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Abstract

This thesis investigates the relationship between genomic parameters and properties
of the phenotype. More specifically, we claim that there is a connection between the
genomic λ parameter and the structural complexity of artificial organisms, and that
λ can be used to predict this structural complexity. We use a cellular automata as
a model for developing artificial organisms. A measure for structural complexity is
defined and then used in experiments to try to find evidence to support our claim.





Sammendrag

I denne oppgaven undersøker vi forholdet mellom genomiske parametre og egenska-
per ved fenotyper. Mer presist hevder vi at det finnes en sammenheng mellom den
genomiske parameteren λ og den strukturell kompleksiteten til kunstige organis-
mer, og at λ kan brukes for å forutsi denne strukturelle kompleksiteten. Vi bruker
cellulære automata som en model for utvikling av kunstige organismer. Et m̊al for
strukturell kompleksitet blir definert og brukt i eksperimenter for å prøve å finne
bevis for å underbygge v̊ar p̊astand.
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Chapter 1

Introduction

1.1 Research Hypothesis

The topic of this thesis is bio-inspired evolutionary computation. We want to inves-
tigate the relationship between genomic parameters and the phenotypic properties
of artificial organisms. Finding a relationship can help us better understand how
organisms develop in developmental systems, both natural and artificial. Having
a better understanding of the connection between genomic parameters and pheno-
typic properties can be a valuable tool when analysing such systems.

Further, gaining a better understanding of how organisms develop enables us to
enrich the design step of artificial organisms used in evolutionary and develop-
mental systems. If we can predict properties of artificial organisms using genomic
parameters we may guide the evolutionary search by narrowing down the search
space. Having an indicator of the phenotypic properties of organisms enables us
to do selection without having to do the expensive fitness evaluation involving
development.

To be more specific we want to study the λ parameter to see if it can be used to
predict structural complexity, a phenotypic property, in artificial organisms. We
do this by experimentation using cellular automata as a developmental model.

The formal research hypothesis we want to prove is the following:

Genomic parameters can be used to predict structural complexity in
artificial organisms.

To prove this hypothesis we need to define what we mean by structural complexity.
Thus a part of this thesis is devoted to defining and testing various complexity
measures for measuring structural complexity. After this is done we define and
conduct an experiment to see if we can find any evidence to support our hypothesis.
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1.2 Structure

In chapter 2 we cover all the background necessary to understand the work done
in this thesis. This will present a foundation upon which we can conduct our
research. Chapter 3 will discuss how we can measure structural complexity and
defines a complexity measure for use in the rest of this thesis. Chapter 4 sets up
the experiment required to test our research hypothesis and presents the results.
In chapter 5 we summarise the results and conclude our work.
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Chapter 2

Background

2.1 Cellular Computing

In conventional computer science, all theory is based on a single architecture, the
von Neumann architecture and its variants, where sequential instructions are exe-
cuted on processing units. There are however other architectures that are possible,
most of them inspired by how nature performs computation.

One such alternative architecture is cellular computing[18, 17]. Cellular computing
is a model of how multi-cellular organisms in nature work. It is also an example of
a complex system[2] where the components, the cells, are simple and well-defined,
but the behaviour of the whole, the system containing all cells, is complex.

In cellular computing each cell is a simple computing unit that only communicates
with cells in its neighbourhood. A cellular computing system is distributed; there is
no single controlling entity that has a global view of the state of the entire system.
This system containing a potentially vast amount of simple computation units
operating in parallel with only local communication enables emergent complexity
in the system as a whole.

Cellular computing might not be a revolutionary new architecture that can replace
today’s von Neumann based computers, but research has shown that in some ar-
eas, there is potentially advantages by using cellular computing, if we can find
an efficient way of designing them, and appropriate building blocks (artificial or
biological)[18]. Especially the parallel computational power is intriguing.

One of the challenges of cellular computing is the problem of how we can design
or make programs or systems that perform a specific task we are interested in. If
we again look to nature we might discover how many of the complex functions we
find have emerged through evolution and development. Trying to simulate evolu-
tion and development is one of the currently used methods for designing cellular
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computers[22, 19, 14, 20].

2.2 Cellular Automata

The cellular automaton is a simple discrete model of cellular systems. It consists
of a set of cells arranged in a grid. Each cell has a state and a rule table. Initially
each cell is set to a starting state. To generate the next iteration of the automaton,
all cell states are updated simultaneously. Each cell is updated to a new state using
its rule table and the current state of all cells in a fixed neighbourhood. In other
words, we have a vast amount of simple computation elements operating in parallel
with only local interconnections, or a cellular computing system.

Important characteristics of a cellular automaton is the number of cells, the number
of cell states and the neighbourhood definition. The neighbourhood is typically
defined to contain the cell under inspection itself and a set of its closest neighbouring
cells. The neighbourhood and the dimensionality of the automaton are closely tied.
Typical cellular automata are either one-dimensional or two-dimensional. This
means that the cells are organised in a one-dimensional or two-dimensional grid. For
a one-dimensional automaton we often label the neighbourhoods as three-, five- or
seven-neighbourhood meaning the two, four or six closest surrounding neighbouring
cells. In two dimensions we usually have five- or nine-neighbourhoods. For most
purposes the grid will wrap around at the edges.

A rule table contains a transition rule for each possible neighbourhood to a new
cell state. Thus to find the next state for a cell we first collect the current state of
all cells in the neighbourhood (which might or might not contain the cell itself),
and then we can use the rule table to look up the new state.

Cellular automata are either uniform or non-uniform. An uniform cellular automa-
ton uses the same rule table for all cells, while a non-uniform cellular automaton
can have different rule tables for each cell. We will only be using uniform automatas
in this thesis.

Cellular automata are interesting because they are able to perform computations.
They are infact Turing complete[17]. Research has been done to try to understand
cellular automata better and to classify them based on their ability to compute[27,
13, 14, 10, 12].

2.2.1 Random Boolean Networks

Cellular automata can be generalised in random boolean networks. This allows us
to apply the theory of trajectories and basins of attractors[6]. These are useful tools
that can help us analyse the development and behaviour of cellular automata[28,
16, 15, 24].
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2.3 Artificial Evolution and Development

As we mentioned in Section 2.1 on page 3, evolution and development are commonly
used to design cellular computing systems. When in this context we usually talk
about artificial evolution and artificial development.

Artificial evolution involved having a population of individual organisms, repre-
sented by their genotypes. Through various mechanisms, such as random mutation
and crossover, new organisms are added to the population. Selection is then per-
formed to remove unwanted individuals from the population based on a fitness
evaluation, before the process is repeated until a suitable set of individuals are
found.

In artificial development, or developmental mappings, we start with an zygote, or
single cell organisms, containing its genotype. The genotype is then used to de-
velop the zygote into an adult multi-cellular organism. This basically maps the
genotype into a phenotype, containing structure and behaviour. Also, we can sim-
ulate adaptation and plasticity by letting the environmental influence the growth
of the organism and its adult life[19, 20, 25, 21]

When combined into an evolutionary developmental system (EvoDevo) we typically
use the evolutionary step to produce genotypes which are then developed in the
fitness function to evaluate the resulting phenotype. This combination allows the
genotype to remain relatively small, being only the building instructions for the
organism, and thus we can keep the evolutionary search space smaller. Also, the
genotype is less complex, while the developmental mapping allows complexity to
emerge[23].

When we use uniform cellular automata as a model for cellular computing, the
rule table plays the role of the genotype. The rule tables are thus evolved through
artificial evolution. In the cellular automata the rule table is then used to iterate
the automata until an attractor is reached. Here the iteration of the automata
represents development. The initial state of the cellular automata will have just
one cell set to a non-quiescent state to represent the zygote. After development the
grid will contain many cells in various states representing the developed organism.

Trajectories and attractors are useful tools for analysing the development of artifi-
cial organism in our cellular automata[24]. We define the growth of the organism,
the developmental path from zygote to adult, as the trajectory, and the adult life
as the attractor. Since the system is discrete and deterministic we are guaranteed
to eventually find a grid state we have already seen in the automata; this is the
attractor. It can either be a point attractor, a single state, or a cycle. The num-
ber of states in the attractor is defined to be the attractor length. The trajectory
length is defined to be the number of states in the entire trajectory, including the
attractor.
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2.3.1 Genomic Parameters

We can derive genomic parameters from genotypes. [7, 4, 3, 26] These parameters
have various uses. For us, the most interesting usage of genomic parameters is for
classification. Given a genotype we can classify it based on one or more genomic
parameters.

In the context of uniform cellular automata the genotype is the rule table of the
automata. Some examples of typical parameters used with cellular automata are:
majority, sensitivity and λ. It is worth noting that these parameters are not limited
to cellular automata, but can be used with many other genotypes.

The λ parameter is especially interesting to us, and is the parameter we will be
using in the thesis. The λ parameter is particularly simple and well studied in the
field. It is defined as the ratio of transitions to any state except the quiescent state
and the total number of transitions:

λ = T − c
T

where T is the total number of transitions and c is the number of transitions to the
quiescent state, which is typically chosen to be state 0.

This parameter is surprisingly simple, but has proven to be reliable, to a certain
degree, for predicting cellular automata rules that result in long trajectories and at-
tractors, often associated with the ability to perform computation. The λ has been
shown to be able to classify cellular automata into the four Wolfram classes[27].
Thus λ can be used to find cellular automata with the necessary conditions for
complex behaviour[7, 13, 14].

Instead of generating rule tables and calculating the λ parameter of them, we will be
reversing this process and instead generate rule tables with a target λ value. This
is done using a method called the random table method which basically randomly
assigns transitions to the quiescent state, or uniformly any other state, based on
the target λ value. Using this method we can generate a set of cellular automata
with varying λ parameters and then analyse the development and behaviour of
these automata.

Langton showed how the λ parameter can be used to classify one-dimensional
cellular automata into the four Wolfram classes [7][27]. Tufte and Nichele showed
similar results for two-dimensional cellular automata and also used λ to predict the
phenotypic properties of trajectory and attractor length[26].

2.4 Complexity

We are interested in the structural complexity of organisms as it relates to various
genomic parameters. To investigate this we first have to understand what complex-
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ity is, but defining complexity is difficult. Many attempts have been made[11, 1],
so we won’t cover that here.

But we need to define structural complexity. By structural complexity we mean
the complexity of a physical, or phenotypic, property of an (artificial) organism.
From complexity theory we find that Kolmogorov complexity[8, 9, 1] can be used
to measure physical complexity, such as structural complexity.

However, due to the Incomputability Theorem[8, p. 31] we can not use Kolmogorov
complexity directly. Instead, an approximation must be used. Commonly, com-
pression algorithms are used, and a popular choice is the Lempel-Ziv compression
algorithm (LZ77)[29]. We will use the DEFLATE[5] algorithm, which is a variation
of LZ77.
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Chapter 3

Structural Complexity

3.1 Introduction

In this chapter we will discuss the structural complexity of an organism and how
we can measure it. Several measures will be defined and one will be selected for
use in the remainder of this thesis after an experiment designed to evaluate and
compare the measures to each other.

We have chosen to use the cellular automata as a developmental model. An organ-
ism in this model is then represented by the state of the cellular automaton.

First we will discuss structure complexity as a property of a state. Next, we will
describe in detail how we can calculate the structural complexity of a given state.
We will end up with four different measures. We will then test all four measures to
see if they do their job, and if there is any difference between the measures, before
we settle on a measure to be used in the remainder of this thesis.

When we later on will use the defined measure to analyse structural complexity of
organisms we will actually be looking at the average complexity over a time period,
usually during the entire growth of the organism, the trajectory, or during it adult
life cycle, the attractor.

3.1.1 Definition

Structural complexity is a measure of the complexity of structures making up an
organism. In our model an organism is represented by a cellular automata state.
Compared to genomic parameters, the structural complexity is a property of the
phenotype, as opposed to genomic parameters which are properties of the genotype.

The structural complexity is interesting because it gives us some indication of the
possible capabilities of an organism. The structural complexity can be used as one
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of several parameters when evaluating and analysing artificial organisms, or as a
target parameter for prediction in artificial evolution.

3.2 Measuring Structural Complexity

As we have already discussed in chapter 2 on page 3 there are many valid choices of
complexity measures to chose from. We have chosen to use the DEFLATE compres-
sion algorithm[5], approximating Kolmogorov complexity[8, 11, 27], as our measure
of structural complexity. This choice is based on the fact that compression algo-
rithms tend to compress repeated patterns and structures well, thus being able to
detect structural features in our states. It is also a relatively inexpensive operation
and easy to use. Also, so long as we define the process precisely, it is independent
of the dimensionality of the state.

Due to the nature of state grids and the way we apply the DEFLATE algorithm,
the position and orientation of structures within the state grid makes a difference.
We will discuss how we can take this into account when calculating a complexity
measure for a state.

3.2.1 Calculating the Structural Complexity of a State

We will now illustrate how to calculate the complexity of a state s. We will use a
two-dimensional grid of size 3× 3 as an example, but the process is similar for all
dimensions.

The first task is to convert the grid representation s of the state into a string
representation r. For a two-dimensional grid we do this by stringing the rows of
the grid together to make the state string:

 0 1 0
1 1 2
1 0 0

→ “010112100”

This state string can now be compressed using the DEFLATE algorithm to produce
the compressed state string t:

t = DEFLATE(r)

The only thing we really need is the length, q, of the compressed string, not the
compressed string itself:

q = LEN(t)
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q, the length of the compressed string, can be used to compare the approximate
complexity of states. The bigger q is, the less compressable the state is and thus the
more complex it is. However, we can’t use this value for comparing complexities
from different dimensionality and grid sizes. Thus we seek to normalise the value
to the range [0, 1].

For a given string length, the DEFLATE algorithm guarantees that the compressed
string will never be longer than the original string. If we can find a lower and upper
bound for the compressed string length, we can use those values to scale q. We can
find these bounds by constructing a most and least complex state string for given
grid sizes:

rmin = “000000000”

rmax = “012345678”

rmin is the simplest state possible and will, when compressed, yield the lowest com-
pressed size qmin possible for states of the given dimension and grid size. Likewise,
rmax, which has no two identical symbols1, yields the highest possible compressed
size qmax for states of the given dimension and grid size:

qmin = LEN(DEFLATE(rmin))
qmax = LEN(DEFLATE(rmax))

Now we can scale q to get the final normalised complexity measure c of the state s:

c = q − qmin

qmax − qmin

c is a normalised approximation to the structural complexity of a state. We could
now use the described procedure to measure the structural complexity of states,
but there are some additional issues we must discuss first. And we would also like
to test the measure before continuing on with the main goals of this thesis.

3.2.2 Position and Orientation of Structures in a State

When measuring the structural complexity of a state we have to take into consid-
eration the position and orientation of the structure within the grid.

Using the process described in the previous section, we run into some problems
when structures are transformed. States that contain essentially the same struc-
ture, only in a different orientation or position, can get different complexity values
(Figure 3.1). We want states that contain the same structure to have equal com-
plexity, for all possible positions and orientations. How can we achieve this?

1we can use any symbol in this step, even symbols that do not represent valid cell states
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 0 0 0
0 0 0
2 1 2


s1

→
T

 2 0 0
1 0 0
2 0 0


s2

Figure 3.1: Transforming state s1 into s2. T rotates the state 90◦. The complexity of
s1 and s2 is c1 = 0.5 and c2 = 1.0. Even though the structures in both states are equal,
the measured complexity is not.

Table 3.1: Complexity measures

1 simple S
2 rotation R
3 translation T
4 rotation+translation RT

A naive solution is to simply transform a structure in a given state in all possible
positions and orientations; for each such state calculate the complexity and find
the average complexity over all possible transformations of the structure. This
makes the process of calculating the complexity a more expensive operation, but
guarantees that equal structures get the same complexity for any orientation or
position within a grid. We will take an experimental approach to finding a suitable
complexity measure that can deal with the problem of structural transformations.

We define four measures. The first measure is simply the procedure described
previously, with no modification. The second measure rotates the grid in all 90◦

rotations. The sum of the complexities is then divided by the number of states to
get the complexity of the state. Similarly, the third measure finds all translations
of the state and finds the average complexity. The fourth and last measure is a
combination of the second and third, where all rotations and all translations are
used.

3.3 Experimental Setup

We now have four complexity measures. To see how they perform in relation to
each other, we will conduct an experiment. Using various grid sizes and dimensions,
we will plot the structural complexity, using each of the four measures, against the
genomic parameter λ averaged over several iterations.

For all the experiments we use 3 states per cell, a step size of 0.01 and 100 iterations
per λ. Table 3.2 summarises the experiments.
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Table 3.2: Experiments for testing the complexity measures.

dim size cells neighbourhood
1D 9 9 3
1D 9 9 5
1D 16 16 5
1D 8 8 7
2D 3× 3 9 5
2D 4× 4 16 5
3D 2× 2× 2 8 7

3.4 Results and Analysis

The results are presented in Figures A.1 to A.7.

The results indicate that the four complexity measures are more or less the equiva-
lent in a metric setting where we only care about relative complexity. We see that
for any measure, the complexity is not constant, and has a similar shape for all
experiments.

3.5 Conclusion

We conclude that using the simple measure is sufficient for our needs and it will
thus be the sole measure used within the remainder of this thesis.
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Chapter 4

λ vs Complexity

4.1 Introduction

We are now ready to conduct the main experiment. As stated before we want
to see if there is any connection between the genomic λ parameter and structural
complexity. We will do this by generating rule tables in a set of different configura-
tions and then developing them to produce organisms whose structural complexity
we measure. The trajectory and attractor lengths are measured and compared
and compared against the final averaged measure of structural complexity for both
the developmental trajectory and attractor. Thus we can see if we can make any
predictions on structural complexity given the λ parameter.

First we will describe the experimental setup, before moving on to presenting the
results and an analysis. At the end we conclude.

4.2 Experimental Setup

In order to see if there are any predictable connection between λ and structural
complexity we are going to conduct an experiment with five different configura-
tions. We will use a uniform cellular automata with three states per cell. The five
configurations are listed in table 4.1. We will generate 1000 different rule tables
for each λ in the range [0.0, 1.0] with a step size of 0.01. Then for each rule table,
we will develop an initial grid containing states all equal to the quiescent state
except for the middle cell which is set to state 1. The automata are simulated until
the attractor is reached. At this point we record the number of steps in both the
trajectory and the attractor, and measure the average structural complexity over
the trajectory and attractor using the measure defined in section 3.2 on page 10.
These values are then plotted against each other.
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Table 4.1: λ vs complexity experiments.

dim size cells neighbourhood
1D 25 25 3
1D 27 27 3
1D 25 25 5
1D 27 27 7
2D 5× 5 25 5
3D 3× 3× 3 27 7

By having five different configurations we make it possible to compare grids with
the same number of cells, but at different dimensionality and neighbourhoods.

4.3 Results and Analysis

The results from the experiment are available in Figures B.1 to B.6.

There are many interesting points to note in this data. First of all, if we disregard
the 3-neighbourhood 1D configuration for a moment, all the other experiments
show a clear correlation between attractor and trajectory length, and the structural
complexity. Also, for all cases there is a clear trend for the structural complexity
to be higher when λ is roughly around 0.7. We can quickly draw the conclusion
that there is some connection between λ and structural complexity.

We have two cases where the number of cells are equal, but the dimensionality
and neighbourhood is different. If we look at the 27 cell experiments, one is one-
dimensional and the other is three-dimensional. If we view both as a single string
of cells, the only different is how we sample the neighbourhood. The data shows
that, although the shapes are similar, the trajectory and attractor lengths are
on average much longer. The same is evident for the 25 cell case, to a lesser
degree. This shows that how we sample the neighbourhood in a grid (regardless
of dimensionality) plays a role, and that a lower dimensional cellular automaton
will have longer trajectories and attractors than a cellular automaton of a higher
dimension with the same number of cells.

We see that the trajectory and attractor length match well with the results in [26],
as expected, except for something weird happening for the 1D 3-neighbourhood con-
figuration. The trajectory and attractor length do not follow the expected curve for
similar experiments. We see for the similar 1D configuration with 5-neighbourhood
instead of 3, the trajectory and attractor lengths are more as expected. What could
be wrong? Some clue can be found in [7] where Langton finds that λ differentiates
poorly for configurations with small number of cell states and a small neighbour-
hood. According to Langton, we should employ at least four cell states and a
neighbourhood of at least five cells for λ to work as expected.
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Even though trajectory and attractor lengths seem off, it is interesting to see that
structural complexity follows the same shape as in other experiments. Thus, even
with a small neighbourhood, when λ can no longer be used to predict trajectory
and attractor length, λ can still be used to predict structural complexity.

4.4 Conclusion

In terms of our initial research question, the evidence gathered in this section
seem to strengthen the hypothesis that genomic parameters can be used to predict
structural complexity.
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Chapter 5

Summary and Conclusion

To sum up, we have seen that a simple compression of the state is a sufficient
measure of structural complexity when we want to compare the complexity of
different states. Thus we don’t have to use expensive operations that take into
account the position and orientation of structures.

We have also seen that λ can be used to predict structural complexity. This means
we can use λ to evaluate organisms in terms of potential structural complexity prior
to developing them in an artificial evolution setting.

As a side note we also found that λ does not predict trajectory and attractor lengths
for 1D 3-neighbourhoods. However, even when λ cannot be used for trajectory and
attractors, it can still be used to predict structural complexity.
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Appendix A

Plots: Complexity Measures

For trajectory and attractor, the complexity is calculated for each state and then
summed and divided by the number of states to find the average structural com-
plexity along the trajectory and attractor.

The four complexity measures used here are: simple; translation; rotation+mirror;
rotation+mirror and translation.

3 states, step size 0.01 and 100 iterations per λ.
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(b) Attractor.

Figure A.1: 1D 9 cells, 3-neighbourhood
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(b) Attractor.

Figure A.2: 1D 9 cells, 5-neighbourhood
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(b) Attractor.

Figure A.3: 1D 16 cells, 5-neighbourhood
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(b) Attractor.

Figure A.4: 1D 8 cells, 7-neighbourhood
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(b) Attractor.

Figure A.5: 2D 9 cells (3 × 3), 5-neighbourhood
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(b) Attractor.

Figure A.6: 2D 16 cells (4 × 4), 5-neighbourhood

29



 

 

4

3

2

1

st
ru

ct
u
ra
l
co

m
p
le
x
it
y

λ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
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(b) Attractor.

Figure A.7: 3D 8 cells (2 × 2 × 2), 7-neighbourhood
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Appendix B

Plots: λ vs Complexity

3 states, step size 0.01 and 1000 iterations per λ.

31



 

 

trajectory

attractor

d
ev

el
o
p
m
en

ta
l
st
ep

s

λ

0 0.2 0.4 0.6 0.8 1

×104

0

5

10

(a) Average trajectory and attractor length.

 

 

trajectory

attractor

st
ru

ct
u
ra
l
co

m
p
le
x
it
y

λ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Structural complexity of trajectory and attractor.

Figure B.1: 1D 25 cells, 3-neighbourhood
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(b) Structural complexity of trajectory and attractor.

Figure B.2: 1D 27 cells, 3-neighbourhood
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(b) Structural complexity of trajectory and attractor.

Figure B.3: 1D 25 cells, 5-neighbourhood
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(b) Structural complexity of trajectory and attractor.

Figure B.4: 1D 27 cells, 7-neighbourhood
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(b) Structural complexity of trajectory and attractor.

Figure B.5: 2D 25 cells (5 × 5), 5-neighbourhood
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(b) Structural complexity of trajectory and attractor.

Figure B.6: 3D 27 cells (3 × 3 × 3), 7-neighbourhood
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