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Abstract

Creating digital representation of physical objects is becoming more and more pop-
ular as scanning technology becomes more available on the consumer marked. High
precision close range scanners, based on structured light, can produce high preci-
sion meshes in short amount of time, while automated photogrammetric software
can process images taken with ordinary cameras to re-create a three dimensional
scenes. Unfortunately the quality of digitalization is bound to the volume of the
captured scene, creating a trade of between quality and speed of acquisition. In
this master thesis we present software that can merge the output of two different
scanners to create a combined mesh with regions of different resolution. We pro-
pose two methods to identify corresponding regions in meshes and a variation of
greedy triangulation algorithm. At the end we perform tests on combined meshes
to assess the quality of merging and present the results.



II



Norsk Sammendrag

Å lage digitale modeller av komplekse fysiske gjenstander har blitt mer og mer
populært ettersom skanningsteknologien har blitt mer tilgjengelig på forbruker-
markedet. Skannere basert på strukturert lys, med høy presisjon, kan skape
maskenett på kort tid, mens automatiserte fotogrammetriske programvare kan
prosessere bilder tatt med vanlig kamera for å gjenskape tredimensjonale scener.
Beklageligvis er kvaliteten av digitaliseringen avhengig av størrelsen til den gjen-
skapte scenen, noe som tvinger brukeren til å velge mellom kvaliteten og hastigheten
på prosessen. I denne masteroppgaven presenteres en programvare som kan fusjonere
produktet fra to forskjellige skannere for å skape et kombinert maskenett med om-
råder med ulik oppløsning. Vi foreslår to ulike metoder for å identifisere tilsvarende
områder i maskenett, og en variant av grådig algoritme for triangulering. Til slutt
utfører vi tester på kombinerte maskenett og presenterer resultater.
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Chapter 1

Introduction and problem
description

This chapter provides some perspective on the work described in this thesis, defines
the problem, states main contributions of this thesis, and finally presents an outline
of the rest of the master thesis.

1.1 Introduction

In last decades we have experience a major increase in computing power. The size
of devises has reduced while computational power they offer has increased. The
cost of the hardware has also reduced dramatically. All those factors play a role
so that visualization and digitalisation of physical scenes and objects is becoming
increasingly popular. For example in the field of archaeology high precision scans
are used to measure erosion, constriction sites and oil-rigs are scanned to document
and observe construction process, museums try to digitalize artefacts in order to
preserve the past, artists digitalize there art to share it online or manufacture it
in different scales and quantities.

When using a 3D scanner, based on optical sensing the resolution of the surface and
amount of the captured per frame is dependent on the distance from the scanner to
the object. With increasing distance the quality of the captured surface decreases,
while size of scanned surface increases. The user is forced to choose between lower
complexity of the scan and high precision of the result. In this thesis we try to
address this problem by proposing software that can merge two different scans of

3



4 CHAPTER 1. INTRODUCTION AND PROBLEM DESCRIPTION

the same object, originated from different scanners and or of different resolutions.

1.2 Literature Overview

Using existing meshes to produce a combined result, is often used by artists to
create exotic 3D models, as art, entitlement and for manufacture. The tools created
for this purposes is based on research as (Biermann et al., 2002; Sorkine et al.,
2004; Huang et al., 2007; Schmidt and Singh, 2010). Though creating astonishing
results, there methods change topology of the meshes, which is not acceptable if
accurate measurements are required. Using multiple over lapping meshes from the
same source to create a mesh representation of a physical object was proposed
by Pito, R. in paper (Pito, 1996), this method is based on the knowledge about
the scanning process, and only considers meshes of the same resolution. Paper by
Morooka, K. and Nagahashi, H. (Morooka and Nagahashi, 2006) merge meshes
of different resolution, originated from the same scanner with known orientation
to the scanned surface. Our approach differs from the others, as origin of the
triangular meshes is not taken into consideration. The only requirements for our
approach are that meshes contain an overlapping region of interest, and the data
mesh is of a higher resolution.

1.3 Problem Description

In the digital world the value range is always limited. The maximum and minimum
bounds are often restricted by the precision and architecture of the hardware. In
the case of photogrammetry the hardware limit comes from the captured images,
in digital case this would strongly rely on image-sensor chip size. The same can
be applied to structured-light scanning and laser scanning based on trigonometry.

The process of taking photographs with a digital camera can be looked upon as
creating a discrete representation of continues function. The precision of discrete
representation is based on the number of samples and how accurate they are.
Due the pin-point-camera model of today’s sensors, the aria that is being sampled
depends on the distance to the surface and the optics of the sensor. In figure 1.1
we can see a sketch of a sensor and the area that is sampled in position A and B.

The rate with which the sampled aria increases with increasing distance is based on
the angle beta. Beta represents the maximum angle between the rays of incoming
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Figure 1.1: Scaned aria increases with the distance to the scanner

light that are observed by the sensor.

The resolution of a captured image can be described as sampled aria of the surface
divided by the number of samples. The maximum number of samples is based on
the sensor chip and is constant for images taking with the same camera, while the
sampled aria on the other hand can vary, leading to variance in resolution. This
creates a trade-off between the size of the aria captured per one frame and the
resolution of captured frame. In real world the precision of the captured image
depends on many more factors as focus length and circle of distortion, global
illumination, reflective properties of the surface, and so on. But the basic principle
stays the same; the maximum precision of a frame is based on number of samples
and size of sampled aria.

Many of scanning technique suffer from this trade of, ether scan large aria with
few frames, or scan a smaller aria with higher resolution. In practice this choice
can stand between choosing right type of scanner, or between different settings for
the same technology. Photogrammetry is a modelling technique that is easiest to
scale. For example the photogrammetry software Photomodeler Scanner can take
as an input both photographs of Eiffel tower and photographs of a hundred times
smaller replica, and produce the same digital result. This scalability is the result
of correct camera calibration in each situation.

Human made objects have often varying grade of details. An example to this would
be a cathedral wall in gothic style, where as we can imagine the most of the surface
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is smooth with little details but some parts of the wall have often sculptures or
figurines carved out. In the terms of topology the smooth part of the wall contain
less information than parts with high amount of details.

When scanning a large surface with high variance the question, of the size versus
the resolution of a frame stands out. High intensity sampling of smaller arias will
give a best result in the terms of precision, but the practical problems arise, as
large time consumption and logistics. Usually better resolution leads to a shorter
distance to the object, and large volume of data to store.

If we return to the gothic-style cathedral-wall example, given that the resolu-
tion of the mesh is constant but information amount vary from aria to aria, the
information per point will vary as well. Giving us arias where each individual
point contains little or no additional information to the mesh. The points that
contribute little to the meshes geometry can be removed by mesh simplification
algorithms. Though mesh simplification is ongoing research some good results
have been archived as (Hoppe, 1999), (Daniels et al., 2008) and (Wei and Lou,
2010) Quad meshing has shown the best results in mesh simplification in resents
years, the overview of the quad mesh advantages and draw backs can be found
in (Bommes et al., 2012). Mesh simplification will reduce the number of faces and
vertexes, reducing storage size and processing time, but this technique will not
solve the problem with logistic, and acquisition time.

The Idea behind MeshCombine project is to use multiple scanning techniques to
produce a final model. Create a total overview with a low resolution mesh and
keep level of details high in the regions of interests (ROI) with a high density
mesh. This approach is not new in image compression, and is strongly researched
for medical image processing, some examples of literature can be found in (Gok-
turk et al., 2001). The compression standard JEPEG2000, has the possibility to
encode ROI (Bradley and Stentiford, 2002), (Christopoulos et al., Sept. 2000).
When simplifying mesh with the right cost/feature function, region of Interest ef-
fect will be automatically archived, as simplification often remove edges with low
or no information, but as mentioned above mesh simplification will not increase
simplicity of scanning process.

The vision of the MeshCombine approach is that the user scans the large object
producing a rough approximation, then by using different settings, or hardware
the user captures the details of an object that are considered important. A similar
approach is used in (Morooka and Nagahashi, 2006) where the authors propose a
method to recreate a model by combining scans originated from the same scanner
but with different resolution. When the meshes are combined in the MeshCombine
software, they produce single mesh with arias of different resolution and level of
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details. This way user only needs to perform complicated scan in high resolution
in regions that require high level of detail, and exploit the practical simplicity of
a lower resolution scan. In our case we will use photogrammetry to create less
detailed overview mesh and structured light scanning to perform a high resolution
scan of details, chapter 2.

1.4 MeshCombine

On the marked today you can find several products for mesh manipulation like
zBrush (Pixologic, 2013), Autodesk 3Ds Max (Autodesk, 2013a), and MeshMixer (Au-
todesk, 2013b). These products provide powerful tools for a 3D artist to create
exotic models for entertainment purposes, in video games and animations, they
produce astonishing visual results but in the process they change the mesh’s topol-
ogy. This is unacceptable in the case of extracting exact real world data as, in
visualization of a construction site or preserving archaeological artefacts.

MeshCombine is a simple prototype of a software that can be used to merge two
scans of different resolution and origin together into one model. The lower resolu-
tion mesh, a model, will work as overview to determent the position, for the high
precision scans of the details, lately referred as data. The merging process can be
summarized in few steps:

- The user marks the aria on the model, where the data mesh approximately
should be and start the algorithm.

- The software runs a registration algorithm on in the user selected subset of
the mesh, to find optimal position for the data.

- When the model and data mesh are registered, the vertices in the model that
are represented by the data are deleted and data vertices are added to the
result.

- The gap created by the deletion is then filled and new model is represented.

The only alterations done on meshes are registration of meshes, deletion of vertices
in the model, and filling of the gap between model and data meshes. These are two
sources of error that we introduce to the new mesh. Because the vertices deleted
and hole filled belong to the lower resolution mesh the error does not propagate to
the data mesh. This preserves high resolution in the regions that are important
for the user, at the same time provides positional information of the data mesh in
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respect to the model mesh.

MeshCombine can be useful in applications as forensics, constructions and restora-
tion, preservation of the past, and when modelling a scene with multiple resolu-
tions.

1.4.1 Similar Open Source Projects

Open source projects give possibility to other developers to use their source code
in their own projects, with some legal limitations. Open source community tries
to focus research work on new thinking, rather than implementing well known
algorithms, by providing easy access to previously implemented work. In our case
two open source projects has been evaluated in possibility to reduce the work-
load, Point Cloud Libraty (PCL, 2013) and CloudCompare (CloudCompare, 2012).
Both projects are immense and cover many aspects of MeshCombine.

Under closer examination it was determent that the use of ether implied to use
a specific data structure and C++ programming langue, and since previously it
was decided that MeshCombine would be written in C, the use of libraries would
require wrappers or bridges. Using the open source libraries would also complicate
the architecture of the product. MeshCombine only requires some of the functions
implemented in the libraries. It is possible to only include the required source files
to archive the results. Including only functions that are necessary would require
having a total over view of the third party software. Due many dependencies and
the immense size of the projects, to gain an over view would require more resources
then implementing required functionalities from scratch.

The Point Cloud Library and CloudCompare were used as a guide and a source of
inspiration during the developing phase of this project.

1.4.2 Registration by ICP

Iterative Closest Point algorithm was proposed by besl and Mc kay in 1992 (Besl
and McKay, 1992). The purpose of the algorithm is to register two shapes, model
and data. The algorithm tries to find optimal transformation for data set, to
minimize mean root square distance between data and model.

Since 1992 many alterations and improvements have been proposed, the main focus
was to reduce computing time, ether to reduce number of calculation or to reduce
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cost per iteration. The other direction was to make ICP more robust to noise,
and avoid local minima. In the paper (Rusinkiewicz and Levoy, 2001) Szymon
Rusinkiewicz and Marc Levoy perform comparison of the different ICP variants,
based on run time and quality of the result.

1.4.3 Mesh Merging

The idea of using multiple range images to recreate a model is not new in computer
science (Dorai et al., 1998; Rutishauser et al., 1994; Turk and Levoy, 1994; Sappa
and Garcia, 2000) Though there are few that consider model integration with
different resolution. Papers like (Pito, 1996) and (Morooka and Nagahashi, 2006)
use the a priori knowledge about the scan acquisition process to determent the
quality of a vertex or a path, this information about range image acquisition
differs from our work, to make a more general tool, information about capturing
process is not available for our purpose. The only knowledge given about the input
is that model has lower value for the user, than data, leading us to preserve all of
information in the data mesh, and apply changes only to the model.

1.5 Main Contribution

Scanning complex physical objects can be difficult. Practical problems like logis-
tics, data storage, and time consumptions can lead to the choice of hardware that
recreates the scene with lower overall resolution. The idea ofMeshCombine project
is to create a small Graphical User Interface, GUI, where the user can merge meshes
with different resolutions, from different scanners, to archive a higher resolution
in regions of interest. Our approach can not add noise to the region of interest,
and only deletes vertices in model mesh. The main contributions of this thesis are
considered to be:

- Implementation of a small GUI, where meshes are displayed and user can
navigate in virtual scene.

- Implementation of merging tool where two meshes are merged based on user
input.

- An algorithm for duplicated region estimation.

- Proposal for a greedy triangulation algorithm variant.
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1.6 Thesis Organization

This thesis is divided into five parts: Introduction, Technology Overview, Imple-
mentation, Tests and Procedures, and Conclusions and Future Work, followed at
the end by Appendix.

Technology overview part contains chapters two to five. The scanning technologies
used in this master thesis are presented in chapter two. Chapter three goes through
visualization. This chapter explains how output on a screen is drawn, orientation
of virtual scene, using OpenGL and FreGLUT to render graphics, techniques on
interpreting user mouse input, and tree structures often used in computer graph-
ics. In chapter four the ICP algorithm proposed by Besl and McKay in 1992
is summarized, as well as some of the variations of the algorithm are presented.
The approach to merge two meshes of different resolution from different scanner
is proposed in chapter five.

Implementation part describes implementation of the proposed tool for mesh merg-
ing. We start with the Graphical User Interface in chapter six, where possible
actions that a user can take user are described. Chapter seven is dedicated to ex-
plain how meshes are stored, by presenting Wavefront .obj format and Stanford’s
.ply format, and describing how meshes are stored in memory during run-time of
the program. In chapter eight, nine and ten, three vital parts of merging process
are described. Registration by ICP chapter nine, greedy triangulation chapter ten,
and overall mesh fusion with duplicated region estimation algorithm chapter eight.

In part four, Tests and Procedures, test and test objects are introduced, followed
by the results of testing. Chapter eleven describes tests and objects, while chapter
twelve presents the results.

Conclusions and Future Work, firstly, in this part we interpret and discuss the
archived results in Chapter thirteen, and, secondly, draw the conclusion and pro-
pose possibilities for future work in chapter fourteen.

In appendix we provide some auxiliary information, generally about implemen-
tation of MeshCombine. Appendix A provides insight to the composition into
MeshCombine. Appendix B explains how octTree.h is implemented and how it
used, while Appendix C focuses on KD-tree library implementation. In Appendix
D usage of dynamic List implementation is explained. Finally standard library’s
function memcpy is described in Appendix E.



Part II

Overview of the Technology
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Chapter 2

Scanning Technologies

This chapter gives a perspective on scanning technologies used in this thesis. Short
overview of structured light scanning and photogrammetry is given, and used
modeling technologies are presented.

2.1 Structured Light Scanning

Structured light scanning is a 3D modeling technique that projects a known pattern
into the scene, and then captures one or multiple 2D images from a different
perspective, to extract 3D geometry information. The method is based on the
principle that if the narrow band of light is projected on uneven surface it appears
to be distorted from a different perspective. Some early work in the field dates
back to 1971 and 1981 (Will and Pennington, Winter 1971), (Minou et al., 1981)
Since then the research has been driven in two directions: reducing the acquisition
time and increasing the depth resolution, with the significant results in both (Salvi
et al., 2010).

The drawbacks of structured light scanning are that the technique relies on inter-
preting the observed distortion of a pattern from a known position. The scenes
that contain large amount of global illumination, reflective surfaces or transparent
objects, reduce the quality of the results. So do all other 3D capturing techniques
that rely on optical sensing.

13
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2.1.1 Artec EVA 3D Scanner

Artec EVA is a 3D Scanner designed and manufactured by Artec Group. The
scanner is state of the art technology based on structured light triangulation.
Figure 2.1 shows an image of 3D scanner, it consist of three cameras. Two on
each end of the scanner are used for geometry capturing and one in the middle
for texture. A ring of flash diodes placed in a circle around camera in the middle
produce a flash of structured light. This pattern captured by geometry cameras
and analysed to calculate 3D data. To operate the scanner the user needs to install
the software provided by the Artec-group, ‘Artec 3D Studio v8.1’. The scanner
is inoperative without the software and will not start scanning before it detects
Artec Studio installation on users’ working station.

Figure 2.1: Artec EVA 3D Scanner. (ArtecGroup, 2012)

In principle the scanner operates as a video camera the difference is that the output
is not a stream of video frames but a stream of point-cloud frames with optional
texture frame (standard video frame). This stream is then send to the computer
connected to the scanner by a USB2 cable, where the frames get auto aligned, or
registrated by the software, in real time.

From the mathematical perspective the scanner uses the a priori knowledge of
angles between two depth-cameras and a known pattern projected on the object,
to triangulate the depth of each pixel in the picture. More detailed information can
be found in literature as, (Blais, 2004), (Devrim et al., 2006) and (Georgopoulos
et al., 2010) to name a few.

The real time registration of point-cloud frames is handled by the software on users
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working station. The Artec 3D Studio provides user with 3 options for registration,
or as it reefed in the manual ’Features to track’. The scanner can use geometry of
point clouds, it can use textures of frames or it can use both to align the frames
compared to each other. The last option geometry and texture will provide the
best result, but requires most CPU resources.

Artec 3D Studio also provides post-processing opportunities as the alignment of the
scans (a set of 3D frames), merging of scans, and editing. It gives global methods
as ’Global registration’, where all of the frames in all the scans get aligned, ’Fusion’
where all scans are merged together and all the unnecessary or duplicated points
are eliminated so the result is a simple triangulated mesh.

Artec EVA can produce a highly detailed result, with the 3D resolution up to
0.5mm in accuracy (ArtecGroup, 2012). The process is highly optimized and
automated. The limitations of the scanner comes with the focal length of the
cameras, as EVA can only capture points that are in distance from 0.1m to 0.4m
from the cameras.

Structured light scanning becoming more popular as technology improves, it can
provide 3D images with accuracy close of laser scanners, in a fraction of the time.
This opens the possibility to scan objects that cannot remain still for long period
of time, as humans and animals.

2.2 Photogrammetry

Photogrammetry is a science of retrieving geometric measurements from pho-
tographs. The basic principle is, that from different positions and perspectives
the same object will appear differently, based on the distance to the camera and
cameras orientation. By finding intersection of converging rays in space, the pre-
cise location of a point in the scene can be determined. The resume of some of
industrial applications of Photogrammetry can be found in (Fraser, 1993). Today
with the adoption of digital sensing and computer vision techniques as (Lowe,
1999) and (Matas et al., 2002), photogrammetry can be automated to produce
faster, and more accurate results.

Photogrammetry is easily scaled from modeling large constructions as buildings
and ships, to small parts and ornaments, making it applicable for a wide variety
of applications. The resolution of recreated models is highly dependent on the
resolution of acquired images, leading to lower accuracy when recreating large
objects.
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2.2.1 PhotoModeler Scanner

"PhotoModeler photogrammetry software provides image-based mod-
eling, for accurate measurement and 3D models in engineering, archi-
tecture, film, forensics. . . ." (EosSystems, 2012a)

PhotoModeler Scanner is 3D modelling software based on photogrammetry, de-
veloped by Eos Systems. Eos Systems delivers to versions of the program Pho-
toModeler and PhotoModeler Scanner. More detailed information is available on
(EosSystems, 2012a). In this project the PhotoModeler Scanner will be used as it
provides SmartMatch feature that provides fully automated 3D recreation.

In the resent years photogrammetric modelling became more attractive led by
development of automation of the close range photogrammetric procedures due
the adoption of computer vision methods. Quoting (Athanasios et al., 2012) on
cooperation between photogrammetric and computer vision communities

“Even though the two communities have been working almost inde-
pendently till the year 2000 (Forstner, 2009) this quickly changed as it
became clear that the combination of the techniques used by both com-
munities could lead to serious advances in the automation of the close
range photogrammetric procedures. The introduction of tools like SIFT
(Lowe, 1999) or MSER (Matas et al., 2002) that can reliably extract
dense features from overlapping images. . . ”

Scale Invariant Feature Transform(SIFT) (Lowe, 1999) is highly relevant to Pho-
toModeler Scanner. Though it is impossible to investigate, it is save to make
an assumption that ‘SmartPoints’ used in ‘SmartMach’ projects are variations of
SIFT, that makes automatic camera orientation possible.

The program could be operated by the user unknown to photogrammetry, as many
of the algorithms are automated and do not require any user input. The algorithm
for camera calibration is example of such.

The Photomodeler Scanner and similar photogrammetric technology provide an
easy way to capture and digitalize a 3D scene. The quality of the created 3D mesh
relies on the resolution of the captured images, which is dependent on factors as,
lens and lens distortion, size of the cameras photometric sensor, and focal length
and distance to the object. With the right setup of all factors large scenes can be
captured in determined resolution just in a few hours.



Chapter 3

Visualisation

In this chapter the reader will be introduced to, modern computer graphic tech-
niques, how they work, the control flow, and the math behind. We start from the
basic principle of primitive rasterization. Then proceed with object orientation
and position in world’s coordinate system. Then we will explain clip space and
the magic behind perspective projection.When we are known to the theory we will
take a look at modern graphics hardware pipeline, shaders and shading languages.
At the end will introduce the reader to OpenGL specification and how it can be
used to produce astonishing 3D graphics.

3.1 Todays Computer Graphics

3.1.1 Rasterization

No matter what the programmer does in software it all comes out on the same
screen.

Devises that could produce images drawn on the screen in continues lines were
Vector-monitors. They were a type of CTR(Cathode Ray Tube) the difference
was that they drew a line from point to point, not a in a vertical line pattern
as rest of CTR based televisions sets. Close to all of today’s computer graphics
displacing devises are discrete. Meaning that devise can only draw a point on a
screen not a connected line. To draw a line it must be divided in a set of connected
points, this process of diving in to pixels is called rasterization. (Bresenham, 1965)
is a paper written by computer graphics pioneer Jack Elton Bresenham, describes

17
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what is now known as a Bresenham line algorithm, which draws continues line
between two points..

Drawing complex images with only lines can be complicated, this is why usually
the programmers provide other primitives, triangle and hexagons are most popular.
To draw a filled triangle on a screen some math must be done. A triangle shell is
described by its three vertexes, p1, p2, and p3. Every point in a triangle can be
described in a parametric equation

p(s, t) = p1 + sv1 + tv2 (3.1)

Where s and t ∈ [0,1] and v1 and v2 are edges p2p1 and p3p1 respectably. Drawing
a triangle can be done incrementing s and t values, to produce two points on each
side of the triangle, and rasterizing a line in between.

3.1.2 Digital 3D Models

In computer graphic the focus is to recreate the visually observed part of an object.
When representing a volume it is enough to recreate a shell of a model, the surface.

Surfaces can be represented discrete or continuously depending on what purposes
the model serves. In computer simulations continues surfaces are often used, para-
metric and implicit surfaces. The continuity is often required when running cal-
culations. Some of the parametric curves secure the continuity over second and
third derivative, as b-splints and NURBS.

Though it is possible to approximate a parametric curve and draw it on a screen
pixel by pixel, most of today’s graphics implementations split curves into primi-
tives, like square slices or triangles, before displaying it on the screen, producing
a discrete surface. This is because pipe line to draw many simple primitives is
heavily optimised by hardware manufactures.

Both discrete and parametric surfaces have a set of points to contain the informa-
tion about surface orientation in the world. A parametric surface is described by
set of control points, equation, and sometime weights given to points. A discrete
surface contains a list of vertexes and connectivity information, as a list of edges
or primitives.
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3.1.3 Geometric Transformations

To recreate a realistic looking world in computer graphics the artist need to have
a possibility to move and rotate objects. As previously mentioned 3D models are
often a set of point, or equations that describe a surface of a model. As long as we
try to model realistic world, those points, will it be vertexes in 3D primitives or
control points in parametric surfaces, can be described by Cartesian coordinates.

A point described by Cartesian coordinates can be easily translated by adding or
subtracting a vector. Rotation on the other hand is more complicated. A point can
be rotated around and axes by performing trigonometric operations. For example
the rotation around the z-axes for a point p = [x, y, z]t by and angle θ is given by
set of equations

x′ = xcos(θ) + ysin(θ)
y′ = xsin(θ) + ycos(θ)
z′ = z,

(3.2)

where x’, y’, z’ are coordinates after rotation.

By using the linear algebra transformations can be stored in matrixes and applied
to points coordinates in a vector form, we can write rotation operation as a 3 by
3 matrix

Mrot =

cos(θ) sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.3)

Then the rotated point will be

p’ = Mrot ∗ p (3.4)

The combination of translocation and rotation can produce any kind of orientation
of an object in 3D world. Rotation of an object about a vector given by points P1
and P2 is just a set of 5 operations, 2 translocation and 3 rotations. In pseudo
code this will look something like this:

1. move the object so p1 is at the origin

2. rotate so that p2 lies on z-axes

3. rotate the wanted amount of degrees

4. reverse rotation applied in step 2
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5. reverse translocation in step 1

This can be summerised into this set of operations

p’ = T−1 ∗Rxy(α)−1 ∗Rz(θ) ∗Rxy(α) ∗T ∗ p (3.5)

The rotations can be rewritten using quaternion to produce the transformation
matrix (Hearn et al., 2010)

 u2
x(1− cos θ) + cos θ uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uyux(1− cos θ) + uz sin θ u2
y(1− cos θ) + cos θ uyuz(1− cos θ)− ux sin θ

uzux(1− cos θ)− uy sin θ uzuy(1− cos θ) + ux sin θ u2
z(1− cos θ) + cos θ


(3.6)

Multiple transformations can be applied simultaneously on a point, because of
associative property of linear algebra. But the order of multiplications must be
preserved. The expression in 3.5 can be rewritten as

p’ = (T−1 ∗Rxy(α)−1 ∗Rz(θ) ∗Rxy(α) ∗T) ∗P = Morientation ∗ p

The orientation of the camera in the world is often saved as one matrix, to save
memory and computational time. When the orientation matrix needed to be
updated by new transformation it can be done by multiplying new transformation
matrix by old orientation matrix

M′
orientation = Mtransform ∗Morientation (3.7)

3.1.4 Virtual Scene and Spaces

The scenes in computer graphics are assembled by objects, will it be in a computer
game, structure visualisation, or virtual reality. The objects them self are combi-
nation of smaller objects and they themselves are set of even smaller objects, this
can go on to the level of details the artist requires to recreate a realistic scene.
When animating objects some parts have to move relatively to the rest of an ob-
ject, an example of that will be feet on a running humanoid. To cope with that
the scene is divided into multiple spaces. A humanoid foot has it coordinates in
the model space of a humanoid, while the humanoid object itself has coordinates
in the world space. This way an artist can move the humanoid, with all of its feet
around the scene, while ensuring that each foot is in correct position towards the
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body. Coordinates in World-space describe the orientation in the total scene and
coordinates in the Model-space orientation towards the objects origin.

Another important space in the scene is camera space. As the world is observed
from the cameras perspective, orientation of the camera decides what objects are
visible and what are not. The camera space, coordinate system is defined by
cameras tilt, rotation, and position. Usually the x and y axis define the viewing
plane and z-axis define negative viewing direction.

Most of the displaying devises today produce a 2D frame. To be able to transform
3D scene into a 2D images, World-coordinates must be converted to Normalised-
clip-space coordinates. It is called clip space because here the parts of the scene
that are not within a specific bound are removed, usually the point with the
coordinates x, y, and z that are /∈ [-1, 1] are clipped.

When the points are in Normalised-clip-space are easy to draw in 2D, if your system
does not support alfa-blending then the colour of the pixel p(x, y) is the colour of
the point in Normalised-clip-space with least z value where x and y coordinates
equals to the pixels Cpixel(x, y) = minz∈[−1,1] Cpoint(x, y, z)

3.1.5 Perspective projection

The human eye is analogical to a pin-point-camera, and so human observe the
world in a perspective projection manner, making objects far away appear smaller
then in close. To create this illusion on the 2D screen, points must undergo a
transform. As light passes through the iris of a human eye, we can imagine that
light passes through the viewport on the screen, creating a frustum, figure 3.1.

The shape of the frustum are determined by aspect, ration between the length of
viewport in x and y direction, and z-near and z-far plane. The transformation
between world coordinates and perspective coordinates is given my matrix


−2znear

xwmax−xwmin
0 xwmax+xwmin

xwmax−xwmin
0

0 −2znear

ywmax−ywmin

ywmax+ywmin

ywmax−ywmin
0

0 0 znear+zfar

znear−zfar

−2znearzfar

znear−zfar

0 0 −1 0

 (3.8)

For more detailed information about perspective projection please refer to the page
351 in the text book (Hearn et al., 2010)
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Figure 3.1: Frustum created by viewport at z-near and z-far plane.

The homogeneous coordinate, p = [x, y, z, w]t have not been mentioned yet. The
reason why homogeneous coordinates are used is to cope with affine transformation
as scaling and in this case perspective transform. The perspective transform does
exactly scaling based on the distance from the z-near. The reason for the name
Normalised-clip-space is, because points undergo normalization, the division by w,
before they are passed to Normalised-clip-space.

The general pipe line of transformations will be:

MC => WC => PC=> NC

Model-coordinates are transformed into Word-space, from there they are trans-
formed by perspective projection, and after that they are normalised into Normalised-
clip-space.
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3.1.6 Z-buffer

Z-buffer or depth buffer is a way to identify occlusion when rendering a digital
scene. The idea is weary simple. Every time a pixel is to be drawn to a frame
buffer the system checks if there for a value on the same 2D position in z-buffer.
If the value in the z-buffer is higher that the pixel’s z-coordinate value, than no
occlusion occurred and the colour of the pixel is drawn in a frame buffer. On the
other hand if the value in the z-buffer is lower than the pixel is occluded by the
previously drawn pixel and thereby is ignored.

3.2 OpenGL

OpenGL (Open Graphics Library) is a non-profit multi-platform graphics API
that provides support for rendering 2D and 3D graphics. The API was developed
by Silicon Graphics Inc. in 1992, and from 2006 to the present date the Khronos
group has the control of the OpenGL specification.

OpenGL can be looked upon as a wrapper around the hardware specific implemen-
tation of a GPU. This separates implementation based on hardware from general
logic implemented in software, giving the possibility for hardware manufacturers
to write a highly optimized code for their product, without the lost of portability
for software developers.

OpenGL is a common ground between hardware that puts images on the computer
screen and software that decides what images should be drawn on the screen.

3.2.1 OpenGL Drivers

It is important to point out that OpenGL is not an implementation, but a specifica-
tion, a common langue between software program and a GPU. The implementation
of OpenGL on for the hardware is based on the driver provided by manufacture.
OpenGL specification only formulates the input and results of the function calls
leaving the freedom of implementation to the hardware manufactures. This not
only provides software developers with the portability and efficiency for their soft-
ware, but it also gives driver programmers possibility to change the implementation
of OpenGL, due optimization or bug fixes through the driver updates, without the
need of informing software developers about changes.
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3.2.2 Loading OpenGL Functions.

Though all of the Windows versions above Windows 95 support OpenGL through
the opengl32.dll library (KhronosGroup, 2013a), it only exposes direct control
over OpenGL 1.4 functions. To gain access to the functions from the higher ver-
sions of GL the developer must load functions pointers manually from the running
OpenGL context. More information can be found at (KhronosGroup, 2013b). The
Khronos group highly recommends using OpenGL Loading Libraries like, GLEW
and GL3W.

3.2.3 OpenGL Evolution

The demand for the computer graphics has changed during last two decades. GPUs
became more powerful and advanced. The norm of what is considered “Good”
graphics has changed dramatically in the game industry. To cope with this con-
tinues change new versions of OpenGL specification were created; up to today
the latest version is OpenGL 4.3. OpenGLs status and evolution is governed by
The OpenGL Architectural Review Board (ARB), which decides what extensions
will be adopted in the next version or promoted to a ARB_Extention, an ex-
tension considered useful and specified by ARB but does not necessarily must be
implemented by hardware manufacture in a OpenGL implementation.

OpenGL 3.1

OpenGL 3.0 and 3.1 deserves some special mention, as they brought the most
noticeable change. In 2008 Khronos group announced that some of the functions
that were supported in previous versions are deprecated in OpenGL 3.0, mean-
ing that those functions will be removed from future versions of OpenGL. The
biggest change was to automated primitive pipeline that, enabled user with min-
imal knowledge of computer graphics and rasterization, ability to render objects
on the screen. For instance Begin/End primitive specification was deprecated and
later removed. In exchange the user was given more direct access to OpenGL
pipeline, where rendering should be programmed by using shaders. Making it eas-
ier to render complex graphics, but for trivial tasks, as render a 2D-rectangular on
the screen, the user must invoke the same machinery as for a complex 3D model.

A complicate history of OpenGL changes can be found on OpenGL website (Khronos-
Group, 2013a).
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3.2.4 OpenGL Programs and Shaders

Shaders are small programs that are compiled and send to the GPU, where GPU
runs the given shaders on user described input. There are two main types of
shaders vertex shaders and fragment shaders.

Vertex shaders execute calculations based per vertex, while fragment shaders’ re-
sponsibilities are pixel output per primitive. The main task of a vertex shader
is to apply geometric changes to individual vertex, as rotation and translocation,
and projection, while the main task of a fragment shader is information based on
each fragment (pixel) of a primitive, as colour, visibility, and depth in Z-buffer.

OpenGL program is a combination of a vertex shader and a fragment shader. Each
shader must be compiled and linked together, to form an OpenGL program.

In OpenGL 3.1 and higher versions the only way to render arrays of vertexes to
the output buffer, or the screen, is to use an OpenGL program, and a VAO (Vertex
Array Object).

3.2.5 VAO and VBO

Vertex Array Object(VAO) and Vertex Buffer Object(VBO) are important part of
OpenGL pipeline. Buffers contain data needed to create output and VAOs contain
information on how to use the buffers.

Vertex Buffer Object is first of all a buffer, an allocated memory on GPU. Buffers
are designed to store data; two mainly used types of buffers are GL_ARRAY_BUFFER
and GL_ELEMENT_ARRAY_BUFFER. Typical use of an array buffer is to
store data about the each vertex, as position, colour, and normal, element array
buffer is a special case that only contains information about each primitive, index
of each vertex in a triangle, line segment, triangle-fan, and so on.

Buffers can contain all sorts of information, and not only information needed per
vertex. A buffer can be uniform, GL_UNIFORM_BUFFER, meaning that every
vertex in rendering will have the same access to the uniform buffer. A perfect
example for that will be camera-to-clip-space transform. In a case of perspective
projection every vertex’s coordinates need to be transformed from camera to clip
space where OpenGL’s geometry shader operates. This can be done by multiplying
perspective-projection-transform-matrix with vertex’s coordinate’s vector. This
matrix can simply be stored in a uniform buffer. It is only developer’s imagination
that limits the kind of information you can store in a VBO.
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Vertex Array Object stores relations between buffers and programs attributes.
You can use same buffer multiple times in one or multiple VAOs. It is up to the
developer to know what to put in a buffer and how to correctly interpret stored
data in a buffer.

While VBO is just a place holder for data, VAO is the record of what data to read
and how to read the required data.

3.3 FreeGLUT

FreeGLUT is an open source project that used OpenGL Utility Kit (GLUT) as
ground model. It is used to create and maintain multiplatform windows context,
as well as to provide user input in form of mouse, keyboard, and joystick.

FreeGLUT library is not a part of OpenGL it is a wrapper around operating
system window, and OpenGL contents. It provides user with abstraction from
communication with operating system and holds control over input and output
buffers where users input or output of rendering is stored.

To avoid confusion we define a programmer as the person who writes program’s
source code using freeGLUT library and a user as a person how operates the
programmer written software.

3.3.1 Main Architecture

FreeGLUT can be described as complete machinery with the possibility to change
functionality by manipulating settings and adding functions pointers at given en-
tries.

3.3.2 Function Call-back

To understand how freeGLUT operates we must understand the concept of call-
backs. In C programming langue, in which freeGLUT, GLUT, and GLU are orig-
inally written, every function has a function pointer. A function can be executed
by calling function-name or function pointer in C. The function name is declared
by a programmer in the source code of the program, while the function pointer is
given to every declared function at the run-time.
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The principal behind the call-backs is that instead of calling function names, that
are static at the run-time of the program, pointers that store the addresses to
functions are called. The value of a function pointer can be changed dynamically
during run-time.

This brings us back to GLUT. GLUT provides programmers with functions like
glutDisplayFunc, glutReshapeFunc, glutMouseFunc, and so on. Those functions
change a specific function pointer to the one send as a function argument.

Given that in a specific situation a function pointer fp is called, the programmer
can set this pointer, with a function setFp to point to a desired function, myFnc.
Now in a given situation the function myFnc is called. This is a call-back.

3.3.3 Main Loop

After programmer specified the set of setting that are desired for execution, the
process must be started by calling function glutMainLoop(), this is starts tradi-
tional update/draw loop.

In the update phase of the main loop freeGLUT checks the input buffers for new
values, if they are found an appropriate function call back is called, and a pro-
grammer defined function is executed. The draw phase is the last in the pipe line.
GlutIdleFunc on the other hand will always be executed, and is used to create
continues animations.

The draw call, set by the GLUT function glutDisplayFunc, is only executed if
during the update phase a function glutPostRedisplay is called.

3.4 Graphical User Interface

Graphical user Interface (GUI) is strongly bound to visualisation part of a com-
puter program, highly because GUI itself is a set of images and text visualisations.
To correctly interpret users input a program needs to track what has been dis-
played and in what manner. This section will focus on technical view of a user
interface, what are the key elements and how they communicate.
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3.4.1 Window

A window is a main part of graphical interface as it is today. Most of modern
graphical operating systems, like MAC OS X, Microsoft Windows, and Ubuntu,
operate with windows to present data to human users. A window is a rectangular
aria on the screen dedicated to a specific program. This aria can often be moved,
resized, and closed by the user. A window can contain many sub-windows, but
from technical point of view it is programs responsibility to maintain control of
sub-windows.

OpenGL Window and mouse input coordinates

When operating system reports the position of a mouse click, the coordinates are
given in the window coordinates, with the origin in the left-upper corner, while the
origin of the OpenGL window is in the left-lower corner of the window. To translate
window to OpenGL-window coordinates, y-coordinate needs to be reverted by a
simple formula, equation 3.9.

xGL−window = xmouse
yGL−window = hwindow − ymouse

(3.9)

If user interface contains many viewports, or windows, then the “active” viewport
is identified by checking for bounds of each view port. The the viewport’s mouse
coordinates can be calculated simply by taking the difference between OpenGL
window coordinates and origin of current view port.

Pviewport = PGL−window −Oviewport (3.10)

3.4.2 Viewport, in Terms of OpenGL

In an abstract point-of-view a viewport can be described as a window, through
which we can observe the scene. In a technical perspective viewport is a part of the
window where the output of drawing is displayed. This can cover the whole window
dedicated to the program or it can only cover a small fraction. In most operating
systems a user can change the size of the window the program has created, this
does not change the size of the viewport automatically in OpenGL, however many
of the developers adjust the viewport accordantly to the window size.

It is not possible to draw outside viewports bounds. A viewport is useful to divide
the window in designated arias, a complicated user interface can contain several
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drawing arias dedicated to a specific task, for example to display a drop down
menu of imported meshes, or an overview of possible commands.

3.4.3 Mouse Input Devise

Because of the technical limitations user input from the mouse devise can only be
in two dimensions. To select corresponding aria of the mesh in three dimensions,
some mathematical transformation and assumptions needs to be done.

To correctly perform selection of the sub-mesh we need to understand how the
objects are observed by the user. In the section 3.1.5 we have mentioned that the
scene is displayed by using perspective projection, as it appears most natural for
human observers. We have also discussed clip-space in the section 3.1.4. By using
knowledge of those to principles we can create selection tools that can be operated
intuitively by a user.

3.4.4 Selecting Object in a Scene by Bsing Ray-casting

The task of determining the sub-mesh that user selects can be restated as to
determent what is visible for the user in a given aria. Since user input from the
mouse is only in two dimensions we do not know the z-coordinates of the user
intended input.

By using Ray-casting, a process to determent the first intersection between a
given ray and the scene, we can check for intersection between the ray determined
by mouse position on the screen and objects in the scene, and approximate Z-
coordinates of user input. This solution works well when the task is to determent
if a user has clicked “on” as specific object in the scene.

To calculate the coordinates the user intended to select we need to transform the
input from viewport to world space. First we need to convert viewport coordinates
to clip space. Since clips space origin lies in the centre and viewport’s origin in
OpenGL is in the lower-left corner, we need to translate the mouse position by the
value of half width and height of the viewport in x and y direction respectably.
Then we can normalize the coordinates by dividing by half of the viewport width
and height to produce values in the range of [−1, 1]. A total equation for trans-
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formation from view port coordinates to clip space is given by

xclip−space = xviewport−
wviewport

2
wviewport

2

yclip−space = yviewport−
hviewport

2
hviewport

2

.
(3.11)

Where hviewport and wviewport are viewport height and width, respectably.

The rays that are used in ray-casting are determined by the projection used to
create a scene. When using orthogonal projection we can imagine that the rays of
light travel parallel to each other. It is not so when using a perspective projection.
If we refer to figure 3.1 we can observe a perspective projection frustum with the
eye, camera origin, at the top of the pyramid. All of the visible rays in a perspective
projection pass through camera origin. This gives a starting point for the ray we
will project into the scene.

To determent the direction of the ray we need at least two points on the same line.
The first point is given, camera origin. Second point’s x and y coordinates in clip-
space can be calculated by equation 3.11. Given that the mouse pointer is always
visible, and cannot be occluded by objects in the scene it has to have the smallest
possible z-coordinate value, but jet visible. The lowest possible visible value in
perspective projection is z-near plane. This gives a reasonable assumption that
mouse position in camera space lies somewhere on z-plane. Using the knowledge
about clip space and perspective projection, we know that the size of the view port
is the size of the z-near plane. This produces this equation for mouse position in
camera space,

xmouse−camera−space = xclip−space ∗ wviewport
ymouse−camera−space = yclip−space ∗ hviewport
zmouse−camera−space = z − near.

(3.12)

With two points, camera origin and mouse position, we can determent the di-
rection of the ray. Algorithm 3.1 summarises the procedure to create a ray that
corresponds to user click input, used for ray-casting.

Algorithm 3.1 Algorithm to identify ray corresponding to user input
Require: user input p and viewport information wviewport, hviewport, and znear
and world-to-camera-space troansformation matrix Mwc

transtorm user input to camera coordinates:pc = [pxwviewport, pyhviewport, znear]t
transform camera origin and pc to world coordinates:
ow = M−1

wc ∗ [0, 0, 0]t, pw = M−1
wc ∗ pc

return user selection ray in world-space coordinates: [ow,pw]
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3.4.5 Selecting Sub-mesh by a Frustum

To describe a rectangular aria only coordinates of two appositive corners are
needed. For example it can be implemented as, first corner is position when
the user pressed down the left-mouse-button, and second corner is where the user
realised the left-mouse-button, while holding shift-key down. We combine the ray-
casting technique with this rectangular aria by creating a ray at each vertex of the
selection rectangle. Since the rays in perspective projection are not parallel, those
four rays create a “pyramid”, which represents user selection in three dimensions.

If this selection shape is used to determent the selected objects, two problems arise.
Objects that are between camera origin and z-near plane are selected but were not
visible for the user in the moment of selection. Similar problem arise with infinite
depth of the selection, the objects that are far away from the camera origin are
selected as well. Both problems are solved by introducing two planes, minimum,
and maximum bounds, creating a frustum. The minimum bound of selection is
the z-near plane, as it is the closest visible value to the camera origin. It is up to
the user to define value of maximum bounding plane from the camera.

Checking if the object is inside the frustum can be done by simple dot product
check. In mathematics a plane can be described by equation

Ax+By + Cz +D = 0 (3.13)

where A, B, C are x, y, z components of the planes normal. Or as

N · (x− x0) = 0 (3.14)

where ‘·’ represents a dot product.

The four rays that are given by use selection can also be interpret as four vectors,
v1 = [x1, y1, z − near]t, v2 = [x2, y1, z − near]t, v3 = [x2, y2, z − near]t, v4 =
[x1, y2, z − near]t, where p1 = [x1, y1]t and p2 = [x2, y2]t are appositive corners
that represent the rectangular selection. By grouping two and two vectors we
can create four planes that form a square cone. As mentioned before to limit
selection in camera view direction, z-near plane and maximum-bound plane are
introduced. Every point with in this frustum is selected by the user, see figure 3.2
for illustration. A plane can be described by a point on the plane and a planes
normal, equation 3.14. The normal of each plane can be calculated by taking the
cross product between vectors representing the plane. Since the rays are originated
from camera origin all of the planes contain that point. With the normal and a
point on a plane we can represent planes defining the frustum in the form shown
in equation 3.13.
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Figure 3.2: Frustum created by camera origin, four points on z-near-plane, z-near-
plane and z-far-plane.

To rewrite z-near and maximum-bound plane in a form given by equation 3.14,
we need to calculate at least three points on each plane. As shown in section
3.4.4, the vertices of the user selected rectangular lie in z-near plane. By using
three of the vertices we can represent z-near in the same Cartesian form as the
side planes of the frustum. With three points on the z-near plane we can find the
maximum-bound plane, by magnifying the corresponding vectors, so the length
would be as of the maximum bound. And repeat the same process we done with
z-near plane.

This frustum is described in camera space coordinates. Before we can check in the
object is inside or outside the frustum we need to transform frustum and model to
the same space. It requires fewer calculations to transform the frustum to world
coordinates, then transforming each model to camera space. A transformation
from camera to world space is reverse of transformation from world to camera
space. Let us call the transformation matrix from world to camera space an
orientation matrix. As it is mentioned in section 3.1 that reverse transformations
can be described by inverse matrix of original transformation. By multiplying
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each point and vector describing the selection by inverse of orientation matrix we
transform frustum to world space.

If we define vector vd as a vector between p, an arbitrary point, and a p0, point on
a plane, we can calculate on which side of the plane a given point lies by calculating
the dot product between the normal vector and a vd vector. If the dot product is
zero then p lies on the plane, giving us equation 3.14. If dot product is positive
then the point p, lies on the side of the plane on which plane’s normal’s direction
is positive, and if the results are negative then the point lies on appositive side of
the plane.

This can be used to determent if point p is inside a space bounded by planes.
Given that planes normals, describing the space, are all pointing in the positive
direction towards the centre of the space, then the point is inside the frustum if
and only if the directions from all six planes to point p are all positive. The same
is if normals point away from the centre of the frustum then point p is inside if
and only if all of the directions between planes and point are negative. Figure 3.3
shows an illustrative example in 2D.

Figure 3.3: Method to determen if point is inside a region boundet by planes.

The calculation of the planes that determine the frustum has high performance
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cost it, but only necessary to calculate it once per user selection. The complexity
of the sub-mesh selection follow linear run time, O(N). By running prepossessing
on the whole scene the number of points that are needed to be checked can be
reduced greatly this can be done by using techniques like AABB, BSP trees, simple
grid, and so on.

3.5 Tree Structures

3.5.1 KD-tree

A kd-tree, k-dimensions-tree is a version of a binary tree, where at each level the
data is divided by two, left and right children node. Each non-leaf node can be
looked upon as a hyper-plane that divides the data set in two. The direction of the
hyper plane is chosen so it is perpendicular to the dimension the node is associated
with. This way the data set can be simply compared based on the nodes value of
one dimension at the time.

There are many ways to choose the split axis of the node in kd-tree, most frequently
used is canonical method of kd-tree construction. When a creating a kd-tree in
a canonical way, one cycles through all possible dimensions when selecting the
splitting axis. For example in a case of 3D data in x, y, and z direction one may
start at x dimension at the root, then use y axis when dividing root’s children,
then z axis, then return to x again, and so on in this manner.

A balanced kd-tree means that at each node, after the split by a hyper-plane there
are the same amount of data at each side of the hyper-plane, this division leads
to a tree that is tightly poked and have fewest possible levels. One of the ways to
create a balanced kd-tree is to choose the value of the node based upon median
value of the node’s associated data set. Kd-tree is mainly used because of the
advantage it provides when searching for nearest neighbour, because of the binary
tree structure the nearest neighbour search is O(logN) complexity. (Friedman
et al., 1977) is a paper that proposed an algorithm for searching in kd-trees that
guaranties a logarithmic complexity.



3.5. TREE STRUCTURES 35

3.5.2 Oct and Quad Trees

A quad-tree is a tree structure that divides each node in exactly four children,
by a given criteria, this is mostly useful when interpreting two-dimensional data.
Quad trees are more efficient that simple grid division when dealing with non-
uniformly distributed data. Oct-trees are tree structures where each node has
exactly eight children. Oct trees are often used in 3D-parsioning in computer
graphics application. In computer games oct-trees are used to simplify collision
detection. Because of the high branching factor of oct and quad trees, the search
for points within specific bounds can be implemented very efficient. This is use in
collision detection and ray-intersection algorithms.



36 CHAPTER 3. VISUALISATION



Chapter 4

Iterative Closest Point

Iterative Closest Point algorithm or ICP is a method to register two point-clouds,
meshes, implicit or parametric surfaces. The original version of the approach was
first proposed by Paul J. Besl and Niel D. McKay (Besl and McKay, 1992).
The basic principle of ICP is to reduce RMS distance between point sets, by
iteratively reduce individual distance between point pairs. Since 1992 the ICP
has been thoroughly researched and improved. Both speed and precision has been
in the focus of the research with significant results in both. In this chapter we
will describe the original algorithm by Besl and McKay from 92, and some of the
improvements of the method.

4.1 Original ICP

ICP is an algorithm used to register to point-clouds or meshes. The registration
process of two sets can be described as finding an optimal transformation so that
the error between them is minimal.

4.1.1 Distance Metric

Distance metric is fundamental feature of ICP. In original algorithm distance is
used to determent the point pairs that are lately used to find optimal registration.

37
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A distance from point p to the set A with Na points, is given by:

D(p, A) = min
i∈1,...,Na

d(P, ai). (4.1)

Where distance d(p,p1) is Euclidean distance. Distance to a line l between two
points then the distance between point p and the line segment l is

D(p, l) = min
u+v=1

||ur1 + vr2 − p|| (4.2)

The distance between a set of lines L with Nl lines and the point P can then be
described as

D(p, L) = min
i∈1,...,Nl

d(p, li) (4.3)

This brings us to the last closed form distance proposed by Besl and McKay. The
distance between a point and a triangle set. Let t be the triangle defined by three
points the distance between the point and the triangle t is

D(p, t) = min
u+v+w=1

||ur1 + vr2 + wr3 − p||. (4.4)

Where u ∈ [0, 1], v ∈ [0, 1], and w ∈ [0, 1]. The closed form distance to the set T
of Nt triangles is given by

D(p, T ) = min
i∈1,...,Nt

d(p, Ti). (4.5)

The distance to parametric and implicit surfaces can be found by firstly compute
a triangular set and then follow procedure to calculate the distance to a triangle
set.

4.1.2 Optimal Registration

As it mentioned above the goal of ICP is to find an optimal registration between
two data sets. As it described in the original paper (Besl and McKay, 1992).

The unit quaternion is a four vector qR = [q0q1q2q3]t, where q0 ≥ 0,
and q2

1 + q2
2 + q2

3 = 1. . . . Let qT = [q4q5q6]t be translation vector. The
complete registration state vector q is denoted q = [qr|qt]t. Let P = pi
be measured data point set to be aligned with a model point set X = xi,
where Nx = Xp and where each point pi corresponds to the point xi with
the same index. The mean square objective function to be minimizes is

F (q) = 1
Np

Np∑
i=1
||xi −R(qR)pi − qT ||2
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This shows that registration is a combination of rotation and translation of the
data set so that Euclidian distance between, model and data is minimal.

The method proposed by Besl and McKay uses singular value decomposition
(SVD) based on covariance matrix, to find optimal rotation and translation. The
detailed information is found in the same paper.

4.1.3 ICP Algorithm

ICP algorithm estimates an optimal registration of a data point-cloud P in respect
to a given model X. If data is represented in a form other then point-cloud, then
it must be converted to so. In the case of simplex-based representations, as line
segments or triangles, the decomposition to a point-cloud is simple: vertexes that
are used to denote edges of primitives are points in a converted point-cloud. In
the case of implicit or parametric surfaces then the vertices of line or triangular
approximation are used. Algorithm 4.1 describes a local registration procedure.

Algorithm 4.1 Iterative closest point by Besl and McKay, 1992.
Require: point set P with Np points and shape X
P0 = P
q0 = [1, 0, 0, 0, 0, 0, 0]t
k = 0
while τ > 0 or dk − dk+1 < τ do
Compute closest points: Yk = C(Pk, X)
Compute the registration: (qk, dk) = Q(P0, Yk)
Apply the registration Pk+1 = qk(P0)

end while
return Qk

4.1.4 Local vs. Global Registration

The convergence theorem for ICP algorithm is formulated by Besl and McKay as

The iterative closest point algorithm always converges monotoni-
cally to a local minimum with respect to the mean-square distance ob-
jective function.

For the proof see (Besl and McKay, 1992).
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The ICP convergence theorem only guaranties convergence to a local minimum,
resulting in a non-optimal orientation. One of the approaches to reduce the chance
of algorithm getting stuck in a local minimum is to restart the ICP with random
orientation and chose the one orientation that result in a lowest error value. This
is requires a vast amount of calculations. It was shown in the paper (Besl and
McKay, 1992) that the initial registration state that will result in convergence to
a global minima will result in a faster rate of convergence that lead to a local
minima. This gives possibility, on a given set of random initial registrations to run
Algorithm just a given number of iteration, and only proceed to full convergence
on the registration set that resulted in the lowest error value.

4.2 ICP Improvements

In this section we use paper by Szymon Rusinkiewicz Marc Levoy (Rusinkiewicz
and Levoy, 2001) in which they compare different versions of ICP algorithm in
a respect to run time registration procedure. Some interesting result were repre-
sented in there’s paper, showing both speed and accuracy of some of the variants
of the ICP algorithm on different types of scenes.

The changes to original algorithm can be categorised in four groups.

Point Selection

Point selection is a first stage of ICP loop, where a set of points to operate on is
selected. It can result in points from one or both meshes. The variations include,
using all points (Besl and McKay, 1992), use random selected points at each it-
eration (Masuda et al., 1996), and use points with high intensity gradient (Weik,
1997).

Matching of Point Pairs

In this stage for each point in the determent point set the corresponding point in
appositive shape is found. The original approach is to find closest point. Normal
shooting variant is when the correspondent point is found by intersection of the
ray in the direction of the normal, (Chen and Medioni, 1991). Reverse calibra-
tion or projection method is based on projecting the point onto the destination
mesh, (Blais and Levine, 1995). Latest method has also the alternative to search
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the neighbourhood for a better match, based on the colour and topology informa-
tion. Some papers representing this approach are: (Benjemaa and Schmitt, 1997;
Weik, 1997; Pulli et al., 1997)

Weighting

When creating the covariance matrix in the process of computing the registration,
each point pair can be weighted differently. The weights can be constant, based
on the point-to-point distance, based on the dot product between normals of the
point pair, (Godin et al., 1994), and it can be based on expected scanner noise
value.

Error Metric

Error metric describes what is considered optimal registration. In simple form it
can be sum of squared distances. It can contain core information as colour value of
point-pairs (Johnson and Kang, 1996). The other possibility is to take a distance
to the plane that is perpendicular to the destinations normal (Chen and Medioni,
1991)
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Chapter 5

MeshCombine

In this chapter we propose an approach to merge two triangular meshes of different
resolutions, originated from different scanners, to produce a combined mesh with
regions of different resolutions.

MeshCombine is a simple prototype tool to merge meshes of different resolution
and origin. The idea behind MeshCombine is to replace a region in the old surface
mesh with representation of high resolution. The Icp algorithm can provide us with
optimal registration, meaning that we will move data mesh to the corresponding
position in the model mesh. This registration will result in the two meshes that
will ether completely or partially overlap each other. Let say the region X ′ is the
region of the model surface X represented by the data mesh P . Given that the
mesh P is captured with higher precision that region X, the region X ′ contains no
additional information to the combined mesh and there by can be safely removed.
The task of mesh manipulation can be identified as follows: firstly, identify region
X based on registered data mesh P , secondly, remove region X from model mesh,
thirdly, add the registered data to the model mesh, and finally, re-triangulate the
hole between model and data part in the merged model.

5.1 Identifying the Region

Identifying the region X in model that corresponds to the data mesh P , is an
important task, as the quality of the combined model is dependent on precision of
this operation. If the marked region is too big, then when deleting it from the old
model we lose data, if the region is too small, we corrupt additional information

43
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we obtain from the data set. We propose three solutions formulated as:

1. The vertex x of the model set X is in the region X ′ if there is a vertex p in
the set P so that d(x,p) < limit.

2. The vertex x of the model set X is in the region X ′ if there is a triangle t in
the set P so that d(x, t) < limit.

3. The vertex x of the model set X is in the region X ′ if there is a triangle t in
the set P so that normal distance dnormal(x, t) < limit.

5.1.1 Spherical Distance

The solution 1 describes a point to point distance metric. With other words it
can be described as every point that lays within in a given radius of any point in
the data set is belonging to the region X ′. From the abstract point-of-view this
scenario can be visualised as every point in the model set X is also in the set X ′ if
and only if there is a point within a sphere around the point with a given radius.
Solution 2 follows the same pattern, the difference is that if any point belonging
to the triangle is with is previously describes sphere, then vertex x ∈ X ′

5.1.2 Directional Distance

Directional distance prioritise in one direction more than in the other. Back to
a three dimensional example, spherical distance is unidirectional as a sphere has
the same distance from the centre to outer bounds, while selecting point by an
ellipsoid shape is directional, as an ellipsoid can be describes as a sphere expanded
in one direction.

In the case of identifying the duplicated surface that is generated by scanning a
real life object, we propose to use a directional distance in the direction of the
surface normal. Given the knowledge about the scan acquisition we can assume
that the noise has greater variation in the direction of the surface’s normal.

5.1.3 Directional Distance in Triangular Meshes

It can be said, that a vertex x in a model is represented in the data shape if
there is a data vertex p that obscures it from the camera, same idea is represented
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in (Pito, 1996). In our case we do not have information about orientation of the
scanner and there by assume, that, the surface is captured by the scanner from a
ninety-degree angle. The normal of the vertex then can approximate the viewing
direction. We rephrase the definition of region X ′ as: a vertex x ∈ X ′ if there is
a point pi ∈ shape P , that lays in a line described by point x and normal Nx,
within a given distance. In a case of triangular meshes shape P is represented by
triangular set T , and the point pi is a point on a triangle t ∈ T . Any point p on a
triangle t = [p1,p2,p3] can be described as

p = up2p1 + vp2p3, (5.1)

where u, v ∈ [0, 1]. The plane R that is parallel to the triangle can be written as

R = sp2p1 + tp2p3 + p2. (5.2)

Let vector Np be the normal vector associated with point p, a straight line L that
is parallel to the np and goes through point p can be represented by parametric
equation

L = knp + p. (5.3)

Let pi be the point of interception between line L and the plane R. The distance
d from point p to point pi is given by absolute value of the vector ppi

d = |ppi| = |pi − p|. (5.4)

Combining equation 5.4 and 5.3 gives

d = |knp + p− p| = |knp| = k|np|. (5.5)

Since point pi can be represented by equations 5.3 and 5.2, combining those
equations will result in

sp2p1 + tp2p3 + p2 = knd + p (5.6)

Solving the equation 5.6 for k gives

k = sp2p1 + tp2p3 + p2 − p
np

. (5.7)

Since the vectors that described the triangle t in equation 5.1 are used to describe
the intersecting plane, we can check if the point pi is within the triangle t, by
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simply looking on the values s, and t. If values s, t ∈ [0, 1] then the point pi lays
in the triangle.

dnormal(p, t) =
{

sp2p1+tp2p3+p2−p
np

|np| if s, t ∈ [0, 1]
∞ else

(5.8)

Solution 3 can be interpreted as: the vertex p in the set X is in the region X ′ if
there are a point pi on the data surface P that lies on the line described by point
p and np, within a given distance.

5.2 Deleting Duplicated Region

When the duplicated region X is identified it can be removed from model mesh.
The practical question arise, since the triangle information is often stored as triplet
of indexes in which vertices are stored in, when deleting points the triangle infor-
mation is no longer correct as order of vertices has changes due the deletion. To
preserve triangular information the order of vertices must be preserved, or indexing
information changed accordingly due deletion operation.

Keeping the deleted vertices and by that preserve indexing information will result
in un-packed data set, with some un-used garbage values. Repeating the merging
operation will then result even more garbage, putting some un-needed workload on
a system. Updating the index information will result in better compressed mesh,
with no garbage values, but brings more complexity to the implementation. More
on re-indexing of triangular data can be found in section 8.3.2.

5.3 Data Merging

Merging of data raises the same problem with triangular information as deletion.
Ether the mesh is represented by two separate vertex and index arrays, or they
are combining into one. If the mesh-structure contains two vertex arrays it is
difficult and impractical to have an index array that will contain information about
triangles that stretch between vertices from one vertex array to another. Merging
the arrays improves reading speed and simplifies the displaying and saving to disk
process.
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5.4 Triangulation

Surface triangulation is a process of dividing a given shape into triangular regions
that approximate shape’s surface. Triangulation is often used in computer graphics
as triangle rasterization is heavily optimised in graphics hardware. When working
with scanned data the output is often a point-cloud in 3D. Point-clouds do not
give a good approximation of the surfaces, due the discrete nature of a cloud.
When representing data visually the point-clouds are often triangulated in advance.
Triangulation is a complex task, which has been researched for decades. In the
resent years due the advance in scanning technologies point-cloud triangulation
was in the spot light. Works like (Jian-Ming et al., 1990; Golias and Dutton, 1997;
Qi et al., 2013), are just a fraction of the research that have been made in the
field.

5.4.1 Greedy Triangulation

An example of greedy triangulation can be found in the paper (Marton et al., 2009).
This triangulation algorithm was designed to aid robot navigation in real-time and
there for produce a fast triangular mesh approximation to a surface.

To create a triangle set that approximates the underlying surface represented by
the vertices, a surface must be estimated in advance. This is usually done by
calculating a plane D that approximate the surface and is tangent to the current
vertex in triangulation process. The previously mentioned paper solves this prob-
lem by creating a weighed least square plane, the normal of which approximates
the true surface normal. This normal estimation is done by searching for k-nearest-
neighbours in the proximity of the current vertex within a given distance, creating
a weighted covariance matrix C, from the points pi in the neighbourhood

C =
k∑
i=1

ξi ∗ (pi− p)t ∗ (pi− p), p = 1
k
∗

k∑
i=1

pi, (5.9)

ξi represents the weight for the point p to neighbour pi : ξi = exp(−d
2
i

µ2 ), where µ
is the mean distance from point p to all its neighbours pi, and di is the distance
from point p to a neighbour pi. The process is followed by the eigenvector V and
eigenvalue λ computation C · V = λ · V .

This weighting of neighbouring points gives better resistance to noise as it increases
the contribution of points in close proximity, making normal variation smoother
over the approximated surface.
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With the help of the plane D that approximates the surface in a given neighbour-
hood a 3D surface triangulation problem can be transformed into 2D problem.
This complexity reduction is achieved by projecting points to the plane D.

When all points in the neighbourhood are on the same plane 2D triangulation can
be started. 2D triangulation is a well researched subject.

Delaunay triangulation a process of triangulating a set of points P in a plane so
that there is no point pi that is inside a triangle. This triangulation process is
named after Boris Delaunay for his work in this topic from 1934.

5.4.2 Greedy Triangulation for MeshCombine

Open source project PCL (PCL, 2013), has a library that implements greedy trian-
gulation. Unfortunately the library is written in C++ and operates on much more
complicated classes/structures than simple arrays used in this project. This trian-
gulation library is implementing a paper by Zoltan Csaba Marton, Radu Bogdan
Rusu, and Michael Beetz (Marton et al., 2009). We based your implementation
on the same paper.

Using neighbouring weighted points to calculate a plane that approximates the
surface normal is computationally expensive, and since normal information about
vertices is already available, we propose a normal weighting; to calculate weighted
normal of the current point in triangulation process, based on the same approach
as in (Marton et al., 2009), the contribution of the neighbouring vertices decreases
as distance from current vertex increases. The weighting equation is presented in
section 10.3.1

In (Marton et al., 2009) the authors propose to reseed the process form other ran-
dom vertex that is not jet triangulated, when triangulation process is stuck. Our
case can be interpreted as incomplete triangulation, as we have two triangulated
parts of the mesh, model and data, and we have an un-triangulated part, the gap
between model and data, created by the deletion of duplicated region. The process
can be reseeded by using the boundary vertices that are defined as points that are
on the edge of the gap. This triangulation technique does not alter the existing
mesh and there by preserving the given quality of both data and model meshes.
The only region where new error is introduced is the gap between the meshes.



Part III

Implementation
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Chapter 6

Graphical User Interface

MeshCombine requires a Graphical User Interface (GUI) mainly because of two
reasons, human input to simplify registration, and output of combined meshes to
verify the positive results. GUI is useful to a user as it provides initiative controls
and simplifies communication between human and the machine. This chapter will
go through the implementation of MeshCombine’s graphical user interface with
OpenGL and freeGLUT.

6.1 Graphics API

MeshCombine is designed to work on meshes obtained from scanning real world
objects. Those meshes can contain hundred thousands of polygons. To draw a
triangle meshes this size an immense amount of calculations is requires. With the
support of modern graphics cards rendering of large models can be done in real
time. DirectX and OpenGL are two graphics API that are used to interact with
graphics dedicated hardware. The major drawback of DirectX is that it is for
windows OS only. While OpenGL libraries are harder to access on Windows, as
Microsoft stopped supporting OpenGL in 2003, OpenGL is still a cross platform
API and works as good on Windows as on any other OS. This is the major factor
in the choice of graphics API.

The MeshCombine uses OpenGL to render graphics on the screen, and freeGLUT
to initiate OpenGL contents and create a window. FreeGLUT provides main func-
tionality as input/output listeners, draw/update loop, and double buffer rendering.
In section 3.3 freeGLUT is described in more details. The use of C programming
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language, OpenGL, and freeGLUT gives possibility to run on multiple platforms,
using only open source specifications and libraries.

6.2 Viewport

Since MeshCombine is a simple prototype we choose to use only one section where
the meshes are displayed, it can be called mesh-viewport and is always the size of
the current window. At the current moment the interface lack visible clues and
functionality, as menus where the adjustments to the algorithms parameters are
possible. The functionality is limited to orientation of the camera as, rotation
and translation, selection of the sub-mesh, and start of the combining algorithm.
Detailed algorithm about input functions can be found in section 3.4.4 and 3.4.5.

6.3 GL Programs

OpenGL pipeline is easy modifiable through the use of vertex and fragment shaders,
see section 3.2.4. In MeshCombine project two vertex shaders are implemented
GouraudVertShader and toClipSpace.

ToClipSpace shader is a simple shader to draw in 2D. Though this shader can draw
any complex figure in 2D, in this program it is used to draw the rectangular that
marks the rectangular selection for sub-mesh. For an input toClipSpace takes 2D
coordinates of a vertex that are already in clip-space, ∈ [−1, 1], and sets z-value to
0, this ensures that the figure gets lowers possible z-value in the z-buffer, section
3.1.6, and the figure is always drawn.

GouraudVertShader is a 3D shader implementing Gouraud shading (Gouraud,
1971). Gouraud shading uses normal of each vertex in a triangle to calculate the
colour value at each vertex, rest of the triangle is coloured by linear interpolation
between values at vertices. In contrast to toClipSpace shader gouraudVertShader
takes in three parameters per vertex and six uniform values. Per vertex values
are position colour and normal. The uniform parameters are constant due the
draw call and contain information about lighting, orientation of the “camera” and
perspective-transform-matrix. The outputs of GouraudVertShader are position of
vertex in clip-space and colour of the vertex based on, original colour, normal, and
direction to the light.

FragmentShader is a simple fragment shader that is used by both toClipSpace and
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gouraudVertShader, as it simply redirects the input as output, without altering it.

Out of this three shaders two programs are linked, gouraudShading and simplePro-
gram. GouraudShading, which contains gouraudVertShader and fragmentShader,
is used to draw every mesh displayed by the program, while simpleProgram, to-
ClipSpace and fragmentShader, is used to draw the selection rectangle.

6.4 Mouse and Keboard Functions

Scene orientation

The user can orient in the scene by using a mouse, the rotation of the scene is
archived by user holding down the left-mouse-button and moving the mouse, while
to apply translation the user needs to hold down the right-mouse-button. Finally
the scene can be “moved” closer and father from the viewing-point to give more
intuitive control to the user, by using the mouse-wheel.

Sub-mesh Selection

The shift key is used to create a sub-mesh selection, the user presses down shift
then clicks on the screen to set a first vertex of the selection, then while holding
down the button and the key drags the mouse to the desired location. From the
moment when left mouse button is clicked a rectangular, representing the selection
is drawn to provide a feedback to the user. As the mouse pointer moves so does
appositive corner to the start vertex moves to update the size and shape of the
selection. This form of visual feedback is frequently used in software and can be
considered as intuitive.

Starting Mesh Merging Algorithm

To start the procedure to merge model and data mesh is done by pressing the
right-arrow-button on the keyboard. This initiates the procedure described in
chapter 8.
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Chapter 7

Mesh formats

There are many formats in which you can store triangular meshes on disk. Some
formats save more information about the mesh, some go for less storage space,
and others go for readability. In this chapter we introduce two formats, which
the MeshCombine software supports, wavefront .obj and Stanford .ply formats.
Later we present the way meshes are stored and interpreted in MeshCombine in
run-time. We present function implemented to draw, update, and create meshes
in MeshCombine.

7.1 Wavefront, .obj

OBJ format was developed by Wavefront Technologies for their Advanced Visual-
izer animation package in late 80s. OBJ format was adopted by many 3D graphics
vendors and is now highly recognised format.

One of the reasons the OBJ format is so popular is because of its simplicity. Is
only supports ASCII encoding, this adds readability as an OBJ file can be read
as simple text. The format itself only supports geometry and texture-coordinates,
additional information is stored in MTL format files, where texture, material, and
lighting information is stored.

In OBJ format every line begins with a key word, for example vertices coordinates
in a homogenous 3D space would be written as “v 1.001 42.0 -0.12 1.0” following
v = [x, y, z, w], w is optional. A comment in the OBJ file will begin with ‘#’ sign.
Other attributes follow the same principle.
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# this is an example OBJ file
v -1.0 -1.0 0.0
v 1.0 -1.0 0.0
v 0.0 2.0 0.0
vn -0.7 -0.5 -0.8
vn 0.4 0.3 0.4
f 1//1 2//1 3//2

Figure 7.1: Example of an OBJ file representing a triangle with no textures and 2
different normal

Since OBJ format allows reusing vertexes information, the faces have a special
syntax. Every face element starts with key word ‘f’ then follows by three or more
groups of characters divided by space. Each group follows specific syntax. A group
can consist of one, two or three values. First integer represent the index of a vertex,
second index of a texture coordinates and third index represent a normal. Each
value is ether ended with space, to indicate end of group, of a slash separating
the values. A special case is when texture coordinates are skipped, this is simply
done by writing two slashes after first value. All indexes are defined by the order
which they were written in the file. An example of a simple OBJ file representing
a triangle with no textures and 2 different normal is can bee seen in figure 7.1.

Because of simple readability and simple setup this format is very popular. It is
wildly used in computer games, and visualization applications. Some of the draw
backs of OBJ are speed and space. Because of no addition information about how
many elements of each type will be described in a file, when reading an OBJ file,
ether dynamic allocation of arrays must be done or two pass reading. Choice of
ASCII also slows down as the processing unit must convert from binary value, to
ASCII, and then to float or integer. Using ASCII to store data also increases size
of the written file.

7.2 Polygon File Format, .ply

Polygon File Format is wildly spread in computer visualization. It was developed
by Stanford University in mid 90s and is supported by most of today’s 3D mod-
eling software. The format is inspired by Wavefronts OBJ format but offers more
freedom.

A PLY file consists of a header and a body part. A header part is always written
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in ASCII letters and start with a magic number ply. It contains information about
the rest of the file, the body part. This is a slight improvement over OBJ format in
the terms that after parsing a header the size of the body is known and appropriate
block of memory can be allocated. The header also specifies in what format the
rest of the body is written, ASCII, big-endian, and little-endian. The ability to
write and read files written in binary format is a great improvement to the ASCII
format, as binary data takes less memory and is faster to read/write.

The body of a PLY file is a big block of data that stored in a specific way described
in the header of the file.

An over view of the format can be found at the “The Stanford 3D Scanning
Repository” (StanfordUniversity, 2012).

There are many open source libraries to read and write .ply files. In this project
we use library written by Diego Nehab (Nehab).

7.3 GeometryMesh

Geometry mesh is a data structure written in C to group together geometry infor-
mation of a 3D mesh. It contains pointers to the start of the arrays, and integers
for vertex and element count.

VertexArray is a floating point array representing vertices’ coordinates. Each ver-
tex is written in a format v = [x, y, z]. The array is tightly packed, meaning that
after z-coordinate of the first vector follows x-coordinate of second vector. This
gives 3 to 1 relationship between the size of an array and number of vertices.

NormalsArray contain normal information about each vertex, the first vertex in
vertexArray has first normal in normalsArray, and second vertex has second normal
and so on forth. This order is required of OpenGL to draw the object by index list.
Because of this particular order the size of normalsArray is same as of vertexArray,
three times number of vertices.

ElementArray is a list of triangles written in the format triangle t = [p1, p2, p3]
where p1, p2, and p3 are indexes in vertexArray, representing vertex with position
given by the unsigned integer p1, p2, and p3. This array is also tightly packed.
VertexCount is length of the VertexArray.

ElementCount is length of the ElementArray
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7.4 MeshObject

MeshObject is a data structure to contain all information needed to draw a mesh
on the screen.

7.4.1 Buffers and Arrays

If for every draw call the software needs to send data to the GPU through the
buss between CPU and GPU, then this transfer is easily becomes a bottleneck
for the performance. For a complex polygon mesh to be drawn efficiently on the
screen in real time, the required information needs stored in GPUs local memory,
before the draw call is called. This functionality is hardware based, but is luckily
encapsulated by OpenGL. For this purpose OpenGL uses buffers.

Buffers are generated by function call glGenBuffers. This receives the number
of buffers to generate and a pointer to the return value, and returns buffer id/ids
as an unsigned integer. The user can fill the buffer with arbitrary data, by using
glBufferData function.

Every meshObject has four buffers: vertexBuffer, normalsBuffer, colorBuffer, and
elementBuffer. The vertex buffer stores vertices’ coordinates information, normal
buffer normal of each vertex and colour buffer stores colour per vertex, while
element buffer stores triangle information.

Mesh object also stores mesh information in arrays, this way it is possible to extract
and edit data without contacting GPUs memory.

7.4.2 VOA

There is one Vertex Object Array per meshObject. It describes how the OpenGL
will draw an object on the screen, what buffers to use and how to interpret the
data. Data that has been extracted from the buffers is used by user-defined GLSL
program. Because OpenGL Shading Langue provides software developer with great
amount of freedom, the naming and positioning of input attributes can differ from
program to program. This makes VOA highly dependent on implementation of
OpenGL program that is used to render objects.
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7.4.3 Creation

The creation of a meshObject is simple; a string containing file name/address and a
pointer to a GLSL program are send as an attribute to the function createMeshOb-
ject in meshObject.h. The function follows this procedure

- Interpret if a file name has an .obj or .ply ending and uses correct library to
load vertex and element array.

- Based on triangle information the normals are calculated for each vertex and
stored in normalsArray.

- Colour array is created and filled with define colour absorption factor.

- The buffers are then created and filled with appropriate data from the arrays

- VOA is generated and initiated based on predetermined syntax of shaders

- Program pointer is the stored within a meshObject structure

7.4.4 Drawing

With all elements in place a meshObject can be drawn on a screen with one call
drawMeshObject() that takes a pointer to the object as an argument.

7.4.5 Updating

Since the meshObject not only stores id of the buffers on GPU where the vertex
data is saved but also stores the original arrays, updating a meshObject is quite
simple. The procedure to updating an object is as follows:

- Update the information in vertex, element, colour or normal array

- When the update is complete call the updateBuffers function

UpdateBuffers function simply re loads all of the information from the arrays, CPU
memory, to the buffers, GPU. This is not optimal way to perform an update, since
for example if only a small part of vertex array was updated, the way updateBuffers
currently implemented, the OpenGL will discard all of the information in the
buffer, and reload all of the information contained in vertex array to the buffer,
even is only a small portion of the vertex array is changed.
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Chapter 8

Mesh Combine Implementation

Mesh combination implementation can be divided into three major files: mesh-
Combine, greedyTriangulation, and icp. meshCombine.c contain function a Mesh-
Combine, which merges data mesh with model mesh using greedyTriangulation.c/h,
and aligns data mesh to user selected sub-mesh of model shape by running ICP.
This chapter will go through the implementation of the meshCombine.c/h file.

The responsibilities of meshCombine file are,

1. run the ICP algorithm on user selected potion of the model mesh

2. apply registration matrix returned by the ICP algorithm

3. estimate and delete the region that is represented by both data and model
mesh

4. identify the boundary around deleted region

5. initiate greedy triangulation algorithm with boundary points from model as
initiate start points

6. return newGeometryMesh received from greedy triangulation algorithm

8.1 Running ICP

Both running the ICP algorithm and applying registration matrix is done in func-
tion aligneMeshes. The minimum and maximum bounds of selected sub mesh are

61



62 CHAPTER 8. MESH COMBINE IMPLEMENTATION

found, and all the required information is send to icp.h’s function globalICPRegis-
tration, the information about ICP implementation is found in chapter 9.

8.2 Region Estimation

Region estimation is the most technical part of meshCombine file. To estimate
a region in a model represented by the data shape, two alternatives were im-
plemented, radius to triangle distance, and distance in normal direction. Which
method the algorithm will use is predefined by USE_RADIUS constant. By setting
this constant to 0 the program will use directional distance in normal direction, if
USE_RADIUS is set to 1, spherical distance will be used.

To determent if vertex x is in the region X ′ that is represented by the data shape,
we use the formulas described in section 5.1. The complexity of this kind of
matching is O(n2) in worst case run, to reduce this complexity we created an oct-
tree representation of the model. Oct-trees can speed up matching process as only
mesh information within oct-tree nodes, that are with is a specific distance, have
to be considered.

More information about use and creation of oct-tree can be found in appendix B

Identification of region X ′ is summarized in algorithm 8.1 and implemented in
function getDuplicatedVertexList. Since the process is implemented linear and not
parallel, the resulting index list of vertices that are in region X ′, will be ordered
from smallest to greatest index. This order is a product of the implementation.
When program iterates through the vertex array Vm of a model shape with km
elements and finds that vertex vi is in the region X ′ it saves the index, i ∈ [0, n]
in a index array E. Let n, m be indexes in the array E. Because the iteration of
the array Vm is linear, for each loop we increment index by one, we are guaranteed
that if n < m ⇐⇒ en < em. We take advantage of this order later when we are
deleting vertices that are in region X ′.
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Algorithm 8.1 Algorithm for detecting duplicated region
Require: shape M with vertex set Vm of km vertices and normal set Nm with km
normals and shape D with vertex set Vd of kdv vertices and triangle set Td with
kdt triangles and mimimum distance dmin
X ′ = ∅
create oct-Tree Ot representing D: Ot = OctTree(Vd, kdv, Td, kdt)
for all vi ∈ V m do
find oct-tree leaf nodes that are within a minimum distance: S = C(Ot, vi)
for all sj ∈ S do
check if there are tringle with in sj
if USE_RADIUS then
b = vertexInRadius(sj, vi)

else
b = rayIntersectsData(sj, vi, ni)

end if
if b then
break

end if
end for
if b then
add vi to region X ′

end if
end for
return X ′
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8.3 Deletion of Duplicated Region

8.3.1 Deletion of Vertices

In previous section it was shown that by following algorithm 8.1 the index array
that contains indexes to the vertices that a found to be in the region X ′, is ordered
from low to high. This opens for the use of standards library function memcpy,
appendix E. The algorithm 8.2 describes the procedure of rewriting the vertex
array. The function restructureV ertexArray in meshCombine.c implements the
algorithm.

Algorithm 8.2 Algorithm for detecting vertices from vertex array
Require: vertex set V of n vertices and ordered index list X with m elements
s = 0;
k = n−m
for all xi ∈ X do
copy elements from s to xi : memcpy(Vnew, vs, xi)
s = xi + 1

end for
return [Vnew, k]

8.3.2 Triangle Information Update and Identification of
Duplicated Region Boundary

When deleting vertices from a model one must also update the triangle information
to avoid future errors, see section 5.2. The triangle update can be divided into
two tasks, deleting triangles that are not complete because of vertex deletion, and
update index value of vertices of remaining triangles.

The return of binary search is either -1 or position in which the same values as pn
was found. For our means we have altered the implementation of binary search so
it returns a duplet, a Boolean and a position. The Boolean contains information
of the item is present in the set, and the position tells how many elements have
values less than the queried item.

Our implementation solves both tasks of updating the triangle information, and
identifies the boundary of the region X ′ in one pass through element array. The
binary search can only operate on ordered list, from section 8.2 we know that
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the list of deleted vertices V is ordered from low to high values. The process of
updating triangle information and creating triangle-to-delete index list Xt is given
by algorithm 8.3. The removal of deleted triangles from element array is archived
by following the algorithm 8.2

Algorithm 8.3 Algorithm for updating triangle information and region boundary
detection
Require: Triangle set T of n triangles and ordered index list X with m elements

for all ti ∈ T do
for all pj ∈ ti and j ∈ [1, 3] do
search in list X for value pj: [dj, sj] = S(X, pj)
update index of the point previosly indexed as pj: pj = pj − sj

end for
if any of points pj are found in delete list X
the triangle ti is deleted.
if d1 or d2 or d3 then
add i to Xt

for k ∈ [1, 3] do
if any of the vertices of the deleted triangle are not to be deleted,
then the remaning vertices are part of boundry B
if !dk then
add pk to B

end if
end for

end if
end for
return [Xt, B]

For each triangle t = [p1, p2, p3] in element array we search for each vertex pn in V
by using a binary search. The triangle is deleted if any of the triangle’s vertices
are in vertex list V . If one or two vertices in a triangle are deleted but not all,
the remaining vertices are belonging to a border between region X ′ and rest of the
model mesh.

If a triangle t is not deleted the index information of the triangle must be updated.
To update the triangle information we must reduce the index value pn by the
number of deleted vertices with the index lesser than n. The position k, values
returned by binary search, is exactly the amount of vertices that have been deleted
with the index value less than n. If the vertex pn is not deleted than in a new
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vertex array the index of the same vertex vm is given by

m = n− k

8.4 Running Greedy Triangulation

Greedy triangulation implementation is explained in chapter 10.

The identification of the boundary C between deleted region X ′ and remaining
model mesh is introduced in the previous section. This boundary is used to start
the triangulation process and used to grow the mesh between data and model
mesh.



Chapter 9

ICP Implementation

The implementation of the iterative closest point algorithm can be found in the
icp.c/h files. This chapter will go through stages of the implementation, and
describe the work flow, data, and functions. The algorithm is divided in two main
parts local and global registration. The global part is mainly a loop where a given
number of local registration procedures are run and the best result is stored. The
localICPregistration function is an implementation of an ICP algorithm, where
after given amount of iteration or if given threshold is met the algorithm produces
the registration matrix and error metric value.

9.1 Global Registration

As mentioned in section 4.1.4 the ICP algorithm has the possibility to get stuck in
local minima resulting in a non optimal registration, to avoid this unsuitable situ-
ation, an easy solution is to restart the local ICP with different starting locations
and save the best result as optimal registration. The function globalICPregistration
does exactly that.

The function takes as arguments model and data meshes, their size, maximum and
minimum relocation bounds, and maximum number of local registration restarts.
The purpose of globalICPregistration function can be divided in three tasks, firstly,
structure data in a form suitable to localICPregistration function, secondly, run
the local registration, and thirdly, keep track of the results.

The data required by local registration function is packed in a structured called as
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icpStruct. The icpStruct contain: data vertices information in a form of flat array,
length of data array, pointer to a kd-tree containing model information, pointers
to point pair arrays, pointer to registration matrix, centre of mass values for model
and data shapes, and error value.

To increase the speed of the algorithm model data is represented as a kd-tree, see
section 3.5.1 this improves the search for closest point from O(N2) to O(Nlog(N)).
To restart local algorithm from different starting points we use the randomHelper.h
file that provides functionality to reseed the pseudo-random generator and get
random values in given format and given range.

The implementation of globalICPregistration function is summarised in algorithm
9.1

Algorithm 9.1 Implementation of global registration with ICP algorithm
Require: point set P with Np points and shape X and maximum number of
local ICP to run N
ebest =∞
k = 0
for k < N and ek > τ do
qT = random(Pmin, Pmax)
Compute local ICP: [Qk, ek] =localICPRegistration(P,Np, X,qT )
if ek < ebest then
save registration matrix: Qbest = Qk

end if
end for
return Qbest

9.2 Local Registration

The local registration procedure is implemented in localICPRegistration function,
which takes icpStruct, threshold, delta threshold, and maximum number of itera-
tions. The implementation of the ICP algorithm follows the algorithm 9.2
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Algorithm 9.2 Local implementation of iterative closest point
Require: point set P with Np points and shape X and initial registration offset
qT
q0 = [1, 0, 0, 0|qT ]t
P0 = PQ0
k = 0
for k < maxIterations do
Compute random point set: P ′k
Compute closest points: [Yk, dk = C(P ′k, X)
if dk < τ or dk+1 − dk < ∆ then
return [Qk−1, dk]

end if
Compute the registration: Qk = Q(P0, Yk)
Apply the registration Pk+1 = Qk(P0)

end for
return [Qk, dk]

9.2.1 Selecting Points

In meshCombine project we have implemented the random point selection scheme
introduced in (Masuda et al., 1996) as it requires little additional calculations,
and is easy to implement. Random points are selected in createRandomIndexPair
function where dataPair array, is filled by selecting a random point from 0 to
dataSize.

9.2.2 Pair Matching

Finding a corresponding point in appositive mesh, to the points selected in previ-
ous section, is achieved by using same principle in (Besl and McKay, 1992), by
selecting closest point. For distance metric distance from point to point is used.
The model mesh is stored as a kd-tree to accelerate the matching process.

The function findClosestPair iterates through on the dataPair array, generation of
which is described in previous section. For each point in dataPair findClosestPair
function finds a pointer to the closest point in model kd-tree, stores it in modelPair
array.

The distance between each point pair are added together to find the mean square
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distance between meshes after a previous iteration, which is used as an error metric.

9.2.3 Registration Calculation

The function createRegistrationMatrix follows the paper (Besl and McKay, 1992)
to calculate the registration. Firstly the covariance matrix is created, secondly the
Q(

∑
px) matrix is filled, and finally the rotation vector is found by calculated the

eigenvectors and eigenvalues of the Q(
∑
px) matrix.

For calculation of eigenvalues and eigenvectors we used open source software Cloud-
Compare (CloudCompare, 2012). The function computeJacobianEigenValuesAnd-
Vectors is inspired by the a function computeJacobianEigenValues in CloudCom-
pare program, the difference are that by inheriting the function we need to translate
it to C programming language from C++, as well as to adopt data input you used
standard in MeshMobine. Any how the mathematics behind the function is based
on method proposed by Carl Gustav Jacob Jacobi in 1846, and is described in
modern time in papers like (Golub and van der Vorst, 2000/11/01).

Finaly the translation vector is found by the equation 9.1 from (Besl and McKay,
1992)

qT = ux −QRup. (9.1)
After the registration matrix is applied on the data vertex set and the “centre of
mass” of data shape, with the function applyRegistration the loop restarts from
the top.



Chapter 10

Greedy Triangulation
Implementation

This chapter goes through the implementation of the triangulation part of the
MeshCombine project.Triangulation itself is a major subject, and plays a vital role
in recreation process. The quality of combined mesh, is highly dependent on the
accuracy of the triangulation process.

The key task of the triangulation procedure in MeshCombine project is to fill the
gap or connect the data to model mesh. This task can also be formulated as
hole-filling. An optimal result of this sort of triangulation would be the mesh that
preserve as much of the topology information as possible, avoid thin long triangles,
creates a water tight transition from model to data, and does not add any triangles
that are not approximating the surface between model and data set.

Files that contain the functions that support and execute triangulation in Mesh-
Combine are greedyTriangulation.c/h The functions that are written in greedyTri-
angulation.c can be divided into three categories:

• Surface triangle graph representation and support functions

• Greedy triangulation functions

• Mesh combination function
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10.1 Surface Graph

Previously in section 7.3 a triangular mesh was described as a list of vertices and
triangles. This way of representing a triangular mesh contains explicit triangle
information. This explicit information is useful when rendering mesh to a screen,
as every triangle is an independent shape making the total process easy to adapt
for parallel computing. On the other hand this representation method does not
provide an optimal structure to extract connectivity information about a specific
vertex.

A surface graph contains information about connectivity of the mesh. Connectivity
between vertices can be described as, if there is a triangle t = [a, b, c] in a mesh T ,
there are an edges in the symmetric surface graph GT between vertices a, b, and
c. Surface graph contain implicit triangle information, and explicit information
about vertex connectivity.

The explicit edge information of a vertex graph is useful under triangulation pro-
cess as it can be used to avoid over lapping triangles.

10.2 Surface Graph Representation and Support
Functions

In mesh combine we extract connectivity information about model and data set
from their triangular-index-array, to create a surface graph. This is done by copy-
TriangleInformation function, in which for every triangle t = [i1, i2, i3] in ele-
mentIndexArray of a meshObject where i1, i2, and i3 are indexes of the points in
vertex array, we try to add new edges between the vertices with given indexes.

To keep the creation of the surface graph as fast as possible we try to avoid
numerous memory allocation calls, which are time consuming. Instead we use
an aggressive memory allocation scheme, where we allocate a memory in larger
blocks. To support this aggressive allocation we have implemented a set of stack
manipulation functions that keep control over the allocated memory. as well as
create/add edge functionality.
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10.3 Greedy Triangulation Functions

There are three functions that can be categorised as triangulation functions: edgeValid,
toZrotMatrix, and greedyTriangulation.

10.3.1 Greedy Triangulation Algorithm

Greedy algorithms usually produce a result faster that their non-greedy alterna-
tives but the results are not always optimal. Our greedy triangulation implemen-
tation can be summarised in algorithm 10.1

Algorithm 10.1 Greedy triangulation algorithm implementation
Require: shape M and shape D and List P of points to triangulate and maxi-
mum edge dinstance dmax
create surface graph from shape M and D: S = G(M,D)
create kd-tree from M ’s and D’s vertex array V m, V d: Tkd = U(V m, V d)
Tnew = ∅
while P ! = ∅ do
get a point p from triangulation list P , p ∈ S
create a neibourhood V by searching for k nearest neibours in Tkd: V =
knn(Q, p, dmax)
create weighted normal np: np = W (V )
create rotation matrix R: R = toZ(np)
check if edge from p to vi is valid and store any new triangle created in Ti:
[valid, Ti] = edgeV alid(p, vi, R, )
if valid then
add vi to P
for all tj ∈ Ti do
add tj to Tnew

end for
end if
remove p from P .

end while
return Tnew

In section 8.3.2 we have explained how we determent the boundary B between
the deleted region X ′ and rest of the model mesh. We start our triangulation by
copying every vertex in B to the vertex triangulation list P . For each vertex pm
in P we collect the neighbourhood K of k-points in a given distance. By using
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similar weighting technique from (Marton et al., 2009) shown in equation 10.1,
we create a weighted normal n given by

n = 1
k

k∑
i=1

[ni ∗ ξi], ξ = dmax
di

, (10.1)

where ξ is weight of the normal, di 6= 0 is distance between points and pi and pm,
and dmax is the maximum distance for the neighbourhood.

This weighted normal can be used to approximate the surface normal at the point
pm.

In section 5.4 in was mentioned that a 3D surface triangulation problem can be
reduced to 2D if the point to be triangulated are to be brought to the plane
approximating the surface at a given vertex.

To reduce our problem to two dimensions we rotate every point so the planes
normal, n, is pointing in z-axis direction. Projecting a point to this rotated plane
is as simple as ignoring z-coordinates. The rotation is archived by multiplying
vertex coordinates by Mrot which is given by

Mrot = Mx ∗My (10.2)

.

The required angle θ is found by

θ = z · n, (10.3)

where z is z-unit vector z = [0, 0, 1]t.

Because of the unique from of z-unit vector the equation 10.3 can be simplified to

θ = zn
|n|

(10.4)

When the rotation matrix and weighted normal is calculated edge creation can be
started. For each point pj in the neighbourhood P we try to add an edge between
point pm and pj. If the edge is valid than it is added to the surface graph, and
point pj is added to T , if the edge is not valid it is then ignored.
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10.3.2 Edge Validation

An edge is structure in a graph between nodes. The intersection between edges is
a vague question as it depends on the interpretation of the graph. In our case of
a surface graph each node represents a point in 3D Cartesian coordinate system,
where two points create a line segment, and lines can intersect each other. If we
look at the edges in a surface graph as line segments we can determent if they
intersect. A valid edge e is defined as there are no other edges in a surface graph
that intercept the edge e. The intersection of the edges can be defined as, edges
e1and e2 intersect if line segments represented by edges projected to the plane
approximating the surface, intersect.

10.3.3 2D line segment intersection

Let l1 be a line segment described by two points a and b on a line L1, then any
point lp1 on the line segment l1 is given by

lp1(t) = a+ tab (10.5)

where t ∈ [0, 1]

Given that line segment l2, described by points c and d, intersects with l1 then
point of intersection is given by

a+ tab = c+ vcd (10.6)

From equation 10.6 this we can determent that line segments l1 and l2 intersect if
and only if t, v ∈ [0, 1]

10.4 Edge Validation Procedure

The Edge validation procedure in mesh combine is given by algorithm 10.2. Let
the edge ab stretch from point a to point b. Let a′ be an existing point that is
connected to the point a with an edge aa′, and point a′′ be the point connected
to a′ by the edge a′a′′. To determent if ab is valid we check for each point a′ if
there an edge a′a′′ that intersects with edge ab. The figure 10.1 illustrates a two
dimensional example.
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Algorithm 10.2 Edge validation algorithm
Require: current point a and to point b
create tringluar list t = ∅
if a = b then
return edge not valid: [0, NULL]

end if
for all edges aa′ in a do
if a′ = b then
return edge not valid: [0, NULL]

end if
for all edges a′a′′ in a′ do
if a′′ = b then
add tringle to t

end if
if !edgeIntersect(ab, a′a′′) then
return edge not valid: [0, NULL]

end if
end for

end for
return edge is valid : [1, t]

Each new added edge can create new triangles. Our implementation keeps the
track of triangle, in edge validation procedure. Following the previous example, if
there is a point a′′ that is equals to point b that the triangle is created.

10.5 Greedy Triangulation Procedure

Final function combimeMeshes is a combination of previous steps. Firstly, the
triangular information is transformed from triangle index representation to a sur-
face graph. Secondly, the greedy-triangulation algorithm is started. Finally, the
model and data meshes are combined and new triangles are added to combined
meshobject structure.
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Figure 10.1: Illustration of edge validation procedure.

10.6 Mesh Merging

When all necessary information is gathered to produce the final product, the re-
sulting mesh can be created. The composition of the combined mesh is as follows,
the vertex array is simply a model vertex array followed by data vertex array,
indubitably the vertex count is a sum of model and data vertex count, the same is
applied for normal arrays. Element index list of combined mesh is compound from
model and data element arrays, and triangles created in triangulation process, in
this order, while the element count is a sum of model and data count, and number
of triangles added due triangulation procedure.

When construction of resulting mesh is finished and memory that have been al-
located and only used within a function call is freed, the pointer to the structure
geometryMesh is returned.
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Part IV

Tests and Procedures
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Chapter 11

Test Objects and Scenes

In this chapter we will introduce the test sets and procedures that were executed
to test the MeshCombine software.

11.1 Test Sets

The MeshCombine program was tested on two sets of meshes, the scan of an
archaeological fragment and a scene of an office desk. Models meshes of both
sets are created by using photogrammetric software photoModeler, while data is
captured by Artec’s 3D scanner EVA. By using two different scanning technologies
we not only create testing sets of different resolutions, but also ensure that noise
characteristics and vertex quality would vary from data to model mesh. This
different origin of scans gives a unique challenge for MeshCombine software.

11.1.1 Nidaros Stone

Nidaros stone is a good testing object because it contains different types of surfaces,
with different grade of smoothens and concavity. In the illustration of the stone,
figure 11.1, we can observe a concave surface, and two types of roughness.

Concave surfaces are difficult to scan with optical sensors, due the natural occlu-
sion they create, as well as low angles, between scanned surface normal and camera
direction, results in noisy values. When triangulating concave surfaces other dif-
ficulties arise. In regions where a surface bends and forms a loop like pattern
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Figure 11.1: Nidaros stone. A fragment of axiological artefact from Nidaros Cathe-
dral.

it is easy for triangulation algorithms to connect the appositive sides of a loop,
preserving the continuity but wrongly approximating the surface. In the terms of
identifying the duplicated region the problem with the concave surfaces arise in
the same loop shape situation, where one side of the loop can be misinterpret to
represent the other part of the loop.

The recreation of the stone done in photoModeler is treated as a low resolution
model, while the concave frontal part, scanned in high resolution with EVA 3D
scanner, is referred as data. This division of the same object in different parts is
a realistic scenario. To capture the concave part of the Nidaros stone, extra care
due the scanning procedure is necessary to archive a high level of derails.

11.1.2 Deck Scene

This test set illustrates the purpose of the software: to replace individual parts of
the mesh with a high resolution representation. In the centre of the deck scene we
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can observe porcelain figurine in a shape of a pig. This figurine is considered as
region of interests, and is scanned with high precision scanner, while the rest of the
scene is captured with much lower resolution. The purpose a this lower resolution
scan is to create reference for orientation.

Figure 11.2: Desk scene. A scene with different objects to test MeshCombine
software.

11.2 Minimum Square Distance

The quality of a mesh representation can be assessed by evaluating the minimum
distance, from each vertex in a mesh to the actual surface. The minimum distance
between mesh and the surface gives us a good estimation of how well the existing
mesh represents the actual surface.

Unfortunately this does not give any indication of how well the mesh covers the
surface. Deleting parts of the mesh that have distance to the mesh higher then
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certain value will improve overall statistic of a mesh but will also reduce the per-
centage of the aria covering the surface.

By reversing the distance metric and calculating the distance from every point on
a surface to the mesh will incorporate the coverage of the mesh, but on the other
hand this metric will not penalize noisy values that are far away from the original
surface.

In our testing we will use mesh to surface distance to assess the quality of mesh
merging. As our model, data, and ground truth mesh are not guaranteed to
be watertight (without holes) checking meshes for topological continuity is not
effective way to determent the quality of representation. The coverage of the
recreated models is thereby only examined visually.

11.3 Tests Description

To create an objective error measurement both test sets were scanned in high res-
olution. This complete high resolution scan is treated as “ground truth”. Testing
procedure for mesh combine is as follows, firstly, the minimal square distance be-
tween ground truth and the model is measured to capture the difference between
them, secondly, the data and the model is combined in MeshCombine software,
thirdly, the square distance between the ground truth and combined mesh is cal-
culated, and finally, the difference between the error of the model and combined
mesh is calculated to present the result.

This procedure will show if overall error have increased or decreased by introducing
a higher resolution region in model mesh. Unfortunately this error metric will not
provide the information about quality of the triangulation.

There are several criteria that describe a good triangulation, a good triangulation
has no overlapping triangles, no holes, and maximise the internal minimal angle of
all triangles. Greedy triangulation does not guaranty that any of the triangulation
criteria will hold. Running precise tests on triangulation quality is unnecessary, on
the other hand we can observe if triangulation produce unwanted visible artefacts,
as noisy triangles, holes, and etc.
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11.4 Colouring Meshes Based on Distance in Cloud-
Combine

CloudCombine software provides functionality to colour each vertex based on the
previous minimal distance calculation, this colouring scheme gives a good vitalisa-
tion of noisy regions. The colouring process is as follows, each vertex in compared
mesh is given the colour based on the distance between the vertex and closest point
on the reference mesh. Let the colour red symbolise maximum distance dmax from
compared to reference mesh, while colour blue is minimal distance dmin. Then
the colour ci of a vertex vi that have minimal distance di ∈ [dmin, dmax] to the
reference mesh, is given by linear interpolation

ci = cblue + di
dmax

(cred − cblue). (11.1)

11.4.1 Nidaros Stone

The scans and the required photographs of the Nidaros stone were captured by the
author in the fall semester during the Specialization Project Thesis (Kongevold,
2012).

Ground Truth

The complete recreation of Nidaros stone were done with Artec Group technology,
by using structured light scanner EVA for capturing scans and Artec Studio 8.1
for post-processing. This resulted in a high resolution mesh, Stone.ply, of 1 million
vertices and 2 million triangles.

Model Mesh

Model shape was acquired by taking photographs of the Nidaros Stone and then
processing them in photogrammetric software photoModeller Scanner. This re-
sulted in a mesh StoneNC.obj with 60 thousand vertices and 130 thousands trian-
gles.

The distance between the model and ground truth was calculated by using cloud-
Combare software and is summarised in the table 11.1. The colouring of the
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Figure 11.3: High precision recreation of Nidaros stone using Artec 3D scanner
EVA.
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Figure 11.4: Nidaros stone mesh representation by using PhotoModdeler Scan-
ner(top), model to ground truth distance visualisation (bottom).
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Minimum distance 0
Maximum distance 21.3023
Mean distance 0.139394
Sigma 0.631288

Table 11.1: Results of minimum square distance calculation between model and
ground truth of a Nidaros Stone set.

model in the figure 11.4 is based on the distance towards the ground truth, colour
blue represent the smallest error when colour red is given to the vertex with largest
distance to ground truth.

Data Mesh

Data mesh was produced by only selecting the frontal part of the ground truth
shape, figure 11.5.

11.4.2 Deck Scene

Desk scene was set up in Visualisation lab at IDI (IDI), see figure 11.2 for illus-
tration.

Ground Truth

Ground truth was acquired by scanning the scene with Artec 3D scanner EVA to
produce a high resolution mesh, figure 11.6.

Model Mesh

To digitalize the scene images were captured with pre calibrated Minolta 7 digital
camera and processed in photoModeler Scanner program. For camera calibration
the procedure shown in videos on photoModeler web site (EosSystems, 2012b),
ware followed with constant focus length and zoom of the camera. The settings of
the camera were constant due camera calibration and image acquisition. Unfortu-
nately the resulting mesh was too noisy and could not be use, as reconstruction of
the scene provided barely recognizable results, figure 11.7.
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Figure 11.5: A part of high resolution scan serving as data mesh.
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Figure 11.6: Mesh representation of the desk scene by using Artec 3D scanner
EVA.

Figure 11.7: Unsuccessful recreation of the desk scene by using PhotoModdeler
Scanner.
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Minimum distance 0
Maximum distance 7.00054
Mean distance 0.00982883
Sigma 0.262127

Table 11.2: Results of minimum square distance calculation between model and
ground truth of a desk sceene.

Because of this failure to reconstruct the scene with photoModeller Scanner, we
used a down sampled mesh of the ground truth as a model, figure 11.8. The
minimum square distance is shown in the table 11.2.

Data Mesh

Data mesh is created by scanning the figuring of the pig placed on a turn table
with 3D scanner EVA. The result was a high resolution mesh, with no holes and
representing 100% of visible surface, figure 11.9. The data mesh in this case is
better representation that the ground truth model, as it was hard to obtain 360
degree scan of the desk scene with artec 3D scanner EVA.
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Figure 11.8: Desk sceene, model to data distance visualisation.

Figure 11.9: High precision scan of the porcelain pig figurine.



Chapter 12

Results

Within this chapter we present merged results of MeshCombine tool. There are
four key features we will focus on, alignment of meshes, duplicated region es-
timation, triangulation, and overall change in minimal square distance between
meshes.

12.1 Alignment

The result alignment of the data mesh to the user selected region produced un-
satisfactory results, as ICP resulted in local minima, which is common for this
sort of algorithm. To continue testing, the data and model mesh were aligned
in a third party software, Artec Atudio v8.1 (ArtecGroup, 2012) and saved as
ply files. The rest of the combination procedure was tested on manually aligned
meshes. Error between aligned model and ground truth for each set mesh is the
same, as alignment is required to calculate the minimal square distance.

The examples of bad alignment are represented in figure 12.1

12.2 Region Identification

Region identification is a vital task. If the region estimated is bigger than the
actual region then deleting vertices deletes information, if smaller, then remaining
model vertices corrupt data region. In correct region estimation provides bad
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Figure 12.1: Bad alignment from ICP algorithm, resulting in local minimum.

boundary information that seeds the triangulation process.

There are two procedures to estimate the duplicated region in MeshCombine
project, by using directional distance or spherical. Results are hard to test the
region estimation objectively on a data set obtaining by scanning a physical ob-
ject, without proceeding to the next phase of mesh combination. For a more
subjective feeling of each approach we altered the program to stop after region
approximation and to colour the estimated region with red colour. The figure 12.2
displays the regions estimated with the same meshes and same maximum distance,
but different distance metric, section 5.1.

We would like to point out the boundary regions presented in figure 12.3. The
spherical distance, image to the left, marks more of the model surface that dis-
tance in normals direction, on the other hand in concave and more noisy regions
the spherical distance produces more grouped markings, resulting in more precise
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Figure 12.2: Region estimation by using directional distance in the direction of
approximating surface normal, above, and using Euclidian distance, below.
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boundary.

12.3 Gap Triangulation

Triangulating the gap or stitching as is sometimes called is a final step in mesh
combining process. The triangulation does not add new points but it preserves
continuity over the transition between surfaces.

For each testing set, we produced two combined meshes: one was created by
using spherical distance to identify duplicated region and the other one by using
distance in the direction of the surface normal. Combined meshes are illustrated
in figure 12.4, and figure 12.5. The red line indicates the vertices that start greedy
triangulation process, also referred as the boundary between duplicated region X ′
and the rest of the model mesh. We can observe that the triangulation mostly
succeeds on the true boundary region, but noisy seeds, that are not a part of the
gap between meshes, tend to produce falls triangles. Those falls triangles are easy
to spot in the region of concave surface, figure 12.6.

12.4 Minimum Square Distance

After manual alignment of model and data mesh, the rest of the algorithm could
be restarted and alignment step could be ignored. The resulted mesh has been
written to disk as a wavefront .obj format. At the end we used open source software
CloudCompare, to calculate the minimum square distance between combined mesh
and the high precision scan treated as a ground truth of a set. These distance values
give us an objective measure of the quality of the final result.

To visualise the local improvement of the mesh we have the resulting meshes has
been coloured based on their distance. If a maximum distance of the mesh is
much larger that the mean error between regions, that it is hard to observe the
colour change, to avoid this we have limited the colouring scheme to only display
and colour vertices in the region of [0, 3.3] this way resulted in more illustrative
colouring.
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normal radius
Minimum distance 0 0
Maximum distance 21.2962 21.3093
Mean distance 0.0489126 0.0505309
Sigma 0.32576 0.329806

Table 12.1: Minimum square distance between combined mesh and ground truth
of a Nidaros stone test set.

normal radius
Minimum distance 0 0
Maximum distance 30.3357 30.3357
Mean distance 2.25392 2.52957
Sigma 5.3374 5.34203

Table 12.2: Minimum square distance between combined mesh and ground truth
of a desk scene test set.

12.4.1 Nidaros Stone

The result of distance metric from combined mesh to the ground truth mesh is
summarized in the table 12.1, the second column displays values for the mesh
created by using radius, or Euclidian distance, third column represents by using
distance in direction of the normal. Combined meshes coloured based on distance
to ground truth for the Nidaros Stone set are given in the figure 12.7. The fig-
ure 12.8, shows same combined mesh of the Nidaros stone but colouring is limited
to the previously discussed range.

12.4.2 Desk Scene

The Euclidian distance from combined desk scene mesh and to high resolution
scan, ground truth, is given in the table 12.2 and figure 12.9. Figure 12.10 shows
the visualisation of the results with limited to the range of [0, 3.3] colouring.
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Figure 12.3: Different boundary of the duplicated region, cause by different iden-
tification metric, directional - left, spherical - right
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Figure 12.4: Triangulation results on Nidaros stone test set, directional distance -
left, spherical distance - right.
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Figure 12.5: Triangulation results on desk sceene test set, directional distance -
left, spherical distance - right.
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Figure 12.6: Wrongly triangulated surface in the upper concave region of the
Nidaros stone set, using directional distance.
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Figure 12.7: Visualisation of distances between merged and ground truth mesh of
the Nidaros stone test set, directional distance - above, spherical distance - below.
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Figure 12.8: Visualisation of distances between merged and ground truth mesh of
the Nidaros stone test set, bounded within the region of [0,3.3], directional distance
- left, spherical distance - right.
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Figure 12.9: Visualisation of distances between merged and ground truth mesh of
the desk scene test set, directional distance - above, spherical distance - below.



12.4. MINIMUM SQUARE DISTANCE 105

Figure 12.10: Visualisation of distances between merged and ground truth mesh
of the desk scene test set, bounded within the region of [0,3.3], directional distance
- left, spherical distance - right.
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Chapter 13

Discussions

In this chapter will analyse the results acquired from testing, and discuss the
possible reasons for deviation from expected values. At the end we will propose-
posibilitys future work, and ways to improve MeshCombine program.

13.1 Interpriting the Results

Understanding the results can be as vital as performing tests. Both negative and
positive results can provide insight that can be useful to improve future research.
This section will focus on four main aspects of our tests, mesh registration, dupli-
cated region estimation, gap triangulation, and square distance between combined
mesh and ground truth.

13.1.1 Iterative Closest Point

Local ICP algorithms resulted in global minima, and could not archive an optimal
registration. This problem was addressed already by the inventors of the algorithm,
Besl and McKay. The random translation scheme did not resulted in positive
results. This failure can be due a complicated shape of the mesh, where a global
minimum is surrounded by local minima, so if initial registration does not start on
the slope leading to global minimum, the optimal registration is not possible, in
this scenario only random translation is not enough, random rotation of the model
is also necessary. This lack of random initial rotation can be the reason why global
registration scheme failed.
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13.1.2 Duplicated Region Estimation

We have tested two different region estimation approaches, using Euclidian dis-
tance and normal directed distance. Both approaches produced usable results with
expected differences. We can take a closer look at the results of region identifi-
cation, in the figure 12.2 we can observe the difference between using different
distance metrics.

The image at the bottom displaying region estimation by using distance from
vertex to mesh, Euclidian distance, we can see that the region is larger and more
continues than the region estimated by using distance in direction of the vertex’s
normal. We can also observe that spherical distance is more resistant to noisy
vertices than directional distance. The removal of noisy values is crucial for quality
of the resulting mesh, noisy point not only increases error metric value, but also
results in false boundary, with corrupts the triangulation algorithm later in the
combination process.

Using the normal of the current vertex as the direction for the distance metric is
proven to be more sensible to noise. On the other hand it resulted in a more precise
boundary between duplicated region X ′ and the rest of the model mesh, which
later on resulted in better triangulation. In the figure 12.3 we can observe a clear
difference between approximated duplicated regions, while the normal distance
resulted in a smooth line, the spherical distance resulted in a jagged curve. This
difference propagates to the next step, triangulation, and results in holes, which
can be observed in figure 12.4, the image at upper-right.

13.1.3 Triangulation

Greedy methods do not guarantee optimal results. In our case the triangulation
process resulted in mixed results. In the case of Nidaros stone, the gap was well
triangulated, with only few holes remaining, but in the case of the desk scene the
hooves of the porcelain pig were badly triangulated to the surface of the table.

This different triangulation quality can come from normal weighting procedure we
discussed in section 10.3.1, we can observe from images, figure 12.4 and figure 12.5
that in the case of Nidaros stone the surface of data mesh and model mesh are
close to parallel, but in the case of desk scene the angle between normal are close
to 90 degree. This can explain the different behaviour of the algorithm.
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Nidaros stone Desk scene
Normal Radius Normal Radius

Minimum distance 0 0 0 0
Maximum distance -0.0061 0.007 22.99946 22.99946
Mean distance -0.0904814 -0.0888631 2.24409177 2.51974117
Sigma -0.305528 -0.301482 5.075273 5.079903

Table 13.1: Difference between distance between model and combined mesh

False Triangles

False triangles are those that were created during triangulation process that do
not represent the actual surface.

By visually examining results we can observe false triangles in the frontal part of
the recreated mesh of the stone mesh, figure 12.6. On the same image we can
also observe wrongly determent boundary, as each vertex that was used as seed in
triangulation process is coloured red.

This gives reason to believe that those triangles are created because the triangula-
tion process was wrongly seeded. On the other hand concave regions have proven
to be a challenge for triangulation algorithms.

13.1.4 Minimum Distance Error Metric

The change in distance after introducing high resolution data region into the model
mesh is presented in table 13.1.

As we can see in column four and five of the table 13.1 the maximum distance has
increased dramatically, this increase is caused by the fact that the ground truth
scan was not able to capture the region of interest as completely as our data scans.
In figure 13.1 our assumption is supported by visualisation of minimal distances
between the combined mesh and groud truth scan. There by the minimal distance
from combine mesh to ground truth is not representative, as mesh used as ground
truth was not detailed enough.

Yet, the desk scene test set is not completely useless, as through this test we
demonstrated a possibility to integrate a complete representation of the region of
interest into a scene that was not possible to scan entirely. By using this kind
of tool a user can improve a chosen scene incrementally, by introducing a more
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Figure 13.1: Insufficient ground truth representation. The regions that were not
present in ground truth mesh were treated as noise.

complete or detailed representations of specific regions in the scene. Never the less
this test has also shown that a new measure of quality is required to evaluate the
results, as simple square distance between meshes is not sufficient.

On the other hand in the case of Nidaros stone test set, where the “ground truth”
scan did covered the whole test object, a reduction in deviation from ground truth
was noticed. A change in mean distance and sigma of the distribution is a sign
of overall improvement. We can observe a two time decrease in mean value and
sigma. By analysing the colouring information in figure 12.8 we can see that
the data mesh region contain less variation in colour, then region originated from
the model mesh. This distribution of distances is especially noticeable in Nidaros
stone test set, as the model and ground truth meshes were originated from different
scanners. In desk scene test set the model mesh is originated from down sampling
the high precision scan, there by the error is mostly visible on sharp edges, for
example keyboard in figure 11.8.

13.2 Discussion

The result of testing the MeshCombine product gave a vital insight to some prob-
lems and complications, in the process of combining meshes. By using the knowl-
edge we obtain from this implementation we can precede to improve the software.
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13.2.1 Alignment

It was clearly that registration by ICP resulted in unacceptable results, figure 12.1,
this is not uncommon. Since 1992 much of the research have been made to guar-
antee the optimal registration result of ICP based algorithm, some of the research
is found in literature as (Dorai et al., 1997; Chen et al., 1998; Sharp et al., 2002;
Krishnan et al., 2005; Toldo et al., 2010). Simulated annealing is often used for
finding a global extreme of a function, the paper by Jason P. Luck, William A.
Hoff, Robert G. Underwood, and Hoff, Charles Q. Little (Luck et al., 2000) pro-
pose a method that combines ICP with simulated annealing, ensuring that the
posses results in global minima.

A more practical approach to global registration, which is used in commercial
software as Artec Studio and open source projects as CloudCompare, is to give
user a possibility to initially align meshes manually. Given this initial alignment
the ICP algorithm is set on the path to global minima.

13.2.2 Region Estimation

In this thesis we have implemented and tested two approaches to estimate the
region in the model mesh that is represented by data shape. Both of the methods
have proven to work, and both have features that can be considered as positive and
negative. The spherical region estimation has proven to be more noise resistant by
in the cost of including the neighbouring regions that are not part of the duplicated
region. While the directional distance, in normal direction, has shown to estimate
regions more precisely, but is more sensitive to noisy values.

A noisy vertex is a vertex that does not represent the surface of an object but
was wrongly triangulated as so. Given that region estimation selects vertices V
that are approximating the actual surface in the region and ignores noisy values
that are not on the surface, after deletion of the vertex set V from the mesh noisy
values will lose their connectivity to the surface, leaving them as individual points
or as small patches of connected triangles. To increase the noise robustness of
the region estimation, a small patch filtering scheme can be introduced. After the
deletion of estimated region V , thereby interrupting connectivity between noisy
vertices and the surface, the noisy values can be identified as patches of the mesh
that are smaller than a certain threshold of connected triangles.

The threshold value needs to be selected carefully, to small and noisy regions are
not deleted, to large and surface information is lost.
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The small patch filter can be introduced into mesh marching pipeline after region
estimation, and before boundary estimation.

13.2.3 Triangulation

When testing greedy triangulation on Nidaros stone set, the acceptable results
were achieved, especially when the duplicated region X ′ was approximated by
using directional distance. While triangulation in the desk scene test set did not
succeed.

In section 13.1.3 we introduced a possible explanation for these different results of
the triangulation algorithm.

To improve normal estimation function for handle rapid changes of surface normal
in tightly populated neighbourhood we propose to alter the equation 10.1.

The normal weighting scheme is used to increase triangulations resistance towards
noise and sudden changes in surface normal. In our implementation of greedy
algorithm we use equation 10.1 to calculate the weighted normal, where ξi is the
weight of individual normal based on distance between current point pm and vertex
pi in the neighbourhood K, and dmax is the maximum allowed distance in knn-
search. Let K be the neighbourhood of k nearest neighbours, with the maximum
distance from pm to a point in K denoted as dk. If dmax >> dk then the weight of
each neighbours normal ξi is less sensitive to distance variation di ∈ 〈0, dk], than
when distance dk = dmax. Changing the equation 10.1 to

ξi = dk
di
, (13.1)

will result in more sensitivity to individual distance in tightly populated neigh-
bourhood.

This improvement is sensitivity will create a more adjustable weighting scheme
and will be less computationally complex as the one proposed in (Marton et al.,
2009).

By using the vertices to approximate a weighted plane as proposed in (Marton
et al., 2009) the problem with appositive planes will be solved as normal infor-
mation is ignored. This problem only occurs in specific type of situations where
the object of interest could be scanned from every direction. This is not so when
digitalising large objects as monuments and buildings.



Chapter 14

Conclusions and Future Work

In this chapter we draw conclusions about MeshCombine project, based on the
experience and results from the tests. Based on the conclusions we recommend
alternatives for future work and improvement of the MeshCombine tool.

14.1 Conclusions

In this master thesis we proposed, implemented and tested a tool for merging tri-
angular meshes. Our approach does not rely on any information about capturing
process and simply operates on meshes as they are without any additional infor-
mation. All that is required is for a user to import two meshes, low precision model
and high precision data of the same object, and roughly select the region where
the data set is represented in the model, to start mesh combing algorithm which
produces a combined mesh of model and data. To aligned meshes we use Iterative
Closest Point algorithm proposed by Besl and McKay (Besl and McKay, 1992).
For identify region of model mesh that is represented by the data we proposed
two different approaches. We preserve continuity of the mesh by triangulating
the gap, generated by removal of the duplicated region, by a greedy triangulation
approach similar to the one described in (Marton et al., 2009). For rendering the
information on the screen we used OpenGL as API.

To evaluate results we calculate square distance from resulting mesh to a high
precision scan, which is treated as a ground truth for the testing.

ICP algorithm has proven to result in local minima, producing insufficient results,
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and thereby is in need to be improved, by ether provide functionality to set initial
alignment manually by user, or implement are more robust approach.

Region estimation has shown to be more precise when directional distance, in
the direction of vertex’s normal is used, than a spherical, Euclidian, distance.
To increase resistance to noise we propose a small patch filter stage after region
estimation.

Greedy triangulation results have proven to be acceptable, but not optimal, due
the greedy nature of the algorithm.

14.2 Future work

As MeshCombine software only in the starting phase, there are many possibilities
for improvement in the fields of, performance, user experience, and code readability
of the program.

The results of the ICP algorithm has proven to be an acceptable, leading to ne-
cessity to ether implement possibility for manual initial registration, or use a more
robust approach like the one proposed in (Luck et al., 2000). As the purpose
for this software is to ease visualization/digitalization procedures, the automated
approach should be considered before initial manual registration.

The region estimation approaches have proven to produce usable results, especially
directional distance. To improve resistance of region estimation to noisy values in
section 13.2.2 we propose a small patches filter, which will delete unconnected
regions of few triangles. With increased removal of noisy regions, we recommend
using directional distance in the direction of the normal as it proved to estimate
the duplicated region more precisely then spherical distance, Euclidian distance.

Greedy triangulation has proven to function in certain circumstances, with few
unwanted artifacts. Some improvements for weighting on normals are proposed in
section 13.2.3. Greedy nature of the algorithm does not guarantee any qualities of
the resulting mesh, if those qualities are required then a better algorithm should
be implemented, the paper (Pito, 1996) propose a gap stitching algorithm between
two triangular meshes, but this requires to identify mesh boundary in both meshes.
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Appendix A

Overview of MeshCombine
Software

MeshCombine is written in C programming language, as a prototype for mesh
merging tool. It consists of a small graphical user interface, and command line
input/output. The graphics of MeshCombine are rendered by using OpenGL, with
freeGLUT to contain control over rendering pipeline.

A.1 Linking and Compiling

The only external dependencies ofMeshCombine are OpenGL API and FreeGLUT.
Rest of the source code is written in C and follows with this master thesis. To
compile the MeshCombine program the freeGLUT library must be installed on the
computer.

OpenGL function access is different for different operating systems, since the
gl3w.h is configured to operate on windows there no guarantee that the program
will compile on LINUX or Mac OS without minor changes to OpenGL wrangler
library. To achieve total compatibility the freeGLUT and OpenGL offers small OS
dependent wrappers are needed.

The program is written, and compiled by in C79 dialect, which does not affect the
possibility to compile the program in newer versions of C language.

All of the headers are protected by a pre-processor guard, so multiple includes
stamens of the same file will not create conflicts.
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A.2 Architecture

By using FreeGLUT the rendering pipeline follows MVC architectural pattern, A.1.
After the program is invoked and the control-low enter main method, the freeG-
LUT is initiated, and main-loop is started. GlobalVariables.h can be looked upon
as the model of the program which stores all required data for operation, meshes,
orientation, and mouse and keyboard information. The draw function is view of
the program, with extracts data from the model, globalVariables.h, and renders in
appropriately. Keyboard and mouse functions serve in a role of controller, which
changes data in the model and posts signal to glut for redisplay.

Figure A.1: Simplified model of MeshCombine displaying MVC architecture pat-
tern.
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A.3 Dependencies Graph

To give a better insight of how the MeshCombine functions we present the de-
pendencies graph in figure A.2. The nodes in the graph represent a combination
of .c/.h files. (not all .h files are accompanied by .c, to reduce amount of files
needed). An arrow from node a to node b represent that node a uses (includes)
node b in its source code.
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Figure A.2: Dependencies graph for MeshCombine implementation.



Appendix B

Octree Implementation

Octrees are used for their more structure determent structure. In comparison to
balanced kd-trees there little overhead, to delete and add data to an octree. An
advantage of an octree is that leaf nodes can also be looked upon as a grid system,
finding the correct node for an input can be done directly.

The octree implementation in octree.h/c creates a regular octree, meaning that
each node is divided in eight nodes with equal volume, this children creation does
not guarantee that each node will contain same amount of data. For purpose
of dividing a node in eight children a recursive function is used, and eight sub-
functions that allocate, and fill a given children with corresponding values.

Most of the octree procedures are strait forward and does not require a special
mention, except tree creation, addition of data, and trees deletion.

To create a dynamic octree that can contain any type of data the void pointer is
used for data and the responsibility to create data addition function is given to
the user of the library, in a form of function call-back. This is a well used strategy
which is not new for most C programmers.

To elaborate on the matter, a pointer to data addition function is send as an
argument when calling createOctree function. This function pointer is stored in
octTree_t structure, which is opaque, meaning the user of the library don’t have
access to directly manipulate values (in object oriented programming langue this
is similar to object with only private values). When it is required to add data the
user specified function, stored as a function pointer is called with given data.

Similarly when deleting an octree extra precautions must be taken when deleting
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data, since user can add any data to an octree node, user must also specify a
deletion procedure. A pointer to octree deletion function is also send during the
creation process.

An example from MeshCombine program can be found in meshCombine.c. Func-
tion createOctTreeTrangulated encapsulates the procedure and returns a pointer to
newly created tree, functions octTreeAddTriData and deleteDataFnc are add and
delete data functions.

octTreeAddTriData adds triangle information to octrees leaf nodes. Nodes are
chosen based on the vertex information from vertex array. Both triangle index
and vertex arrays must me send as a pointer to octTreeAddTriData.

deleteDataFnc simply deletes triangle information in an appropriate way.



Appendix C

KD-tree Implementation

Kd-tree is well known for logarithmic nearest neighbor search complexity. InMesh-
Combine software we used kd-trees to reduse complexity of ICP pair matching and
k-nearest-neighbour search used in greedy triangulation.

Kd-trees are well known data structure and many libraries exist to create balanced
kd-trees. Our implementation is based on pseudo code found on Wikipedia. We
extended the implementation to include a knn-search function as well. The number
of dimensions is specified in a header as a constant value DIMENSIONS.

The restricted knn-search implemented in kdtree.c/h is implemented in such a way
that it will always return ordered list, from closest to farthest point of the length
k, and is restricted by maximum distance. If there are less than k neighbours that
are within the maximum distance, the return of the list will be order as follows:
first part will contain pointers to all the neighbours with the distance to the target
less that maximum in order previously mentioned, the rest of the list will contain
NULL values.

Creation of the kd-tree is strait forward as this implementation only operates on
float values. A tightly packed array of float is send as an argument of a function
together with int value for size.
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Appendix D

Dynamic List Implementation

A dynamic list or array is common in high level languages as C# or java. The lists
grow as more elements are inserted into the list. Array list are useful when storing
elements in unknown amount. For example when parsing an wavefront .obj file the
amount of vertices in unknown, this can either be solved by “two-pass” when first
time algorithm parse the file in counts the amount of objects, and second time it
stores them in pre-allocated array for known size. Or dynamic arrays/lists can be
used. Dynamic lists introduce a cost of reallocation, but reduce the complexity by
one pass.

To create the dynamic list functionality in C we have implemented a library ar-
raList.h/c. Two types of list have been implemented for our purpose, arrayListf
and arrayListui for floats and unsigned integers respectably.

As overloading of function is not allowed in C the library follows a naming conven-
tion often used in libraries as OpenGL. The name of a structure of a function tell
which type in operates on. For instance a function named addToArrayListf has an
ending ‘f’ for float, while createArrayListui has an ending ‘ui’ for unsigned integer
values. Suffix ‘fv’ stands for float vector and ‘uiv’ for unsigned integer vector,
meaning that the function for example addToArrayListuiv takes as arguments list
pointer that function operates on, array(vector) of unsigned integers values, and
integer size that tell how many values the function shall add to given list.

The first argument on the function, except create function, is a pointer to the list
itself, as C does not support an object oriented feature as keyword this.

DeleteArrayListx function simply frees all the memory associated by provided
pointer. After deletion memory allocated to the list structure have been freed

127



128 APPENDIX D. DYNAMIC LIST IMPLEMENTATION

and because of that using a deleted list pointer after the deletion without chang-
ing the pointes value is there by illegal. Operating on the arraylistx structure that
has been allocated without calling createArrayListx function is not recommended.
Library does not guarantee correct execution, and specially deleteArrayListx func-
tion.



Appendix E

Using C Standard Libraries

The standard C libraries are the responsibilities of creators of the compilers. If
standard libraries are available, it is recommended to use them. The standard
libraries are often heavenly optimised, as macros and or using assembly commands
directly.

We will not discuss all the available standard C functions as this is out of your
scope, this chapter focus namely on one of them, memcpy from string.h header.

Memcpy function copies memory from one location in memory to another. This
function is very effective to copy data from arrays as by using this function we
allow the compiler to optimise the code based on the hardware architecture, and
exploit all the power available of the hardware, in this context this would be a
“perfect” word length to copy.

Instead of moving a value from one location to another, memcpy ignores the type
of data stored in array, and simply copies bytes, as words of maximum length.
Though knowing what a function in a standard library does exactly is not easy,
as behaviour can change due different hardware and or compiler.

Through MeshCombine project we use memcpy function frequently to allow for
maximum optimization.
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