool provides several opportunities to the users:

20

2.2. WHAT DOES IT DO?

Provide a scaffolded overview of the project

• Users can choose what team-project to retrieve data from, see the
projects milestones, issues and generate data for reflection from these.

• The team can see when an issue has been closed, and what milestones
they are connected to.

• The team can see which milestones were closed and when, and easily
see if the team met their deadlines.

• The team can see which team members have contributed to which parts
of the project.

Individual 5-minute daily reflection

Each day a notification will prompt the user to perform a daily 5-minute
reflection. This daily reflection note presents the user with data for the
last 24 hours, i.e. project activity and a tag cloud. This data provides the
user with additional information and tries to trigger reflection in the users
based on that day’s experiences. The reflection note collects input from the
user:

• The user’s mood that particular day, ranging 5 steps from 0 (Very sad)
to 100 (Very happy)

• The top 2 contributions done by the user in the project that day.

• The top 2 fields the user can improve on in the project.

Figure 2.1 shows how the daily reflection note looks in the PeacefulBanana
application. Each reflection note is stored and can also be shared with the
user’s team, but sharing notes is not required. The mood data collected each
day is used by the application to generate a team-wide mood-average graph.
This graph can be used to trigger a discussion and reflection in the team
reflection sessions.

Reflection sessions

The team, or the team leader can create a workshop from a selected time-
period. The workshop presents some mandatory questions related to team
work and reflection. Additionally the team can choose a set of tags to gen-
erate questions from. The finished workshop template can be printed and

21

CHAPTER 2. PEACEFUL BANANA - AN OVERVIEW

Figure 2.1: PeacefulBanana Daily reflection note

22

2.2. WHAT DOES IT DO?

handed out to the team at the workshop, providing project statistics, trend-
ing issues, tag clouds and questions that act as reflection triggers.
Examples of such questions:

• What were your initial expectations to this iteration? Did these expec-
tations change during the iteration? How? Why?

• What could be done to improve team collaboration?

• Talk about any disappointments or successes of your project. What
did you learn from it?

• You have had a high activity working with #framework Did you expe-
rience any particular problems with this tag? Why or why not?

• The team didn’t meet the deadline for milestone #20 - Midterm Report,
did the team experience any particular problems?

Figure 2.2 shows an example of a project workshop and the questions gener-
ated for it based on the project tags.

Figure 2.2: PeacefulBanana Reflection Workshop - Generated Questions
based on project tags

23

CHAPTER 2. PEACEFUL BANANA - AN OVERVIEW

24

Chapter 3

Background

In this chapter we present the theoretical background for this thesis. This
includes information on Computer-supported reflection, agile development
and the notion of self-organizing teams and a teams importance in agile
development.

3.1 Computer-supported reflection

Reflection is critical to workplace learning, enabling employees to make sense
of complex and dynamic situations[Schön, 1983]. Boud et al.[Boud et al.,
1985] defined learning through reflection as:

Those intellectual and affective activities in which individuals en-
gage to explore their experiences in order to lead to new under-
standings and appreciations.

The MIRROR project1, describes reflective learning as:

The conscious re-evaluation of experience for the purpose of guid-
ing future behavior, acknowledging the need to attend to feelings,
ideas as well as behavior associated with work experience.[Krogstie
et al., 2012]

Work and reflection on this work are heavily connected[Schön, 1983], both
driving each other forward. Experiences are created through work, and these
experiences can be reflected upon. Reflection can be based on both a memory

1http://www.mirror-project.eu/

25

http://www.mirror-project.eu/

CHAPTER 3. BACKGROUND

of an experience, and on data from the experience. Revisiting and reflect-
ing on a work experience leads to a better understanding of the experience
and allows for learning from it. Reflection can help developers learn from
experiences and gain knowledge of how to deal with work-related challenges.
This relationship between reflection and learning has been modeled as an
experience-based learning cycle[Boud et al., 1985; Korthagen and Vasalos,
2005; Kolb D.A, 1975]. In the reflective process you return to the expe-
rience, attend to connected feelings and re-evaluate the experience. These
cycles show that the reflective process and the experience connects in order
to produce an outcome. Reflection has both individual and social dimen-
sions,[Høyrup, 2004; Woerkom and Croon, 2008]. Social wise reflection is of-
ten performed collaboratively by teams performing a joint task as organized
practice, and therefore shares some common ground and experience.

Most reflective learning in a work environment, happens analogically with-
out support of technology[Schindler and Eppler, 2003]. Technology has been
shown to increase the potency of reflection and reflective learning at work,
meaning computer-supported reflection tools can be used to promote reflec-
tion and experience based learning [Krogstie and Divitini, 2010; Lin et al.,
1999].

3.1.1 The MIRROR model

The MIRROR model of Computer Supported Reflective Learning (CSRL),
is a work on how to incorporate reflection in to the daily routine at work.
MIRROR presents a reflection-learning cycle based on the CSRL cycle in
Figure 3.1, which accounts for the role of technology in reflective learning at
the workplace. The MIRROR CSRL model is presented in Figure 3.2, and
shows how tools can support the reflection process. One key part of this
model is the reflection session. These sessions is where the team gathers and
actively reflects on experiences, both informal or formal. The model shows
that the reflective process and the experience connects in order to produce an
outcome. This result with identified behavioral changes and new perspectives
can then be applied to the working environment.

Figure 3.2 depicts the different stages the MIRROR-model introduces. Our
thesis builds mainly on the two first phases, the Plan and do work and Initi-
ate reflection phase. The application developed supports these phases during
work, collecting experiences and reflection and making the results available
for later use. The application also enables teams and team-members to pre-
pare for the reflection session. Team-leaders can also initiate the reflection

26

3.1. COMPUTER-SUPPORTED REFLECTION

Figure 3.1: CSRL Cycle view [Krogstie and Prilla, 2011]

27

CHAPTER 3. BACKGROUND

Figure 3.2: MIRROR CSRL model [MIRROR, 2013]

session, by creating a frame or a plan for the team reflection session.

28

3.1. COMPUTER-SUPPORTED REFLECTION

Plan and do work

The plan and do work stage is any work related activity. This includes
everyday work, planning and monitoring. It also includes simulated work in
both real and virtual environments, and the activity can be both individual or
collaborative. The data resulting from this phase can be used to reconstruct
and make sense of work experiences.

Initiate reflection

The Initiate reflection stage is where the reflection cycle starts when reflection
has been triggered. The initiation of reflection includes setting the objective
for the reflection session and making a plan for it. The result of this phase
is a frame to be used during the reflection session. This frame can be seen
as the ”setup” of the reflection session, creating a context for the session.
Such a frame allows for an efficient time-use and keeping the discussion to
the topics that have been identified in the frame.

Conduct reflection session

The Conduct reflection session stage is the reflection session itself, and is
based on the frame identified in the Initiate reflectionstage. The reflection
stage will in our context feature agile software development teams in a ret-
rospective reflection session. Activities during this stage use the identified
frame to create a discussion around the experience collected by the applica-
tion and use the reflection outcomes to improve work.

Apply reflection outcome

The Apply reflection outcome stage, is where the reflection outcomes are used
to create a change in the daily work routine of the teams. This includes what
to change and who will be involved in the change. How to make the change,
f.ex if it can be immediately applied and if it should be recommended to
other teams as well.

We will utilize this model during both the development and evaluation of
the proof-of-concept prototype. This prototype will capture experiences and
store them for use in reflection sessions. This will make it easy for users to

29

CHAPTER 3. BACKGROUND

revisit the experience and reflect upon them, be it individually or collabo-
ratively with a team. The challenge will be to apply the correct steps in
order to collect the most important information for the different contexts,
and discard the less important data. This is vital in order for our tool to
collect the behavior, ideas and feelings connected to an experience.

3.2 Agile Software Development

Agile software development consists of several different methods [Abrahams-
son et al., 2002], among which Scrum [Schwaber and Beedle, 2002] and Ex-
treme Programming(XP) [Beck and Andres, 2004] are the most used. Out of
the two, Scrum has more focus on the project management part of agile de-
velopment, while XP concerns itself mostly with implementation of software.
This thesis is focused on agile teams using Scrum, as Scrum is the method
used by our evaluation participants.

Agile projects using Scrum divides projects into iterations called sprints,
which often are project milestones. Iterations start out with a planning stage
and ends with a review during a retrospective session. Features that are to
be implemented is gathered in a backlog, and the implementation order is
decided by the product owner. Scrum has set intervals, which normally lasts
from 2-4 weeks for each iteration, with each iteration containing roughly the
same amount of work [Ken Schwaber, 2011].

Scrum teams are self-governing or self-governed, which means an ”autonomous
team” or basically a team that manages itself. Guzzo and Dickson describe
self-governing teams as:

...teams of employees who typically perform highly related or in-
terdependent jobs, who are identified and identifiable as a social
unit in an organization, and who are given significant authority
and responsibility for many aspects of their work, such as plan-
ning, scheduling, assigning tasks to members, and making deci-
sions with economic consequences

Such autonomous teams encourage involvement, with team members having
an increased commitment and attachment towards the organization and the
product they deliver. Also bringing the decision making to the developers,
increases the speed of decisions and efficiency, shown by [Tata and Prasad,
2004]. The same authors found that in order to achieve the benefits of an au-
tonomous team, developers need to have an impact on management related

30

3.2. AGILE SOFTWARE DEVELOPMENT

decisions, and not just symbolic. Autonomous teams have also been shown to
be more productive than more traditional teams [Kirkman and Rosen, 1999].
Scrum teams are given a high grade of responsibility for their own work,
including scheduling, planning and decision-making [Schwaber and Beedle,
2002]. Although autonomous teams have a high grade of independence, orga-
nizations should provide some sort of control, in order to prevent the teams
from sliding out from internal arguments, while still allowing the team to
remain agile and unhindered [Takeuchi and Nonaka, 1986].

The Scrum master in a Scrum team, can be seen as the facilitator for the
team, but is not an organizer. The team is self-organizing and decides collab-
oratively on what to do, while the Scrum master can be seen as its protector.
The main role for a Scrum master is to enable the team to perform at its high-
est level, i.e. facilitating meetings, communication with the product owner
regarding backlog, and removing any progress obstructions [Schwaber and
Beedle, 2002]. The team leader can basically be anyone, but is often filled
by a project manager.

Manifesto for Agile Software Development:[Beck, 2013]

We are uncovering better ways of developing software by doing
it and helping others do it. Through this work we have come to
value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

Figure 3.3 represents the different iterations a team of developers iterates
through when using agile development methodology.

A scrum board as shown in Figure 3.4, is used for each milestone to show
which issues have been started on and who is working on which feature. The
chart to the right in the figure is a burn-down chart, stating how many hours
the team has to work in order to complete on time.

31

CHAPTER 3. BACKGROUND

Figure 3.3: Agile software development poster [Ambler, 2013]

Figure 3.4: Example of scrum board [Kristin Knipfer, 2013]

32

Chapter 4

State of the art

4.1 Literature Review

In this chapter we will elaborate on the theory on reflection and how tech-
nology fits into this domain.

4.1.1 Reflecting on reflection - Important Aspects

D.Talby [Talby et al., 2006] focuses on four aspects proven to be important
for reflection. They also proposed a technique for reflection, where the team
leader chose the subject beforehand. This has the advantage of not spending
time to decide on a subject during the meeting itself, which in turn reduces
the time needed. Also there was a reduced risk of selecting ’wrong’ subjects,
since the moderator(team leader) was a part of the development team and
were aware of the day-to-day problems.
Further Talby found that reflection subjects needed to be:

• Relevant to the team in its entirety, and not personal quarrels

• Organizational issues

• Issues there are disagreement on, but not technical problems

Further, open discussions are sufficient to achieve bottom-line results, as
opposed to more structured reflection sessions.
A written summary of the reflection session was seen as highly important,
even only in an informal way, such as email. This summary was important

33

CHAPTER 4. STATE OF THE ART

in order to exclude any later conflicts on what was agreed upon and in what
way.

Reflection levels

There are many ways of using reflection as a concept. Fleck and Fitzpatrick
[Fleck and Fitzpatrick, 2010], looks into the purposes of reflections, what is
needed for reflection and levels of reflection. Each of these reflection levels
capture the activity connected to reflection. The authors state that:

...the interest in reflection and technologies to support reflec-
tion has expanded beyond these more traditional domains to a
range of new areas, with reflection as a topic in its own right.

Reflection is a time consuming process, which in order to take place needs
the appropriate environment. There are five levels identified, where the first
level simply describes the situation, and the highest level where the learner
sees even farther, taking ethics and morals into account. The findings and
techniques of how to support reflection on these different levels [Fleck and
Fitzpatrick, 2010], will be used in our development of the PeacefulBanana
application.

4.1.2 Tag Clouds

Marti A. Hearst and Daniela Rosner [Hearst and Rosner, 2008] examine the
recent information visualization phenomenon known as tag clouds, which are
an interesting combination of data visualization, web design element, and
social marker. Using qualitative methods, they found evidence that those
who use tag clouds do so primarily because they are perceived as having an
inherently social or personal component, in that they suggest what a person
or a group of people is doing or is interested in, and to some degree how that
changes over time. The primary reasons people object to tag clouds are their
visual aesthetics, their questionable usability, their popularity among certain
design circles, and what is perceived as a bias towards popular ideas and the
downgrading of alternative views.

34

4.1. LITERATURE REVIEW

4.1.3 Supporting retrospective reflection in student soft-
ware engineering teams

Birgit R. Krogstie and Monica Divitini [Krogstie and Divitini, 2009] propose
the use of facilitated postmortem workshops in which each team reconstructs
its project timeline, in order to help student teams learn from their project
process. Individual team member’s experience of the project is included by
team members drawing individual ‘experience curves’ along the timeline.
The approach is based on current industry practice and adapted in accor-
dance with theory on reflection and learning.

4.1.4 The functions of multiple representations

Shaaron Ainsworth: Multiple representations and multi-media can support
learning in many different ways [Ainsworth, 1999]. In this paper, it is claimed
that by identifying the functions that they can serve, many of the conflicting
findings arising out of the existing evaluations of multi-representational learn-
ing environments can be explained. This will lead to more systematic design
principles. To this end, this paper describes a functional taxonomy of MERs.
This taxonomy is used to ask how translation across representations should
be supported to maximize learning outcomes and what information should
be gathered from empirical evaluation in order to determine the effectiveness
of multi-representational learning environments.

4.1.5 Agile Project Retrospectives

In this paper we look at the findings of Elizabeth Bjarnason and Björn Reg-
nell about retrospective analysis of agile projects [Bjarnason and Regnell,
2012].Whether it can support identification of issues through team reflection
and may enable learning and process improvements. Basing retrospectives
primarily on experiences poses a risk of memory bias as people tend to re-
member events differently which again can lead to incorrect conclusions. This
bias is enhanced when looking over a longer period compared to iteration
retrospectives. To support teams getting a joint view of projects the article
suggests creating a method for visualizing an evidence-based project timeline
by illustrating aspects such as business priority, iterations and test activities.
The method complements the already existing experience-based approach by
providing objective data as a starting point for reflection.

35

CHAPTER 4. STATE OF THE ART

4.2 Related Work

4.2.1 Reflection Approach

CSILE or Computer Supported Intentional Learning Environments, is a computer-
supported medium created in order to support learning. CSILE is used in
[Scardamalia et al., 1989] to show how learning environments can be designed
to support reflection. This CSILE system connects multiple computers with
a central server, where students can share artifacts like text and pictures in
a collaborative setting. Notes are used to share information and experiences,
and these notes are later used to compare ideas and perspectives. The sys-
tem show that students learn both as teams and as individuals, by presenting
their personal experiences and reflect upon their own learning by comparing
themselves with work done by others in the team.

4.2.2 HackyStat

Hackystat is an open source framework for collecting software metrics in an
non-intrusive manner. The Hackystat Framework supports three software
development communities:

• Researchers. Hackystat can be used to support empirical software en-
gineering experimentation, metrics validation, and more long range re-
search initiatives such as collective intelligence.

• Practitioners. Hackystat can be used as infrastructure to support pro-
fessional development, either proprietary or open source, by facilitating
the collection and analysis of information useful for quality assurance,
project planning, and resource management.

• Educators. Hackystat is actively used in software engineering courses at
the undergraduate and graduate levels to introduce students to software
measurement and empirically guided software project management.

Hackystat uses sensors in tools e.g. the Eclipse IDE to collect data about
the developer’s activities. Data collected is then used in reports that can
be accessed on the hackystat website. The long range goal of Hackystat is
to facilitate ”collective intelligence” in software development, by enabling
collection, annotation, and diffusion of information and its subsequent anal-
ysis and abstraction into useful insight and knowledge. Hackystat services
are designed to co-exist and complement other components in the ”cloud”

36

4.2. RELATED WORK

of Internet information systems and services available for modern software
development.

4.2.3 GitHub tools

In this section we will introduce some tools which are related to GitHub and
using project data from GitHub. There are project development tools which
integrates with GitHub in order to populate and enhance KanBan or Scrum
boards, but these have no features for experience collection and promoting
reflection. Most of these tools are aimed at project management and agile
development.

GitHub Burn-down App

Made with Node.js, this application is a one of a kind app to create burn-
down charts from GitHub issues1. An example of a created burn-down chart
with this application can be seen in Figure 4.1.

Figure 4.1: GitHub Burn-down application

1https://github.com/radekstepan/github-burndown-chart

37

https://github.com/radekstepan/github-burndown-chart

CHAPTER 4. STATE OF THE ART

HuBoard

GitHub issues made awesome. 2

HuBoard is a project management tool, which takes your GitHub issues and
milestones and generates a Kanban3 board built from the GitHub api.
This tool features the idea of scaffolding issues and milestones into something
useful for a different context, although it is limited to issues and have no
features for capturing experience and promoting reflection.

Agile Bench

Agile Bench integrates with GitHub so programmers do not have to duplicate
comments between two systems4. Instead they can make a comment via
GitHub(the code base) commits and this will push comments into the project
management system. AgileBench supports these commit formats:

• [#story_id] comment - i.e. ”[#5] Added documentation” - will add
”Added documentation” to story #5

• [#story_id #story_id] comment. i.e. ”[#5 #6] Added even more
documentation” - will add ”Added documentation” to story #5 and
#6

• [Workflow State #story_id #story_id] comment. i.e. ”[In Progress
#5 #6] Added even more documentation” - will add ”Added even more
documentation” to story #5 and #6 and move stories #5 & #6 into
the In Progress workflow state.

Agile Bench do not facilitate for experience collection in order to promote
reflection.

AgileZen

AgileZen also organizes work in a Kan-ban board, with user-stories5. Zen
features teams with users and different user-roles. It also allows artifacts like

2http://huboard.com/
3Kanban is a software development method with focus on Just-in-time delivery. De-

velopers pick tasks from a queue. http://www.kanbanblog.com/explained/index.html
4Agile Bench GitHub integration: http://support.agilebench.com/entries/

21307153-GitHub-Integration
5AgileZen: http://www.agilezen.com

38

http://huboard.com/
http://www.kanbanblog.com/explained/index.html
http://support.agilebench.com/entries/21307153-GitHub-Integration
http://support.agilebench.com/entries/21307153-GitHub-Integration
http://www.agilezen.com

4.3. DISCUSSION

screen shots or specification documents to be attached to a story. It integrates
with GitHub as a service hook6. In order for Zen to include your change sets
from GitHub, you need to refer to the story ID in your commits using the
format #123 or zen-123. This further builds on the idea of using #hash-tags
to tag relevant messages and identify them in your commits.

4.3 Discussion

There are several tools that display data collected from VCS like GitHub
as described in the previous section, although these tools display data in
a different context and with a different goal. Where as we aim to display
data for the purposes of connecting these data with experiences to trigger
reflection, these tools display data for project management purposes or to
gather research data(I.e. HackyStat). Common for all the tools introduced in
section 4.2.3 are their tight connection with GitHub which allows for efficient
data collection.

HackyStat

HackyStat is very general, but aims at collecting usage statistics from soft-
ware development teams or users. These data are used for reports which
are stored for later use to facilitate Collective intelligence. We used this
for inspiration towards the notion of storing reflection notes for later use,
both individually and collaboratively as a team as preparation before the
retrospective session.

GitHub Burn-Down Chart

The GitHub Burn-down application is a small, yet informative application
for development teams using scrum as their agile development process. The
application creates a burn-down chart of the current GitHub-project mile-
stone and displays all issues connected to it. The burn-down application has
no direct connection to reflection and it’s functionality were therefore not
implemented, but was used for inspiration when designing the interaction
between GitHub and the PeacefulBanana application.

6https://help.github.com/articles/post-receive-hooks

39

https://help.github.com/articles/post-receive-hooks

CHAPTER 4. STATE OF THE ART

HuBoard

HuBoard is similar to the GitHub burn-down application in the sense that it
connects with GitHub and makes use of project milestones and issues that are
present, in order to generate a KanBan board7. This tailors the milestones
and issues to be used in a better way, more suited for agile development
methods. Similar to the GitHub burn-down application discussed above we
looked at the integration with GitHub and used that for inspiration on how
to best connect and collect data from GitHub through our own application.
HuBoard also provided design related inspiration, as the tool is implemented
with the Twitter Bootstrap framework.

Agile Bench

Agile Bench provided several ideas we wanted to bring to the PeacefulBanana
application. Agile Bench uses #-Hash-tags to annotate commits, much in
the same way we intended with PeacefulBanana. Also, giving users the
possibility to attach feelings and general comments to specific milestones or
issues are definitely ideas we wanted to integrate in the application.

AgileZen

AgileZen provided some ideas in the aspect of teams with users and giving the
users different roles(i.e. manager or developer). AgileZen also uses #hash-
tags to annotate commits, which provided even more justification that hash-
tags was a viable way of annotating commits.

7Agile process for just-in-time(JIT) production

40

Chapter 5

Problem Elaboration

In this chapter we will elaborate on our problem by defining our task and
presenting our high level requirements. We will also introduce GitHub as
the choice of version-control system for our implementation. On the basis of
theory, background and related work we will also also present our two main
scenarios and the context of these.

5.1 Problem Overview

To answer our research questions we will develop a web-application aimed
at software development teams adopting an agile process model. Most agile
process models adopt reflection sessions [Kwiecien, 2013], and helping users
prepare for these sessions in order to gain the best possible learning outcome
is one of the main issues our application try to address. Collecting experience
related data throughout a working day, allows users to revisit recent(fresh)
experiences and trigger reflection upon these experiences. By capturing these
daily reflections and storing them for later use allow users to go back to these
experiences and recollect the lessons learned. Sharing these notes with the
rest of the team allows the team to collaboratively prepare for the retrospec-
tive sessions that take place in agile process models. Reviewing these daily
reflection notes individually by the user and/or by the team, further helps
identify trending issues spanning the iteration and even the whole project
over time. The team can also use the shared notes to compare experiences
and trigger discussion and reflection upon these.

Most of these teams use some sort of a version control system with project

41

CHAPTER 5. PROBLEM ELABORATION

artifact’s, like programming code, text documents etc. We have chosen to
focus on GitHub(See section 5.2), but the application could be adapted to
work with any version tracker that allows for data collection.
Figure 5.1 shows the overall process of our application, how user’s interact
with GitHub and the PeacefulBanana application.

Figure 5.1: Overall application process

The application will collect relevant data from the project repository on
GitHub without any action needed from the user to do so. The application
will then scaffold, that is present the collected data in a structured frame in
order to allow users to revisit and reflect upon agile project experiences, and
also share these reflection notes.

The experiences will be presented in several different ways like activity-
graphs, mood-graphs and tag clouds. These will act as reflection triggers
and help the users to reflect on their work. These experiences will be col-
lected and made available for the users and/or the team later. The applica-
tion will be designed with reflection in mind, and scenarios was created to
demonstrate the most important functionality regarding enhancing reflection
in software development teams. Although we evaluate the application in the

42

5.2. GITHUB

context of demonstrative scenarios, we see the possibility of the application
being used outside of the context provided by scenarios. Users can at any
time look into a repository, a milestone or a single issue and the application
will provide data that is useful for recollecting experiences and providing a
basis for reflection upon these.

We have worked out two main scenarios, which can be seen in Section 5.4.
Evaluation of the application will be conducted in the context of these in
order to gain feedback on how the application may answer our research ques-
tions. Evaluation will be a usability test, an expert review and a focus
group.

5.2 Github

This section will introduce GitHub [GitHub, 2013a], the features GitHub
provides and the rationale behind choosing GitHub as the VCS for our appli-
cation implementation. GitHub is a web-based hosting service for software
development projects that use the Git revision control system [Git, 2013].
GitHub offers both paid plans for private repositories, and free accounts for
open source projects.

GitHub provides users with integrated issue tracking, code review, project
wiki, useful statistics and more. Motivational points for choosing GitHub
as the revision control system to integrate with are several. Some techni-
cal aspects are that GitHub provides developers with a simple to use API
[GitHub-API-v3, 2013], with libraries for integration with most of the com-
monly used programming languages, like Java [JGit, 2013]. In addition to
the technical aspects, GitHub is the most used revision control system ,as
of January 2013 GitHub announced it had passed the 3 million users mark
and now hosting more than 5 million repositories and is a application many
in our evaluation group already use in their development projects [GitHub,
2013b].

5.2.1 Authentication

In order to retrieve data from repositories on GitHub, GitHub users need to
allow the specific application access to their repository. This is done by au-
thentication, which is a feature offered from GitHub to external applications
through their GitHub APIv3.

43

CHAPTER 5. PROBLEM ELABORATION

5.2.2 Repositories

GitHub is a repository hosting service for software development projects. A
repository contains all the project files, may it be code, images, and other
documentation. This means that all content in a project is connected to this
repository. In addition to documentation and file content, GitHub provides
integrated issue tracking, which is connected to this repository and could
also be connected to one or several milestones.

5.2.3 Commits

Say some of your project files have been changed, for example some code
snippet in a Java file. The way to save these changes to your local branch
is by commits. A commit can consist of code line additions, deletions, files
added, changed or removed. When you are ready to save the changes, you
commit them in a command line together with a commit message which is a
short text describing the changes you have done.
When a user is ready to push one or more local commits to the project
repository, it can be done via the command git push in the command line.
It is now the HEAD1 revision and the new code and commits can be seen on
the GitHub page.

5.2.4 Milestones and Issues

GitHub Issues can be assigned to a user to make it easy to know
who’s working on what, or which issues you need to tackle next.

Every GitHub repository has an issue tracker, that allows users to track bugs
and focus on features. An example of such an issue tracker can be seen in
Figure 5.2, which depicts the current issue tracker of Twitter Bootstrap’s
public repository2. Milestones and issues help manage large projects, where
issues especially makes for a great TODO list, similar to a product backlog.
Only collaborators3 can create and view issues on private repositories. On
public repositories anyone can create and view issues.

1Git uses the HEAD variable, which by default, is a reference to the current (most
recent) commit.

2https://github.com/twitter/bootstrap/issues
3A collaborator on GitHub is a user who have contribution-rights for a specific repos-

itory.

44

https://github.com/twitter/bootstrap/issues

5.2. GITHUB

Figure 5.2: Example of GitHub’s issue tracker overview [GitHub.com-
TwitterBootstrap, 2013].

• GitHub issues can be assigned to a user, which makes it easy to know
who’s working on what, or which issues should be handled next. Mile-
stones are a good way of helping team members to work towards a goal.
A team can set a due date, name a milestone and then start assigning
issues to that milestone. An example of a Milestone could be a due
date of a project demo or delivery. Any number of issues can then be
assigned to this milestone, and thus be connected to it.

• Issues know all about commits. GitHub enables referencing and closing
issues with Commit Messages. By using a few simple keywords you
can close an issue right from a commit message, or just leave a note
on the issue.The syntax to do this is as follows: To close issue #35
, a commit message containing ’closes #35’ , will close issue number
35 when pushed to GitHub. Other keywords are: close, closes, closed,
fixes, fixed.

To leave a note on issues can be done by simply mentioning the issue
number without any keywords in a commit message. F.ex ”This com-
mit references #35”. Anyone with write access to a repository may
close an issue or leave a note.

45

CHAPTER 5. PROBLEM ELABORATION

5.3 Using technology to promote learning from

reflection

The world wide web and modern technologies provides easy access to enor-
mous amounts of information. This means that in order to learn, learners
must be able to make sense of the information collected. In order to achieve
this and make conscious decisions of how to use information, learners need
to reflect on the information they collect. Reflection upon the process of
solving problems is necessary to achieve a good result and to improve the
ability to learn from experiences. When supporting learning with technol-
ogy, this technology should promote these aspects within learning[Lin et al.,
1999].

By implementing this proof of concept application, we wish to provide tech-
nology that enables efficient information retrieval, and to provide scaffolds
or structured frames that support reflective thinking and problem solving.
In our development of PeacefulBanana this means utilizing both individual
and collaborative learning experiences.

5.3.1 Agile Retrospective

The agile retrospective is held at the end of an iteration in order to learn from
the iteration and not repeat mistakes. A model of how a retrospective can be
done is shown in [Derby and Larsen, 2006]. The purpose of the retrospective
is to learn what works and what does not work, and make the adjustments
necessary for the next iteration. This way the team makes sure that every
iteration introduces some improvements in the team’s process. There are two
fundamental questions the retrospective is intended to answer:

• What went well during the last iteration that we continue doing?

• What could we do differently in order to improve?

These questions are something we incorporated into both the individual and
collaboration parts of the PeacefulBanana application, since they are a vital
part of the learning outcomes in agile retrospectives. The application primar-
ily aims at providing a structured frame for the retrospective, although all
parts of the retrospective needs to be considered during development. Figure
5.3 shows where the retrospective fits in the overall agile iteration cycle, and
the table in Figure 5.4 shows the retrospective process in more details [Derby
and Larsen, 2006].

46

5.3. USING TECHNOLOGY TO PROMOTE LEARNING FROM
REFLECTION

Knowing the process of the agile retrospective was important during devel-
opment. The PeacefulBanana application provides teams with a frame for
the retrospective, containing the most relevant issues the team should dis-
cuss. This fits with the Set the stage phase in Figure 5.4. This frame also
brings the team a shared and collaborative setting, since it contains the most
commonly worked on issues for the whole team. This covers the Gather Data
and Generate Insights phase. Additionally user’s can use the application to
prepare individually for the retrospective. Having these individual points of
view may give the team greater insight to issues that may have been lost
in the collaborative setting. I.e.if a user’s work differs a lot from the rest
of the team, this may indicate missing competence-overlap and needs to be
discussed.

The application provides the team with a printable template or frame they
can follow during the retrospective session, which they can use to write down
their thoughts on each of the issues the team discuss. Since a vital part of
the retrospective session is to write down the learning outcomes, the print-
able frame allows the team to collect this, covering the last two phases in a
retrospective. Since the retrospective session is conducted analogically, these
answers are written down on paper, and is not collected by the system.

Figure 5.3: Retrospectives in the agile iteration cycle [Derby and Larsen,
2006]

47

CHAPTER 5. PROBLEM ELABORATION

Figure 5.4: Agile retrospectives - from beginning to end [Derby and Larsen,
2006]

5.4 Scenarios

Based on related work, we have developed two scenarios to show what we
want our application to support in terms of collaborative learning from reflec-
tion. These two scenarios will provide a basis for the requirement elaboration
and design choices in development of the tool. The application is developed
to be used by agile software development teams in a real working environ-
ment. Further we developed the application with teams using GitHub as a
version-control system in mind. During the project work the team will use
GitHub to collect information. The PeacefulBanana application can then be
used to gather this information and present it in a scaffolded, or structured
way, mainly to enable user to trigger reflection individually and to used in
retrospective sessions. Users can though, at any time go into the application
and gather relevant data if they want to. This data will help the team see
trending issues and problems they have come upon in the process. Each
member of the group will register as a user on the PeacefulBanana applica-
tion and the users will then be connected together as a team, if they are part
of the same team on GitHub.

48

5.4. SCENARIOS

The two scenarios described in the next sections provides a demonstration of
how we envision the usage of the PeacefulBanana application in the context
of different settings. First as a individual application on a daily basis, then
as part of a team collaborative reflection session. These two scenarios were
developed early in the development process. The first scenario features using
the application at the end of each working day as inspired by the 5-minute
daily reflection(See Section 2.2). The second scenario is set in the context
of that in each iteration there is a retrospective reflection session at the
end.

5.4.1 Scenario 1 - Individual use on a daily basis

In this scenario, our team users will be using the application on a daily basis
at the end of each working day. When users enter the web-application, they
will get a notification with a prompt to do the daily status update.

Figure 5.5: The user has clicked the notification icon and can see his new
notifications

When clicking the notification, the user is presented with a summary of
their individual activity in the last 24 hours. This summary compares the
commit activity of the user with the team’s, and also presents a tag cloud
representing the trending issues of the last day. The user is then prompted
to input todays mood, their top two contributions ”What did I do good?”
, and their top 2 points to improve on ”What could I do better?”. Finally
the user can submit the form and choose to share these experiences with
the team for collaborative use. The daily reflection notes are saved and
can be reviewed at any time, and also shared any time by the user. The
idea is that the application will be used to revisit todays experiences with

49

CHAPTER 5. PROBLEM ELABORATION

collected information presented in a way that triggers reflection upon these
experiences. Information is collected and inspire new experiences. After
working on a project that day, users ”step back” to reflect on what happened
during the day, and on the experiences they encountered. The application
provides scaffolded data to further trigger this reflection process. This process
consist of returning to the experiences of that day, re-visit the experiences
and attend to the feelings, like inputing todays mood. This reflection will
help users to derive their top two improvements and contributions of the
day[Krogstie and Prilla, 2011]. The application thus captures the experiences
and reflections made by the user and allows for re-visiting of these at a later
date by storing them in the system.

5.4.2 Scenario 2 - Team use after each iteration

In this scenario, users will be using the application as part of the prepara-
tion for the agile retrospective sessions. As a requirement users need to use
the application as described in Scenario 1 (Section 5.4.1). This means going
through the daily reflection note process each day they have contributed to
a project. Based on the notion that iterations in agile teams often last for 30
days or less [Ken Schwaber, 2011], the scenario was created with the aspect
of iterations lasting at least two weeks each. This way enough data can be
gathered through the reflection notes, and experiences are still fresh.
Users will be able to individually prepare for these retrospective sessions,
while the team can use the application collaboratively as preparation for the
session as well. Users will in this scenario use the application to indicate how
the project has been progressing over the last iteration, tightly coupled with
one or several milestones. They will be able to generate tag clouds based
on the trending issues in the relevant milestones, activity graphs and mood
trajectories. Examples of such a tag-cloud and mood-graph can be seen in
Figure 5.7 and Figure 5.6. Also if the users have chosen to share any of the
individual reflection notes from scenario 1, these will be visible and can be
used by the team as a whole to draw conclusions from the previous iteration,
create a discussion and make comparisons. The application will enable the
team to see the whole iteration more clearly, but also enable teams to dive
into certain issues or milestones that showed to be of particular interest, and
thus create a discussion around the experiences made by the team members.

As a final part of the scenario, teams will be able to create a workshop based
on any previous iteration period. When the workshop has been created,

50

5.4. SCENARIOS

the team manager or the team as a whole get a set of system generated
questions that relate to the workshop iteration. These data are gathered
from the team’s reflection notes and general GitHub data, and try to present
what issues the team have been working the most on for the iteration. The
team will, after selecting the questions or topics they want to discuss in
the retrospective session, be able to print these as a guide the team can
follow during the session. Their reflection outcomes or lessons learned can
be noted on the paper by each team member, together with thoughts or
comments.

Figure 5.6: Example of a team mood-graph over a period of time.

Figure 5.7: Example of a team tag-cloud.

51

CHAPTER 5. PROBLEM ELABORATION

52

Chapter 6

Requirements

This chapter describes both functional and non-functional requirements the
application should meet, in order to better support elaboration and imple-
mentation of the final application. Because of the time limitation, we did
not expect to be able to implement every requirement, although all require-
ments were still a viable implementation in terms of the goals for this thesis.
Since some of the requirements build on and is dependent on each other, the
requirements described were used as a guide when implementing and not as
a strict top-down list.

6.1 Functional Requirement

The requirements detailed in this chapter are prioritized according to how
important they are for the implementation, with a three step scale.

H High-priority requirements must be met by the application.

M Medium-priority requirements should be met by the application, but
omission will severely limit the application.

L Low-priority requirements is not vital to the application, but should be
met if all high and medium requirements are met.

For this thesis, a three step scale provides us with adequate data for deci-
sions without sacrificing too much fidelity. In addition to prioritizing the
requirements based on importance, the requirements will also be prioritized

53

CHAPTER 6. REQUIREMENTS

according to how hard and time consuming they are to implement. These
priorities will use the H-M-L scale as described below.

H High is something that will take more than 10 hours to implement.

M Medium is something that will take between 5 and 10 hours to imple-
ment.

L Low is something that will take less than 5 hours to implement.

Annotating requirements with both importance and difficulty priorities pro-
vides a a way to perform a cost/benefit analysis for each of the requirements.
A cost/benefit analysis is a way of weighing the total value of benefits against
the costs of implementing them[Cellini and Kee, 2010].

NetBenefits = TotalBenefits− TotalCost (6.1)

A requirement that is hard to implement fully, but is of little importance
to the project as a whole could be dropped in benefit for a more important
one (or a less difficult one), if time or costs involved are deemed to be to
large.

6.1.1 General Requirements

The requirements in this section are the most general requirements for the
PeacefulBanana application. These are related to the most common func-
tionality users encounter during use, i.e. getting started with the application
and logging in. All of the general requirements are set as H - Essential,
meaning they have a high importance, since all other requirements depend
on these.

FR1 Users must be able to register a new account.
An account is necessary in order to use the application.

Impact Values
Importance priority H – Essential
Difficulty M – Implementation-time 5-10 hours

FR2 Users must be able to log in
An active session is necessary in order to present user-specific data

54

6.1. FUNCTIONAL REQUIREMENT

Impact Values
Importance priority H – Essential
Difficulty M – Implementation-time 5-10 hours

FR3 Change password
As a [User] I want to [be able to change my password]

Impact Values
Importance priority H – Security wise, the ability to change

password is very important
Difficulty L – 5 hours

FR4 Reset password
As a [User] I want to [be able to reset my password] if I forget it.

Impact Values
Importance priority H – If a user looses his password, a safe

recovery procedure is important.
Difficulty M – Reset-password functionality: 10

hours

6.1.2 GitHub Requirements

The requirements in this section are related to what the application
needs in order to collect satisfactory data from GitHub. This includes
authorizing the application for use on a user’s GitHub account and
synchronization.

GR1 GitHub account authorization
The application should be able to authorize the application with users GitHub

account

Impact Values
Importance priority H – Essential as users need to allow the

application to access data from their
GitHub repositories

Difficulty H – Could be very time consuming, 10-
20 hours

55

CHAPTER 6. REQUIREMENTS

GR2 GitHub Synchronization
The application should be able to synchronize with GitHub whenever there is

a new event or commit in one of the user’s repositories.

Impact Values
Importance priority H – Essential. Synchronization is im-

portant in order to present the newest
data to the users

Difficulty H – Major functionality. 20-30 hours

GR3 GitHub synchronization status
As a [User] I want to [be able to see my GitHub synchronization status] so

I can see if I need to authenticate or if I haven’t set a team.

Impact Values
Importance priority M – Moderately important, gives users

feedback over their GitHub synchro-
nization status and lets them know if
any action is required.

Difficulty L – 5 hours

GR4 Force GitHub synchronization.
As a [User] I want to [be able to force a GitHub synchronization] so that I

can ensure all the newest data are synchronized from GitHub.

Impact Values
Importance priority M – Changes on GitHub is automati-

cally detected and updated by the ap-
plication, but if this synchronization
does not occur, allowing users to force
it enables them to be sure that the
newest data is included.

Difficulty L – 5 hours

Team Requirements

These requirements are concerned around connecting user and team
specific features in the application with GitHub. This enables users to
create a team consisting of users from their GitHub project, changing
their roles on the PeacefulBanana application and joining other teams

56

6.1. FUNCTIONAL REQUIREMENT

the user is a part of. The notion of a team is necessary in order to make
use of the sharing of reflection notes, as mentioned in both scenarios in
Section 5.4.

TR1 Create a team
As a [User] I want to [create a team] so my fellow collaborators can join the

team.

Impact Values
Importance priority H – Essential, a team need to be created for

users to join it.
Difficulty M – Moderately time consuming. 10 hours

TR2 Join a team
As a [User] I want to [join a team from a list of available teams] so I can

share and see shared reflection notes and other team relevant data.

Impact Values
Importance priority H – Essential, a team is required towards

the collaborative and cooperative functions
of the application, like reflection note shar-
ing.

Difficulty L – 5-10 hours

TR3 Inspect my team
As a [User] I want to [inspect a team] so I see active members and their role

in the team.

Impact Values
Importance priority H – Essential, users need to be able to see

who is in their team in order to identify if
someone is missing or an uninvited person is
on their team.

Difficulty L – Moderately time consuming. 5 hours

TR4 Change team role
As a [Team Manager] I want to [be able to change the role of team mem-

bers] so that I can ensure that the members have the correct user-role in the

application.

57

CHAPTER 6. REQUIREMENTS

Impact Values
Importance priority H – Essential, as only a team manager can

access certain restricted functionality in the
application.

Difficulty M – Moderately time consuming. 10 hours

Milestone Requirements

These requirements are related to both individual and collaborative
use, as part of a preparation for the retrospective sessions mentioned
in scenario 2, Section 5.4.2.

MR1 Active Milestones
As a [User] I want to [see what milestones are being worked on] so that I

can see if the issues related to these milestones.

Impact Values
Importance priority M – Filtering milestones by their status

allow users to see what milestones are
unresolved and active, and find issues
connected to these.

Difficulty M – Moderately time consuming. 5-10
hours

MR2 My closed issues
As a [User] I want to [see what issues have been closed] so that I inspect the

issue and recollect how we solved the specific issue.

Impact Values
Importance priority M – Allowing revisiting of resolved is-

sues gives users a chance to revisit and
learn from previous mistakes or right-
doings.

Difficulty M – Moderately time consuming. 5-10
hours

58

6.1. FUNCTIONAL REQUIREMENT

6.1.3 Architectural Requirements

The application is designed with a client-server architecture in mind,
so the requirements here are divided to the specific parts of the archi-
tecture. In this case the client requirements concerns the application’s
graphical user interface and the server requirements concerns the ap-
plication’s back end functionality.

Figure 6.1: Client-server model [Robin, 2011]

Client Requirements

These requirements are for the application graphical user interface and
the functionality they need to have in order for them to perform the
scenarios defined in section 5.4. Especially the core functionality fea-
tured in the Daily Reflection Note and the sharing and inspection of
these.

CR1 Reflection Notes
As a [User] I want to [save my daily reflection notes] so I can review them

at a later time.

Impact Values
Importance priority H – Essential, in order to support reflection,

users need to be able to revisit experiences
Difficulty M – Moderately time consuming. 5-10 hours

CR2 Connect feelings & mood with reflection notes
As a [User] I want to [connect my mood & feelings to a reflection note] so I

can revisit the feelings in the retrospective sessions.

59

CHAPTER 6. REQUIREMENTS

Impact Values
Importance priority H – Essential, connecting a users mood to a

specific experience help users revisit the ex-
perience

Difficulty M – Moderately time consuming. 5-10 hours

CR3 Tag-cloud
As a [User] I want to [see a tag cloud of my most active tags] so I can

remember the situations I worked most on and reflect upon them.

Impact Values
Importance priority H – Essential, arranging the most active tags

in a tag cloud will help users easily identify
and separate the important situations from
the less relevant ones

Difficulty H – Highly time consuming. 10-15 hours

CR4 Tag cloud: Personal vs Team
As a [User] I want to [compare my personal tag cloud with my team’s tag

cloud] so I can compare my issues with the teams trending issues

Impact Values
Importance priority H – Essential, comparing personal tagcloud

with the team’s help identify if the team’s
trending issues differ from yours

Difficulty H – Highly time consuming. 10-15 hours

CR5 Commit Impact
As a [User] I want to [see my commit impact] so I can compare my activity

with the team’s activity.

Impact Values
Importance priority M – Essential, gives users a general idea of

who is contributing to the project
Difficulty L – 5-10 hours

CR6 Issues
As a [User] I want to [see my team’s issues for the different milestones] so

I can see the status of each milestones’ issues.

60

6.1. FUNCTIONAL REQUIREMENT

Impact Values
Importance priority H – Essential, gives users a general idea of

who is contributing to the project
Difficulty M – Moderately time consuming. 10 hours

CR7 Inspect Specific Issue
As a [User] I want to [inspect individual issues in a specific milestone] so I

can see the status of the issue and what events that are related to this issue.

Impact Values
Importance priority H – Essential, gives users a general idea of

who is contributing to the project
Difficulty M – Moderately time consuming. 10 hours

CR8 General Issues
As a [User] I want to [see my projects general issues] so I can see what is

being worked on outside of particular milestones.

Impact Values
Importance priority M – Essential, gives users a general idea of

who is contributing to the project
Difficulty M – Moderately time consuming. 10-15

hours

CR9 Share Reflection Notes
As a [User] I want to [share my reflection notes] so I can share my experi-

ences with the team.

Impact Values
Importance priority H – Essential, users need to be able to share

their notes with the team.
Difficulty M – Moderately time consuming. 10 hours

CR10 Sort Reflection Notes
As a [User] I want to [sort my reflection notes by ’Shared’ status] so I can

filter out my personal reflection notes from the team’s.

61

CHAPTER 6. REQUIREMENTS

Impact Values
Importance priority M – Moderately important, filtering en-

hances the user experience, but is not essen-
tial for the functionality of the application.

Difficulty L – 5 hours

CR11 Reflection Note reminder
As a [User] I want to [be reminded to do my daily reflection] so I always

reflect and collect my experiences of that particular day.

Impact Values
Importance priority M – Essential, in order to support reflection,

users need to be able to revisit experiences
Difficulty L – 5 hours

Server Requirements

These requirements are designed to ensure that the application works
as intended in the scenarios in section 5.4 and that the data is handled
in a satisfactory manner. This includes a safely-encrypted persistent
storage solution, MySQL and the required domain classes.

SR1 Persistent Storage
Create MySQL database support for creating and performing actions on per-

sistent databases by the application

Impact Values
Importance priority H – Essential, persistent storage is vital

for the application to collect and store
data

Difficulty M – Moderately time consuming. 5-10
hours

SR2 Databases
Create databases for different functionality: users, reflection notes, commits,

milestones, repositories, etc

62

6.2. NON FUNCTIONAL REQUIREMENTS

Impact Values
Importance priority H – Essential for functionality that re-

quires synchronization with database
Difficulty M – Moderately time-consuming. 8-10

hours

SR3 Domain Classes
Create domain classes for the relation database

Impact Values
Importance priority H – Essential for all entities and their

relations in the database
Difficulty H – Could be very time consuming,

10+ hours

6.2 Non Functional Requirements

This section presents the non-functional requirements for the PeacefulBanana
application.

6.2.1 Usability

According to Bass, Clements and Kazman, usability is concerned about mak-
ing the the tasks in the system as easy to accomplish as possible [Bass et al.,
2003, p. 90]. Below we have identified use cases in order to assure satisfactory
usability of the application.

U1 Support multiple devices
The users should be able to access the application on any device and screen

size.

Values
Source Developer
Stimulus Make design responsive
Artifact System
Environment Run-time
Response Scale after resolution
Response measure The application shall fit the device’s

screen size

63

CHAPTER 6. REQUIREMENTS

U2 Intuitive design
The user interface must be easy to understand and not to create any confu-

sion.

Values
Source Developer
Stimulus Make user interface easy to use
Artifact System
Environment User interface
Response Place buttons in a ’natural’ matter.
Response measure Users will find the link they are looking

for more than 95% of the time.

U3 The application shall show hints where ever appropriate.
The user gets well-founded recommendations, tips or warnings during use,

in order to increase confidence.

Values
Source End User
Stimulus User is uncertain on how the applica-

tion is used, or what their next move
can be

Artifact System
Environment Run-time
Response A message box with tips
Response measure User can use the application without

errors regarding the application’s us-
ability in 1 hour

6.2.2 Availability

Availability is concerned with system failure and its associated consequences.
A system failure occurs when the system no longer delivers a service consis-
tent with its specification[Bass et al., 2003]. Below we have identified the
following use cases for assuring the availability of the application.

A1 Uptime
The application shall be available more than 90% of the time.

64

6.2. NON FUNCTIONAL REQUIREMENTS

Values
Source End User
Stimulus Accessing website
Artifact System
Environment Website
Response Show the user the website it desires.
Response measure Web server will be working correctly

more than 90% of the time.

A2 Persistent storage
When the system is rebooted it needs to restore to the same state as before.

Values
Source End User
Stimulus Accessing website
Artifact System
Environment Website
Response Show the user the website it desires.
Response measure After shutdown the application shall

recover to the same state as before ev-
ery time.

6.2.3 Security

According to Bass, Clements and Kazman, security is a measure of the sys-
tems ability to resist the unauthorized usage while still providing its services
to legitimate users[Bass et al., 2003]. Below we have identified the following
use cases for assuring the security of the application.

S1 Secure data storage
The application shall store sensitive data secured.

Values
Source Developers
Stimulus Add security measures.
Artifact System
Environment Run time
Response Secure data
Response measure After positioning the ships, the user is

able to change these positions, one at a
time.

65

CHAPTER 6. REQUIREMENTS

S2 Authentication
The users shall be authenticated to view sensitive data.

Values
Source End User
Stimulus Requesting to view sensitive data.
Artifact System
Environment Run time
Response Check authentication
Response measure If authenticated show the appropriate

data.

66

Chapter 7

Design

In this chapter the design process will be explained in detail. We will show
how our tool went from sketch to a fully working prototype. Through the
different iterations of development, we made different design choices that
helped design the application. Before the actual development began, we
went through a design process that resulted in a basis for implementation.
In this section we will elaborate on how these steps culminated into the final
design choice.

7.1 Responsive web design

Responsive web design[Marcotte, 2013c] is a web design approach aimed at
developing websites in order to provide an optimal viewing experience on
a wide range of devices, from large desktop monitors to smartphones and
tablets. This includes easy reading and navigation with minimal resizing,
panning, and scrolling.

Any site designed to be responsive, adapts the layout to the viewing envi-
ronment, along with fluid proportion-based grids and flexible images. An
illustration of how responsive web design adapts to different devices can be
seen in Figure 7.1.

67

CHAPTER 7. DESIGN

Figure 7.1: Responsive layout, adapting the same content to different viewing
experiences [Vinaganda.com, 2013]

7.1.1 Fluid grid

A definition on fluid is : “A fluid is a substance that continually deforms
(flows) under an applied shear stress”[Nimesh, 2013]. In a web-design con-
text, fluid will be the design and layout, and shear stress will be the device
used to access the content. Regardless of what the device or screen size is,
components in fluid designs are going to flow and adapt to the user environ-
ment. Fluid grids define a maximum layout size and the grid is divided into
columns for easier handling. These grids can then be designed with propor-
tional widths and heights. The fluid grid and it’s columns can be seen in
Figure 7.1.

The fluid grid[Nimesh, 2013; Marcotte, 2013a] concept states that page ele-
ments should be sized in relative units, like percentages or ems, instead of
absolute units like pixels or points. Since fluid grids flow naturally based on
the dimensions of its parent container-component, specific adjustments for
various devices are therefore kept to a minimum. In the fluid grid, flexible im-
ages are also sized in relative units, up to 100%, in order to prevent them from
stretching outside their containing element[Marcotte, 2013b]. This means all
kinds of elements on a web-page can be treated as proportions measured
against their container, and not in absolute pixels.

68

7.2. MOCKUPS

7.2 Mockups

At the very beginning we had an idea of what we wanted to do and how to
do it. At the time we had not decided on a platform for our application.
Because of this we sketched up some different design choices.

7.2.1 Smartphone App

Our first alternative was creating a native app for smartphones, on iOS or
Android. We had experience with creating android applications before, so
this was our first thought.

Figure 7.2: Smartphone mockup

7.2.2 Web-Application tool

Our second option was creating our tool as a web-application. Web-applications
are platform independent and can be accessed on a wide range of devices, as
long as it has a fairly updated browser. The idea was to also make the web
application responsive, which would provide an optimized viewing experience
allowing for easy reading and navigation with minimal resizing, panning, and
scrolling across a wide range of devices (from large monitors to mobile phones
.
Figure 7.3 shows how our first sketch for a web-app looked like.

69

CHAPTER 7. DESIGN

Figure 7.3: Web-app mockup

As this was the main design options, we did some research on existing frame-
works which might suit our requirements. The tool needed to be responsive
and work on a wide range of devices, which made a fluid design suitable.

7.3 Twitter Bootstrap

The Twitter Bootstrap framework[Twitter, 2013] features both the fluid grid
and responsive web design requirements stated above. Bootstrap was de-
veloped by Mark Otto and Jacob Thornton at Twitter, as a framework to
promote consistency in internal tools[Otto, 2013]. Twitter bootstrap is a free
powerful front-end framework for faster and easier web development, and it’s
publicly available to use by anyone.

It contains HTML and CSS based design templates for interface elements
like buttons, charts, and navigation. Bootstrap was made to not only look
and behave optimally in desktop browsers, but in tablet and smartphone
browsers via responsive CSS and HTML5 as well. The framework features
responsive grids, components like tabs and dropdowns, JavaScript plugins,
typography options and forms.

Twitter Bootstrap is the most popular project in GitHub and is used by

70

7.3. TWITTER BOOTSTRAP

amongst others NASA(National Aeronautics and Space Administration)[Aeronautics
and NASA, 2013] Bootstrap is also modular, which means it is composed of
a series of components that together make the toolkit. Developers can then
cherry pick the components they need from the Bootstrap toolkit.

7.3.1 Bootstrap grid

Bootstrap ships with the standard 940 pixel wide, grid layout. Developers
can choose to use a variable-width layout if they wish. In any case the
Bootstrap toolkit has four major variations in order to adapt content and
grid width to different resolutions and devices: mobile phones, both portrait
and landscape format, tablets and desktop computers with both low and high
resolution and wide-screen support.

7.3.2 Bootstrap components

Bootstrap features a set of CSS style sheet, which defines styles for the ma-
jor HTML elements. These style sheets allow for a platform-independent,
multi browser enabled and consistent appearance for text, tables and other
elements. Bootstrap also comes with additional commonly used interface
components. Such components are buttons (See Figure 7.4, button-groups,
buttons with drop-down option, navigation lists, tabs, breadcrumbs, pagina-
tion, different alerts and so on.

Figure 7.4: Example of Twitter Bootstrap button components [Twitter, 2013]

71

CHAPTER 7. DESIGN

7.3.3 Icons

Twitter Bootstrap comes with 140 sprite form icons, in both dark gray and
white1

7.3.4 Design Examples

At the Twitter web-site they feature some examples that can be used as a
basis for development. We decided to base our web application design on
this layout, as it suited our needs and was very close to our initial mock-
up. Figure 7.5 shows the example project we chose for the PeacefulBanana
application.

Figure 7.5: Twitter bootstrap fluid layout with header and sidebar [Twitter,
2013]

Visiting the site on a mobile device with a smaller screen, the responsive fluid
layout would optimize the page for that device, as shown in Figure 7.6.

1Bootstrap icons: http://twitter.github.com/bootstrap/base-css.html#icons

72

http://twitter.github.com/bootstrap/base-css.html#icons

7.3. TWITTER BOOTSTRAP

Figure 7.6: Twitter Bootstrap fluid layout with responsive menu and content
[Twitter, 2013]

Figure 7.7 is how our web-app looked after implementing bootstrap for a
fully fluid and responsive web-application:

Figure 7.7: PeacefulBanana - Initial setup with Twitter Bootstrap

73

CHAPTER 7. DESIGN

7.4 PeacefulBanana Design

After setting up and integrating the twitter bootstrap framework, the Peace-
fulBanana web-application was born, fully responsive and available on mul-
tiple platforms. Figure 7.8 shows the final PeacefulBanana design, which
emerged from the starting design shown in Figure 7.7:

Figure 7.8: PeacefulBanana - Final home screen

The design is based on the Twitter Bootstrap framework and the principles
of responsive web-design and a fluid layout. More specifically it is based
on the fluid layout example from Figure 7.52. The PeacefulBanana layout
features a navigation-menu on top with different tabs, leading to different
content. Each of these tabs contain sidebars, which acts as sub-menus. The
tool also integrates a user-menu, which is a drop-down with different actions
that relates to the user, like settings.

7.4.1 Icons

The PeacefulBanana tool makes extensive use of the icons included in Twitter
Bootstrap, in order to further define what action you can expect from a tab.
For example a home icon on the Home tab, a globe on the Team tab and a
user icon on the User dropdown, which can be seen in Figure 7.9.

2http://twitter.github.com/bootstrap/examples/fluid.html

74

http://twitter.github.com/bootstrap/examples/fluid.html

7.4. PEACEFULBANANA DESIGN

Figure 7.9: Example of Twitter Bootstrap/Glyphicons use in PeacefulBanana
[Twitter, 2013]

7.4.2 MIRROR CSRL

This section describes the rationale behind the most important functionality
implemented to PeacefulBanana, with relation to the Mirror CSRL cycle
model. The section ends with a more detailed rationale behind the core
functionality implemented. As described in Section 3.1.1 , the MIRROR
CSRL model has four stages:

1. Plan and do work

2. Initiate Reflection

3. Conduct Reflection session

4. Apply Outcome

In this thesis, our research mostly focuses on the first two stages of the
model, since PeacefulBanana is primarily to be used during work and as
preparation for retrospective sessions. PeacefulBanana additionally includes
some implementations focused towards the third stage Conduct reflection
session, as it also can be used during the session.

7.4.3 Plan and do work

Figure 7.10 shows functionality we implemented towards the Plan and do
work stage, and how our application help user(s) plan and perform their
daily work tasks. Functionality in this stage is connected to Sub research
question 1, which is focused on answering how the data collected from
GitHub can be scaffolded in order to promote reflection. By carefully ex-
amining what GitHub offers itself, we could identify what they didn’t offer
and implement this functionality provided it could have a positive effect for
promoting reflection for users. The challenge was not only to identify what
data to collect, but also scaffold the collected data and present them to the
users in a way that triggers reflection.

75

CHAPTER 7. DESIGN

Adding mood to the Daily Reflection Note implementation gave us the op-
portunity to create a mood-graph based on the team user’s mood every day.
This representation allows for a quick and easy mood comparison, which may
encourage user’s to look into why their mood differs opposed to the team’s
in a certain period of time. Such a discussion might occur at any time, either
because a user browses on his own and wants to discuss his findings, or the
team browses it together. The rationale of adding notifications to the appli-
cation was made in order to give users context-relevant feedback and remind
them of the daily reflection notes.

This functionality is also connected to Sub research question 2, which
focuses on how to improve the tendency to reflect, both individually and in
teams.

Figure 7.10: Mirror CSRL Cycle - Plan and do work functionality & imple-
mentations

7.4.4 Initiate Reflection

Figure 7.11 shows functionality we implemented towards the Initiate Reflec-
tion stage, and how our application help user(s) initiate reflection. Func-

76

7.4. PEACEFULBANANA DESIGN

tionality in this stage is also coupled with Sub research question 2. The
Reflection Workshop functionality is implemented in order for teams to create
a frame for their retrospective session. When a workshop has been added,
individuals can also prepare by themselves by comparing their own data
with the teams, i.e. the personal tag-cloud vs team tag-cloud and the mood-
graph.

Figure 7.11: Mirror CSRL Cycle - Initiate Reflection functionality & imple-
mentations

7.4.5 Conduct Reflection Session

Figure 7.12 shows the functionality we implemented towards the Conduct
Reflection Session stage, and how our application help user(s) perform their
retrospectives.

77

CHAPTER 7. DESIGN

This stage is not something we focused on, since most of the use of Peace-
fulBanana is doing daily work and using those data to prepare for retrospec-
tives. Still the most notable functionality that is connected to this stage, is
the ability to share and inspect reflection notes, meaning that teams can dur-
ing reflection sessions wish to compare shared notes and create a discussion
around these. Similarly teams can inspect repository data, like milestones
and issues, and also tag-clouds connected to these. These tag-clouds can
identify active issues which the team wishes to discuss during the retrospec-
tive.

Figure 7.12: Mirror CSRL Cycle - Conduct reflection session functionality &
implementations

7.4.6 Core Functionality

This section will describe the core functionality in the PeacefulBanana ap-
plication and the relationship between the application and the CSRL model
in section 7.4.2.

Daily reflection note
Scaffolding is the act of creating a skeleton or a frame for the work to be
done. PeacefulBanana provides users with the ability to create reflection
notes, where they reflect on that day’s work and store it for later use. In this
context the scaffolding is creating a frame for the reflection to be done, which

78

7.4. PEACEFULBANANA DESIGN

includes text input and guiding questions. An example of such a reflection
note can be seen in Figure 7.13.

In order to encourage users to reflect on their daily work and to avoid generic
or non-constructive input, we connected questions to each input field, to act
as guidance. For each input, the application provides a question, like How
did you feel about todays work? for the mood input. Adding these questions
helps users think back on their experiences that day and perform a reflection
on these.

Figure 7.13: PeacefulBanana reflection note

79

CHAPTER 7. DESIGN

Mood graphs
When creating a reflection note, users can connect their current mood, that
is how they felt, to the reflection note. By adding the ability to connect mood
to notes each day, the tool can present meaningful mood-averages back to
the users. These mood averages are used by PeacefulBanana to generate a
mood-graph, depicting a user’s or a team’s mood over a period of time.

By presenting this shared team-average mood, user’s get an indication of how
the work is perceived by the other group members and the team can create
a discussion around certain trends in mood, or even why certain users stand
out from the rest of the team’s mood.

An example of such a mood graph can be seen in Figure: 7.14

Figure 7.14: PeacefulBanana Team Mood-graph

Tag-clouds
PeacefulBanana also provides the user with individual and team-wide tag-
clouds. These tag-clouds are based on the user’s or the team’s activity in a
GitHub project over a period of time. The tag-cloud elements are weighted
according to how much the particular #tag has been worked with, the more
activity the bigger the word. Implementation of the tag-clouds allows user’s
to see trending events in their own activity trajectory, but also compare it
with the rest of the team. This enables the user to see how their work is
affecting the team’s work, but also gives the team an indication on what has

80

7.4. PEACEFULBANANA DESIGN

been worked with over different periods of time(i.e. a development itera-
tion).

Figure 7.15: PeacefulBanana tag-cloud implementation

Sharing of data
Reflection notes can be shared with a user’s team, should they want to.
PeacefulBanana collects team-relevant data from GitHub , scaffolds and
presents these to users. This data gives the team the ability to see who
is working on what, are there any trending issues in the team that can be
intercepted and solved and more.

Figure 7.16 shows how PeacefulBanana user’s can see their notes and the
notes’ creation date, owning user, what team that user is on and the share
status of the note. The user can also simply filter between their own notes
or shared notes by their current team. This is shown in Figure 7.17

81

CHAPTER 7. DESIGN

Figure 7.16: PeacefulBanana user notes

Figure 7.17: PeacefulBanana shared team notes

82

7.4. PEACEFULBANANA DESIGN

Repository

In addition to functionality related to the Daily Reflection Note and team
retrospective sessions, we also implemented functionality aimed towards in-
dividual and collaborative reflection outside of these frames. This includes
gaining an overview of the current project, the status of milestones and re-
lated issues. The rationale for implementing these functionalities is that we
want to keep the required use of PeacefulBanana to a minimum, therefore
only the 5-minute daily reflection is required to gain advantages towards the
retrospective session. However, if a user or the whole team wants to dive
deeper into the project data, they can do so in the Repository section. Here
users can see the teams commit activity, see the status of milestones and
filter them based on this status. Clicking on a specific milestone will show
all issues connected to the milestone and a tag-cloud containing that mile-
stone’s most used tags. Figure 7.18 shows an example of such a milestone
with related issues, and Figure 7.19 shows the tag-cloud connected to this
milestone.

This means users or teams can identify certain issues that dominate, and
can easily inspect these by clicking on them. Inspecting an issue will present
comments, commit references and events concerning that issue. This enables
individuals to inspect and revisit experiences, and allows teams to create
a discussion around issues or milestones outside of the retrospective ses-
sions.

Figure 7.18: PeacefulBanana - Repository milestone and issues

83

CHAPTER 7. DESIGN

Figure 7.19: PeacefulBanana - Repository milestone tag-cloud

Reflection sessions

One of the primary functionalities we implemented, in addition to the daily
reflection note, was the Reflection Workshop. The manager of each team will
see a separate Workshop tab. The workshop area allows managers to prepare
for retrospective sessions, by creating a workshop for that period of time(i.e.
an iteration that have lasted for the last two weeks). Figure 7.20 shows an
example of such a workshop.

When the workshop has been created, users are met with three accordion
headers3. The accordions contain some mandatory questions which is some
general reflection questions that is relevant to discuss in retrospective ses-
sions, and so these cannot be removed from the workshop. The Peaceful-
Banana application also uses gathered data about the most used tags, to
generate some proposed questions. The rationale behind this choice is that
if the team has had a high activity with a certain tag, it is a high possibility
that it’s also important to discuss. Examples of these generated questions
can be seen in Figure 7.21. Ultimately though, it is the manager of the
team that chooses what questions or tags that should be discussed in the

3An accordion is a collapsible content panel for presenting information in a limited
amount of space

84

7.4. PEACEFULBANANA DESIGN

retrospective session. Therefore if the manager feels that one or more of the
generated questions are unimportant, they can be removed.

Finally the manager can browse a list of all tags, with the most active at
the top, and simply click the tag that should be discussed as part of the
retrospective session. If a tag is clicked under the Possible tags questions
they will be instantly moved to the Questions generated section, and vice-
versa deleted questions will be moved to the list of possible tag questions.
Figure 7.22 shows how the tag list is presented in the application.

Figure 7.20: PeacefulBanana Workshop - Mandatory questions

85

CHAPTER 7. DESIGN

Figure 7.21: PeacefulBanana Workshop - Generated questions based on ac-
tive tags

Figure 7.22: PeacefulBanana Workshop - Possible questions based on tags

86

Chapter 8

Implementation

This chapter described the PeacefulBanana architecture, the technology we
used to implement it and the functionality it provides.

8.1 Application Architecture

As described in Section 6.1.3, the application is implemented with a client-
server architecture and all related requirements is described in 6.1.3. Figure
8.1 shows an overview of the system design and the interaction between
users, the web-server and GitHub. Each PeacefulBanana user visits the web-
application through a web-browser. PeacefulBanana runs on a dedicated
server and is able to serve many users at the same time. In the background the
PeacefulBanana application communicates with GitHub through the GitHub
API (See Section 8.2) and synchronizes project and user-data in real time
while users perform their tasks. Users connect their local PeacefulBanana
account with their GitHub account in order to gain access to projects. All
data collected from GitHub is stored locally on the server in a database (See
section 8.2.1).

87

CHAPTER 8. IMPLEMENTATION

Figure 8.1: Overview of system design.

8.2 Technology

When choosing a framework for the prototype, several alternatives like Spring1,
WebObjects2 and Play Framework3 where discussed. Their architecture and
our familiarity to the framework was a vital part of the selection. Based on
these criteria the server was implemented with Grails a framework for web
applications, it is better described in Section 8.2.

GitHub API

GitHub provides developers with the opportunity to use an API4 which gives
them the possibility to communicate with GitHub and retrieve data directly
from their database. The identified requirements concerning GitHub is de-
scribed in Section 6.1.2.

When retrieving data from GitHub we used the provided API as described
by their developer-site5, this enabled us to control the sequence of data and
when to ask for what type of data. All communication to GitHub servers

1http://www.springsource.org/
2htpp://www.apple.com/webobjects/
3http://www.playframework.com/
4Application programming interface
5http://developer.github.com/v3/

88

http://www.springsource.org/
htpp://www.apple.com/webobjects/
http://www.playframework.com/
http://developer.github.com/v3/

8.2. TECHNOLOGY

are asynchronous and while therefore not introduce any performance related
issues.

The application needs to authenticate with GitHub in order to , through
the use of OAUTH2 tokens. When the user first uses the tool, he will be
asked to authenticate with GitHub’s authentication page, asking the user
to log in and authorize the PeacefulBanana tool. When this is done the
tool receives a token it can use on behalf of the user to retrieve data from
GitHub. The token itself is not stored, but retrieved in the background when
required and bound to the users HTTP-session which expires when the user
closes the browser window. This is done for safety reasons cause it would be
devastating if these tokes got in the hands of the wrong people, they could
for example delete the entire repository.

For gathering data from GitHub, data is transfered as JSON(JavaScript Ob-
ject Notation), a lightweight data interchange language.

Grails

The PeacefulBanana application was developed with the Grails framework.
Grails is an open source web application framework which uses the program-
ming language Groovy(which is built on top of the Java Virtual Machine).
When Grails was developed, it’s developers aimed to re-use proven technolo-
gies such as Hibernate6 and Spring7.

Figure 8.2: Overview of Grails architecture [People10.com, 2013]

6http://www.hibernate.org/
7http://www.springsource.org/

89

http://www.hibernate.org/
http://www.springsource.org/

CHAPTER 8. IMPLEMENTATION

Architecturally, Grails is designed with the MVC8 pattern as a basis, this
will expose the model9 in the view10 and any manipulations to the model is
done through a controller which controls that the data is correct input to the
fields and what fields can be manipulated. An overview of the paradigm can
be viewed in figure 8.3 below.

This pattern makes it easy for the developer to remain in control when cre-
ating a user interface and will ensure that the user can not manipulate fields
without going through the controller[Reenskaug and Coplien, 2009]. Using
MVC increases flexibility and re-use by decoupling the user interface from
the model and controller parts. The content of the view must reflect the state
of the model, meaning when the model changes it notifies the view, which in
turns updates itself.

Figure 8.3: Model-view-controller paradigm [Ap and Frey, 2013]

8Model View Controller
9Data stored about the object.

10With the restrictions on what data is viewable for the user.

90

8.2. TECHNOLOGY

Spring Security

For authentication and access-control we used the Spring Security frame-
work, which is a part of Spring. Spring Security allowed us to create user
accounts and connect these within the application. Functionality like chang-
ing password, requesting new password when forgotten are examples of what
Spring Security provides. Requirements related to authentication and secu-
rity, is described under General Requirements in Section 6.1.1. Requirements
related to user accounts, and linking users to teams is described in Section
6.1.2.

jQuery

jQuery was initially released under the MIT license in 2006 to make it eas-
ier to select DOM11 objects and create powerful dynamic web pages and
applications.

JQuery provided our application with a way to change objects in real-time
without refreshing the whole page, using AJAX12.

AwesomeCloud

Awesome cloud is a plugin for jQuery for creating a tag cloud. It retrieves
data from DOM-objects and renders them as a cloud, where the font-size
increases with the occurrence of tags. The tag cloud is then drawn on the
HTML5 canvas. We used this to implement our individual and team-wide
tag-clouds (See Section 7.4.6).

8.2.1 Server and Database

The PeacefulBanana application was deployed on a Ubuntu server running
Apache Tomcat v7. Server related requirements is described in Section 6.1.3.
During development we ran the application on a H213 in-memory database.
However the need for persistent storage arose, so we migrated to a MySQL
database in order for the data to stay unchanged when we had to roll out

11Document-Object-Model
12Asynchronous JavaScript and XML - AJAX is a way to change the contents DOM

objects asynchronous from JavaScript.
13http://www.h2database.com/

91

http://www.h2database.com/

CHAPTER 8. IMPLEMENTATION

updates to the tool. This choice was essential for the tool to function as
described in the requirements, but the H2 database was more convenient
and faster to debug during development.

MySQL

MySQL14 is the world’s largest open source relational database management
system and can be used for a variety of applications. It is most commonly
used with Web applications and works very well with dynamic web-pages,
meaning that the content of each page is generated based on data loaded
from a database as the page loads.

Database description

The PeacefulBanana GitHub specific domain-classes can be seen in Figure
8.4, and shows the relationship between the different data retrieved through
the GitHub API. All User specific domain-classes can be seen in Figure
8.5.

A detailed walkthrough with data type categorization and description can
be seen in Appendix B

14MySQL: http://www.mysql.com/

92

http://www.mysql.com/

8.2. TECHNOLOGY

Figure 8.4: GitHub domain classes

Figure 8.5: User domain classes

93

CHAPTER 8. IMPLEMENTATION

94

Chapter 9

Evaluation

In this chapter we will describe how we evaluated the PeacefulBanana tool,
and how it fulfills the requirements identified in Chapter 6.

9.1 Usability Evaluation

In this section we will describe the results and observations made in the
usability test. Before we conducted the usability test we created a usability
test plan: Appendix C, where all the different parts of the usability test is
described in detail.

The usability test was conducted with four participants, recruited from a soft-
ware development project course at NTNU(IT2901)1. The application was
evaluated in it’s production stage, using the most-recent version at the time.
User-interaction with the PeacefulBanana application was done through an
Internet Browser(Google Chrome2). The users were recruited , and the test
was ran with the latest production version of the application.

Users answered an entrance questionnaire, in order to collect demographic
information. During the usability test we took notes of the user’s problems
and concerns. When the test was completed, participants could comment
with suggestions on improvement of the application or design. Participants
were given a System Usability Scale form to answer[Brooke, 1996], which
consisted of 10 questions designed to measure user satisfaction.

1http://www.ntnu.edu/studies/courses/IT2901
2http://www.google.com/intl/no/chrome/browser/

95

http://www.ntnu.edu/studies/courses/IT2901
http://www.google.com/intl/no/chrome/browser/

CHAPTER 9. EVALUATION

9.1.1 Context

The usability test simulated the two scenarios identified in Section 5.4 and
was set in the context of these. We conducted the usability test in order to
answer several important questions, regarding these scenarios:

• Is the application easy to use, and can users achieve their goals in a
timely manner?

• Identify the relationship users have with the aspect of reflection and
sharing personal experiences.

• Does the tool present data in a way that triggers reflection for the user?

Feedback from the usability test was used to further aid design and help
identify problem areas that might cause problems for potential users. Par-
ticipants were also familiar with reflection, so we hoped to collect valuable
input regarding this concept.

9.1.2 Participants

As mentioned we had four participants in the usability test. Typically,
three to five test participants is the optimal number for most usability stud-
ies[Nielsen and Landauer, 1993]. As the PeacefulBanana tool is intended to
be used with developers with a computer-science background, participants
were master students on the Computer Science field at NTNU. Participants
had experience with usability testing and also experience with the notion of
reflection, from earlier projects using an agile methodology process. Respon-
sibilities of participants were to attempt to complete a set of representative
task scenarios presented to them in as efficient and timely a manner as pos-
sible, and to provide feedback regarding the usability and acceptability of
the application. The participants were directed to provide honest opinions
regarding the usability of the application.

9.1.3 Procedure

The usability test took place in a private room at the university. A computer
with the PeacefulBanana web application was used in a typical working en-
vironment. The participants interaction with the application was monitored
by the facilitator seated in the same room. The facilitator briefed the par-
ticipants on the web application and instructed the participants that we are

96

9.1. USABILITY EVALUATION

evaluating the application, rather than evaluating the participant. Partic-
ipants signed an informed consent that acknowledges: the participation is
voluntary, that participation can cease at any time, and that their privacy
of identification will be kept safe. Consent form can be seen in Appendix
D.

The facilitator explained that the amount of time taken to complete the
test task will be measured and that exploratory behavior outside the task
flow should not occur until after task completion. At the start of each task,
the participant read aloud the task description from the printed copy and
began the task, and time-on-task measurement began simultaneously. The
facilitator instructed the participant to ‘think aloud’ so that the facilitator
could observe and take notes of user behavior and user comments. After
all task scenarios are attempted, the participant completed the post-test
satisfaction questionnaire derived from the SUS scale3.

9.1.4 Roles

For our usability test we had two roles, in addition to the test partici-
pants:

Facilitator

• Provides overview of study to participants.

• Defines usability and purpose of usability testing.

• Responds to participant’s requests for assistance.

Test Observer

• Silent observer

• Takes notes of identified problems, concerns, coding bugs, and proce-
dural errors.

• Serve as note takers.

3System Usability Scale

97

CHAPTER 9. EVALUATION

9.1.5 Ethics

All persons involved with the usability test were required to adhere to the
following ethical guidelines:

• The performance of any test participant must not be individually at-
tributable. Individual participant’s name should not be used in refer-
ence outside the testing session.

• A description of the participant’s performance should not be reported.

9.1.6 Usability Tasks

The usability tasks were derived from our scenarios, described in Section 5.4.
Due to the short time for which each participant was available, the tasks used
were the most common and relatively complex of available functionality. The
tasks were identical for all participants in the study. The application was
tested in a development environment and databases were populated during
use, and not pre-populated. This ensured a similar experience as to what
the users would get when they first use PeacefulBanana in a real-life setting.
The web application was run on a local computer, and not on a dedicated
server as it will when deployed in production. This and the possible extra
overhead from running the application in development mode, may have an
impact on performance slightly in a negative way.

Task context

PeacefulBanana is a tool intended to promote reflection and allow for revisit-
ing and learning from previous experiences. PeacefulBanana integrates with
and collects data from the version-control system GitHub.

Scenario 1 tasks:

Here are the tasks participants were to solve related to Scenario 1:

• Task 1: You start the application for the first time, and want to login,
link your account with Github and set an active repository.

• Task 2:

– Task 2.1: View your notifications.

98

9.1. USABILITY EVALUATION

– Task 2.2: Find the “Congratulations” notification and archive it.
Find the archive and see if the notification was indeed archived

• Task 3:

– Task 3.1: Find the “Reminder: Daily Reflection” note and per-
form the daily summary.

– Task 3.2: Find a daily summary note and share it. Verify that is
has indeed been shared.

– Task 3.3: Find your mood graph

Scenario 2 tasks:

Here are the tasks participants were to solve related to Scenario 2:

• Task 4:

– Task 4.1: Create a team with the name “Tuttifrutti” and your
previously chosen repository.

– Task 4.2: Find your created team and set it to active.

– Task 4.3: Identify the members on your team and their role.

• Task 5:

– Task 5.1: Find all your repositories’ milestones.

– Task 5.2: Identify your overdue milestones.

– Task 5.3: Find your repositories issues.

– Task 5.4: Find issue #17 . Find the status of this issue, when it
was opened and when it was closed.

• Task 6:

– Task 6.1: Generate a tagcloud for your current chosen repository.

– Task 6.2: Identify the most used tag for your team and yourself.

– Task 6.3: Find the commit impact for your repository.

99

CHAPTER 9. EVALUATION

9.1.7 Usability Metrics

Usability metrics refers to user performance measured against specific perfor-
mance goals necessary to satisfy usability requirements. Scenario completion
success rates, error rates, and subjective evaluations was collected, addition-
ally Time-to-completion/Time-on-task was also collected.

Task Completion

Each task requires that the participant obtains or inputs specific data that
would be used in course of a typical task. The task is noted as completed
when the participant indicates the task’s goal has been obtained (whether
successfully or unsuccessfully). If a participant requires assistance in order
to achieve a correct output then the task will be noted as a critical error and
the overall completion rate for the task will be affected.

Completion Rate

A completion rate of 100% is the goal for each task in this usability test.
Completion rate is the percentage of test participants who successfully com-
plete the task without critical errors, an output that is correct. If a partic-
ipant requires assistance in order to achieve a correct output then the task
will be scored as a critical error and the overall completion rate for the task
will be affected.

Critical Errors

A critical error is an error that results in an incorrect or incomplete outcome.
Participants may or may not be aware that the task goal is incorrect or
incomplete. In general, critical errors are unresolved errors during the process
of completing the task or errors that produce an incorrect outcome.

Non-Critical Errors

Non-critical errors are errors that are recovered from by the participant or,
if not detected, do not result in processing problems or unexpected results.
Although non-critical errors can be undetected by the participant, when they
are detected they are often frustrating to the participant.

100

9.1. USABILITY EVALUATION

Subjective Evaluations

Opinions of participators regarding specific tasks, time to perform each task,
features, and functionality was collected. At the end of the usability test,
participants rated their satisfaction with the overall system. Combined with
the interview/debriefing session.

Task Completion Time(time on task)

The time to complete a task is referred to as ”time on task”. It is measured
from the time the person begins the task to the time the participant indicates
completion.

9.1.8 General Usability Goals

The general goals of usability testing the PeacefulBanana application in-
cluded establishing a baseline of user performance, validating user perfor-
mance measures, and identifying potential design issues that needed to be
addressed in order to improve efficiency, usability and end-user satisfaction.
The general usability test objectives were:

• Identify possible problems or breakdowns in the design[Wright and
Monk, 1989] early on in the design process. Sources of such break-
downs may include:

– Navigation errors – failure to locate functions, excessive actions to
complete a function, failure to follow recommended screen flow.

– Presentation errors – failure to locate and properly act upon de-
sired information in screens, selection errors due to labeling am-
biguities.

– Control usage problems – improper tool bar or entry field usage.

• Exercise the PeacefulBanana application under controlled test con-
ditions with representative users, which here are individuals with a
background in Computer-Science. Data will be used to assess whether
usability goals regarding an effective, efficient, and well-received user
interface have been achieved.

• Establish baseline user performance and user-satisfaction levels of the
user interface for future usability evaluations.

101

CHAPTER 9. EVALUATION

Typical general problems identified in this usability test would be text rep-
resentations or the placement of design elements, that are not intuitive for
the user during use. It would be a concern if the user can’t figure out how to
use certain features of the application. Identifying these problems as early
as possible will lead to a better end result.

Secondly an objective of the usability test was to identify how users act and
think about their daily experiences, how they react to the notion of reflecting
on them and if sharing their private thoughts is a problem.

9.1.9 Problem Severity

In order to analyze collected data from the usability test, identified issues
were classified by issue severity. This issue severity is a combination of the
impact of the issue and the frequency of users experiencing the issue during
the test.

Problem Severity Classification

• High severity: High impact problems that often prevent a user from
correctly completing a task. Reward for resolution is reduced redevel-
opment costs.

• Medium severity: Either moderate problems with low frequency or low
problems with moderate frequency; these are minor annoyance prob-
lems faced by a number of participants. Reward for resolution is typi-
cally exhibited in reduced time on task and increased data

• Low severity: Low impact problems faced by few participants; there
is low risk to not resolving these problems. Reward for resolution is
typically exhibited in increased user satisfaction.

Pilot Test

After finalizing the usability test plan, seen in Appendix C, a pilot test was
conducted prior to the usability-test[US.gov, 2013]. The pilot test allows for
an evaluation of the test plan itself and the questionnaires before doing the
actual usability test. This means the pilot test is a ”test of the test”, where
the goal is to evaluate and verify that the test itself is well-formulated.We
chose a fellow student as our pilot-tester, in order to check whether the test

102

9.1. USABILITY EVALUATION

script was clear, that the tasks were appropriately difficult, and that the
data collected can be meaningfully analyzed. It also allows the ”tester” to
practice the execution and guidance, before actually performing the tests.
In the pilot test for PeacefulBanana, all of the aspects above were evaluated
and a few tweaks were made to the tests, making it more streamlined. Also
a few, smaller bugs in the application were discovered and fixed. The test
introduction was rewritten, since the pilot-tester showed some confusion in
a few of the tasks.

9.1.10 Usability Test Results

We conducted an on site usability test using a production version of Peaceful-
Banana, located on the test administrators local server. One tester took notes
of comments, facial expressions and navigation choices. The administrator
acted as guidance during the test. The sessions captured each participants
navigational choices, task completion rates, comments, overall satisfaction
ratings, questions and feedback. The usability test was conducted in a pri-
vate lab-room at NTNU on November 10th. The purpose of the test was
to assess the usability of the web application design, information flow, in-
formation architecture and the effects of sharing personal reflection notes.
The findings acted as valuable feedback to our delivery cycle, and were used
for improving the design of the application. Four participants attended the
test. Each individual session lasted approximately twenty minutes. This
section contains the participant feedback, satisfactions ratings, task comple-
tion rates, ease or difficulty of completion ratings, time on task, errors, and
recommendations for improvements.

Task Completion Success Rate

This section presents the task completion rates for our two scenarios. Figure
9.1 shows the completion rate table for Scenario 1, and Figure 9.2 shows the
completion rate table for Scenario 2.

Scenario 1 completion rates:

All participants successfully completed (100% Completion rate):

• Task 1 - Start the application and set active repository.

103

CHAPTER 9. EVALUATION

• Task 2.1 - View notifications.

• Task 3.1 - Find the Reminder: Daily reflection note and perform the
daily summary.

• Task 3.2 - Find and share the daily reflection note.

For Task 2.2(Find and archive congratulations notification) and Task 3.3(Find
mood graph), 3 out of 4 participants completed the tasks(75% Completion
rate).

Figure 9.1: Scenario 1 Completion Rate

Scenario 2 completion rates: All participants successfully completed
(100% Completion rate):

• Task 4.1 - Create a team.

• Task 4.2 - Set active team.

• Task 4.3 - Identify team members.

• Task 5.2 - Identify overdue milestones.

• Task 5.4 - Find issue #17

• Task 6.1 - Generate tag cloud

• Task 6.2 - Identify most used personal tags and team tags

• Task 6.3 - Find commit impact

3 out of 4 participants(75%) successfully completed Task 5.1(Find all mile-
stones for your repository), while 2 out 4(50%) successfully completed Task
5.3 (Find your repositories issues).

104

9.1. USABILITY EVALUATION

Figure 9.2: Scenario 2 Completion Rate

Time on task

Time on task for each participant was recorded. Some tasks were inherently
more difficult to complete than others and is reflected by the average time
on task. Time on task results for Scenario 1 is presented in Figure 9.3, and
time on task results for Scenario 2 is presented in Figure 9.4.

Time on task - Scenario 1

• Task 1(Start the application and set active team/repository)
showed a high average time on task. The main reason behind this
was the authorization with GitHub which required users to login and
authorize on the external GitHub.com page.

• Task 2.1(View notifications) showed a very similar time on task
by the participants, the same can be seen on Task 2.2(Find and
archive notification) although the time by each participant was over
80 seconds.

• Task 3.1(Find reminder and perform daily reflection) took the
longest time to complete(average 222 seconds). However this was to
be expected, as the daily reflection note requires participants to re-
flect on their work, and usually lasts for 2-5 minutes. This task also
had the largest range in completion time, ranging from 204 seconds to
272 seconds. Task 3.2(Find and share reflection note) and Task
3.3(Find mood graph) participant time on task averaged 55 and 43
seconds.

105

CHAPTER 9. EVALUATION

Figure 9.3: Time on task Scenario 1

Time on task - Scenario 2

• Task 4.1(Create a team) showed the longest completion time in
Scenario 2. The main reason behind this was the amount of data that
needed to be collected from GitHub and stored in the PeacefulBanana
database. The task also showed the longest range in completion time,
from 185 seconds to 310 seconds. The reason behind this large gap
was mainly the difference in amount of data present in the GitHub
repositories they chose to create a team for. Task 4.2(Set active
team) showed no major changes in completion time, and the
same can be seen in Task 4.3(Identify team members)

• Task 5.1(Find all milestones) showed that 3 out of 4 participants
had very similar completion times(45, 52 and 51 seconds), but the av-
erage was increased by that the last participant had a completion time
of 95 seconds. Task 5.2(Identify overdue milestones) showed very
similar completion times, while Task 5.3(Find repository issues)
had one participant at 71 seconds, while the rest used an average of 50
seconds. Task 5.4(Find issue #17) showed an average of 75 seconds,
with no significant differences.

• Task 6.1(Generate tag cloud) averaged on 50 seconds, Task 6.2(Iden-
tify most used individual and team tags) averaged 41 seconds and
Task 6.3(Find commit impact) averaged at 36 seconds, all with no
significant difference in completion time.

106

9.1. USABILITY EVALUATION

Figure 9.4: Time on task Scenario 2

9.1.11 Summary of Data

The number of errors participants made while trying to complete the tasks
were captured and recorded. Critical errors leads to participant failing in
completing scenario, while non-critical errors is an error that does not pre-
vent successful completion of the scenario. These errors along with task
completions and time on task average for each task are represented in Figure
9.5. Low completion rate, occurrence of critical-errors and high time on task
are highlighted in red.

Overall Metrics

After completing the usability session, participants were given a System Us-
ability Scale form to answer[Brooke, 1996]. The results from the SUS-scale
can be seen in Figure: 9.6.

All participants agreed(i.e., agree or strongly agree) that they would use the
application frequently and that the application was easy to use. All partic-
ipants(100%) also felt confident when using the application. The majority
of the participants(75%) felt the functions in the application were well inte-
grated, and that most people would learn to use the system very quickly. Half
of the participants(50%) agreed that there were inconsistencies in the sys-
tem, which were mainly related to a more clear distinction between milestone
related issues and repository issues. None of the participants(0%) found the

107

CHAPTER 9. EVALUATION

Figure 9.5: Summary of Data

system unnecessarily complex or that it was cumbersome to use. Further
none of the participants felt users would need support of a technical person
to use the system(based on the intended user group) or that they needed to
learn a lot before getting going with the system. The participants mentioned
the quick start guide as a possible look-to document in case of trouble.

Reflection and sharing

Participants were also asked to answer the questions identified in Section
9.1.1

• Is the application easy to use, and can users achieve their goals in a
timely manner?

Feedback here was that participants were satisfied with the ease of use as can
be seen above, also time-on-task show that participants were mostly quite
similar in the solving of tasks, and very few spikes.

• Identify the relationship users have with the aspect of reflection and
sharing personal experiences.

108

9.1. USABILITY EVALUATION

Figure 9.6: Post task

On this context, participants answered that reflecting on their experiences
is something they often do, but they don’t collect them and thus forgets
exactly what the experience was about. The application helped solve this
problem by prompting and allowing users to reflect and then store it for later
use.

When it comes to sharing, all participants were positive to this, although
they strongly emphasized the need for an unshare functionality. The miss-
ing ability to unshare these notes after hand could make them reluctant to
share them in the first place, since when first shared it was always shared.
One participant mentioned the possibility of letting notes be editable and
share/unshareable for a specific time period, f.ex 24 hours, where afterwards
they would be locked for editing.

• Does the tool present data in a way that triggers reflection for the user?

Participants responded that the tag-cloud and questions in the daily reflec-
tion note triggered them to reflect on experiences. Actually reading the ques-
tions in their mind, helped them to reflect on the experiences, instead of just

109

CHAPTER 9. EVALUATION

having an empty text-field could lead to random thoughts being collected and
not actually triggering reflection. The commit impact graph was mentioned
as less-helpful as it didn’t really justify the amount of work done.

Participants also provided feedback for what they liked the most and least
about the application, and recommendations for improving the application.

Most liked

The participants liked the design of the applicincation and that it was able
to synchronize with their GitHub repositories automatically, without them
having to worry about it. The personal tag-cloud and the ability to compare
it directly with the team’s tag cloud was also a joint feedback.

Least liked

Participants commented that the way notifications were given was not opti-
mal, and the registration process was a bit tedious.

9.1.12 Recommendations

In addition to the feedback gathered from section 9.1.11, this section presents
proposed changes and their justifications derived from the participant suc-
cess rate, behaviors, and comments. The identified recommendations will
improve the overall ease of use and address the areas where participants ex-
perienced problems or found the interface/information architecture unclear.
Feedback on recommendations on improvement was primarily to streamline
the registration process. Also the participants commented that issues con-
nected to a specific milestone, should be more visibly separated from issues
connected to the whole repository.

Implemented Changes

This section presents the proposed changes that were implemented into the
PeacefulBanana application.

110

9.1. USABILITY EVALUATION

Task 1: Start application, login, link account with GitHub and set
an active repository

This recommendation, it’s justification and it’s priority(Severity) is presented
in Figure 9.7. The recommendation concerned a proposed streamlining of
the registration process. This was applied to the application in the way that
we changed to a larger and more stable mail-server provider, in order to
reduce the significance of a slow response time from external providers. The
registration process itself was also improved by reducing amount of clicks in
the process.

Figure 9.7: Task 1 changes and justification

Task 2.2: Find the Congratulations notification and archive it.
Verify activation.

This recommendation, it’s justification and it’s priority(Severity) is presented
in Figure 9.8. Implementation of the change resolved in adding a notifica-
tion counter with a more vibrant color. The reason for implementing this
change is that if users don’t realize they have notifications, the message in
the notification is lost and could lead to i.e. a user not remembering to do
the daily notification, or that he has changed his team. This was the case
in the usability test, which lead to one participant failing to complete the
task.

111

CHAPTER 9. EVALUATION

Figure 9.8: Task 2.2 changes and justification

Task 3.3: Find the mood-graph.

This recommendation, it’s justification and it’s priority(Severity) is presented
in Figure 9.9. This recommendation was implemented by more clearly di-
viding the two different mood-graphs. This meant changing labels to implify
what section they were connected to, and making the user more aware of
what section they were in, and what tag-cloud they were looking at.

Figure 9.9: Task 3.3 changes and justification

Task 5.1: Find all milestones for the current active repository.

This recommendation, it’s justification and it’s priority(Severity) is presented
in Figure 9.10. This improvement concerned missing feedback, when no
milestones were made for a project. This lead to one participant failing
to complete the task and therefore had a high priority. The improvement
was implemented by adding a check to provide the user with appropriate
feedback, if the chosen project had no milestones.

112

9.1. USABILITY EVALUATION

Figure 9.10: Task 5.1 changes and justification

Task 5.3: Find repository related issues.

This recommendation, it’s justification and it’s priority(Severity) is presented
in Figure 9.11. Task 5.3 generated the most errors, and also two critical errors
leading to failure of completion. Therefore the improvement was given a high
priority, and was implemented by clearly distincting milestone issues and the
more general repository issues. We moved milestone issues to be more clearly
visible under the Milestone sub-menu, and added the repository issues under
the Repository sub-menu.

Figure 9.11: Task 5.3 changes and justification

Unimplemented Changes

This section presents the proposed changes which were not implemented
to the PeacefulBanana application, and their justifications are presented in
Figure 9.12 and Figure 9.13. The unshare functionality change was omitted,
since allowing user’s to change their reflection outcomes a long time after
they occured, would not improve reflection for user’s but instead obscure
the outcome. The commit impact change was omitted, because of it’s low
priority. User’s generally had a bad attitude towards what the commit impact
captured, but reported they would rather have it there than not, as long as
the team is aware that it might not reflect the correct project activity.

113

CHAPTER 9. EVALUATION

Add unshare functionality

Figure 9.12: Adding unshare functionality to reflection notes.

Remove commit impact

Figure 9.13: Remove commit impact.

9.1.13 Conclusion

Most of the participants found the PeacefulBanana application to be well-
organized, comprehensive, clean and uncluttered, very useful, and easy to
use. Having an application to handle reflection in their daily work was de-
sirable for all of the participants. Implementing the recommendations and
further feedback from users will ensure a continued user-friendly applica-
tion.

While some tasks had a high time-on-task, this was due to GitHub data
collection, and is not something we have control over. It is a simple request
to the GitHub API, which we need to receive before being able to continue.
The application does not freeze during this wait, and allows users to continue
using it, but the data collected is required for certain parts of the function-
ality.

114

9.2. EXPERT REVIEW

9.2 Expert Review

9.2.1 Overview

The expert evaluation was conducted with a senior scientist at Sintef In-
formation and Communication Technology4, which also has a position as
adjunct associate professor at NTNU. The evaluator is an expert in the field
of agile software development and knowledge management in software com-
panies. The evaluator has published several case studies of agile teamwork in
the software development industry. He also had knowledge of version-control
systems, GitHub and the use of such tools in agile development teams. Apart
from the expert review, the evaluator was never directly involved in our the-
sis.

The evaluation performed was a type of expert walk through as described
in Interaction Design - Beyond Human Computer Interaction[Rogers et al.,
2011]. The evaluation we performed differs in that we also evaluate how
the application can support agile software development teams and reflection
through revisiting experiences.

The evaluation started with us presenting the main features of the application
and then continued with a walk through of the application in its production
state. The walk through consisted of performing the typical tasks in our
scenarios. After the walk through we had an open discussion around the
most common challenges agile development teams meets. The evaluator also
commented on possible shortcomings or limitations, and also any advantages
the evaluator had identified in our application. We asked the evaluator to
present his ideas on how our application could improve reflection in agile
software development teams. We wanted an objective evaluation so we did
not initially present any of our own thoughts regarding the application and
its goals.

The evaluator suggested several possible limitations in the application, and
also commented on how our application met some of the problems that often
arise in development teams and how he could see our application poten-
tially help limit these problems. We particularly went through the reflection
workshop questions, to get feedback on the feasibility of these and triggering
reflection in a retrospective session [See Figure 9.14].

4Sintef ICT: http://www.sintef.no/home/Information-and-Communication-Technology-ICT/

115

http://www.sintef.no/home/Information-and-Communication-Technology-ICT/

CHAPTER 9. EVALUATION

Figure 9.14: Example of retrospective session questions to trigger reflection.

In addition to advantages and limitations of our application, the evaluator
had some input towards related work he had seen, and how we could conduct
the final evaluation in the best way. This included possible questions that
might be relevant to ask the participants, how to get the best possible output
from these and also some theory on how to analyze the results we got.

The feedback we got from the expert showed that the application had features
that met many of the problems he had encountered through his studies of
agile teams, and specifically how to trigger and enhance reflection. The
evaluator also had some valuable feedback on possible shortcomings in the
application, which can be typical challenges developers face in a day to day
working environment.

9.2.2 Overall Feedback

The evaluation with the Sintef expert left us with the impression that the
evaluator was satisfied with the general functionality of the application, in
terms of agile teams and reflection in these teams. At the point of evalu-
ation, the application had been deployed to production state, and so most
of the functionality was in place. The evaluator stated that the choices we
had made on the data collection and representation of these was satisfying,
as it allowed and encouraged users to reflect on their experiences, while not

116

9.2. EXPERT REVIEW

being too intrusive on the daily work routine. Both in aspects of individual
and collaborative reflection the application and its functionality was satis-
factory.

As for integration of the tool, the evaluator saw a limitation in that it was
generally hard to get new tools into the daily routine of developers[Rogers,
2010], and referred to the Technology Adoption Curve by Rogers[Figure 9.15.
The way we encourage users to use #hash tags to tag important elements
in the commit message, might take some time to work in. The evaluator
expressed that he was happy with the design choices made and that we chose
a web-application as a platform. This way the application is available for
all individuals in the team, on a wide variety of devices. This availability
is important in order to further lower the threshold of usage. Apart from
general feedback and app-specific feedback we also got some feedback re-
garding the final evaluation. Specifically what questions to ask, comparing
their previous retrospective routines with a retrospective using our applica-
tion beforehand. Also feedback on how to properly analyze the results we
would get was valuable. The evaluator had identified possible reasons for
why a certain outcome could occur through his studies. The evaluator was
also pleased with the notion of allowing teams to see what notes are shared
, which allowed for identification of sharing patterns among the users. This
is something that could help encourage a ”discussion about reflection in the
retrospective sessions”. Another point was that individual users tend to use
the same tools in different ways, so specifying what and how the application
could be used before users started using the tool was important.

9.2.3 App-specific feedback

Here we will present the challenges the evaluator presented in the aspect of
teamwork and reflection in agile software development teams. The challenges
identified in Table 9.1 was used to create a discussion around the Peaceful-
Banana application and how it can solve these problems.

117

CHAPTER 9. EVALUATION

Figure 9.15: Roger’s Innovation Adoption Curve [Rogers, 2010]

118

9.2. EXPERT REVIEW

ID Name Description
1 Non-intrusive The threshold of integrating new tools into

the routines of software developers is hard.
The evaluator specifically referred to the
Technology Adoption Curve presented by
Rogers[Rogers, 2010], which refers to the
chasm between innovators or early adopters
and the early majority. This curve can be seen
in Figure 9.15.

2 Uniqueness The application should meet a demand which
hasn’t already been met. Also the application
should provide something that a normal retro-
spective does not.

3 Agile integration How can the application be integrated into an
agile environment, helping the team to be agile
and not removing the agility from the team.

4 Dynamic Memories Memories are dynamic and change over time,
so there can be a lack of memorizing all im-
portant situations in a retrospective.

5 Priorities Often agile teams develop what the developers
are motivated for, and not what the customer
prioritizes highest. These wrong-placed prior-
ities can be hard to pick up.

6 Competence-overlap Agile teams are most efficient and deliver the
highest quality work when at least two people
have the same competence, so that one can ask
for help and code can be reviewed by a peer.
When a developer is left alone on a piece of
work, integrating these parts with the rest of
the project can be an issue

7 Re-work: Re-doing the same piece of work is also a chal-
lenge development teams can meet. When
developers constantly revisits work that al-
ready has been accepted, to make unnecessary
changes, the progress of the project is slowed
down. Detection of this can allow for a discus-
sion and allowing the team to progress.

8 Level of expertise: Developers often have different levels of ex-
pertise, and different areas of expertise. Even
though a developer have a high amount of im-
pact on the code-lines committed to a project,
this does not mean the others don’t do impor-
tant work.

Table 9.1: Expert review feedback

119

CHAPTER 9. EVALUATION

• 1. Non-intrusive:

The evaluator was satisfied with the design choice we made. By keeping
the amount of time users are required to put into the application to a
minimum, the threshold of usage is kept as low as possible at the same time.
As mentioned, the Roger’s adoption curve state that integrating a new tool
into a daily routine is hard already, so it’s important the users don’t feel
the application is a necessity but a helpful tool. The evaluator specifically
mentioned that the daily reflection note was a good choice, since it only takes
roughly 5 minutes and serves a purpose for the users. If the users then should
wish to dive further into the functionality, it is easy accessible.

• 2. Uniqueness:

The feedback here was that the evaluator had not encountered a similar tool
during his research, and he felt the application met a need in the industry.
As for the retrospective aspect, the feedback was that the application had
features for identifying issues and situations that in a normal retrospective
could be lost.

• 3. Agile integration:

The evaluator expressed a certain concern that too much data collection
could lead to an overhead in the amount of data that needed to be analyzed
during the retrospective. Emphasis here was that the application shouldn’t
come in the way of the team being agile.

• 4. Dynamic Memories:

The evaluator stated that by implementing the daily reflection note feature,
we allowed for the most important experiences of the day being collected and
stored for later use. This means that although not all data or experiences
are collected, the application encourages users to reflect on fresh memories
and can revisit these later during the retrospectives, hopefully omitting the
risk of forgetting certain situations.

• 5. Priorities:

The evaluator stated that this is a common problem in development teams,
and thus allowing for identification of such mis-priorities are important. The
feedback was that the application features for seeing how far the team has
come in the particular milestones, and going into the separate issues to see
when it has been worked on and by who, partially had met this challenge.
The evaluator still expressed that this could be even more emphasized, and
be made more easily accessible.

120

9.2. EXPERT REVIEW

• 6. Competence-overlap:

Through the different tag clouds featured in the application, a missing over-
lap in competence can be identified. The evaluator stated that comparing the
team tag cloud with the personal tag cloud was a satisfactory way of identi-
fying whether an individual has been working a lot alone. Further feedback
was that some sort of comparing tag clouds between individuals would fur-
ther help towards this challenge, but this could in turn lead to unwanted
focus on individuals performance.

• 7. Re-work:

Also here the feedback was that inspection of issues allows for seeing when
and how often a problem has been fixed and then re-opened again. Also by
comparing tag clouds from different periods allow for identification of much
re-work. Even though the functionality was there, the evaluator wanted to
make these comparisons more easily accessible in the application.

• 8. Level of expertise:

The feedback here was: Since the application focuses on project commits and
comparing the users activity based on the work committed to GitHub, the
application could give the wrong impression of how much work individuals in
the team have done. Because of this the evaluator emphasized that we kept
this fresh in mind, when describing what the tool is, what it does, what it
measures and most importantly what it doesn’t measure. This is important
so that no users feel their work is diminished in importance by using the
application.

9.2.4 Suggested new features

During our discussion with the evaluator we identified some features that
were missing which could be fitting to implement in the application:

• What is new? functionality:

Show parts of the source-code in the PeacefulBanana application, creating a
sort of What has happened since your last visit functionality to the users and
teams. The evaluator proposed that having such functionality might increase
the user’s motivation to use the application, and further trigger reflection for
the daily reflection notes.

• Burn down-Chart:

121

CHAPTER 9. EVALUATION

The evaluator proposed including a burn down-chart based on the issues
already existing on GitHub and in the PeacefulBanana application. A burn
down chart is a graphical representation of work left to do versus time. The
tasks or issues remaining(the backlog) is often on the vertical axis, with time
along the horizontal axis.

A burn down chart is useful for estimating or predicting when all of the
work or issues will be completed. In agile software development teams, it
is a common tool to measure progress over time. The application supports
some progress viewing in each milestone by presenting users with a progress
bar, although the evaluator stated that a burn down-chart feature would be
an addition teams would use and such increase the motivation for using the
application as a whole. An example of such a burn down-chart can be seen
in Figure 9.16. These features were noted as feature work, as implementing
these could prove valuable for future users.

Figure 9.16: Example of a project burn down-chart [Wenzel, 2013]

122

9.3. FOCUS GROUP

9.3 Focus Group

Focus groups is a form of qualitative research which can be compared to semi-
structured group interviews[Rogers et al., 2011]. Participants in a group are
asked about their opinions and views towards a product or concept based
on their background and experiences[Krueger and Casey, 2008]. The group
should consist of six to ten persons, where participants are not inhibited
to present their honest opinions and experiences[Krueger and Casey, 2008].
The discussion is governed by a facilitator which have the task of keeping
focus on the discussion in order to get answers to the questions that have
been prepared beforehand[Krueger and Casey, 2008; Nielsen, 1997]. The
facilitator is responsible for keeping the discussion open, uninhibited, non-
judgmental and also making sure that all participants are allowed to present
their views[Powell and Single, 1996].

A focus group usually lasts between 90 and 120 minutes, and is conducted
in a neutral place. Limitations of a focus group include that you only get
information on what potential users say, and not what they do or if it aligns
with the reality[Nielsen, 1997]. Another limitation is that users often think
they need something else than what they really need. Therefore it is impor-
tant to demonstrate something concrete, where users understand fully what
the application is, what it does and what it achieves. The theory above and
the guide proposed by Krueger [2002] provided us with a basis on how to
conduct a focus group interview. We gave the participants a smooth and
snappy introduction to the agenda of the interview.

9.3.1 Focus group context

The application was evaluated with a focus group consisting of 8 NTNU
students, working together in a group in the IT2901 bachelor - project. The
group were using scrum as their agile project methodology, and have also used
it previously in development projects. A group of 8 is fairly big, although
larger focus groups are recommended in order to collect more commentaries
and details from discussions[Morgan et al., 1998]. Participants in the focus
group were familiar with the use of GitHub and were also using GitHub for
their project at the time of evaluation. In their project they use retrospectives
after each sprint, since they are using scrum. This provides the focus group
with participants eager to improve their collaboration in agile teams and
to improve reflection, both individually and in teams during retrospective
sessions. The focus group was hosted at NTNU, in a private workshop lab

123

CHAPTER 9. EVALUATION

with a circular table.

The group were given the reflection scale from the MIRROR evaluation tool-
box before starting the evaluation. Their answers and relationship to reflec-
tion can be seen in table 9.17.

Figure 9.17: Reflection scale results

The group generally agree with the importance of reflection overall in the
reflection scale questionnaire, however they disagree a bit in regards to team-
reflection. This is quite interesting, but during the interview we noticed a
few very dominant figures in the team and this might be the reason why the
answers vary a bit regarding team-reflection.

124

9.3. FOCUS GROUP

9.3.2 Ground Rules

In the introduction we identified a set of ground-rules that would make the
interview go smoother and keep the participants distraction free. Most of
these are based on the ground rules defined in Krueger [2002], and can be
seen in the list below.

1. Mobile phones are to be turned off during the entire interview. If you
are not able to do so and receive a call ,please do this as quietly as
possible.

2. We are recording the session on tape, so only one person should speak
at a time.

3. There is no right or wrong answer here, only opinions.

4. You do not need to agree with others, but you must listen respectfully
as others share their views.

5. Talk to each other, not directly to the evaluator.

9.3.3 Data Collection and Analysis

The session was recorded, in order to analyze the results after hand and also
to be able to participate actively during the walkthrough. We had prepared
some application-specific questions to ask the participants during the session.
These questions consisted of the most relevant app-specific questions from
Section 9.1.3 in the MIRROR evaluation toolbox [Kristin Knipfer, 2012].
These questions were slightly modified to be used as part of the focus group
and can be seen in Table: 9.2

125

CHAPTER 9. EVALUATION

1 Can PeacefulBanana help you to collect information relevant to re-
constructing experiences from work?

2 Can the application help you to reflect on experiences from work?
3 Can the application help you to capture reflection outcomes?
4 Does the application help you by making daily reflection notes avail-

able for later use?
5 Does the application remind you to reflect on experiences?
6 Does the application help you to find relevant experiences from others

in your team?
7 Does the application help you to remember previous experiences and

reflections?
8 Does the application help you to store information regarding work

experiences?
9 Can the application help you to decide if and when to reflect?
10 Do the application help you by supporting the sharing of experiences?
11 Does the application guide you on how to share experiences with

others?
12 Can the application improve your collaboration?
13 Does the application provide relevant content for reflection?
14 Did the application guide you through the reflection process?

Table 9.2:

After a brief presentation of the application itself and our goal with this the-
sis, the walkthrough started. The goal of the evaluation was primarily to see
how an agile development team could integrate our tool into their daily rou-
tine. The application was evaluated with test-data, so participants could eas-
ily see how it would function in a daily work environment. After showcasing
the different features, the researchers facilitated the focus group discussion
on how the application could promote reflection for the team, but and also
potential shortcomings or challenges to integrating it in their daily routine.
The questions asked during the focus group were largely open-ended, which
allowed participants freedom to express their views on the application[Yin,
2008]. The focus group was conducted in a responsive manner, allowing us
to follow up on issues uncovered mid-session and adjust the content of the
focus group based on this[Rubin and Rubin, 2011; Wengraf, 2001].

While one researcher facilitated the session, another observed and took notes,
with timestamps of important parts. We swapped roles during the session, in
order to prevent any variance in the notes and questioning. Any ambiguity
was clarified with the participant before moving on. In order to aid analysis,

126

9.3. FOCUS GROUP

the focus group was recorded and transcribed, before being analyzed. The
group was also filmed so that their body-language could give us an indica-
tion about their involvement in the discussion and it was pointed out by
the researchers that the interview would be anonymized to ensure that the
statements could not be linked back the them. Quotes from participants are
denoted with FGX, which stands for Focus Group user X. This was done in
order to keep participants anonymous.

9.3.4 Why they did not use it?

The group was intended to participate in a case-study evaluation of the
system over a period of time, but expressed that the stress level they where
under during the test period and the amount of work they had remaining,
made them focus on that rather than testing the tool for us. They also
expressed that since the tool was made available for them so late in the
process and the fact that they already had a routine worked in, they often
forgot to include the tool in their routine on a daily basis. Additionally the
group only got together and worked a couple of days a week, was a bit of a
surprise to us, as we where expecting them to work almost full-time on the
project.

9.3.5 If they would have used it

When discussing tags, the group stated that they felt this might become ’off
topic’ and that team-members could use tags not relevant to the work at
hand. This could in turn corrupt the tag clouds since ’off topic’ tags would
gain magnitude if people used the same tags for whatever they commited.
One of the participants expressed that he would have liked the possibility
to tag an entire commit with a theme like [GUI] or [BACKBONE], which
were something the other participants felt would be a great addition to the
existing possibilities regarding tags.

Adding categories in brackets or something like that would put
the hash tags in perspective too what people are working on and
see how much time of their day goes to what part of the project.
(FG1)

This would allow tags to be categorized into different parts of the project,
which we feel could add another dimension to the tool and help the team see

127

CHAPTER 9. EVALUATION

more relevance in the tags used. However we feel that the themes or cate-
gories should be decided at project-/iteration-start, or at least agree on some
rules for what tags can be used on what piece of work. The findings discussed
implies that the group answered yes to question 2, 3 and 8 in table 9.2 with
the addendum described above as a possible feature improvement.

The group also had a few pointers regarding the tag cloud. The group felt
tag-clouds was a good representation, the relationship between the team tag-
cloud and the individual tag-cloud was not easily identified. They proposed
that tags needed to be placed at the same place and be in the same color in
the tag-cloud, in order to allow for easier comparison. In the demonstration,
the tags were neither placed in the same place or in the same color.

It is hard to locate the same tags in both of the tag clouds when
they are placed in different regions of the cloud and in different
colors. (FG2)

It was also debated whether or not it would make any difference to weight
tags based on the amount of work behind the commit. We all agreed that this
could be a feature that could be implemented later. Some of the group mem-
bers pointed out that even only one line changed could be just as important
as an entire class being implemented.

One line to fix a bug, can be as important or even more important
than a entire new class. (FG2)

The group mentioned that while doing their retrospectives, they struggled
to remember what they had done the previous weeks. When discussing daily
reflection notes, they stated that this would give them an new dimension
to ordinary retrospectives with the possibility to generate questions based
on the work that had been done each day. This way, the most important
work would be captured each day and easily remembered. The group also
had some comments on how to possibly improve the feature: By adding a
text field where the user could explain what he had done that day, might
enhance the level of reflection. This was something they felt was missing
from project-management tools like Trello5 which they were already using.
When we introduced the group to the feature workshop preparation we were
overwhelmed by the positive response, but they also had some input on how
it could be improved. The group stated that we should include the team-wide
tag-cloud for the selected period. These features mentioned gave the group
the possibility to reconstruct experiences recorded earlier and thus answering
questions 1, 7 and 13 in table 9.2.

5http://www.trello.com

128

http://www.trello.com

9.3. FOCUS GROUP

As the group got closer and closer to their final evaluation they experienced
that their retrospectives got shorter and shorter, it also lacked structure.
This corresponds with the findings described by [Kasi et al., 2008] in Sec-
tion 1. When discussing the workshop-feature some of the group members
commented that it could be great for a project manager that does not spend
that much time with the code hands-on and in general a great tool for ret-
rospectives, but since they had not tested the tool in they way they conduct
work, there was no way for them to verify it. This suggests that the group
are positive to question 14 in table 9.2.

I would imagine that this would be very useful for a project man-
ager that does spend all day hands-on with coding. (FG1)

9.3.6 Comments

The group had some comments and suggestions on how to improve the pro-
totype. As for the daily reflection note feature, a suggestion was that instead
of having the note non-editable and allow for only one note each day, users
could edit the note whenever they wanted during the day and at the end of
it, the note will be locked for user editing. This suggestion would give the
user the option of adding to a note all day long. The downside of the change
would be that the freshness of the reflection would be mitigated. When the
reflection on that days experiences have taken place, allowing users to go
back and change their input would take some of the value out of the reflec-
tion. The group suggested that the daily reflection note should also include
a team tag-cloud, in addition to the commit impact cake-diagram and the
individual tag-cloud.

The group also mentioned that the current notifications were not catching
their attention, and suggested they be should be more dominating on the
site, making the notifications impossible to miss. As they stated:

As notifications are there to remind users to do their daily re-
flection, missing the notification might lead to missing the daily
reflection also.

And:

The current notification is not invasive enough, it should be im-
possible to ignore. (FG3)

This indicates that the group slightly disagreed to question 5 in Table 9.2, as
they wanted the reminder to be more dominant and impossible to avoid.

129

CHAPTER 9. EVALUATION

It was also suggested that the group could have a meeting where they planned
themes and tags to be used for the next iteration, in order to make the tool
more scrum specific, as they put it, in terms of project management. Making
the tool less invasive in the Scrum process is something we feel might ensure
that users visit the tool more often, as it’s not interfering as much with their
daily routine.

One group member said it would be interesting to see if there is a connection
between what the users are working on and their mood. I.e. what are users
working on when they are in a bad mood or if a user is always unhappy
when working with the graphical design, he should probably not work more
on that part of the project.

Seems like a natural and good tool. (FG2)

9.4 Discussion

In this section we will discuss the results and experiences gathered during
the usability test, expert review and focus group evaluation of the Peaceful-
Banana application. We will discuss this in regard of our research questions
PeacefulBanana were intended to answer. We will answer all the sub re-
search questions first, since these are more specific by trying to answer parts
of the main research question. Finally we will summarize the discussion by
answering the main research question, since this is the most general in terms
of reflection and learning from experiences.

9.4.1 Sub RQ1

How to scaffold collection of data in order to promote reflection?

The expert evaluator expressed a concern regarding the amount of data that
needed to be processed and that it should not stop the team from being agile,
but also pointed out that the feature itself could help during a retrospective
session. He also pointed out that the daily reflection note provided the users
with a quick and easy way to reflect on a daily basis and that this would
work for both users in teams and individuals. However individuals would use
the functionality differently than team-users. Team users would also have an

130

9.4. DISCUSSION

effect by looking at the me-vs-team tag-cloud, and he pointed out that this
could trigger reflection as well when comparing your own work with the rest
of the team.

The focus group pointed out that they might wanted more data showed or at
least the possibility to view data in their original form6 in additions to data
we provided for them. They expressed that the use of commit messages to
generate questions for retrospectives would give them a another dimension
and more structure.

9.4.2 Sub RQ2

How to increase the tendency to reflect on experiences, both individually
and as a team?

Regarding the individually reflection the focus group expressed that a re-
minder in a tool like PeacefulBanana is a good way to trigger reflection,
however they felt like the notification was a bit mild and should be more
invasive to more force them to reflect over the last the 24 hours of work.
Some group members expressed that the fact that the notifications needs
to be read and that you can have multiple of them defeats the purpose of
the notification, they are not interested in a historic overview of reflection
reminders.

They felt that the tool did not provide them with any reminder in order to
improve their reflection rate as a team, however some of them stated that
the link only visible to team owner and manager could have some effect in
order for them to plan a retrospective session.

9.4.3 Sub RQ3

How to bring together contributions from multiple users, and sharing these
in a collaborative environment?

6Entire commit messages and issues titles in the tag cloud f.ex.

131

CHAPTER 9. EVALUATION

The focus group liked that the tool had the possibility to share notes with
other team members and that these notes can be inspected. The expert eval-
uator stated that this was vital for the users to reconstruct work experiences
in order for them to reflect over past experiences. The tag-cloud could also
be used to identify how much you work on different issues.

The expert reviewer stated that the application introduced some new aspects
that changed the normal routine for a retrospective, by generating suggestive
questions based on the work done. He then expressed that it would have liked
the application to be tested with a real agile software development team over
a period of time and then conduct a retrospective session with that team. It
would then be interesting to see if the laggers described in Figure 9.15(Section
9.2.2) would have as much to contribute with as the early adopters.

9.4.4 Main RQ

How to promote experienced-based reflection based on project artifacts
collected from version-control systems?

Every step of the PeacefulBanana work-process have been evaluated by the
different evaluators as described in the sections above, when discussing the
different sub research questions. The first step is related to collecting data
for reflection, which the application gathers from GitHub. The data is then
analyzed and tags added from each member are displayed in their daily in-
dividual tag-cloud as well as the team-wide tag-cloud. The tag-clouds are
here to remind the user of what they have been working on that day. During
both evaluations it was expressed that collecting data from GitHub in order
to identify trending issues within the team, was something the users could
benefit greatly from.

The next step in the process is reflection. This step uses the data collected
in order for users to revisit experiences and to trigger reflection on these.
Allowing the user to compare his individual tag-cloud with the team-wide
tag-cloud may further help trigger this reflection. This was further agreed
upon by the results from the evaluations, even though the focus group par-
ticipants had some issues with the tags in the tag-cloud was not distinct
enough. The users are prompted to fill out a daily reflection note and this

132

9.4. DISCUSSION

process is more scaffolded, providing a frame for users with a set of questions
related to their daily activities.

The third step consists of sharing your experiences and reflection outcomes
collected in the daily reflection notes with team members. This sharing of
notes enables the whole team to inspect all the individual reflection out-
comes and compare with their own. These issues can be further discussed
collaboratively in the retrospective sessions.

The fourth and last step consists of taking the outcomes of your reflection and
putting it to use in work related tasks in order to improve. This step mainly
focuses on the Workshop functionality, providing the team with a frame
which guides their retrospective. The frame consists of questions related to
reflection in general and questions generated from their most active issues and
tags. This frame ensures that the issues identified as most important during
the iteration by the team-users are discussed and can be improved.

The evaluators expressed both concerns and appreciation for the use of these
data. The fact that the expert reviewer would have liked to see a long-term
case-study with the application is a great sign that the he finds the tool
useful in the aspect of reflection in agile development teams.

133

CHAPTER 9. EVALUATION

134

Chapter 10

Conclusion

10.1 Summary

In this thesis we investigated how collection and scaffolding of project ar-
tifacts from the VCS GitHub can act as reflection triggers and possibly
enhance reflection in software development teams. We have developed a
platform-independent prototype in order to see how to visualize and present
data collected from the artifacts.

During the last decade there has been a huge focus on improving development
methodology and the now renowned industry-standard is agile development
methodology. Agile software development projects generate a lot of data per
developer in the version control system and other tools relevant for project
management, each of the commit to the version control system contains tiny
notes relevant to the work they have done. Our investigation shows that there
is little to no other projects done based on this data and this was backed up
during our expert evaluation, the scientist pointed out that during all his
time around agile development projects he had never see any tools like the
one developed by us. Even though that there has been a great deal of research
regarding reflection in development teams. When we designed the prototype
we set up a set of requirements which where prioritized based on difficulty
and time to completion.

The implementation was a result of the theoretical background and related
work, evaluation and discussion with an expert in the area of agile devel-
opment. Then the resulting prototype was evaluated with a focus group
consisting of a agile development team.

135

CHAPTER 10. CONCLUSION

We then analyzed the results together with the theoretical background and
notes from the expert review, where we discovered that the tools features
was found useful. However we also discovered that some of the key features
could be improved with the notes gathered from both the expert review and
the focus group interview.

10.2 Discussion on our own work

The primary work done for this thesis was the development of the Peace-
fulBanana application. Developing PeacefulBanana challenged us to learn
about developing applications for the web, and a large variety of different
devices and platforms. We also got to explore web frameworks for build-
ing web-applications, specifically the Grails framework and the domain of
responsive web design. In addition to working with new and upcoming tech-
nology like HTML5 and Twitter Bootstrap, we learned how to setup our own
Ubuntu server, with Apache, Apache TomCat and SQL, all of which is highly
relevant in the daily work of developers.

Working together on this thesis and application has been both fun and excit-
ing, and has also given us valuable experience and knowledge we will benefit
from in our future work as software developers.

During development, several changes and plugins were made available for
the Grails framework, some of which could have had a positive impact on
the application and how it works. Because of time limitations, it was not
plausible to implement these so late in the process, but it is a pity the
application could not benefit from some of these additions.

We first created our scenarios with evaluating the tool on software develop-
ment teams in the IT2901 course at NTNU. Unfortunately the groups were
very busy, and was not able to use the tool enough for us to conclude on the
data gathered. Therefore we conducted a focus group with such a develop-
ment team, where we gained valuable information on why they didn’t use the
tool as often, and also how they felt about the tool if they had used it. As it
turned out, our two scenarios functioned well in this setting, although they
were first intended for evaluation over a longer period of time. The main
reason for the group not using the tool, was simply that they were very busy
and the tool was available only at a late stage of their project. Feedback
from the focus group was that if introduced with the tool from the beginning
it would have been easier to remember to use it, as it would be part of their

136

10.3. FUTURE WORK

routine. Having the teams evaluate the application in a real-work setting
over a longer time-period may have given us more results.

Although usability was not our top-priority when developing the application,
the usability test with real life users showed that usability has a large im-
pact. Although we gained a lot of valuable feedback from our usability test,
we think that an even earlier usability test could have provided us more in-
sight on how to make the application more attractive and usable for real-life
users.

When we look back at the work we have done in this thesis, we are both happy
and satisfied with what we achieved. We got to work with new technology
and create something we never had worked with before. We got to dive into
the inner workings of the most popular version-control system GitHub, and
take part of the whole development process from initial ideas to mock-ups,
development, testing, deployment and evaluation of the final product. All
in all the application developed for this thesis is something we look back on
with pride and satisfaction.

10.3 Future Work

As the interview with the focus group discovered there were several minor
improvements both in how certain functions are implemented, but also in
how the feature itself is designed visually.

Technically we would like the tool to have a tighter integration with the
version-control-system so that the synchronization itself will go automati-
cally.

As the focus group helped us discover that the daily summary should hold
more information, cause you can not really derive what you have done the
last 24 hours, and the feature it self could be improved so that the user can
edit the note through out the day. However we feel that this could interfere
with the reflection level you would achieve with the solution we have created
since noting a lot as things occur is not reflecting. It is clear that the daily
summary needs to be improved, the fact that it does not provide the user
with what they feel is enough data. We feel that an improvement of the
current solution and the solution described above. By letting the user note
what they have done continuously and answer the reflection specific questions
only at the end of the day, the user could note all day long and reconstruct
their day more easily and still reflect on a daily basis.

137

CHAPTER 10. CONCLUSION

Regarding tag clouds it was discovered that it was hard to find the same tags
in the team vs my tag cloud, because the tags is placed randomly and with
a random color in both clouds. So we would place tags in the same region
and with the same color so it would be easier to see the relationship between
the tag clouds.

In the long term it would be a great addition to record the reflection out-
comes from the reflection workshops so that this would be available for later
use.

138

Bibliography

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile
software development methods: Review and analysis.

Aeronautics, N. and NASA, S. A. (2013). nasa.gov homepage. http://www.
nasa.gov/.

Ainsworth, S. (1999). The functions of multiple representations. Computers
& Education, 33(2-3):131–152.

Ambler, S. (2013). Scrum sprint poster.

Ap, W. W. and Frey, R. (2013). Groovy and grails application development.
http://en.wikipedia.org/wiki/File:MVC-Process.png.

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in
Practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2 edition.

Beck, K. (1999). Extreme Programming Explained: Embrace Change. The
XP Series. Addison-Wesley.

Beck, K. and Andres, C. (2004). Extreme programming explained: embrace
change. Addison-Wesley Professional.

Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,
Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., and
Thomas, D. (2001). Principles behind the Agile Manifesto.

Beck, K. e. a. (2013). Agile manifesto. http://agilemanifesto.org/.

Bjarnason, E. and Regnell, B. (2012). Evidence-Based Timelines for Agile
Project Retrospectives – A Method Proposal. pages 177–184.

Boud, D., Keogh, R., and Walker, D. (1985). Reflection: Turning Experience
into Learning. Routledge.

139

http://www.nasa.gov/
http://www.nasa.gov/
http://en.wikipedia.org/wiki/File:MVC-Process.png
http://agilemanifesto.org/

BIBLIOGRAPHY

Brooke, J. (1996). Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189:194.

Cellini, S. R. and Kee, J. E. (2010). Cost-effectiveness and cost-benefit anal-
ysis. Handbook of practical program evaluation.

Chaiklin, S. and Lave, J. (1993). Understanding practice: Perspectives on ac-
tivity and context., volume 0 of Learning in doing. Cambridge University
Press.

Cockburn, A. (2006). Agile Software Development: The Cooperative Game,
volume 113. Addison-Wesley Professional.

Derby, E. and Larsen, D. (2006). Agile Retrospectives: Making Good Teams
Great, volume 1. Pragmatic Bookshelf.

Drury, M., Conboy, K., and Power, K. (2011). Decision Making in Agile
Development: A Focus Group Study of Decisions and Obstacles.

Dyb̊a, T. and Dingsøyr, T. (2008). Empirical studies of agile software devel-
opment: A systematic review. Inf. Softw. Technol., 50(9-10):833–859.

Esearch, S. Y. R., Hevner, B. A. R., March, S. T., Park, J., and Ram, S.
(2004). Design Science in Information Systems Research. 28(1):75–105.

Fleck, R. and Fitzpatrick, G. (2010). Reflecting on Reflection : Framing a
Design Landscape.

Git (2013). Git – everything is local. distributed version control system.
http://www.git-scm.com.

GitHub (2013a). Github - web-based hosting service for projects that use
the git revision control system. http://www.github.com.

GitHub (2013b). Github 3 million users and 5 million repositories. https:

//github.com/blog/1382-three-million-users.

GitHub-API-v3 (2013). Github api version 3. http://developer.github.

com/v3.

GitHub.com-TwitterBootstrap (2013). Github issue tracker - twitter boot-
strap repository.

Gulliksen Stray, V., Moe, N., and Dingsøyr, T. (2011). Challenges to team-
work: A multiple case study of two agile teams. People and computers,
77:146–161.

Harrison, W. (2006). Eating your own dog food. Software, IEEE, 23(3):5–7.

140

http://www.git-scm.com
http://www.github.com
https://github.com/blog/1382-three-million-users
https://github.com/blog/1382-three-million-users
http://developer.github.com/v3
http://developer.github.com/v3

BIBLIOGRAPHY

Hearst, M. a. and Rosner, D. (2008). Tag Clouds: Data Analysis Tool or
Social Signaller? Proceedings of the 41st Annual Hawaii International
Conference on System Sciences (HICSS 2008), pages 160–160.

Høyrup, S. (2004). Reflection as a core process in organisational learning.
Journal of Workplace Learning, 16(8):442–454.

JGit (2013). Github api version 3. http://www.eclipse.org/jgit/.

Kasi, V., Keil, M., Mathiassen, L., and Pedersen, K. (2008). The post mortem
paradox: a delphi study of it specialist perceptions. European journal
of information systems, 17(1):62–78.

Ken Schwaber, J. S. (2011). Official scrum rulebook.

Kirkman, B. L. and Rosen, B. (1999). Beyond self-management: Antecedents
and consequences of team empowerment. academy of Management Jour-
nal, 42(1):58–74.

Kolb D.A, R. (1975). Towards an applied theory of experiential learning.
pages 33–58.

Korthagen, F. and Vasalos, A. (2005). Levels in reflection: core reflection as
a means to enhance professional growth. Teachers and Teaching Theory
and Practice, 11(1):47–71.

Kristin Knipfer, Daniel Wessel, K. D. (2012). Specification of evaluation
methodology and research tooling.

Kristin Knipfer, Daniel Wessel, K. D. (2013). Scrum burndown-chart.

Krogstie, B. and Divitini, M. (2010). Supporting reflection in software de-
velopment with everyday working tools. COOP:141–162.

Krogstie, B., Prilla, M., Wessel, D., Knipfer, K., and Pammer, V. (2012).
Advanced learning technologies (icalt), 2012 ieee 12th international con-
ference on. pages 151–153.

Krogstie, B. R. and Divitini, M. (2009). Shared Timeline and Individual
Experience: Supporting Retrospective Reflection in Student Software
Engineering Teams. 2009 22nd Conference on Software Engineering Ed-
ucation and Training, pages 85–92.

Krogstie, B. R. and Prilla, M. (2011). Tool support for reflection in the work-
place in the context of reflective learning cycles Background : Computer
supported reflective learning. pages 57–71.

Krueger, R. A. (2002). Designing and conducting focus group interviews.

141

http://www.eclipse.org/jgit/

BIBLIOGRAPHY

Krueger, R. A. and Casey, M. A. (2008). Focus groups: A practical guide for
applied research. SAGE Publications, Incorporated.

Kwiecien, M. (2013). What is a retrospective?

Li, I., Dey, A. K., and Forlizzi, J. (2011). Understanding my data, myself:
supporting self-reflection with ubicomp technologies. In Proceedings of
the 13th international conference on Ubiquitous computing, pages 405–
414. ACM.

Lin, X., Hmelo, C., Kinzer, C. K., and Secules, T. J. (1999). Designing
technology to support reflection. Educational Technology Research and
Development, 47(3):43–62.

Maham, M. (2008). Planning and Facilitating Release Retrospectives.

Marcotte, E. (2013a). Fluid grids. http://alistapart.com/article/

fluidgrids.

Marcotte, E. (2013b). Fluid images. http://alistapart.com/article/

fluid-images.

Marcotte, E. (2013c). Responsive web design. http://alistapart.com/

article/responsive-web-design.

Markus, M. L., Majchrzak, A., and Gasser, L. (2002). A design theory for
systems that support emergent knowledge processes. MIS Q., 26(3):179–
212.

MIRROR (2013). Mirror csrl model v1.2.1. http://research.idi.ntnu.

no/mirror/csrl_v1_2_1/CSRL_v1_2_1_Clickable_NTNU/start.

html.

Morgan, D. L., Krueger, R. A., and King, J. A. (1998). Planning focus
groups. SAGE Publications, Incorporated.

Nielsen, J. (1997). The use and misuse of focus groups. Software, IEEE,
14(1):94–95.

Nielsen, J. and Landauer, T. K. (1993). A mathematical model of the find-
ing of usability problems. In Proceedings of the INTERACT’93 and
CHI’93 conference on Human factors in computing systems, pages 206–
213. ACM.

Nimesh, R. (2013). How fluid grids work in responsive web
design. http://www.1stwebdesigner.com/tutorials/

fluid-grids-in-responsive-design/.

142

http://alistapart.com/article/fluidgrids
http://alistapart.com/article/fluidgrids
http://alistapart.com/article/fluid-images
http://alistapart.com/article/fluid-images
http://alistapart.com/article/responsive-web-design
http://alistapart.com/article/responsive-web-design
http://research.idi.ntnu.no/mirror/csrl_v1_2_1/CSRL_v1_2_1_Clickable_NTNU/start.html
http://research.idi.ntnu.no/mirror/csrl_v1_2_1/CSRL_v1_2_1_Clickable_NTNU/start.html
http://research.idi.ntnu.no/mirror/csrl_v1_2_1/CSRL_v1_2_1_Clickable_NTNU/start.html
http://www.1stwebdesigner.com/tutorials/fluid-grids-in-responsive-design/
http://www.1stwebdesigner.com/tutorials/fluid-grids-in-responsive-design/

BIBLIOGRAPHY

Otto, M. (2013). Building twitter bootstrap. http://alistapart.com/

article/building-twitter-bootstrap.

People10.com (2013). Groovy and grails applica-
tion development. http://people10.com/blog/

groovy-and-grails-application-development-2/.

Powell, R. A. and Single, H. M. (1996). Focus groups. International journal
for quality in health care, 8(5):499–504.

Reenskaug, T. and Coplien, J. O. (2009). The dci architecture: A new vision
of object-oriented programming. An article starting a new blog:(14pp)
http://www. artima. com/articles/dci vision. html.

Robin, X. (2011). Client-server model. hhttps://en.wikipedia.org/wiki/
File:Client-server-model.svg.

Rogers, E. M. (2010). Diffusion of innovations. Free press.

Rogers, Y., Sharp, H., and Preece, J. (2011). Interaction design: beyond
human-computer interaction. Wiley.

Rubin, H. J. and Rubin, I. S. (2011). Qualitative interviewing: The art of
hearing data. SAGE Publications, Incorporated.

Scardamalia, M., Bereiter, C., McLean, R. S., Swallow, J., and Woodruff, E.
(1989). Computer-supported intentional learning environments. Journal
of educational computing research, 5(1):51–68.

Schindler, M. and Eppler, M. J. (2003). Harvesting project knowledge: a
review of project learning methods and success factors. International
Journal of Project Management, 21(3):219–228.

Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think
in Action, volume 1? Basic Books.

Schwaber, K. and Beedle, M. (2002). Agile software development with Scrum,
volume 1. Prentice Hall Upper Saddle River.

Takeuchi, H. and Nonaka, I. (1986). The new new product development
game. Harvard business review, 64(1):137–146.

Talby, D., Hazzan, O., Dubinsky, Y., Keren, A., and Force, A. (2006). Re-
flections on Reflection in Agile Software Development.

Tata, J. and Prasad, S. (2004). Team self-management, organizational struc-
ture, and judgments of team effectiveness. Journal of Managerial Issues,
pages 248–265.

143

http://alistapart.com/article/building-twitter-bootstrap
http://alistapart.com/article/building-twitter-bootstrap
http://people10.com/blog/groovy-and-grails-application-development-2/
http://people10.com/blog/groovy-and-grails-application-development-2/
hhttps://en.wikipedia.org/wiki/File:Client-server-model.svg
hhttps://en.wikipedia.org/wiki/File:Client-server-model.svg

BIBLIOGRAPHY

Twitter (2013). Twitter bootstrap. http://twitter.github.com/

bootstrap/index.html.

US.gov (2013). Usability pilot test. http://www.usability.gov/methods/
test_refine/learnusa/preparation.html.

Vinaganda.com (2013). What is responsive design. http://vinaganda.com/
what-is-responsive-design/.

Wengraf, T. (2001). Qualitative research interviewing: Biographic narrative
and semi-structured methods. SAGE Publications Limited.

Wenzel, J. (2013). Agile burn down chart.

Wieringa, R. (2009). Design science as nested problem solving. In Proceedings
of the 4th International Conference on Design Science Research in In-
formation Systems and Technology, DESRIST ’09, pages 8:1–8:12, New
York, NY, USA. ACM.

Woerkom, M. V. and Croon, M. (2008). Operationalising critically reflective
work behaviour. Personnel Review, 37(3):317–331.

Wright, P. and Monk, A. F. (1989). Evaluation for design. People and
computers, 5:345–358.

Yin, R. K. (2008). Case study research: Design and methods, volume 5.
SAGE Publications, Incorporated.

144

http://twitter.github.com/bootstrap/index.html
http://twitter.github.com/bootstrap/index.html
http://www.usability.gov/methods/test_refine/learnusa/preparation.html
http://www.usability.gov/methods/test_refine/learnusa/preparation.html
http://vinaganda.com/what-is-responsive-design/
http://vinaganda.com/what-is-responsive-design/

BIBLIOGRAPHY

146

Appendix A

PeacefulBanana Quick Start

Figure A.1: PeacefulBanana Reflection tool

This chapter features the PeacefulBanana quick start guide, given to the stu-
dents for our evaluation.
Peaceful Banana is a tool aimed towards aiding reflection in teams. It inte-
grates with GitHub, collects the most relevant project artifacts and scaffolds
these in order to trigger and promote reflection in your team. See you and
your co-workers latest activity and use tag-cloud or statistics to create your
daily reflection notes. PeacefulBanana allows you to choose what to share,
and what to keep private! Reflect on your individual work by revisiting re-
flection notes, or reflect on your team’s activity through reflection workshops
and much more.

147

APPENDIX A. PEACEFULBANANA QUICK START

A.1 Getting started

So you and your team are developing software, using an agile process model?
In that case you are probably familiar with the aspect of reflection or ret-
rospectives in agile methods. The purpose of these retrospectives after each
iteration is mainly to learn what works and what does not work, in order to
make adjustments for the next iteration. More specifically your team wants
to answer two fundamental questions:

• What went well during the last iteration that we continue doing?

• What could we do differently to improve?

The PeacefulBanana tool can help you and your team to identify the common
ground answers to these questions. But first, we need to ensure you have the
tools needed to use PeacefulBanana:
In order to use the Peaceful Banana application you need access to a device
with an up-to-date Internet browser, such as Firefox, Google Chrome, Sa-
fari, Opera or Internet Explorer(version 7 and up). Other browsers present
on tablets and smartphones may also work, but we suggest using one of the
mentioned here.
That’s it! That is all you need to have in order to begin using Peaceful-
Banana. In order to access the web-application, you need to open your
browser and access this url: http://vm-6121.idi.ntnu.no:8080 . Here
you will be greeted by our welcome screen

Figure A.2: PeacefulBanana Landing Screen

148

http://vm-6121.idi.ntnu.no:8080

A.1. GETTING STARTED

A.1.1 Registration

In order to become part of the PeacefulBanana community, you need to
register for a new account. To do this, click the login button in the top right
corner. At the login screen press the Not yet a user? link, as shown here:

Figure A.3: PeacefulBanana Login screen

After filling in your registration details, you will receive an email containing
a confirmation link. By clicking this link you will automatically be logged
in to PeacefulBanana and redirected to GitHub for authorization. In order
for PeacefulBanana to collect necessary data from GitHub, you will need to
authorize our application, this will look something like this:

This registration and authorization is only a one-time process. When you
have registered and authorized the PeacefulBanana application, you won’t
need to do think about it again. We’ll take care of the rest.

149

APPENDIX A. PEACEFULBANANA QUICK START

Figure A.4: PeacefulBanana - GitHub application authorization

A.1.2 Choosing team

Now you are ready to explore what PeacefulBanana can offer you and your
team. The first screen you will see is the team screen:

Figure A.5: PeacefulBanana - Team page, currently no teams have been
created

The first thing you have to do is get the team leader to create a new team.
One PeacefulBanana team retrieves data from your chosen GitHub repository
and only that. All repository collaborators can join the PeacefulBanana

150

A.1. GETTING STARTED

team, so if you are having trouble joining the team - check if you have the
collaborator status on the GitHub repository. Creating a team can be done
simply by clicking the highlighted +

On the next screen, choose a suitable team name and which repository this
team should be linked to. As stated earlier, there can only be one team
for each repository, and only the team leader needs to create the team. Af-
ter clicking Create PeacefulBanana will working it’s magic and retrieve your
chosen repositories’ data. This includes commits, milestones, issues you are
already familiar with on GitHub. This process might take a while the first
time around, but don’t worry, you will be notified when this process is com-
plete.

Back at the team page, your team will be created and visible under Teams.
Also the newly created team will be available to join for the other team
members. Go ahead and invite your co-collaborators to join!

Figure A.6: PeacefulBanana - Team page showing current team and available
teams based on your repositories

A.1.3 Repository tab

Clicking the repository tab, you will be presented with a screen like this:
It’s a simple start screen with the overall commit impact for your team’s
repository and a commit count. This information can be used to gain an

151

APPENDIX A. PEACEFULBANANA QUICK START

Figure A.7: PeacefulBanana - The main repository screen

indication of who is having the largest impact in the current team and how
much overall activity there is. On the menu to the left you can see tabs for
your repositories’ milestones, issues and tag cloud.
The milestones sub-tab:

152

A.1. GETTING STARTED

Figure A.8: PeacefulBanana - All the repositories’ milestones

On the milestones sub-menu you have access to all your milestones and their
status(Open, Overdue or Closed). The main tab will by default show all
your Open milestones. At the top you can switch to see milestones with
other statuses.

It’s fast and easy to switch between your currently open milestones, the
ones that are overdue and the milestones you already have closed. This
functionality makes it useful for individual daily usage, and for preparation
to team retrospectives. Say your team missed an important deadline, and
you wish to dive into what issues were causing problems. Clicking on this
milestone will present you with all the issues that are connected to that
milestone, in a clean manner: PeacefulBanana shows you that particular
milestone’s issues and their status, in addition to a milestone specific tag
cloud. This tag cloud will help you identify which tags1 are the most active,
related to this particular milestone. This will in turn identify which issues
might be worth taking a closer look at, while excluding the less important
ones. Say if you see that issue #20 has been heavily referenced in commits,
and you want to see further details surrounding that issue, simply click it:

1# perpended words in commit-messages

153

APPENDIX A. PEACEFULBANANA QUICK START

Figure A.9: PeacefulBanana - Single milestone

PeacefulBanana shows you this issue’s comments, references and events all

Figure A.10: PeacefulBanana - Issue #20, listing comments, references and
events

154

A.1. GETTING STARTED

in one clean interface, so that you or your team can quickly identify the
activities.

A.1.4 Reflection & Reflection notes

A typical scenario in retrospectives, is that it’s often hard to recollect all
events for the last two-three weeks. PeacefulBanana aims to remove this
issue completely from the retrospective sessions.
The reflection tab contains your personal reflection notes, and also your
team’s shared reflection notes. After creating a personal note, you can choose
to share one or more of these with your team. It is not shared by default,
so your personal notes really are personal. It is encouraged to share reflec-
tion notes with the team, the more notes shared - the easier it is to find
common improvements and difficulties in the team. Personal notes may be
used by you for personal reflection, or as preparation for a team retrospective
meeting. The shared notes can be used by the team during the retrospective
meeting.
PeacefulBanana also provides you and your team with a mood-graph under

Figure A.11: PeacefulBanana - Reflection tab with the currently shared notes

the tab Mood, which ranges from members being very happy, to very sad.
This mood graph will give you and your team an indication of how the in-
dividual moods progressed through the project. Is there any specific period
where the team’s mood ranged a lot? Then this period would be worth hav-
ing a second look, as to what exactly was being worked on at the time, any

155

APPENDIX A. PEACEFULBANANA QUICK START

specific problems or issues that could have been avoided?

Another feature of PeacefulBanana is the the tab Workshop Preparation,
which helps users prepare for the team’s retrospective sessions. You can eas-
ily switch between created workshops, and see your individual notes created
for that particular workshops’. Revisiting these contributions and improve-
ments helps users recollect the experiences from the particular days, the
daily contributions and improvements, and finally that periods mood graph
for both you and your team.

Figure A.12: PeacefulBanana - Reflection tab with the currently shared notes

A.1.5 Workshop tab

Finally we have the workshop tab. This is only visible if you are the manager
of your current active team. This means that only the team leader can create
workshops. If you wish to create a new workshop, simply click the + icon
next to the title:

156

A.1. GETTING STARTED

Figure A.13: PeacefulBanana - Create a new workshop

Which in turn will bring you to a date picker. Simply pick the from and to
date you wish to set up a workshop on and click Create. After inspecting the
newly created workshop you will see 3 tabs and some questions.

Mandatory questions

This tab is visible by default, and these questions are general for all work-
shops, and so they cannot be removed from the workshop. These questions
are designed to help your team reflect on general issues related to team col-
laboration and improvement.

Questions generated from the most active tags

This tab features questions auto-generated and added by PeacefulBanana.

Figure A.14: PeacefulBanana - Workshop questions related to the most active
tags

157

APPENDIX A. PEACEFULBANANA QUICK START

The questions are generated based on the most active tags on your team
for the period the workshop spans. If you do not wish to keep any of these
questions simply click the Remove button. This will move the questions
down to the Possible tag questions tab.

Possible tag questions

This tab contains all tags related to your teams current chosen workshop, in
a descending order based on number of times the tag has been referenced in
a commit. Clicking any of these tags will auto-generate a relevant question
regarding this tag, and move it to the tab above. This allows you to quickly
add and remove questions to your workshop.

Figure A.15: PeacefulBanana - List of tags to generate questions from

A.1.6 Summary

1. Register in the PeacefulBanana application. Remember to check your
email in order to complete the registration.

2. Set an active team in the Team tab. If there is no team, the team
leader needs to create it.

3. Wait for the GitHub sync to complete, you will be notified when the
process is completed. Be aware that this might take a while if this is
your first time syncing with the server.

158

A.1. GETTING STARTED

4. You are now ready to complete your daily notifications or explore the
app on your own and with your team.
Happy Reflecting

Useful Links

PeacefulBanana web-application: http://goo.gl/JaUUg

159

http://goo.gl/JaUUg

Appendix B

PeacefulBanana Database
Descriptions

This part of the appendix will describe a detailed walkthrough of each class
in PeacefulBanana.

B.1 User data

The first section is devoted to show and tell all data related to users, the ta-
bles described represents the different data types associated with users. Users
are a vital part of the implementation and everything is centered around these
users, it is therefore important to store as much relevant data as possible.

User

This table hold data related to each user and only the data which is unique
to them. The password are encrypted with SHA-512 encryption which is
a part of SHA-2 a set of encryption hashing functions created by the U.S.
National Security Agency in 2002 and is a known not to be reversal.

161

APPENDIX B. PEACEFULBANANA DATABASE DESCRIPTIONS

Field Description
Id Unique id generated when the user is first created

UserName This field stores the users username
Password This field stores the users password as a encrypted string,

the password is encrypted with SHA-512 encryption
Email This field stores the users email

FirstName This field stores the users first name
LastName This field stores the users last name

SelectedRepo The GitHub generated id of the repository currently se-
lected by the user

GitLogin The users GitHub login, used to bind commits to the user
DateCreated This field stores the date when the user was first created

Role

The different roles that the users can be assigned to. These are hierarchy so
that the highest gains access to the subset of this access level.

Field Description
Id Unique id generated when the role is first created.

Authority This field contains the level of authority.

UserRole

Both fields in this table are combined for the primary key such that each role
can only be given to each user once and each users can attain several roles.

Field Description
User Foreign key for the users id
Role Foreign key for the role id

162

B.1. USER DATA

Notification

Notifications are used to prompt users about reflection sessions and such.

Field Description
Id Unique id generated when the notification is first cre-

ated
Title This field stores the title
Body This field stores the entire message.

DateCreated Time stamp generated when the notification is first
created.

Unread Boolean variable to state if the message is read.
Cleared Boolean variable to state if the message is cleared or

not.
NotificationType The notification type, possible types are ’Reflection’ or

’Other’.
User A foreign key to the user that received the notification.

B.1.1 GitHub data

In this section we discuss the storage of data collected from GitHub. When we
started development we tested with the data stored at GitHub, so we asked
GitHub for the data every time it was needed, this made the application
slow so we decided to store GitHub data locally to enhance performance.
The following data-types where stored in tables as described below.

Milestones

Milestones are major goals consisting of several minor goals called issue, with
or without a due date.

163

APPENDIX B. PEACEFULBANANA DATABASE DESCRIPTIONS

Field Description
GithubId Unique id from github.com

Name The milestones name.
Description A description of the milestone, like what features is to be

implemented.
Status A variable to say if its open or closed.

CreatedDate The time stamp which the milestone is created.
DueDate A date which the milestone is due on. This is null if the

milestone does not got a due date.
ClosedDate A time stamp when the milestone is closed.

Issues

Issues are minor goals or bugs, these issues can be bound to a milestone or
independent.

Field Description
GithubId Unique id from github.com

Name The issues name.
Body A description of the milestone, like what features is to

be implemented.
State A variable to say if its open or closed.

Number A number unique to the repository which is used for
referring the issue in the commit messages.

Repository A foreign key to the repository it is bound to.
MilestoneNumber The milestone which the issue is bound to.

CreatedAt The time stamp which the milestone is created.
UpdatedAt The time stamp which the milestone last was updated.

Commits

At any given time a developer changes something in the source code it can
be committed to the version control system, in this case git/github. These

164

B.1. USER DATA

are the commits we store and use for reflection.

Field Description
GithubId Unique id from github.com
Message The commit message which we gather tags from, these tags

are marked hash tags.
Login The GitHub user which did the commit.

CreatedDate The time stamp which the commit is created.
Additions A date which the milestone is due on. This is null if the

milestone does not got a due date.
Deletions A time stamp when the milestone is closed.

Total A total of lines in the commit.

Repository

The current data is stored about each repository, in the corresponding fields
in the table bellow.

Field Description
GithubId Unique id from github.com

Name The repository name.
Description A description of the repository.
CreatedAt The time stamp which the commit is created.
UpdatedAt The time stamp recorded when the milestone last was up-

dated.

B.1.2 Collaboration data

Teams are bound uniquely to a repository, each repository will only have one
team bound to it and every user with access1 to the repository on GitHub
will have the possibility to join the team.

1Being a collaborator of the project on GitHub.

165

APPENDIX B. PEACEFULBANANA DATABASE DESCRIPTIONS

Team

These teams of users are bound uniquely to a repository and there can only
exists one team per repository.

Field Description
Id Unique id generated when the team is created.

Owner A foreign key to the user that created the team.
Name The teams name.

Repository The githubId of the repository bound to the team.

TeamUser

This contains the users attached to each team and data relevant.

Field Description
UserId A foreign key to the users id.
TeamId A foreign key to the teams id.

Role The users role in the team. There are possible roles are ’Man-
ager’ and ’Developer’

Active A variable that states if the user has selected this team as his
active. Only one can be active per user at any given time.

B.1.3 Reflection data

Notes

These notes are bound to a team and there can only be created one for each
team by a user each day.

166

B.1. USER DATA

Field Description
Id Unique id generated when the note is created.

Team A foreign key to the team the note is bound to.
User A foreign key to the user that created the note.
Mood A level regarding the current mood the user that created

the note recorded for that day. Mood is recorded as a
number between 1-100 where 100 is very happy and 1 is
very sad.

Contribution The top 2 contributions done that day for the team by
the user.

Improvements The 2 things that can be improved by the user that day
for the team.

Shared Variable that states that the note is shared with the team.
CreatedAt The time stamp which the commit is created.
UpdatedAt The time stamp recorded when the milestone last was

updated.

Workshop

Managers or owners of teams can create reflection workshops, where it is
generated a set of questions based on the tags used by the teams members
in the selected period.

Field Description
Id Unique id generated when the workshop is created.

TeamId A foreign key to the team.
CreatedAt The time stamp which the workshop is created.

DurationStart The time stamp which the workshop period starts.
DateStart The time stamp which the workshop period ends.

WorkshopQuestions

This table holds the questions for each workshop and indicates if they are
mandatory or not.

167

APPENDIX B. PEACEFULBANANA DATABASE DESCRIPTIONS

Field Description
Id Unique id generated when the question is created.

Workshop A foreign key to the workshop.
QuestionText The generated question.
CommitTag The tag which the question is generated from.

168

Appendix C

Usability Test-plan

169

Peaceful Banana

Usability Test Plan

Version: 1.0

 Even Stene, Marius Nedal Glittum
23.01.2012

1 Table of Contents

1 Table of Contents .. 2
2 Document Overview ... 3
3 Executive Summary ... 3
4 Methodology .. 4

4.1 Participants .. 5
4.2 Procedure .. 5

5 Roles .. 6
5.1 Ethics .. 6

6 Usability Tasks ... 6
7 Usability Metrics .. 8

7.1 Scenario Completion .. 8
7.2 Critical Errors .. 8
7.3 Non-critical Errors ... 8
7.4 Subjective Evaluations .. 8
7.5 Scenario Completion Time (time on task) ... 9

7 Usability Goals.. 9
7.1 Completion Rate ... 9
7.2 Error-free rate ... 9
7.3 Time on Task (TOT) .. 9
7.4 Subjective Measures .. 9

8 Problem Severity ... 9
8.1 Impact .. 10
8.2 Frequency ... 10
8.1 Problem Severity Classification .. 10

9 Reporting Results .. 10

 2

2 Document Overview
This document describes a test plan for conducting a usability test
during the development of PeacefulBanana. The goals of usability testing
include establishing a baseline of user performance, establishing and
validating user performance measures, and identifying potential design
concerns to be addressed in order to improve the efficiency, usability,
and end-user satisfaction.

The usability test objectives are:

• To determine design inconsistencies and usability problem
areas within the user interface and content areas. Potential
sources of error may include:

o Navigation errors – failure to locate functions,
excessive actions to complete a function, failure to
follow recommended screen flow.

o Presentation errors – failure to locate and properly act
upon desired information in screens, selection errors
due to labeling ambiguities.

o Control usage problems – improper toolbar or entry
field usage.

• Exercise the application or web site under controlled test
conditions with representative users. Data will be used to
access whether usability goals regarding an effective,
efficient, and well-received user interface have been
achieved.

• Establish baseline user performance and user-satisfaction
levels of the user interface for future usability evaluations.

The PeacefulBanana application is developed with developers in mind,
and will be evaluated on fellow students in the field of Computer
Science. The testing will occur in a controlled environment in a private
room.

3 Executive Summary
The PeacefulBanana tool is aimed towards aiding reflection for
developers through multiple representations of relevant data. The tool
integrates with Github, which features version-tracking support and
several useful tools for version control. The tool provides an additional
layer of features aimed towards aiding reflection in an agile
development project.
The tool have many different possible scenarios, but we have we have
identified two main scenarios:

 3

Scenario 1 – Individual use on a daily basis
At the end of each work day, users entering the web-application will
receive a notification with a request to do the daily notification. This
daily notification consists with a summary of their individual activity the
last 24 hours for the current active team. The user are prompted to
input todays mood, their top 2 contributions and their top 2 points to
improve on. These experiences can then be shared with the team, and
is stored for later review.

Scenario 2 – Team use after each iteration
Users will be using the tool as part of the two-week reflection sessions
that are present in many agile methodics. The team will use the tool to
indicate how the project has been progressing over the last iteration,
tightly coupled with one or several identified milestones. The tool
gathers relevant data and presents it using multiple representations in
order to revisit experiences and trigger reflection in the users. Examples
of such data are tagclouds generated based on the most active issues in
milestones, activity graphs and mood trajectories.
If any notes from scenario 1 has been shared, these will also be
available to the team. This allows the team to get even more details
surrounding certain issues in the iteration, and create a discussion
around the experiences made by the team. Revisiting these experiences
and comparing the views of the different members may trigger
reflection and users learn from these experiences.

We conduct this usability test in order to answer several important
questions, regarding these scenarios. Is the application easy to use, and
can users achieve their goals in a timely manner?
Also, does the tool present data and trigger reflection for the user?
Feedback from the usability test will further aid design and help identify
problem areas that might cause problems for users. Since the
participants are all computer science experts, and are familiar with
reflection we hope to receive valuable input regarding these concepts.

4 Methodology
The usability test will be conducted on 5 participants. User-interaction
with the PeacefulBanana tool will be done through an Internet Browser.
We will have the users answer an entrance questionnaire, in order to
collect demographic information. During the usability test we will take
notes of the user’s problems and concerns. When the test is completed
we will have participants come with suggestions on improvement. Finally
participants will answer a SUS form, which consists of 10 questions
designed to measure user satisfaction.

 4

4.1 Participants

As mentioned we expect at least 5 participants. As the PeacefulBanana
tool will be used with developers, which all have computer science
background, participants will be fellow master students on the Computer
Science field.
These participants will all have a background from Computer Science,
and will be familiar with usability testing and also have experience with
the notion of reflection.
The participants' responsibilities will be to attempt to complete a set of
representative task scenarios presented to them in as efficient and
timely a manner as possible, and to provide feedback regarding the
usability and acceptability of the user interface. The participants will be
directed to provide honest opinions regarding the usability of the
application, and to participate in post-session subjective questionnaires
and debriefing.

4.2 Procedure
Participants will take part in the usability test in a private room at the
university. A computer with the PeacefulBanana web application and
supporting software will be used in a typical working environment. The
participant’s interaction with the application will be monitored by the
facilitator seated in the same room. In addition to the facilitator, notes
will be taken by a member of the team.

The facilitator will brief the participants on the web application and
instruct the participant that they are evaluating the application, rather
than the facilitator evaluating the participant. Participants will sign an
informed consent that acknowledges: the participation is voluntary, that
participation can cease at any time, and that their privacy of
identification will be kept safe. The facilitator will ask the participant if
they have any questions.

Participants will complete a pretest demographic and background
information questionnaire. The facilitator will explain that the amount of
time taken to complete the test task will be measured and that
exploratory behavior outside the task flow should not occur until after
task completion. At the start of each task, the participant will read aloud
the task description from the printed copy and begin the task. Time-on-
task measurement begins when the participant starts the task.

The facilitator will instruct the participant to ‘think aloud’ so that the
facilitator may observe and take notes of user behavior and user
comments.

After all task scenarios are attempted, the participant will complete the
post-test satisfaction questionnaire.

 5

5 Roles
The roles involved in a usability test are as follows. An individual may play
multiple roles and tests may not require all roles.

Facilitator

• Provides overview of study to participants
• Defines usability and purpose of usability testing to participants
• Assists in conduct of participant and observer debriefing sessions
• Responds to participant's requests for assistance

Test Observers

• Silent observer
• Takes notes of identified problems, concerns, coding bugs, and

procedural errors.
• Serve as note takers.

Test Participants

• Provides overview of study to participants
• Defines usability and purpose of usability testing to participants
• Assists in conduct of participant and observer debriefing sessions
• Responds to participant's requests for assistance

5.1 Ethics
All persons involved with the usability test are required to adhere to the
following ethical guidelines:

• The performance of any test participant must not be individually
attributable. Individual participant's name should not be used in
reference outside the testing session.

• A description of the participant's performance should not be reported to
his or her manager.

6 Usability Tasks
The usability tasks were derived from test scenarios developed from user-
stories, shortly introduced above. Due to the short time for which each
participant will be available, the tasks are the most common and relatively
complex of available functions. The tasks are identical for all participants in the
study.

The application will be tested in a development environment and databases will
be populated during use, and are not pre-populated. This will ensure a similar
experience as to what the users get when they first use PeacefulBanana. The
web application will run on a local computer, and not on a dedicated server as
it will when deployed. This and the possible extra overhead from development
mode, may impact performance slightly in a negative way.

 6

Tasks:
Here are the most common and important tasks related to the two scenarios,
the recruited experts will try to perform. These tasks are the most typical in the
overall scope of tasks that the application will support.

Context:
PeacefulBanana is a tool intended to promote reflection and allow for revisiting
and learning from previous experiences. PeacefulBanana integrates with and
collects data from the version-control system Git.

Scenario 1 tasks:

Task 1: You start the application for the first time, and want to login, link your
account with Github and set an active repository.

Task 2: View your notifications.
2.2 – Find the “Congratulations” notification and archive it. Find the archive
and see if the notification was indeed archived.

Task 3: Find the “Reminder: Daily Reflection” note and perform the daily
summary.
3.2 – Find a daily summary note and share it. Verify that is has indeed been
shared.
3.3 – Find your mood graph

Scenario 2 tasks:

Task 4: Create a team with the name “Tuttifrutti” and your previously chosen
repository.
4.2 – Find your created team and set it to active.
4.3 – Identify the members on your team and their role.

Task 5: Find all your repositories’ milestones.
5.2 – Identify your overdue milestones.
5.4 – Find your repositories issues
5.4 – Find issue #17 . What is the status of this issue? When was it opened
and when was it closed?

Task 6: Generate a tagcloud for your current chosen repository.
6.2 – Identify the most used tag for your team and yourself
6.3 - Generate a tagcloud for your current chosen repository.
6.4 – Find the commit impact for your repository.

 7

7 Usability Metrics
Usability metrics refers to user performance measured against specific
performance goals necessary to satisfy usability requirements. Scenario
completion success rates, error rates, and subjective evaluations will be used.
Time-to-completion of scenarios will also be collected.

7.1 Scenario Completion
Each scenario will require, or request, that the participant obtains or inputs
specific data that would be used in course of a typical task. The scenario is
completed when the participant indicates the scenario's goal has been obtained
(whether successfully or unsuccessfully) or the participant requests and
receives sufficient guidance as to warrant scoring the scenario as a critical
error.

7.2 Critical Errors
Critical errors are deviations at completion from the targets of the scenario.
Obtaining or otherwise reporting of the wrong data value due to participant
workflow is a critical error. Participants may or may not be aware that the task
goal is incorrect or incomplete.

Independent completion of the scenario is a universal goal; help obtained from
the other usability test roles is cause to score the scenario a critical error.
Critical errors can also be assigned when the participant initiates (or attempts
to initiate) and action that will result in the goal state becoming unobtainable.
In general, critical errors are unresolved errors during the process of
completing the task or errors that produce an incorrect outcome.

7.3 Non-critical Errors
Non-critical errors are errors that are recovered from by the participant or, if
not detected, do not result in processing problems or unexpected results.
Although non-critical errors can be undetected by the participant, when they
are detected they are generally frustrating to the participant.

These errors may be procedural, in which the participant does not complete a
scenario in the most optimal means (e.g., excessive steps and keystrokes).
These errors may also be errors of confusion (ex., initially selecting the wrong
function, using a user-interface control incorrectly such as attempting to edit an
un-editable field).

Noncritical errors can always be recovered from during the process of
completing the scenario. Exploratory behavior, such as opening the wrong
menu while searching for a function, will be coded as a non-critical error.

7.4 Subjective Evaluations
Subjective evaluations regarding ease of use and satisfaction will be collected
via questionnaires, and during debriefing at the conclusion of the session. The
questionnaires will utilize free-form responses and rating scales.

 8

7.5 Scenario Completion Time (time on task)
The time to complete each scenario, not including subjective evaluation
durations, will be recorded.

7 Usability Goals
 The next section describes the usability goals for PeacefulBanana

7.1 Completion Rate
Completion rate is the percentage of test participants who successfully
complete the task without critical errors. A critical error is defined as an error
that results in an incorrect or incomplete outcome. In other words, the
completion rate represents the percentage of participants who, when they are
finished with the specified task, have an "output" that is correct. Note: If a
participant requires assistance in order to achieve a correct output then the
task will be scored as a critical error and the overall completion rate for the
task will be affected.

A completion rate of 100% is the goal for each task in this usability
test.

7.2 Error-free rate
Error-free rate is the percentage of test participants who complete the task
without any errors (critical or non-critical errors). A non-critical error is an
error that would not have an impact on the final output of the task but would
result in the task being completed less efficiently.

An error-free rate of 80% is the goal for each task in this usability test.

7.3 Time on Task (TOT)
The time to complete a scenario is referred to as "time on task". It is measured
from the time the person begins the scenario to the time he/she signals
completion.

7.4 Subjective Measures
Subjective opinions about specific tasks, time to perform each task, features,
and functionality will be surveyed. At the end of the test, participants will rate
their satisfaction with the overall system. Combined with the
interview/debriefing session, these data are used to assess attitudes of the
participants.

8 Problem Severity
To prioritize recommendations, a method of problem severity classification will
be used in the analysis of the data collected during evaluation activities. The
approach treats problem severity as a combination of two factors - the impact
of the problem and the frequency of users experiencing the problem during the
evaluation.

 9

8.1 Impact
Impact is the ranking of the consequences of the problem by defining the level
of impact that the problem has on successful task completion. There are three
levels of impact:

• High - prevents the user from completing the task (critical error)
• Moderate - causes user difficulty but the task can be completed (non-

critical error)
• Low - minor problems that do not significantly affect the task completion

(non-critical error)

8.2 Frequency
Frequency is the percentage of participants who experience the problem when
working on a task.

• High: 40% or more of the participants experience the problem
• Moderate: 20% - 39% of participants experience the problem
• Low: 20% or fewer of the participants experience the problem

8.1 Problem Severity Classification
The identified severity for each problem implies a general reward for resolving
it, and a general risk for not addressing it, in the current release.

Severity 1 - High impact problems that often prevent a user from
correctly completing a task. Reward for resolution is reduced
redevelopment costs.

Severity 2 - Moderate to high frequency problems with moderate to
low impact are typical of erroneous actions that the participant
recognizes needs to be undone. Reward for resolution is typically
exhibited in reduced time on task.

Severity 3 - Either moderate problems with low frequency or low
problems with moderate frequency; these are minor annoyance
problems faced by a number of participants. Reward for resolution is
typically exhibited in reduced time on task and increased data
integrity.

Severity 4 - Low impact problems faced by few participants; there is
low risk to not resolving these problems. Reward for resolution is
typically exhibited in increased user satisfaction.

9 Reporting Results
The Usability Test Report will be provided at the conclusion of the usability test.
It will consist of a report and/or a presentation of the results; evaluate the
usability metrics against the pre-approved goals, subjective evaluations, and
specific usability problems and recommendations for resolution..

 10

 PeacefulBanana

Appendix D

Usability Consent form

181

Usability test consent form

I hereby grant full permission to the PeacefulBanana team to take notes of my comments

during the usability test for PeacefulBanana Web Application.

I understand that other NTNU employees involved with PeacefulBanana may review

these usability notes.

In this usability test :

 You will be asked to perform certain tasks on the PeacefulBanana website.

 We will also conduct an interview with you.

 You will be asked to fill in a questionnaire form.

Participation in this usability study is voluntary. All information will remain strictly

confidential. The descriptions and findings may be used to help improve the

PeacefulBanana application. However, at no time will your name or any other

identification be used. You can withdraw your consent and stop participation at any time.

If you have any questions after today, please contact Even Stene at XXXXXXXX.

I have read and understood the information on this form and had all of my questions

answered

______________________________ _________________

Subject's Signature Date

______________________________ _________________

Usability Consultant Date

Appendix E

Mirror-project Toolbox:
Reflection scale

183

APPENDIX E. MIRROR-PROJECT TOOLBOX: REFLECTION SCALE

Figure E.1: Reflection Scale from the MIRROR evaluation toolbox

184

Appendix F

Design-Science Research
Guidelines

Figure F.1: Design-Science Research Guidelines

185

	Introduction
	Context & Domain
	Core Concepts

	Research Question
	Research Method
	Design as a research process
	Development process
	Daily Delivery Cycle
	Evaluation
	Research Contributions
	Research Rigor
	Research communication

	Outline

	Peaceful Banana - An overview
	What is PeacefulBanana?
	What does it do?

	Background
	Computer-supported reflection
	The MIRROR model

	Agile Software Development

	State of the art
	Literature Review
	Reflecting on reflection - Important Aspects
	Tag Clouds
	Supporting retrospective reflection in student software engineering teams
	The functions of multiple representations
	Agile Project Retrospectives

	Related Work
	Reflection Approach
	HackyStat
	GitHub tools

	Discussion

	Problem Elaboration
	Problem Overview
	Github
	Authentication
	Repositories
	Commits
	Milestones and Issues

	Using technology to promote learning from reflection
	Agile Retrospective

	Scenarios
	Scenario 1 - Individual use on a daily basis
	Scenario 2 - Team use after each iteration

	Requirements
	Functional Requirement
	General Requirements
	GitHub Requirements
	Architectural Requirements

	Non Functional Requirements
	Usability
	Availability
	Security

	Design
	Responsive web design
	Fluid grid

	Mockups
	Smartphone App
	Web-Application tool

	Twitter Bootstrap
	Bootstrap grid
	Bootstrap components
	Icons
	Design Examples

	PeacefulBanana Design
	Icons
	MIRROR CSRL
	Plan and do work
	Initiate Reflection
	Conduct Reflection Session
	Core Functionality

	Implementation
	Application Architecture
	Technology
	Server and Database

	Evaluation
	Usability Evaluation
	Context
	Participants
	Procedure
	Roles
	Ethics
	Usability Tasks
	Usability Metrics
	General Usability Goals
	Problem Severity
	Usability Test Results
	Summary of Data
	Recommendations
	Conclusion

	Expert Review
	Overview
	Overall Feedback
	App-specific feedback
	Suggested new features

	Focus Group
	Focus group context
	Ground Rules
	Data Collection and Analysis
	Why they did not use it?
	If they would have used it
	Comments

	Discussion
	Sub RQ1
	Sub RQ2
	Sub RQ3
	Main RQ

	Conclusion
	Summary
	Discussion on our own work
	Future Work

	Bibliography
	Appendix PeacefulBanana Quick Start
	Getting started
	Registration
	Choosing team
	Repository tab
	Reflection & Reflection notes
	Workshop tab
	Summary

	Appendix PeacefulBanana Database Descriptions
	User data
	GitHub data
	Collaboration data
	Reflection data

	Appendix Usability Test-plan
	Appendix Usability Consent form
	Appendix Mirror-project Toolbox: Reflection scale
	Appendix Design-Science Research Guidelines

