
Søkeapplikasjon i skyene

Stian Standahl

Master i informatikk

Hovedveileder: Herindrasana Ramampiaro, IDI

Institutt for datateknikk og informasjonsvitenskap

Innlevert: Mai 2013

Norges teknisk-naturvitenskapelige universitet

Norwegian University of Science and Technology

Searching In The Cloud
by Stian Standahl

Abstract

This thesis has focused on how to process and store big data in the
cloud, with a special focus on challenges on creating an information
retrieval system and how distributed information retrieval methods can
be used in the cloud. After evaluating three cloud platforms, Windows
Azure was chosen because it gave more hardware resources in the free
trial than the others, and due to the fact that it had an emulator that
could be used to set up the system locally before testing it on the cloud.

The search engine should also be chosen, but since Windows Azure
was the preferred platform, the search engine choices was limited to
those that were created in the .NET languages. I ended up with
Lucene.NET because it is a powerful search tool. In addition, Lucene.NET
is open source.

The evaluation was done on a distributed information retrieval sys-
tem that had a server-client set up, and used partial indexes that was
distributed out to the clients. The evaluation was done with a small
data set to find optimization problems that has to be attended when
creating a distributed system that handles large amounts of data. I
carried out four evaluations on four different clients.

The results revealed optimization problems that was special for the
cloud, and that has to be attended when creating a distributed system
that has to process and store big data in the cloud. Also, since scaling
systems in the cloud is easier, the recommendation was that scaling of
the clients should be dependent on how much Azure Cache is left on
the clients due to a optimization problem that has to do with the search
speed of the search engine.

With some more tweaking and solving these optimization problems,
the Cloud should provide an advantageous place to process and store
big data.

i

ii

Contents

1 Introduction 1
1.1 Motivation and General Background 1
1.2 Problem Specification . 2
1.3 Thesis Outline . 3

2 State of the Art Study 5
2.1 Related Systems . 5

2.1.1 SolrCloud . 5
2.1.2 Katta . 5

2.2 Related Research . 6
2.2.1 Cloud computing: state-of-the-art and research challenges . . 7
2.2.2 Cloud Computing and the DNA Data Race 8
2.2.3 Big data and cloud computing: current state and future op-

portunities . 9

3 Approach 11
3.1 Technology Background . 11

3.1.1 Choosing Platform-as-a-Service provider 11
3.1.2 Choosing a Search Engine . 17

3.2 Theory . 20
3.2.1 Map Reduce . 20
3.2.2 Information Retrieval . 21
3.2.3 Distributed Information Retrieval 23

3.3 System Architecture . 28
3.3.1 Overview . 28
3.3.2 Caching . 33

4 Evaluation 35
4.1 Data Set . 35
4.2 Evaluation Setup . 35
4.3 Evaluation without scaling . 36

4.3.1 1 Slave node . 37
4.3.2 4 slave nodes . 38

4.4 Evaluation with scaling . 39

iii

iv CONTENTS

4.5 Bottlenecks . 39
4.5.1 Cache vs Blob Storage results 39
4.5.2 Networking results . 42

4.6 Discussion . 43
4.6.1 How can distributed methods be used to process and store

big data on the cloud? . 43
4.6.2 How well does a distributed system in the cloud perform

compared to a distributed system that is not in the cloud? . 44
4.6.3 What challenges are there? 45
4.6.4 Pros and Cons of choosing Windows Azure 46

5 Conclusion 49
5.1 Further Work . 50

A Results 53
A.1 1 slave node without scaling . 53
A.2 2 slave node without scaling . 55
A.3 3 slave node without scaling . 58
A.4 4 slave nodes without scaling . 60

List of Figures

2.1 Workflow in the Katta system . 6

3.1 Amazon foundation services . 12
3.2 File transfer from application to Amazon S3 13
3.3 Allowed blob store operations . 14
3.4 Block blob and Page blob in Windows Azure 15
3.5 Map Reduce . 21
3.6 A general search engine architecture 22
3.7 Document partitioned with overlapping documents 26
3.8 Partial index with sequential partitioning. 27
3.9 Peer-to-peer distributed information retrieval 28
3.10 Getting a file from storage in a slave node 34

4.1 Results from running, both, master and slave node on a single com-
puter without the use of scaling in groups of 2MB. 37

4.2 Results from indexing with 1 slave node without scaling in groups
of 4MB . 38

4.3 Results from searching with 1 slave node. 38
4.4 Indexing results, using 4 slave nodes. 39
4.5 Search results, using 4 slave nodes. 40
4.6 Reading performance comparison between Azure blob storage and

Azure cache. 41
4.7 Writing performance comparison between Azure blob storage and

Azure cache. 41
4.8 Communication speed between two applications in the Microsoft

Azure cloud. 42

v

Chapter 1

Introduction

1.1 Motivation and General Background

When you want to create a software application, what do you need to get started?
First of all there is a need for servers, and software handles the server and the
application. Then, there is a need for human resources that knows how to host
the servers. If the application grows or shrinks, is a requirement for scaling the
resources. If it grows, more servers and human resources is required to run the
application. Also, a systems developer is needed to program and design the ap-
plication. On top of this, it can become quite expensive to create and host an
application. This is where cloud computing makes the difference.

Cloud computing[38] is a term used for computer resources as a service. This
means that in a computing cloud, the application has access to the computer
resources that are virtually exposed through services and uses them as utilities.
This resource abstraction allows for great scalability, either up or down, depending
on the resource need. Cloud computing can do nothing about the requirement of
having someone develop the application, but it can do something about needing
servers or human resources to run the servers.

When creating an information retrieval application there is always a need of
scalability, especially when working with big data. Big data[29] is a term used
for very large amounts of data that is too big and complex to be handled by an
ordinary database system. This suits cloud computing very good, since it is very
scalable, and has a potential of great processing speeds. An example on big data
is the data that Facebook stores away in its data warehouses. Facebook stores
away 0.5 petabytes every day[20], and has had an explosive growth since they first
started. In the time period from 2008 to 2012 their data warehouse has grown by
2500 times.

Since cloud computing is quite new, there is only limited of research regarding
methods for information retrieval with big data. There has been done alot of
research on big data that works on local servers. For example, there might be
some methods that can be derived from this area. Moreover, there might also be

1

2 CHAPTER 1. INTRODUCTION

a problem applying these methods directly.
When working with big data there is usually multiple computers involved in

processing and storing. Distributed computing[5] is a physical computer setup
where two or more computers cooperate to solve one or more problems. The
computers are usually physically placed in an enterprise or at a service provider,
where they are managed by computer administrators. This setup allows the system
developers to have a close dialog with the server administrators. The close dialog
can give the developers possibility to program closer at a lower level, and lets them
have better control over the computer resources. The disadvantage, with this setup,
is that the scalability needs take longer to fulfill if the servers do not have enough
resources. This is because the servers needs to be upgraded with new hardware.
If the upgrade takes too long the application might suffer from slow performance.
Moreover, the distributed systems usually are locally created on a enterprise LAN
that can expose applications to the internet. Since it is on a LAN, it could be
imagined that one or more applications suddenly require a much more throughput
to handle the load. This scalability is something that a distributed is not able to
handle well.

Cloud computing has almost the similar setup as the distributed computers.
There are multiple computers that work together to solve one or more problems.
But instead of having physical resources to work against, the resources are ab-
stracted in such a way that they only can be used through service calls. This
means that the applications that run on the cloud has services that are reached
through services. The resource abstraction makes the application have less con-
trol of the resources. If the application is very dependent on hardware and works
very closely with it, it will not be able to function well on the cloud. If an ap-
plication is used for burning dvds, for example, it might not be suited for cloud
computing. Nevertheless, a major advantage is that the abstraction lets the cloud
computing system automatically scale the hardware resources and performance up
or down, based on the needs of the application. If the application needs more
processing power or memory, it will get this instantaneous and there is no need to
have a server administrator physically upgrade any servers. Therefore, the appli-
cation will not suffer from the distributed computing problems, for example, slow
performance.

1.2 Problem Specification

A common problem when it comes to big data, is finding information contained in
texts, images, videos, and other types of data. Therefore, distributed information
retrieval, DIR, is commonly used for processing and storing data and since DIR
works so well with big data, but has some issues with scalability. The big data pro-
cessing and storing should be moved to the cloud. Therefore, an emerging problem
in the information retrieval world is:

How can Big Data be processed and stored in the cloud?

1.3. THESIS OUTLINE 3

Using this question as a main focus, it is possible to derive multiple research
questions. For this thesis the questions are:

• How can distributed methods be used to process and store big data on the
cloud?

• How well does a distributed system in the cloud perform compared to a
distributed system that is not in the cloud?

• What methods are developed to meet challenges and which still remain?

• What challenges are there?

• Compared to Distributed Information Retrieval, are there any gains by using
cloud technology?

1.3 Thesis Outline

The thesis is composed of chapters, starting with the introduction. The intro-
duction will introduce challenges and problems that this thesis will try to solve.
Moreover, the first chapter will give information and explain keywords that will be
used throughout the report.

The second chapter will introduce alternative projects, solutions or research
that are similar to this thesis. They will be explained, and key concepts that are
similar to this thesis are found and introduced.

The approach chapter explains the system architecture, and the communication
between the different components of the system. Furthermore, the technology used
and the reason for the technology choices are explained and concluded.

In the result evaluation section, the data that is used and the evaluation setup
is explained and it will lead to the results from the evaluation system. These results
wll be used for discussion and conclusion in the conclusion section.

4 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art Study

2.1 Related Systems

2.1.1 SolrCloud

SolrCloud [32], SC, is a search engine that is based on Solr. The main difference
is that SC can run on the cloud, and Solr can run on a distributed system, as
well as a single server. The architecture in Solr and SC is built up of SolrCores
which are essentially an index. It is possible to create multiple indexes by creating
multiple SolrCores. In SC it is possible to have one index be made up of multiple
SolrCores. Solr is built on top of the Lucene search engine, and the indexes are
created by Lucene. Solr extends Lucene, and has multiple functions that makes it
a good search engine. There are multiple extensions, but the function that is the
most similar to what is going to be written in this thesis, is the distributed indexes
function. It allows for replicating indexes over multiple SolrCores. SolrCloud is
a seemingly successful system that moves distributed information retrieval to the
cloud.

2.1.2 Katta

Katta[1] is a distributed data storage that is used to store any files. It can also be
used to store and distribute indexes. Moreover, when files are stores on a server it
is possible to have the files replicated across other servers that is connected to the
system.

The way Katta distributes the files or indexes is that first the files are or index
is created on a single server or on a Hadoop system (see figure 2.1). Then it is
transfered to a file server, that creates index shards out of the files. An index
shard is, basically, a part of a Lucene index or map reduce mapping file. The
master always has an overview of the shards that are available on the file server,
and will assign shards to slave nodes. The master uses Zookeeper to assign shards
and control which slave nodes are online. Each slave node get the assigned shard
and commences the download.

5

6 CHAPTER 2. STATE OF THE ART STUDY

Figure 2.1: Workflow in the Katta system

The master can have a clone of itself. This ensures that if the main master fails
it can automatically switch over to the clone and continue working as if nothing
happened. When clients executes requests to the system, it starts a Hadoop oper-
ation, which uses multiple threads or computer nodes to solve the problem given.
The similarities compared to the thesis, is the way it handles requests by using
Hadoop to quickly return an answer. Furthermore, there is a similarity in how
the files are stored. They are stored and distributed to slave nodes which will be
something in the same direction as the thesis.

2.2 Related Research

There has been some research around the area of cloud computing, information
retrieval and big data. Moreover, there has also been some research around chal-
lenges and research around cloud computing which would be interesting to discuss.
This section will describe research that has been done around cloud computing on
its own, and together with big data.

2.2. RELATED RESEARCH 7

2.2.1 Cloud computing: state-of-the-art and research chal-
lenges

In the paper, Cloud computing: state-of-the-art and research challenges, Zhang
et al. explained cloud computing in detail, and what made it different than grid
computing, utility computing, virtualization and autonomic computing. They sum-
marized that cloud computing uses virtualization technology to provide computing
resources as a utility. Where there are similarities to grid and autonomic comput-
ing, but it differs in some areas.

They move on to explain how cloud computing is built up in 4 layers; hardware,
infrastructure, platforms and application. The hardware manages the clouds phys-
ical resources, this can be for example a data center of servers. The infrastructure
layer, also called the virtualization layer, manages the storage and computing re-
sources. The platform layer houses operating systems that lightens the load in the
infrastructure layer. It has operating systems and API that communicates with
the applications. Finally, the application layers contains the applications itself.

The cloud business model is explained, showing the difference between Infrastructure-
as-a-Service, Platform-as-a-Service and Software-as-a-Service moving on to the dif-
ferent types of clouds; public, private, hybrid and virtual private.

After explaining important products that provide and technologies that use
cloud computing, research challenges are brought up. Because of its early stage,
cloud computing has some challenges that should be considered. The challenges
mentioned is focused on problems in the cloud computing environment itself. Some
of these challenges are:

• automated service provisioning

• virtual machine migration

• server consolidation

• energy management

• traffic management and analysis

• data security

• software frameworks

• storage technologies and data management

• novel cloud architectures

Since the focus is on big data and processing some of the important challenges
is the data software frameworks, storage technologies and data management, and
novel cloud architectures.

The software frameworks that process and manage big data fits quite nicely in
the cloud. Specially Hadoop[22], which is derived from MapReduce[19]1 created

1An explenation with example can be found in section 3.2.1.

8 CHAPTER 2. STATE OF THE ART STUDY

by Google, is an important framework. Some challenges are optimizing the perfor-
mance of Hadoop jobs and adaptive scheduling in dynamic conditions. Moreover,
another challenge is to make MapReduce framework more energy-aware

The main challenge with storage technologies such as MapReduce does not use
normal file systems, they implement their own. This causes an incompatibility,
between legacy file systems and the applications on the cloud.

Challenges around novel cloud architectures are problems with economy, com-
munication speed between geographical locations and the data centers, and energy
usage. The challenge is how big data centers solve these problems. A suggestion
was to have smaller data centers spread to different geographical locations. The
smaller centers are easier to cool, and less energy goes to keeping the hardware
cold. Moreover, having the data center spread out, allows for applications that
must have fast response time.

The conclusion was that at this time, the current technologies for cloud com-
puting is not matured enough to realize the full potential.

2.2.2 Cloud Computing and the DNA Data Race

Cloud computing can become a great application for process intensive applications.
In the paper, Cloud Computing and the DNA Data Race by Schatz et al., its just
this that is brought up and discussed. A problem is that the gap between DNA
sequencing throughput and computer speed is growing. Some suggestions are made
to close the gap. One suggestion is to invent algorithms that better uses a fixed
computing power, but it is discarded since it is not certain that there will be
any breakthroughs because of its unpredictability. Another suggestion is to make
processors work more efficiently in parallel. This is where the new technology cloud
computing comes into play.

As Schatz et al. says ”Cloud computing is not a panacea...”. Some challenges
that should be considered is how to transfer big data over low bandwidth network,
there are security and privacy issues, and for some problems cloud computing is
inefficient.

As in Cloud computing: state-of-the-art and research challenges, they mention
frameworks for processing big data is important to develop and mature to success-
fully develop the cloud computing. This will make the job easier for the developer
depending on the framework. MapReduce is brought in to the picture as a frame-
work that works great with most programs, but does not suit others. They move
on to say that the frameworks has some challenges that must be overcome when
looking at parallelism working together with the cloud. Researchers might have to
develop new, more complex, algorithms to do this.

After describing the frameworks and its pros, cons and the challenges, they
move on to describe other obstacles that should be solved. They start out with
saying that a big hindrance is how to transfer very large datasets to the cloud itself.
Since, when working with the data it must first be uploaded to the cloud, before
any processing can be done. One suggestion is to physically ship hard drives to
cloud vendors, when the user is not connected to a high speed connection.

2.2. RELATED RESEARCH 9

Another challenge that they take up is the data security and privacy. The
storage and processing security depends on local policy as well as cloud policy.
However, this is not matured enough as institutions and regulators work with
adapting to the new technology. The conclusion is that for now, local storage is
safer than storing in the cloud.

They recommend developing methods and algorithms for parallelism in the
cloud, sooner rather than later. They also have some points of recommendations
that should help whether or not to use the cloud for large scale DNA sequence
analysis. In short the points takes into account cost, resources, network needs,
and whether there are tools that exists for working with parallel framework. In
conclusion, cloud computing can be a viable option if all the recommendation points
are met.

2.2.3 Big data and cloud computing: current state and fu-
ture opportunities

In big data and cloud computing: current state and future opportunities, writ-
ten by Agrawal et al. describes challenges by developers and DBMS designers of
large internet scale applications. As the other articles they explain the differ-
ent cloud paradigms, for example Infrastructure-as-a-Service, Platform-as-a-Service
and Software-as-a-Service.

They move on to describe design issues when building a database management
system, DBMS that deals with a single large database. A scenario is that an ap-
plications may start small, but they grow to become larger over time. Application
servers can handle the scaling, but the bottleneck might be the data management
infrastructure. Since open source relational database management systems have a
large cost when associated with enterprise solutions, they become less attractive.
The result is that key-value stores, such as Cassandra, Voldemort, etc, have be-
come more popular because of the simplicity and low cost. They describe different
systems that are developed to incorporate cloud features.

A different domain that is important for data management in the cloud, is
supporting a large number of applications that have small amounts of data or also
called multi tenant systems. They go through how systems work in the cloud,
for example in Salesforce.com, the different applications share the same database
table.

To make a good DBMS in the cloud, there are some major problems that should
be looked at. The first problem that is brought up is how to provide support for ad-
hoc querying on top of a key-value store or to provide consistency in systems that
have different granularities. Moreover, one problem is to create more features and
extend the key-value store to support more applications. However, with relational
database a problem is how to make the systems utilize available resources and
reducing costs. The multi tenant systems’ problems focus on security, scalability,
elasticity and autonomics of the resources that is in the cloud.

10 CHAPTER 2. STATE OF THE ART STUDY

Chapter 3

Approach

3.1 Technology Background

When creating an application there needs to be a plan on what kind of environ-
ment the application will work in, what programs and which language is used to
create the application. In section 3.1.1 a few of the most popular Platform as a
Service, PaaS, providers [6] will be discussed. The conclusion will be drawn from
the discussion and the application will be based on the concluded PaaS provider.

3.1.1 Choosing Platform-as-a-Service provider

When choosing PaaS provider, it is important to look at what the needs are for
a certain application. For this project there will be need for many functionalities,
but the most important parts are the search engine itself, and the indexing part of
the search engine. The search engine needs processing power to search and index
fast. Moreover, it needs a scalable storage that can handle large indexes.

When files or objects are to be used often it is normal to store them in memory.
But, when creating a web application on the cloud it is not certain that the same
files or objects are to be found in each call to the web service. This is because
of two reasons, HTTP is a stateless protocol [21], which means that each request
is treated as separate, independent transactions and each request is unrelated to
other requests. Therefore, communication done using HTTP protocol is only done
by request and response. Because of this statelessness, web applications in the
cloud do not guarantee that the same server will process each request. This is done
to have as high uptime as possible so that the web application will not become
unavailable. If there is a need to hold information between each call there is usually
ways of doing this, where some are session, cookies, caching, database storage, etc.

Because of the storage and processing needs, there will be a special focus on
this in the discussion about the different providers, especially, the file size and the
number of files that can be stored. There will also be a focus on which providers
has a free subscription, and how much these subscriptions will give in computing

11

12 CHAPTER 3. APPROACH

Figure 3.1: Amazon foundation services

power and storage. Most of the other services that the providers offer will be briefly
mentioned.

Amazon EC2

Amazon EC2 is based on a set of multiple web services, called Amazon Web Ser-
vices, AWS [37]. The services are built up of 4 foundation services, Compute,
Database, Networking and Storage.

All of the services uses a REST or SOAP interface to communicate with ap-
plications, and there are many programming languages supported, where some are
C#, Java and PHP.

The Compute service allows the developer to take use of Amazons computing
power. It has features like auto scaling, load balancing, and Amazon CloudWatch
that allows monitoring of the computing activities on the Amazon cloud through
a web interface.

The Database web services is composed of 4 sub services. One can be used for
a relational database, this service is called Amazon Relational Database Service
(Amazon RDS). The second is called Amazon SimpleDB, which provides basic
database functions, indexing and querying.

The networking service is also composed of 4 sub services, the Amazon Virtual
Private cloud, Amazon Route 53 and AWS Direct Connect. The service that could
be used with search engines is the Amazon Virtual Private Cloud. The Amazon
virtual private cloud lets the user create a virtual network that can be closely
integrated with a business network. This service allows the business network and
Amazon virtual private cloud connect through VPN, and lets the business networks
resources extend into the cloud. It could be very nifty to have if the search engine
has a crawler that needs to go through and index a document archive at a business.

3.1. TECHNOLOGY BACKGROUND 13

Figure 3.2: File transfer from application to Amazon S3

The most important service, for this thesis, is the Storage service called Amazon
Simple Storage Service, or in short Amazon S3. This service is a scalable and
inexpensive way to store big data on the cloud. Each object stored on S3 are
placed into a collections called buckets. A bucket is a term used to describe a
function that is similar to folders in an operating system. The bucket can have one
or more data objects stored to it, and it is possible to store and retrieve the objects
from it by using unique names. There is no limit on the number of objects that can
be stored, and the objects can be anywhere from 1 B to 5 TB’s each. The buckets
have administrative possibilities from a web page that can be accessed through the
Amazon web site.

The prices that this type of storage operate with are very cheap. Amazon has
a free tier [36] that gives 5 GBof storage. Otherwise, if the storage exceeds this
limit the fee is only 25 US cents. To develop applications for Amazon EC2, one
can obtain a software development kit, SDK. The SDK is a collection of tools,
documentation and examples that makes it easy to learn how to use the services.

Another important service for a search engine is the Amazon Elastic MapReduce
service. This service enables the search engine to take advantage of a paralleling
method that greatly enhances the processing speeds. This processing method will
be explained in detail in section 3.2.1. It is a separate web service that is sorted
under the Distributed Computing Services. It uses a Hadoop framework and can
be combined together with EC2 and S3 services.

To speed up performance when retrieving files and objects from primary stor-
age, Amazon has created a service called Amazon ElastiCache. This is a in memory
caching service that can hold objects as if they were in memory in a normal server
environment. It is used as a distributed in memory cache, where multiple applica-
tions can share the cache. The cache is scalable and has a high performance. The
maximum value size is 1 MB, which is quite small if you want to store large files,
values or objects.

Google App Engine

Google App Engine [25] has three ways of storing data files; Data store, blob store
and Google Cloud Storage. Data store [24] is a schema less object database. It

14 CHAPTER 3. APPROACH

Figure 3.3: Allowed blob store operations

can store blobs together with other properties, which can be used as variables
describing the blob data. One transactions can include multiple operations, and
all of the transactions are atomic. This means that if one of the operations fail,
it will roll back all the changes. This storage is specially designed for distributed
applications, and it can handle many simultaneous transactions that process and
edit same resources. The data store is also very scalable, allowing it to grow or
shrink along with the activity. This storage is quite similar to a relational database,
but some functions differ. The fact that its highly scalable, is one function. The
problem with this storage is that the maximum file size is 1 MB and because of this,
this storage is not a candidate for this thesis and will not be further investigated.

The blob store [23] is a very interesting storage alternative. It allows storage
of much larger files than the files stored in the data store. The maximum size that
can be read from an API call is 32 MB. The files can be uploaded or download via
HTTP requests. This means that if you want to upload a file you have to create
a web form, and submit the file using POST. One problem with this is that if you
want to edit a file in the blob store, you have to GET the file, edit it, and then
create a new blob in which you can upload to. This poses a big problem when
it comes to creating indexes, and adding or removing documents from it. These
operations requires multiple updates of the files, and since this is not allowed, you
would have to constantly delete and create blob entries.

The third alternative to file storage in the Google App Engine is the Google
Cloud Storage [26]. The Google Cloud Storage is known as a service, where the
Google users can upload their files. But it also offers a RESTful API that allows
developers use it as a storage for files generated by an application. When you have
a RESTful API there is no need for playing around with HTTP forms to upload or
download the files. To make it even better, it does not have a maximum file size.
The files can be as big as you want. The storage uses buckets as object holders.
Similar to Amazon, the bucket can hold one or many objects. But, everything is
not as good as it looks. This storage suffers the same problem as the blob storage.
The objects can not be edited. You must overwrite the object with an updated
one to do an edit. But it is not as difficult as the blob store. You don’t need to
create a brand new bucket for each object you have to change.

3.1. TECHNOLOGY BACKGROUND 15

Figure 3.4: Block blob and Page blob in Windows Azure

The App Engine supports Map Reduce [27], but this is only with the Python
API. So if you want to create an application with Java, you will not be able to use
this feature. This is a big minus since the search indexes needs Map Reduce to
process large data quantities. It is possible to use a search engine that uses python,
but there are not many open source search engines that are created with Python.

As a substitute for in memory storage that is on a normal server, Google App
Engine has a service called Memcache [28]. The Memcache is used to temporarily
store objects so that they can be retrieved faster than from primary storage. The
objects in the storage is saved as long as possible, and when it has to remove an
object, due to lack of memory for example, the object that is the oldest is removed.
One downfall is that the objects stored can not be larger than 1 MB.

Microsoft Windows Azure

Windows Azure [18] has two types of blob storage. One is called Block Blob, and
the Page Blob [10] [13]. When you want to create a blob on this platform you
create a blob container. You then have to specify which type of blob it is, block or
page. With a storage account you can have unlimited amounts of blob containers,
but it must be under the total size of 100TB. Each container has an unique name,
and can be accessed by URL. The blobs have a RESTful API and a client library
that can be used to interface with the storage.

The block blob consists of one or more blocks, up to 50 000 blocks. Each block
can be maximum 4MB in size, and the maximum size of the block blob is 200 GB.
Each block has an unique id, and also these can be accessed with an URL.

The page blob is not as popular as the block blob, but it also has some nice
features. The random access operations have better performance. The page blob
is composed of pages, where a page is a 512-byte chunk. If you want to perform a
write operation on a page blob, you can either write over only one 512-byte chunk,
or many chunks up to 4MB at a time. This allows for parallelization. The page
blob can be maximum 1TB.

But how have Windows solved the problem of not being able to have objects in
memory? They created a service called Windows Azure Caching [8]. This is a cache
that is a part of the cloud application and is not shared with other applications.

16 CHAPTER 3. APPROACH

There are two types of caching services; co-located and dedicated. The Co-located
cache is a cache that shares the memory of an already existing cloud instance in
the deployment. The dedicated cache is its own instance that can keep a cache in
its own memory. The other instances may share this dedicated cache.

Conclusion

When creating a search engine the most important thing is computing speed and
a large storage. The computing speed is needed to swiftly process documents for
indexing, and being able to return a search result to the user as fast as possible.
When it comes to search speed, a tolerable wait time for a user is 100 milliseconds
[33]. This is the time it takes for a user to feel that there has been some waiting for
the results to arrive. Nevertheless, Nielsen also says that if there is a loading icon
present a user can wait 2 to 10 seconds, before starting to find other things to do.
Therefore, the goal should be to make the search performance fast enough that the
user will not feel any wait time. This means that the storage also should be fast,
and should allow for large indexes. These features are very important, but there
are also some features that should not be ignored. There should be a simulated
environment that can be used to develop the application without having to start
using the actual cloud. This will allow for testing of the application on a local
computer and that could save you from accidental overuse of storage and waste of
computing time.

As seen in table 3.1 all of the platforms have a maximum file size that can handle
all of the storage that this project needs. Windows Azure and Google App Engine
has unlimited computing hours, but Amazon has 750 hours per month available.
The application would not nearly have use up all of these hours since it not will stay
active all the time throughout a month. This is because it will not be a need for
that much computing time. This means that computing given by all the platforms
satisfy the applications expected need. The difference here is the performance. The
Amazon EC2 Micro instance does not give a lot of processing speed. This instance
is designed for applications with low throughput. This is quite low compared to
what Azure and App Engine can offer. But the App Engine has a limitation on
the amount of hours. Therefore Windows Azure is the best choice when it comes
to computing power.

When it comes to storage, all of the PaaS’ has sufficient storage space avail-
able. Windows Azure block storage has a maximum limitation of 100TB, but this
application will not even use a percent of this space. Therefore the maximum lim-
itation is not a problem. Moreover, the different ways of storing are also similar.
All of the methods have some sort of container in which you store files. Google
App Engine and Amazon S3 uses the term bucket, and Windows Azure uses the
term block blob. All of these storage methods are quite similar, the buckets or
block blobs are retrieved using an unique ID, and all of them have a simple way of
creating and storing objects. But when it comes to how much you are allowed to
store using the free subscriptions Windows Azure is a clear winner. Where the two
other platforms has 5 GB of storage, Windows Azure has a possibility of storing 35
GB of data and can perform 50 million transactions out and in from the storage.

3.1. TECHNOLOGY BACKGROUND 17

Amazon EC2 S3 Google App Engine
Cloud Storage

Windows Azure
Block Storage

Storage
Max size for one file 2 TB 200 GB 200 GB
Max total size Unlimited Unlimited 100 TB
Max value size in the cache 1MB 1MB 8MB
Free subscription gives
Computing 750 hours per month,

Micro instance
28 instance hours per
day

2 small compute in-
stances, 225 GB
local storage each,
1 Core, Unlimited
hours

Database runtime 750 hours N/A Unlimited
Database size 20GB 1 GB 1 GB
Database transactions 10 million I/O’s 50 000/50 000 I/O’s Unlimited
Storage size 5 GB 5 GB 35 GB
Storage GET/PUT 20 000/2 000 transac-

tions
25 000/2 500 transac-
tions

50 million transac-
tions

Total bandwith out 15 GB 25 GB 8 GB in, 8 GB out
Simulated Runtime No Java development

server
Windows Azure
Compute Emulator

Table 3.1: Summary of PaaS providers

5 GB is not enough for a proper benchmarking and if used it would scale enough
to give a proper test result. Where as, 35 GB should be enough for testing and
evaluating. Furthermore, during development there should be an simulated run-
time environment where it is possible to run the application locally. This is to be
able to test specific functions fast without having to deploy to the cloud. Google
App Engine and Windows Azure has these test environments, where Amazon EC2
does not. The cache sizes are also important to have an greater performance is the
cache size, and when the value size is larger you can temporarily store larger files,
lists, objects, etc. Windows Azure has 8MB which is 8 times more than Amazon
EC2 and Google App Engine with 1MB.

Since all of the platforms has quite similar functionality, there are some features
that stand out which leads to a platform conclusion. This is the amount of storage
possible with the free subscription, the possibility of starting a simulated runtime
environment and the maximum value size in the cache. Therefore, the platform
that is used in this thesis is Windows Azure.

3.1.2 Choosing a Search Engine

When it comes to open source search engines, choosing them can be a difficult task.
Because, finding the right means sifting through a myriad of them. Nevertheless,
after concluding with using Windows Azure as a PaaS, the choice is greatly reduced.

18 CHAPTER 3. APPROACH

Since, Windows Azure runs on the .Net framework, the programming languages are
limited to the available .Net languages. .Net uses Common Language Runtime [9],
CLR, where the languages are translated to CLR before it is ran in the runtime
environment. The CLR code is actually called managed code when it is in the
runtime environment. This code is integrated to the CLR services, which are cross
language exception handling, cross language integration, security and automatic
memory management. The most popular .Net languages are:

• C#

• Visual Basic .NET

• C++ (Managed)

Since C++ is not preferred when creating web services, web sites, and fully
taking advantage of the .NET libraries, the languages that are preferred are C#
and Visual basic.

There has been done a lot of comparisons on which search engines are the best.
The best, meaning, the search engine that is the fastest when it comes to indexing
and searching, and how well they can find the relevant documents. Therefore, it is
important to evaluate the seach engines before picking one. In the following section
search engines that are found will be discussed and one will be chosen as the search
engine to be used in this thesis.

Search Engine Evaluation

Evaluation of search engines is a task that takes a long time. Therefore, the search
engine-choice will be based on thorough reports that have done comparison of the
most popular ones. For this thesis, the most important criteria for a search engine
is how easy the code is customizable, how well they retrieve relevant documents,
and how fast the indexing and querying is done.

The source code for the search engine should be open. This way, it is possible
to have full control over the different components that are needed. For example, if
one wants to change the way the search engine does ranking. If the a search engine
is not open source the querying performed will probably be done black box, which
means that the query is inserted and the result is returned without knowing what
is done in between. In this case the customized ranking has to be done after the
results are returned, which is inefficient.

How well a search engine retrieves relevant documents are most commonly based
on two evaluation measurements; precision and recall [30]. Lets say you perform a
search and you retrieve a search result. The precision, P, which is the fraction of
documents retrieved in which are relevant for a query, can then be calculated using
this formula.

P =
Drdr

Dret

3.1. TECHNOLOGY BACKGROUND 19

Where Dret is the number of retrieved documents, and (Drdr is the number of
relevant documents retrieved. The recall, R, is the fraction of relevant documents
retrieved from the document collection.

R =
Drdr

Drel

Where Drel is the number of relevant documents in the total collection.
When measuring the speed or performance of the search engine, it usually is

done as a black box test. The two features that is important to test is indexing
and searching. The test inserts the query, and starts the timer. When the search
result is returned the timer is stopped again. The search should not take longer
than 100 ms [33]. The indexing is usually measured in minutes, and time it takes
will depend on the number of documents and the number of words each document
contains. The bigger the size of the document collection is the longer the indexing
will take.

When performing an evaluation of a search engine, it is important to have a
standardized document collection which is broadly used amongst other tests, to
be able to compare the search engines with each other. Therefore there has been
created and maintained standardized document collections that are used in the
tests. There is a workshop called Text Retrieval Conference, that has a main focus
of generating test collections that can be used for different information retrieval
software.

As said before, search engine evaluation is a very time consuming task. There-
fore, the search engine choice is based on other reports where the evaluation has
been very thoroughly done. In A Comparison of Open Source Search Engines, by
Middleton and Baeza-Yates, there have done an extensive evaluation of 17 different
open source search engines. One important evaluation they have done is evaluating
the performance of the search engines using different size of document collections,
in both indexing and searching. Moreover, they look at the amount of space the
indexes take after indexing is performed.

To perform the evaluation they used a document collection from TREC-4, that
consisted of documents from various news paper, which in total was 2.7 GB(5572
documents). A second document collection, called WebTREC, was also used to
evaluate how the search engines handled large document collections. WebTREC
was 10.2 GB, and had 1 692 096 documents, divided on 5117 files.

The search engines that are not compatible with .NET and the Azure environ-
ment is filtered away, and the remaining search engines are

• Lucene

• dtSearch

Lucene

Lucene is an open source search engine, originally created in Java. After growing in
popularity, there has eventually been created a parallel project that has rewritten in
C#.NET, which is called Lucene .Net. This project has all of the features that the

20 CHAPTER 3. APPROACH

original Lucene has. Since the project is open source, the source code is available
and can be utilized and rewritten to solve specific tasks.

For index storage, Lucene uses file storage. It is possible to add and delete docu-
ments from the index without having to perform a complete re-indexing. Moreover,
Lucene has searching features for example phrase, boolean, and wild card search,
fuzzy searching, stemming and ranking.

When indexing the collection that had 2.7 GB worth of documents, it spent 1
hour 1 minute and 25 seconds, which was the slowest in the evaluation. But, in
return it is very thorough in index compression. The interesting thing is that when
Lucene was presented with the WebTREC collection that was on 10.2 GB, it spent
7 times longer than a expected linear increase in indexing time.

The 2.7 GB document collection was compressed down to 0.7 GB, which is 26%
of the collection. Compared to the other search engines this was the second best
compression.

Lucene did quite well when it comes to search time. It only spent 21 ms
retrieving hits. It was amongst the fastest ones in the evaluation.

dtSearch

Another search engine that has port to C# is the dtSearch search engine. dtSearch
is a commercial search engine where licenses can be bought to allow the use of it.
There has not been any formal evaluations comparing it to other search engines,
but from the web site1 it says that it can handle over a terabyte of text in an index,
where the indexing time remains under 1 second.

Since the search engine is closed, the code is not open source which means that
if you want to customize the ranking, how the indexing files are stored and accessed
or any other part of the system, it will complicate things and make the system a
lot less effective. For example, if you want to perform your own ranking on the
documents in the index, you must create the algorithm and run it after the search
engine itself has retrieved the hits and ranked them.

Since dtSearch is not open source, and there are no good evaluations or com-
parisons with other search engines this is not the search engine of choice for this
thesis.

3.2 Theory

3.2.1 Map Reduce

The Map Reduce method[19] is used to process and/or generate vast amounts of
data, over many parallel computers, or computing clusters. To start out explaining
the method there are two roles that needs to be explained. The master and the
worker role (See figure 3.5). The master is a delegator, and distributes key/value
pairs to the workers and the workers are used to process data.

1http://www.dtsearch.com

3.2. THEORY 21

Figure 3.5: Map Reduce

The method is split into two parts the mapping part, and the reduce part. The
map part takes an key/value pair and performs a process that leads to a interme-
diate key/value pair. The master finds all key/value pairs, and then distributes N
number of pairs to N number of workers. The workers then process the values, in
parallel, and returns it to the master or sends it to an intermediator.

The master or intermediator will then pass on the the intermediate pairs, and
group all the values belonging to one key. Then the master will distribute the keys
together with the grouped values to reduce functions. The reduce functions will
merge together the values so that the output from the reduce function is either
null or one value. The intermediator is a function that is used to alleviate the
dependency on storing huge amounts of data in memory. To better explain this
method the following examples are created.

To give a real world example, Map Reduce can be something like an organi-
zation. Where the master is the leader that gives orders to a worker. The order
could be something like: given this word and these documents, count the number
of occurrences of the word in the documents. The worker does this and gives the
result back to the leader. The leader could give the same order to multiple workers
with the same word and different documents. These workers would also return the
results to the leader. The leader would then group all of the results and give the
order to a worker to sum up all the results for a word that is given together with
the result list. The results from the summation will also be returned to the leader,
and the leader will combine all of the results into one list. This list is the finished
list and now the leader has the occurrences of all words he/she asked about.

3.2.2 Information Retrieval

Information retrieval, IR, is the study of finding relevant information in unstruc-
tured data [30]. The unstructured data can be pictures, video, audio, or text,

22 CHAPTER 3. APPROACH

but since this thesis only uses textual IR, this will be the focus. Generally, there
are multiple steps that lets a search engine perform IR. There are two steps that
must be in place before a search engine can perform IR. One step is to manipulate
the unstructured data in such a way that it allows for the most efficient IR. This
is called indexing. The second step is actually performing the IR, this is called
searching or querying. There is also a third step that should be included, but this
step will not be explained in detail. This step is called crawling, which will be
shortly explained at the end of this section.

Search Engine Architecture

As explained in the introduction to this chapter, the search engines are composed
of multiple parts. To explain the architecture of the search engine, it is nice to
have an example that explains the general parts of the system. Lets say you have
a user, that has a need for information (see figure 3.6).

To let the user find anything at all the search engine must have an index. The
index is created by either adding documents manually, or there can be a crawler
that automatically crawls the internet and adds each unique web page as it finds
them to the index. In this case the user gets to upload the documents. When
the user uploads a document, the document will go through a number of processes
before it gets searchable.

First of all the document must be sent through a document analyzer. The
analyzer will retrieve the text in its plain form with no styling or formatting. Then
the text will undergo something called preprocessing, which involves removing stop
words and symbols, converting all the characters to lower case characters, and

Figure 3.6: A general search engine architecture

3.2. THEORY 23

stemming. Stop words are words that are repeated so much that it does not give
any meaning searching for it. Example of words are: and, are, is, he, she, etc.

As said before, the words must also undergo stemming. This is a process where
the word gets suffixes removed, and the words are returned to its base form. Cows
are turned into cow, running is turned into run and broken is turned into broke,
just to mention a few examples.

All of this preprocessing is done to make the rest of the processing easier, faster
and to save storage space. But the preprocessing can create some problems for later
searches. Lets say someone wants to search for the phrase ”He or she likes cake”.
Because of the preprocessing the words he, or and she are removed and will not
give any hits, and will be removed automatically from the query, giving the phrase
”like cake”. A lot of the semantic meaning with the sentence is now removed and
the results might not be as good as the user hopes. Therefore, common phrases
should be carefully treated.

After the preprocessing of the texts, the index is left with a lot of processed
words called terms. To be able to perform fast and efficient searches these terms
can be stored in multiple ways; either in an inverted index, bitmaps, or they can
be used to create a probabilistic model. The most commonly used storing method
is the inverted index, which is a list of words where each word has a list of which
document it occurs in. Since the thesis does not involve details around how the
indexes are stored, there will not be much explanation done around it.

Back to the user that has an information requirement. What is the next step
when the requirement is converted to action? The user performs a search with
words relevant to the information topic. The query undergoes the same prepro-
cessing done when indexing, and then it is sent to the index for document retrieval.
All of the documents that contain the query terms will be retrieved. If the search
is a boolean search, the documents are returned with no relevancy ranking. But
usually, before the documents are returned to the user, they will be ranked by
relevancy where the most relevant document is at the top and the least relevant
document is at the bottom. Some ranking functions are cosine similarity and Okapi
B252.

3.2.3 Distributed Information Retrieval

A distributed information retrieval system [3], DIRS, is an IR System that consists
of multiple nodes that work together to solve information retrieval problems. A
distributed system is very good at storing and process big data, but this assumes
that the computers in the system is physically placed in the same room or building,
and that the system is able to handle the amount of processing power and storage
space needed to handle the big data. A problem with a distributed system is
that the communication between the computers is slow compared to one single
computer. Therefore, communication between nodes must be as low as possible to
fully utilize the potential.

2More information about these ranking methods can be found in Introduction to Information
Retrieval by Manning et al.

24 CHAPTER 3. APPROACH

If the amount of data is not as big and complex, there is not a need for a
distributed system. A distributed system should be slower to process a small
data set than one computer, because of latency on the network is slower than a
computer bus. When it comes to scaling a single computer can not scale as well
as a distributed system. Moreover, a distributed system can handle a much larger
data set than one single computer.

There are two general ways how the distributed system can be designed. One
way is to have a centralized system, where the computers are set up in a client-
server relationship. The other way is to have a decentralized managed system, also
called a peer-to-peer system.

Centralized System

The centralized managed system is composed of one master server or master node
that is in charge of partitioning the document collection to one or more slave servers
or slave nodes. The master node will at all times keep track of which slave nodes
are online at all times, and will partition the index in specific ways that suits the
information retrieval needs.

One way to partition and distribute the index is to create one index that covers
the whole document collection, and creates duplicates that are distributed to all the
slave nodes. This design allows for automatic rerouting of the requests if one slave
node goes off-line. Moreover, it also allows distribution of the request to all the
slave nodes so that they get the same amount of traffic, also called load balancing.
Viewed from the users point of view, the system will have a stable search time and
performance. Viewed from the systems point of view, there will be less processing
peaks and one slave node will not be overwhelmed with requests.

A problem with this design is that it does not allow the system to utilize the
power of parallelization. Lets say the system uses the index duplication and wants
to perform a query request to all of the slave nodes, in parallel. All of the slave
nodes will receive the requests and each slave node will return the same result. This
means that if each result set is put together, it will still be the same as the result
from one slave node. Therefore, performing queries in parallel is rendered mute,
and one request to one slave node should be sufficient to get the correct result.

When it comes to indexing it is essential that all the indexes are the same.
Therefore, the indexing must be a broadcast to all of the slave nodes, which means
that parallel indexing is essential.

The time it takes to create an index, will be the total time it takes to perform
an indexing on a single computer, and the time it takes to transfer the index to the
different nodes. The time it takes to transfer the index, is dependent on how this
is performed. One way is to transfer to all of the nodes at the same time, this will
strain the bandwidth and will slow down the transfer time from the master node
to the slave nodes. In this case the total time, T , will be the time it takes to create
the index, Tindexing, and the time for the last node to complete the transfer, Tlast.

T = Tindexing + Tlast

The search time will be the time it takes to perform a search with a normal

3.2. THEORY 25

search engine. In addition, the time it takes to transfer the query from the master
node to the slave node and the time it takes to transfer the search result from the
slave node to the master node.

The time it takes to perform partial indexing will be the time it takes to transfer
the documents to the slave nodes and the time it takes to for the slowest slave node
to finish indexing. Since, the slave nodes will have less documents than the total
document collection, the indexing time for each slave node must be lower than
indexing the full collection.

There is also a different way to partition and distribute the index. The index
can be split into partial indexes that is distributed to the slave nodes. There are
two ways a partial indexing can be achieved; either by local indexing or global
indexing that is compared in an article [34] written by Ribeiro-Neto and Barbosa.

Local indexing is a partitioning method, each machine is its own search engine.
Meaning, each machine queries and indexes without the knowledge of the other
machines. Because of this separation this method is great at load balancing, since
the queries can be distributed to all the machines in parallel. But, the document
frequencies and other global information is not easily obtained without having to
perform a post indexing task, where the global information is retrieved.

Global indexing is when a large index is split up by term and distributed to
different machines. In this case, the machines is not its own separate search engine,
and the information distributed is global information.

The comparison done by Ribeiro-Neto and Barbosa found that global indexing
was favored over the local indexing when it comes to query processing speeds
in a tightly coupled system. The network system was a fast switching network
where there were fast message exchange among the computers, which will reduce
the networking time and in turn reduce the query processing time. They also
mentioned that the average precision, in a local indexing system, drops as the
number of machines increases because of the lack of global information. To combat
this the recommendation was to gather the global information and use this in the
results merging process.

When using a distributed information retrieval system with a higher networking
time factor, Cambazoglu and Aykanat found in [4] that a local indexing method
was preferred when there were infrequent queries to the system. But, when there
were frequent queries the global indexing method was the preferred method. Fur-
thermore, they found that the global indexing method was slower when it came to
infrequent queries, because of disk access and network volume imbalance between
the machines.

When the master node performs indexing of the document collection, it must at
all times keep track of which slave node has what partition of documents. Moreover,
the indexing must be done in such a way that if a slave node goes off-line, it does not
affect the query result. It must always return the correct result. One solution is to
let two or more slave nodes get the same partition of the index and when one slave
node goes down, the other takes over. The other way is to have the documents
partitioned in such a way that the indexes have overlapping documents. This
technique is very similar to the RAID 5 technique, where three or more hard disks

26 CHAPTER 3. APPROACH

Figure 3.7: Document partitioned with overlapping documents

work together as one logical unit. If one hard disk fails, it can be replaced with
another without the loss of data.

An example of partial partitioned indexes can be seen in figure 3.7. In this
case the documents are distributed amongst three slave nodes. The first slave node
will get the documents with numbers from 1 to 125. The second slave node will
have the numbers from 50 to 175, this means that the documents from 50 to 125
will be duplicated on the first and second server. The third slave node will have
the numbers from 125 to 200 and 1 to 50. The third slave node will duplicate the
documents from 125 to 200 and 1 to 50.

All the documents will now have one duplication on another slave node, and if
one slave node goes down the query will still be able to search through the whole
document collection, and return a correct result.

In both the partial index and the clone technique there is a need to keep all the
slave nodes updated with which documents that actually exists in the document
collection. It is possible to do a full indexing for each update, but that is a big
waste of computing resources. In the case of cloned indexes it is possible to do a
broadcast to all the slave nodes to get them to update themselves. To update the
partial indexes it is also possible to do a broadcast, but here only the slave node
that has the relevant partial index will update itself, and the rest of the nodes will
ignore the update.

The documents can be distributed amongst the partial indexes in a few ways,
where the most important ones are the sequential, randomized or semantically
grouped method.

The sequential method will just go through the list of documents one by one,
either by alphabet or by id, and pass the same number of documents to each slave
node. This does not take into account the file size or text size of the documents. In
worst case, one slave node can be stuck with a all of the largest documents in the
collection, and the rest gets only small documents. Therefore, this method can be
very uneven in the distribution. Nevertheless, this method is easier to implement
than the other.

3.2. THEORY 27

Figure 3.8: Partial index with sequential partitioning.

The randomized method will distribute the documents to the partial indexes
in a random way. The method can do it totally random, but this will not be any
better than the sequential method. The documents will then be distributed based
on their size. When a query is performed each slave node will need to process a
similar amount and they will use a similar amount of time.

The next method takes it one step further and groups the documents by se-
mantics. The documents can already be categorized so that each slave node holds
one category of documents, or the documents can be automatically categorized or
clustered.

Decentralized System

The decentralized system is where all the search nodes work independently, and
the document collection is uncontrollably partitioned amongst the search servers.
Lets say you have a initial node that receives a query. This node will then query
all the other peers on the network and retrieve a result. The initial node will then
merge the result and return it to the user. In this case the it is difficult to perform
a query to all of these servers without having a central managing component. The
nodes must at all time have a way to reach all the other nodes, and must also know
which nodes are online. Moreover, if one node goes off-line, the other nodes must
have enough information to still compose a full index of the document collection.
One of the key components in this type of system is the network connecting the
nodes to one another. The network must be fast and reliable to have a successful
system.

The other way is to create partial indexes and distribute those to the slave
nodes. This enables the user to perform a parallel query to all the slave nodes.
The query can be faster because of smaller partial indexes and the parallelization.
The master node must keep track of what files are in what index, and if all the
partial indexes together represents the document collection. One problem in this
design, is the fact that when there has been a query to the slave nodes, all the slave
nodes will not know of the queries to the other slave nodes. When the results from
the slave nodes are are gathered, the master node must merge the result and then

28 CHAPTER 3. APPROACH

Figure 3.9: Peer-to-peer distributed information retrieval

return it to the system performing the query.

3.3 System Architecture

3.3.1 Overview

The system is built up using a centralized distributed system, which is composed
of two main components; the master node, and the slave nodes. The master nodes
is responsible of knowing which slave node is active at all times. Moreover, it
is important to have node responsible of knowing which files belong to whom.
Therefore, the master nodes is in charge of distributing the files to the different
slave nodes. As mentioned in 3.2.3 in the section about centralized systems, there
are multiple ways of distributing indexes amongst the slave nodes. One way was
to create partial indexes on the slave nodes. In the system the master node does
not do any indexing itself but it only distribute the files to the slave nodes so that
they can index the files themselves.

The slave node is responsible for creating, maintaining and querying the index.
This setup not only supports one slave nodes, but it handles multiple slave nodes,
but each slave node itself is its own search engine and they work independently from
all other nodes. This means that each slave node can theoretically be physically
placed on separate servers, but this would not be very efficient because of the
network delay between the nodes.

Master and Slave Communication

The communication between the master and the slave is performed by utilizing web
services. The chosen web service is a simplified Web Application Programming
Interface, or usually called Web API [16]. It is also possible to create a web
service using Windows Communication Foundation[17], WCF, but because of time

3.3. SYSTEM ARCHITECTURE 29

constraints and a higher difficulty to set up a project that uses this technology, this
was the technology of choice.

The master and the slave nodes is built using the Model-View-Controller, MVC,
framework [12], where the master node uses views to render HTML pages for the
user, and the slave nodes only has controllers that the master node can use for
communication. This means that when the master node wants to delete a document
from the index, for example. It will send the the document id to the respective
slave node using a URL to the slave node. The URL could look something like
this http://slavenodedomain/Service/Delete/1, where the controller name is
in this case Service, the action is Delete and the id of the document is 1.

A problem arises when this communication is done in full duplex3. Since the
communication is over web API it is usually done through port 80. When one slave
node tries to connect and for example download files, the same slave node can not
perform a simultaneous call to the mater node. Therefore the communication is
done in half duplex4, where it will in most cases be a one way communication; from
the master to the slave nodes. The one exception to this is when the slave node
starts up and notifies the slave node that it is online.

Dataflow

In the overview it was mentioned that the master node had a web site that a user
can utilize to perform searches and indexing. The flow from the web site and to the
search engine in the slave node contains multiple steps that needs to be traversed
before the user can obtain a search result or index a file. Generally the data flow
is done like this; the user performs an action on the web site that must utilize the
search engine. The request will go from the master node and either to one specific
slave node or all of the slave nodes depending on the action and the amount of slave
nodes. For example, if the user wants to index one file and there is not enough slave
nodes to have overlaps of this file. The file will only be sent to one slave node for
indexing. The master node will perform an URL call with the needed parameters
to one action on the slave node. The slave node will use the search engine, and in
turn the search engine will utilize the Azure blob to obtain the index and perform
the action. If there will be a result from the index it will be returned to the master
node, which will in turn give the result to the user.

File distribution

To be able to search in the index, the slave nodes must have indexed files, and these
files have been distributed by the master node. When the files are distributed there
were some important criteria that had to be fulfilled. The files had to be evenly
distributed amongst the slave nodes, which would ensure an even load. Some
method that could do this, which can be read about in 3.2.3, but the method
chosen was the most simple algorithm, the randomized method 3.1. This method

3Full duplex is when there is simultaneous communication both ways between two nodes.
4Half duplex is when there is communication both ways between two nodes, but it is not

allowed to have communication simultaneous in both directions.

30 CHAPTER 3. APPROACH

1 A = whole document c o l l e c t i o n
2 N = t o t a l number o f nodes that w i l l be d i s t r i b u t e d to
3 n = 0
4
5 for each f i l e in A
6 i f node number n does not have the f i l e
7 a s s i g n the f i l e to this node
8 else
9 s e l e c t the same f i l e for the next i t e r a t i o n

10
11 n = n + 1
12 i f n i s the same as N
13 n = 0

Listing 3.1: Algorithm for randomized file distribution.

takes all the files in any order and distribute them randomly to the slave nodes,
not taking into account semantic meaning of the text or file size. This method was
picked because of the quick and easy implementation. It is a good method if the
text in the files are similar in size and word count. But, if one slave node randomly
gets all of the largest file in the document collection, it would have more load than
the others. Since, in a distributed system, the search and indexing is only as fast
as the slowest slave node, this would have a negative effect on the performance.

Another important criteria that have to be met is that one or more slave nodes
should be able to go off-line, rendering them unavailable to the master node, with-
out affecting the total document collection that is distributed to the slave nodes.
This means that the file distribution should implement a method for overlapping the
files. Based on the number of overlaps needed, the same file should be distributed
n number of times to n slave nodes. The percentage for uptime is guaranteed to be
99.9% for most of the services in Windows Azure [15], and if the system was based
on these numbers there would probably not be any reason for having overlapping
files. But, there could be some errors or one slave node could be taken off-line to
perform an update on the code that negatively affects the uptime. But, if all of
the files is overlapped as many times as there is slave nodes, there would not be
partial indexes and there would not be any performance enhancement gained from
parallelization. Therefore, the number of overlaps can be calculated from 3.1.

O = b
√
N + 0.5c (3.1)

where N is the number of slave nodes. Using this formula to find the number
of overlaps for 2 slave nodes, there would be no overlapping, but if there where
3 slave nodes there would be one overlap of each file which would allow one slave
node to go off-line without affecting the total document collection.

To integrate overlapping into the file distribution the randomized algorithm 3.1
would have to be run O number of times. Which would overlap each file O times.

3.3. SYSTEM ARCHITECTURE 31

1 F = number o f f i l e s to be taken from the e x i s t i n g s l a v e nodes and
added to the new one

2 N = t o t a l number o f nodes exc lud ing the new one
3 n = the new node
4 Repeat F times where the counter i s i
5 index = i \% N
6 take the l a s t f i l e from node i and add i t to n
7
8 Add n to N
9

10 OB = Calcu la te number o f ove r l ap s based on number o f nodes exc lud ing
the new one

11 OA = Calcu la te the number o f ove r l ap s based on number o f nodes
i n c l u d i n g the new one

12
13 Repeat OA − OB times
14 Run the a lgor i thm for Randomized f i l e d i s t r i b u t i o n ˜\ ref {

RandomizedFi leDist r ibut ion } with N

Listing 3.2: Algorithm for evening out the index after adding a slave node.

Adding a Slave Node

To make the system as scalable as possible, the system must automatically adjust
if a slave node is added or removed.

When a slave node is added, the master node must then register node and
proceed to evening out the index so that the new slave node will have files (see
listing 3.2). Evening out the index will give an increase in performance, since the
indexes will average out to be smaller after the slave node is added. Depending
on the number of nodes, the files will also be overlapped more, making the system
more resilient against a slave node going off line.

In the algorithm, F, The number of files to be taken from the existing slave
node (see equation 3.2), can be calculated from taking the total sum of the files,
f, in the list of slave nodes excluding the new node and dividing by the number of
slave nodes including the new one.

F =

∑
f ∈ N − n∑

N
(3.2)

Removing a Slave Node

As mentioned Windows Azure has a very good up time for instances running on
the cloud. But there might be some other reasons than a failing hardware making
a slave node go off line. Just as adding a new slave node there is a need for evening
out the index after removing a slave node.

Eventhough a slave nodes goes off line, the master node keeps lists of all files the
node has indexed. This allows redistributing the files that belong to the slave node
that has gone off line (see listing 3.3). Before the redistribution is performed, the
number of overlaps is calculated based on all the slave nodes excluding the off line

32 CHAPTER 3. APPROACH

1 F = Total f i l e s e t
2 N = Total number o f nodes
3 n = node to remove
4 OB = Number o f ove r l ap s based on N
5 OA = number o f ove r l ap s based on N − 1
6
7 hash = hash t ab l e
8 for each f i l e id , f in n with counter i
9 i f OB > OA then

10 add f to hash
11 else
12 add f to N that has index i \% (N−1)
13
14 i f OB > OA then
15 for each f i l e in (F − hash) with counter j
16 remove f i l e from N that has index j \% (N−1)

Listing 3.3: Algorithm for evening out the index after removing a slave node.

1 nodes <− Get s l a v e nodes
2 f i l e s <− Get f i l e s
3 threads <− I n i t i a l i z e l i s t o f threads
4 Run randomized f i l e d i s t r i b u t i o n mapping f i l e s to nodes
5
6 for each n in nodes
7 thread <− Add and s t a r t new thread that sends f i l e s to node n for

index ing .

Listing 3.4: Algorithm for indexing files in parallel.

slave. If the number of overlaps is less than the number of slave nodes including
the off line node, there is a reduction of overlaps.

Indexing

Before the files are indexed, the algorithm used for distributing the files(See listing
3.1), to the slave nodes, is executed. Then, each slave node gets a separate thread
that sends the files to the slave nodes for indexing through the web services.

Each file that is sent to the slave node is sent as a POST that includes the text
and the id of the document. When it is done in batches, a list of objects containing
the text and the id is created and then serialized5 into a JSON text6. When the
JSON text is received by the slave node, it deserializes7 the text into the list of

5Serialization is the process of taking one object or a group of objects and flatten it into
a sequence of bits so that it is easier to send over a network (http://www.parashift.com/c+
+-faq-lite/serialize-overview.html)

6JSON (Javascript Object Notation) - ”JSON is a lightweight data-interchange format. (...)
JSON is a text format that is completely language independent (...)” - ref: http://www.json.org/

7Deserialization is the opposite of serialization. It is to take the sequence of bits and recon-
structing the object.

3.3. SYSTEM ARCHITECTURE 33

objects and runs the indexing. The id and the text is kept in the index for retrieval
later.

Result merging

The total file collection is distributed to the slave nodes using a document-wise
partitioning (see section 3.2.3) . When a query is done to the system, the master
node must query each slave node for the relevant documents. Each slave node
will, in parallel, perform a query to the index and return the documents found to
the master node. When the master node has all of the results it must perform a
ranking.

Each search result that is retrieved contains posting lists for each query term
and a term frequency for each term. The master node gets the posting lists for
each term and creates a new one, where all duplicate document ids are removed,
leaving an unique posting list. All of this information is used to perform a cosine
similarity ranking between the ranking and each search result.

3.3.2 Caching

Caching

Each slave node have a cooperative cache (see section 3.1.1). As figure 3.10 explains,
the cache is used together with the Blob storage, to speed up the index file retrieval.
The index files are stored permanently stored to the blob storage, and when the
index files are either stored or updated in the blob storage the cache is updated
at the same time. The same with deleting, if it is deleted from the blob it will be
deleted from the cache. If the file is to be retrieved and it does not exist in the
cache, it will look in the blob and retrieve it from there. The cache will be update
at retrieval.

There are a few problems that occurs when it comes to using the Azure cache.
The objects has a max object size of 8 MB [11]. This means that if there are no
special treatment of the files stored in the cache and the index files grows larger
than 8 MB, they must be retrieved from the blob. Another problem is that the
total size of the cache is limited to the percentage of memory that is designated
to the slave node. For this thesis, the slave nodes runs on a small instance[Corp.],
and therefore the cache can be maximum 1.75 GB, which would use 100% of the
instance memory. But using 100% of the memory for cache is not recommended,
since this would cause problems for normal procedures in the program. Therefore,
the slave nodes have been set to utilize 50% of the memory for cache.

The maximum object size can be solved by dividing the file into partial files
that are smaller than 8 MB, and then use a hash where the key is the filename and
the value is a list of the partial file names. This hash object can also be stored
since the cache can hold any object that can be serialized [14], for example CLR
objects, byte arrays, XML files, etc. byte arrays This enables retrieving the object
and merge it to the full file. The down side by doing this is that it might not
be faster than the blob storage, since processing time for splitting and merging

34 CHAPTER 3. APPROACH

the files must be taken into account. As with the blob storage there is no extra
processing needed to store and retrieve the files.

The maximum cache size can not be altered except for increasing the size of
the instance. However, the biggest instance has a memory of 14 GB. What if the
index grows larger than this? The solution here is to add another instance, which
can be done through the Azure API or through the Azure management web site,
and then even the index out to the new instance.

Figure 3.10: Getting a file from storage in a slave node

Therefore, to handle big data the slave node instance should scale up as the
cache size is being used up. Lets say that a small instance slave node with a memory
of 1.75GB, has cache size of 50%. Then the index files should not grow larger than
0.875GB. If it grows larger, each query would have to retrieve index files from the
blob and from the cache. It would not be penalizes as much as when retrieving
everything from the blob, but there will be an increase in query time.

Chapter 4

Evaluation

4.1 Data Set

When evaluating an information retrieval it is important to have a good data set
to test the functionality up against. The data set should be large and have decent
sized texts so that the system can be put under stress. But, unfortunately only
parts of the dataset is used for this evaluation, because of time constraints.

This experiment will use the Wikipedia English article dataset. It is a XML that
contains all the articles written in the English version of Wikipedia, and presented
in plain text without any other media (f.ex. pictures). The XML contains alot of
information that is needed run the Wikipedia web pages. In code listing 4.1, the
data structure is written out in a stripped XML structure that contains no value
in the XML elements. Moreover, there have been some elements and attributes
left out to make the structure as clear as possible. The elements that will be used
is the page element with the child elements; page id, text, time stamp, title, user
name and comment.

The whole article collection is contained in one XML file that has a file size
of 41.98 GB, and if the whole data set would be used for this evaluation the
information given in the evaluation of Lucene (See 3.1.2), it seems that this file
size should be more than sufficient to test the search engine. Approximately 100-
200MB will be used to find bottlenecks and possibilities for optimization.

4.2 Evaluation Setup

There will be done two evaluations of the system, one with scaling and one without.
The purpose of performing the evaluation without scaling is to get a control result
in which the scaling result can be compared against. Moreover, the bottlenecks
that is found during the system development will be specifically tested to find
optimizations that can be done to the system.

0http://en.wikipedia.org/wiki/Wikipedia:Database_download

35

36 CHAPTER 4. EVALUATION

1 <mediawiki>
2 <s i t e i n f o >
3 . . .
4 </ s i t e i n f o >
5
6 <page>
7 <t i t l e >[T i t l e]</ t i t l e >
8 <id >[A r t i c l e id]</ id>
9 <timestamp >[Time and date o f l a s t e d i t]</timestamp>

10 <cont r ibutor>
11 <username>[Username]</username>
12 <id >[User id]</ id>
13 </cont r ibutor>
14 <comment>[Comment from cont r i bu to r]</comment>
15 <text >[a r t i c l e t ex t]</ text>
16 </page>
17 </mediawiki>

Listing 4.1: XML structure of the file that contains the English pages from
Wikipedia

The two evaluations will be done in a stepwise manner, where the files is indexed
with a fixed number of bytes at a time. Each iteration the total indexing time,
search time and index size will be noted. Doing this gives a good rate of result
collection and will give an overview of how these factors will change. It is also
important to see how the indexing- and search time responds to increasing the
number of nodes, and to find a specific trigger where this increase should be done.

The evaluations will be done on an emulator, except for the bottleneck tests.
Therefore, the networking delay is a factor that can be neglected. This is because
the networking delay is the time it takes to do a loop back1. After running a ping to
the loop back interface the network delay was found to be less than 1 ms, therefore
this time factor can be neglected.

Each evaluation will have the same instance configuration. Both master and
slave nodes will run on a small instance2, where the cache size is set to be 1% of
the total RAM, which is 17.5 MB.

4.3 Evaluation without scaling

Each evaluation will be divided into the number of slave nodes that are connected
to the master node. This section will show results from indexing and searching
with 1 to 4 nodes. There will not be any scaling involved here, which means that
the evaluation will have the same amount of slave nodes at the beginning as at the
end. The evaluation with 1 slave node will include some extra evaluations, that
reveals some important optimizations that can be done to the system.

1Loop back is when the network signal goes through the network card, without going past it.
2Small instance has 1.75GB of RAM

4.3. EVALUATION WITHOUT SCALING 37

The results that are found in this section is a summary of the total result set
that can be found in A. The focus have been to draw out specific points of interest.

4.3.1 1 Slave node

Indexing

The results in 4.1 shows the results from indexing the first 3 groups and the last
three groups, using 1 slave node. The index size grows in iterations of approx-
imately 7.33 MB, which means for each iteration, i, the index files that will be
loaded from the blob to memory each time will be 7.33xiMB. As shown, this
results in an increase in indexing time.

The files are transfered at approximately 2 MB at a time, and what is somewhat
interesting is that the index actually is larger than the files that are transferred.
This is probably because the text is stored, uncompressed, in the index.

Group Time (min:sec) Size (MB)
0 01:25 3.40
1 00:59 13.61
2 00:55 20.48
...
12 01:13 85.74
13 01:28 92.30
14 01:25 98.73

Figure 4.1: Results from running, both, master and slave node on a single computer
without the use of scaling in groups of 2MB.

When running a different test and doubling the group size, the results 4.2 show
that the indexing time decreases as the group size increases. By looking at the size
and the time compared to those in 4.1, it is clear that the MB/s is greater. In fact,
the approximate indexing throughput3 for the indexing using 4MB is on average
0.233 MB/s, whilst the group of 2MB had 0.111 MB/s.

Searching

The data displayed in 4.3 is the results from searching after each file group is
indexed. The table contains reference to which file group the results came from,
the search time, and the number of hits that came from the search.

From the results it is interesting to see how the caching helps on the searching
performance. For each file group there are 5 searches done. The first search in each
group is significantly slower than the others. Whilst the other searches are almost
instantaneous.

3The MB/s it takes for the files to be transferred from the master to the slave, and then stored
in the index.

38 CHAPTER 4. EVALUATION

Group Time (mm:ss) Size(MB)
0 00:52 6.76
1 00:47 26.56
2 01:08 40.01
...
12 01:31 168.72
13 01:32 182.06
14 01:28 195.03

Figure 4.2: Results from indexing with 1 slave node without scaling in groups of
4MB

Looking at the results from the four last rows in each group, it seems that the
number of search hits does not affect the time it takes to perform the search. But,
looking at the first row it seems that the index size have a great affect. As the
size grows, it takes longer to load the index files from the blob into the cache, and
therefore makes the first search much slower.

Group Hits Time (ms)
0 4 06.661
0 4 00.256
0 4 00.232
0 4 00.720
0 4 00.143
1 14 06.244
1 14 00.672
1 14 00.486
1 14 00.526
1 14 00.680
2 20 07.547
2 20 00.651
2 20 00.533
2 20 00.702
2 20 00.514

11 20 17.041
11 20 00.351
11 20 00.334
11 20 00.325
11 20 00.406
12 20 18.854
12 20 00.323
12 20 00.442
12 20 00.217
12 20 00.263

Figure 4.3: Results from searching with 1 slave node.

4.3.2 4 slave nodes

The results in this section is from running the same evaluation as in 4.3.1, but
instead of using 1 slave node there are 4. There is not other difference in the
configuration, and the group size is 2MB.

4.4. EVALUATION WITH SCALING 39

Indexing

The results found in 4.4, show that the result is quite similar to indexing with 1
slave node. The indexing time grows together with the index size. But, as expected,
indexing with 4 slave nodes made the index approximately twice as large as the
index with 1 slave node. Because of the overlapping files.

Group Time (mm:ss) Size(MB)
0 01:58 6.88
1 01:35 27.60
2 01:34 41.54

10 02:14 146.82
11 02:08 160.41
12 02:54 174.05

Figure 4.4: Indexing results, using 4 slave nodes.

Searching

As the results from searching with 1 slave node, the results from searching with
4 slave nodes, 4.5, show that the initial search is quite slower than the preceding
searches. Also, as the index size grows, the initial search time grows.

4.4 Evaluation with scaling

4.5 Bottlenecks

4.5.1 Cache vs Blob Storage results

To test the reading and writing operations done to the Azure Blob and the Azure
Cache, a program was created and uploaded to the cloud. This program was
running on a small instance, with 1.6 GHz CPU and 1.75GB RAM. After running
tests with increasing increments of 10MB, starting on 10MB, the cache seemed
to have a smaller increase in reading and writing time than the blob 4.6. For
example,when using a file that was 80MB, the cache used 67.4% less time when
writing and 50.56% less time when reading.

From the graphs drawn from the table 4.6 and 4.7, one can see that Azure Blob
has a much higher growth rate than the caches time. If, only, Azure Blob is used
to read and write files the query time will be greatly affected, since the index files
must first be retrieved before the actual query is done.

But, as the size of the files grow one can see that Azure Cache might also take
to long to retrieve the files. At 80MB it takes 1.6 seconds to retrieve the file and
then it must process the file to retrieve the relevant data for querying. This means

40 CHAPTER 4. EVALUATION

Group Hits Time (ms)
0 4 06.906
0 4 00.265
0 4 00.174
0 4 00.180
0 4 00.151
1 14 07.049
1 14 00.481
1 14 00.560
1 14 00.799
1 14 00.420
2 20 09.032
2 20 00.761
2 20 00.826
2 20 00.547
2 20 00.625

11 20 23.047
11 20 00.832
11 20 01.187
11 20 00.788
11 20 00.902
12 20 32.207
12 20 00.945
12 20 02.000
12 20 01.230
12 20 01.089

Figure 4.5: Search results, using 4 slave nodes.

that the query that must access the file on 80MB will probably take longer than 1.6
seconds to complete, which is too long when taking into account the recommended
time for user interactions. The time consumer is when the partial files must be
merged to create the full file. If the cache could hold larger objects the time it
takes to retrieve a file would probably go down significantly.

Therefore, the cache should be used when working with files on the cloud.

After reading about how Windows Azure uses blob to store files and taking
into account that when there is a file based index this was a natural place for a
bottleneck to occur. This is because reading operations from files can be quite
costly depending on how they are stored. Therefore, the files should be stored in
memory to quickly be able to read them when querying.

4.5. BOTTLENECKS 41

20 40 60 80
0

1,000

2,000

3,000

Size(MB)

T
im

e(
m
s)

Azure blob storage
Azure cache

Figure 4.6: Reading performance comparison between Azure blob storage and
Azure cache.

20 40 60 80
0

1,000

2,000

3,000

4,000

Size(MB)

T
im

e(
m
s)

Azure blob storage
Azure cache

Figure 4.7: Writing performance comparison between Azure blob storage and Azure
cache.

42 CHAPTER 4. EVALUATION

Size(MB) Azure blob storage (ms) Azure cache (ms)
Read Write Read Write

10MB 348.4 401.5 208.7 230.5
20MB 656.2 627.1 404.1 374.4
30MB 885.0 882.6 606.5 557.5
40MB 1354.8 2163.5 797.3 731.5
50MB 1815.4 2645.4 1004.1 866.3
60MB 2328.5 3626.3 1203.5 1068.9
70MB 2745.9 3851.8 1432.8 1190.8
80MB 3325.1 4171.0 1640.7 1360.9

Table 4.6: Comparison of read and write speed of Azure cache with splitting of
files larger than 8 MB and Azure blob storage.

4.5.2 Networking results

Since the architecture is a distributed one, the network latency must be taken
into account. The test that is done only tests the network latency between two
applications in the cloud, and the configuration is the same as how the real system
is set up, using web API.

The results in 4.8 show that there is almost no latency when the two applications
are working on the same geographic location4. The slowest uses only 6 ms for a
round trip, whilst the fastest is 1 ms.

Id Round Trip (ms)
0 6
1 1
2 1
3 6
4 2
5 1
6 1
7 1
8 5
9 3
10 3

Figure 4.8: Communication speed between two applications in the Microsoft Azure
cloud.

4Northern Europe.

4.6. DISCUSSION 43

4.6 Discussion

The focus in this thesis has been to find how to process and store big data in the
cloud. Where the research questions were going to cover parts of the main question.
In this section, each research question will have its own section where they will be
discussed.

4.6.1 How can distributed methods be used to process and
store big data on the cloud?

The distributed methods and algorithms itself are easily transferable to the cloud
environment, except for the methods that utilizes the storage and the assumption
that the in memory objects are always retrievable for each call to the system.

This system used in the evaluation based itself on a server-client architecture
where the clients had partial indexes. In a distributed environment, when pro-
cessing big data the clients can each be designated to one computer or virtual
computer. In worst case, setting up a computer can be quite time consuming com-
pared to setting up a new client in the cloud environment. When there is a need
of more clients, or slaves as they also are called, it only took 5 minutes to publish
and start up a new one on the cloud. Each application on the cloud has the pos-
sibility to increase the number of instances that will run that application, and the
initial thought was to use this when scaling the slave nodes. Interestingly enough,
Azure applies automatic load balancing on the instances based on the same role.
This means that each instance does not get its own URL, and will therefore not be
detected by the master node as separate slave nodes. The solution was to have the
slave nodes run as its own application. This solution only has one negative factor,
it takes 5 minutes to increase the number of slave nodes instead of 1 minute.

Since the evaluation system had partial indexes distributed amongst the slave
nodes, the automatic load balancing was not a very great feature. But, if the system
had used slave nodes with whole indexes this would be a greatly appreciated feature.
Since the slave nodes would then have been dependent on automatically switch to
another node if one became overworked, and the fact that this is a built in feature
would reduce the work since you wouldn’t have to create your own.

The partial indexing system could also utilize the automatic load balancing by
starting up more instances of each slave node. The need for overlapping the files to
ensure consistency in the searches would then be rendered redundant. The reason
for this is that the overlapping files in the index is designed let the slave nodes go
off-line, and the search would not be affected. When the role has two instances the
load balancing would take care of the problem that one instance would go off-line.
Removing overlapping files would decrease the index sizes, and in turn lead to a
smaller amount of slave nodes needed. This is because of the need to have the
index files cached in the Azure cache for fast querying. When the files are smaller
the cache does not get filled up as fast.

When looking at the system in more detail, you can look at the algorithms taken
from the distributed systems. In the evaluation system, the algorithms borrowed
and implemented was the merging and the distribution algorithms.

44 CHAPTER 4. EVALUATION

Since the partitioning method was based on local indexes, the merging was done
from performing cosine similarity between the results and the query. Comparing
the results in 4.3 and 4.5, there were not much difference between searching with a
single slave node without any specific merging, or with 4 slave nodes with merging.
The search times were approximately the same in both situations. But, the results
did not show a search result with thousands of hits. With that many hits it would
probably take longer. To make the merging of thousands of results fast the slave
nodes could be used together with the map reduce method (see 3.2.1). Each search
result could be sent, together with the query to each slave node and in return the
cosine similarity could be the returning value. Since the system uses local indexing,
and as described in 3.2.3 the local index gets a drop in the precision as the slave
nodes increases. Therefore, the merging method should be upgraded to take into
account global information so that this drop does not happen.

The distribution algorithm that is implemented was a random distribution al-
gorithm which is described earlier in 3.2.3 and in 3.3.1. As said the algorithm does
not take into account file size or semantics in the files. This can make the slave
nodes become uneven in sizes and the load could be different from one node to
another. But, on the other hand, it is quite fast and not as difficult to implement.

4.6.2 How well does a distributed system in the cloud per-
form compared to a distributed system that is not in
the cloud?

When looking at the results in the evaluation 4.3 and comparing them to the
evaluation of the Lucene search engine in 3.1.2. The evaluation done by Middleton
and Baeza-Yates proved that Lucene spent 1 hour, 1 minutes and 25 seconds (in
total 3685 seconds) to index 2.7 GB (2764.8MB), which is a speed of 0.75 MB/s.
Compared to the speed of the evaluation system, 0.23 MB/s, it is more than a
100% faster. But, the evaluation system is not fully optimized. If the evaluation
system was fully optimized it would probably be close to that speed.

Comparing the results from indexing with 2MB 4.1 and with 4MB 4.2 file
groups, proved that increasing the number of files (higher size) that were sent to
the slave node, increased the indexing speed from 0.11 MB/s to 0.23 MB/s. Further
increasing the file group would probably increase the speed as well.

One great advantage of the distributed system is that the application can fully
utilize the memory on the computer it is running on by keeping index files in
memory between calls and removing the need to read from file each time it has to
perform a query. When searching there were quite a large difference between the
search time in the evaluation by Middleton and Baeza-Yates and the evaluation
system. On average the search time for the evaluation system was around 600 ms,
whilst the Lucene evaluation was 21 ms. But bear in mind that the document
collection for the evaluation system is considerably smaller than the one in the
Lucene evaluation. But, as long as the index files were in the Azure Cache and the
files were under 8 MB, the search time was not overwhelmingly slow. Querying
when reading directly from the blob was, on the other hand, slow and would not

4.6. DISCUSSION 45

be feasible for an information retrieval system. Therefore, when the first query was
sent to the slave nodes (see 4.3 and 4.5), the index files that were going to be used
were stored in the azure cache, so that the preceding queries would use the files in
the cache rather than from the blob. The performance comparison can be seen in
4.5.1. The cache performance is good, but not as good as it should be when taking
into account the recommended time for user interaction is 100 ms. Reading a 80
MB file from the Azure cache took 1.6 seconds, and would itself cause the total
query time to overstep the recommended time. A suspicion is that the 8 MB limit
to the objects stored in the cache is a restricting factor. Since the files that are
over 8MB is split into smaller files, and when the file is needed it is put together
by joining these sub-files, a lot of the time would be spent merging the files back
together into one larger one.

When it comes to networking latencies between the master and the slaves, the
cloud seems to have a tightly integrated system for networking. The networking
between the applications, that are located in the same region , are done in great
speeds and the latency can be neglected when finding bottlenecks in a system. The
results4.5.2 clearly shows that the latency between the two applications that were
used for the test was very low. On average, the time it took to call the application
and to return with a result took only 2.67 ms. Compared to a distributed system,
this is about the same as one would expect from these types of systems.5

4.6.3 What challenges are there?

During implementation of the test system, there were quite a few challenges that
had to be worked out.

One great problem was how to create and store the index files in something else
than a normal file structure without loosing performance. Reading and writing
directly with the blob storage made the system very slow. This was quite evident
when first creating the system. Initially, the master performed one call to the slave
nodes for each file that needed to be indexed. This made the slave node read the
index files from the blob to memory for each call. It proved to be very slow, and
each file used around 50 seconds to be indexed. How could the index files be kept
in memory and then flushed to blob after it was finished reading?

The solution was to send the files in large batches for indexing. From the results
4.1 it showed that now it took 55 seconds to 1 minute 28 seconds to index 2 MB
worth of files, and when each file can be from 20KB to a couple of hundred KB, it
was a great improvement. This meant that performing the indexing in batches of
files it would not have to load the index files from the blob as often, and therefore
save that time.

The most optimum solution would be to transfer all the files in one large batch,
but there are limitations to this. The JSON deserializer (see 3.3.1) has a maximum
object size of 2 GB, assuming that the slave node instance has enough memory to
hold that large of an object. There is also the same limitation on objects transferred
through the web API. Increasing the object size for the JSON deserializer is not

5Running a ping between two computers on the same network usually is around 1-2ms.

46 CHAPTER 4. EVALUATION

a problem, but increasing the size of files and objects uploaded to the web API
could pose a problem, since this could be exploited and be used as points of DDOS
attacks6. The attacker could keep the service busy by uploading many very large
files and making the service drop off-line. Therefore, the file batch should be
increased to a reasonably large size to optimize the indexing performance.

A different problem that occurred, that also is related to the fact that Azure
does not reliably hold objects in memory, is that the index files should be somehow
kept in memory for querying, instead of having to load from the blob each time a
query is performed. The solution was to load the index files into Azure cache and
use it as an in memory storage. The files would then be retrievable between each
call, and the azure cache is quite fast. But, as said earlier, the problem with the 8
MB limitation made reading from the cache slower than it should have been. The
merging of the index files are done sequentially, so one optimization could be to
retrieve the sub files in parallel and then merging them. Then the time to retrieve
file from the cache would be the time it took for the slowest thread to retrieve its
file and the merging process itself. The best optimization would be that Microsoft
removed the size limit altogether.

When it comes to processing big data, there is another great challenge that must
be handled. When should the scaling of the slave nodes occur? The evaluation
has not been tested on actual big data, but there has been suggestions from the
results that shows how to handle big data. The fact that the Azure Cache has a
great impact in the querying performance has to be taken into account. Since the
cache is limited to a percentage of the total memory on the instance that runs the
application, the recommendation should be to increase the number of slave nodes
when the index size grows larger than the cache size. Lets say the cache is 50% of
a small instance. This would give a cache of 850 MB of memory. If the size of the
index is expected to grow larger to 10GB the recommended number of slave nodes
should then be, roughly calculated, 12 slave nodes.

4.6.4 Pros and Cons of choosing Windows Azure

When it comes to choosing Windows Azure as a Platform-as-a-Service provider,
there has been some ups and some downs.

Windows Azure has had storage in abundance, the networking speeds between
applications are great, and the Azure Cache has been great for keeping objects in
memory.

The automatic load balancing when increasing the number of application in-
stances is also a great feature for some types of applications, but in exactly this
system it was more a pain than a pleasure. As said before, the load balancing would
be great if the whole index was distributed to the slave node. The blob storage
access point would be the same, and the slave node application could scale up or
down depending on the need without having to replicate the index or even perform
a new index. The index files would remain untouched, it would not be a need to

6Denial of service attack - ”Is an attack designed to render a computer or network incapable
of providing normal services.” (http://www.w3.org/Security/Faq/wwwsf6.html)

4.6. DISCUSSION 47

perform any duplication or any re-indexing. But, if there were one feature could be
implemented it would be to allow for choosing when to create a new instance with
a new IP or a new instance with the same IP as another instance for automatic
load balancing for that instance.

The Azure Cache was not only good to have, there were also some down sides.
As said earlier, the maximum object or file size made the search performance
decrease, since when the files greater than the 8MB limit had to be split into
smaller files so that they didnt overstep the limit. But the most costly operation
was when the sub files had to be merged into one large file each time this file had
to be retrieved. There are optimizations that can be done, but the cache would in
a perfect world be used as the memory in ordinary servers are used. On ordinary
servers there is a limitation to the object size, but not anywhere near to the 8MB
limitation set in the Azure Cache.

48 CHAPTER 4. EVALUATION

Chapter 5

Conclusion

This thesis started out with one question; How can Big Data be processed and
stored in the cloud? This was to be researched by creating a distributed search
engine in the cloud, and perform tests and evaluations on it. To find the search
engine the cloud platform must have been chosen first, by setting up a few criteria
that the cloud should be able to cover.

The different cloud platforms should be able handle storage, it should be able
to handle fast processing of search queries and it should have a simulated runtime
environment. Since all of the cloud platforms had good numbers on most of these
areas, the limiting factor was how much the free trial would give you, and therefore
would be used in this thesis. The platform that prevailed was Microsoft’s Windows
Azure, since the free trail gave the most storage, and most of the specifications
were slightly higher than the other platforms. It also has a runtime environment
that was important to set up the projects, for testing on the cloud.

When the cloud platform was chosen, the next step was to choose which search
engine to use. Since Windows Azure only support .NET languages, such as C#,
C++ (Managed), Visual Basic, etc. But to fully take advantage of the features in
Windows Azure C# or visual basic were the preferred languages, since they are
easier to develop web projects and utilize the full .NET library. Looking at

The choice of search engines fell on the veteran of the open source search engines,
Lucene. To be more precise it was the C# version of the original Java written
version, Lucene.Net. One of main reasons for the choice was that Lucene is open
source, which means that the code is open and can be rewritten to suit your needs.
Also, it is thoroughly evaluated and compared to other search engines, and it was
one of the better search engines. Moreover, it has been around for many years and
there has been many search engines that have been built, based on it. Therefore,
there are probably many problems circulating, that already has been solved and
can help progressing the project faster forward.

The search engine was built, using the distributed method of partial indexes
that were stored in Windows Blob Storage. The indexes were locally indexed,
which means each slave node (client) did not know of the others and did not have
any global term information. The files were distributed amongst the slave nodes

49

50 CHAPTER 5. CONCLUSION

using a random distribution algorithm, which meant that there were a possibility
of an uneven distribution, but for evaluation purposes was enough.

When the master node queried the slaves, they performed the search and re-
turned the hits together with information that allowed to perform a cosine ranking
on the master. When the initial queries were performed, the index files were loaded
from Windows Blob Storage to the Azure Cache, where the cache worked as mem-
ory so that each call to the slave would have the index files available. The files had
to be loaded into the cache, since Windows Azure is stateless and two calls to the
web API could in theory go to two different servers running the same application.

The results showed that when the files were indexed the speed of the throughput
of the indexing increased together with the increase of file batches that were sent to
indexing. Which showed that each time a new batch were sent to the slave nodes
for indexing, the index files had to be loaded from the Blob Storage. Loading from
the Blob Storage proved to be quite a time consuming operation,and making the file
batches larger in turn decreased the number of loadings that had to be performed.
Since indexing big data is quite time and resource consuming, it is essential that
the performance of this operation is optimum.

The search evaluation showed that the performance in this operation also suf-
fered from a delay when the index files had to be loaded from the blob. The first
query to the slave nodes, made the index files load from the blob to the cache,
therefore this operation could take an unreasonable amount of time. Nevertheless,
the preceding queries which used the index files from the cache to perform the
query proved to be quite faster. Finding this lead to an evaluation that compared
the reading and writing operation using the blob storage and the cache, where the
cache was clearly faster. The only problem with the cache was that it could only
hold objects or files that were of the size of 8 MB, which meant that the objects
that were transfered to and from the cache had to be split and merged to and from
smaller files.

As the slave nodes’ indexes grows larger it showed that the Azure Cache is
so important for the query performance that it should always have all the index
files loaded at all times. Therefore, scaling the slave nodes up or down should be
decided by the space left in the cache.

When it comes to processing and storing big data in the cloud, it is very possible.
Methods designed for distributed systems are mostly transferable to a distributed
system in the cloud. But, there are performance issues with the storage that needs
to be recognized and resolved. Comparing a distributed system in the cloud and
one not in the cloud, the results concluded that, with some more tweaking they
might be equally fast. Moreover, when scaling the system, the cloud system is
much easier to scale.

5.1 Further Work

To take this work further, the system should be optimized to perform as fast
as possible, and then it should be tested using big data. The system should be
evaluated to see if the indexing can handle the large amount of data and if the

5.1. FURTHER WORK 51

query still is able to work fast. One optimization that can be done is reading and
writing to and from the data cache in parallel to make splitting and merging the
index files faster, which in turn will make the queries faster.

Another evaluation the system should undergo is a stress test. When there is
big data, there is usually a lot of activity on the search engine, and to see if it can
handle the requests a stress test should be done.

The possibility of creating instances with same IP and using the automatic load
balancing is a very interesting area. The slave nodes should increase the number of
instances it is per IP and see how the automatic load balancing affects the system.
Will it be able to handle more requests? Will it be possible to neglect overlapping
files and still be able to take one slave node off-line without interruptions? These
are some very interesting questions that should be answered.

52 CHAPTER 5. CONCLUSION

Appendix A

Results

A.1 1 slave node without scaling

Indexing in file groups of 2MB.

Group Time (min:sec) Size (MB)
0 01:25 3.40
1 00:59 13.61
2 00:55 20.48
3 01:05 27.12
4 00:58 33.83
5 00:56 40.40
6 01:02 47.34
7 01:06 54.12
8 01:46 60.94
9 02:19 33.11
10 01:10 72.54
11 01:09 79.12
12 01:13 85.74
13 01:28 92.30
14 01:25 98.73

Indexing in file groups of 4MB.

Group Time (mm:ss) Size(MB)
0 00:52 6.76
1 00:47 26.56
2 01:08 40.01
3 00:59 53.52
4 01:12 66.94

53

54 APPENDIX A. RESULTS

Group Time (mm:ss) Size(MB)
5 01:02 79.91
6 00:59 92.68
7 01:09 105.58
8 01:12 118.84
10 01:08 141.98
11 01:14 155.18
12 01:31 168.72
13 01:32 182.06
14 01:28 195.03

Searching with 1 slave node.

Group Hits Time (ms)
0 4 06.661
0 4 00.256
0 4 00.232
0 4 00.720
0 4 00.143
1 14 06.244
1 14 00.672
1 14 00.486
1 14 00.526
1 14 00.680
2 20 07.547
2 20 00.651
2 20 00.533
2 20 00.702
2 20 00.514
3 20 08.788
3 20 00.463
3 20 00.460
3 20 00.667
3 20 00.434
4 20 10.083
4 20 00.514
4 20 00.304
4 20 00.518
4 20 00.379
5 20 16.777
5 20 00.455
5 20 00.509
5 20 00.458
5 20 00.394
6 20 12.665

A.2. 2 SLAVE NODE WITHOUT SCALING 55

Group Hits Time (ms)
6 20 00.466
6 20 00.714
6 20 00.590
6 20 00.434
7 20 14.511
7 20 29.155
7 20 00.430
7 20 00.275
7 20 00.431
8 20 27.829
8 20 00.521
8 20 00.845
8 20 00.467
8 20 00.463
9 20 18.341
9 20 00.510
9 20 00.385
9 20 00.569
9 20 00.394
10 20 15.709
10 20 00.540
10 20 00.304
10 20 00.643
10 20 00.338
11 20 17.041
11 20 00.351
11 20 00.334
11 20 00.325
11 20 00.406
12 20 18.854
12 20 00.323
12 20 00.442
12 20 00.217
12 20 00.263
13 20 20.241
13 20 00.332
13 20 00.270
13 20 00.244
13 20 00.275

A.2 2 slave node without scaling

Searching with 1 slave node.

56 APPENDIX A. RESULTS

Group Time (mm:ss) Size(MB)
0 00:59 3.44
1 00:55 17.25
2 00:59 38.02
3 01:04 65.54
4 00:59 99.87
5 01:01 140.85
6 01:19 188.87
7 01:42 243.77
8 01:41 305.58
9 03:03 356.70
10 02:02 429.94
11 01:59 509.83
12 01:50 596.40
13 01:59 689.59

Searching with 2 slave nodes.

Group Hits Time (ms)
0 4 04.198
0 4 00.097
0 4 00.223
0 4 00.146
0 4 00.107
1 14 04.364
1 14 00.300
1 14 00.632
1 14 00.294
1 14 00.374
2 20 07.358
2 20 00.423
2 20 00.464
2 20 00.623
2 20 00.715
3 20 07.840
3 20 00.530
3 20 00.351
3 20 00.503
3 20 00.515
4 20 10.313
4 20 00.620
4 20 01.151
4 20 00.870
4 20 00.769
5 20 12.474

A.2. 2 SLAVE NODE WITHOUT SCALING 57

Group Hits Time (ms)
5 20 00.751
5 20 00.431
5 20 00.692
5 20 00.476
6 20 21.591
6 20 00.657
6 20 00.779
6 20 00.471
6 20 00.685
7 20 21.195
7 20 00.567
7 20 00.447
7 20 00.673
7 20 00.567
8 20 22.685
8 20 00.448
8 20 00.483
8 20 00.467
8 20 00.555
9 20 23.025
9 20 00.779
9 20 00.519
9 20 00.455
9 20 00.679
10 20 17.273
10 20 00.479
10 20 00.484
10 20 00.764
10 20 00.904
11 20 18.161
11 20 00.464
11 20 00.508
11 20 00.558
11 20 00.562
12 20 21.751
12 20 00.597
12 20 00.484
12 20 00.732
12 20 00.689
13 20 26.000
13 20 00.704
13 20 00.822
13 20 00.602
13 20 00.934

58 APPENDIX A. RESULTS

A.3 3 slave node without scaling

Indexing with 3 slave node using file groups of 2MB.

Group Time (mm:ss) Size(MB)
0 01:47 6.842406273
1 01:34 27.43525982
2 01:37 41.28302288
3 01:34 54.67120934
4 01:59 68.19398308
5 02:02 81.42880535
6 02:49 95.42016029
7 02:15 109.0745096
8 02:27 122.8222675
9 02:32 133.9340506
10 02:36 145.8539791
11 02:53 159.0913811
12 02:35 172.3967342
13 02:34 185.5799227
14 02:15 198.5223694

Searching with 3 slave nodes.

Group Hits Time (ms)
0 4 06.963
0 4 00.223
0 4 00.245
0 4 00.147
0 4 00.162
1 14 08.094
1 14 01.187
1 14 00.776
1 14 00.721
1 14 00.472
2 20 10.393
2 20 00.896
2 20 00.614
2 20 01.076
2 20 00.802
3 20 12.585
3 20 00.740
3 20 00.972
3 20 00.803
3 20 01.233

A.3. 3 SLAVE NODE WITHOUT SCALING 59

Group Hits Time (ms)
4 20 14.773
4 20 00.865
4 20 00.949
4 20 00.948
4 20 01.087
5 20 29.656
5 20 01.114
5 20 01.505
5 20 01.727
5 20 01.633
6 20 25.999
6 20 00.722
6 20 05.499
6 20 00.714
6 20 00.968
7 20 28.007
7 20 00.724
7 20 00.695
7 20 00.715
7 20 00.756
8 20 29.037
8 20 00.716
8 20 01.029
8 20 00.664
8 20 00.734
9 20 21.946
9 20 01.060
9 20 00.472
9 20 01.197
9 20 00.525
10 20 22.036
10 20 00.698
10 20 00.922
10 20 00.707
10 20 00.787
11 20 28.783
11 20 01.013
11 20 01.089
11 20 00.857
11 20 00.752
12 20 24.685
12 20 00.891
12 20 00.554
12 20 00.620

60 APPENDIX A. RESULTS

Group Hits Time (ms)
12 20 00.690

A.4 4 slave nodes without scaling

Indexing with 4 slave node using file groups of 2MB.

Group Time (mm:ss) Size(MB)
0 01:58 6.88
1 01:35 27.60
2 01:34 41.54
3 01:49 55.02
4 01:38 68.64
5 01:54 81.96
6 03:19 96.03
7 02:18 109.77
8 02:04 123.60
9 02:23 134.58
10 02:14 146.82
11 02:08 160.41
12 02:54 174.05

Searching with 4 slave nodes.

Group Hits Time (ms)
0 4 06.906
0 4 00.265
0 4 00.174
0 4 00.180
0 4 00.151
1 14 07.049
1 14 00.481
1 14 00.560
1 14 00.799
1 14 00.420
2 20 09.032
2 20 00.761
2 20 00.826
2 20 00.547
2 20 00.625
3 20 14.839
3 20 01.321
3 20 00.954
3 20 01.102

A.4. 4 SLAVE NODES WITHOUT SCALING 61

Group Hits Time (ms)
3 20 01.025
4 20 15.467
4 20 01.149
4 20 01.290
4 20 01.201
4 20 00.795
5 20 43.775
5 20 01.534
5 20 01.645
5 20 01.847
5 20 01.780
6 20 20.876
6 20 00.811
6 20 00.896
6 20 00.867
6 20 00.841
7 20 20.852
7 20 00.938
7 20 00.800
7 20 00.596
7 20 00.920
8 20 26.640
8 20 00.636
8 20 00.980
8 20 00.690
8 20 01.089
9 20 24.067
9 20 01.134
9 20 01.005
9 20 01.146
9 20 00.908
10 20 18.670
10 20 00.855
10 20 00.624
10 20 01.024
10 20 00.983
11 20 23.047
11 20 00.832
11 20 01.187
11 20 00.788
11 20 00.902
12 20 32.207
12 20 00.945
12 20 02.000

62 APPENDIX A. RESULTS

Group Hits Time (ms)
12 20 01.230
12 20 01.089

Bibliography

[1] 101tec Inc (2010). How katta works. http://katta.sourceforge.net/

documentation/how-katta-works.

[2] Agrawal, D., Das, S., and Abbadi, A. E. (2011). Big data and cloud computing:
current state and future opportunities. In Proceedings of the 14th International
Conference on Extending Database Technology, EDBT/ICDT ’11, pages 530–
533, New York, NY, USA. ACM.

[3] Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval.
Pearson Education Limited.

[4] Cambazoglu, B. B. and Aykanat, C. (2006). Effect of inverted index partitioning
schemes on performance of query processing in parallel text retrieval systems .

[5] Chapell, D. (2008). A short introduction to cloud platforms: An enterprise-
oriented view. http://www.davidchappell.com/CloudPlatforms--Chappell.
pdf.

[6] clouds360.com (2013). The top 20 platform as a service (paas) vendors. http:
//www.clouds360.com/paas.php.

[Corp.] Corp., M. Pricing details.

[8] Corp., M. (2012a). About windows azure caching. http://msdn.microsoft.

com/en-us/library/windowsazure/hh914161.aspx.

[9] Corp., M. (2012b). Common language runtime (clr). http://msdn.microsoft.
com/en-us/library/8bs2ecf4.aspx.

[10] Corp., M. (2012c). Understanding block blobs and page blobs. http://msdn.
microsoft.com/en-us/library/windowsazure/ee691964.aspx.

[11] Corp., M. (2012d). Understanding quotas for windows azure shared caching.

[12] Corp., M. (2013a). Asp.net mvc overview. http://msdn.microsoft.com/

en-us/library/dd381412(VS.98).aspx.

[13] Corp., M. (2013b). How to use the windows azure blob storage service in
.net. http://www.windowsazure.com/en-us/develop/net/how-to-guides/

blob-storage.

63

64 BIBLIOGRAPHY

[14] Corp., M. (2013c). How to use windows azure caching. http://www.

windowsazure.com/en-us/develop/net/how-to-guides/cache/.

[15] Corp., M. (2013d). Service level agreements. http://www.windowsazure.

com/en-us/support/legal/sla/.

[16] Corp., M. (2013e). Web api. http://www.asp.net/web-api.

[17] Corp., M. (2013f). What is windows communication foundation. http://

msdn.microsoft.com/en-us/library/ms731082.aspx.

[18] Corp., M. (2013g). Windows azure. http://www.windowsazure.com.

[19] Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplifed data processing on
large clusters. Magazine Communications of the ACM - 50th anniversary issue:
1958 - 2008.

[20] Engineering, F. (2012). Under the hood: Scheduling mapreduce jobs more
efficiently with corona. Technical report, Facebook.

[21] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., p. Leach, and
Berners-Lee, T. (1999). Hypertext transfer protocol – http/1.1. http://www.

w3.org/Protocols/rfc2616/rfc2616.html.

[22] Foundation, T. A. S. (2013). What is apache hadoop? http://hadoop.

apache.org.

[23] Inc., G. (2012a). Blobstore java api overview. https://developers.google.
com/appengine/docs/java/blobstore/overview.

[24] Inc., G. (2012b). Datastore overview. https://developers.google.com/

appengine/docs/java/datastore/overview.

[25] Inc., G. (2012c). Google app engine. https://developers.google.com/

appengine/.

[26] Inc., G. (2012d). The google cloud storage api. https://developers.google.
com/appengine/docs/java/googlestorage/.

[27] Inc., G. (2012e). Mapreduce overview. https://developers.google.com/

appengine/docs/python/dataprocessing/overview.

[28] Inc., G. (2013). Memcache java api overview. https://developers.google.
com/appengine/docs/java/memcache/overview.

[29] Jacobs, A. (2009). The pathologies of big data. Commun. ACM, 52(8):36–44.

[30] Manning, C. D., Raghavan, P., and Schtze, H. (2008). Introduction to
Information Retrieval. Cambridge University Press.

[31] Middleton, C. and Baeza-Yates, R. (2007). A comparison of open source search
engines.

BIBLIOGRAPHY 65

[32] Miller, M. (2013). Solrcloud. http://wiki.apache.org/solr/SolrCloud.

[33] Nielsen, J. (1993). Usability Engineering. Morgan Kaufmann.

[34] Ribeiro-Neto, B. A. and Barbosa, R. A. (1998). Query performance for tightly
coupled distributed digital libraries. In Proceedings of the third ACM conference
on Digital libraries, pages 182–190, New York, NY, USA. ACM.

[35] Schatz, M., Langmead, B., and Salzberg, S. (2010). Cloud computing and the
dna data race. Nat Biotechnol.

[36] Services, A. W. (2013). What is the aws free usage tier? http:

//docs.aws.amazon.com/gettingstarted/latest/awsgsg-freetier/

TestDriveFreeTier.html.

[37] Varia, J. and Mathew, S. (2012). Overview of amazon web services.

[38] Voorsluys, W., Broberg, J., and Buyya, R. (2011). Introduction to cloud
computing.

[39] Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-
the-art and research challenges. Journal of Internet Services and Applications.

