
Emergent Behaviour in the
Frequency-Power Spectrum of Discrete
Dynamic Networks

Ole Henrik Jahren

Master of Science in Informatics

Supervisor: Gunnar Tufte, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Abstract

In the fields of cellular automata and complex systems, emergence is often
used as an interpretation of system behaviour. Computation and the re-
sulting output are both products of the systems trajectory in the basin of
attraction, where the output data is a point or cyclic attractor. As such,
the system outputs only a single variable, the states of all units in the sys-
tem. This work diverges from the norm on two aspect. Instead of exploring
Cellular Automata as the computational architecture, Boolean Networks, a
specialisation of the more generalised Discrete Dynamic Networks, will be
used. Secondly, a different approach in interpreting the behaviour is taken.
Instead of looking directly at the state of the system, the trajectory in the
basin of attraction is instead transformed to a frequency-power spectrum
representing the system output. This allows an easy interpretation of the
output (peeks) to several output variables, were each variables can be given
as the power at different frequencies in the frequency-power spectrum.

Because of the difficulty in programming, i.e. designing, Discrete Dynamic
Networks with the desired characteristics, a Genetic Algorithm will be used
to evolve the networks. This thesis takes an experimental approach, evolv-
ing Discrete Dynamic Networks capable of producing different number of
peaks in the frequency-power spectrum. The results show that Discrete Dy-
namic Network exhibiting the desired emergent behaviour were successfully
evolved.

i

ii ABSTRACT

Acknowledgements

I would like to extent huge thanks to my supervisor, Associate Professor
Gunnar Tufte, for his valuable expertise and guidance, and my brother, Jon
Emil Jahren, for letting me bounce ideas off him.

iii

iv ACKNOWLEDGEMENTS

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

2 Background 5
2.1 Discrete Dynamic Networks (DDN) 5

2.1.1 Updating Schemes . 6
2.2 Boolean Networks (BNs) . 8
2.3 Cellular Automata (CAs) . 9
2.4 Genetic Algorithms (GAs) . 10

2.4.1 Selection . 11
2.4.2 Genetic Operators . 14

2.5 Transformations . 15

3 Experiment Setup 19
3.1 Discrete Fourier Transform . 20
3.2 The Boolean Network . 22
3.3 The Genetic Algorithm . 22

3.3.1 Genotype . 23
3.3.2 Fitness . 24

4 Experiments 29
4.1 Experiment 1 . 29
4.2 Experiment 2 . 36
4.3 Experiment 3 . 46
4.4 Experiments summary . 56

5 Conclusion 57

v

vi CONTENTS

List of Figures

2.1 Example of DDN . 6

2.2 Example of BN . 8

2.3 1d CA . 9

2.4 1d CA - Neighbourhood of the middle cell 9

2.5 Transformation example - Network 15

2.6 Transformation example - Time-amplitude plot 16

2.7 Transformation example - Frequency-power plot 17

3.1 Genotype phenotype mapping example - Genotype 24

3.2 Genotype phenotype mapping example - Phenotype 24

4.1 Experiment 1 - 3 peaks - run 7 - Frequency-power plot 30

4.2 Experiment 1 - 3 peaks - run 7 - Time-amplitude plot 32

4.3 Experiment 1 - 3 peaks - run 7 - Network 33

4.4 Experiment 1 - 3 peaks - run 7 - State space 34

4.5 Experiment 1 - 3 peaks - run 7 - Coverage 35

4.6 Experiment 1 - 3 peaks - run 7 - Fitness 35

4.7 Experiment 2 - 3 peaks - run 0 - initial state 100000012 -
Frequency-power plot . 39

4.8 Experiment 2 - 3 peaks - run 0 - initial state 000111112 -
Frequency-power plot . 39

4.9 Experiment 2 - 3 peaks - run 0 - Network 40

4.10 Experiment 2 - 3 peaks - run 0 - initial state 100000012 -
Time-amplitude plot . 41

4.11 Experiment 2 - 3 peaks - run 0 - initial state 000111112 -
Time-amplitude plot . 41

4.12 Experiment 2 - 3 peaks - run 0 - initial state 100000012 - State
space . 42

4.13 Experiment 2 - 3 peaks - run 0 - initial state 000111112 - State
space . 43

vii

viii LIST OF FIGURES

4.14 Experiment 2 - 3 peaks - run 0 - initial state 100000012 -
Coverage . 44

4.15 Experiment 2 - 3 peaks - run 0 - initial state 000111112 -
Coverage . 44

4.16 Experiment 2 - 3 peaks - run 0 - Fitness 45
4.17 Experiment 3 - 3 peaks - run 6 - initial state 011100112 -

Frequency-power plot . 48
4.18 Experiment 3 - 2 peaks - run 6 - initial state 011100102 -

Frequency-power plot . 49
4.19 Experiment 3 - 2 and 3 peaks - run 6 - Network 50
4.20 Experiment 3 - 3 peaks - run 6 - initial state 011100112 -

Time-amplitude plot . 51
4.21 Experiment 3 - 2 peaks - run 6 - initial state 011100102 -

Time-amplitude plot . 51
4.22 Experiment 3 - 3 peaks - run 6 - initial state 011100112 - State

space . 52
4.23 Experiment 3 - 2 peaks - run 6 - initial state 011100102 - State

space . 53
4.24 Experiment 3 - 3 peaks - run 6 - initial state 011100112 -

Coverage . 54
4.25 Experiment 3 - 2 peaks - run 6 - initial state 011100102 -

Coverage . 54
4.26 Experiment 3 - 2 and 3 peaks - run 6 - Fitness 55
4.27 Experiment 3 - 2 peaks - run 7 - initial state 011100112 -

Frequency-power plot . 55

5.1 Solution space with large distance to four peaks 58

List of Tables

2.1 Wolframs classifications of CAs 10

3.3 Encoding of a node configuration in a bit array. n is number
of nodes. 23

3.1 Parameters for the GA . 26
3.2 Parameters for all experiments 27

4.1 Experiment 1 results . 31
4.2 Experiment 2 results . 37
4.3 Experiment 3 results . 46
4.4 Experiments summary . 56

ix

x LIST OF TABLES

Chapter 1

Introduction

Emergent behaviour from a complex system perspective, is when a system
exhibits behaviour that is more complex than the sum of its parts. This is
typically done by using relatively simple building blocks, e.g. cells in the
context of Cellular Automata[1] (CAs) or nodes in the context of Discrete
Dynamic Networks[2] (DDNs), with very simple and deterministic behaviour.
It is the interaction between these simple components that result in the
emergent behaviour. A lot of work has been done on behaviour in the space-
time spectrum, e.g. on CAs[3][4].

This thesis will look at emergent behaviour in a different spectrum than
most have done before. Instead of looking at the space-time spectrum, the
frequency-power spectrum will be investigated. An experimental approach in
the form of three experiments, each designed to investigate the possibility of
finding a solution that exhibits a predefined behaviour in the frequency-power
spectrum.

The motivation for using the frequency-power spectrum instead of the ar-
guably more traditional space-time spectrum, is brought on by the desire to
interpret the emergent behaviour of the system as a function with multiple
outputs. In contrast with what some have done[5], interpreting the state of
the entire system as a single output.

The primitive building block used will be a boolean node. Multiple boolean
nodes will be connected together to form a special case of a DDN, a Boolean
Network[6] (BN). A BN is a little different from a CA, since it is capable of
all-to-all connections.

Even though certain CA configurations have been proven to be Turing complete[7],

1

2 CHAPTER 1. INTRODUCTION

no easy way of programming them[8], in the traditional sense, has been pub-
lished. To aid in the programming of the BNs, a Genetic Algorithm (GA)
will be used in the search of emergent behaviour.

The GA will be used as an evolution guided search in solution space. The
main metric used in the fitness function will be the correct number of peaks,
and the power of those peaks compared to the noise in the frequency-power
spectrum. To transform the time-space output of a network with a given
initial configuration, Discrete Fourier Transform (DFT) is used.

It is intended as a proof of principle, i.e. the goal is to show that it is
possible to evolve a network that exhibits the desired number of peaks in the
frequency-power spectrum. To avoid having the fitness landscape have lots
of jumps from zero fitness, when the correct amount of peaks are not present,
to a potentially large value, when the correct amount of peaks are present, a
fitness function that attempts to smooth the jumps was devised. The fitness
function uses the logarithm of the fraction of the states that are repeated,
when not enough peaks in the frequency-power spectrum are present, and
takes the difference between the lowest peak and the noise, when enough
peaks are present.

To explore the emergent behaviour of the evolved BNs, three experiments
are designed. The goal of experiment 1, is to check that the experimental
setup is capable to finding the correct number of peaks at all. Experiment 1
also aids in gauging the limitations of the implementation.

The goal of experiment 2 is find out how robust networks the experimental
setup is capable of evolving, i.e. it is possible to evolve networks that are
indifferent to their initial state, and still produce the correct number of fre-
quency peaks. This is interesting because if it possible to evolve BNs that
produce the same number of frequency peaks for all possible initial configu-
ration, the network is capable of generating the same peaks no matter where
it starts in the ”life cycle”.

Experiment 3 is designed to find a different number of frequency peaks for
different initial values. E.g. for one initial value, it will produce two peaks
in the frequency-power spectrum, for another initial value, it will produce
one peak. This is interesting because, the output of the system can be
interpreted as producing a different number output values as a function of
the initial state.

All the experiments will be run in a pure software simulated environments.

This thesis is structured as follows; Chapter 2 contains background informa-

3

tion and references to earlier work built upon, Chapter 3 describes how the
experiments are set up and how they are performed, Chapter 4 presents the
result of the experiments, and Chapter 5 concludes the work and suggests a
few ideas for further work in this area.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This work is based primarily on earlier work investigating emergent behaviour
in CAs[4][3]. Although in the experiments, BNs will be used instead of
CAs, the two are related through a more generalised network type known as
DDNs or Sequential Dynamic Systems (SDSs). In this chapter, DDNs will
be explained first, followed by CAs and BNs using DDNs as a basis.

GAs will be described to the extent used in the experiment, e.g. not every
selection mechanism that exists will be explained, as there are far too many
of them.

A brief description of how transformations can be used to look at state spaces
in a different way will also be presented. This assumes familiarity of trans-
forms in general and DFT in particular.

2.1 Discrete Dynamic Networks (DDN)

A DDN is a network of n nodes. Each nodes can have a state S ∈ {s1, s2, · · · , sm}
of m possible states. The directed connections between nodes can be con-
nected to any other nodes in the network, including itself.

Each node has a next state function that maps the input connections, i.e.
the state of the connected nodes, to a next state for the node. A next state
is the state the node gets at the next step in time. The state of the nodes are
updated according to an updating scheme as described in Section 2.1.1.

The simulation of a DDN can for example involve the following steps:

5

6 CHAPTER 2. BACKGROUND

1. Assign initial state.

2. Update next state.

3. Next step in time.

4. State is updated from next state.

5. Goto step 2.

Figure 2.1 is an example of a DDN where each node is labeled n0, n1, et
cetera. Each nodes has a next state function denoted by f0, f1, et cetera,
that takes the state of all input nodes to the node as input, and assigns the
result to the next state of the node.

n0
S_next = f_0(S_3)

n1
S_next = f_1(S_0)

n2
S_next = f_2(S_0, S_1)

n3
S_next = f_3(S_2)

Figure 2.1: Example of DDN

2.1.1 Updating Schemes

The updating scheme on a given DDN, gives the rules for when the next
state function of a node is called for updating the nodes output. The up-

2.1. DISCRETE DYNAMIC NETWORKS (DDN) 7

dating scheme of a network is often classified according to two attributes,
synchronous/asynchronous and deterministic/non-deterministic.

If the updating scheme is synchronous, all the nodes are updated at the same
step in time. In an asynchronous updating scheme, only some nodes may be
updated at a given step in time.

In a deterministic updating scheme, the network will always produce the same
global state of the network at the same step in time. In a non-deterministic
updating scheme, the global state may be different at the same step in time
for consecutive simulations of the network.

Although there are many variation of the updating schemes, a non-exhaustive
list of the most often encountered[9] schemes and a description of each.

• Classic i.e. synchronously updated.

• Asynchronous.

• Deterministic asynchronous (and variations, edges could e.g. have a
propagation delay/length).

• Generalized asynchronous (non-deterministic).

Node state updating can be done using various state update schemes. The
simplest, sometimes referred to as classical, updating scheme is synchronous.
In a synchronous updating scheme, each node is updated using the nodes next
state function at each time step. The update is not in-place so the update
of a node is not visible until all nodes are updated. A synchronous updat-
ing scheme, is inherently deterministic since two runs using the same initial
states and network configurations will always produce the same sequence of
states.

In an asynchronous updating scheme, at each step in time, a set of nodes are
stochastically selected and updated. This is a non-deterministic updating
scheme since two simulations with same initial state and network configura-
tion may produce different sequence of state.

Two other closely related updating schemes are; deterministic asynchronous
and deterministic generalised asynchronous updating scheme[9]. In both of
these, each node has parameters associated that determines how many steps
in time are between updates of a given node. In the non-generalised scheme,
the updates are actually asynchronous so you have to predefine which order
the nodes are updated to not lose determinism. In the generalised form, the
node updates synchronously so the determinism is inherent.

8 CHAPTER 2. BACKGROUND

In a generalised asynchronous updated scheme, a set of nodes are randomly
selected each time step, and updated synchronously. Because of the random-
ness, this update scheme is non-deterministic.

2.2 Boolean Networks (BNs)

A BN is a DDN, where each node only has one of S ∈ {0, 1} two possible
states. The first BNs were proposed by Kauffman[6], as genetic regulatory
networks. The model used by Kauffman is often referred to as the NK-
model. In the NK-model, you have N nodes in a network, and each node
has K inputs. Note that the networks Kauffman used were Random Boolean
Networks (RBNs). The networks used in this thesis are Boolean Networks,
that does not follow the NK-model because the number of connections be-
tween nodes are evolved, not randomly assigned, and are not restricted to a
fixed amount.

The main difference between BN and DDN is the number of states a node
can have. While in a DDN a node can hold as many nodes as desired, a BN
true to its name, can only hold two states S ∈ {0, 1}.

Figure 2.2 illustrates a simple BN where the nodes are labeled n0 and n1.
The next state function is very simple, the next state of each node, is the
current state of the other node. With an network initial state of e.g. 012,
the network will oscillate between 012 and 102.

n0
S_next = S_1

n1
S_next = S_0

Figure 2.2: Example of BN

2.3. CELLULAR AUTOMATA (CAS) 9

2.3 Cellular Automata (CAs)

Although CAs are not used here, a lot of earlier work looking at emergent
behaviour have used CAs[10]. Hence it is prudent to give a brief back-
ground.

CAs are another special case of DDNs. A few minor differences exists; e.g.
in a CA a node is called a cell. While CAs can have a different next state
function for each cell (non-uniform CAs), it is often the case that all the cells
have the same next state function[3][4] (uniform CAs).

The main difference between CAs and DDNs is that the cells of a CA has the
concept of placement in space. E.g. for a one dimensional CA as shown in
Figure 2.3, each cell has a position in space, relative to the other cells. The
placement in space is important, because in a CA the cells are connected
through the neighbourhood. The neighbourhood is defined by a neighbour-
hood template[4], and defines which cells are used as input to the next state
function. E.g. for the one dimensional CA, a typical template size is 3, as
shown in Figure 2.4. A cell is part of its own neighbourhood.

Figure 2.3: 1d CA

Figure 2.4: 1d CA - Neighbourhood of the middle cell

A lot of previous work with CAs is aimed at their emergent behaviour. Often
referenced is the work done by Stephen Wolframs on classifying the behaviour
of CAs[3]. Wolfram mapped out the entire behaviour in space-time of all the
one dimensional CAs with the 3-cell neighbourhood template shown in Figure
2.4. The different behaviours were then classified into the four different
classes seen Table 2.1.

10 CHAPTER 2. BACKGROUND

Class I Eventually transitions into homogeneous state.
Class II Eventually enters periodically repeating states or transitions

into homogeneous state.
Class III Chaotic behaviour i.e. many time steps before repeating states.
Class IV Seemingly chaotic behaviour, but localised order/structure.

Table 2.1: Wolframs classifications of CAs

2.4 Genetic Algorithms (GAs)

A GA[11] is a form of Evolutionary Algorithm[12] (EA). An EA is a guided
search in a solution space, that attempts to mimic our understanding of
biological evolution (survival of the fittest).

In a GA you have a genotype, which is the genetic representation of an
individual. The genotype is developed to a phenotype, which is the physical
representation of the individual. A fitness function evaluates the individual
to determine how well the genotype is suited as a solution.

A population is made up of many individuals that competes against each
other for reproduction. Which individuals that are allowed to reproduce is
determined by parent selection. During reproduction, various genetic oper-
ation can affect the genotype of the offspring, e.g. crossover, mutation, etc.
Adult selection is used to determine which children grow up and can become
parents during next reproductive cycle and which dies off. Sometimes, a way
for the n best individuals in each generation to bypass selection altogether is
also added. These are called elites [13], and go straight from adults in gen-
eration g to adults in generation g + 1, bypassing all the different selection
types.

A GA can for example follow this series of steps[14]:

1. Generate initial children.

2. Map the genotype to a phenotype.

3. Evaluate phenotype fitness.

4. Perform adult selection for new generation.

5. If stop condition is met (e.g. max generations has been reached, or
fitness has reach a desired threshold), stop.

6. Perform parent selection.

2.4. GENETIC ALGORITHMS (GAS) 11

7. Perform mate selection.

8. Produce offspring.

9. goto step 2.

Many of these steps include a large number of sub steps, e.g. the process
of producing offspring can include many genetic operators, like mutation
and crossover. But the steps above, outlines what a GA can do at a high
level.

2.4.1 Selection

A selection strategy is made up of two components, the selection protocol
and the selection mechanism[15]. The selection protocol determines which
individuals get to participate in the selection mechanism. The selection mech-
anism determine which individuals get selected for whatever task it selects
for.

Various schemes exists for the different protocols and mechanisms. Since this
is not intended as a exhaustive reference on the subject, only a few samples
will be presented of each.

Adult Selection

The protocol determines which individuals gets to participate in the selection
of the next adult population. Common protocols include:

• Full generational replacement

• Over population

• Generational mix

Full generational replacement kills all adults, and all children become adults.
Hence there is no need for a selection mechanism.

Over population is when more children than fit in an adult generation is
produced. Like in full generational replacement, all adults are killed. Since
there are more children than can live on to adulthood, a selection mechanism
is used to decide which becomes adults and which dies.

12 CHAPTER 2. BACKGROUND

Generational mix means that both adults and children are thrown into the
same pool, and a selection mechanism is used to decide which individuals
lives/become adults and which dies.

To do the actual selection, if required, the following selection mechanism are
commonly used:

• Best fitness

• Stochastic

Best fitness is simply picking the individuals with highest fitness to advance
into adulthood.

Stochastic mechanism is simply picking individuals that advance into adult-
hood according to some stochastic measure. This can also involve the fitness
of the individuals.

Parent Selection

The protocol determines which individual gets to be participate in the mat-
ing. A common protocol is also the most obvious; all individuals participate
in the mating.

The mechanism selects which individuals become parents. Common mecha-
nisms include:

• Fitness proportionate

• Sigma scaling

• Tournament

• Boltzman scaling

Fitness proportionate scales the fitness in the interval [0, 1] based on the total
sum of the fitness for the current generation. See equation 2.1. Treating
P (i, g) as the probability of individual i being selected.

P (i, g) =
f(i)

f(g)
(2.1)

Where P (i, g) is the proportion of the interval awarded to individual i in
generation g, f(i) is the fitness of the individual i, and f(g) is the total
fitness of generation g.

2.4. GENETIC ALGORITHMS (GAS) 13

Sigma scaling uses a scaling factor based on the current generation’s average
and variance fitness, in an attempt to loosen the selection pressure inherent in
the raw fitness value used in fitness proportional. The portion each individual
get of the interval [0, 1] is given in equation 2.2. Also here P (i, g) is treated
as the probability of individual i being selected.

ExpV al(i, g) =

1 +
f(i)− f̄(g)

2σ(g)
σ(g) 6= 0

1.0 σ(g) = 0

P (i, g) =
ExpV al(i, g)∑imax

n=1 ExpV al(n, g)
(2.2)

Where P (i, g) is the proportion of the interval awarded to individual i gener-
ation g, f(i) is the fitness of the individual i, imax is the number of individuals
in a generation, f̄(g) is the average fitness of generation g, σ(g) is the stan-
dard deviation of the fitness of generation g.

Boltzmann scaling is based on the physical principle that under higher tem-
perature, a system exhibits more randomness than under low temperature.
This is similar to how simulated annealing works. The equation used for
Boltzmann scaling can be seen in 2.3. Again P (i, g) is treated as the proba-
bility of individual i being selected.

fexp(i) = e
f(i)
T (g)

ExpV al(i, g) =
fexp(i)
¯fexp(g)

P (i, g) =
ExpV al(i, g)∑imax

n=1 ExpV al(n, g)
(2.3)

Where P (i, g) is the proportion of the interval awarded to individual i gener-
ation g, f(i) is the fitness of the individual i, imax is the number of individuals
in a generation, T (g) is the temperature in generation g, ¯fexp(g) is the average
fitness exponential in generation g.

Tournament selection stochastically, usually uniformly, picks k individuals
out of the current generation. The one amongst the k picked out with
the highest fitness is the winner of the tournament and is allowed to re-
produce.

14 CHAPTER 2. BACKGROUND

Mate Selection

The protocol determines which individuals can mate with each other. A
common protocol is that any selected parent can mate with any other selected
parent.

The mechanism selects who gets to which individual gets to mate with each
other. One example mechanism is is stochastic uniform, in which all se-
lected parent are randomly paired with each other, to produce monogamous
pairs.

2.4.2 Genetic Operators

Genetic operators are usually applied during reproduction. The main pur-
pose of the operators is to create greater variation in the genotypes of the
children to explore more of the problem space.

While several operators exists, only a few will be explained here.

• Mutation

• Crossover

Mutation is when a small change is introduced into the genotype. The classic
example is flipping a single bit in the genotype. Other variations exists, like
adding or subtracting one, if the part of the genotype represent a number.
The actual mechanism of the mutation is a minor detail, but the reason
mutation is used is important. Mutation is there to create a small change in
the genotype, to introduce diversity into the population. The reason diversity
is important, is so the population does not get stuck in a local maxima.

Crossover is when whole chunks are exchanged between the two genotypes.
This is a much larger change in the genotype than a small mutation, and can
therefore potentially be more damage/rewarding. To keep crossover from
damaging good solutions, the genotype is often divided into what is some-
times referred to as features. A feature is a set of bits in the genotype that
logically belongs together. E.g. if a number is encoded in the genotype, that
number could be regarded as a feature, so that crossover will never split the
bits the number is made up of. It would always crossover at the boundary
of the number.

Crossover can be done with one or more points of crossover, e.g. every second
chunk of one genotype is exchanged with every second chunk of another

2.5. TRANSFORMATIONS 15

genotype.

2.5 Transformations

FIXME: fix state, distinction between node state and network state.

When looking at at the state space of a system, it can be interesting to
represent the behaviour as a function of the state space. This can be done
using various transforms, e.g. Fourier Transform, Wavelet Transform, etc,
that translates the state space of state-time spectrum into another spectrum.
E.g. using DFT, a state space can be translated from a time-amplitude spec-
trum into frequency-power spectrum for spectral analysis. For an illustration
of looking at a transformed state space, imagine a BN consisting of two nodes,
as illustrated in Figure 2.5. The next state function of both nodes are; node
becomes 1 if the other node is 1. With an initial state of 012, the network
will oscillate between the states 012 and 102 forever.

n0
sum(i[1:0]) > 0

n1
sum(i[1:0]) > 0

Figure 2.5: Transformation example - Network

If the state of the network is interpreted as a binary unsigned value, the value
012 become 110 and the value 102 become 210. The values are then scaled
linearly between −110 and 110, in order to reduce the DC component of the

DFT. I.e. 012 becomes
1− 22−1

2
22−1

2

= −1
3

and 102 becomes
3− 22−1

2
22−1

2

= 1
3
. Figure

16 CHAPTER 2. BACKGROUND

2.6 plots the scaled amplitude of the time-state spectrum, as a function of
time.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50 60 70

A
m

p
lit

u
d
e

Time

Figure 2.6: Transformation example - Time-amplitude plot

The DFT is taken over the time-amplitude spectrum, the result is a frequency-
power spectrum representation of the state space, as shown in Figure 2.7. The
DFT in Figure 2.7 is taken over 64 states, with a window size of 32. All the
power ends up in the frequency bin for the frequency that is exactly half the
size of the window used.

FIXME: can state space be used in this way? Is the meaning, given the
context, clear?

2.5. TRANSFORMATIONS 17

 0

 5

 10

 15

 20

 25

-2 0 2 4 6 8 10 12 14 16 18

Po
w

e
r

Frequency

Figure 2.7: Transformation example - Frequency-power plot

18 CHAPTER 2. BACKGROUND

Chapter 3

Experiment Setup

The purpose of these experiments is to explore the emergent behaviour in
the frequency-power spectrum of BNs. It is intended as a proof of principle,
and as such the various aspects of the GA are not analysed exhaustively nor
optimised. The only tweaking done to the various parameters and algorithms
is to get them working, nothing more.

To further the goal of exploring the emergent behaviour of BNs, a set of
metrics have been devised. The main metric used is the number of peaks.
This refers to the number of peaks seen in the frequency-power spectrum,
of a DFT, e.g. in Figure 2.7, there is one peak. The peak count does not
include the DC-component.

Another metric used is the coverage set. For the purpose of this thesis, the
coverage set of a BN with a certain initial state, is the set of repeating states.
E.g. if a two node network yields the sequence of states as follows; 01, 00, 11,
00, 11, ... With 01 being the initial state, the coverage set would be the set
{00, 11}. Coverage is also sometimes used as a number. In this context, the
coverage is the fraction of all possible states that is contained in the coverage
set. E.g. for the previous example coverage set of {00, 11} the coverage
fraction is 2

4
= 1

2
.

To explore some of the aspects of the emergent behaviour, a series of exper-
iments are performed. Experiment 1, is to see if the algorithm is capable of
evolving different frequency peeks at all, and to gauge some of the limitations
of the implementation.

Experiment 2 is to see if evolved networks can be made a certain a certain
level of robustness[16] with respect to the initial state, i.e. that the network

19

20 CHAPTER 3. EXPERIMENT SETUP

produce the same number frequency peaks regardless of the initial state. Note
that the robustness used here, does not care about where in the frequency
band the peaks are, only that the correct amount of peaks are present.

Experiment 3 attempts to generate different frequency-power spectrum, de-
pending on the initial state. E.g. can one initial state generate two frequency
peaks, while another initial state generates three frequency peaks, for the
same network.

3.1 Discrete Fourier Transform

In the experiments each state of the network represents a sample. The objec-
tive is to find a network that produces samples with as high power of one or
more frequencies as possible, compared to the other frequencies present.

Similar to the explanation in Section 2.5, each network state is treated as a
binary unsigned number. The binary number of scaled linearly on [−1, 1].
The scaled numbers are treated as samples sampled uniformly in time, as
shown in Figure 2.6. The DFT of the samples is calculated. Followed by
calculation of the absolute value of the complex result, to get the power, as
shown in 2.7.

The frequencies that can be recreated from the samples are theoretically,
limited by both the amount of nodes in the network, and the frequency the
samples are sampled at.

In order to avoid confusion, a few things about the nomenclature used needs
to be explained. fs means sample frequency, and is the frequency the samples
of the network are sampled at. Since the system does not really have a
concept of time, fs can be changed at will, it is just a definition of what the
sampling frequency is defined to be. fw is the frequency of the window used
when calculating the DFT, i.e.

fw =
1
1
fs
w

=
fs
w

where w is the number of samples in a window.

Because of the sampling theorem[17][18], the maximum frequency fmax that

3.1. DISCRETE FOURIER TRANSFORM 21

can be reconstructed from the samples, are

fmax =
fs
2

(3.1)

where fs is the frequency the samples are sampled at.

The minimum frequency fmin that can be reconstructed from the samples,
is

fmin =
fs
2n

(3.2)

where fs is the frequency the samples are sampled at, and n is the number
of nodes in the network. The reason for this is that, in a network of n nodes,
there is only 2n possible states. It follows that the longest period that is
possible to have, is one that contains all possible states of the network.

Fitness is evaluated by using DFT on the samples generated by the network.
Due to the computational complexity of DFT, a window is used to avoid
having to look at all the samples at once. Use of a window limits what
frequencies that can be detected. E.g. if the window is w samples, and the
sampling frequency is defined as fs

fs =
1

ts

ts =
1

fs
tw = tsw

f̂min =
1

2tw

=
1

2 1
fs
w

=
fs
2w

=
fw
2

(3.3)

where ts is the period of a sample, tw is the period of a window, and f̂min

is half the window frequency. The frequency in Equation 3.3 is the lowest
frequency that can be detected using this scheme.

22 CHAPTER 3. EXPERIMENT SETUP

Another limitation that occurs because of windowed DFT, is how large a
resolution the classification gets. Using the symbols from earlier.

fres =
fs
w

(3.4)

is the resolution obtained on the result. If the resolution is too low, a too
wide range of frequencies can hide in the same block in the result of the DFT.
Which can make the classification impossible.

To avoid spectral leakage into other frequencies when applying windowed
DFT, a windowing function other than the rectangular can be used. E.g.
Hann and Hamming. In these experiments, a rectangular function is used.

3.2 The Boolean Network

In these experiments, a synchronously updated BN with a fixed number of
nodes is used. The connections between nodes are evolved using a GA. To
keep it simple, the next state function (see Equation 3.5) is parametrised.
I.e. the parameter can be evolved, but the rest of the function is fixed.

St+1(n) =

Neighbourmax(n)∑
i=1

St(Neighbour(n, i))

 ≥ param (3.5)

Where St(n) denotes state of node n at time step t, Neighbourmax(n) denotes
the maximal number of neighbours of node n, Neighbour(n, i) denotes the
ith neighbour of node n, and param which denotes the parameter encoded
in the genotype.

The reason for having a parametrised next state function is to avoid the
possibility of having wildly different phenotypes for genotypes only separated
by a single mutation.

3.3 The Genetic Algorithm

This section details the specifics of the GA used in these experiments. To keep
things consistent, this section will try to use and build upon the terminology

3.3. THE GENETIC ALGORITHM 23

used in Section 2.4.

Most of the parameters to the GA remains the same for all the experiments,
a description of them is shown in Table 3.1. The value of most of the pa-
rameters are also the same for all experiments. Table 3.2 shows their default
value. If the value of a parameter is changed for an experiment, it will be
noted in the description of that experiment. Additional experiment specific
parameters are described in the experiment where they are used.

3.3.1 Genotype

The genotype is a simple direct encoding, a bit string that is an array of
bit arrays. Each element in the array encodes the configuration of a node.
And the bit array, encoding each node configuration, is laid out as in Table
3.3.

Bits Description

0 . . . dlog2(n)− 1e param for next state function
dlog2(n)e . . . dlog2(2) + ne bit vector denoting whether connection exists

Table 3.3: Encoding of a node configuration in a bit array. n is number of
nodes.

In the genotype, the bit string is prefixed with the number of nodes in the
network, this is simply to avoid having to solve the equation b = n(dlog2(n)e+
n), where b is the length of the bit-string, and n is the number of nodes in the
network, to get the number of nodes in the network. The genotype phenotype
mapping is easiest shown by example, e.g. the genotype 210 0010102 specifies
a network with two nodes, as denoted by 210. The 0010102 contains two bit
arrays, one for each node, where each array is partitioned as described in
Table 3.3.

Picking the bit string apart, as shown in Figure 3.1, the first bit array 0012

describes node 0. The first bit 02 encodes that the parameter is 0, and two
following bits 012 encodes no input to node 0 from node 0, and an input to
node 0 from node 1.

The second bit array 0102 describes node 1. The first bit 0 encodes that the
parameter is 0 here too, and the two following bits 102 encodes an input to
node 1 from node 0, and no input to node 1 from node 1. The complete
phenotype of the network is shown in Figure 3.2.

24 CHAPTER 3. EXPERIMENT SETUP

Number of nodes

Configuration of node 0

Configuration of node 1

2 001 010

Figure 3.1: Genotype phenotype mapping example - Genotype

n0
sum(i[1:0]) > 0

n1
sum(i[1:0]) > 0

Figure 3.2: Genotype phenotype mapping example - Phenotype

3.3.2 Fitness

Fitness in this experiment involve several phases. The different phases will
be explained in detail below. All emphasised words are explained in Table
3.1.

1. Generate sim statecount states.

2. Calculate DFT using dft winsize as the size of a window and dft winfunc
as windowing function.

3. Calculate the power in the real dimension from the DFT result.

4. Find local minimas and maximas in frequency-power spectrum.

5. Sort the local minimas and maximas in descending order.

3.3. THE GENETIC ALGORITHM 25

6. (a) If enought minimas/maxinmas found. The fitness is the lowest of
the number of peaks wanted after subtracting the item below it
in the result (”noise”).

(b) If not enough minimas/maximas found. The fitness is calculated
as (log(coverage)− log(1

2nodes
))100.

Phase 1 is simply going through the network and updating all the nodes
synchronously. At each time step convert the state of the network into a
number, and place it in the sample array. To give the opportunity to the
algorithm to have as low as possible DC component in the signal, the number
is normalised on the interval [−1.0, 1.0].

In Phase 2 DFT is calculated applying dft winsize as window size and dft winfunc
as windowing function. The result is placed in the DFT result array.

Phase 3 takes the complex result in the DFT result array and calculates
absolute value to get the power. The power is saved in the power result
array.

Phase 4 walks the power result array picking out all the local maxima and
minima. The local maxima are placed in the sorted power result max array,
and the local minima is placed in the sorted power result min array.

In Phase 5 the sorted power result arrays are sorted in descending order.
This makes it easy to pick out the peaks of interest.

Phase 6a fitness is calculated. If p is the number of peaks sought, the highest
p peaks from the sorted power result max array and subtracting the min-
ima/maxima lower in the sorted power result arrays.

Phase 6b are for those networks that do not create enough peaks. In order
to reward those individuals that may be closer than others in our search
space the concept of coverage is used. The coverage of a simulation is here
defined as the number of repeating states a given network reaches from a
given initial state. To calculate the fitness, the fraction of the number of
repeating states that are encountered of how large the state space is. Since
this number easily falls into the noise range of the other fitness functions, it
is calculated as (log(coverage)− log(1

2nodes
))100. This means the fitness gets

a larger scaling for increasing coverage in the lower range, but the boost gets
less the higher coverage that is attained, avoiding network with large fitness
simply because they visited many states.

26 CHAPTER 3. EXPERIMENT SETUP

Parameter Description

adults The number of adults in the population after adult se-
lection is done.

adult sel mech What mechanism to use when performing adult selec-
tion. Possibilities: best fitness, and stochastic.

adult sel proto What protocol to use when performing adult selection.
Possibilities: full generation replacement, and genera-
tional mixing.

crossover prob The probability of crossover happening during child pro-
duction.

crossover points How many crossover points to use when doing crossover

children The number of children to produce.

elites The number of elites to retain in the adult population
when culling.

generations The number of generations to run the GA for.

mutation prob The probability of a single gene mutating when produc-
ing children.

nodes The number of nodes in the network.

dft winsize The window size of the DFT.

dft winfunc The windowing function used when doing DFT. Possi-
bilities: hann, hamming, rectangular.

sim statecount How many states to simulate network for when doing
fitness.

parent sel mech Selection mechanism for parent selection. Possibilities:
fitness proportionate, sigma scaling proportionate, and
tournament.

Table 3.1: Parameters for the GA

3.3. THE GENETIC ALGORITHM 27

Parameter Value

adults 64
adult sel mech Stochastic
adult sel proto full generational replacement
crossover prob 0.03
crossover points 1
children 64
elites 1
generations 1024 / 10240
mutation prob 0.18
nodes 8
dft winsize 512
dft winfunc f(x) = 1.0 i.e. rectangular.
sim statecount 2048
parent sel mech sigma scaling proportionate

Table 3.2: Parameters for all experiments

28 CHAPTER 3. EXPERIMENT SETUP

Chapter 4

Experiments

The experiments performed are each designed to give an answer to a simple
hypothesis. The first experiment, experiment 1 Section 4.1, is designed to
test the hypothesis that by transforming the time-state output of a BN, it is
possible to evolve networks that produces multiple output values from their
emergent behaviour.

Experiment 2, which results can be viewed in Section 4.2, explores the state
space by attempting to make a given network and initial state pair as robust
as possible. This is an attempt to get some indications as to what the state
space looks like.

In the third and last experiment, with results in Section 4.3, is designed to
test the hypothesis that is it possible to evolve a network that is capable
of exhibiting behavioural properties that, when transformed, gives a system
with multiple output variables.

Section 4.4 is an overview of the results of all three experiments, with a short
summary.

4.1 Experiment 1

The purpose of experiment 1, is to exercise the implementation, and see if
the algorithm is capable of evolving the specified number of frequency peaks
at all.

In this experiment, all simulations are run with the same initial value. The
initial value used is the bit-string 001111002. Table 4.1 shows the results

29

30 CHAPTER 4. EXPERIMENTS

from experiment 1. The peaks column gives how many peaks that are sought
after with each initial state, the run column which instance of the experiment
the row shows results for, and generations for how many generations each
instance ran. The success column gives how many of the frequency peaks
and initial state pairs found the sought after result.

Table 4.1 shows that only a single initial state were used per instance in
experiment 1. Finding one, two, and three frequency peaks was fairly suc-
cessful, four frequency peaks posed more of a challenge. It seems like the GA
got stuck in a local maxima, unable to mutate/crossover out of it.

The highest number of peaks found in experiment 1, is three. Figure 4.1
shows the time-frequency plot of a typical high fitness individual. The three
peaks are clearly visible in frequency ”buckets” 85, 171 and 256, surrounded
by minimal noise. The 64 first time steps of the samples the DFT is taken
over, is shown in Figure 4.2. The reason for the relatively high DC-component
is clearly visible in Figure 4.2; some of the frequencies have their entire period
above 0, i.e. the samples within the period of the part of the signal that has
the frequency, are all above 0.

 0

 100

 200

 300

 400

 500

 600

 700

 800

-50 0 50 100 150 200 250 300

Po
w

e
r

Frequency

Figure 4.1: Experiment 1 - 3 peaks - run 7 - Frequency-power plot

Figure 4.3 shows the network, with labeling of nodes and next state functions.
Node n0 corresponds to bit zero, n1 to bit one, et cetera, when the network
state is interpreted as a binary unsigned number. Notice n2, which has the

4.1. EXPERIMENT 1 31

Peaks Run Generations Success

1 0 128 1/1
1 128 1/1
2 128 1/1
3 128 1/1
4 128 1/1
5 128 1/1
6 128 1/1
7 128 1/1

2 0 1280 1/1
1 1280 1/1
2 1280 1/1
3 1280 1/1
4 1280 1/1
5 1280 1/1
6 1280 1/1
7 1280 1/1

3 0 12800 1/1
1 12800 1/1
2 12800 1/1
3 12800 0/1
4 12800 1/1
5 12800 0/1
6 12800 1/1
7 12800 1/1

4 0 128000 0/1
1 128000 0/1
2 128000 0/1
3 128000 0/1
4 128000 0/1
5 128000 0/1
6 128000 0/1
7 128000 0/1

Table 4.1: Experiment 1 results

32 CHAPTER 4. EXPERIMENTS

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50 60 70

A
m

p
lit

u
d

e

Time

Figure 4.2: Experiment 1 - 3 peaks - run 7 - Time-amplitude plot

next state function Snext =
∑7

j=0 inputj > 7. This means that the next state
function of n2 will always evaluate to 0, since it only has 5 inputs. The only
two possible outcomes from this is; either n2 has 1 as initial node state and
switches to 0 after first time step, or initial node state 0 and the node state
stays 0 forever. The former case can be observed in Figure 4.4.

A trend seems to be that the fewer frequency peaks that are sought, the more
”dead nodes” like n2 in Figure 4.3 are observed. This could be because the
choice of next state function restricts the state space, so the the amount of
nodes needed could be proportional to the number of peaks sought.

Figure 4.5 plots the number of times each network state is visited. This
is done by simply interpreting the network state as an unsigned boolean
number, and counting how many times each number occurs. It follows that
if you accumulate the count of how many times each state is visited, the
number will be equal to the number of how steps in time that were done
during simulation, including the time step of the initial state. The six network
states contained in the coverage set stands out as large peaks, with the two
states visited prior to oscillation, see Figure 4.3, barely showing as two small
bumps.

The fitness of the instance can be seen in Figure 4.6. Red solid line, is
the best fitness for that generation, the green crosses with error bars is the

4.1. EXPERIMENT 1 33

average fitness of that generation with standard deviation. As seen in Figure
4.6 a solution was found before 2000 generations was reached. This is not
typical for the three peak solution. Most of the three peak solution seems to
be found around 8000 generations, where an even better solution was found
in Figure 4.6.

n0
sum(i[8:0]) > 0

n1
sum(i[8:0]) > 0

n2
sum(i[8:0]) > 7

n3
sum(i[8:0]) > 0

n4
sum(i[8:0]) > 0

n6
sum(i[8:0]) > 0

n7
sum(i[8:0]) > 0

n5
sum(i[8:0]) > 0

Figure 4.3: Experiment 1 - 3 peaks - run 7 - Network

34 CHAPTER 4. EXPERIMENTS

00101011

11011001

00111100

11010011

10110011

11001011

10111001

11010010

Figure 4.4: Experiment 1 - 3 peaks - run 7 - State space

4.1. EXPERIMENT 1 35

 0

 50

 100

 150

 200

 250

 300

 350

-50 0 50 100 150 200 250 300

Ti
m

e
s

State

Figure 4.5: Experiment 1 - 3 peaks - run 7 - Coverage

-100

-50

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000

Fi
tn

e
ss

Generation

Highest
Average

Figure 4.6: Experiment 1 - 3 peaks - run 7 - Fitness

36 CHAPTER 4. EXPERIMENTS

4.2 Experiment 2

The purposed of experiment 2, is to evolve a network that is capable of
generating the same number of frequency peaks for all initial states in a set
of randomly generated initial states.

Eight randomly generated initial states, different between each instance of
the experiment, were used. The results are given in Table 4.2. The peaks
column gives how many peaks were sought after with each initial state, e.g.
1/1/1/1/1/1/1/1 means that one frequency peaks were searched for, one
for each of the initial states. The run column gives which instance of the
experiment the row is, the generations column how many generations the
instance ran for, and the success column how many of the frequency peaks
and initial state pairs found the sought after result. E.g. 7/8 means it found
the correct number of frequency peaks for seven out of eight of the initial
states.

As shown in Table 4.2, for all the different values of frequency peaks searched
for, a network capable of producing the same number of frequency peaks for
all initial values, where found. Since this experiments had eight initial values
per run, only a few illustrative examples of the plots will be shown.

Figure 4.7 shows the frequency-power spectrum of the third initial state of run
0 with 100000012 as the initial value. The three frequency peaks are clearly
visible in the frequency ”buckets” 85, 171, and 256, with the large peak
at 0 being the DC-component. Figure 4.8 shows the frequency-power plot
from exact same network, see Figure 4.9, with the initial value 000111112,
and having frequency peaks in the exact same places as the initial state
form Figure 4.7. Note that the scale of power in the two figures is not the
same.

In Figure 4.9 the network is plotted, with labeling of nodes and next state
functions. Node n0 corresponds to bit zero, n1 to bit one, et cetera when
the network state is interpreted as a binary unsigned number. There are
a few ”dead nodes” in this network, witness n3 and n6, which have the
next state function Snext =

∑7
j=0 inputj > 7. It follows that the next state

function of n3 and n6 will always evaluate to 0, since only 2 and 4 inputs are
present, respectively. This means that either of the nodes can only follow two
patterns; either the node has 1 as initial node state and switches to 0 after
first time step, or initial node state 0 and the node state stays 0 forever.

In Figure 4.12 the former case can be observed for both node n3 and n6,
while in Figure 4.13 the former can be observed for n6 and the latter for

4.2. EXPERIMENT 2 37

Peaks Run Generations Success

1/1/1/1/1/1/1/1 0 1280 8/8
1 1280 7/8
2 1280 8/8
3 1280 7/8
4 1280 7/8
5 1280 7/8
6 1280 8/8
7 1280 7/8

2/2/2/2/2/2/2/2 0 1280 8/8
1 1280 8/8
2 1280 7/8
3 1280 6/8
4 1280 7/8
5 1280 7/8
6 1280 8/8
7 1280 6/8

3/3/3/3/3/3/3/3 0 12800 8/8
1 12800 4/8
2 12800 4/8
3 12800 7/8
4 12800 5/8
5 12800 5/8
6 12800 0/8
7 12800 0/8

Table 4.2: Experiment 2 results

38 CHAPTER 4. EXPERIMENTS

n3.

Even though the behaviour in the frequency-power spectrum is similar, the
behaviour in the time-amplitude spectrum is not that similar. This is illus-
trated by Figure 4.10 and 4.11, where the amplitude peaks are easily seen.
Can be witnessed further in Figure 4.12 and 4.13, where the state spaces are
clearly disjunct, with a coverage set of

{100000012, 001000102, 100100002, 000001102, 000100012, 001001002}

for initial state 100000012 versus

{001101112, 101101012, 101001112, 101100112, 101101102, 100101112}

for initial state 000111112.

Figure 4.14 and 4.15 plots the number of times each network state is visited,
by simply interpreting the network state as an unsigned boolean number,
and counting how many times each number occurs. For Figure 4.14 the six
network states contained in the coverage set stands out as large peaks, with
no smaller peaks since all the states in the state space is contained in the
coverage set. In Figure 4.15, in addition to the six states in th coverage set,
a tiny bump can be seen at 31, this is the initial state.

The fitness is plotted in Figure 4.16, with a red solid line indicating the best
fitness for that generation. The green crosses are the average fitness for that
generation, with standard deviation as error bars. A good solution was found
a little after the 2000th generation, and seen by the steep rise in fitness.

4.2. EXPERIMENT 2 39

 0

 200

 400

 600

 800

 1000

 1200

-50 0 50 100 150 200 250 300

Po
w

e
r

Frequency

Figure 4.7: Experiment 2 - 3 peaks - run 0 - initial state 100000012 -
Frequency-power plot

 0

 50

 100

 150

 200

 250

 300

 350

 400

-50 0 50 100 150 200 250 300

Po
w

e
r

Frequency

Figure 4.8: Experiment 2 - 3 peaks - run 0 - initial state 000111112 -
Frequency-power plot

40 CHAPTER 4. EXPERIMENTS

n0
sum(i[7:0]) > 0

n5
sum(i[7:0]) > 0

n1
sum(i[7:0]) > 0

n4
sum(i[7:0]) > 0

n2
sum(i[7:0]) > 0

n6
sum(i[7:0]) > 7

n3
sum(i[7:0]) > 7

n7
sum(i[7:0]) > 0

Figure 4.9: Experiment 2 - 3 peaks - run 0 - Network

4.2. EXPERIMENT 2 41

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 10 20 30 40 50 60 70

A
m

p
lit

u
d

e

Time

Figure 4.10: Experiment 2 - 3 peaks - run 0 - initial state 100000012 - Time-
amplitude plot

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 10 20 30 40 50 60 70

A
m

p
lit

u
d

e

Time

Figure 4.11: Experiment 2 - 3 peaks - run 0 - initial state 000111112 - Time-
amplitude plot

42 CHAPTER 4. EXPERIMENTS

00000110

00010001

00100100

00100010

10010000

10000001

Figure 4.12: Experiment 2 - 3 peaks - run 0 - initial state 100000012 - State
space

4.2. EXPERIMENT 2 43

00011111

00110111

10110101

10010111

10100111

10110011

10110110

Figure 4.13: Experiment 2 - 3 peaks - run 0 - initial state 000111112 - State
space

44 CHAPTER 4. EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 350

-50 0 50 100 150 200 250 300

Ti
m

e
s

State

Figure 4.14: Experiment 2 - 3 peaks - run 0 - initial state 100000012 - Cov-
erage

 0

 50

 100

 150

 200

 250

 300

 350

-50 0 50 100 150 200 250 300

Ti
m

e
s

State

Figure 4.15: Experiment 2 - 3 peaks - run 0 - initial state 000111112 - Cov-
erage

4.2. EXPERIMENT 2 45

-500

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000

Fi
tn

e
ss

Generation

Highest
Average

Figure 4.16: Experiment 2 - 3 peaks - run 0 - Fitness

46 CHAPTER 4. EXPERIMENTS

4.3 Experiment 3

After establishing the possibility of evolving different number of frequencies,
and establishing a baseline for what kind of behaviour the state space can
support in experiment 1 and 2, experiment 3 attempts to establish that
variable number of multivalued output in the frequency-power spectrum is
possible.

In this experiment, two randomly generated initial states, that differed be-
tween each instance of the experiment, were used. Table 4.3 present the
results, where the peaks column specifies how many peaks were sought af-
ter for each initial state, e.g. 1/2 specifies that one peak in frequency was
sought after for the first initial state, and two frequency peaks for the sec-
ond initial state. The run column gives which instance of the experiment
the row provides results for, the generations column for how many genera-
tions the instance ran, and the success column how many of the frequency
peaks and initial state pairs found the sought after result. E.g. 1/2 means it
found the correct number of frequency peaks for one out of two of the initial
states.

Peaks Run Generations Success

1/2 0 12800 1/2
1 12800 2/2
2 12800 2/2
3 12800 1/2
4 12800 1/2
5 12800 2/2
6 12800 1/2
7 12800 1/2

2/3 0 128000 1/2
1 128000 2/2
2 128000 1/2
3 128000 1/2
4 128000 2/2
5 128000 0/2
6 128000 2/2
7 128000 1/2

Table 4.3: Experiment 3 results

4.3. EXPERIMENT 3 47

As shown in Table 4.3, finding one and two frequency peaks for the same
network was pretty successful. Finding two and three peaks in the same
network proved to be harder, since the GA would find two peaks rather fast,
and then spend all the time optimising the two peaks, never finding the three
peaks. A countermeasure was employed, where finding two peaks were only
attempted after first finding three peaks. I.e. an individual that had not yet
found three peaks, would get the low fitness associated with not finding three
peaks, even if it had found two. An individual that had found three peaks
would get the fitness for the three peaks, in addition to whatever fitness it
had for finding two peaks. This countermeasure proved to be successful, as
shown in the results for 2/3 peaks in Table 4.3

In Figure 4.17, the frequency-power spectrum of of the result from instance
three, with initial state 011100112 responsible for generating three frequency
peaks, is shown. The three frequency peaks are visible in the frequency
”buckets” 85, 171, and 256, with the DC-component at 0. In Figure 4.18
the frequency-power plot of output from the same network, illustrated in
Figure 4.19, with the initial state 0111100102, responsible for generating two
frequency peaks.

Figure 4.19 illustrates the network, with labeling of nodes and next state
functions. Node n0 corresponds to bit zero, n1 to bit one, et cetera, of the
network state, when it is interpreted as a binary unsigned number. Note that
node n4 will always be the previous value of node n1.

Figure 4.20 and 4.21 shows the time-amplitude plot of the two different initial
values, the one with three frequency peaks clearly stands out as more ”busy”
in the time-amplitude spectrum. Even though the three peak plot looks more
busy in the time-amplitude spectrum, Figure 4.22 and 4.22 shows that the
coverage set contains the same number of states for each of them Although
the two coverage sets are the same size, the state spaces are clearly disjunct,
as seen by

{111111002, 001001112, 110111012, 001010112, 110111102, 111100112}

for initial state 011100112 versus

{111101002, 001001012, 000011012, 000010112, 110110102, 111100102}

for initial state 011100102.

Figure 4.24 and 4.25 plots the number of times each network state is visited,
by simply interpreting the network state as an unsigned boolean number,
and counting how many times each number occurs. In Figure 4.24 the six

48 CHAPTER 4. EXPERIMENTS

network states contained in the coverage set stands out as large peaks with
with one tiny bump for the initial state at 115. For Figure 4.25, in addition
to the six states in the coverage set, a tiny bump can be seen at 114, this is
the initial state.

The fitness is plotted in Figure 4.26, with a red solid line indicating the best
fitness for that generation. The green crosses are the average fitness for that
generation, with standard deviation marked as bars. After a steep start, the
best fitness in the population gradually rises until its peak is reached after
45000 generations or so.

One thing observed during this experiment, is sometimes the network evolved
what seems to be ”hybrid” networks, i.e. they can be interpreted as both
three peaks or two peaks, as shown by the frequency-power spectrum plot of
what is supposed to be a two peak solution in Figure 4.27. These ”hybrid”
solutions are not counted as success in this experiment.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

-50 0 50 100 150 200 250 300

Po
w

e
r

Frequency

Figure 4.17: Experiment 3 - 3 peaks - run 6 - initial state 011100112 -
Frequency-power plot

4.3. EXPERIMENT 3 49

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

-50 0 50 100 150 200 250 300

Po
w

e
r

Frequency

Figure 4.18: Experiment 3 - 2 peaks - run 6 - initial state 011100102 -
Frequency-power plot

50 CHAPTER 4. EXPERIMENTS

n0
sum(i[8:0]) > 0

n3
sum(i[8:0]) > 0

n1
sum(i[8:0]) > 0

n4
sum(i[8:0]) > 0

n6
sum(i[8:0]) > 0

n7
sum(i[8:0]) > 0

n2
sum(i[8:0]) > 0

n5
sum(i[8:0]) > 0

Figure 4.19: Experiment 3 - 2 and 3 peaks - run 6 - Network

4.3. EXPERIMENT 3 51

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

A
m

p
lit

u
d

e

Time

Figure 4.20: Experiment 3 - 3 peaks - run 6 - initial state 011100112 - Time-
amplitude plot

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

A
m

p
lit

u
d

e

Time

Figure 4.21: Experiment 3 - 2 peaks - run 6 - initial state 011100102 - Time-
amplitude plot

52 CHAPTER 4. EXPERIMENTS

00100111

11011101

00101011

11011110

01110011

11111100

11110011

Figure 4.22: Experiment 3 - 3 peaks - run 6 - initial state 011100112 - State
space

4.3. EXPERIMENT 3 53

00001011

11011010

00001101

00100101

01110010

11110100

11110010

Figure 4.23: Experiment 3 - 2 peaks - run 6 - initial state 011100102 - State
space

54 CHAPTER 4. EXPERIMENTS

 0

 50

 100

 150

 200

 250

 300

 350

-50 0 50 100 150 200 250 300

Ti
m

e
s

State

Figure 4.24: Experiment 3 - 3 peaks - run 6 - initial state 011100112 - Cov-
erage

 0

 50

 100

 150

 200

 250

 300

 350

-50 0 50 100 150 200 250 300

Ti
m

e
s

State

Figure 4.25: Experiment 3 - 2 peaks - run 6 - initial state 011100102 - Cov-
erage

4.3. EXPERIMENT 3 55

-500

 0

 500

 1000

 1500

 2000

 2500

 0 20000 40000 60000 80000 100000 120000 140000

Fi
tn

e
ss

Generation

Highest
Average

Figure 4.26: Experiment 3 - 2 and 3 peaks - run 6 - Fitness

 0

 200

 400

 600

 800

 1000

 1200

-50 0 50 100 150 200 250 300

Po
w

e
r

Frequency

Figure 4.27: Experiment 3 - 2 peaks - run 7 - initial state 011100112 -
Frequency-power plot

56 CHAPTER 4. EXPERIMENTS

4.4 Experiments summary

The focus of this proof of principle is to show that evolving specific emer-
gent behaviour in the frequency-power spectrum is actually possible. The
experiments and their success rate is summarised in Table 4.4. As shown in
Table 4.4 every experiment was a success, and the only limitation that was
hit, was evolving more than three peaks. Theories about this limitation will
be discussed in Chapter 5.

Experiment Peaks Success rate

1 1 100%
2 100%
3 75%
4 0%

2 1/1/1/1/1/1/1/1 37.5%
2/2/2/2/2/2/2/2 37.5%
3/3/3/3/3/3/3/3 12.5%

3 1/2 37.5%
2/3 37.5%

Table 4.4: Experiments summary

Chapter 5

Conclusion

The experiments were a complete success, the results show that using the
emergent behaviour of a system in frequency-power spectrum opposed to
the more traditional space-time spectrum is possible. The results also show
that creating systems with emergent behaviour of variable number of output
values (peaks), depending on initial state of the system is possible.

Through experiment, it has been shown that generating a specific number of
peaks in the frequency-power spectrum is possible. One interesting result, is
that four peaks proved so hard to find. In the experiment with four nodes,
all instances ran into a local maxima and never got out of it. This could
be due to several reasons, but two theories have been devised. The first
theory, is one touched upon briefly; that it needs to be more nodes in the
network. This is supported by the observation that a network producing
smaller amount of frequency peaks tend to have more dead nodes, like n2
in Figure 4.5. So simply having a larger amount of nodes could make the
GA able to find networks producing more than three peaks in the frequency-
power spectrum.

Another theory is that the trouble with finding more than three peaks, is
caused by a combination of next state function, and where the solution lays
in the solution space. I.e. it is very hard to find a path traversing the solu-
tion space with the genotype used, where an individual can gradually increase
fitness and eventually stumble upon a solution with four peaks through mu-
tation and crossover. Figure 5.1 attempts to illustrate this point. A reason
for the solution space to look like this, could be the encoding of, or the next
state function it self.

The reason a so simple next state function was chosen is two fold; small

57

58 CHAPTER 5. CONCLUSION

1 peak

2 peaks

3 peaks

4 peaks

Figure 5.1: Solution space with large distance to four peaks

59

number of bits used to encode the function in the genotype to get as small
solution space as possible. This minimisation of solution space, while it
can make it easier to find solutions in it, could also potentially remove the
solutions that are sought after from the solution space.

The other reason for the choice, was to avoid wildly different function as the
next state function because of a single mutation. E.g. if a boolean AND,
and boolean OR functions selected by a value of some bit, had been used,
the next state function would be a wildly different function dependent of the
value of that bit. It is an attempt to make the GA a fitness guided search in
solution space, not an arbitrary search.

In these experiments, only BNs were, used. Since BNs are simply a speciali-
sation of DDNs, more node states could be used, a la what Langton did with
CAs[4]. Another thing to explore is more complex combinations of frequency
peaks, e.g. finding one, two, and three peaks with the same network.

60 CHAPTER 5. CONCLUSION

Bibliography

[1] John Von Neumann. Theory of Self-Reproducing Automata. University
of Illinois Press, Champaign, IL, USA, 1966.

[2] Andrew Wuensche. Discrete dynamics lab: Tools for investigating cellu-
lar automata and discrete dynamical networks. In Andrew Adamatzky
and Maciej Komosinski, editors, Artificial Life Models in Software, pages
263–297. Springer London, 2005.

[3] S. Wolfram. Universality and complexity in cellular automata. Physica
D: Nonlinear Phenomena, 10(1-2):1–35, January 1984.

[4] Chris G. Langton. Emergent computation, chapter Computation at the
edge of Chaos: phase transitions and emergent computation, pages 12–
37. MIT Press, Cambridge, MA, USA, 1991.

[5] Melanie Mitchell. Life and evolution in computers. History and philos-
ophy of the life sciences, 23, 2001.

[6] S. A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed genetic nets. J Theor Biol, 22(3):437–467, 1969.

[7] Matthew Cook. Universality in elementary cellular automata. Complex
Systems, 15(1), 2004.

[8] Moshe Sipper. The emergence of cellular computing. Computer,
32(7):18–26, July 1999.

[9] Carlos Gershenson. Introduction to random boolean networks. In Bedau,
M., P. Husbands, T. Hutton, S. Kumar, and H. Suzuki (eds.) Workshop
and Tutorial Proceedings, Ninth International Conference on the Sim-
ulation and Synthesis of Living Systems (ALife IX). pp. 160-173. 2004,
2004.

[10] Melanie Mitchell. Complexity: A Guided Tour. Oxford University Press,
Inc., New York, NY, USA, 2009.

61

62 BIBLIOGRAPHY

[11] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1989.

[12] J. H. Holland. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI, USA, 1975.

[13] Dario Floreano and Claudio Mattiussi. Bio-Inspired Artificial Intelli-
gence: Theories, Methods, and Technologies, chapter Evolutionary Sys-
tems. The MIT Press, 2008.

[14] Keith Downing. Introduction to evolutionary algorithms, 2010. http:

//www.idi.ntnu.no/emner/it3708/lectures/notes/evolalgs.pdf.

[15] Keith Downing. Natural and artificial selection, 2011. http://www.

idi.ntnu.no/emner/it3708/lectures/notes/ea-selection.pdf.

[16] Gunnar Tufte. Evolutionary Computation, chapter From Evo to
EvoDevo: Mapping and Adaptation in Artificial Development, pages
219–238. InTech, 2009.

[17] C. E. Shannon. Communication in the Presence of Noise. Proceedings
of the IRE, 37(1):10–21, January 1949.

[18] H. Nyquist. Certain topics in telegraph transmission theory. Trans-
actions of the American Institute of Electrical Engineers, 47:617–644,
April 1928.

http://www.idi.ntnu.no/emner/it3708/lectures/notes/evolalgs.pdf
http://www.idi.ntnu.no/emner/it3708/lectures/notes/evolalgs.pdf
http://www.idi.ntnu.no/emner/it3708/lectures/notes/ea-selection.pdf
http://www.idi.ntnu.no/emner/it3708/lectures/notes/ea-selection.pdf

	Abstract
	Acknowledgements
	Introduction
	Background
	Discrete Dynamic Networks (DDN)
	Updating Schemes

	Boolean Networks (BNs)
	Cellular Automata (CAs)
	Genetic Algorithms (GAs)
	Selection
	Genetic Operators

	Transformations

	Experiment Setup
	Discrete Fourier Transform
	The Boolean Network
	The Genetic Algorithm
	Genotype
	Fitness

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiments summary

	Conclusion

