
Open network topology services

Roy Sindre Norangshol

Master of Science in Informatics

Supervisor: Svein Erik Bratsberg, IDI
Co-supervisor: Olav Kvittem, UNINETT

Vidar Faltinsen, UNINETT
Morten Brekkevoll, UNINETT

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology



 



O P E N N E T W O R K T O P O L O G Y S E RV I C E S

roy sindre norangshol

UNINETT is the national research IP network operator in Norway. UNINETT
provides universities, university colleges and research institutions with access to the
global internet as well as access to a range of online services. UNINETT also offers
counselling and act as secretary and coordinator in collaborative activities between

the institutions interconnected by UNINETT.
UNINETT is a multilevel network that is built from cables, fibers, lambdas, VLANS,

IP networks and VPNs. There is need to solve the problem of documenting the global
research network infrastructure that allows for common tools and for exchange of
information between universities and research networks. There has been several ini-
tiatives to address part of these problems like : In Norway with NAV a network
managment system for campuses, in the Nordic area at NORDUnet, in Europe with
Géant projects as well as American/Internet2 activities.

The task is to survey state of the art of tools and data models in this area, and
recommend an open system architecture containing data models, exchange protocols
and available system components . A protoype implementation that demonstrates
the capabilities of the architecture should be built if time allows it.

Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering

Norwegian University of Science and Technology
June 2013 – version 1.0



Roy Sindre Norangshol: Open Network Topology Services, , © June 2013



A B S T R A C T

This master project examines whether there is an existing model for
describing network topologies in abstract and generic manner. I also
looked for networking protocols for exchanging network topologies
and handling of dynamically creation of circuit connections across
domains. I’ve also been working on a prototype for visualization of
network topologies using Network Administration Visualized (NAV)
as a data backend, and further to check the possibilities to use the
found topology model in my prototype.

My findings shows that there is progress towards creating a stan-
dard topology model to describe network topologies in an abstract
and generic manner. There is also progress in creating a network ar-
chitecture with networking protocols for exchanging network topolo-
gies across domains and providing a connection reservation service to
handle creation of dynamically circuit connections. Prototype shows
there is lots of ideas for further works on what to implement in re-
gards of the found network topology model and networking systems
that was found.

S A M M E N D R A G

Dette masterprosjektet undersøker om det finnes en eksisterende mod-
ell for å beskrive nettverkstopologier på en abstrakt og genrell måte,
samtidig som det har blitt søkt etter en nettverksarkitektur og nettverk-
sprotkoller for å utveklse nettverkstopologier på kryss av domener
mellom nettverksoperatører og kunne dynamisk reservere dedikerte
nettverkstilkoblinger mellom to punkter. Jeg har også jobbet med pro-
totyping av nettverksvisualisering hvor jeg har undersøkt hvordan
dette kunne knyttes opp mot NAV, og senere muligheten for å bruke
modellen for å beskrive nettverkstopologier i prototypen.

Funnene mine viser at det allerede er storsatsing på området for
å beskrive nettverkstopologier og det jobbes med en nettverksarik-
tektur og nettverksprotokoller for utveksling av topologier og op-
prettelse av dynamiske nettverkstilkoblingsreservasjoner på kryss av
nettverksdomener og prototypen viser store muligheten for videre ar-
beid av hva som kan implementeres i forhold til nettverksmodellen
og nettverkssystemene som ble funnet.

iii





We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [12]

P R E FA C E

This report presents the work done for my master’s thesis at the De-
partment of Computer and Information Science at the Norwegian
University of Science and Technology. The work was done during
the fall 2012 and spring of 2013 and concludes my master’s degree in
Informatics.

I would like to thank UNINETT, especially Olav Kvittem, Morten
Brekkevoll and Vidar Faltinsen for assisting and giving interesting
problem to dive into and providing valuable feedback and a office
space to quietly hack and thinkering in.

I also would like to give a shout out at all who is participating
in working groups under the Open Grid Forum working towards
open standards but especially the Network Markup Language Work-
ing Group and Network Service Interface Working Group.

Last but not least I would like to thank my supervisor Svein Erik
Bratsberg for invaluable guidance and feedback through the semesters.

Trondheim, June 2013

Roy Sindre Norangshol

v





C O N T E N T S

i introduction 1

1 introduction 3

1.1 Context 3

1.2 Personal motivation 4

1.3 Goals 5

2 introduction to networking 7

2.0.1 Peering 7

2.0.2 Networks are layered 8

2.0.3 Application layer (layer 5-): 10

2.0.4 Transport layer (layer 4): 11

2.0.5 Network layer (layer 3): 11

2.0.6 Link layer (layer 2): 11

2.0.7 Physical layer (layer 1): 12

ii topology model 13

3 why search for a model? 15

3.1 Requirements 15

3.2 Models for describing network topologies 16

3.2.1 Common Network Information Service (cNIS) 16

3.2.2 Network Description Language (NDL) 16

3.2.3 perfSONAR topology 16

3.2.4 Network Markup Language (NML) 17

3.3 Why NML? 17

3.4 Explaining the model 17

iii protocols for network provision architecture

23

4 network services framework 25

4.1 NSI 25

4.2 Topology 26

4.3 Connection Service 26

4.4 NSA 27

4.5 Concerns 28

iv design and development 31

5 application concept : netmap 33

5.1 Requirements 33

5.2 Technologies 33

5.3 Netmap prototype 34

5.4 Source code 38

vii



viii contents

v conclusion and feature work 41

6 conclusion 43

7 further work 45

vi appendix 47

a nav topology to nml example 49

bibliography 61



L I S T O F F I G U R E S

Figure 1 Interconnection of Internet Service Provider (ISP)s
between tiers[14] 8

Figure 2 Airplane actions[14] 9

Figure 3 Airplane layers[14] 9

Figure 4 Internet Model and OSI reference model [14] 10

Figure 5 UML class diagram of NML[10] 18

Figure 6 Network Markup Language (NML) relations[10] 20

Figure 7 NSI Connection Service (NSI-CS) overview[18] 26

Figure 8 Reservation state machine[7] 27

Figure 9 Network Service Agent (NSA) overview[7] 28

Figure 10 Flow in Backbone.js[16] 34

Figure 11 NAV topology Relational Database Management
System (RDBMS) schema[1] 35

Figure 12 NAV topology to NAV Netmap topology 36

Figure 13 NAV Netmap Topology to visualized SVG 36

Figure 14 Early version of Netmap, showing link load 36

Figure 15 Netmap with VLAN selection 37

Figure 16 Topology for NML demo 38

A C R O N Y M S

UML Unified Modeling Language

ISP Internet Service Provider

RDF Resource Description Framework

DWDM Dense Wavelength Division Multiplexing

NOC Network Operations Center

GLIF Global Lambda Integration Facility. International
colloboration to bring Layer-1 capabilities to
resarch/education community on world-wide basis.

GOLE GLIF open lightpath exchange, comprised of one or more
network devices performing lightpath switching.

NAV Network Administration Visualized

VLAN Virtual Local Area Network

ix



x acronyms

NREN A National Research and Education Network

STP Service Termination Point

SDP NSI Service Demarcation Point (external relations)

NSA Network Service Agent

NSI Network Service Interface

NSI-WG NSI Working Group

NSI-CS NSI Connection Service

NSF Network Services Framework

NRM Network Resource Manager

RA Request Agent

PA Provider Agent

AG The Aggregator

uPA Ultimate Provider Agent

uRA Ultimate Request Agent

cNIS common Network Information System

NDL Network Description Language

NML Network Markup Language

NML-WG NML Working Group

OGF Open Grid Forums

VxDL Virtual private eXecution infrastructure Description Language

RDBMS Relational Database Management System

AMD Asynchronous Module Definition

MVC Model-View-Controller

MVP Model-View-Presenter

SVG Scalable Vector Graphics

DOM Domain Object Model

XML Extensible Markup Language

VLBI Very-long-baseline interferometry



Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

As experimentation and new developments is at high pace in re-
search networks, especially the increasing focus on offering applica-
tions circuit-switched connections (also known as lighpaths) that can
provide guaranteed network services. Due to this increasing focus
for creating circuit-switched connections dynamically, there is also a
demand for complex provisioning of such paths across intra domain
and inter domain. For network provisioning to work across inter
domains there is need for defining a standard for sharing network
topology information and a standard which is designed for dealing
with dynamically creation of circuits (connections) that transit several
transport network providers.

As described in section 2 it is difficult to make guaranteed band-
width allocations over IP (layer 3) over the Internet, due to no reser-
vation for bandwidth for the current connection, and your probably
sharing the connection pool with several other ISPs.

A National Research and Education Network (NREN) has the unique
possibility to test new technologies when it comes to routing and
making a reserved connection. NRENs often have good infrastructure
built on fiber optics, often referred to as Dense Wavelength Division
Multiplexing (DWDM) networks as each lighpath (or lambdas as they
often are called) are provisioned especially for dedicated links to use
a dedicated wavelength. This makes NRENs have a possibility to eas-
ily dedicate a dedicated layer 1 connection without interferences from
any other traffic sources and resembles of being a circuited switched
network instead of packet switched network which is required for ap-
plications that are sensitive towards throughput (the time the transfer
takes), jitter (variation in arrival time at the destination of packets)
and delays (the time for a packet to get to the destination). [6]

A typical fiber in single-mode can hold around 40 lambdas à 100gbps
using DWDM, and a fiber cable can hold several hundred fibers.

NREN has already initiated something called Global Lambda Inte-
gration Facility. International colloboration to bring Layer-1 capabil-
ities to resarch/education community on world-wide basis. (GLIF)
which is world wide laboratory for application and middle ware de-
velopment which utilize the powers of DWDM networks.

1.1 context

In the following scenario: «How do I get from network A to network
E, while I know this involves going through networks B, C and D?»

3



4 introduction

Example of use case where such a scenario is an often asked ques-
tion: Two hospital teams need a video link between em so team 1

can assist team 2. Now this team 1 is located at St. Olav’s Univer-
sity Hospital in Trondheim, Norway and need to assist team 2 who
is doing a operation at a patient in Daejeon, South Korea.[3]1 This
video link required a certain bandwidth, and a minimum latency so
the two teams of hospital doctors can assist each other live under the
operation.

The network operators knows that we are in need of a dedicated“Historically,
connections across

these transport
networks have been

reserved and
provisioned in a

variety of ways. The
most common

approach is manual
provisioning –

typically performed
by a network
engineer.”[8]

connection to ensure it qualifies the bandwidth and latency require-
ments. It would be sad if the hi-definition video links has too little
bandwidth and the image just looks like squared pixels and renders
the image useless. Secondly if the latency requirements is not met,
time critical decisions as «should I cut this blood vessel now!?» which
requires a fast reply might end up having high consequences as the
message delivered to the other team was delayed due to latency.

As of today such creation of dedicated circuits involves manual
communication between several operators with manual suggestions
on how to get from network A to network E through all involving
parts (network B, C, and D) in the best manner to qualify all the
requirements. Now we are interested in making this process faster,
which involves in finding a standard for describing network topol-
ogy, and a system to automatically reserve connections and do the
peering between all involved parties so network A reaches network E
qualifying all the requirements.

1.2 personal motivation

I’ve always been fascinated about networks and networking. How
data can make it’s way from A to C via B, how computers are able to
talk to each other online, identified by the «magical» numbers known
as IP addresses. How does this end up of being ones and zeros and
transmitted over the cable. With my bachelor degree in computer en-
gineering specialized in networking and network architectures and
have been working at the open source project NAV where my contri-
butions have been working on visualizing the known network topol-
ogy for the network it monitors it. It felt normal for me to continue
with related work in my thesis which is based on networking & I find
networking to be a really interesting field. UNINETT also helps with
having a great working staff with key knowledge about networking
as one of the tasks UNINETT has is act as the the Norwegian NREN.

1 This is a true story, and was done manually by each NREN to qualify for all the
demands required for the video link



1.3 goals 5

1.3 goals

My main goal for the thesis can be relate to this following scenario:
«How do I get from A to E via BCD which satisfy a requirements
of throughput and latency in a automated way?». This is interesting
as it involves a lot of difficult aspects you have to think about. I’ve
focused on visualization of network topologies and make the visual-
ization application support extendability, so in the future it should
be easy to add support for aiding other network provisioning soft-
ware to provide a special topology which only exports the resources You can read more

about SDP and
network
provisioning in
chapter 4

you want to export. There is also interesting problems such as path
finding, but I’ve focused on the following goals:

• Finding/creating a way to describe network topologies in generic
way including support of describing multi-layer networks and
multi-domain networks.

• Finding/creating a system that deals with dynamically creation
of connections (circuits) which support multi-domain.

• Prototyping of visualization together with a chosen topology
model

• Prototyping/testing topology model towards a network provi-
sioning system





2
I N T R O D U C T I O N T O N E T W O R K I N G

Internet now a days is mostly using packet-switched method for mov-
ing data through a network. There is two common methods for mov-
ing data through a network, the first one being packet switching, and
the other one is circuit switching. The differences between packet
switching and circuit switching is that in circuit switching resources
needed along the path for the communication between the hosts are
reserved end-to-end for the duration of the communication session.
Resources in packet switching does not get reserved compared to cir-
cuit switching, and resources are used on demand and this might
lead to congested link as a consequence or even packet loss. [14] A congested link

means that packets
have to wait in a
queue (a buffer)
before it gets sent, or
packets might even
be dropped[14]

Internet uses it’s best effort to deliver packets as fast as it can, but
it does not make any guarantees as the architecture of the Internet
is built upon packet switching which is cheaper equipment and less
complex then circuit switching. Packet switches uses (mostly) some-
thing called store-and-forward for its transmission which practically
says it has to read the whole packet before it is forwarded and if the
link is congested this will add even more delay to the packet before
it is forwarded and again can lead to packet loss. An analogy to real
life example would be coming to the restaurant and you have to wait
at the entrance before you can go to your table.[14] Packet loss is

analogy with the
waiter telling you
there is no table
available when you
enter the restaurant,
and you have to
leave and try
again.[14]

Problems with packet switching when it comes to implementing
premium services is that packet switching requires complex signal-
ing software to coordinate the operation of enabling a end-to-end
circuit along the end-to-end path for the reservation of of end-to-end
bandwidth.[14]

This is why circuit switching has caught the attention again of the
NREN world, where each NREN have large computing grids built upon
fiber optics as a transit medium which already requires circuit switch-
ing.

2.0.1 Peering

Peering is an important part of the Internet, as the Internet is a «net-
work of networks» and ISPs1 need to know where to forward packets
to outside it’s network. End users are normally connected to a tier 3

or tier 2 ISP and is also known as access ISPs as they provide access
to the rest of the Internet on behalf of the user. Tier 1 ISPs is known
for being connected to every other tier-1 ISP on the Internet and has a
large bandwidth available for their links. Tier 1 ISPs are also known

1 Internet Service Providers

7



8 introduction to networking

Tier 3

Tier 2

Tier 1

Figure 1: Interconnection of ISPs between tiers[14]

as Internet backbone networks and lives at the top of the tiered hi-
erarchy of ISPs. It’s also connected to a large portion of tier-2 ISPs
and other customer networks while also are known to have interna-
tional coverage. Tier 2 ISP is known for having a country coverage
and probably connected only to a few Tier 1 ISPs. See figure 1. [14]

2.0.2 Networks are layered

As network topologies easily gets very complicated, we humans try
to figure out a structure to understand the complex systems involved.
Now picture a airline system, how would you describe all the actions
required to get from destination A to B? We would first try to separate
these actions that is done by you or someone takes for you, so from
flying from destination A to B we would start by first buying a ticket.
After purchasing a ticket you would reach for the check in process.
Next on the schedule is to figure out your boarding schedule and
find your correct gate (load) and jump a board the airplane when
the gate opens. Next steps would be the airplane to take of, and
it would be routing in air until it reaches it’s destinate airport for
landing. Next step would be to exit the gate (unload) and go claim
your baggage. These actions can be seen in figure 2 which shows all
the actions taken. [14]



introduction to networking 9

Figure 2: Airplane actions[14]

Figure 3: Airplane layers[14]

Now we have amount of actions that is required to take us from A
to B by flight, but it’s not quite the analogy we’re looking for as we
are looking for a structure. We notice we can separate actions into a
layers. At entering the airport you can purchase a ticket, and before
leaving the airport at your destination you can complain about your
ticket. Next layer is the baggage routine, your leaving the baggage at
the baggage band when checking in, and your claiming your baggage
after you have left the gate. The baggage can be separated into it’s
own layer, the same you can do for loading and unloading at the gate.
Next is taxing at both airports, for take off and landing. And when
the airplane is in the air we are routing. See figure 3 [14]

Take notice of that each layer is separated from each other, the
ticketing layer takes care of getting a user ticket, or complain about
it if the service wasn’t satisfied as you thought it should be. Baggage
layer can only be checked in after you have a obtained a ticket from
the ticketing layer. So we notice each layer offers functionality for the
layer above it, just as routing the airplane to it’s destination is done
after the loading at the gate and runaway for the takeoff is done. [14]



10 introduction to networking

Figure 4: Internet Model and OSI reference model [14]

We can do the same layered architecture for describing network
topologies. As of today network architects have used the OSI refer-
ence model which separates the network topology in segments so it
is easier so see the flow. OSI reference model contains of seven layers,
but we’ll cut the 3 at the top (Application, Presentation, Session) and
call it Application. We then end up with Application, Transport, Net-
work, Link and Physical layers and is commonly referred to as the
Internet Model. [14] See figure 4

Before we go into a short intro from each layer in the Internet proto-
col stack, it is important to remember what we have just thought. We
divided things up in layer using the service model, and that a layer
is offering services for the layer above. Each layer itself then provides
it’s services by performing certain actions within a layer and by using
the services available from the layer below it. An example is IP deliv-
ering unreliable edge-to-edge messages while the TCP layer above it
has functionality to detect and retransmit lost messages.[14]

We’ll give a short intro and a top-down instruction about these five
layers.

2.0.3 Application layer (layer 5-):

This is where network applications and their application-layer-protocol
reside in the Internet Model. Common application layer protocols
is HTTP and DNS, so the service translating domain names to IP-
addresses is an application service living in this layer. So whenever
the application service requires to communicate with another host
it will use the protocol defined in the application layer to exchange
packets of information between the hosts. These packets of informa-
tion at the application layer is referred to as a message. [14]



introduction to networking 11

2.0.4 Transport layer (layer 4):

The transport layer job is to transfer application-layer messages. There
is two common transport protocols available for the most used net-
work layer (layer 3) on the Internet, IP. These are TCP and UDP. A
quick intro of these is that TCP has a slighter higher overhead but
provides a connection-oriented service to it’s applications and pro-
vides guarantees of delivery of application layer messages sent to it’s
destination. TCP also comes with flow control which ensures the
sender and receiver speed is matching and it also breaks its pack-
ets into smaller segments to throttle network transmission rate if the
network gets congested. [14]

Unlike UDP protocol which is a connectionless service to it’s appli-
cation and is simply does a «Fire and forget» of the message it carries
from the application layer. It has no service for guaranteed of relia-
bility, no flow control or no congestion control. Packets wrapped in a
transport protocol is commonly referenced to as a segment. [14]

2.0.5 Network layer (layer 3):

IP (Internet Protocol) is such a protocol. It is responsible for moving
network-layer packets from one host to another host. This packets
are commonly referred to as datagrams.

When sending a datagram it has a network layer destination (IP-
address) and it’s segment from the transport layer. A human analogy
would be mailing a letter where the post address would be the net-
work layer destination and the letter itself is the segment.

The Internet network layer protocol also contains routing protocols
that tells which path or route the datagrams should take from source
to the destination. As Internet is a network of networks, and within
a network the network administration choose to run h(is|er) choice
of a routing protocol for how messages should be delivered inside it’s
own network and over to the next if it’s destination is outside it’s own
network. [14]

2.0.6 Link layer (layer 2):

The network layer (The Internet) routes a datagram through a series
of routes of source and destinations. Moving datagram from a host to
another host it has to relay on the link layer to transfer the datagram.
For each node the network layer passes the datagram to the link layer
which delivers the datagram to the next node along the route and
when it arrives at the next node the link layer passes the datagram
back up to the network layer. This continues until it the network layer
figures out it reaches it destination and it passes it’s segment up to the
transport layer and all the way back up the the application layer. [14]



12 introduction to networking

As you see, much how like we interpreted the layers on «how to fly
from A to B».

Packets inside the link layer we referrer to as frames, and when
we’re sending frames in the link layer protocol the frames get handed
of to the Physical layer below to do the transfer between two links.
[14]

Ethernet is the most common link layer protocol. [14]

2.0.7 Physical layer (layer 1):

It’s job is to move entire frames from the link layer above from one net-
work segment to another adjacent network segment. As a binary bit
is moved across a link in many different ways, the physical medium
has multiple physical layer protocols to deliver these frames. These
implementations is done in hardware (network cards) and is also de-
pendent on the actual transmission medium which for example can
be twisted pair copper wires or fiber optics for example. [14]



Part II

T O P O L O G Y M O D E L





3
W H Y S E A R C H F O R A M O D E L ?

As experimentation and new developements is at high pace in re-
search networks, especially the increasing focus on offering applica-
tions circuit-swithced connections (alsa known as lightpaths) that can
provider guarnteed network services. Due to this increasing focus for
creating circuit-switched connections dynamically, there is also a de-
mand for complex provisioining of such paths across intra domain
and inter domain. For network provisioning to work across inter
domains there is need for defining a standard for sharing network inter domain used to

describe interaction
between domains. It
is most commonly
used in the fields of
multicasting and
routing between
internets, or as a
substitute for the
term inter-server.
Intra-domain is the
interconnection of
servers within a
single domain.

topology information.
Today all products has used their own models (which only de-

scribes their required metadata for the applications purpose) to de-
scribe network topologies, these be products such as NAV, common
Network Information System (cNIS), perfSONAR to name a few ap-
plication suits that requires network topology descriptions and even
as of today still using their own models and not a shared conceptual
model for represetning a network topology. These be any applicati-
nos of type provisioning, monitoring and visualizing. [6]

It doesn’t get better when you have multiple applications or in-
stances of the same software which requires to do work on the same
topology information and it’s state isn’t shared between the applica-
tions. In for example network provisioning where a user is creating
a dynamically allocated circuit of a connection crosses multiple do-
mains, it would be difficult to monitor these dynamically allocated
circuits in every domain if their not using the same topology model
across all systems.[11]

3.1 requirements

To describe a network topology we need to manage to describe it as a
layer independent network topology, figure out the common proper-
ties that are common across multiple network technologies and define
it mechanism in a schema and define it as a standard. The standard
for describing a topology must support extendability so other third
parties (application suits) is able to use the topology description as a
much and plug in extra information as required for their application.
Example for a visualizing application for network provisioning, we
would need to know the circuit-switched path and involved nodes,
throughput, jitter, and connection reservation time to have a live up-
dated visualization. It is also important it supports multi-layer as
mentioned above and multi-domain, and scalable.[11]

15



16 why search for a model?

3.2 models for describing network topologies

A few models for describing network topologies exists already, such
as cNIS, Network Description Language (NDL), Virtual private eXe-
cution infrastructure Description Language (VxDL) , perfSONAR and
NML. The last one is a combined effort by the Open Grid Forums
(OGF) to create a open standard for describing network topologies.[11]

3.2.1 Common Network Information Service (cNIS)

cNIS is a collection of software used for providing a common shared
database/storage for all relevant network information about a single
administrative domain. cNIS uses RDBMS schema’s for storing the rel-
evant topology information. cNIS also works together with AutoBahn
which is a network provision service implementing Network Service
Interface (NSI) version 1.[6] This is much like how NAV works minus
the network provisioning service.

3.2.2 Network Description Language (NDL)

NDL goal is to provide lightpath provisioning applications to exchange
topology information intra and inter domain, and is a ontology which
uses Resource Description Framework (RDF) schema’s to categorize
it’s information: network topologies, network technology layers, net-
work device configuration, capabilities and network topology aggre-
gations. NDL is modular with different set of schema’s: topology
schema which describes devices, interfaces and connections between
them on a single layer. Layer schema describes generic properties of
network technologies and the relation between network layers. Capa-
bility schema describes device capabilities. Domain schema describes
administrative domains, services within a domain and how to give an
aggregated view of the network in a domain. The physical schema
describes the physical aspects of network elements.

NDL main usages is generation of network maps, lightweight offline
path finding and multi-layer path finding and last network topology
information exchange. [6]

3.2.3 perfSONAR topology

perfSONAR is a software for network measurement and in the early
stages it topology schema was tightly coupled with network inter-
face and application layer endpoints etc. It has sense changed to
support hybrid networks and it’s schema is defined to more general
purpose elements such as domains, nodes, links, ports and services.
XML namespaces is used for specifying more detailed information
about elements, such as Ethernet link or HTTP Web Service. perf-



3.3 why nml? 17

SONAR topology supports adding new technology specific elements
by bumping versions of the elements or add a new namespace for a
new technological-specific element. [6]

3.2.4 Network Markup Language (NML)

NML Working Group (NML-WG) was founded in the beginning of
2007 in February with Martin Swany and Paola Grosso as group
chairs in the working group that is part of the OGF. Later Freek Dijk-
stra replaced Paola as of it is now in 2013.

«OGF is an open community committed to driving the rapid evo-
lution and adoption of applied distributed computing. Applied Dis-
tributed Computing is critical to developing new, innovative and scal-
able applications and infrastructures that are essential to productivity
in the enterprise and within the science community. OGF accom-
plishes its work through open forums that build the community, ex-
plore trends, share best practices and consolidate these best practices
into standards.» mission statement from their website1.

NML is a combined effort initiated by the authors of cNIS, NDL, VxDL,
perfSONAR to describe a network topology and it’s main work is
based on NDL RDF schema, Unified Modeling Language (UML) schema
used for perfSONAR network descriptions and UML schema used in
the cNIS project for GÉANT2 network descriptions. NML UML class GÉANT is the pan

European data
network dedicated to
the research and
education
community.

diagram you can see in figure [6, 11]

3.3 why nml?

As already large known projects for networking dealing with both
provisioning, visualization and monitoring has agreed on working
together to build an open and free standard for describing network
topologies this is a good choice instead of going for vendor-locked or
create-yet-another-format for descriptions of network topologies who
might not deal of describing hybrid network topologies that can work
in a hybrid environment that is required for provisioning applications
to exchange topology information intra and inter domain which NML

can do. NML describes network topologies in an abstract and generic
way and has extendibility for further improvements [6, 11]

3.4 explaining the model

The basic schema for NML is generic enough for describing the phys-
ical (layer 1) or packet-oriented networks as NML describes logical
connection-oriented network topologies. Al thought the first version
of the NML base document doesn’t deal with signal degradation or

1 http://www.ogf.org/About/abt_overview.php

http://www.ogf.org/About/abt_overview.php


18 why search for a model?

layerencoding: <URI>

logical (virtual) directed 
data transport between 
Ports

Link

A device, or partition of 
a device

Node name: string
id: URI
version: serial

Network Object

layerencoding: URI

logical (virtual) directed 
interface at a certain 
layer

Port

Group

 
Bidirectional Link

 
Bidirectional Port

connected graph
Topology

layerencoding: URI
Collection of Links

Link Group

Service

name: string
id: URI
unlocode: UNLOCODE
lat: float
long: float
alt: float
address: vCard

Location

labelencoding: URI
value: type dependant

Label

layerencoding: URI
Collection of Ports

Port Group

type:
• hasTopology (Network Object to Topology)
• hasNode (Network Object to Node)
• implementedBy (Node to Node)
• hasService (Network Object to Service)
• hasPort (Network Object to Port/Port Group)
• hasLink (Network Object to Link/Link Group)
• providesPort (Service to Port/PortGroup)
• providesLink (Service to Link/LinkGroup)
• hasInboundPort (Network Object to Port/PortGroup)
• hasOutboundPort (Network Object to Port/PortGroup)
• isSource (Port to Link or PortGroup to LinkGroup)
• isSink (Port to Link or PortGroup to LinkGroup)
• hasPort (PortGroup to Port)
• hasLink (LinkGroup to Link)
• isSerialCompoundLink (Link to Ordered List)
• isAlias (Network Object to Network Object)
• next (Network Object to Network Object) (XML)
• next (List Item to List Item) (RDF)

Relation

adaptationfunction: URI

Ability to create a given 
adaptation

Adaptation 
Service

Ability to create a Link 
(cross connect)

Switching Service

locatedAt

start: timestamp
end: timestamp

Lifetime

ordered list of Network 
Objects

Ordered List

0-1

*
hasLabel

labelencoding: URI
set: type dependant

Label Group

0-1*

hasLabelGroup

0-1
*

0-1

*
hasLabel

existsDuring

adaptationfunction: URI

Ability to create a given 
deadaptation

Deadaptation 
Service

isSerialCompoundLink

Figure 5: UML class diagram of NML[10]



3.4 explaining the model 19

complex routing tables but can easily be added later as NML exten-
sions to the NML base model.[10]

NML can describe hybrid network topologies including both multi-
layer networks and multi-domains networks.[10]

Multi-layered network can be a virtualized network running on
top of another, but can also be using different technologies. Multi-
domain network descriptions can include aggregated or abstracted
network topologies. In short NML can not only describe a static net-
work topology, but also it’s capabilities and its configuration.[10]

It is also important to understand NML only attempts to describe
the data plane of a computer network, and not the control plane. Net-
work provisioning software using network provisioning standards
and network monitoring standards can easily be tied together with
NML by easily extending the model.[10] See figure 6for a overview
over NML relations.

Topology is a set of connected Network Objects which means there
is, or it is possible to create a data transport between any two Network
Objects in the same Topology, provided there is no policy, availability
or technical restrictions.[10]. Topology is the concept for describing
a network domain, and Link with multiple sources and sinks for the
concept of a local area network.

The top level class Network Object is used for being subclassed into
components such as Node, Port, Link, Service and Group ans is the basic
abstract class of the schema. It contains a persistent globally unique
URI[4] to referrer to a given network, a human representable string
and it’s version contains a time stamp.[10]

Node describes a generally a connected device, or part of, the net-
work. Doesn’t necessarily means a physical device as it may be a
virtual device or group of devices (when used in aggregations).[10]

A Port defines connectivity from a network Object to the rest of the
network. A port is unidirectional and doesn’t necessarily correspond unidirectional

means the data is
only allowed to flow
in one direction

to a physical interface. It represents a logical transport entity at a
fixed place in the network.[10]

Link describes a unidirectional data transport from each of it sources
to all of it’s sinks. Links are connected to Network Object’s as isSink
or isSource relations. Link object can also have a relation to a List
of Links (isSerialCompoundLink) which describes that the Link repre-
sents a path through the network implemented by that (ordered) List
of Links. This is useful for path finding.[10]

A service describes a capability of the network, the base schema
defines three services: SwitchingService, AdaptionService and Deadap-
tionService. Basically a service describes how the behavior can be
changed dynamically.[10]

A switching service has the ability to create a new Links from any of
its inbound Ports to any of its outbound Ports.[10]



20 why search for a model?

Po
rt

po
rt_

X:
in

Po
rt

po
rt_

X.
15

01
:in

ha
sS

er
vic

e

Ad
ap
ta
tio
nS
er
vi
ce

po
rt_

X:
ou

t:
ad

ap
ta

tio
nS

er
vic

e

pr
ov

id
es

Po
rt

D
ea
da
pt
at
io
nS
er
vi
ce

po
rt_

X:
in

:
de

ad
ap

ta
tio

nS
er

vic
e

pr
ov

id
es

Po
rt

ha
sS

er
vic

e

Po
rt

po
rt_

X:
ou

t

Li
nk

Li
nk

A:
XY

Po
rt

po
rt_

Y:
in

isS
in

k

isS
ou

rc
e

Po
rtG

ro
up

po
rtg

ro
up

_X
:o

ut
La
be
lg
ro
up

ha
sL

ab
el

G
ro

up
et

he
rn

et
#v

la
n

17
80

-1
78

3

la
be

lty
pe

va
lu

e

Li
nk

Li
nk

B:
YZ

Li
nk

Li
nk

C:
ZW

G
ro
up

Li
nk

lin
k_

XW

isS
er

ia
lC

om
po

un
dL

in
kLo

ca
tio
n

re
dc

ity

Re
d 

Ci
ty

30
.6

00
12

.6
40

na
m

e
la

t
lo

ng

Po
rt

po
rt_

Y:
ou

t

N
od
e

no
de

A

ha
sI

nb
ou

nd
Po

rt
ha

sI
nb

ou
nd

Po
rt

ha
sO

ut
bo

un
dP

or
t

ha
sO

ut
bo

un
dP

or
t

G
ro
up

Bi
di
re
ct
io
na
lP
or
t

po
rt_

X

ha
sP

or
t

lo
ca

te
dA

t

15
01nm

le
th

:v
la

n

Po
rt

po
rt_

X.
15

01
:o

ut

To
po
lo
gy

or
g

20
13

05
21

ve
rs

io
n

Li
nk

lin
k_

W
X

Bi
di
re
ct
io
na
lL
in
k

lin
k_

XW
X

ha
sL

in
k

ha
sL

in
k

Sw
itc
hi
ng
Se
rv
ic
e

no
de

A:
sw

itc
hi

ng
Se

rv
ice

ha
sI

nb
ou

nd
Po

rt
ha

sO
ut

bo
un

dP
or

t
ha

sI
nb

ou
nd

Po
rt

ha
sO

ut
bo

un
dP

or
t

pr
ov

id
es

Li
nk

isS
in

k
isS

ou
rc

e

Po
rt

po
rt_

Z:
ou

t

Figure 6: NML relations[10]



3.4 explaining the model 21

AdaptionService describes the capability that data from one or more
Ports can be embedded in the data encoding of one other Port. In
other words it describes a multiplexing adaptation function, meaning
that different channels (the client layer ports) can be embedded in
a single data stream (the server layer port). For example multiplex-
ing several Virtual Local Area Network (VLAN)s over a single trunk
port.[10]

De-Adaption Service describes the capability that data of one or more
ports can be extracted from the data encoding of one other port. This
is basically the opposite/reverse of AdaptionService. So it describes
a demultiplexing adaption function, meaning that different channels
(the client layer ports) can be extracted from a single data stream (the
server layer port). For exampling demultiplexing several VLANs from
a single trunk port. [10]

Last we have the abstract Group object which describes a collec-
tion of objects. Any object can be part of a group, including another
group. NML base schema have five different Group objects: Topology,
Port Group, Link Group, Bidirectional Port and Bidirectional Link. [10]

Port Group is unordered set of Ports and Link group is unordered set
of Links.[10]

BidirectionalPort is a group of two (unidirectional) Ports or Port-
Groups together forming a bidirectional representation of a physical
or virtual port. [10] NML examples can be found in the NML base
schema document[10], and also my own composed one in the ap-
pendix A.





Part III

P R O T O C O L S F O R N E T W O R K P R O V I S I O N
A R C H I T E C T U R E





4
N E T W O R K S E RV I C E S F R A M E W O R K

As we have NML-WG for NML, there is NSI Working Group (NSI-WG)
which is a working group put together to work on a framework that
deals with provisioning standards and how to deliver predictable
deterministic connectivity services between network domains. They
also focus on making sure this works at a global scale. This frame-
work is known as Network Services Framework (NSF).

NSF and it’s protocols is again a result of high demand for a con-
sensus standard for doing dynamically connection reservations for
network transport resources. Provisioning must be automated in or-
der to scale in a global environment. NSI aim to be the open standard
and is a working group in the community wide OGF.

4.1 nsi

NSI v1.0 runs today on GLIF automated GLIF open lightpath exchange,
comprised of one or more network devices performing lightpath switch-
ing. (GOLE) and have already in 2012 reserved proximally 2.5 ∗ 105

connections[17] in 2012, and this is mostly only NRENs and with the
release of NSI v2.0 plans to incorporate the use of using NML descrip-
tions for describing topologies. [9]

NSF describes the architectural elements that manage the service
requests while NSI is the interface between NSAs which acts as a glue
to exchange NSI protocol messages over the NSI interface to enable
end to end transport provisioning in NSI. NSI architecture deals with
decoupling of the Service Plane from the Data plane. [8]

NSI is designed for dealing with dynamically creation of circuits
(connections) that transit several transport network providers. [18]

The architecture of NSI does not specify transport technologies used
within each domain, as it is the task of the Network Resource Man-
ager (NRM) who handles internal provisioning and that makes NSI

highly capable of handling multi-layer, multi-domain and multi-service
data transport environments and suits good for heterogeneous net-
works. [17]

As NSI itself does not deal with how it’s assigning intra-network
resources, the NSA will instruct it’s NRM which has the tasks for deal-
ing with how two Service Termination Point (STP)s are actually con-
nected. As mentioned above, NSI is for dealing with inter-domain
connections.[17]

NSI describes a network topology with juxtaposition to each one
another’s network service domains. This is basically the NSI topol-

25



26 network services framework

Figure 7: NSI-CS overview[18]

ogy model which is roughly translated into a derivative «resource
graph» consisting of resources and stitching relations between NSAs
(NSI networks). [17]

4.2 topology

NSI topology model is translated into a derivative resource graph con-
sisting of resources and stitching relations between NSAs as NSI Model
assigns ownership of all physical components to one network or the
other.[17]

Technology agnostic inter-domain STPs are defined and mapped
logically to internal physical components. In NSI the external rela-
tions between NSA are SDPs. SDPs simply describes a grouping of two
adjacent STPs belonging to different Networks. Also the NSI topology
model it is usually to describe the topology with SDPs by hiding all
internal structure and only show the peering SDP relations between
the networks. [17][8][7]

4.3 connection service

NSI-CS is the protocol for handling connection reservations which
deals with support of reservation, creation, management and removal
of dynamically circuit connections. The physical connections created
by NSI-CS v2.0 only support point-to-point but can be either unidi-



4.4 nsa 27

Figure 8: Reservation state machine[7]

rectional or bidirectional. Support for anycast will be supported in
v3.0.[17][7]

The main logic in NSI is built up of 3 state machines which acts as
a virtual map that describes how the protocol events progress a con-
nection through it’s life cycle.[17][7]Main one being the reservation
state machine (see figure 8) which has the tasks handling the reserve
request for a connection request. You specify from and to together
with start time and end time. Requirements as labels (VLAN tagging)
or bandwidth requirement is optional to supply in the connection
request. When the request arrives it first checks if the resources are
available and if resources are available the resources are held until the
second phase arrives which is the commit phase. The requester has
the choice of either accepting the connection reservation or to abort
it.

4.4 nsa

NSAs acts as service who handles peering relationships. NSA has two
main services they provide, it’s either acting as a Request Agent (RA)
which sends a request to a Provider Agent (PA) or acting as an PA

answering requests from RA. While NSA can inherit a number of roles



28 network services framework

Figure 9: NSA overview[7]

such as: Ultimate Request Agent (uRA) which is the originator of a
service request. The Aggregator (AG) which has a subset of children
NSA and acts as a aggregator for responses from each of it’s children.
Or Ultimate Provider Agent (uPA) which is acting as both a RA and
PA.[17][8]

Keep in mind NSI only deals with SDPs between NSA so NRMs has
the role of managing the Data Plane resources (STPs). This is typically
equipment vendor’s own network management system.[17][8] [7]

4.5 concerns

A presentation in the OGF mentions a few implications and worries
about NSI and asks a few questions. This is from the NEXPReS project
which have developed an NSI client which can request paths from
multiple NRENs. One of the main concerns is the difficulty of de-
bugging lightpaths, as there is few layer 2 diagnostic tools available,
and debugging an dynamic connection with NSI is going to be even
worse, and the end-user might not even know which route their path
is taking. Since NSI is treated as a ’black box’ approach and the way it
hides the underlying NRM it is impossible to know if the new request



4.5 concerns 29

will take the same path between the same endpoints and traverse the
same links and equipment. This means proper debugging has to be
done with network engineers on the phone while they can investigate
and check their NRM to figure out where the traffic actually flows. [15]

Which use cases is the shared vision for NSI? Will NSI be avail-
able for end-users, or will it only be a protocol spoking between
network providers? If it will be available for end-users, end-users
generally doesn’t have equipment which supports the programma-
bility features that make up an NSI connection, but there is ongoing
research if OpenFlow1 will allow users to do the required network
configurations in response to NSI state changes. What we don’t need
is yet another piece of software which connects it self to the router
via a telnet prompt. [15]

They also wonder if it will be possible to force the use of low level
STP in the top-level NSI request, as NSI can be stacked several layers
deep with NSAs acting as an aggregator which again needs to ask
other NSAs to create a cross-domain path.[15] I guess it’s up to each
NREN / ISP to either provide a «super premium» low level STPs in
the top level NSI request, if there is demand for such a feature. It
is also interesting with the following scenario where two end-users
have requested to generate 250 Mb/s of traffic and have been reserved
over the same 1Gb/s link. These end-users will not be able to co-
exists on a 1Gb/s shared link, due to end-users can only send traffic
at two rates: either full line-rate of their network card or zero. This
means traffic will burst out in full line rate, and then have periods of
complete silence. This means when the micro bursts between users
appears in the same phase will throttle the network performance and
causing up to 50% packet loss and cause a drift until their out of
phase again where the network would perform flawlessly again.[15]
The last scenario has actually been observed when NEXPReS project
were using e-Very-long-baseline interferometry (VLBI)2, but it is not a
directly problem due to the NSI but a problem end-users should be
aware of when it comes to bandwidth guarantees. [15] «By deploying

Premium service, do
we want to
supplement the
Internet best-effort
service or to replace
it?»[2]

Another concern is this how we want the Internet to be? Will we
end up with an Internet where end users not option in for paying for
premium based services for access to certain services you will always
be met with: «Please wait a minute as we are buffering your youtube
video...»? Will we all end up being dependent on circuit reservations
for getting a good Internet service? Will the deployment of premium
services degrade the best-effort service as we know the Internet as of
today? [2]

1 http://www.openflow.org/wp/learnmore/
2 http://en.wikipedia.org/wiki/Very-long-baseline_interferometry

http://www.openflow.org/wp/learnmore/
http://en.wikipedia.org/wiki/Very-long-baseline_interferometry




Part IV

D E S I G N A N D D E V E L O P M E N T





5
A P P L I C AT I O N C O N C E P T: N E T M A P

Browsing and visualize a network topology, should be extendable to
suit both use cases for network provisioning and network monitoring.
First of all it should be able to view a network topology, in simple
words a graph consisting of nodes and it’s relations between em.

In network provisioning the tool can be used to view the inter-
nal topology and selected which components (STPs) of the network
topology should be exposed (SDPs) and exported to the network pro-
visioning system.

For network monitoring you would like to use Netmap as a key
monitoring tool and act as a dashboard for important overview of
your network. Are any of your links in your network topology con-
gested? Do we detect any topology errors as mismatching network
interface speeds between two nodes or any other irregularity? Which
VLANs are available over this link between node A and B? Netmap
could have the option to be used as both an dashboard and interac-
tive monitoring tool in a Network Operations Center (NOC).

5.1 requirements

Developing on the prototype of visualization of a topology, there
were a few important requirements. It should be easily accessible
by using a browser, and the drawing should be implemented using
Scalable Vector Graphics (SVG) which is an open standard and has
unlimited scaling due to graphics are drawn as vectors. It was also
important to try make Netmap independent so it could run as a stand
alone web application. Another important thing is that the visualiza-
tion of the network topology requires algorithms for automatic node
positions in an aesthetically pleasing way so it is easy to get tactical
and logical overview over the network topology.

5.2 technologies

Netmap uses quite a few frameworks to ease the maintenance of the
web application. JavaScript is the only available client scripting lan-
guage available in the browsers without using plugins that we would
like to avoid. Code is written in JavaScript following the module1

pattern which Netmap is loading using the Asynchronous Module
Definition (AMD)2 pattern which gives clear advantages when devel-

1 http://www.adequatelygood.com/Javascript-Module-Pattern-In-Depth.html
2 http://requirejs.org/docs/whyamd.html

33

http://www.adequatelygood.com/Javascript-Module-Pattern-In-Depth.html
http://requirejs.org/docs/whyamd.html


34 application concept : netmap

Figure 10: Flow in Backbone.js[16]

oping in JavaScript. Backbone.js3 helps us making a structure in our
web application. It resembles both the Model-View-Presenter (MVP)
pattern and Model-View-Controller (MVC) pattern.[16] See figure 10

for the flow in backbonejs applications.4 jQuery5 which helps with
cross browser compatibility in JavaScript when working with DOM6

and underscore.js7 which has a handful of good helpers to more eas-
ily write code in JavaScript.

Template resources are also loaded as text resources in requirejs
using requirejs’s internal text module so they can be declared as de-
pendencies and loaded asynchronously just like any other modules
when using the AMD pattern. Handlebarsjs8 is used for building se-
mantic and logic-less templates effectively without frustration.

SVG9 is used for generating the visualized and interactive Netmap
with the help of D3JS.10 D3JS provides data binding between the
model and SVG Extensible Markup Language (XML) who is attached
in Domain Object Model (DOM) which makes it easier to do SVG-
manipulations. D3JS also provides a force-directed graph layout al-
gorithm which position the nodes in the graph in an aesthetically
pleasing way so the space between all the edges are of more or less
equal length and has as few crossings as possible.11[13]

5.3 netmap prototype

Main application represents of 3 main views that gets rendered on the
main page. This is navigation view on the left side, draw map view in
the center and info view on the right side. The views in the sidebars

3 http://backbonejs.org/
4 See “MVP or MVC?” chapter at the reference[16] for details
5 http://jquery.com/
6 http://www.w3.org/DOM/
7 http://underscorejs.org/
8 http://handlebarsjs.com
9 http://www.w3.org/Graphics/SVG/

10 http://d3js.org/
11 https://github.com/mbostock/d3/wiki/Force-Layout

http://backbonejs.org/
http://jquery.com/
http://www.w3.org/DOM/
http://underscorejs.org/
http://handlebarsjs.com
http://www.w3.org/Graphics/SVG/
http://d3js.org/
https://github.com/mbostock/d3/wiki/Force-Layout


5.3 netmap prototype 35

Figure 11: NAV topology RDBMS schema[1]

are widget holders who can hold widgets which triggers events back
and forth from the main draw map view. Netmap has a collection of
widgets as you can see in figure 15 which can be attached in any of
the sidebars. In the center you have the interactive visualization of
the network topology.

Since this is a prototype I focused on using NAV as a data provider.
Netmap can ask NAV to build a layer 2 and layer 3 graph for it’s
known network topology. This is represented in the graph as net-
boxes acting as nodes and shows the links between them.12 As NAVs
topology graph doesn’t include VLANs, we extract it from the Sw-
PortVlan table (see figure 11) to attach VLAN and other relevant meta
data which is useful to display. The flow from NAV to Netmap and a
viewable topology looks like figure 12 & 13.

. In the end the prototype ended up with supporting many capa-
bilities such as: displaying link capacity and link load between edges
in the graph (see figure 14) , filter of netboxes based on netboxes,
filter out orphans13, search for a netbox in the network topology, con-

12 See https://nav.uninett.no/doc/howto/debugging-topology.html#how-nav-builds-
physical-topology-information for how NAV builds layer 2 and layer 3 topology

13 orphans is netboxes who doesn’t have any neighbors

https://nav.uninett.no/doc/howto/debugging-topology.html#how-nav-builds-physical-topology-information
https://nav.uninett.no/doc/howto/debugging-topology.html#how-nav-builds-physical-topology-information


36 application concept : netmap

Figure 12: NAV topology to NAV Netmap topology

Figure 13: NAV Netmap Topology to visualized SVG

Figure 14: Early version of Netmap, showing link load



5.3 netmap prototype 37

Figure 15: Netmap with VLAN selection

trol of the layout algorithm as it is quite CPU intensive, mark VLAN

with zoom and translating into its bounding box (see figure 14) , drag
around and position the nodes at your will and save your views, up-
dating of network topology on given intervals, and even more fea-
tures which is cosmetic features as full screen support etc. Netmap
is extendable as you can make widgets which trigger events for the
main drawing view can react on and visa versa.

I also experimented exporting NAV topology as NML, I’ve included
a short demo between 4 nodes (see figure 16). The generated NML you
can see in appendix A and is validated against the NML base schema.

rockj@luna:~/master$ xmllint --schema nml-base-may.xsd nml_

example_nav.xml

nml_example_nav.xml validates �
A quick explanation of the generated NML is as follows: at the be-
ginning we list up the following unidirectional links (edges) between
nodes. After this each inbound and outbound port for the interface
gets created. If the link contains VLANs there will added an Adap-

14 It is missing link load due to the collecting engine was not running during the time
of screenshoot



38 application concept : netmap

Figure 16: Topology for NML demo

tion/Deadaption service containing logical ports who shows this. Rela-
tions are added for the ports by using isSink and isSource relations to
show the unidirectional connections between the ports.

5.4 source code

The latest netmap prototype you find in the zip-file/cd under netmap/15

and the NML export demo is in nml_export/
Netmap lives in netmap/media/js/src/netmap/ which have the follow-

ing folder structure[16]:

collections holds a set of models.

models contains application data and logic around the data

templates this is where handlebars templates stored and loaded
from

views this is where all rendered views are. Views have a few sub
folders as widgets/ which holds all Netmaps widgets. There is
also a sub folder for modal/ where modals are stored and info/
contains views that is used in multiple widgets.

15 Make sure the netmap_cleanup bookmark is checked out



5.4 source code 39

widget_mix.js adds shared functionaility to widgets, but currently does
the work of making widgets collapsible if the widget is enabled to be
collapsible.

router.js is handles request management since netmap is a single
page JavaScript application and uses hashbangs & HTML5 History

resource.js is the shared application storage when the application
gets initiated. It loads the bootstrap data that is made available
from when django renders the backbone.html template which resides
in netmap/templates/netmap/.

views/draw_map.js takes care of using D3JS and does data binding
towards the topology graph stored in a backbone model and have
multiple updateRender methods for rendering all the visualizations.

main.js adds a global error callback and sets a few external proper-
ties before launching the Netmap application.

app.js bootstraps the Netmap application and kicks it off by starting
the router

At the server side code resides in the packages nav.netmap and
nav.web.netmap and uses topology data from nav.topology. In nav.topology
it uses vlan.build_layer#_graph functions as a base before nav.netmap.topology
takes care of adding additional meta data and re-adjusts the graph to
a multigraph. nav.topology.d3_js has exporting code to take an net-
workx graph and export it as D3JS format, this was mainly used in
the first version of the prototype, is still in use for the the second
version but the graph gets rebuilt in JavaScript application using the
the D3Force and SetEquality plugins residing in netmap/media/src/plug-
ins/ . These plugins are useful for when reloading topology data and
will also be useful for further work when implenting NML parser in
Netmap.

NML export demo you find the test file in nml_export/tests/unittests/netmap/nml_test.py16

using nml_export/test/unittests/netmap/netmapgraph_testcase.py.

16 Only outputs XML you can validate manually against the XML base schema.





Part V

C O N C L U S I O N A N D F E AT U R E W O R K





6
C O N C L U S I O N

In this theses project, I have searched for a generic and abstract model
to describe network topologies supporting both multi-layer networks
and multi-domain networks. I’ve also searched for a protocol for net-
work topology exchange and a protocol for dealing with dynamically
creation of circuit connections inter domain. I’ve also been develop-
ing on a prototype for network topology visualization with monitor-
ing features.

Feedback from NAV Internet Relay Chat room tells us Netmap is
something networking operators is interested in and find useful to
use for getting a overview over their network topology. Users seems
to agree with the chosen technologies in the new prototype of Netmap,
certainly getting rid of the dependency of requiring a Java applet run-
time in your browsers which a lot of users had issues with from the
old version of Netmap. There was also some feedback with issues of
rendering SVG in their browser, but this was simply solved by telling
the user to update their browser. In some rare cases tech administra-
tors could set certain policies in Internet Explorer which disallowed
rendering of SVG, this was fixed in a later version of the prototype to
inform the end-user about the problem which we also received good
feedback on from affected users.

I also spent some time evaluating the technology chosen, and I
seem to have picked good tools for the job even though it was a
steep learning curve to handle all the frameworks and tools which
makes it easier for developing JavaScript applications and Netmap
been through a few development iterations, but the job would be a
lot harder if they weren’t available.

NML I recommend for describing network topologies, given the ex-
amples in the NML base schema[10] and my own experimentation
of exporting NML (appendix A) managing to deal with multi-layer
(VLAN). NML also support extensions so it easy for monitoring tools
to include meta data for related link load and traffic data and like
vise for network provisioning tools can use NML as a base for shar-
ing topologies across domains using NSI-CS version 2. NML is also a
result of multiple other projects supports and agrees that the world
need one standard of describing network topologies in an abstract
and generic way. NSI which is a part of NSF complements NML as they
plan to integrate NML as the standard for exchanging network topolo-
gies across domains, and there is paper already been produced about
path finding[5] for NDL which NML is inspired from & path-finding

43



44 conclusion

experimentation for NML is on the todo list by the NML & NSI working
groups.

NSI architecture does not specify transport technologies used within
each domain, since that is the task of the NRM who handles provi-
sioning internally which makes NSI highly capable of handling multi-
layer, multi-domain and multi-service data transport environments
with NSI-CS and it’s other components in NSF.



7
F U RT H E R W O R K

• Netmap currently doesn’t use the NML topology model, but
since it holds it’s own graph format it should hopefully be triv-
ial to write the import parsing function in Netmap. The chal- Using D3Force and

SetEquality plugins
(available since
April 2013 rewrite)
should make this
easier to implement
with newest
prototype of Netmap
and make it less
dependent on NAV

lenge here is how to deal with displaying a multi directional
graph, as there is a challenge of how to visualize a topology
without drawing an arc for every VLAN. Imagine a link between
two nodes carrying >=5 VLAN, it would quickly turn into a mess
and it will be hard for the force directed layout algorithm to po-
sition the graph neatly. Netmap deals with this by having it’s
own data backend extensions in NAV and convert the NAV topol-
ogy data (multi directional graph) to a Netmap topology data
(multi graph). So one of the tasks for implementing NML im-
port in Netmap is to ensure you export NML with Bidirectional
Port/Bidirectional Link data as well which Netmap can use for
importing NML to it’s own internal format that is used together
with D3JS.

Since time didn’t allow it I didn’t have time to make sure it ex-
ported data with BiDirectionalPort/BiDirectionalLink data in the
NML export, but a huge amount of time was spent on making
the JavaScript application less dependent on NAV for further
work.

This is one of the primary goals further work should solve so
Netmap ends up being a self contained visualization applica-
tion.

• NAV should fully support importing and exporting av NML, this
can come in quite handy when users has questions about their
network topology in NAV. We could then import an anonymous
snapshot for debugging purposes.

• Add functionality to support network provisioning where you
allowed the NOC administrators to pick which STPs you would
like to export as SDPs and have this exported topology as NML

available by a web service.

The web service could then again be tested against two instances
of OpenNSA1 where it tries to do connection reservations be-
tween two topologies, as of this writing the hacker(s) at NOR-
DUnet is working on implementing NML support to support

1 http://git.nordu.net/?p=opennsa.git;a=shortlog;h=refs/heads/nsi2

45

http://git.nordu.net/?p=opennsa.git;a=shortlog;h=refs/heads/nsi2


46 further work

NSI-CS version 2. Suggestion for why to use OpenNSA is be-
cause it is written in python and should be familiar for any one
who have been hacking at NAV.

• Explore possibilities on how to export Netmap topology view
to an zip file containing the SVG and all the graphical resources
you can download and view it a SVG capable image viewer
which is not the browser. Example: add the visualized topol-
ogy in a presentation

This would be useful
for investigating
how the network

traffic flows under a
distributed denial of

service attack on
your network.

• Add playback support in NAVs Netmap version for network
monitoring so you can record the topology changes and rewind
and forward as the topology changes for a given period. Look
into possibilities of exporting the playback as an animated im-
age or video.



Part VI

A P P E N D I X





A
N AV T O P O L O G Y T O N M L E X A M P L E

<nml:Topology xmlns:nml="http://schemas.ogf.org/nml/2013/03/base

#" id="urn:ogf:network:uninett.no" version="2013-05-31T

01:17:38.693849Z">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.c.nav:

out:::unittest.a.nav:in">

<nml:Name>Link from unittest.c.nav to unittest.a.nav</nml:

Name>

</nml:Link>

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.b.nav:

out:::unittest.a.nav:in">

<nml:Name>Link from unittest.b.nav to unittest.a.nav</nml:

Name>

</nml:Link>

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.a.nav:

out:::unittest.b.nav:in">

<nml:Name>Link from unittest.a.nav to unittest.b.nav</nml:

Name>

</nml:Link>

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.a.nav:

out:::unittest.c.nav:in">

<nml:Name>Link from unittest.a.nav to unittest.c.nav</nml:

Name>

</nml:Link>

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.d.nav:

out:::unittest.c.nav:in">

<nml:Name>Link from unittest.d.nav to unittest.c.nav</nml:

Name>

</nml:Link>

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.c.nav:

out:::unittest.d.nav:in">

<nml:Name>Link from unittest.c.nav to unittest.d.nav</nml:

Name>

</nml:Link>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:2:in">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSink">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.c.

nav:out:::unittest.a.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:out">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

49



50 nav topology to nml example

<nml:AdaptationService id="urn:ogf:network:uninett.no:port:

layer2:unittest.c.nav:1:out:adaptationService">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#canProvidePort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:out:25"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:out:50"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:out:20"/>

</nml:Relation>

</nml:AdaptationService>

</nml:Relation>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSource">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.c.

nav:out:::unittest.a.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:out:25">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">25</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:out:50">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">50</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:out:20">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">20</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:2:in:25">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">25</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.a.nav:2:in:25:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:2:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>



nav topology to nml example 51

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:2:in:50">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">50</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.a.nav:2:in:50:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:2:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:2:in:20">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">20</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.a.nav:2:in:20:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:2:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:in">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSink">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.b.

nav:out:::unittest.a.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:out">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:AdaptationService id="urn:ogf:network:uninett.no:port:

layer2:unittest.b.nav:1:out:adaptationService">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#canProvidePort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:out:25"/>



52 nav topology to nml example

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:out:50"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:out:20"/>

</nml:Relation>

</nml:AdaptationService>

</nml:Relation>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSource">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.b.

nav:out:::unittest.a.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:out:25">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">25</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:out:50">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">50</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:out:20">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">20</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:in:25">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">25</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.a.nav:1:in:25:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:in:50">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">50</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">



nav topology to nml example 53

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.a.nav:1:in:50:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:in:20">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">20</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.a.nav:1:in:20:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:in">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSink">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.a.

nav:out:::unittest.b.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:out">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:AdaptationService id="urn:ogf:network:uninett.no:port:

layer2:unittest.a.nav:1:out:adaptationService">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#canProvidePort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:out:25"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:out:50"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:out:20"/>

</nml:Relation>

</nml:AdaptationService>



54 nav topology to nml example

</nml:Relation>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSource">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.a.

nav:out:::unittest.b.nav:in"/>

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.a.

nav:out:::unittest.c.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:out:25">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">25</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:out:50">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">50</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.a

.nav:1:out:20">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">20</nml:Label>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:in:25">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">25</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.b.nav:1:in:25:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:in:50">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">50</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.b.nav:1:in:50:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">



nav topology to nml example 55

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.b

.nav:1:in:20">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">20</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.b.nav:1:in:20:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:in">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSink">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.a.

nav:out:::unittest.c.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:in:25">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">25</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.c.nav:1:in:25:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:in:50">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">50</nml:Label>



56 nav topology to nml example

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.c.nav:1:in:50:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:1:in:20">

<nml:Label labeltype="http://schemas.ogf.org/nml/2012/10/

ethernet/vlan">20</nml:Label>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasService">

<nml:DeadaptationService id="urn:ogf:network:uninett.no:

port:layer2:unittest.c.nav:1:in:20:deadaptationService

">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/

base#providesPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:in"/>

</nml:Relation>

</nml:DeadaptationService>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:2:in">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSink">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.d.

nav:out:::unittest.c.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.d

.nav:1:out">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSource">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.d.

nav:out:::unittest.c.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.d

.nav:1:in">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSink">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.c.

nav:out:::unittest.d.nav:in"/>



nav topology to nml example 57

</nml:Relation>

</nml:Port>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:unittest.c

.nav:2:out">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

isSource">

<nml:Link id="urn:ogf:network:uninett.no:link:unittest.c.

nav:out:::unittest.d.nav:in"/>

</nml:Relation>

</nml:Port>

<nml:Node id="urn:ogf:network:uninett.no:node:unittest.a.nav">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasOutboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:25:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:50:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:20:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:25:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:50:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:20:out"/>

</nml:Relation>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasInboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:25:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:50:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.b.nav:1:20:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:25:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:50:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:1:20:in"/>

</nml:Relation>

</nml:Node>

<nml:Node id="urn:ogf:network:uninett.no:node:unittest.b.nav">



58 nav topology to nml example

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasOutboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:25:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:50:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:20:out"/>

</nml:Relation>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasInboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:25:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:50:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:20:in"/>

</nml:Relation>

</nml:Node>

<nml:Node id="urn:ogf:network:uninett.no:node:unittest.c.nav">

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasOutboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:25:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:50:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:1:20:out"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.d.nav:1:out"/>

</nml:Relation>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasInboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:2:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:2:25:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:2:50:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.a.nav:2:20:in"/>

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.d.nav:1:in"/>

</nml:Relation>

</nml:Node>

<nml:Node id="urn:ogf:network:uninett.no:node:unittest.d.nav">



nav topology to nml example 59

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasOutboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:2:out"/>

</nml:Relation>

<nml:Relation type="http://schemas.ogf.org/nml/2013/03/base#

hasInboundPort">

<nml:Port id="urn:ogf:network:uninett.no:port:layer2:

unittest.c.nav:2:in"/>

</nml:Relation>

</nml:Node>

</nml:Topology> �





B I B L I O G R A P H Y

[1] NAV wiki and documentation. URL https://nav.uninett.no.
(Cited on pages ix and 35.)

[2] Stanislav Shalunov Ben Teitelbaum. Why premium ip service
has not deployed (and probably never will). 5 2002. URL
http://qos.internet2.edu/wg/documents-informational/

20020503-premium-problems-non-architectural.html. (Cited
on page 29.)

[3] Mattis Daae. Kikkhullsoperasjon i hd. UNINYTT, 4,
2009. URL https://www.uninett.no/sites/drupal.uninett.

no.uninett/files/webfm/Uninytt_nr_4_09_LR.pdf. (Cited on
page 4.)

[4] Freek Dijkstra. A urn namespace for network resources. draft, 5

2011. (Cited on page 19.)

[5] Freek Dijkstra, Jeroen Van Der Ham, Paola Grosso, and Cees De
Laat. Path finding using the multi-layer network description lan-
guage, 2007. (Cited on page 43.)

[6] P. Grosso, A. Brown, A. Cedeyn, F. Dijkstra, J. van der Ham,
A. Patil, P. Primet, M. Swany, and J. Zurawski. Network topology
descriptions in hybrid networks. Open Grid Forum, 2010. NDL.
(Cited on pages 3, 15, 16, and 17.)

[7] Inder Monga Jerry Sobieski John MacAuley & Chin Guok
Guy Roberts, Tomohiro Kudoh. Nsi connection service proto-
col 2.0. v7, 5 2013. Group Working Draft. (Cited on pages ix, 26,
27, and 28.)

[8] Inder Monga Jerry Sobieski John Vollbrecht Guy Roberts, Tomo-
hiro Kudoh. Network services framework. Open Grid Forum Doc-
ument GFD.173, http://www.gridforum.org/documents/GFD.173.pdf .,
12 2010. (Cited on pages 4, 25, 26, and 28.)

[9] Tomohiro Kudoh & Inder Monga Guy Roberts. Presentation: Nsi
v2.0: what can it do for me?, 09 2012. (Cited on page 25.)

[10] Freek Dijkstra Roman Lapacz Jeroen J.van der Ham, J. V. D. and
Jason Zurawski. Network markup language base schema. 05

2013. (Cited on pages ix, 18, 19, 20, 21, and 43.)

[11] Roman Lapacz & Aaron Brown Jeroen van der Ham, Freek Di-
jkstra. The terena networking conference paper: The network

61

https://nav.uninett.no
http://qos.internet2.edu/wg/documents-informational/20020503-premium-problems-non-architectural.html
http://qos.internet2.edu/wg/documents-informational/20020503-premium-problems-non-architectural.html
https://www.uninett.no/sites/drupal.uninett.no.uninett/files/webfm/Uninytt_nr_4_09_LR.pdf
https://www.uninett.no/sites/drupal.uninett.no.uninett/files/webfm/Uninytt_nr_4_09_LR.pdf


62 bibliography

markup language (nml) a standardized network topology ab-
straction for inter-domain and cross-layer network applications.
2013. (Cited on pages 15, 16, and 17.)

[12] Donald E. Knuth. Computer Programming as an Art. Commu-
nications of the ACM, 17(12):667–673, December 1974. (Cited on
page v.)

[13] Stephen G. Kobourov. Spring embedders and force directed
graph drawing algorithms. CoRR, abs/1201.3011, 2012. (Cited
on page 34.)

[14] James Kurose. Computer networking : a top-down approach. Pear-
son, Boston, Mass, fifth edition, 2010. ISBN 978-0-13-136548-3.
(Cited on pages ix, 7, 8, 9, 10, 11, and 12.)

[15] John MacAuley. Presentation: Ogf 37, charlottesville - network
services interface: Additional use cases. forum, 3 2013. (Cited
on page 29.)

[16] Addy Osmani. Developing backbone.js applications. 2013.
URL http://addyosmani.github.io/backbone-fundamentals/.
(Cited on pages ix, 34, and 38.)

[17] Jerry Sobieski. An overview and demonstration of: Nsi frame-
work, nsi version 2.0 implementations, glif automated gole, 2012.
(Cited on pages 25, 26, 27, and 28.)

[18] Inder Monga Tomohiro Kudoh, Guy Roberts. Network services
interface: An interface for requesting dynamic inter-datacenter
networks. 2013. (Cited on pages ix, 25, and 26.)

http://addyosmani.github.io/backbone-fundamentals/


colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured at:

http://postcards.miede.de/

Final Version as of June 1, 2013 (classicthesis version 1.0).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	Introduction
	1 Introduction
	1.1 Context
	1.2 Personal motivation
	1.3 Goals

	2 Introduction to networking
	2.0.1 Peering
	2.0.2 Networks are layered
	2.0.3 Application layer (layer 5-):
	2.0.4 Transport layer (layer 4):
	2.0.5 Network layer (layer 3):
	2.0.6 Link layer (layer 2):
	2.0.7 Physical layer (layer 1):



	Topology model
	3 Why search for a model?
	3.1 Requirements
	3.2 Models for describing network topologies
	3.2.1 Common Network Information Service (cNIS)
	3.2.2 Network Description Language (NDL)
	3.2.3 perfSONAR topology 
	3.2.4 Network Markup Language (NML) 

	3.3 Why NML?
	3.4 Explaining the model


	Protocols for network provision architecture
	4 Network Services Framework
	4.1 NSI
	4.2 Topology
	4.3 Connection Service
	4.4 NSA
	4.5 Concerns


	Design and Development
	5 Application concept: Netmap
	5.1 Requirements
	5.2 Technologies
	5.3 Netmap prototype
	5.4 Source code


	Conclusion and feature work
	6 Conclusion
	7 Further work

	Appendix
	A NAV topology to NML example
	Bibliography
	Colophon


