
Negotiation for Strategic Video Games

Einar Nour Afiouni
Leif Julian Øvrelid

Master of Science in Computer Science

Supervisor: Pinar Öztürk, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

i

Abstract

The field of multi-agent systems and the use of game theoretic interactions is
growing ever more popular in the academic artificial intelligence communities.
We think that this kind of AI will be very useful in improving the realism and
effectiveness of simulated opponents in video games. Academic AI has not been
used a lot in the video game industry as it is often computationally expensive.
Video games require fast response times and use most of their computing time
for graphics and physics calculations, making advanced AI techniques less fea-
sible in this domain. This project examines the use of multi-agent negotiation
techniques to expand the AI in a strategic video game. We have implemented
such a negotiation system in the video game Civilization IV from Firaxis Games,
focusing on making an efficient negotiating AI capable of handling a multi-issue
negotiation domain with limited information of its opponent’s preferences. In
order to overcome the difficulty of limited information, our system incorporates
modeling of the opponent’s preferences. In this project, we examine the ef-
fectiveness of two such modeling techniques, frequency modeling and Bayesian
modeling, evaluating their performance and usability in the video game domain.

ii

iii

Sammendrag

I dette prosjektet undersøker vi mulighetene for å bruke spillteoretiske konsepter
og multiagent systemer i moderne videospill med sanntidskrav. Vi har imple-
mentert et forhandlingssystem for det strategiske videospillet Civilization IV.
Vi har evaluert flere ulike forhandlingsteknikker med et fokus p̊a bruk av mod-
elleringsteknikker som finner motstanderens preferanser for å forbedre forhan-
dlingsresultatene.

iv

v

Preface

This project was conducted at the department of Computer & Information Sci-
ence at NTNU as a master thesis project during the spring of 2013. We would
like to thank our advisor Pinar Öztürk for helping us and giving us useful
pointers to what we should focus on in our project. We would also like to thank
Firaxis Games for making the Civilization IV Software Development Kit free to
use so that we can develop modifications for the AI in this game. The finished
modification will not be our property as it is a mod for a commercial video game
owned by Firaxis Games and 2K Games, and we will distribute the modification
free of charge.

vi

Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Task Specification and Scope . 2

1.3 Research Questions . 3

1.4 Contributions . 4

1.5 Research Method . 4

1.6 Report outline . 5

2 Introduction to Civilization IV 7

2.1 What Is Civilization IV . 7

2.2 The Original AI Of The Game 8

2.2.1 Trade-able Items . 8

2.2.2 Relations vs Repeated Games 9

2.2.3 Actions or Situations Affecting Relations Between Two
Players . 9

2.2.4 Current Use of Negotiations 10

2.3 The AI Code . 11

2.3.1 Overview of the code . 11

vii

viii CONTENTS

2.3.2 Important Classes . 11

3 Background Theory 15

3.1 Agent Systems . 15

3.2 Multi-agent Systems . 16

3.3 Game Theory . 16

3.3.1 Prisoner’s Dilemma . 17

3.3.2 Solution Concepts . 18

3.3.3 Negotiations . 19

3.3.4 Pareto Optimal . 22

3.3.5 Social Welfare . 22

3.4 Constraint Satisfaction Problems 23

3.5 Machine Learning . 23

3.5.1 Bayesian Learning . 24

3.6 Bayes’ Rule . 24

4 Related Work 25

5 Our Solution 35

5.1 Negotiation in Civilization . 35

5.1.1 Negotiation Domain . 36

5.2 Solution Architecture . 38

5.2.1 Agent Description . 38

5.3 Negotiation Protocol . 40

5.3.1 Constraint Satisfaction for Generating and Evaluating Of-
fers . 44

5.3.2 Constraint Satisfaction Problems 45

CONTENTS ix

5.3.3 Concession Strategy . 48

5.4 Opponent Modeling . 49

5.4.1 Extracting Information From Bids 49

5.4.2 Frequency Modeling . 51

5.4.3 Bayesian Learning . 54

5.4.4 Pareto Optimality . 63

5.4.5 Social Welfare . 64

5.4.6 Negotiation Scenarios . 66

5.5 Example Run of our System . 71

6 Experiments 77

6.1 Evaluation Method . 77

6.1.1 Calculating Results . 78

6.2 Negotiation Scenarios . 79

6.3 Negotiation Experiments . 95

6.3.1 Experiment N1 . 96

6.3.2 Experiment N2 . 97

7 Results and Discussion 99

7.1 Experiment N1 . 99

7.1.1 Results . 100

7.1.2 Discussion . 101

7.2 Experiment N2 . 106

7.2.1 Optimal results . 107

7.2.2 Actual Results . 108

7.2.3 Discussion . 110

x CONTENTS

7.3 Overall Discussion . 115

8 Conclusion 117

9 Future Work 119

List of Figures

2.1 Overview of the current AI in Civilization IV. 14

3.1 Boulware and conceder negotiation strategies. 20

5.1 Illustration of our solution’s architecture 41

5.2 Illustration of the alternating offers protocol 42

5.3 An example of a possible offer . 42

5.4 Illustration of our negotiation protocol at a high level. 43

5.5 Examples of three possible constraints 46

5.6 Illustration of opponent modeling. 50

5.7 Illustration of the classifications that a change in an offer can be
mapped to. 50

5.8 Example of how constraints can be deduced from changes in offers. 51

5.9 Illustration of our frequency modeling technique. 53

5.10 Example of a possible hypothesis. 55

5.11 Illustration of how the unoptimized Bayesian opponent modeler
works. 56

5.12 Illustration of how we simplify the hypothesis space 61

xi

xii LIST OF FIGURES

5.13 Illustration of how the optimized Bayesian opponent modeling
works. 61

5.14 Illustration of how a negotiation can give Pareto optimal results. 65

5.15 Illustration of how a negotiation might miss a result that maxi-
mizes social welfare. 66

List of Tables

3.1 Prisoner’s dilemma pay-off matrix. 17

7.1 Agent types . 99

7.2 Opponent modeling correctness in AI versus AI negotiation. . . . 100

7.3 Opponent modeling correctness in AI versus AI negotiation. . . . 100

7.4 Success-rate in AI versus AI negotiations 108

7.5 Average number of offers in AI versus AI negotiations 109

7.6 Average time to make an offer in AI versus AI negotiations. . . . 109

7.7 Average satisfaction in AI versus AI negotiations 109

xiii

xiv LIST OF TABLES

List of Algorithms

1 Local search algorithm for creating offers. 48

2 Frequency modeling pseudo code 54

3 Pseudo code for a simple version of Bayesian learning. 58

4 Pseudo code for our Bayesian learning method 63

5 Pseudo code for calculating results of our negotiation. 80

6 Pseudo code for calculating the model correctness. 81

xv

xvi LIST OF ALGORITHMS

Chapter 1

Introduction

The Video game industry is a massive and fast growing industry, often driving
modern computer science forward with its need for the most advanced technol-
ogy to provide an ever more immersive world for the players. When it comes
to artificial intelligence, however, games are lagging behind the current state of
the art in academic AI. As games often try to immerse the players in a virtual
world, they require low computation times to provide fast response to the play-
ers’ actions. This makes them soft real-time systems, where fast responses are
not strictly necessary, but are required to make the user experience good. As
academic AI often explores techniques that require long computation times to
make difficult decisions, these techniques are difficult to utilize in a video game
domain. In the modern video-game industry, however, the focus is shifting more
and more towards the use of artificial intelligence to improve the realism and
immersion of games, and in order to do this, it needs to look at the vast field of
academic AI for inspiration. In this project, we aim to bring the use of multi-
issue interactions and game theory to real-time video games. We do this by
expanding the artificial intelligence system in the video game Civilization IV
using a game theoretical approach. We focus on the use of multi-agent negotia-
tion systems to improve how the artificial intelligence handles diplomacy, both
against other AI’s and against real players. Civilization IV is a so called grand
strategy game for up to eighteen players, where each player controls one nation
and struggles for world domination through war and diplomacy. For a more
detailed explanation of Civilization IV, see section 2.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivations

The standard opponent AI in Civilization IV is rather simple and limited when
it comes to diplomacy. The system does not allow for counter offers, only al-
lowing accepting and declining offers. In addition, it does not reason about its
opponents, and when negotiating with other AI controlled opponents, all the
offers they make are automatically accepted as long as they are possible. A
more advanced system for negotiation, where the agents are allowed to make
counter offers and utilize modern negotiation techniques could vastly improve
the player’s experience in such games. The Civilization IV negotiation domain
is a complex one however, where the negotiations involve multiple issues at the
same time, and there is no information about the intentions of the opponents.
This is a very difficult domain, and achieving good negotiation results in such
a domain is the focus of a lot of research in negotiation theory. Multi-issue
negotiations such as in our system make it very difficult to find optimal deals
in polygonal time, as the space of possible offers to search through grows expo-
nentially in the number of negotiation issues. This makes it unfeasible to search
through all the possible offers to find the best one. Therefore, some optimization
and simplification is necessary in order to find deals that are close to optimal in
polynomial time. The lack of information about the opponent’s preferences is
another complicating factor, because making a reasonable concession is difficult
when you do not know what the opponent wants. Such difficulties can often be
resolved by utilizing opponent modeling techniques from the machine learning
field to find the opponent’s preferences. In this project we attempt to utilize
such techniques and adapt them to the AI in Civilization IV, making it a more
challenging and interesting opponent or ally. In order to reason about what to
negotiate about and about the preferences of the opponent, we can conceive the
problem as a constaint satisfaction problem in the AI field where the preferences
of the agent and its opponents can be represented as constraints, making the
process of searching for offers a process of constraint satisfaction.

1.2 Task Specification and Scope

The principal idea behind our project is to utilize negotiation theory to improve
the decision making in the negotiations in the strategic video game Civilization
IV. Using a more advanced negotiation system where counter offers are allowed
makes it easier to find a better deal than what can be found if each agent only

1.3. RESEARCH QUESTIONS 3

sends offers suggesting things the agent wants for itself, and the opponent can
only accept or decline. A more advanced system, however, needs to allow trade-
offs in order to find deals that are Pareto optimal or maximize social welfare.
Pareto optimality and social welfare are important properties for negotiation
results, describing how good the results actually are (see section 3 for an expla-
nation of these properties). It is therefore a goal of this project to find whether
a system guaranteeing Pareto optimality or maximization of social welfare can
be made in the Civilization IV domain. The negotiation domain in Civilization
IV is a complex one, where the agents or players can negotiate for resources and
treaties all at the same time, without having to reveal any information to the
other players. This means we are dealing with a multi-issue negotiation with
limited information. An important part of the project will be to find a nego-
tiation protocol/strategy that is fast and efficient so that the agents can come
to an agreement within a short time frame (Civilization IV is a turn based
game and each AI player typically uses about a second per turn). Making the
negotiation fast enough to keep the response time short is an important task,
as negotiations might be a time consuming process. Due to this, we will prior-
itize lowering computational complexity over improving negotiation outcomes,
although both are important.

1.3 Research Questions

RQ1 Evaluate how well a multi-issue negotiation system with limited informa-
tion will work in a complex, soft real-time system such as the video game
Civilization IV.

RQ2 Is it possible to achieve Pareto optimal, or social welfare maximizing
negotiation results in the domain of Civilization IV?

RQ3 Will opponent modeling improve the negotiation results in this domain?
Which type of opponent modeling leads to better results? The quality of
the results will be evaluated according to the success rate of a series of
negotiations and the average utility of a series of negotiation as detailed
in section 6.

4 CHAPTER 1. INTRODUCTION

1.4 Contributions

We have developed a new negotiation system for Civilization IV that uses oppo-
nent modeling and constraint based negotiation to achieve better results from
negotiations than the ones obtained by the original AI. We have implemented
two different opponent modeling techniques, one based on frequency modeling
and one based on Bayesian learning, and have compared these techniques with
each other, evaluating their usefulness in our domain. There have been a few
other attempts at making negotiation based AI’s for strategic games similar
to Civilization IV, but these have, as far as we are aware of, been limited to
turn based board games, where the computation times are less important. In
commercial video games, which traditionally leave very little processing time
to the AI systems, we are not aware of any systems that utilize these kind of
techniques. Our system constitutes an important contribution in showing that
multi-agent interactions are both feasible and useful in the field of real time
video games.

1.5 Research Method

Our research started with a conceptual design of a negotiation system we have
made in our previous semester. This design was implemented in Civilization
IV. We also modified Civilization IV such that we can gather data to examine
the results of our approach. To answer our research question, we implemented
two types of opponent modeling which we compared to each other. In addi-
tion, we implemented agents capable of negotiating with full information about
their opponents and agents negotiating with no opponent modeling and no in-
formation. These agents are used for comparison, to see how much opponent
modeling can improve the results of the negotiation. In order to test the system,
we have created a set of negotiation scenarios, tailored to test how our system
copes with different and often difficult situations. The different opponent mod-
eling types have been run against each other on these scenarios while logging
the results, that is the correctness of the opponent models and the time use of
the negotiations. The results of our proposed solution can be found in chapter
5. In addition to these tests, we have also analyzed our system manually to
find whether it can provide Pareto optimal or social welfare maximizing results.
This analysis can be found in sections 5.4.4 and 5.4.5.

1.6. REPORT OUTLINE 5

1.6 Report outline

Our report starts by describing the game, Civilization IV, that we are modify-
ing in chapter 2, before introducing useful terms and background information
in chapter 3. Chapter 4 then examines other relevant scientific work, before we
present the system we have developed in chapter 5. We then define the exper-
iments we have performed to verify our research questions in chapter 6, before
we provide the results and discussion in chapter 7. In chapter 8, we sum up
what we have found out, and present the conclusions we have drawn. Chapter
9 gives pointers to what we intend to work more on in the future, and research
directions future work in this field could focus on.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Introduction to Civilization
IV

This chapter introduces the video game Civilization IV. We give an overview of
the AI in the game, explaining it in terms of game theoretic concepts such as
coalitions and negotiations.

2.1 What Is Civilization IV

Civilization IV (from here on CivIV) is a large scale, turn based strategy game
in a genre often called grand strategy or 4X (short for Explore, Expand, Exploit
and Exterminate). It is played on a large map in which the players control an
empire from its small beginnings as a single city, towards world domination.
The general game-play consists of building cities, building improvements and
units in your cities, researching technologies, exploring the world map with
your units, and most importantly, conducting diplomacy and warfare with your
opponents. By default, there are five different scenarios where a player wins the
game: by conquering all other civilizations, controlling a majority of the world’s
land an population, increasing the culture ratings of three different cities to a
”Legendary” level, sending a rocket ship to the Alpha Centauri star system or
by being declared ”World Leader” through election by the United Nations. If

7

8 CHAPTER 2. INTRODUCTION TO CIVILIZATION IV

the game’s clock runs out before any of the latter goals are achieved by anyone,
the civilization with the highest score wins the game.

2.2 The Original AI Of The Game

The diplomatic part of the CivIV AI is quite simple, and is largely based on
keeping track of the relationships between all the players. These relationships,
represented by a number, are the primary source of all diplomatic decisions,
such as whether to start a war, make a treaty or trade and so on. The decision
for whether to go to war, is calculated based on whether you have a military
force with which you think you can handle a war, how many wars you are
currently involved in, whether you have an opponent with relationship value
below a certain threshold, and a random value. The random value is there to
make the the AI less predictable so that players will not be able to know when
an opponent will decide to start a war. The AI always chooses the player with
which it has the worst relationship when it wants to go to war, regardless of
strategic importance.

During negotiations, there are a large number of different treaties and resources
that can be offered. These are often traded among players as a means of getting
something you have, such as more gold or a specific technology, but can also be
given as gifts to improve your relations, or be used to pay for a treaty such as
allowing open borders, or making peace. Often players who have good relations
with you will ask for resources without payment, and when they enter wars,
they will generally ask you to join them using this trading system, although
they will generally not offer compensation for such treaties. The following is an
overview of the trade-able items in CivIV, most of these items and treaties are
trade-able only when you have good relations.

2.2.1 Trade-able Items

• Gold

• Treaty to give a certain amount of gold per turn

• World map

• Open borders treaty

2.2. THE ORIGINAL AI OF THE GAME 9

• Technologies

• Resources

• Cities

• Making peace with a player (creates a ten round peace treaty in which
you cannot declare war on that player)

• Declaring war on a player

• Stop trading with a player

• Adopt culture

• Convert to religion

2.2.2 Relations vs Repeated Games

The use of relations as a basis for negotiations, makes it possible to view the
diplomacy in CivIV as a series of repeated games where the agents remember
the behavior of players in previous games (previous negotiations), and react
according to this. In this method, the behavior is reduced to a number, a
relation value, removing (forgetting) a lot of important details in his behavior.
The abstraction of a relation value in stead of an extensive history of player
behavior, makes this tractable in a real time system such as CivIV. In such
a scenario, it could be useful to reason about the consequences actions have
on relations and to plan what actions to take based on history, or previous
experiences with this player. No such reasoning is being done in the current
player AI. Instead, a simple reactive behavior based on current relation values
is employed, where retaliations happen when relation values get too low, and
cooperation occurs when they are high.

2.2.3 Actions or Situations Affecting Relations Between
Two Players

Given two players, P1 and P2, here are two lists with actions and situation that
affect relations between the players in a negative and positive way, respectively.

10 CHAPTER 2. INTRODUCTION TO CIVILIZATION IV

Negative effects

• P1 and P2 having shared borders

• P1 trading with enemies of P2

• P1 having different types of culture or religion than P2

• P1 being at war with P2

• P1 being at war with friends of P2

• P1 declining trades from P2

• P1 declining to help when being asked by P2

Positive effects

• P1 accepting trades from P2

• P1 having treaties together with P2

• P1 keeping peace over time (the longer the peace, the bigger the plus)
with P2

• P1 and P2 having common enemies

• P1 having the same type of culture or religion as P2

• P1 Helping when being asked for by P2

• P1 giving gifts to P2

2.2.4 Current Use of Negotiations

As previously mentioned, there are a wide range of possible items and treaties
to negotiate over, and the relation value affects what is trade-able and how
nice the players treat each other. Negotiations consist of one party approaching
the other with a proposal, and the other party can then either accept, deny or
make a counter proposal. In normal scenarios, the AI can not make counter
proposals, but players are allowed to do this, both towards the AI and towards
each other. Negotiation between the AIs is hence currently limited to single

2.3. THE AI CODE 11

round negotiations where the recipient of an offer will either accept or decline
an offer. It is, however, possible to suggest a deal and ask the AI what it would
like to get for accepting this deal. Regular counter offers will however never be
made by the original AI.

2.3 The AI Code

The following section gives a more detailed overview of how the AI code in
CivIV works. The most important classes and functions will be explained, with
emphasis on the parts of the code that are most relevant for our project.

2.3.1 Overview of the code

The AI code in Civilization is a large and complex system, with many depen-
dencies, but we have separated out the most important parts and present them
in figure 2.1. This gives an overview of how the different parts are connected
and what they do. In section 2.3.2 the functionality of each class from figure 2.1
are described.

2.3.2 Important Classes

CvGameAI

This is responsible for calling the update functions of both the CvTeamAI and
the CvPlayerAI classes. This is the function that recalculates all decisions. Most
of the functionality that is called in this function is given in the other classes.
Other than that it has a few functions used for decision making but does not do
any decision making on its own. It inherits from CvGame which contains the
game loop as well as a large part of the game logic.

CvPlayerAI

Most of the AI decisions are made in this class. It is responsible for handling
diplomacy between the players The decision making for diplomacy is very sim-

12 CHAPTER 2. INTRODUCTION TO CIVILIZATION IV

ple. It also keeps track of all cities and groups of units and is responsible for
calling the individual AIs for these.

CvTeamAI

The CvTeamAI class handles decision making that concerns the entire team (if
you are on a team), such as war decisions. All players are, per definition, on a
team. This team can either be an actual team, or just that one player. Each
team has one CvTeamAI for the decisions that concern all players on the team.
This part of the AI is separated from the CvPlayerAI to make it possible to
just take these decisions once when you have several players on a team. If no
players are on a team, each player will have their own CvTeamAI that makes
these decisions.

CvCityAI

The city AI takes decisions about what to build in a city, what type of specialists
to hire in the city and other city management decisions. There is one CityAI for
each city. The decision making is triggered by the PlayerAI which keeps track
of all its cities.

CvUnitAI

Controls one unit. A unit is a move-able property of a player, for instance a
soldier or a ship. Higher level control such as where to move is not done here.
The higher levels of the AI gives the units or the selection groups missions to
perform.

CvSelectionGroupAI

This class keeps track of a group of units that are selected together. It provides
functions for reasoning about their state that are used for decision making on
unit movement and control. It is also responsible for calling the AI of each
individual unit each turn.

2.3. THE AI CODE 13

CvDeal

This class implements all trades and diplomacy acts when they are decided on.

14 CHAPTER 2. INTRODUCTION TO CIVILIZATION IV

Figure 2.1: Overview of the current AI in Civilization IV. Only the most
relevant parts are included.

Chapter 3

Background Theory

In this chapter, we introduce the theoretical background to our report such as
agent systems, multi-agent systems and game theory, focusing on the parts of
these fields that are relevant to our system. For instance, Pareto optimality and
social welfare, which are used as a way to check if our results are good or not,
Bayes’ rule which we use for our Bayesian opponent modeling and Constraint
Satisfaction Problem which is how we represent the preferences of the AIs.

3.1 Agent Systems

An agent is a computer system that is capable of acting autonomously given its
environment in order to achieve its delegated objectives [1]. In most cases, the
agent will not have complete control over the environment, only partial control,
in the sense that it influences the environment through its actions. Therefore an
action performed in two seemingly identical environments may have two entirely
different effects and may even not accomplish the desired effect.

Agents use sensors to observe and gather information about their environments.
These can be cameras, proximity sensors, motion detectors, microphones or
temperature sensors, amongst others. In a simulated environment it might have
full information, or it might need to use sensors for finding information in this
environment as well. Agents may also use a knowledge database or learn from

15

16 CHAPTER 3. BACKGROUND THEORY

previous actions to achieve their goals. Agents vary enormously regarding their
level of intelligence. For example a thermostat that automatically controls the
temperature in a room based on the current temperature can be described as a
simple agent. On the other side of the spectrum, a human being acting on the
behalf of a company can also be seen as an agent.

A reactive agent is an agent that does not plan or reason about what to do
based on its history. Its decision making is only dependent on its present state.
This type of agent responds directly to its environment. The original AI in
Civilization IV can act similar to a reactive agent.

3.2 Multi-agent Systems

A multi-agent system, or MAS, is a system where multiple intelligent agents
interact within an environment. They are often used to solve problems that are
normally too difficult to solve by a single agent.

Agents working in an environment may have different spheres of influence,
meaning that they will have influence over different parts of the environment
[2][1]. These spheres may coincide and thus leading to dependencies between
agents. Agents may also have different type of relationship; coworker-coworker
or coworker-boss.

Given the previous analogy where a human being could be seen as an agent, a
multi-agent system could be considered as a company where many individual
people, with their own area of expertise, work together, delegate, negotiate and
exchange messages and subtasks.

3.3 Game Theory

Game theory studies strategical decision making under uncertainly, mostly be-
cause of incomplete information. More specifically, the ways in which strategic
interaction occurs among agents with preferences over the outcomes of a game.
It is mainly used in political science, economics, psychology, logic and biology.
It was first studied by Neumann and Morgenstern and in 1944 they released
a book on the subject [3]. It was then extensively developed on during the
1950s and has since been recognized as an important tool in many fields, such

3.3. GAME THEORY 17

as computer science and logic. Among others, it has been used extensively in
multi-agent systems.

3.3.1 Prisoner’s Dilemma

A fundamental game in Game Theory is the Prisoner’s dilemma. It is a 2 × 2
game in which two men are collectively charged for a crime and held in separate
cells. They are not allowed to make any kind of contact with each other and
are told that if only one of them confesses, the confessor gets to go free while
the other will be jailed for three years. However, if both confess, then they both
be jailed for two years, and if neither confesses, they will both be jailed for one
year.

Given these two options: to confess (referred to as D for defecting) or not
confessing (referred to as C for cooperating), and the two prisoners i and j,
we can make a pay-off matrix to visualize the outcome. This can be viewed in
table 3.1.

i defects (D) i cooperates (C)
j defects (D) 2j / 2i 5j / 0i

j cooperates (C) 0j / 5i 3j / 3i

Table 3.1: Prisoner’s dilemma pay-off matrix.

Since the prisoners are not allowed to communicate or make any agreements,
none of the prisoners can be sure of what the other will do, and we can conduct
what the best response for a prisoner will be:

• If prisoner j chooses to cooperate, then prisoner i’s best response is to
defect

• If prisoner j chooses to defect, then prisoner i’s best response is to defect

In other words, the best response for prisoner i is to defect on all strategies of
player j. Defecting is a dominant strategy. The scenario is symmetric, meaning
that both prisoners will reason the same and therefore both will choose to defect.
If one prisoner assumes that the other will cooperate, then the rational response
is to defect, even though both would get a pay-off of 3 if both cooperated, instead

18 CHAPTER 3. BACKGROUND THEORY

of getting a pay-off of 2. The fact that both prisoners could do better here if
both cooperated is why this is referred to as a dilemma [1].

An iterated Prisoner’s dilemma is the same as a Prisoner’s dilemma, only the
game is played for an infinite or finite number of times, where the prisoners
get to know what the other chose on the previous round. What has changed
now is that if a prisoner chooses to defect, the other prisoner can choose to
punish the first prisoner by also choosing defect. Punishment is not possible in
a one-shot prisoner’s dilemma. If the prisoner chooses to start by cooperating
and receives the sucker’s pay-off, this loss of utility is either lost in the infinite
number of plays or just a small percentage of the overall utility gained in a finite
game. If the game is played for an infinite number of times, the rational decision
changes from defecting to cooperating. Knowing what other prisoner chose on
the previous round, encourages the first prisoner to choose to cooperate, and vice
versa. However, if the game is played for k number of times, cooperation will
be the rational decision for the all rounds except the kth round where defection
will be the rational decision.

Learning from the opponents past behavior like this is similar to what we intend
to do in our system with the opponent modeling. Looking on what the opponent
did on previous rounds, we can model what the preferences for the opponent
might be and how to act accordingly.

3.3.2 Solution Concepts

In game theory, a solution concept is a formal rule used for predicting how a
game will be played and describe which strategies will be adopted by players
and, therefore, the result of the game. The most common types of solution
concepts are equilibrium.

One of the most known solution concept for many problems in game theory is
the Nash equilibrium [4]. This is a set of actions (often denoted as an action
profile a∗) for a game which has the property that if all players other than
player i choose an action from this profile. Player i will do as least as good
when choosing action ai as when choosing any other action. This means that in
a two player game, if one player chooses an action that is in a Nash equilibrium,
the other player can do no better than to choose the corresponding action in
the equilibrium. In repeated games, this type of solution models a steady state
where no player wants to deviate from this state.

3.3. GAME THEORY 19

To refer back to the Prisoner’s dilemma, the outcome of (D,D) is a Nash equi-
libria since if we assume that i will play D, j can do no better than to play D,
and if j will play D, i can do no better than to play D. This is also the only
Nash equilibria in the game.

3.3.3 Negotiations

A negotiation is a means to reach an agreement in the presence of conflicting
goals and preferences [1]. In multi-agent systems, negotiations can be used for
dividing resources (goods or services) between agents, or allocation of tasks to
agents. Negotiations allow agents to be autonomous in that they can negotiate
with other agents freely based on their own preferences and goals without any
external intervention.

There are several strategies for negotiation, two of them being Boulware and
Conceder. The two strategies can be seen in figure 3.1 shown in a seller-buyer
environment . In (a) we see the sellers point of view. Using a Boulware strategy,
the seller decreases the price it is willing to accept at a very small rate in the
beginning, and then more and more as the deadline approaches. Conversely,
in the conceder strategy, the seller starts by decreasing the price rapidly in the
beginning and then less and less as the deadline approaches. The buyers point
of view can be seen in (b). In Boulware, the buyer slowly increases the price
it is willing to pay in the beginning, but does concedes faster as the deadline
approaches. In conceder, the buyer starts by increasing the price fast, and then
concedes slower as the deadline approaches.

The Monotonic Concession Protocol

The monotonic concession protocol is a negotiation protocol that proceeds in
a series of rounds [5, pp.40-41]. On the first round, both agent simultaneously
propose a deal from the negotiation set. If either

1. u1(δ2) >= u1(δ1)

2. u2(δ1) >= u2(δ2)

In other words, if one agent finds that the deal proposed by the other agent is
at least as good, or better, than his own deal. If both agents’ offers are viable

20 CHAPTER 3. BACKGROUND THEORY

(a) (b)

Figure 3.1: Boulware and conceder negotiation strategies for a seller (a) and a
buyer (b).

proposals, then one is chosen by random. If not, the proposal that exceeds or
matches the other’s proposal is chosen. However, if no agreement is reached, the
negotiation proceeds to the next round. If t is the current round of negotiation,
then no agent is allowed to make a proposal that is less preferred by the other
agent in round t − 1. If neither of the agents makes a concession in a round
t > 0, then the negotiation is terminated with a conflict deal.

Using monotonic concession protocol, negotiation is guaranteed to end, either
with or without an agreement, after a finite number of rounds. It does, however,
not guarantee that an agreement will be reached quickly. The number of rounds
are exponential to the number of tasks to be allocated [1].

The Zeuthen Strategy

The Zeuthen strategy is a protocol that is measures an agent’s willingness to risk
conflict. In other words, if there is little difference between its current proposal
and the conflict deal, the agent will be more willing to risk conflict. Conversely,
if the difference is high, the agent has more to lose from a conflict deal and
is therefore less willing to risk conflict, leading it to concede. The Zeuthen
strategy can be used as a protocol of how agents should behave when using the

3.3. GAME THEORY 21

monotonic concession protocol.

The protocol states that the first proposal of any agent should be the agent’s
most preferred deal. The agent’s willingness to risk conflict thereafter measured
the following way [5, pp.43]

riskti = utility i loses by conceding and accepting j’s offer
utility i loses by not conceding and causing conflict (3.1)

where i and j are the two agents negotiating and t is the current round of
negotiation. The numerator in equation 3.1 is the difference between utility of
i and j’s current proposals in regards to agent i, while the denominator is the
utility of agent i’s current proposal. While an agreement is unmet, the risk
value will be somewhere between 0 and 1. A higher value means that agent i
has less to lose from a conflict deal and is more willing to risk conflict, while a
low value results in that agent i has more to lose from a conflict deal and be
less willing to risk conflict. This can be shown more formally as equation 3.2.

riskti =
{

1 if ui(δti) = 0
ui(δti)−ui(δ

t
j)

ui(δti)
otherwise (3.2)

The reason for the risk being 1 if ui(δti) = 0 is because in this case, the utility
to i of the current proposal is the same as from the conflict deal and the agent
is therefore completely willing to risk conflict.

The Zeuthen strategy proposes that the agent to concede on round t is the one
with the smaller value of risk. If both agents have the same value of risk, then
they might flip a coin to choose who gets to concede, or one might chose to not
to concede and benefit from the other. However, if both does this, then a conflict
will arise, and no deal is made. The next question is then how much should the
agent concede. The answer to this is just enough to change the balance of risk.
If the agent concedes too little, the next round the balance of risk will indicate
that it still has most to lose from conflict. However, if it concedes too much,
then it wastes some of its utility. Therefore, the agent should make the smallest
concession necessary to change the balance of risk.

22 CHAPTER 3. BACKGROUND THEORY

3.3.4 Pareto Optimal

An often desirable property of a negotiation outcome is Pareto optimality. An
outcome is Pareto optimal if there exists no other outcome that could improve
one player’s utility without making somebody else worse off [1]. Conversely, an
outcome that is not Pareto optimal is said to be inefficient in that it wasted
somebody’s utility; there would then exist another outcome that makes some-
body better off without anybody else having objected to it. This makes Pareto
optimality an important property for negotiation outcomes, as being Pareto op-
timal implies that no utility is being wasted, and the negotiation outcome is
therefore efficient. Pareto optimality is not enough to guarantee a good solu-
tion, however, as many unfair and undesirable outcomes can be Pareto optimal.
Looking back at the Prisoner’s dilemma, the only outcome that is not Pareto
optimal is (D,D) since both prisoners can do better by playing (C,C), and both
(C,D) or (D,C) are Pareto optimal since no prisoner can do better without the
other doing worse. In this example, it can be argued that the outcomes (C,D)
and (D,C) are undesirable, as they give very bad results for one of the players,
and give a lower total utility compared to (C,C), yet they are Pareto optimal.

We are interested in guaranteeing Pareto optimality in our negotiation system
as this would prevent our system from wasting utility. Guaranteeing Pareto
optimality would ensure that none of the players involved could have done better
in without the other objecting. However, in a multi-issue negotiation domain,
proving that a solution is Pareto optimal can be very computationally complex
and is therefore often not feasible.

3.3.5 Social Welfare

Social welfare is another important property of an outcome. It is the total sum
of utility in a system of agents. It gives the utility that was achieved by the
entire system combined. Social welfare can be written more formally as:

sw(ω) =
∑
i∈Ag

ui(ω)

where sw(ω) denotes the sum of the utilities of each agent for outcome ω.

An outcome that maximizes social welfare should be considered good in many
situation where the total utility of the system is important. In multi-agent

3.4. CONSTRAINT SATISFACTION PROBLEMS 23

systems with cooperating agents, one often cares more about the total utility
given by the system and not the individual utility of each agent, and in such
scenarios social welfare is an important property of the results. Again using the
Prisoner’s dilemma as an example, we can see that the outcome that maximizes
social welfare is (C,C).

In our system, we want to ensure that all negotiation outcomes maximize social
welfare. It should however, not be a priority of an agent to maximize social
welfare, as Civilization IV is a competitive game, where the agents are trying
to maximize their own utility regardless of their opponent’s results. In order
to create successful deals however, suggesting social welfare maximizing offers
increases the chances of the offer being accepted. Finding such social welfare
maximizing offers can be difficult however, especially in situations with limited
information about the opponent’s preferences. Without this information, it is
impossible to know whether an outcome is actually maximizing social welfare
or not.

3.4 Constraint Satisfaction Problems

Constraint satisfaction problems, or CSPs, are mathematical problems in which
a set of constraints must be satisfied in order to solve the problem and is how we
intent to represent the preferences of the agents in our system. In negotiations,
this can be used to represent the preferences of an agent. An example of a
constraint could be a limit on the total value one is willing to pay during a
negotiation. For more information about constraint satisfaction problems, see
[6].

3.5 Machine Learning

Machine learning refers to systems that improve their performance at a given
task by learning from experience, or data [7], and is relevant because we use
machine learning to learn the opponents preferences. There are many types
to machine learning using different approaches. Artificial neural networks, or
ANN, is an approach that is inspired by biological neural networks. Genetic
programming is another approach that uses evolutionary algorithms inspired by
biological evolution. Bayesian networks represents probabilistic relationships

24 CHAPTER 3. BACKGROUND THEORY

between hypotheses and their conditional independences.

3.5.1 Bayesian Learning

Bayesian learning is a form of statistical machine learning that calculates the
probability of hypotheses, given data, and makes prediction on that basis. Pre-
dictions are made by using all the hypotheses, weighted by their probabilities,
rather than just using a single ”best” hypothesis [6]. The probability of each
hypothesis is obtained by Bayes’ rule, which is explained in section 3.6.

Pr(hi|d) = Pr(d|hi) Pr(hi)

where d is observed data in a dataset D, for each hypothesis i = 1, 2, ..., k.

3.6 Bayes’ Rule

Bayes’ rule is a mathematical equation that lets us update our beliefs about
a hypothesis A in the light of new evidence B, written as Pr(A|B) [8]. While
Pr(A|B) might not be easily computed, we can find the probability by multi-
plying our previous belief Pr(A) with the likelihood that B will occur if A is
true, Pr(B|A), which might be easier to compute. This gives us the equation

Pr(A|B) = Pr(B|A) Pr(A)
Pr(B) (3.3)

The denominator Pr(B) is a normalization constant that can be computed by

Pr(B) =
k∑
i=1

Pr(Ai) Pr(B|Ai)

giving us the equation

Pr(Ar|B) = Pr(B|Ar) Pr(Ar)
k∑
i=1

Pr(Ai) Pr(B|Ai)
for r = 1, 2, ..., k.

(3.4)

Chapter 4

Related Work

Our research focuses on efficient multi-issue negotiations in a complex domain
with limited information about the opponents and their preferences or strategies.
This is a difficult subject that has been studied extensively from many different
angles before. Important subjects for this research are negotiation strategies and
protocols, efficiency properties such as Pareto optimality and how to achieve
such properties, decision making with limited information, learning based on
experience, modeling of learned information and how to combine these fields to
make an efficient solution that can be used in a soft real-time system.

Negotiation has been a topic in the field of artificial intelligence since its earliest
years. In 1979, Smith introduced a simple form of negotiation among agents
with the Contract Net [9]. It allowed for one agent to announce the availability
of a task and award them to other bidding agents. Malone et al. took this a bit
further and improved it with a more sophisticated economic model [10].

According to Beer et al. [11] the three main topics being studied in the multi
agent negotiation subject area are the negotiation protocols, the negotiation
objects and the agents’ reasoning models. Negotiation protocols are the rules for
how agents communicate during negotiations, defining how, when and what each
agent may communicate to another agent. Closely related to this is the aspect of
communication languages, such as KQML and FIPA ACL. Many systems such as
the ones discussed in [12] and [13] define their own language specifically tailored
to their problem, while others such as [14] use general languages with specific

25

26 CHAPTER 4. RELATED WORK

ontologies. In the domain of complex strategic games with negotiations, it is
important to use a communication language that allows for expressing different
types of arrangements and arguments. [15] claims that in the domain of the
Diplomacy game, which is a board game with many similarities to Civilization,
there is a need for a very complex agent communication language because it
needs to be able to express threats, persuasion and complex agreements. An AI
system for this game made by Kraus and Lehmann [12] defined its own agent
communication language based on observation of real players playing the game,
making sure that all kinds of deals and argumentation the players made was
possible in the AI system. An important property of this language was that
it was also possible (and not too difficult) for real players to read and write
messages in this language. In order to do this, they used a low level ACL used
by the agents and a higher level language more similar to natural language and
translated between these as needed.

The second main topic, negotiation objects, describes what objects are under
negotiation. Important issues in this field include whether objects are divisible
or not, and how many objects may be under negotiation. Part of the negotiation
may also be finding what objects should be negotiated about. Systems where
more than one object is under negotiation are called multi-issue negotiation
systems. According to [16] there are two types of bargaining frameworks for such
systems, simultaneous negotiation or issue-by-issue negotiation. In simultaneous
negotiation, all objects are considered at the same time, while in issue-by-issue
negotiation, an ordering for the negotiation objects is decided first and then
each item is negotiated for sequentially. For simultaneous negotiation, either
the package deal procedure (PDP) or the simultaneous procedure (SP) [17]
is often used. In PDP, all negotiation objects are negotiated together. For
example if you wanted to negotiate for the division of two cakes using PDP,
you would decide what partition you want from each cake and suggest both
partitions in one offer. This can be computationally quite complex when there
are many negotiation objects and many different preferences to consider. In SP
each object is negotiated independently, similarly to issue-by-issue negotiation,
but in parallel.

One difficult factor in such multi-issue negotiations is the calculation of utility of
a deal, as the actual utility may often be non-linear. What this means is that the
utility is not just the sum of the utilities of each item in the deal, but is affected
by what item combinations are in the deal. An example of this would be that a
deal that included a desktop computer and a monitor, would have a higher utility

27

than the sum of two deals, one with just a desktop computer and one with just
a monitor. In our system utilities are complex and non-linear, as they are based
on what plans the player currently has, and combinations of items may often be
more worth than the sum of their parts. This makes it difficult to find a Pareto
optimal deal, especially in a setting of incomplete information about the other
player’s preferences. In [17] it is shown that finding Nash equilibria for PDP
based negotiations is computationally hard, making it difficult to produce Pareto
optimal outcomes, but also that there are solutions for finding approximations
to these equilibria in polynomial time by approximating linear utilities. In the
same work, it is also shown that in some cases SP is better at producing Pareto
optimal outcomes and at increasing social welfare than PDP.

Multi-issue negotiations are often used for situations where one wants to decide
how to split a set of resources. Many articles in the multi-issue negotiation
literature, such as [18] and the already mentioned [16] focus on such negotiations
where a set of objects is divided between the negotiators. These objects can be
either divisible such as in [16], and example of this is a cake, which can be divided
between the agents, or non-divisible such as [18]. Our system on the other hand
will focus on a trading situation where each player has a set of indivisible objects
they own that they may offer in a deal in return for objects the other player
owns. In such a scenario, several objects may be subject to negotiation, and the
objects included in a deal may change during the negotiation. In most multi-
issue negotiations, such as the already mentioned [18], the items that are up for
negotiation are not changeable, and the negotiation focuses on dividing a set
of objects between the players, rather than making a trade. An example of a
system similar more similar to ours is [13], where there is a seller agent with a
set of items and a buyer agent which decides what kind of items it wants. This
does, however, differ from our trading scenario in that here the buyer agent
just has to choose the most favorable set of items it could get from the seller,
as opposed to the situation where the buyer also needs to find what items it
should give the seller in return, and what trade-offs need to be made in order
to make the deal happen.

The third main topic of negotiation research, the reasoning models, describes
how the agents participating in the negotiation decide what actions to take.
This is closely related to the negotiation protocol and the negotiation objects
that need to be reasoned about. Reasoning for negotiation is often based on
negotiation strategies defining how to behave in different scenarios. There are
many well-known types of negotiation strategies such as the Zeuthen strategy

28 CHAPTER 4. RELATED WORK

[5] and the Boulware [19] and conceder [20] strategies. These define when the
agent should concede or make a trade off, and/or how much it should concede
at any given time. In many cases, such as [21] one even mixes several such
strategies with a linear weighting in order to make better strategies.

Another approach to finding a good strategy is to find the Nash equilibrium
strategies for a negotiation. If you find a strategy pair that forms a Nash
equilibrium, no player would benefit from deviating from this strategy. Finding
such equilibria in multi-issue negotiation, however, is an NP-hard problem [18].
Approximations may be made, though, and [18] shows how to calculate an
approximate equilibrium in O(nm/ε2) where ε is the error of the calculation.
This gives an algorithm that can be used to find a strategy that will form an
approximate Nash equilibrium with itself for a specific negotiation scenario. The
strategy that is found will not necessarily be good for negotiations in general,
but will be tailored for this specific scenario.

Sometimes, however, especially in situations with incomplete information or
non-linear utilities such as our own system, it can be very difficult to know
what an offer is worth for the other player, and alternative strategies that can
cope with this uncertainty are needed. According to [22], lack of information
about the other players preferences may lead to non-monotonic offers when using
normal negotiation strategies or linearly mixed strategies such as in [21]. This
can lead to problems such as delayed negotiations, failing to reach agreements
in time, non optimal outcomes and high sensitivity to changes in how the agents
weight the different strategies if they are using linearly mixed strategies.

It has been shown by [23] that efficient negotiation requires knowledge about
both the negotiation domain and the opponent’s preferences. In real world
negotiation scenarios, however, the participants are often not willing to share
their information or preferences with each other. This unwillingness can come
from the competitive environment of negotiations, where your opponent may
use such information to increase his own gains. In many situations, it is also
unpractical for the negotiators to share their information, especially if they do
not have a formal specification of these preferences. An example of this is our
system, where the negotiators are either agents or real players. The agents have
a set of preferences they may disclose to their opponents, but the players do not.
This leads to negotiations with limited information about the opponents and
their preferences. There have been many different solutions proposed to this
problem. Some systems such as [24] use a mediator that gets more information
and suggests deals to the negotiators. Using a mediator, they try to avoid the

29

negotiator’s unwillingness to disclose information to each other by including a
third party that handles the information. This is however, not always possible,
as the negotiators may not be willing to give information to anyone, including a
third party. Mediators do not help in domains like ours either, as it still requires
the players to disclose information that they do not necessarily have, or want
to disclose. Another possible solution to the problem of limited information,
is opponent modeling. Solutions such as [25] and [26] use the bidding history
of their opponents to infer information about their opponent’s preferences, and
use this information to make better offers.

While opponent modeling does improve the outcome of a negotiation, the role of
time should be taken into consideration when dealing with real-time negotiation
because of the time/exploration trade-off. Meaning, a computationally complex
model may produce better predictions, but may result in less bids being explored
in real-time because of the time constraints.

Baarslag et al. did a comparison of a selection of state-of-the-art online opponent
modeling [27]. They evaluated two different types of models; frequency models
and Bayesian models, testing several different implementations of each modeling
technique. What they found out is that the more competitive an agent is, the
more beneficial an opponent model is. Also, the bigger the size or distribution
of the bid is, the higher the gain when using a model. They also found that
even thought he time/exploration trade-off is important, the best performing
models did not suffer from it and most of them resulted in a significant im-
provement compared to not using a model. Interestingly, the frequency model
outperformed the Bayesian, not only because they are faster, but also because
the effect remains in a round-based setting, which may suggest that frequency
models combine the best of both worlds. Despite this, frequency models get
little attention in literature compared to Bayesian.

One of the frequency modeling techniques tested in [27] is described in [28].
The technique evaluates the weights and utility values of each negotiation issue
by counting how often they are present in the offers suggested. This is a very
simple calculation, which means it will be good for real time negotiations. It
does not need any a priori information, as Bayesian learning does, but it does
assume that opponents restrict their bid to a utility range, and that they prefer
to explore different solutions rather than offering the same bid over and over.
This approach is found to be prone to underestimating the weights it is trying
to model; However, since the relative values of the weights, not the actual ones,
are important for the results, it gets as good, or better results than comparable

30 CHAPTER 4. RELATED WORK

solutions such as Bayesian learning [27]. Due to these good results, we will
implement a version of frequency modeling for our system and compare it to a
more complex modeling algorithm. The simplicity of the calculation is beneficial
for a real-time system such as Civilization, but might also lead to subtleties in
the model being lost.

Another example of opponent modeling in multi-issue negotiations is given in
[25]. This system makes a partial ordering of all trade items and estimates this
ordering using a heuristic based on the opponent’s bidding history. Attributes
about which reliable guesses can be made based on previous bids, and attributes
about which no information is available are separated. When no information is
available, all items are given the same weights. [25] found that the opponent
model can be sufficiently estimated during the first three rounds of negotiation,
which makes this a fast solution. Estimating the opponent’s preferences as
early as possible is important not only to make the negotiations faster, but also
to avoid skipping possible solutions that could have been found early if more
information were available.

The opponent’s preferences over negotiation outcomes is not the only informa-
tion that may be necessary to model during the negotiation. In some domains
such as the one described in [29], the opponent’s strategy, deadline for the ne-
gotiation and attitude towards time are unknown and relevant to what your
optimal strategy is. The domain described here is a single-issue negotiation
domain, where the preferences over the single issue are known. This makes it
unnecessary to model the opponent’s preferences, but as the strategy, deadline
and attitude towards time is relevant to your optimal strategy, this information
needs to be modeled in order to negotiate efficiently. [29] uses a probabilistic
distribution over the possible values of the deadlines and the attitude towards
time. This information is utilized to choose your own optimal bidding strategy,
without knowing what the opponent’s strategy is.

There are many different approaches to opponent modeling. One of the most
popular ones is Bayesian learning, which can estimate the probability of a set
of hypotheses based on information such as the opponent’s bidding history. In
this case a hypothesis is a belief about the opponent’s preferences, such as what
weight the opponent puts on a specific issue. Using Bayesian learning you could
make a set of hypotheses about what weights the opponent has, and estimate
their probability, choosing the most likely weight distribution as your opponent
model. There are many examples such as [30] and [31] that use this method,
but it has one major flaw, which is that it requires a priori knowledge about the

31

probability distribution of the opponent’s weights.

In the method used by [30], a series of assumptions about the rationality of
the opposing agent are made. These assumptions allow them to minimize the
hypotheses space, making it possible to evaluate a set of hypotheses for the pref-
erence weights on issues as well as the form of the evaluation function. Bayes’
rule is then used to evaluate and update the probabilities of the hypotheses,
based on the estimation of what utility the opponent should be asking for now.
In order to do this, they need an initial probability distribution for the hypothe-
ses. This can be given by a priori knowledge, or by using a uniform distribution.

A very different method for learning was used by [26]. They used a hybrid
soft-computing approach, where possible opponent models are represented as
a combination of fuzzy evaluation functions for all the negotiation issues, and
a genetic algorithm is used to select the best model. This method avoids the
problem of needing a priori knowledge about probability distributions. A ge-
netic algorithm will usually be very slow and unreliable, but by using the fuzzy
representation of possible evaluation functions, the search space is reduced sig-
nificantly, making it possible to evaluate it in its entirety. [26] show that this
approach is capable of effective, on-line opponent modeling.

Many methods for opponent modeling, including the ones used in [30] and [26]
make the assumption that the opponent is a conceding agent, and use a specific
concession rate to guess the utility of the opponent’s bid. Using this information
allows them to assess their opponent’s preferences, but this can be problematic,
as in many real life negotiations, the opponent’s concession rate or strategy is
unknown. One approach that tries to avoid this problem is [32], which only looks
at the difference between the last two bids, guessing on the importance of the
changes using Kernel Density Estimation. This approach also has the advantage
that it requires no a priori knowledge about probability distributions. It is also
shown to be a low complexity solution, making it feasible for real time systems.
The method is shown to be very stable in the face of many different strategies
such as the Boulware and the conceder strategies, but it still assumes that the
opponent is making rational concessions, which may not always be the case,
especially when negotiating with humans.

Negotiating with humans is a difficult field, because it usually involves little
information about your opponent’s preferences or strategies, and more impor-
tantly, humans may not necessarily be acting rationally or following one strategy
throughout the negotiation. Oshrat et al. has tried to tackle this difficult domain

32 CHAPTER 4. RELATED WORK

by making a general opponent modeling system that learns from all encounters,
and extrapolates knowledge for use in later encounters with different negotiators
[33]. It stores the bidding histories of its opponents and categorizes them into
different negotiating types, such as Boulware or conceder strategies. When ne-
gotiating with new opponents, it tries to find its opponent’s type, and uses the
knowledge learned from other opponents of the same type to estimate what that
opponent will bid or what offers it should be willing to accept. Kernel based
Density Estimation is used to estimate the probabilities of a bid being accepted
or not. They found that using this generic opponent modeling yields a better
result than specific opponent modeling and achieves a higher utility value than
human players and other state-of-the-art automated agents in one-shot negotia-
tions. It also offers low computational complexity which is always a good thing
for real-time negotiation. This approach does, however, require a significant
training set and pre-calculation before the negotiations to work efficiently.

Another difficulty that arises in multi-issue negotiations is interdependency be-
tween the issues. In many real world scenarios, the utility of a deal is not just
dependent on the utility of each of the issues composing the deal, but of what
combinations of issues are in the deal. As an example of this, a car with fuel is in
many situations worth a lot more than the combined values of a car and fuel re-
ceived separately. Such interdependencies may be multi-dimensional, making it
very difficult to compute an optimal deal, even when you have full information.

An example of systems with interdependent issues is [34], which tries to use
a mediated single text negotiation in a multi-issue negotiation with interde-
pendent issues and limited knowledge about the opponent’s preferences. In a
mediated negotiation, there is a mediator that suggests offers that both agents
can either accept or decline. Only when both agents accept an offer, the nego-
tiation is finished with this offer as the outcome. The mediation allows them
to use hill climbing and simulated annealing to obtain good solutions in the
difficult domain of interdependent issues. The mediation also avoids the prob-
lem of not knowing the preferences of your opponent, as the mediator uses
both player’s preferences as they are slowly revealed during the annealing or
hill climbing, this does not require the negotiators to disclose their information
explicitly. Hill climbing agents only accept offers where they are better off than
the last offer, thereby searching for local maxima. Simulated annealing on the
other hand sometimes randomly accepts offers that are not better than the last
offer, making them able to skip local maxima and find the optimal solution in
complex domains, while running the risk of ending up with sub-par negotia-

33

tion outcomes. Choosing annealing improves social welfare, as it allows you
to search through local maxima. Hill climbing does not achieve this, but usu-
ally gets higher utilities against an annealing opponent, because they are less
willing to concede. [34] proves that this turns into a prisoners dilemma, where
annealing would increase the social welfare, but hill climbing is the dominant
action. They try to solve this problem by letting the negotiators vote either
strongly or weakly for or against an offer, and limiting the amount of strong
votes. The solution searches towards a mutually acceptable deal that may or
may not be the optimal solution, where no player needs to think about its op-
ponent’s preferences. A major problem in this kind of system is the slow pace.
Using hill climbing or annealing to find near optimal deals can take hundreds of
negotiation rounds, which is difficult to implement in a video game with strict
real time demands, and unfeasible in a negotiation with human opponents, as
they may not be willing to participate in such prolonged negotiations.

Negotiations are of course not the only field where limited information occurs,
making learning or information retrieval necessary to achieve better decision
making. When looking into ways to make better decisions in low information
negotiations, we also need to find how this is done in other low information do-
mains, and how learning or information retrieval can be done in these domains.
This problem has been studied extensively in the field of machine learning, where
agents aggregate, use, and possibly interpret, information based on experience,
and this information is used to make decisions. In many cases, methods such as
decision trees [35], Bayesian networks [36], or k-nearest neighbors [37] are used
to make decisions based on aggregated knowledge, such as probabilities inferred
from previous experience. In other domains, such as in case-based reasoning
[38], the information is not aggregated to make probabilities, but old solutions
are adapted and re-used in new situations. The field of machine learning is a
vast one, but we will present a few cases that are relevant to our own work.

An important issue in machine learning, is how to represent the learned in-
formation. There are many possibilities for this, and they are often domain
dependent. When modeling preferences for the opponent in a negotiation for
instance, using using an ordering of all items based on how much the opponent
prefers them is a possibility. This representation was used by [25] for their oppo-
nent modeling system. In many systems, such as [30] and [26], the importance
of each issue is represented as a weight. In [26], these weights are simplified
to fuzzy descriptions such as low, medium and high, to simplify the learning
approach. A weight can be a combination of several such descriptors, making

34 CHAPTER 4. RELATED WORK

it possible to infer a crisp value for the weight.

In many machine learning approaches such as Bayesian learning, the information
we try to learn is the probability of a set of hypotheses. In the opponent
modeling system described in [30] a set of hypotheses representing weights on
issues in a negotiation are created, and the probabilities of these hypotheses are
learned through a Bayesian classifier. The system can then use the hypothesis
with the highest probability as its current opponent model.

Chapter 5

Our Solution

This chapter gives an overview of our system, what influenced the design and
development, and how it works. Our negotiation system for Civilization IV
uses constraints as a representation of player preferences, and solves constraint
satisfaction problems in order to generate offers. It also models the preferences
of the opponents as constraints and uses these when generating its own offers.
The following section will explain the negotiation domain and the difficulties
imposed by it, and how we intend to solve these difficulties.

5.1 Negotiation in Civilization

In order for a player to win a game of Civilization IV, it is necessary that he
maintains his relations with the other players, get treaties and negotiate for
resources. See section 2 for a more detailed overview of the Civilization IV
negotiation domain and what can be negotiated about in this system. A more
advanced negotiation system than the currently existing one in Civilization IV
will make it possible for players to cooperate more extensively, whether they
are computer controlled or real players, than what is possible in the original
system. This will make it possible to achieve much more, such as gaining allies,
treaties, resources and cities, through pure negotiation. If the AI is going to cope
with more advanced negotiation possibilities however, it needs more advanced
reasoning about the negotiation, more akin to the mechanisms used in multi-

35

36 CHAPTER 5. OUR SOLUTION

agent negotiations.

5.1.1 Negotiation Domain

In the Civilization IV negotiation domain there are three main challenges that
need to be overcome in order to negotiate effectively:

• Multiple issues in the negotiation makes it difficult to find an optimal
offer.

• Limited knowledge of the opponent’s preferences makes it difficult to con-
cede effectively.

• Real time constraints limit the possibilities for complex calculation.

The negotiation domain in Civilization IV is a multi-issue negotiation domain,
which poses a significant challenge to the negotiating agents. Multi-issue ne-
gotiations is a domain into which extensive research has been done, due to it
being closer to real-life negotiations than most multi-agent negotiation domains,
as well as it being a more difficult problem, where achieving Pareto optimal or
social welfare maximizing results are much harder to achieve. The reason for
this difficulty is the exponentially large search space of possible deals that the
negotiation system needs to handle. For each value set on one issue in the ne-
gotiation, all possible values could be set on each of the other issues, giving us
mn possible different offers where m is the number of possible valuations of an
issue and n is the number of issues. The possible values of m is in most cases
constrained to all positive integers, or even to all real values. In order to find the
optimal concession at a given time, you would in theory need to search trough
all these possible offers, or you might miss a potentially lucrative deal. In many
cases, there are also interdependencies between issues, making some issues more
valuable only if some other issue is included. This makes the search even more
difficult.

Our system is also a little different from the domains described in most multi-
issue negotiation research. In most bilateral multi-issue negotiation systems,
there is a buyer and a seller, and a set of items that will all be included in the
deal. The issue that is really being negotiated about is the price the buyer pays
for each of the negotiation issues. In the Civilization IV negotiation domain,
however, there are a number of issues that may or may not be included in the

5.1. NEGOTIATION IN CIVILIZATION 37

deal, and both players are giving and receiving items. This could be looked
at as a simplification of the normal multi-issue negotiation, as each issue, has
only two possible valuations, included or not included in the deal, making the
mn possible offers a less daunting number. It is however, still to large, and in
addition, it makes efficient concession making in the face of limited information
even harder, as you only know what items the opponent is asking for, not how
he values each issue, as you would know in a normal multi-issue negotiation.
Modeling your opponents in this domain is therefore much harder than in most
multi-issue domains. How our system overcomes this will be described in later
sections of this chapter.

The added difficulty of limited information is another important point that is
addressed by many researchers. As mentioned in section 4, it was shown by [23]
that efficient negotiation requires knowledge about both the negotiation domain
and the opponent’s preferences. The negotiating agent needs to have sufficient
knowledge about the preferences that shape the behavior of the opponent. This
knowledge can be used to decide what to offer the opponent, leading to more
acceptable offers, and thereby increasing the chance of a successful negotiation
outcome. In most real life negotiations however, the negotiators do not know
what the opponent really wants, and most people are unwilling to reveal such
information, as it could potentially be abused by the opponent. In many cases
the negotiators do not have any formalized preferences, and asking them to
formalize these preferences to effectivize the negotiation would seem impractical
to the negotiators. This is the case in our system when we are negotiating with
real players. Due to this, we cannot know anything about what the player
wants, making efficient concession making very difficult, thereby making Pareto
optimality and maximizing social welfare harder to reach. In order to overcome
this problem, our system uses opponent modeling to estimate what the other
player wants. This gives us information about what the player wants without
needing to ask the player, albeit with less accuracy. This information can then
be used to make more efficient concessions during negotiation. Our opponent
modeling approach is described in 5.4.

In the Civilization domain, the time spent negotiating is irrelevant to the ne-
gotiation outcome, as it is a turn-based game and all negotiations occur during
one turn in the game. Time is therefore not moving during the negotiation.
This makes the negotiations slightly simpler, as the agents do not need to worry
about time discounting or deadlines. In spite of this, time is still a very im-
portant factor for us, as this is a real-time game where the players expect the

38 CHAPTER 5. OUR SOLUTION

AI to act instantaneously. Waiting for the opponent to decide what to do in a
negotiation would degrade the user experience, and is not acceptable in such a
game. Due to this, it is important to limit the computational complexity of our
decision making. Many automated negotiation protocols, and many opponent
modeling techniques require a lot of computation, and often hundreds or even
thousands of negotiation rounds. In a user friendly video game, this can not
be required, and an important point for our negotiation protocol and our op-
ponent modeling technique is therefore to limit computational complexity, and
use learning algorithms that converge fast enough to be used in negotiations
that only take a few offers to reach an outcome. It is also important to limit the
number of rounds a negotiation can take, preventing the game from spending
too much time on negotiation. In order to do this, we have decided to limit the
number of rounds allowed in a negotiation.

5.2 Solution Architecture

The negotiation system needs to deal with multiple issues, and limited knowl-
edge while working under time constraints. In order to handle the limited
information, it is necessary to reason about what the other player wants based
on its behavior in the earlier stages of the negotiation. In addition, it is neces-
sary for the rest of the AI system to be able to send its preferences to its own
negotiation system whenever it is entering a negotiation in order to achieve its
goals in the negotiation. To allow for this we have decided to define the AI’s
preferences as constraints, forming a constraint satisfaction problem (CSP) for
each negotiation. The system will then try to satisfy its own constraints, and
to the extent it is necessary, the opponent’s constraints. It will model its oppo-
nent’s constraints in order to know how to satisfy them using a simple opponent
modeling technique. As it is important not to use too much time negotiating,
our system has a strict limit on the number of

5.2.1 Agent Description

Our negotiation system is incorporated into the original AI of CIvilization IV,
expanding its abilities to negotiate. Our negotiation system is therefore a subset
of the AI in Civilization IV, and it uses functionality from the original AI to make
decisions such as when to negotiate and what its preferences are. The following

5.2. SOLUTION ARCHITECTURE 39

lists give an overview of the responsibilities of the agent, what knowledge it has
and what reasoning it needs to do, focusing on the negotiating part of the agent
and not the original AI.

Agent responsibilities:

• Deciding when to negotiate.

• Deciding what its preferences for the negotiation are.

• Modeling the preferences of its opponents

• Sending offers or counter offers.

• Receiving and evaluating offers and sending the appropriate response.

Agent knowledge:

• Own preferences in the form of a constraint set.

• Opponent model for all opponents, also in the form of constraint sets.

• Own previous offer in the current negotiation.

• The opponent’s previous offer in the current negotiation.

• Minimum satisfaction limit.

• Current concession limit.

• What trade-able items the opponent has.

Agent reasoning:

• Uses the current AI system to reason about what its preferences should
be and when to negotiate.

• Uses one of our two opponent modeling techniques to reason about the
opponent’s preferences.

• Evaluates offers based on constraint satisfaction and its current concession
limit. Constraint satisfaction is explained in detail in section 5.3.1.

40 CHAPTER 5. OUR SOLUTION

• Creates offers based on constraint satisfaction using a local search algo-
rithm. This is also described in more detail in section 5.3.1.

Agents can only be in one negotiation at a time, which simplifies the reasoning.
They do, however, keep a separate opponent model for each of their opponents
at all times, updating it whenever they negotiate. This model may be empty
if no negotiations have occurred yet or if the modeled constraints have been
satisfied during a negotiation and are therefore no longer relevant. For more
details on the constraint satisfaction and opponent modeling see sections 5.3.1
and 5.4.

Figure 5.1 shows an overview of this architecture and how it is incorporated into
the AI of the game. There is a negotiator object that handles the sending and
receiving of offers. In order to create offers, it gets both its own preferences and
the opponent’s preferences in the form of constraint sets from the constraint
generator and the opponent modeler. The constraint generator evaluates the
agent’s current situation choosing what it wants or does not want in the negoti-
ation. This uses functionality that already exists in the original AI to evaluate
what items it wants. The constraints are then sent to the offer creator to make
the offer, and this will be sent to the current opponent. When an offer is re-
ceived, it is sent to the offer evaluator together with the agent’s preferences and
this module decides whether to accept decline or create a counter offer. The
following sections will further explain the negotiation protocol, the constraint
based representation of preferences and the opponent modeling used to find the
opponent’s constraints.

5.3 Negotiation Protocol

The negotiation protocol details how our negotiating agents will communicate
with each other during negotiations. This includes what kind of messages are
allowed and in what circumstances are they allowed, what kind of offers are
allowed, what changes are allowed in a counter offer, etc. This section will
detail our protocol. The list in section 5.3 gives an overview of all the different
negotiation suggestions that can be made. This list is quite similar to the list
in section 2, but has been expanded slightly to fit our solution. The list in
section 5.3 gives an overview of the possible actions to take in negotiations.
Our protocol is an alternating offers protocol as illustrated by figure 5.2 (see
[39] for details about this type of protocol) with no discounting, but a strict

5.3. NEGOTIATION PROTOCOL 41

Figure 5.1: Illustration of our solution’s architecture

limit on the number of counter offers allowed. This limit is necessary to avoid
that negotiations take too much time. A negotiation must be explicitly started
with one player, and one can only negotiate with one player at a time. It is a
multi-issue negotiation, where the players are allowed to make offers and counter
offers containing what items or treaties they will give and what they will receive.
There are no limits to what kind of offers they are allowed to make at any time.
An example of a legal offer is shown in figure 5.3.

An example of how negotiation works can be seen in figure 5.4. In this figure, P1
gets a set of constraints from its constraints generator and tells its negotiator to
negotiate with P2. The negotiator creates an offer that satisfies these constraints
and sends this to P2. P2’s negotiator gets a set of constraints from its constraints
generator, evaluates the offer, finds it unacceptable and creates a counter offer
that it sends back to P1. This figure is a simple model of our negotiation
system’s architecture, and a more detailed explanation of the different parts of
the Negotiator can be seen in section 5.2.

42 CHAPTER 5. OUR SOLUTION

Figure 5.2: Illustration of the alternating offers protocol

Figure 5.3: An example of a possible offer

Possible Negotiation Issues

In Civilization IV, there is a limited set of negotiation issues that can be traded
during a negotiation. This is a comprehensive list of all these issues. An offer
may contain any number of these issues as long as the agent is capable of trading
the issue.

• Join the other player’s war

• Suggest the other player joins join our war

• Trade resource

5.3. NEGOTIATION PROTOCOL 43

Figure 5.4: Illustration of our negotiation protocol at a high level.

• Trade gold

• Trade gold per turn

• Trade unit

• Trade city

• Trade world map

• Trade open borders treaty

• Trade technology

• Make peace treaty

• Make permanent alliance

• Make defensive pact

• Adopt civic

44 CHAPTER 5. OUR SOLUTION

• Adopt religion

• Declare war on a player

• End war on a player

• End trade with a player

• Attack specific city

• End treaty

Possible Negotiation Actions

When negotiating, the agent may perform a limited set of actions. This is a list
of all possible actions that our negotiating agents are capable of.

• start negotiation

• end negotiation

• suggest offer or counter offer

– precondition: in negotiation already

• Accept

– precondition: in negotiation already

• Decline

– precondition: in negotiation already

5.3.1 Constraint Satisfaction for Generating and Evaluat-
ing Offers

In our negotiation system, the agents use a set of prioritized constraints to
represent their preferences in a structured manner, making it easier to reason
about preferences and providing a way for the AI to communicate its goals to
the negotiator sub-system. This approach is inspired by the prioritized con-
straint satisfaction problem (PCSP) negotiation system described in [13], where

5.3. NEGOTIATION PROTOCOL 45

a buyer/seller situation is modeled as a PCSP, and offers are created by solving
the PCSP. In our system, the original Civilization IV AI will be responsible for
deciding when to negotiate and what to negotiate for, and we have modified it
to create a set of constraints and a prioritization of these constraints, as well
as a minimum satisfaction degree τ that defines the lowest satisfaction degree
that an agent is willing to accept. For the purposes of this project, the τ value
has been set statically by us, but in a finished system, this should be chosen dy-
namically by the AI based on its situation. The prioritization of the constraints
is done by weighting them by a constant 0 ≤ ρ ≤ 1.The part of the AI code
that creates and prioritizes the constraints is called the constraint generator
and is shown in figure 5.1 from section 5.2.1. Using this approach, the offer
creator from the same figure can use constraint satisfaction when searching for
a suitable offer.

5.3.2 Constraint Satisfaction Problems

A constraint in our system is defined as a 3-tuple (Type, Issue, ρ), where ρ is
the priority of the constraint. We have six possible types of constraints, these
are:

• GET ITEM

• NOT GET ITEM

• GIVE ITEM

• NOT GIVE ITEM

• GET VALUE

• GIVE VALUE

An issue can be either an item or a value, depending on the type of negotiation.
Figure 5.5 shows three examples of possible constraints.

The GET ITEM constraint means that an agent wants a specific item, while
the NOT GET ITEM constraint means the agent does not want this item. The
GIVE ITEM and NOT GIVE ITEM constraints are equivalent, but for giving
items rather than receiving them. In all of these constraints, the Issue variable
is the item in question. The GET VALUE constraint is a lower limit for the

46 CHAPTER 5. OUR SOLUTION

Figure 5.5: Examples of three possible constraints

value of the items the agent receives. All items in the game have a certain value,
so that they can be compared to each other. The GET VALUE constraint is
therefore a limit on the sum of this value for all the constraints the agent receives.
The GIVE VALUE constraint is similar, but is an upper limit for what the agent
is willing to give rather than a lower limit for receiving. These last two constraint
types have values as their Issue variable. All the constraint types can be viewed
as logic statements that are either true or false. We define the satisfaction of a
constraint c1 for a given offer o1 as shown in equation 5.1 where the constraint
c1 is a statement of the type: GET ITEM iron. This statement is then true if
the agent gets the item iron in offer o1 and false if it does not.

Sat(c1, o1) =
{

1 if statement is true
0 if statement is false (5.1)

Due to the nature of these constraints, we need one satisfaction function for
each of the different constraints. These functions are shown in equations 5.2 to
5.7. To abbreviate the equations, we use the expressions get list and give list to
describe the offer. An offer contains two lists, a list of items the agent receives
and a list of items the agent gives away. In all the equations, the get lists and
give lists are these lists from the offer o1. We also use the name constraintItem
to talk about the item a constraint is about. This is the Issue variable in the
constraint 3-tuple described above.

SatgetItem(c1, o1) =
{

1 if constraintItem is included in get list
0 if constraintItem is not included in get list

(5.2)

5.3. NEGOTIATION PROTOCOL 47

SatnotGetItem(c1, o1) =
{

1 if constraintItem is not included in get list
0 if constraintItem is included in get list

(5.3)

SatgiveItem(c1, o1) =
{

1 if constraintItem is included in give list
0 if constraintItem is not included in give list

(5.4)

SatnotGiveItem(c1, o1) =
{

1 if constraintItem is not included in give list
0 if constraintItem is included in give list

(5.5)

SatgiveV alue(c1, o1) =
{

1 if sum of values of items in give list is below limit
0 if sum of values of items in give list is above limit

(5.6)

SatgetV alue(c1, o1) =
{

1 if sum of values of items in get list is above limit
0 if sum of values of items in get list is below limit

(5.7)

When an agent enters negotiation, a set of constraints such as the ones described
above is created. This is done by the agent deliberating about what items he
needs and what items the opponent has. A constraint set is simply a list of
constraints, describing the agent’s preferences. As each of these constraints
have a priority, some of them may be more important to the agent than others.
The complete list of constraints can then be used to calculate the satisfaction
degree of an offer. Equation 5.8 shows this calculation, where cs1 is the set of
constraints, m is the number of constraints in the set, ci is constraint number
i from the set and o1 is the offer. The Sat(ci, o1) function in equation 5.8 will
be one of the satisfaction functions shown in the equations above depending on
what kind of constraint ci is.

Satcomplete(cs1, o1) =
m∑
i=1

Sat(ci, o1) (5.8)

48 CHAPTER 5. OUR SOLUTION

5.3.3 Concession Strategy

Our agents always start every negotiation with offers that maximize their own
satisfaction. When their offers are not accepted, the agents try to make a better
offer for their opponent while trying to concede as little as possible on their own
satisfaction degree. To do this, the agent searches for a bid that minimizes its
own concession while simultaneously increasing the utility of its opponent. The
agent also uses a concession rate, which gives the maximum loss of satisfaction
an agent will accept, either from the bid it creates itself or from the opponent’s
bid. This concession strategy is quite similar to the strategy used in the well
known monotonic concession protocol [5, pp.40–41]. Just like in this protocol,
our agents always try to make an offer that gives a higher utility to their op-
ponent than what their last offer did, thereby conceding monotonically. Due
to the problem of limited knowledge however, we can not guarantee monotonic
concession. When we do not know the opponent’s preferences we might give
offers we think are better for the opponent, but this may be wrong, making the
concession strategy non-monotonic.

Data: previousOffer, ownConstraints, opponentConstraints,
opponentPreviousSatisfaction

Result: newOffer
if newOpponentOffer is first offer then

foreach constraint in ownConstraints do
satisfy constraint;

end
else

while Sat(opponentConstraints, newOffer) <=
opponentPreviousSatisfaction do

find opponent constraint that is the least negative to you;
satisfy this constraint;

end
end

Algorithm 1: Local search algorithm for creating offers.

The actual making of offers is done through a simple local search by the offer
creator module from figure 5.1 using the constraints of the agent as the input.
The searching algorithm is shown in algorithm 1. The Sat() function in the
algorithm is given in equation 5.8 in the previous section. It calculates the
satisfaction using opponentConstraints, which is the modeled constraints of the

5.4. OPPONENT MODELING 49

opponent. The searching algorithm goes through the agent’s set of constraints,
trying to satisfy them one by one to make an offer that satisfies all of its own
constraints. This can be used both to modify a given offer, or to create a new
one. When conceding, the algorithm goes through all the constraints of its
opponent, finding the one that is the least negative to its own satisfaction and
satisfies this constraint. This ensures the monotonic concession as long as the
constraints of the opponent are actually correct. A weakness of this approach is
the fact that if no good model exists, it will not be able to concede to the other
player’s demands. Due to this, we have focused on providing a good opponent
modeling approach, which is described in section 5.4.

5.4 Opponent Modeling

The purpose of the opponent modeling is to extract and learn information about
the opponent’s preferences from his bidding history. From the multi-agent per-
spective, this amounts to the agent updating his beliefs about the opponent’s
behavior. To learn such information, we have implemented two different op-
ponent modeling techniques, frequency modeling and Bayesian learning. The
simplest of these techniques is frequency modeling. It is fast and makes few as-
sumptions, but might miss some subtleties in the opponent’s preferences. The
only assumption this method makes is that the opponent bids rationally by
starting with a bid that maximizes its own utility. Bayesian learning is a more
complex modeling technique, and it needs more assumptions. Opponents are as-
sumed to bid rationally in the same way as frequency modeling, but the modeler
also needs to assume its opponent is using a certain concession rate in order to
estimate the opponent’s constraints. In both of these approaches, the resulting
opponent model consists of a set of constraints forming the preferences of the
opponent as described in section 5.3.1. Figure 5.6 illustrates how this will work.
More detailed explanations of how the different modeling techniques work, will
come in sections 5.4.2 and 5.4.3.

5.4.1 Extracting Information From Bids

Both modeling approaches can be interpreted as classifying systems, trying to
map the change done in the last offer to a set of constraints that would make
this change likely. Figure 5.7 shows the different categories that a change can

50 CHAPTER 5. OUR SOLUTION

Figure 5.6: Illustration of opponent modeling.

be mapped to, and figure 5.8 illustrates through an example how a change in an
offer can be mapped to a constraint that can be added to the agent’s opponent
model.

Figure 5.7: Illustration of the classifications that a change in an offer can be
mapped to.

A learned opponent model consists of a set of constraints representing the pref-
erences of the opponent. It is represented in the same way as the agent’s own
preferences as described in section 5.3.1, where each constraint has a prior-
ity, telling how much it contributes to the utility of the agent. Learning both
what constraints the opponent has and what priorities these constraints have
is vital for efficient negotiation. In the next two sections, we describe how the
knowledge will be extracted from the negotiation interactions using two different
classification approaches; Frequency modeling and Bayesian modeling.

5.4. OPPONENT MODELING 51

Figure 5.8: Example of how constraints can be deduced from changes in offers.

5.4.2 Frequency Modeling

We have implemented an opponent modeling system that uses frequency mod-
eling, similar to the system described in [28]. This is a simple approach to
opponent modeling with a very low computational complexity, making it ideal
for a soft real-time application such as a video game.

Our implementation of frequency modeling focuses on learning the getItemCon-
straints, giveItemConstraints, getValueConstraints and giveValueConstraints stat-
ing that an opponent wants to get or give an item or a certain value, ignoring
constraints for not giving or not getting an item. The constraints for not get-
ting or giving items are harder to learn and are less important when trying to
improve negotiation results.Therefore, we chose to ignore them in the frequency
modeling method.

Frequency modeling estimates the opponent’s constraints and priorities based

52 CHAPTER 5. OUR SOLUTION

on the offers it has sent. Figure 5.9 illustrates how the opponent modeling
works. The system starts by creating constraints for all issues that are added
in the initial bid. It is assumed that the opponent is bidding rationally, and
the initial bid should therefore maximize his constraints. Due to this, it is very
likely that the opponent has constraints concerning these issues. This may give
errors, however, as an opponent may ask for an item without having a constraint
about this particular item. An example of this could be that the agent has a
constraint about getting items worth at least a certain sum. In this case, he does
not care about which items he gets, so long as their value is high enough. This
is an example of an agent with a getValueConstraint, as described in section
5.3.1.

Issues that are repeated in the negotiations are more likely to be there because of
constraints, and are more likely to have higher priorities than other issues. Our
frequency modeler utilizes this by checking if items are repeated in consequent
negotiation rounds. Whenever an item that was included in an offer earlier in
the negotiation is still there in the latest offer, a constraint for the issue is added,
or if it already exists, the priority of this issue is increased. This is similar to how
the weights are increased for issues in [28]. The constraint that will be added
in this case will be a getItemConstraint or giveItemConstraint as described in
section 5.3.1. These constraints describe that the agent wants to get or give one
specific issue such as for instance a technology or a resource. We also need to
find if the opponent has constraints about the total value of the items he gets or
gives away. These kind of constraints are the GET VALUE and GIVE VALUE
constraints described in section 5.3.1. These value constraints require the sum
of the value of the items received or given away to be above or below a certain
value, and are not about one specific issue. Constraints on values are added or
updated by checking if the total value of the items asked for is the last offer is
similar to the sum from the previous offer. Whenever the sum is similar over
the course of several offers, the frequency modeler will conclude that there is a
constraint on this value causing the opponent to give offers with similar values.
The pseudo code for this learning method is shown in algorithm 2.

The frequency modeling method has previously been compared to other learning
methods including Bayesian learning methods in [27]. This article concluded
that frequency modeling is more computationally efficient than the other, more
complex algorithms that were compared to it while not performing any worse.
Learning the constraint sets in our domain is a little harder than the domain in
their system however, so this method may not be capable of learning all possible

5.4. OPPONENT MODELING 53

constraint configurations. We have therefore decided to compare the method
with a Bayesian modeler to see if we get the same results or if Bayesian modeling
is better in our domain.

Figure 5.9: Illustration of our frequency modeling technique.

54 CHAPTER 5. OUR SOLUTION

Data: newOpponentOffer, previousOpponentOffer, opponentModel
Result: Updated opponentModel
if newOpponentOffer is first offer then

foreach item in newOpponentOffer do
if constraint exists for the item in opponentModel then

increase priority on constraint;
else

create constraint for item and add to opponentModel;
end

end
else

foreach item in both newOpponentOffer & previousOpponentOffer do
if constraint exists for item in opponentModel then

increase priority on constraint;
else

create constraint for item and add to opponentModel;
end

end
if value of newOpponentOffer within 10% of value of
previousOpponentOffer then

if value constraint exists in opponentModel then
update value on constraint;
increase priority on constraint;

else
create value constraint and add to opponentModel;

end
end

end
Algorithm 2: Frequency modeling pseudo code

5.4.3 Bayesian Learning

We have also implemented a version of Bayesian learning for our opponent
modeling inspired by the work in [30]. The work in [30] uses Bayesian learning
in a more general negotiation domain than ours, learning values and weights on
issues in a multi-issue domain. We have adapted the method to learn preferences
in the form of constraints to suit our system.

5.4. OPPONENT MODELING 55

Using a Bayesian learner, a set of different hypotheses with corresponding prob-
abilities are created, and the method continuously updates these probabilities to
choose the most likely hypothesis as the current opponent model. A hypothesis
in our case is a set of constraints representing the preferences of the opponent
as described in section 5.3.1. An example hypothesis is shown in figure 5.10.
The hypothesis has a list of three constraints, where each constraint has a pri-
ority and either a value or an item, depending on the type of constraint. This
hypothesis can be used as the constraint set of the opponent, which represents
his preferences. In order to calculate the probabilities of the hypotheses, we
need to assume that the opponent is bidding rationally, that is, his first bid
will maximize his utility, and he will concede gradually towards a mutually ac-
ceptable deal. We also need to assume a concession rate that the opponent is
using. This assumption makes it possible to estimate the probability of a bid
at a particular time, given a hypothesis (P (bidt|hypothesisi)). We will first
describe a simple version of this opponent modeling to give an understanding
of how Bayesian learning can be applied to video game negotiations, before we
introduce our improved learning method that optimizes the learning approach
to make it feasible in a large search-space.

Figure 5.10: Example of a possible hypothesis. A hypothesis is a list of con-
straints and captures an opponent model. Each hypothesis has a probability.

Unoptimized Bayesian Opponent Modeling

The simple version of Bayesian opponent modeling is illustrated in figure 5.11,
and its pseudo-code is shown in algorithm 3. As shown in the figure, the first
time an offer is received during a negotiation, all possible hypotheses are cre-
ated. This means that all possible combinations of constraints are found and
used as hypotheses. Each of these hypotheses will usually be created with uni-
form probability, but a priori knowledge could be used to set initial values to
these hypotheses. Whenever an offer is received, these probabilities are updated
using Bayes’ rule, and when all probabilities have been updated, the most likely

56 CHAPTER 5. OUR SOLUTION

hypothesis is chosen as the new opponent model. This simple approach is de-
scribed in more detail in the following section. It does, however, not work in a
complex domain like ours, as the number of different hypotheses is exponential.
Due to this, we have implemented another version of Bayesian opponent mod-
eling that simplifies the hypothesis-space. This method is described in section
5.4.3.

Figure 5.11: Illustration of how the unoptimized Bayesian opponent modeler
works.

Detailed description

The Bayesian opponent modeler creates a set of hypotheses and calculates their
probability. The hypotheses represent the preferences of our opponent. In our
case, these hypotheses are sets of constraints representing a complete opponent
model, while in most applications of Bayesian learning for opponent models,
they are weights, values or preference functions for the negotiation issues. A
large set of possible hypotheses are created by finding all possible combinations
of constraints, and the probability of each of them will be calculated. In order to
do this, we first need to calculate the probability of the last bid, given each of the
hypotheses. That is, you assume that an hypothesis is true and calculate how
likely the last bid is given this hypothesis. This probability can be calculated
according to equation 5.11 where bt is the opponent’s bid at time t and hi is
hypothesis number i. This equation simply puts the utility of the bid at time
t given the hypothesis into equation 5.10. The utility of the bid at time t is
given by the satisfaction degree of the bid at time t with the constraints in
the hypotheses used as the constraint set. We write this satisfaction degree as
Sat(hj , bt) where hj is hypothesis number j and bt is bid number t. This function
is defined in equation 5.8 in section 5.3.1, but here we use the hypotheses hj in

5.4. OPPONENT MODELING 57

place of the constraint set cs1 and the bid bt in place of the offer o1. Equation
5.10 calculates the probability of the given utility level given the hypothesis. In
this equation, u is the utility of the last bid, hi is the hypothesis, u′(t) is the
expected utility at this time, and σ is the learning rate. The lower the value of
σ is, the faster the agent learns, but this requires low error in the estimation,
or it will cause us to learn false information.

In order to calculate equation 5.10, we need to estimate the expected utility
u′(t) given the time t . This is the utility value that the agent expects its
opponent would ask for at time t, and it is dependent on the concession rate
of the opponent, which is unknown. Since the agent does not know this value,
and needs it in order to calculate the probabilities, the agent assumes that the
opponent starts bidding rationally by asking for a bid that maximizes its own
utility and then tries to concede gradually with a given concession rate. If this
concession rate is known, we can calculate the u′(t) value according to equation
5.9 where t is the time of the bid and concessionRate is the known concession
rate of the opponent. The concession rate is not known, however, so the agent
needs to guess what it is. Our modeler simply does this by assuming that its
opponent has the same concession rate as itself, and calculates the u′(t) value
from this. The assumption that opponents follow a certain concession rate is
used in many other opponent modeling techniques such as the ones mentioned in
[30] and [26]. There have been attempts to avoid this kind of assumption, such
as the system described in [32] does, but this requires learning the opponent’s
bidding strategy as well as his constraints, and a large set of training data is
needed to learn this. What such a solution would do, is to learn the expected
utility u′(t) based on the training data, so that the agent does not need to
make an assumption. Using an estimated value for u′(t) as our agent does,
is not necessarily accurate, but avoids the need for training data and strategy
modeling.

u′(t) = 1− (concessionRate ∗ t) (5.9)

P (u|hi) = 1
σ
√

2π
e−

(u−u′(t))2
2σ (5.10)

P (bt|hi) = P (u|hi) where u is set to Sat(hi, bt) from equation 5.8 (5.11)

58 CHAPTER 5. OUR SOLUTION

P (hj |bt) = P (hj) ∗ P (bt|hj)∑m
i=1 P (hi) ∗ P (bt|hi)

(5.12)

Once the probabilities of the latest bid, given all the different hypotheses, are
calculated according to equation 5.11, this info can be used to calculate the
probabilities of these hypotheses given the bid bt. To do this we use Bayes’ rule,
which is shown in equation 5.12. In this equation hj is hypothesis number j,
while bt is the bid at time t. The probabilities computed from this equation will
be used to update the probability of each hypothesis, and we can then choose
the most likely hypothesis as our opponent model. Algorithm 3 shows how
Bayesian modeling works. We first create all possible hypotheses (all possible
combinations of constraints and priorities) with a uniform probability, we then
calculate the probability of the latest bid given each of the hypotheses, before
we update the probability of each hypothesis. When all probabilities have been
updated, we choose the most likely hypothesis as the current opponent model.

Data: newOffer, opponentModel
Result: Updated opponentModel
if newOffer is first offer then

create hypothesesArray containing all possible hypotheses with a
uniform probability distribution;

end
foreach hypothesis hi in hypothesesArray do

foreach hypothesis hj in hypothesesArray do
calculate P(u(newOffer) |hj); (using equation 5.10)

end
calculate P(hi| newOffer) using P(u(newOffer) |hj);

end
Find hypotheses h with the largest probability and choose it as the
opponent model;

Algorithm 3: Pseudo code for a simple version of Bayesian learning. The
algorithm we have implemented is more complex, as it needs to split the
hypotheses space

Optimized Bayesian Opponent Modeling

There is one big problem with the simple Bayesian learning described so far:
The number of possible hypotheses is exponentially large. Each hypothesis is

5.4. OPPONENT MODELING 59

a combination of different constraints. As there are m different issues, and
we have four different constraint types per issue (GIVE ITEM, GET ITEM,
NOT GIVE ITEM and NOT GET ITEM), this amounts to (4 ∗ m)! different
combinations of constraints, which gives an exponentially large number of hy-
potheses. In addition to this, there are the value constraints (GET VALUE and
GIVE VALUE) which can have any value as their limit, and each constraint
also has a, which can be any number between 0 and 1. All of this amounts
to an endless number of possible constraints. Using such a large search space
is unfeasible, so in order to minimize the number of possible hypotheses we
have made two major changes to how hypotheses are represented in our system.
These changes are described in the following section.

Simplifying the Hypothesis Space

The first technique is simply to make the priority of a constraint a fuzzy value,
similar to what was done in [26]. We have three possible values for each priority,
high, medium and low, and only make hypotheses with constraints that have
one of these priority values. This reduces the possible amount of constraints,
and hence hypotheses, from endless to three per issue and constraint type, at
the expense of some accuracy in the learning of the opponent’s priorities.

This first technique is not enough in itself however, as the complexity is still at
least (4 ∗ m)!. We have therefore employed a second technique as well which
reduces the complexity all the way down to just 6 ∗ m at the cost of a more
complex learning algorithm. This is a drastic change in the size of the hy-
pothesis space, and is necessary in order to make Bayesian modeling viable in
our domain. This second technique achieves such a reduction in the hypothesis
space by redefining the hypotheses in a similar way to what was done in [30].
Each hypothesis now consists of a single constraint instead of a combination of
constraints for each issue, and we create one only a few hypotheses per issue.
As we no longer need all combinations of constraints, this reduces the number of
possible hypotheses greatly. The transformation from the original hypothesis-
space to our minimized one is illustrated in figure 5.12. As mentioned earlier,
there are four different constraint types for each issue, and the agent needs to
create one hypothesis for each possible constraint type with each of the three
possible priority values (high, medium or low). This would give 12 different
hypotheses per issue, for a total of 12 ∗m different hypotheses. This can be fur-
ther simplified however, as issues are items that are owned by one of the players,

60 CHAPTER 5. OUR SOLUTION

and can therefore only have either GIVE ITEM and NOT GIVE ITEM types
of constraints or GET ITEM and NOT GET ITEM types of constraints. If the
agent takes advantage of this, it only needs to create 6 different hypotheses per
issue, ending up with 6 ∗m hypotheses. As a result of this technique, our learn-
ing algorithm becomes slightly more complex, as it needs to create an opponent
model from a set of simpler hypotheses rather than just choosing one.

The new opponent modeling technique is illustrated in figure 5.13. It is similar
to the one described previously, but creates hypotheses per issue. When all
probabilities have been updated, it finds the most probable hypothesis per issue
and for each of these hypotheses the constraint from the hypothesis is added to
a new opponent model if its probability is above a certain threshold. The newly
created opponent model consisting of the constraints from all chosen hypotheses
is then used as the new opponent model, discarding the old model from the last
negotiation round. Choosing only the most probable hypothesis for each issue
ensures that we do not choose several hypotheses that are contradictory or
superfluous, i.e. constraints to get and not get the same issue, or constraints
to get the same issue, but with different priorities. Using a threshold when
choosing which hypotheses to include, ensures that we do not add constraints
for all issues, but only for the ones where constraints are probable.

In order to calculate the probability of each of the hypotheses, we need to
change the Bayesian formula used earlier to fit our problem. We now refer to
a hypothesis as hk,j where k is the issue number that the hypothesis belongs
to, and j is the hypotheses number. There will be m different issues and n
different hypotheses per issue. For each issue k and for each hypotheses j in
this issue, we calculate Bayes’ rule according to equation 5.16. This equation
looks significantly different from the original Bayes’ rule, but is essentially the
same calculation. P (hk,j) is the probability of hypotheses number j for issue
k, while P (ū<−k>(bt) + Sat(hk,j , bt)|hk,j) is the probability of the utility given
by bid bt when hypotheses hk,j is true. ū<−k>(bt) is the expected utility of the
bid for all issues except k, while Sat(hk,j , bt) is the satisfaction degree given by
bid bt if hypothesis hk,j is true. The Sat(hk,j , bt) function is given by equation
5.8 in section 5.3.1, using the hypothesis hk,j as the constraint set and bt as
the offer. Constraint satisfaction in our system is described in more detail in
section 5.3.1. The expected utility is computed using equation 5.15, which is
a special case of equation 5.14 where we skip issue number k. This function
is simply the sum of equation 5.13 for all issues i. Equation 5.13 gives the
expected utility h̄i(bt) of one issue for the bid bt. It sums the probabilities of

5.4. OPPONENT MODELING 61

Figure 5.12: Illustration of how we simplify the hypothesis space

Figure 5.13: Illustration of how the optimized Bayesian opponent modeling
works. The hypotheses are split per issue and when all probabilities have been
updated, the most likely hypotheses are combined into a new opponent model.

62 CHAPTER 5. OUR SOLUTION

each hypothesis multiplied by the satisfaction degree given by the bid if that
hypothesis is true. As equation 5.14 sums this function for all issues, it gives
the expected utility for the bid for all issues combined. In equation 5.16, we
exclude issue k, which is the one we are examining, and instead just add the
satisfaction of the bid given this issue, ignoring this issue’s probability. This
means that we are assuming that the hypothesis we are examining is true. The
utility given by P (ū<−k>(bt) + Sat(hk,j , bt)|hk,j) in equation 5.16 is then used
as the u value in equation 5.10.

ūi(bt) =
n∑
j=1

P (h̄ij) ∗ Sat(h̄ij , bt) (5.13)

ū(bt) =
m∑
i=1

ūi(bt) (5.14)

ū<−k>(bt) =
m∑

i=1,2..,k−1,k+1,..m
ūi(bt) (5.15)

P (hk,j |bt) = P (hk,j) ∗ P (ū<−k>(bt) + Sat(hk,j , bt)|hk,j)∑n
i=1 P (hk,i) ∗ P (ū<−k>(bt) + Sat(hk,i, bt)|hk,i)

(5.16)

By separating the constraints per issue, and by making priorities a fuzzy value,
we have minimized the searching space significantly, making Bayesian learning
a feasible method of opponent modeling for our negotiation system. The final

5.4. OPPONENT MODELING 63

algorithm is shown in algorithm 4.

Data: newOpponentOffer, opponentModel
Result: Updated opponentModel
if newOpponentOffer is first offer then

create array with all possible hypotheses per issue with uniform
probability;

end
foreach issue k do

foreach hypothesis hk,i for this issue do
foreach hypothesis hk,j for this issue do

calculate P(u(newOpponentOffer) |hk,j);
end
calculate P(hk,i| newOpponentOffer) using
P(u(newOpponentOffer) |hk,j);

end
end
foreach issue k do

Find most likely hypothesis: if hypothesis probability is above
threshold value then

add hypothesis to opponentModel;
end

end
Algorithm 4: Pseudo code for our Bayesian learning method

5.4.4 Pareto Optimality

Pareto optimality is an important measure of how good a negotiation outcome
is. One of our research questions (RQ2) is whether we can find a negotiation
approach that guarantees Pareto optimality. A Pareto optimal offer is defined
as an offer that can not be changed to give one agent a higher utility without the
other agent losing utility. In our system, the utility is defined as the constraint
satisfaction a certain offer provides. To make the reasoning simpler, we assume
full knowledge of the preferences of the opponent. We also assume exhaustive
searching of all possible offers, which is necessary to guarantee that the best
possible deal has been found. If these assumptions are true, our algorithm will
be able to find the offer that satisfies equation 5.17, where ownSat(oi) is the
agent’s constraint satisfaction of the offer oi given by equation 5.1. Similarly,

64 CHAPTER 5. OUR SOLUTION

opponentSat(oi) is the opponent’s constraint satisfaction given by the same
equation, and opponentSat(oi−1) is the opponent’s satisfaction degree from the
previous offer oi−1.

arg maxoi(ownSat(o) where opponentSat(oi) > previousOpponentSat(oi−1))
(5.17)

arg maxoi(opponentSat(oi)) (5.18)

If equation 5.17 outputs more than one offer satisfying this equation, we choose
the one that gives our opponent the best utility, that is we satisfy equation 5.18
with the resulting offers from equation 5.17 as the offers. Using these equations,
the agent always concedes minimally, and if a better offer for the opponent
exists, it will either be worse for us or it will be chosen by the equations. This
means that we always suggest offers that could not be better for one player
without being worse for the other. Due to this, we should be operating on
the Pareto optimal border, and the suggested solution will be Pareto optimal.
However, this scenario is not realistic as we do not know for sure what the
opponent’s constraints are, and our search can not be exhaustive as this would
be NP-complete. This means that we are never sure whether the offer returned
by the search actually is the best possible offer, and thereby we do not know
whether we are on the Pareto optimal border. The opponent modeling attempts
to counteract this problem to some degree, but as it is just a model and does not
necessarily generate the constraints accurately, it does not guarantee to provide
Pareto optimal results. A close to correct model should however lead to results
that are more often Pareto optimal, or close to Pareto optimal, than not, even
if we can not guarantee optimality.

5.4.5 Social Welfare

Another important measure for negotiation outcomes is social welfare. Research
question RQ2 states that we want to find out whether our system can give results
that maximize social welfare. Social welfare was defined in section 3.3.5 as the
equation:

sw(ω) =
∑
i∈Ag

ui(ω)

5.4. OPPONENT MODELING 65

Figure 5.14: Illustration of how a negotiation can give Pareto optimal results.
The Players find offers on the Pareto optimal border, and suggest these as
counter offers until someone accepts an offer, which will then be Pareto optimal.
This will only happen if the agents know their opponent’s preferences and use
exhaustive searching. The limit in the figure is the agents’ lower satisfaction
limit for acceptable deals as defined in section 5.3.1.

The deal that maximizes social welfare, is the deal that satisfies the equation:

deal = arg maxalldeals(sw(ω)) = arg maxalldeals(
∑
i∈Ag

ui(ω))

We have found that our system will not generally do this, and here we discuss
why it does not. In our solution, the agents will accept offers that are higher
than their current concession limit. This limit is set by the utility given by their
own last offer minus a concession rate c. This means that whenever an offer
that is above this limit is made, our system will accept immediately without
considering whether there exists a better solution. As long as the concession
rate is not infinitesimally small, it is possible that there exists a possible offer
that gives a higher social welfare that could be found later in the negotiation
if we did not accept this offer (see figure 5.15 for an example). The accepted

66 CHAPTER 5. OUR SOLUTION

offer would then not maximize social welfare, and ergo, our solution does not
guarantee a maximization of social welfare. In order to remedy this, we would
have to only accept offers if they are as good as, or better than, the last offer we
made ourselves. If we had full information and exhaustive searching, this should
result in maximization of social welfare, but we do not have this, and such a
solution would make negotiations lengthier, which in our domain could have
negative consequences. We have therefore decided not to use such a criterion
for accepting offers.

Figure 5.15: Illustration of how a negotiation might miss a result that maximizes
social welfare. An offer that is good enough to accept may arrive before another
solution that maximizes social welfare.

5.4.6 Negotiation Scenarios

We have chosen to outline a set of negotiation scenarios our approach needs to
handle. These examples give a simple overview of how our negotiation system
reasons, what information it uses to decide on offers, what kind of constraints we
use to specify our preferences, and generally how the negotiation should work.

5.4. OPPONENT MODELING 67

Negotiation scenario 1

This scenario has three players, P1, P2 and P3. P1 is in a war with P2, and has
decided to negotiate for resources with P3 to increase its chances of winning this
war. P1 knows that P3 has the technology gunpowder, as information about
what items a player can trade is public knowledge in the game. This technology
could significantly improve P1’s chances of winning so it decides to get this item.
The player creates a set of constraints c1. for what it wants to achieve from the
negotiation, prioritizing the acquisition of the gunpowder technology. It also
decides on a satisfaction degree τ1 = 0.8, which is the lower limit for accepting
a deal. P1 will not accept a deal that gives a satisfaction degree below this
limit. The limit is set statically in our system, but could potentially be set
dynamically based on the agent’s situation in any further work.

c1 =

Get gunpowder tech ρ = 1
Give no unit ρ = 0.9
Give for a value less than X ρ = 0.8
Give no city ρ = 1
Other player shall not join war ρ = 0.6

P1 then creates an offer o1 that satisfies these constraints completely, and sends
it to P3.

o1 = (P1 gives music tech & 300 gold , P3 gives gunpowder tech)

P3 receives this offer and checks what constraints it has for making deals. P3
will make constraints to ensure that negotiating will not obstruct its own plans.
P3 is currently at peace with both P1 and P2 and does not want a war at
the time. Its constraint generator therefore creates the constraints c2 and the
minimum satisfaction degree τ2 = 0.7.

c2 =

Give no unit ρ = 1
Give no city ρ = 1
Join no war ρ = 0.7
Join no alliance ρ = 0.6
Get new technology ρ = 0.3
Value of received items ≥ Value of given items ρ = 1

Based on these constraints, P3 finds that o1 breaks the last constraint because
P3 values gunpowder higher than the sum of the music technology and 300 gold.
The satisfaction degree is therefore too low and it tries to make a counter offer

68 CHAPTER 5. OUR SOLUTION

o2 instead. This counter offer is based on changing the original offer until it
satisfies the constraints. P3 also models the constraints of P1 based on the fact
that it knows P1 made an offer that completely satisfies its own constraints, it
makes the model mc1 because it sees that P1 wants gunpowder. The priority
of this constraint is still unknown.

mc1 =
{

Get gunpowder tech ρ = ?

o2 = (P1 gives music tech & 20 gold per turn & 300 gold , P3 gives gunpowder
tech)

P1 receives this offer and calculates that the value of the items it is giving is
higher than its limit X, given by its third constraint. The deal is therefore
unacceptable and it makes a new counter offer that is less costly to itself. In
order to make an efficient counter offer it models P3’s constraints in the model
mc2. P1 now thinks that P2 wants a deal that gives it more value than o1,
so it creates a constraint on the value of the trade (a GET VALUE constraint
from section 5.3.1), where Y is the limit value of the constraint. It also has
a constraint on gold per turn, as this point was added to the deal, and should
therefore be assumed to be in P3’s constraints. The variable Z in this constraint
is an unknown limit. It could be assumed to be around 20 as P3 suggested 20
gold per turn. Based on these constraints it tries to make an offer that satisfies
both constraint sets.

mc2 =
{

Value of the trade larger than Y ρ = ?
Get gold per turn ≥ Z ρ = ?

o3 = (P1 gives banking tech & 20 gold per turn , P3 gives gunpowder tech)

P3 receives this and finds that it satisfies its constraints with a high enough
satisfaction degree, so it accepts the deal and P1’s plan is completed.

Negotiation scenario 2

This scenario has three players P1, P2 and P3. P1 has found that if it gets P2
to join in a war against P3, they would be able to win the war and P1 would
end up as the strongest player afterwards so long as the payment for the deal
is not too high. It creates a set of constraints c1 for a deal that includes P2
joining a war against P3, as well as a minimum satisfaction degree τ1 = 0.9. P1
is not willing to join an alliance to win this war, as it does not plan to continue
being friendly with P2.

5.4. OPPONENT MODELING 69

c1 =

Other player join war on P3 ρ = 1
Give no city ρ = 0.9
Join no alliance ρ = 1
Give for a value less than X ρ = 0.8

P1 creates an offer o1 satisfying the constraints and sends it to P2.

o1 = (P1 gives 1 rifleman & 200 gold , P2 joins war on P3)

When P2 receives this offer, it makes a set of constraints. This player wants to
form an alliance with P1 to secure its position when the war is over. It makes
the constraint set c2 and the minimum satisfaction degree τ2 = 0.9.

c2 =

Join alliance with P1 ρ = 1
Value of received items ≥ Value of given items ρ = 0.7
Give no technology ρ = 1
Give no city ρ = 1

It finds that the second constraint is not satisfied in o1 because the value of
joining a war is very high. It therefore tries to make a counter offer o2 based on
its constraints. To do this, it first makes a model of the opponent’s constraints
mc1 based on its first offer. It uses this model to try and make a counter offer
that fits both its own constraints and P1’s constraints. The offer contains an
alliance with P1, which has a very high value for P2.

mc1 =
{

P2 join war on P3 ρ = ?

o2 = (P1 gives 1 rifleman & joins alliance with P2 , P2 joins war on P3)

P1 will not accept this offer as it has a constraint to make a deal with no alliance.
It therefore tries to make a new deal o3 that pays P2 more without joining the
alliance. To do this it models P2’s constraints. The second constraint means
that P2 is probably looking for a trade worth more than X, where X is the total
value of what P1 is giving in the first offer, as this was not enough to make
a deal. Based on these constraints it sees that P2 is unlikely to accept a deal
without an alliance, but it does not know the priority of the constraint so it will
try to make a deal that pays a lot to make up for it.

mc2 =
{

Join alliance with P1 ρ = ?
Value of trade larger than X ρ = ?

o3 = (P1 gives 1 rifleman & Banking tech & 500 gold , P2 joins war on P3)

P2 cannot accept a deal without an alliance so it makes a new counter offer

70 CHAPTER 5. OUR SOLUTION

o4. To do this, it updates its modeled constraints m1 based on the new offer.
Because P1 removed the alliance from the deal it adds no alliance to the con-
straints with an unknown priority. Because it needs an alliance to satisfy its
own deal, it tries to make the deal more acceptable by adding payment for it.

mc1 =
{

P2 join war on P3 ρ = ?
Join no alliance ρ = ?

o4 = (Joins alliance with P2 , P2 joins war on P3 & 300 gold)

P1, not being able to accept a deal with an alliance, updates its modeled con-
straints for P2, increasing the priority of the join alliance constraint and tries
to make a new counter offer that is better for the other player than o3 while not
containing an alliance. It fails to find such an offer that also satisfies its own
constraints to a degree higher than τ1, and decides to decline the offer, ending
the negotiation unsuccessfully.

Negotiation scenario 3

In this scenario we have two players P1 and P2. P1 wishes to improve its
relations with P2 and it has decided to convince P2 to join the same religion
as P1 to achieve this goal. It creates the constraints c1 and the minimum
satisfaction degree τ1 = 0.7. It does not have a lot of constraints as it is very
willing to give a lot to P2 in order to increase their relation.

c1 =

 Other player join our religion ρ = 1
Give no city ρ = 0.9
Give for a value less than X ρ = 0.8

P1 creates an offer o1 satisfying these constraints that it sends to P2.

o1 = (P1 gives 5 gold per turn & horse resource , P2 joins P1’s religion)

P2 receives this offer and finds a set of constraints that fit its own plans. P2
creates the constraints c2 and the minimum satisfaction degree τ2 = 0.8. P2 is
currently short of money, and makes constraints for improving its economy.

c2 =

Value of received items ≥ Value of given items ρ = 1
Get technology Banking ρ = 0.4
Get gold per turn ≥ 15 ρ = 0.3
Get gold ≥ 400 ρ = 0.1

5.5. EXAMPLE RUN OF OUR SYSTEM 71

Using the constraints, it evaluates the offer from P1 and finds that the satisfac-
tion degree is too low as none of the last three constraints are satisfied. All of
these constraints have quite low priority, so not all of them need to be satisfied
in the deal, but when all of them are missing, the satisfaction degree is too
low. P2 then makes a model mc1 of P1’s constraints and creates a counter offer
o2 that changes the deal to better fit its requirements while satisfying these
constraints.

mc1 =
{

P2 join P1’s religion ρ = ?

o2 = (P1 gives 15 gold per turn & Banking technology , P2 joins P1’s religion
)

P1 gets this offer, but finds that the value it has to give is too high, and therefore
makes a counter offer o3 that is closer to this deal but satisfies its constraints.
To create this deal it makes a model mc2 of P2’s constraints, assuming that P2
wants the banking tech as well as a deal worth more than X, where X is the
value of what P1 pays in o1.

mc2 =
{

Value of received items ≥ X ρ = ?
Get technology Banking ρ = ?

o3 = (P1 gives 8 gold per turn & Banking technology , P2 joins P1’s religion)

This offer is cheap enough to fit the third constraint in c1, while also satisfying
the model of P2’s constraints. P2 receives this offer and finds that its satisfaction
degree is high enough and accepts it. The result of the two players having the
same religion is that they now have improved relations to each other, thereby
satisfying P1’s plan.

5.5 Example Run of our System

We have also decided to provide the output from an example run of our system
to show how it works in practice. The output has been edited slightly to improve
readability.

PLAYER 5 (FREQUENCY) VS PLAYER 1 (FREQUENCY)

NEGOTIATION BETWEEN PLAYER 5 AND PLAYER 1

72 CHAPTER 5. OUR SOLUTION

PLAYER 5 OFFER

WANT TO GIVE
- NOTHING
- LIST VALUE: 0

WANT TO GET
- TRADE_WAR AGAINST P4
- TRADE_WAR AGAINST P6
- LIST VALUE: 46250

SENDING OFFER

NEGOTIATION BETWEEN PLAYER 1 AND PLAYER 5

RECEIVED OFFER FROM 5

SATISFACTION OF RECEIVED OFFER: 0.000000
CONCESSION LIMIT: 0.900000

PLAYER 1 COUNTER OFFER

PLAYER 1 CONSTRAINTS
- GET_VALUE MINIMUM 10000 WITH PRIORITY 0.8
- NOT GIVE_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.4

PLAYER 1 OPPONENT MODEL OF PLAYER 5
- GET_ITEM TRADE_WAR AGAINST P4 WITH PRIORITY 0.1
- GET_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.1

WANT TO GIVE
- NOTHING
- LIST VALUE: 0

WANT TO GET
- TRADE_TECHNOLOGIES #86
- TRADE_TECHNOLOGIES #52
- LIST VALUE: 15750

5.5. EXAMPLE RUN OF OUR SYSTEM 73

SATISFACTION OF NEW OFFER: 1.000000
SENDING NEW OFFER

NEGOTIATION BETWEEN PLAYER 5 AND PLAYER 1

RECEIVED OFFER FROM 1

SATISFACTION OF RECEIVED OFFER: 0.000000
CONCESSION LIMIT: 0.900000

PLAYER 5 COUNTER OFFER

PLAYER 5 CONSTRAINTS
- GET_ITEM TRADE_WAR AGAINST P4 WITH PRIORITY 0.5
- GET_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.2

PLAYER 5 OPPONENT MODEL OF PLAYER 1
- GET_ITEM TRADE_TECHNOLOGIES #86 WITH PRIORITY 0.1
- GET_ITEM TRADE_TECHNOLOGIES #52 WITH PRIORITY 0.1

WANT TO GIVE
- TRADE_TECHNOLOGIES #86
- LIST VALUE: 9430

WANT TO GET
- TRADE_WAR AGAINST P4
- TRADE_WAR AGAINST P6
- LIST VALUE: 46250

SATISFACTION OF NEW OFFER: 1.000000
SENDING NEW OFFER

NEGOTIATION BETWEEN PLAYER 1 AND PLAYER 5

RECEIVED OFFER FROM 5

SATISFACTION OF RECEIVED OFFER: 0.000000
CONCESSION LIMIT: 0.900000

74 CHAPTER 5. OUR SOLUTION

PLAYER 1 COUNTER OFFER

PLAYER 1 CONSTRAINTS
- GET_VALUE MINIMUM 10000 WITH PRIORITY 0.8
- NOT GIVE_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.4

PLAYER 1 OPPONENT MODEL OF PLAYER 5
- GET_ITEM TRADE_WAR AGAINST P4 WITH PRIORITY 0.3
- GET_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.3
- GET_VALUE MINIMUM 46250 WITH PRIORITY 0.1

WANT TO GIVE
- TRADE_WAR AGAINST P4
- LIST VALUE: 24440

WANT TO GET
- TRADE_TECHNOLOGIES #86
- TRADE_TECHNOLOGIES #52
- LIST VALUE: 15750

SATISFACTION OF NEW OFFER: 1.000000

SENDING NEW OFFER

NEGOTIATION BETWEEN PLAYER 5 AND PLAYER 1

RECEIVED OFFER FROM 1

SATISFACTION OF RECEIVED OFFER: 0.714286
CONCESSION LIMIT: 0.900000

PLAYER 5 COUNTER OFFER

PLAYER 5 CONSTRAINTS
- GET_ITEM TRADE_WAR AGAINST P4 WITH PRIORITY 0.5
- GET_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.2

PLAYER 5 OPPONENT MODEL OF PLAYER 1

5.5. EXAMPLE RUN OF OUR SYSTEM 75

- GET_ITEM TRADE_TECHNOLOGIES #86 WITH PRIORITY 0.3
- GET_ITEM TRADE_TECHNOLOGIES #52 WITH PRIORITY 0.3
- GET_VALUE MINIMUM 15750 WITH PRIORITY 0.1

WANT TO GIVE
- TRADE_TECHNOLOGIES #86
- TRADE_TECHNOLOGIES #52
- LIST VALUE: 15750

WANT TO GET
- TRADE_WAR AGAINST P4
- TRADE_WAR AGAINST P6
- LIST VALUE: 46250

SATISFACTION OF NEW OFFER: 1.000000

SENDING NEW OFFER

NEGOTIATION BETWEEN PLAYER 1 AND PLAYER 5

RECEIVED OFFER FROM 5

SATISFACTION OF RECEIVED OFFER: 0.666667
CONCESSION LIMIT: 0.900000

PLAYER 1 COUNTER OFFER

PLAYER 1 CONSTRAINTS
- GET_VALUE MINIMUM 10000 WITH PRIORITY 0.8
- NOT GIVE_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.4

PLAYER 1 OPPONENT MODEL OF PLAYER 5
- GET_ITEM TRADE_WAR AGAINST P4 WITH PRIORITY 0.7
- GET_ITEM TRADE_WAR AGAINST P6 WITH PRIORITY 0.7
- GET_VALUE MINIMUM 46250 WITH PRIORITY 0.1
- GIVE_ITEM TRADE_TECHNOLOGIES #86 WITH PRIORITY 0.1
- GIVE_ITEM TRADE_TECHNOLOGIES #52 WITH PRIORITY 0.1

WANT TO GIVE

76 CHAPTER 5. OUR SOLUTION

- TRADE_WAR AGAINST P4
- TRADE_GOLD
- TRADE_GOLD_PER_TURN
- TRADE_RESOURCES #4
- TRADE_RESOURCES #15
- TRADE_RESOURCES #16
- TRADE_EMBARGO AGAINST P4
- TRADE_MAPS
- TRADE_WAR AGAINST P6
- LIST VALUE: 48260

WANT TO GET
- TRADE_TECHNOLOGIES #86
- TRADE_TECHNOLOGIES #52
- LIST VALUE: 15750

SATISFACTION OF NEW OFFER: 0.666667

SENDING NEW OFFER

NEGOTIATION BETWEEN PLAYER 5 AND PLAYER 1

RECEIVED OFFER FROM 1

SATISFACTION OF RECEIVED OFFER: 1.000000
CONCESSION LIMIT: 0.900000

ACCEPTING DEAL

ENDING NEGOTIATION

Chapter 6

Experiments

This section describes the experiments we performed in order to evaluate our
research questions and test the performance of our system. It presents our
methods of evaluation of the test results, as well as the negotiation scenarios
and how they were performed. The data sets for testing will not be presented
in this report as they are too large.

6.1 Evaluation Method

When it comes to evaluating the performance of a negotiation system, there
are many possible ways of doing this. There exists frameworks, such as the
GENIUS environment [40], in which testing general negotiation systems in a
variety of different and difficult problems is made simpler, giving a unified scale
on which to compare these systems by. In some domains such as ours, however,
the negotiation is too specialized to apply to such general problems. Another
approach is to check for common solution properties such as Pareto optimality
or maximization of social welfare. For simple types of negotiations, it is possible
to make automatic checks for this to quantitatively check whether the results
have these properties. In other domains it may be possible to prove whether
the results will have these properties. We have given such proofs in sections
5.4.4 and 5.4.5. In our domain, automatically checking for Pareto optimality
or maximization of social welfare is too computationally complex, so we focus

77

78 CHAPTER 6. EXPERIMENTS

on comparing the performance of different modeling approaches. After each
negotiation round, the negotiating agents calculate their utility for the outcome.
We will use this utility to compare how well our different opponent modeling
techniques fare against each other in a set of different negotiation scenarios. As
we can not compare our system to other general negotiation systems, we have
decided to manually compute what negotiation outputs would maximize social
welfare, and compare our results to these optimal results. The social welfare
maximizing results are calculated by manually examining each data set and
finding the offer that maximizes equation 6.1, where sw(ω) is the social welfare
of an offer ω and is calculated by equation 6.2. This should give a reasonable
grounds for assessing the quality of our results. We also record the number of
offers it takes to reach a deal, the average success-rate of the negotiations, the
average time it takes to reach a deal and the correctness of the opponent models.

optimal = max(sw(ω)) = max(
∑
i∈Ag

ui(ω)) (6.1)

where Ag denotes all agents.

sw(ω) =
∑
i∈Ag

ui(ω) (6.2)

where ui(ω) is the satisfaction of the offer ω (see section 3.3.5).

6.1.1 Calculating Results

We have a number of different results we want to record when performing exper-
iments, most of which require some calculation to find. This section therefore
presents the formulas and algorithms to calculate these results for the sake of
easier references later on. In the experiments presented in section 6.3, these
algorithms will be used to calculate the results.

As shown in algorithms 5 and 6, our experiments will run all different combina-
tions of opponent modeling types against each other. We have implemented two
different opponent modeling types, frequency modeling and Bayesian modeling.
In the experiments, we also include agents using no modeling in order to show
whether opponent modeling actually makes an improvement to our system. We

6.2. NEGOTIATION SCENARIOS 79

also included agents with full knowledge about their opponent’s constraints in
order to see how close the performance of our agents gets to agents’ with perfect
knowledge. These four agents types will be run against each other in our exper-
iments and their performance will be evaluated using the measures presented in
equations 6.3–6.8, where n is the number of negotiations and m is the number of
offers made in a negotiation. A successful negotiation is defined as a negotiation
where both agents meet an agreement.

SuccessRate = number of successful negotiations
number of negotiations (6.3)

AverageSatisfaction =
∑n
i=1 End satisfaction in negotiation i

number of negotiations (6.4)

AverageNumOfRounds =
∑n
i=1 Number of offers made in negotiation i

number of negotiations
(6.5)

AverageT imeToOffer =

∑n
i=1

∑m

j=1
time to make offer j

number of offers in negotiation i
number of negotiations (6.6)

pcorrect = number of correct constraints in model
number of constraints (6.7)

pwrong = number of wrong constraints in model
number of constraints in model (6.8)

6.2 Negotiation Scenarios

This section shows the negotiation scenarios we use for our experiments. Each
scenario consists of two players each of which has a set of items and a set of
constraints describing their preferences. In these scenarios, player 1 in the list is
the one starting the negotiation, while player 2 is the opponent. We also show

80 CHAPTER 6. EXPERIMENTS

Data: Opponent modeling types, scenarios
Result: result stats for all agents
if newOpponentOffer is first offer then

create array with all possible hypotheses per issue with uniform
probability;

end
foreach opponent modeling type omi do

foreach opponent modeling type omj do
foreach scenario Sk do

run negotiation scenario; if(negotiation comes to a deal)
increase successfulCount; increase numOfRoundsCount by
number of rounds in negotiation; increase satisfactionSum by
end satisfaction; foreach Offer made in negotiation do

increase timeToOfferSum by time it took to make the
offer;

end
increase OfferT imePerScenarioSum by
timeToOfferSum/number of offers made ;

end
SuccessRate = successfulCount/number of scenarios;
AverageNumOfRounds = numOfRoundsCount/number of
scenarios; AverageSatisfaction = satisfactionSum/number of
scenarios; AverageT imeToOffer =
OfferT imePerScenarioSum/number of scenarios

end
end

Algorithm 5: Pseudo code for calculating results of our negotiation. Calcu-
lates success-rate, average satisfaction, average time used to make an offer and
average number of offers to get a deal for all combinations of opponent model-
ing agents. The different opponent modeling types are our frequency modeling
and Bayesian modeling agents as well as agents using no opponent model and
agents using the actual constraints of the opponent (perfect knowledge).

6.2. NEGOTIATION SCENARIOS 81

Data: Opponent modeling types, scenarios
Result: result stats for all agents
if newOpponentOffer is first offer then

create array with all possible hypotheses per issue with uniform
probability;

end
foreach opponent modeling type omi do

foreach opponent modeling type omj do
foreach scenario Sk do

run negotiation scenario; foreach constraint in opponent
model do

if constraint found in correct constraints then
increase CorrectConstraintsCount;

else
increase wrongConstraintsCount

end
end
Pcorrect = CorrectConstraintsCount/NumOfConstraints;
Pwrong =
wrongConstraintsCount/NumOfConstraintsInOpponentModel

end
end

end
Algorithm 6: Pseudo code for calculating the model correctness. When cal-
culating this, we only use our two opponent modeling types, frequency model-
ing and Bayesian modeling. We calculate the percentage of correct constraints
found, as well as the percentage of constraints found that are wrong

82 CHAPTER 6. EXPERIMENTS

the social welfare maximizing deal for each scenario, and the utility this deal
would give each player.

Scenario 1 is a relatively simple scenario, where we would expect the model-
ing agents to be able to find the constraints of the opponents, especially P1’s
constraints are easy to find, while only two of P2’s three constraints are easy
to find, as constraints about not giving items can be difficult. We do however
expect our Bayesian modeler to be able to find these constraints as well. The
scenario requires a trade-off to reach a deal, and it it easier for P2 to concede
than it is for P1.

Scenario 1

players: P1 and P2 year 2000

P1 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:60

• item 81 val:7020

• resource 7 val:310

P2 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:60

• item 47 val:7280

• item 48 val:6820

6.2. NEGOTIATION SCENARIOS 83

• item 51 val:8780

• item 88 val:2090

• war with P5 val:11420

P1 constraints:

• get maps pri:0.6

• get item 47 pri:0.7 (technology)

• get item 48 pri: 0.1 (technology)

P2 constraints:

• get defensive pact pri:0.8

• give defensive pact pri:0.8

• not give item 47 pri:0.1

Social welfare maximizing deal (Pareto optimal):
P1 gives:

• defensive pact

P2 gives:

• defensive pact

• maps

• item 47

• item 48

Utility for P1: 1.0
Utility for P2: 0.941

84 CHAPTER 6. EXPERIMENTS

Scenario 2 is more difficult to model. P1 has few constraints, and one of them
is a value constraint, which is difficult to find. The frequency modeler may be
able to find this during the negotiation, but with some uncertainty. P2 has
more constraints, half of which are easy to find, the other half is difficult, but
the Bayesian modeler should be able to find them. This scenario also requires a
trade-off to make a deal, as P1 has a constraint on not giving for a value above
1000, and P2 wants items for a much higher value. It is easiest for P2 to concede
as its constraint for getting item 81 has a low priority.

Scenario 2

players: P1 and P2 year 2000

P1 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:60

• item 81 val:7020

• resource 7 val:310

P2 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:60

• item 47 val:7280

• item 48 val:6820

• item 51 val:8780

6.2. NEGOTIATION SCENARIOS 85

• item 88 val:2090

• war with P5 val:11420

P1 constraints:

• get war with P5 pri:0.9

• give for a value less than 1000 pri:0.8

P2 constraints:

• get item 81 pri:0.1

• get resource 7 pri:0.8

• not get defensive pact pri:0.5

• not give defensive pact pri:0.5

Social welfare maximizing deal (Pareto optimal):
P1 gives:

• resource 7

P2 gives:

• war with P5

Utility for P1: 1.0
Utility for P2: 0.947

Scenario 3 is a difficult one to model correctly, as P1 has only value constraints,
which are difficult to find. We would expect our frequency modeling agents to
perform better than the Bayesian modeling agents on finding these constraints.
P2’s constraints are easier for the Bayesian modeling agents. This scenario is
one of the two that require no trade-off to make a deal, meaning we would
expect a good average satisfaction from it.

86 CHAPTER 6. EXPERIMENTS

Scenario 3

players: P1 and P2 year 2000

P1 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:60

• item 81 val:7020

• resource 7 val:310

P2 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:60

• item 47 val:7280

• item 48 val:6820

• item 51 val:8780

• item 88 val:2090

• war with P5 val:11420

P1 constraints:

• get for a value above 7500 pri:0.9

• give for a value less than 7500 pri:0.9

6.2. NEGOTIATION SCENARIOS 87

P2 constraints:

• not give item 47 pri:0.9

• not give war with P5 pri:0.8

• get maps pri:0.4

• get item 81 pri:0.5

Social welfare maximizing deal (Pareto optimal):
P1 gives:

• maps

• item 81

P2 gives:

• item 51

Utility for P1: 1.0
Utility for P2: 1.0

Scenario 4 is similar to the previous scenario in that P1’s constraints are difficult,
but easier for the frequency modeling agents than for the Bayesian modeling
agents, while P2’s constraints are easier for the Bayesian modeling agents. This
scenario is simpler than the last one however, as both players have some simple
constraints in addition to the difficult ones, and we would therefore expect better
model correctness in this scenario compared to scenario 3. The scenario also
requires a trade-off in order to make a deal, and it is easiest for P2 to concede,
the concession necessary is small however.

Scenario 4

players: P1 and P2 year 1902

P1 tradeable items:

88 CHAPTER 6. EXPERIMENTS

• gold val:0

• gold per turn val:0

• maps val:0

• item 20 val:400

• item 75 val:3040

• war with p4 val:8930

• embargo against p4 val:730

P2 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0 val:

• item 14 val:1650

• item 19 val:800

• item 74 val:2740

P1 constraints:

• get item 14 pri:0.8

• get item 74 pri:0.6

• give for value less than 1000 pri:0.8

P2 constraints:

• get embargo against p4 pri:0.8

• get item 20 pri:0.1

• not get war with P4 pri:0.4

6.2. NEGOTIATION SCENARIOS 89

Social welfare maximizing deal (Pareto optimal):
P1 gives:

• embargo against P4

P2 gives:

• item 14

• item 74

Utility for P1: 1.0
Utility for P2: 0.923

Scenario 5 has many constraints, where most of them are simple, meaning we
expect a good result for the modeling on this scenario. There are some more
difficult constraints, but the overall correctness should be high. The scenario
does require a small trade-off to make a deal, as P2 wants to get maps from
its opponent, while P1 does not want to give this item. It is easiest for P1 to
concede in this scenario, but the necessary concession is small for either of the
players, so we could expect any of them to concede.

Scenario 5

players: P1 and P2 year 2049

P1 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:54

• item 46 val:4960

• item 52 val:6320

90 CHAPTER 6. EXPERIMENTS

• item 86 val:9430

• resource 22 val:300

• war with P4 val:14010

P2 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• resource 4 val:160

• resource 15 val:300

• resource 16 val:300

• war with P4 val:24440

• war with P6 val:21810

P1 constraints:

• get war with P4 pri:0.6

• get war with P6 pri:0.6

• give resource 22 pri:0.2

• not give maps pri:0.1

P2 constraints:

• get war with P4 pri:0.4

• get maps pri:0.7

• give maps pri:0.2

• get item 86 pri:0.1

6.2. NEGOTIATION SCENARIOS 91

• get resource 22 pri 0.3

• get for value above 10000 pri:0.9

Social welfare maximizing deal (Pareto optimal):
P1 gives:

• war with P4

• resource 22

• maps

• item 86

P2 gives:

• war with P4

• war with P6

• maps

Utility for P1: 0.933
Utility for P2: 1.0

Scenario 6 has one player with very simple constraints, and one with very dif-
ficult constraints. We would expect all modeling approaches to model P1’s
constraints correctly, but P2’s constraints are much harder. Its first constraint
should be easy for the Bayesian modeler, but difficult for the frequency modeler,
while its second constraint can not be found by the Bayesian modeler, but may
be found by the frequency modeler. This means that we would expect quite
low model correctness for both modeling types in this scenario, and this might
also make it difficult to succeed in the negotiation, making a lower success rate
more likely. In addition to this, the scenario requires a large trade-off in order
to make a deal, where it is easiest for P1 to concede.

92 CHAPTER 6. EXPERIMENTS

Scenario 6

players: P1 and P2 year 2049

P1 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• defensive pact val:54

• item 46 val:4960

• item 52 val:6320

• item 86 val:9430

• resource 22 val:300

• war with P4 val:14010

P2 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• resource 4 val:160

• resource 15 val:300

• resource 16 val:300

• war with P4 val:24440

• war with P6 val:21810

P1 constraints:

6.2. NEGOTIATION SCENARIOS 93

• get war with P4 pri:0.5

• get war with P6 pri:0.2

P2 constraints:

• not give war with P6 pri:0.4

• get for a value above 10000 pri:0.8

Social welfare maximizing deal (Pareto optimal):
P1 gives:

• item 46

• item 52

P2 gives:

• war with P4

Utility for P1: 0.71
Utility for P2: 1.0

Scenario 7 is similar to scenario 6 in that it has very few constraints, and many of
them are difficult to model, especially for the Bayesian modeler. This scenario
is actually even harder to model, as it mostly consists of value constraints.
We would expect agents using frequency modeling to do better than Bayesian
modeling agents in the scenario, but both modeling types will have a hard time
finding a good model, and this may lower the success rate of this scenario.

Scenario 7

players: P1 and P2 year 2049

P1 tradeable items:

• gold val:0

94 CHAPTER 6. EXPERIMENTS

• gold per turn val:0

• maps val:0

• defensive pact val:54

• item 46 val:4960

• item 52 val:6320

• item 86 val:9430

• resource 22 val:300

• war with P4 val:14010

P2 tradeable items:

• gold val:0

• gold per turn val:0

• maps val:0

• resource 4 val:160

• resource 15 val:300

• resource 16 val:300

• war with P4 val:24440

• war with P6 val:21810

P1 constraints:

• get for a value above 20000 pri:0.7

• not give war with P4 pri:0.4

P2 constraints:

• get for a value above 15000 pri:1.0

6.3. NEGOTIATION EXPERIMENTS 95

Social welfare maximizing deal (Pareto optimal):
P1 gives:

• item 52

• item 86

P2 gives:

• war with P4

Utility for P1: 1.0
Utility for P2: 1.0

6.3 Negotiation Experiments

The negotiation experiments are designed to test our research questions about
the negotiation system and how well it performs when negotiating with other
agents.

In the experiments, we set up seven different scenarios in the Civilization IV
game where each player has a set of predefined items to negotiate about and
a set of predefined preferences in the form of constraints. These will be our
test data and are described in section 6.2. The agents will then negotiate,
trying to achieve as high a utility for themselves as possible. Each of these
scenarios will be run for all possible combinations of agent types (see table 7.1),
so that all the techniques will be compared to all other techniques. The agent
types will be agents using our frequency modeling or our Bayesian modeling
techniques described in section 5.4, as well as agents with no information and
no modeling, and agents with full information and no modeling. After the
negotiations, the outcome will be recorded, including the satisfaction level of
each player, the number of offers, and the average computation time it took to
reach the offers. We will then evaluate our research questions, comparing the
results from the different opponent modeling types and the no information and
full information solutions, finding whether our opponent modeling techniques
make a valid contribution to the negotiation system or not (RQ3), whether the

96 CHAPTER 6. EXPERIMENTS

results can be achieved fast enough to make it viable in a soft real-time system
(RQ1), and how good results we are able to achieve (RQ2).

The experiments will be run on a laptop computer with the following specifica-
tions:

CPU Intel R© CoreTM2 Duo P9500 @ 2.53GHz

RAM 3GB

GPU NVIDIA R© GeForce R© GTX 260M

Operating System Microsoft R© Windows R© XP Professional SP3

6.3.1 Experiment N1: Model correctness in agent vs agent
negotiations

In this experiment will test the correctness of our opponent modeling techniques
when negotiating with other agents. Before each negotiation, both agents will
write out their preferences in the form of constraint sets, and during the nego-
tiations, they will write out their opponent models for comparison against the
correct constraints.

In order to find the correctness of the model, we count the number of constraints
in the model that are in the actual constraints as well, calculating the percentage
of correct constraints in the model Pcorrect. When checking value constraints,
we check how close they are to the actual constraint, increasing the correctness
the closer to the actual constraint value it is. We also need to count how many
constraints the model contains that are not in the actual constraints of the
opponent, finding the percentage of wrong constraints in our model Pwrong.
A higher value for Pcorrect is better, while a lower value for Pwrong is better.
Equations 6.7 and 6.8 show this calculation. Algorithm 6 illustrates how we
compute these values. We check the correctness of the models both after the first
offer and after the last offer. This allows us to evaluate whether the opponent
models improve during a negotiation, and how good they are in the beginning
of the negotiations.

6.3. EXPERIMENT N2 97

6.3.2 Experiment N2: Testing negotiation performance in
agent vs agent negotiations

This experiment is for evaluating how well our negotiation system performs.
Specifically, we will compare our modeling approaches with negotiation per-
formance without opponent modeling to see how much of an improvement our
modeling gives, as this is one of our major research questions (RQ3). The results
will also be compared with the performance of negotiating agents with perfect
knowledge of the opponent’s preferences. This will be used to evaluate how close
our system gets to optimal results. All negotiation outcomes will be evaluated
based on the utility, AverageSatisfaction, achieved at the end of the negotia-
tions, the number of offers it takes to come to a deal AverageNumOfRounds,
the time it takes to make an offer AverageT imeToOffer and the success rate
of the negotiations SuccessRate. These values will be calculated according to
equations 6.3–6.6 using algorithm 5.

98 CHAPTER 6. EXPERIMENTS

Chapter 7

Results and Discussion

In this chapter we will present the results from our experiments and discuss
what we found and why we got the results that we got. Below is an overview
of the different agent types that we have tested for easier lookup in the tables.

1 No modeling
2 Frequency modeling
3 Bayesian modeling
4 Full information

Table 7.1: Agent types

7.1 Experiment N1: Model correctness in agent
vs agent negotiations

This experiment intends to verify how well the opponent modeling actually
performs. We have tested both our modeling types against all the different
agents, including agents not using modeling and agents with full information.
For each scenario, we have calculated the average correctness for each modeling
type both after the first offer and after the last one. The correctness values we

99

100 CHAPTER 7. RESULTS AND DISCUSSION

compute are the Pcorrect and Pwrong values explained in equations 6.7 and 6.8,
showing the percentage of the opponent’s constraints we find and the percentage
of wrong constraints in our model. Using these two values, we can evaluate how
successful our modeling approaches are.

7.1.1 Results

This section presents the results from our experiment, showing the Pcorrect and
Pwrong values after the first and after the last offer made in the negotiations for
each modeling type. The experiment has been run in negotiations against each
of the four agent types, and the the Pcorrect and Pwrong values in the tables are
averages over all negotiations for each scenario. The average values are shown
for both modeling types and for each of our seven scenarios. A description of
the scenarios can be found in section 6.2.

Data Frequency modeling Frequency modeling Bayesian modeling Bayesian modeling
set first offer last offer first offer last offer
1 0.834 0.834 1.000 1.000
2 0.500 0.500 0.625 0.750
3 0.250 0.427 0.250 0.000
4 0.667 0.667 0.750 0.750
5 0.792 0.820 0.958 0.958
6 0.500 0.659 0.875 0.875
7 0.000 0.525 0.375 0.375

Table 7.2: Opponent modeling correctness in AI versus AI negotiation. This
table shows the pcorrect values

Data Frequency modeling Frequency modeling Bayesian modeling Bayesian modeling
set first offer last offer first offer last offer
1 0.000 0.469 0.800 0.800
2 0.000 0.428 0.883 0.833
3 0.500 0.500 0.933 1.000
4 0.000 0.417 0.826 0.826
5 0.084 0.334 0.749 0.749
6 0.500 0.678 0.897 0.897
7 1.000 0.673 0.956 0.956

Table 7.3: Opponent modeling correctness in AI versus AI negotiation. This
table shows the pwrong values

7.1. EXPERIMENT N1 101

7.1.2 Discussion

The percentage of correct constraints found by our modeling approaches for the
different scenarios and the different modeling approaches is shown in table 7.2.
Table 7.3 shows the percentage of the modeled constraints that are wrong, that
is, how many of the constraints that have been found by the modeler are not
correct.

Frequency modeling

Examining the results for the frequency modeling agents, it is noticeable that
the percentage of correct constraints pcorrect is generally lower than that of
the Bayesian modeler, but that the percentage of wrong constraints pwrong is
also much lower. This can be seen in the tables, where table 7.2, showing
the pcorrect values, has lower values for frequency modeling in almost all the
scenarios. Table 7.3, showing the pwrong values, also has lower values in almost
all the scenarios. The lower percentage of correct constraints can probably be
attributed to the difficulty of finding constraints of the type NOT GIVE ITEM
or NOT GET ITEM. These are not visible purely from the offers suggested by
the opponent, and are therefore very difficult to find. The Bayesian modeler
finds these, but while doing this, it also finds a large set of false constraints.
Due to this it has a much higher pwrong value than the frequency modeler. None
of the models find all the constraints very often, as the frequency modeler is
cannot find constraints such as NOT GIVE ITEM or NOT GET ITEM, while
the Bayesian modeler is will not find value constraints. In order to make a good
opponent modeler in this domain, one would have to find a modeling approach
that is able to overcome both of these difficulties, maybe by combining several
different approaches.

A very good feature of the frequency modeler is that it gives very low pwrong
values, especially at the start of the negotiation, meaning that it finds few false
constraints. This is opposed to the Bayesian modeler which finds a large amount
of false constraints. An example of this is scenario 1, where the pwrong value is
0.0 after the first offer for the frequency modeler, while the value is 0.8 for the
Bayesian modeler, meaning it finds a lot more false constraints.

Another strong point of the frequency modeler is that the pcorrect value often
improves during the negotiation, as the modeler finds more constraints, espe-
cially value constraints that are not revealed by the initial offer. An example of

102 CHAPTER 7. RESULTS AND DISCUSSION

this is scenario 3, where it starts off poorly, with a pcorrect value of 0.25 after
the first offer, but this is improved to 0.427 during the negotiation. This makes
it easier for the frequency modeler to find good offers later in the negotiation. It
does however, have a problem, its pwrong value also increases quite often during
the negotiation, meaning it finds more false constraints during the negotiation.
This problem can be seen in scenario 1, where the pwrong value increases from
0.0 to 0.469 during the negotiation. The process of finding more constraints
during the negotiation can apparently be both positive and negative to the end
result. The method should therefore be tweaked more in any future work to
minimize the number of false constraints being found.

Bayesian Modeling

The Bayesian modeler seems to give overall better values for pcorrect than the
frequency modeler, sometimes even finding all of the constraints, such as in
scenario 1. However, the values are generally either very high or very low, with
scenario 3 even giving it a pcorrect value of 0.0, meaning it either finds most of
the constraints or very few of them. This modeling approach generally finds
a lot of constraints that frequency modeling does not find, such as constraints
for not giving items, explaining to some degree why this modeling approach
often gives higher values for pcorrect than the frequency modeler. It does not
currently find value constraints however, which causes it to perform very poorly
on some scenarios such as scenario 3 and scenario 7, where there are mostly
value constraints. This should explain the large variation between the results
on different scenarios.

The Bayesian modeler often gets a high value for pwrong, meaning it finds a lot of
false constraints. This can be seen very clearly in scenario 3, where it actually
gets a pwrong value of 1.0 after the last offer. This problem is made smaller
by the often high number of correct constraints, but can still be problematic.
The many false constraints can sometimes even be positive, as making a lot
of constraints about the opponent wanting items can make up for the problem
of not finding the value constraints of the opponents. Due to this, we have
seen in the results from experiment N2 that the Bayesian opponent modeler
generally performs similarly to the frequency modeler when it comes to average
satisfaction or success rate. Both of the methods often struggle making offers
however, as they may give up if they have no more constraints to satisfy without
ruining their own satisfaction. Looking at the models made by the Bayesian

7.1. EXPERIMENT N1 103

modeler, it is easy to see that this may be a problem, as it often makes many
constraints about not giving and not getting items, meaning that when it runs
out of sensible concessions it may start to remove items from its offers, either
making them unattractive to itself or its opponents. As an example of this we
show an opponent model made by the Bayesian modeler:

• GIVE ITEM TRADE GOLD ShouldGive: FALSE

• GIVE ITEM TRADE GOLD PER TURN ShouldGive: FALSE

• GIVE ITEM TRADE MAPS ShouldGive: FALSE

• GIVE ITEM TRADE DEFENSIVE PACT ShouldGive: FALSE

• GIVE ITEM TRADE TECHNOLOGIES ShouldGive: FALSE

• GIVE ITEM TRADE TECHNOLOGIES ShouldGive: FALSE

• GIVE ITEM TRADE TECHNOLOGIES ShouldGive: FALSE

• GIVE ITEM TRADE RESOURCES ShouldGive: TRUE

• GIVE ITEM TRADE WAR ShouldGive: FALSE

• GET ITEM TRADE GOLD ShouldGet: FALSE

• GET ITEM TRADE GOLD PER TURN ShouldGet: FALSE

• GET ITEM TRADE MAPS ShouldGet: FALSE

• GET ITEM TRADE RESOURCES ShouldGet: FALSE

• GET ITEM TRADE RESOURCES ShouldGet: FALSE

• GET ITEM TRADE RESOURCES ShouldGet: FALSE

• GET ITEM TRADE WAR ShouldGet: TRUE

• GET ITEM TRADE WAR ShouldGet: TRUE

In this case, the true constraints are:

• GIVE ITEM TRADE MAPS ShouldGive: FALSE

104 CHAPTER 7. RESULTS AND DISCUSSION

• GIVE ITEM TRADE RESOURCES ShouldGive: TRUE

• GET ITEM TRADE WAR ShouldGet: TRUE

• GET ITEM TRADE WAR ShouldGet: TRUE

It is clear from the example that all the constraints were found, but most of
the models consist of false constraints. The problem here is that the agent may
think it is improving the deal for its opponent when it removes an item like
TRADE GOLD from its offer, while this actually does not make any difference
for the opponent. This could make the negotiation slower, as concession will
be slow, and increases the risk of the opponent giving up. A more serious issue
may occur when the model only has constraints that contradict with the agent’s
own constraints left to be satisfied. In this case, it will start conceding on issues
based on false information, which will not make the opponent any more satisfied,
and usually ends with the agent giving up. Normally a deal can be found before
this happens, but if the modeler has not found enough correct constraints to
make a satisfactory deal for the opponent, this may happen, and will usually
cause the negotiation to fail. As mentioned in the discussion on experiment N2,
the problem of agents giving up like this could be fixed by making them try
giving more when they do not find any more good concessions to make, but the
problem could also possibly be minimized by reducing the number of false offers
in the opponent modeling.

The reason for the large amount of false constraints in the model is that it is
possible to make many constraints that are satisfied by an offer, even though
they are actually irrelevant to this offer, and these constraints will have the exact
same probability as the correct constraints. For instance, the modeler would
find that an offer suggesting to give the opponent the resource stone makes a
constraint about not wanting to give gold just as probable as a constraint about
wanting to give stone. In order to fix this problem, the modeling technique
would need to be tweaked so that constraints that are unintentionally satisfied
become less likely. The simplest approach to fixing this would be to have priori
knowledge about what kind of constraints are the most probable, but this cannot
be guaranteed in any real situations, and is therefore an undesirable approach.
Another solution could be to tweak the learning algorithm itself so that the
probabilities are not only affected by the satisfaction level of the constraint
given the offer, but also how closely the constraint is related to the offer. A
system that does this may find less false constraints, but will probably also miss
a lot of the more difficult constraints that our system finds.

7.1. EXPERIMENT N1 105

We also notice that the Bayesian modeler does not generally improve during
the negotiation. It finds a large set of constraints based on the first offer, and
these are not changed throughout the negotiation. It does reasonably well on
the first offer however, so refining the model gradually may not be necessary.

Detailed discussion of each scenario

Looking at each scenario in detail, we see that in the first scenario both modeling
techniques got a high Pcorrect value, but the Bayesian modeler was clearly better
with a value of 1.0 versus a value of 0.834. This was expected in our discussion of
each scenario in section 6.2 as scenario 1 is simple and should be relatively easy
to model, but it does contain constraints about not giving items, and this can
be difficult for the frequency modeler to find, leading to the frequency modeler
to get a lower Pcorrect compared to the Bayesian modeler.

Scenario 2 was expected to show similar results, but with a more pronounced
difference as it is a more difficult scenario to model. There are more constraints
about not giving items in this scenario, causing the frequency modeler to per-
form poorly with only a Pcorrect value of 0.5 compared to the Bayesian modeler’s
score of 0.625. In this scenario we expected to see the frequency modeler improve
its correctness during the negotiation as it tries to find the value constraint of
its opponent, but this did not happen. From row 2 in table 7.3, we see however,
that it did find a lot of false constraints, causing its pwrong value to increase
from 0.0 to 0.428.

Scenario 3 was expected to be much more of a problem for our modeling ap-
proaches, and to be harder for the Bayesian modeler than for the frequency
modeler as the frequency modeler may find the value constraints eventually dur-
ing the negotiations. This prediction seems to be true, as the Bayesian modeler
performs very poorly, with Pcorrect values of 0.25 and 0.0, while the frequency
modeler started with the same value of 0.25, but increased its correctness to
0.427 during the negotiation.

For scenario 4, we predicted that the results would be similar to scenario 3,
but with higher scores, as this scenario has more easy constraints in addition
to the hard constraints. The actual results were a bit different however, as our
Bayesian modeler did quite well with a Pcorrect value of 0.75, and once again,
the frequency modeler failed to learn the value constraint, thereby being unable
to improve its score of 0.667 during the negotiation. Similarly to scenario 2, the

106 CHAPTER 7. RESULTS AND DISCUSSION

frequency modeler found more false constraints instead, ending with a Pwrong
value of 0.417.

The next scenario, however, was expected to be much easier, as it contains a
large amount of easy constraints and a few harder ones. This is evident in the
results , where both modeling techniques did quite well. The Bayesian modeler
is clearly the best technique in this scenario with a Pcorrect value of 0.958, but
the frequency modeler also does well, and even improves its Pcorrect value during
the negotiation, ending with a value of 0.82.

Scenario 6 was predicted to be much more difficult compared to the previous
scenarios, mostly due to its small number of constraints, most of which are
difficult to find. In the actual results, both modeling techniques did worse than
in the last scenario, but compared to some of the other difficult scenarios such as
scenario 3, the results are surprisingly good with the Bayesian modeler gaining
a Pcorrect value of 0.875 and the frequency modeler improving its score from 0.5
to 0.678 during the negotiations. It seems then that we have overestimated the
difficulty of this scenario.

The last scenario is largely similar to scenario 6, but was predicted to be even
harder, especially for the Bayesian modeler which will struggle with the many
value constraints in the scenario. The frequency modeler was expected to be
able to find some of these constraints during the negotiation, and thereby doing
a bit better than the Bayesian modeler. This is evident in the results, where
the Bayesian gets a low Pcorrect score of 0.375, while the frequency modeler is
able to improve its model from the dismal start of 0.0 to a value of 0.525.

7.2 Experiment N2: Testing outcomes in agent
vs agent negotiations

This experiment tests our system’s performance on a varied set of scenarios
containing the trade-able objects and the constraints of both players. Two
AI controlled players are facing off against each other, trying to maximize the
satisfaction of their own constraints. The experiment records the average success
rate over each of the seven scenarios described in section 6.2 for each combination
of agent type, as well as the average satisfaction degree each player achieved, the
average number of rounds and the average time per negotiation. The different
agent types can be seen in table 7.1. In order to know how good these results

7.2. EXPERIMENT N2 107

actually are, we have also decided to manually calculate the optimal results
for these values so that we can compare our results to this. These values are
presented below. We then present the results of the experiments before we
discuss what we have noticed in these results. The end of this chapter gives an
overall discussion of the results from all the experiments.

7.2.1 Optimal results

We have calculated what the optimal results would be for all the scenarios by
examining each scenario and manually calculating what deal would maximize
social welfare. All of the deals that maximize social welfare are also Pareto
optimal, but they are not the only Pareto optimal deals.

Social welfare is defined as the function:

sw(ω) =
∑
i∈Ag

ui(ω)

where Ag denotes all agents. The deal that maximizes social welfare, is the deal
that satisfies the equation:

optimal = arg maxalldeals(sw(ω)) = arg maxalldeals(
∑
i∈Ag

ui(ω))

The social welfare maximizing deals are included in the scenario descriptions
in section 6.2. For each of them, we have calculated the satisfaction degree for
each player. We found that it should be possible to make a satisfactory deal on
all the negotiation scenarios, meaning that our system should be able to achieve
a success-rate of 100%. We see in the discussion of these scenarios in section 6.2
that it is often easier for player 2 to concede than for player 1, where player 1 is
the agent starting the negotiation, and comes first in the scenario description,
while player 2 is its opponent. This is due to conflicting constraints in our
scenarios, where player 2 has a lower priority on the constraints, making it easier
for this player to concede. This means that in the social welfare maximizing
deals, the player making the first offer is generally better off than its opponent.
There are exceptions to this however, and especially scenario 6 gives a very
low satisfaction to player 1 in the social welfare maximizing deal as shown in
the description of this scenario in section 6.2. Due to this particular scenario,

108 CHAPTER 7. RESULTS AND DISCUSSION

player 2 gets a higher average satisfaction than player 1 does in all scenarios. The
average satisfaction of the social welfare maximizing deal for player 1 throughout
the scenarios is 0.949, while the average satisfaction for player 2 is 0.973. This
particular issue is an artifact of our scenarios, and could be avoided by making a
more balanced set of scenarios, but it is not a problem for the testing so we have
decided not to change it. The imbalance in the scenarios should also be evident
in our results if our system gets close to producing social welfare maximizing
deals, as player 2 should be getting a higher average satisfaction than player 1.
The satisfaction values of the optimal deals given in section 6.2 can be compared
to the average satisfaction in our results to evaluate how well our system does.

7.2.2 Actual Results

Here are the actual results from our test run. In order to make the tables
smaller, we represent the different opponent modeling agents as a number. These
agent types and their number representation can be seen in table 7.1. In the
result tables 7.4, 7.5 and 7.7 we show the results from two agents facing off
against each other, where the identifiers in columns and rows show what agents
are negotiating with each other. Each negotiation type faces off against each
negotiation type once for each scenario, including facing off against an agent
with the same negotiation type as itself. The results in the tables are averages
over all the seven scenarios. Table 7.6 is a little different from the other tables.
It shows the time used for making offers for each agent against each other agent.
In this table, the agent in the column is making the offer against the agent in
the row.

Player 1
1 2 3 4

Pl
ay

er
2 1 42.9%

2 57.1% 71.4%
3 71.4% 71.4% 71.4%
4 85.7% 71.4% 57.1% 85.7%

Table 7.4: Success-rate in AI versus AI negotiations

7.2. EXPERIMENT N2 109

Player 1
1 2 3 4

Pl
ay

er
2 1 11.6

2 10.2 4.57
3 8.14 4.57 4.71
4 6.14 4.57 4.71 4.29

Table 7.5: Average number of offers in AI versus AI negotiations

Player making offer
1 2 3 4

O
pp

on
en

t 1 0.0280 0.0355 0.0177 0.0260
2 0.0933 0.0843 0.0614 0.0651
3 0.1101 0.0838 0.0569 0.0330
4 0.1106 0.0887 0.0805 0.0716

Table 7.6: Average time to make an offer in AI versus AI negotiations. All
times are shown in seconds. The player making the offer is in the column.

Player 1
1 2 3 4

Pl
ay

er
2 1 0.429/0.420

2 0.705/0.658 0.705/0.651
3 0.705/0.651 0.705/0.651 0.666/0.647
4 0.848/0.783 0.705/0.651 0.562/0.515 0.848/0.800

Table 7.7: Average satisfaction in AI versus AI negotiations

110 CHAPTER 7. RESULTS AND DISCUSSION

7.2.3 Discussion

Success Rate

Table 7.4 shows the success rate of the negotiations in the experiment. We have
calculated the average success rate over all scenarios for each combination of
agent types. The success rate is calculated according to equation 6.3 in section
6.1.1.

The first thing we noticed when examining the results, is that the agents that
don’t use modeling (agent type 1 in the table) get a much lower success rate.
In particular, the experiment where agent type 1 against agent type 1 gives the
lowest success rate in the experiment with 42.9 per cent. This was expected, and
gives a positive answer to our research question RQ3, about whether opponent
modeling improves the results of the negotiations. The results show a clear
improvement when using opponent modeling over not using it. Compared to
the agents that have full information about their opponents (agent type 4),
the opponent modeling agents (agent types 2 and 3) generally achieve a lower
success rate. The results are, however, quite close as agent types 2 and 3 get
a success rate of 71.4 per cent in most of the cases, while agent type 4 has its
best success rates at 85.7 per cent and its worst success rate at 57.1 per cent.
It therefore seems that our opponent modeling approach is working quite well,
but not quite as good as having full information.

We also notice that Bayesian modeling and frequency modeling seem to be
performing equally good in most cases. They pretty much get the same result
of 71.4 per cent in most match-ups. There are exceptions however, and especially
one curious case of Bayesian vs full information (agent types 3 versus 4) performs
very poorly with a score of only 57.1 per cent. An important factor for the
similar results in the table is the low number of scenarios in our experiments.
We only have seven scenarios. This means that the difference between the
best results of the full information agent and the slightly worse results of the
opponent modeling agents is only the difference of five successful negotiation
out of seven scenarios versus in six out of seven. This also means that the
lower success rate for agent type 2 versus 4 can be attributed to randomness.
The opponent modeling agents seem to generally succeed on five out of our
seven scenarios (71.4 per cent), meaning that succeeding on four out of seven
negotiations is not a surprise. In order to combat this problem, a larger set of
scenarios should be used for testing, but this has not been done in this project, as

7.2. EXPERIMENT N2 111

automatic testing is not possible in the Civilization IV domain, and experiments
are therefore very time consuming.

Not even agents using full information (agent type 4) perform perfectly, with the
best success rate being six out of seven scenarios (85.7 per cent). This may be
caused by our searching algorithm being a local search, which is not exhaustive
and may not find the best offer given the current knowledge. In addition to
this, the negotiation may fail because the opponent gave up, which gives both
agents a lower success rate. This seems to be a problem in both of our opponent
modeling types. A reason for this may be that the opponent modeler makes a
small number of constraints for the opponent, and tries to satisfy these when
conceding as described in section 5.3.3. If it cannot satisfy these constraints
while simultaneously satisfying its own constraints, it will give up. This means
that in many of our scenarios, especially the ones with fewer constraints to
satisfy, the opponent modeling agents are more prone to giving up. This shows
as the full information agents do much worse against the opponent modelers
than against agents of its own type or against agents that do not use models.
Notice especially that the full information agent does well against agents with
no modeling (agent type 1 versus 4 in table 7.4). These agents do not give up
very easily, as they will keep trying to give more as long as there is more to
give, and may therefore be a little more likely to find a possible deal, giving
a higher success rate. In order to fix this problem, we would need to change
our algorithm for creating offers into an algorithm that is less dependent on the
opponent model. An agent that tries giving things that are not in its opponent
model instead of giving up would probably end up with a much higher success
rate in this experiment. This would also increase the success rate of the full
information agent, as it only ever fails when its opponent gives up before it has
produced a good enough deal.

Number of Offers

In order to evaluate how fast our agents negotiate, we have also calculated the
average number of offers made over all scenarios for each combination of agent
types. These results are shown in table 7.5. Agents using modeling (agent type
2 or 3) or agents having full information (agent type 4) generally need much
fewer offers before reaching a deal than agents that don’t use any information
about their opponents. This can be seen from table 7.5, where agent 1, which
does not use modeling, gets the worst result against agents of the same type

112 CHAPTER 7. RESULTS AND DISCUSSION

with 11.6 offers in average before finding a deal. When negotiating against other
agent types, the results improve, and the best results come when agents with full
information (agent type 4) negotiate with each other, needing only 4.29 offers
in average. This is as expected, as agents using no modeling (agent type 1)
will just try to add any items to make its offer more attractive to its opponent,
not knowing what the opponent wants. In cases where the agents have value
constraints, this may not be a big problem, but when negotiating with agents
that want specific items, it will generally take many offers before a good deal
can be found. We also see in these results that our opponent modeling agents
need almost as few offers as the full information agents, needing only 4.57 or
4.71 offers on average in most of the match-ups, meaning that the modeling
definitely helps the agents finding an acceptable offer faster.

Time use

The time used to make an offer is shown in table 7.6. The time is shown for
each agent type, with separate results against each agent type. From this table,
we see that the time spent making offers is generally very low with the highest
value being 0.1106 seconds, which is important for our system, because low
response times are important, especially when the AI’s are negotiating with
each other while the players are waiting. Notice that the complex opponent
modeling such as Bayesian learning is not slower than the simpler frequency
modeling or even the no modeling agent. The highest time use for the Bayesian
modeler (agent type 3 in the table) is 0.0805, while the highest value for the
frequency modeler (agent type 2) is 0.0887, but the lowest time use is 0.0177
for the Bayesian modeler and 0.0355 for the frequency modeler, meaning that
the Bayesian modeler can be faster. The slowest agent is surprisingly the agent
using no modeling (agent type 1) with the highest time used being 0.1106 and
the lowest being 0.0280. This is surprising because the Bayesian modeler needs
to do a large amount of extra calculations compared to the other agents. The
fastest agent is clearly the full information agent, which is to be expected, as it
already knows what the opponent wants and only needs to make an offer that
satisfies this. The difference between this and the opponent modeling agents is
small however, as its highest time use is 0.0716, only 0.0171 seconds faster than
the frequency modelers fastest time. This means that the modeling imposes a
very small overhead. A possible explanation for the slow offer making by the
agent not using information could be that this agent needs to search through
all possible items it can add to- or remove from the deal, while the modeling

7.2. EXPERIMENT N2 113

agents and the full information agents only need to choose the best constraint
of the opponent and try to satisfy it, which is much faster as long as it is not
a value constraint. As most modeled constraints are item constraints and not
value constraints, the average performance of these agents is much lower as long
as the modeling itself is fast.

Satisfaction

Table 7.7 shows the average satisfaction achieved over all scenarios for each
combination of agents. The number to the left is the satisfaction achieved by the
agent shown in the row, while the number to the right is the satisfaction achieved
by the agent shown in the column. The results here are closely correlated to the
results in the success rate, as every unsuccessful negotiation gives a satisfaction
of zero to both players. The curious case of Bayesian versus full information
(agent type 3 versus 4 in the table) giving poor results is therefore as evident
here as it was in the success rate results, with player 1 getting a satisfaction
of 0.562 and player 2 getting a satisfaction of 0.515. We see that the agents
not using modeling get a much lower satisfaction when negotiating with each
other than when negotiating against agents with modeling or full information,
ending with an average satisfaction of 0.429 for player 1 and 0.42 for player 2.
An important point to note here is that when negotiating against against the
modeling agents (agents 2 and 3) and with the full information agent (agent 4),
the agent not using modeling (agent 1) does not get poor results, but instead
gets higher satisfaction levels than its opponents. This can be seen in the player
1 column in table 7.7, where player 1 gets the values 0.429, 0.705, 0.705 and
0.848, while its opponent gets the values 0.420, 0.658, 0.651 and 0.783. This
result will be discussed further later in this section.

It is noticeable that player 1 generally does better than player 2 in our scenarios,
where player 1 is the agent starting the negotiations, and player 2 is its opponent.
This seems not to align with the optimal results discussed in section 7.2.1, where
player 2’s average satisfaction is higher than the average satisfaction of player
1. By closer examination of the scenarios however, we notice that in most of
the scenarios, player 1 does better than player 2 in the optimal results. There is
actually only two scenarios where player 1 is worse off than player 2. One of these
scenarios, scenario 6, was shown to be very difficult for player 1 in the scenario
discussion in section 6.2. This scenario makes such a big difference that it is the
reason for player 1 ending up below player 2 in the optimal results. In our actual

114 CHAPTER 7. RESULTS AND DISCUSSION

results however, this does not happen, possibly due to a poor opponent model.
In the results player 1 actually performs consistently better than player 2 in this
scenario (scores for each scenario are omitted in this report for readability, and
only average values are shown in the tables). As the other scenarios we have
made mostly favor player 1, this explains why the average values are higher for
player 1 than for player 2 across all combinations of agents,even though it is
different from the optimal result we have calculated. On closer examination of
scenario 6 from section 6.2, we find that player 1’s constraints are very easy to
find, and all our modeling approaches will find them on the first attempt, while
player 2’s constraints are much harder and will often not be found correctly.
This makes it easier for player 2 to concede to something player 1 wants, which
ends with player 1 getting a higher satisfaction than player 2. In addition to
this, there are only two issues to give that will satisfy these constraints, war
with player 4 and war with player 6. One of these is conflicting with player 2’s
constraints, but not important enough to stop the agent from giving it. This
means that in most cases in this scenario, player 2 will concede by offering war
with P6, which is against its own constraints. This deal will usually be accepted,
ending the negotiation with player 2 losing out on satisfaction compared to its
opponent, which has not yet formed a good opponent model.

This result where the first agent that finds a good model concedes first and
thereby gets a lower score, makes it seem like finding a good opponent model
fast is bad for the agent. The idea is strengthened more by the fact that even
when player 1 is an agent with no modeling, it does better than its opponent
in our scenarios. This means that even though modeling significantly increases
the success rate, it does not give an advantage over the opponent in terms of
satisfaction. These results are slightly biased by the fact that in our tests, the
agent without modeling (agent type 1) has consistently been tested as player
1, and as mentioned above, player 1 is in a better position than player 2 in
most of our scenarios regardless of what types of agents are negotiating. We
hypothesized that the agents with full information or opponent modeling would
be able to outperform agent type 1, even when not being in the best position,
but this does not seem to be the case. It therefore seems that agents do not
utilize their information well enough to make it an advantage over less informed
agents. This is a problem with our negotiation strategy, and not our opponent
modeling techniques, and shows that in any further work, more emphasis should
be put on the strategy.

In order to combat the problem, we should try to make the agents less willing

7.3. OVERALL DISCUSSION 115

to concede, more willing to explore the negotiation space rather than trying to
appease its opponent, and possibly better at abusing the information it finds.
Such improvements would be important steps in any future work in this domain.
Using a more advanced negotiation strategy such as the well established Zeuthen
strategy [5, pp.43] could significantly improve these results.

7.3 Overall Discussion

Overall, our experiments have shown that while there is still a lot of room for
improvement, our system is capable of efficient multi issue negotiation in the
Civilization IV domain without impairing the user experience, and both of our
opponent modeling techniques show significantly improved results compared
to negotiating without information. The perhaps biggest issue we have found
with our approach, is that the agents are not capable of using their opponent
models to gain an advantage over their opponents. The models make it much
easier to make a deal. However, as we have shown in the discussion sections
above, the agent with the best model often makes the most concessions, and
therefore often loses out on utility in the end. If further work is to be done in
this domain, making a smarter negotiating algorithm capable of utilizing the
modeled information better would be key to achieving better results. Another
big issue is the problem of agents sometimes giving up. This could be remedied
by making better opponent models, but also by having a smarter algorithm for
making offers that recognizes the fact that it might still be worth trying to make
an offer when the opponent model is not good enough.

When it comes to the speed of the negotiation, which is of major importance in
a video game, our algorithms have shown to be more than fast enough for the
extra computing time to be unnoticeable. In fact, it seems that the opponent
modeling agents often compute offers faster than agents not using opponent
modeling, as having a model significantly speeds up the process of making an
offer. In addition to this, negotiations require fewer rounds to find a suitable
deal when using opponent modeling than without it.

Comparing our two opponent modeling techniques, we find that both meth-
ods have their strengths and weaknesses. The frequency modeling finds few
false constraints, but struggles finding some specific constraint types, while the
Bayesian is better at finding the different constraint types but also finds many
false constraints as well as struggling to find value constraints. The higher

116 CHAPTER 7. RESULTS AND DISCUSSION

number of false constraints does however, not seem to be a major disadvantage
as these are generally irrelevant constraints that do not impact what will be
offered. Due to the advantages and disadvantages of both modeling types, a
possibility for future work in this area could be to combine these two techniques
to overcome their weaknesses. Time usage seems to be an insignificant factor in
this domain as both methods are more than fast enough. This means that going
for a simpler technique such as frequency modeling to save processing time is
not necessary. The time complexity may however, make more of a difference
in future work if more complex computations are to be used for other parts of
the negotiations or if the system is to be used in a more demanding real time
system where response times need to be shorter.

Chapter 8

Conclusion

We have made a negotiation system specially adapted to the domain of Civi-
lization IV that expands and improves the capabilities of the built-in AI.

The primary goal of the project was to explore the use of multi-issue negotiation
systems with limited information in a complex, soft real-time system such as
the video game Civilization IV. As stated in RQ1 our research aims to find
whether such a system is feasible. The experiments show that the negotiation
system performs adequately given the difficult domain, and runs fast enough
to be feasible for use in real-time systems. The algorithms used computed
fast enough so that the extra computing time did not become noticeable while
playing.

An important feature of any negotiation system, and the focus of our second
research question, RQ2, is whether it can guarantee Pareto optimality or max-
imization of social welfare. We have found that, in theory, using our methods
with full information and exhaustive searching would guarantee Pareto optimal-
ity. However, due to the nature of the domain, we have limited information and
even when we are using opponent models, we cannot guarantee their accuracy,
thus we cannot guarantee Pareto optimality.

When it comes to maximizing social welfare, we have found that our system
is not able to do this, even with full information. In our solution the agents
always have a concession limit for the satisfaction level that the acceptable
offers should have, and whenever an offer is above this limit, the AI accepts

117

118 CHAPTER 8. CONCLUSION

without considering whether there exists a better offer or not. This means that
it might accept an offer that is not necessarily the best possible offer and the
social welfare is therefore not maximized.

Our research has focused on the use of opponent modeling to improve the negoti-
ation results, and thus, in our last research question, RQ3, we ask whether these
techniques actually improve the results. Two opponent modeling methods have
been evaluated, Bayesian modeling and frequency modeling. The experiments
showed that both methods can improve the negotiation results significantly, but
that they were far from flawless. As mentioned before, both algorithms are more
than fast enough to be used in a real-time domain. In addition to this, negoti-
ations using opponent modeling required fewer rounds before finding a suitable
deal in our experiments compared to negotiations without opponent modeling.
Our system does not, however, make use of the opponent model as much as it
should. Having a model of the opponent should give the agent an advantage,
but this is not the case, meaning our system does not utilize the information
well enough.

Overall our project has shown that using these multi agent techniques for ne-
gotiation is feasible in Civilization IV, and the use of opponent modeling can
significantly improve the negotiation results in this domain.

Chapter 9

Future Work

There are many possibilities for improving our current solution. For instance,
the opponent modeling should be improved to find all types of constraint. In
our current solution, neither the frequency modeling or the Bayesian modeling
are able to find all the different types of constraints. The opponent modeling
could also be further improved to find less false-positive constraints. Since
both opponent modeling methods have their own strengths and weaknesses, a
possibility here would be to combine the two to overcome their weaknesses. This
would increase the complexity, which may result in higher computing times. Due
to this, such a solution may not be suitable for real-time systems anymore.

The decision making mechanism in negotiations could also be improved by mak-
ing it utilize the opponent model in a more efficient way. In our solution, having
a very accurate opponent model actually makes the AI worse off because it ends
up conceding more effectively than its opponent. This information should be
used to give the AI an advantage. The decision making should also be improved
so that it does not give up as easily as it does now. In order to improve the
solution, a well known negotiation strategy such as the Zeuthen strategy could
be used.

The decision making on when to negotiate and what to negotiate about is very
simple in our solution. It currently utilizes the original AI’s decision making,
which does not think forward or reason about what it actually needs. For further
improvements of the system, its decision making could be expanded to do such

119

120 CHAPTER 9. FUTURE WORK

reasoning i.e. by using a planning system.

The representation of constraints can also be made more general and fuzzy, giv-
ing room for negotiations to find more different and unique offers and solutions.

Bibliography

[1] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley Pub-
lishing, 2nd edition, 2009. ISBN 0470519460, 9780470519462.

[2] Nicholas R. Jennings and Michael Wooldridge. On agent-based software
engineering. Artificial Intelligence, 117:277–296, 2000.

[3] John Von Neumann and Oskar Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton University Press, 1944. ISBN 0691119937.

[4] Martin J. Osborne. An Introduction to Game Theory. Oxford Univ. Press,
2004. ISBN 978-0-19-512895-6.

[5] Jeffrey S Rosenschein and Gilad Zlotkin. Rules of encounter: designing
conventions for automated negotiation among computers. the MIT Press,
1994.

[6] S.J. Russell, P. Norvig, E. Davis, S.J. Russell, and S.J. Russell. Artificial
intelligence: a modern approach. Prentice hall Upper Saddle River, NJ,
2010.

[7] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1 edition, 1997. ISBN 0070428077, 9780070428072.

[8] R. Walpole, R. Myers, S. Myers, and K. Ye. Probability & Statistics For
Engineers & Scientists, Eight Edition. Pearson Education International,
2007. ISBN 0132047675.

[9] Reid Garfield Smith. A framework for problem-solving in a distributed pro-
cessing environment. PhD thesis, Stanford, CA, USA, 1979. AAI7912412.

121

122 BIBLIOGRAPHY

[10] Thomas W Malone, Richard E Fikes, and Michael T Howard. Enterprise:
A market-like task scheduler for distributed computing environments. 1983.

[11] M. Beer, M. D’inverno, M. Luck, N. Jennings, C. Preist, and M. Schroeder.
Negotiation in multi-agent systems. The Knowledge Engineering Review,
14(03):285–289, 1999.

[12] S. Kraus and D. Lehmann. Designing and building a negotiating automated
agent. Computational Intelligence, 11(1):132–171, 2007.

[13] X. Luo, N.R. Jennings, N. Shadbolt, H. Leung, and J.H. Lee. A fuzzy
constraint based model for bilateral, multi-issue negotiations in semi-
competitive environments. Artificial Intelligence, 148(1):53–102, 2003.

[14] V. Tamma, S. Phelps, I. Dickinson, and M. Wooldridge. Ontologies for
supporting negotiation in e-commerce. Engineering applications of artificial
intelligence, 18(2):223–236, 2005.

[15] J. Shaheed. Creating a diplomat. Master’s Thesis, Imperial College, Lon-
don, UK, 2004.

[16] S. Saha. Improving agreements in multi-issue negotiation. Journal of Elec-
tronic Commerce Research.(to appear), 2006.

[17] Shaheen Fatima, Michael Wooldridge, and Nicholas R. Jennings. An analy-
sis of feasible solutions for multi-issue negotiation involving nonlinear util-
ity functions. In Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems - Volume 2, AAMAS ’09, pages
1041–1048. International Foundation for Autonomous Agents and Multia-
gent Systems, 2009.

[18] S.S. Fatima, M. Wooldridge, and N.R. Jennings. Approximate and online
multi-issue negotiation. In Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems, page 156. ACM,
2007.

[19] H. Raiffa. The art and science of negotiation. Belknap Press, 1982.

[20] D.G. Pruitt. Negotiation behavior, volume 47. Academic Press New York,
1981.

BIBLIOGRAPHY 123

[21] Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negotiation deci-
sion functions for autonomous agents. INTERNATIONAL JOURNAL OF
ROBOTICS AND AUTONOMOUS SYSTEMS, 24:3–4, 1998.

[22] Jan Richter, Matthias Klusch, and Ryszard Kowalczyk. On monotonic
mixed tactics and strategies for multi-issue negotiation. In Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent
Systems: volume 1 - Volume 1, AAMAS ’10, pages 1609–1610. International
Foundation for Autonomous Agents and Multiagent Systems, 2010.

[23] K. Hindriks, C. Jonker, and D. Tykhonov. Analysis of negotiation dynam-
ics. Cooperative Information Agents XI, pages 27–35, 2007.

[24] Michal Chalamish and Sarit Kraus. Automed: an automated mediator
for multi-issue bilateral negotiations. Autonomous Agents and Multi-Agent
Systems, 24(3):536–564, 2012.

[25] C.M. Jonker, V. Robu, and J. Treur. An agent architecture for multi-
attribute negotiation using incomplete preference information. Autonomous
Agents and Multi-Agent Systems, 15(2):221–252, 2007.

[26] Hamid Jazayeriy, Masrah Azmi-Murad, Nasir Sulaiman, and Nur
Izura Udizir. The learning of an opponent’s approximate preferences in
bilateral automated negotiation. Journal of theoretical and applied elec-
tronic commerce research, 6(3):65–84, 2011.

[27] Tim Baarslag, Mark Hendrikx, Koen Hindriks, and Catholijn Jonker. Mea-
suring the performance of online opponent models in automated bilateral
negotiation. In Proceedings of the 25th Australasian joint conference on
Advances in Artificial Intelligence, AI’12, pages 1–14, Berlin, Heidelberg,
2012. Springer-Verlag. ISBN 978-3-642-35100-6.

[28] Thijs van Krimpen, Daphne Looije, and Siamak Hajizadeh. Hardheaded.
In Complex Automated Negotiations: Theories, Models, and Software Com-
petitions, pages 223–227. Springer, 2013.

[29] S Fatima, Michael Wooldridge, and Nicholas Jennings. Optimal negotiation
strategies for agents with incomplete information. Intelligent Agents VIII,
pages 377–392, 2002.

124 BIBLIOGRAPHY

[30] K. Hindriks and D. Tykhonov. Opponent modelling in automated multi-
issue negotiation using bayesian learning. In Proceedings of the 7th inter-
national joint conference on Autonomous agents and multiagent systems,
volume 1, pages 331–338, 2008.

[31] Dajun Zeng and Katia Sycara. Bayesian learning in negotiation. Interna-
tional Journal of Human-Computer Studies, 48(1):125–141, 1998.

[32] Robert M Coehoorn and Nicholas R Jennings. Learning on opponent’s pref-
erences to make effective multi-issue negotiation trade-offs. In Proceedings
of the 6th international conference on Electronic commerce, pages 59–68.
ACM, 2004.

[33] Y. Oshrat, R. Lin, and S. Kraus. Facing the challenge of human-agent nego-
tiations via effective general opponent modeling. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-
Volume 1, pages 377–384. International Foundation for Autonomous Agents
and Multiagent Systems, 2009.

[34] Mark Klein, Peyman Faratin, Hiroki Sayama, and Yaneer Bar-Yam. Nego-
tiating complex contracts. Group Decision and Negotiation, 12(2):111–125,
2003.

[35] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier
methodology. Systems, Man and Cybernetics, IEEE Transactions on, 21
(3):660–674, 1991.

[36] Finn V Jensen. An introduction to Bayesian networks, volume 74. UCL
press London, 1996.

[37] Sahibsingh A Dudani. The distance-weighted k-nearest-neighbor rule. Sys-
tems, Man and Cybernetics, IEEE Transactions on, (4):325–327, 1976.

[38] David B Leake. Case-based reasoning. John Wiley and Sons Ltd., 2003.

[39] G. Lai, C. Li, K. Sycara, and J. Giampapa. Literature review on multi-
attribute negotiations. Robotics Inst., Carnegie Mellon Univ., Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-04-66, 2004.

[40] Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks,
and Catholijn M Jonker. Genius: An integrated environment for supporting
the design of generic automated negotiators. Computational Intelligence,
2012.

	Introduction
	Motivations
	Task Specification and Scope
	Research Questions
	Contributions
	Research Method
	Report outline

	Introduction to Civilization IV
	What Is Civilization IV
	The Original AI Of The Game
	Trade-able Items
	Relations vs Repeated Games
	Actions or Situations Affecting Relations Between Two Players
	Current Use of Negotiations

	The AI Code
	Overview of the code
	Important Classes

	Background Theory
	Agent Systems
	Multi-agent Systems
	Game Theory
	Prisoner's Dilemma
	Solution Concepts
	Negotiations
	Pareto Optimal
	Social Welfare

	Constraint Satisfaction Problems
	Machine Learning
	Bayesian Learning

	Bayes' Rule

	Related Work
	Our Solution
	Negotiation in Civilization
	Negotiation Domain

	Solution Architecture
	Agent Description

	Negotiation Protocol
	Constraint Satisfaction for Generating and Evaluating Offers
	Constraint Satisfaction Problems
	Concession Strategy

	Opponent Modeling
	Extracting Information From Bids
	Frequency Modeling
	Bayesian Learning
	Pareto Optimality
	Social Welfare
	Negotiation Scenarios

	Example Run of our System

	Experiments
	Evaluation Method
	Calculating Results

	Negotiation Scenarios
	Negotiation Experiments
	Experiment N1
	Experiment N2

	Results and Discussion
	Experiment N1
	Results
	Discussion

	Experiment N2
	Optimal results
	Actual Results
	Discussion

	Overall Discussion

	Conclusion
	Future Work

