

Algorithms to Identify Failure Pattern Master‘s Thesis

65

8 ANALYSIS AND DISCUSSION

For analysis and evaluation, we should answer the research questions.

RQ1- How is textual data transformed to numeric- data?

The software application is first divided into modules (see chapter 4.11a) and several features

(see chapter 4.11b) and by the process of mapping (chapter 5), textual information of a

software application is transformed to numeric data.

RQ2: What is the most efficient strategy for identifying pattern type?

Among the three algorithms, the Circular method explores all the points around a defect

containing point while the remaining algorithms do not test all the neighbors of a defect-

containing point. Thus, the Circular method is the most efficient and smart method for

identifying failure pattern.

RQ3: How does the efficient algorithm works with non-numeric data?

By the process of mapping (see chapter 5), we can transform a real application into a two-

dimensional input space and a test matrix as shown in figure 5.1.3. Thus, all the algorithms

can use the numeric data, which is generated, in the test matrix.

RQ4: What is the best way to determine the optimal step size?

The value of step size depends on the density of defects in the application and the risk you are

willing to take when making a conclusion. If the density of defects is high we can increase

the value of step size and small step size for low density defect containing application

(discussed in chapter 6.2). If we have few resources available and we need a quicker decision

with a greater risk of being wrong, we can fix a larger step size at the beginning manually.

Assuming the working conditions of processor and defect sets constant, all the algorithms

were executed ten times for each type of pattern and the average executing time was

calculated as shown in table 8.1.

Table 8.1: Execution times of all the algorithms

 Method

Patterns

Time in terms of millisecond (ms)

Simple method Heuristic method Circular Method

Point Patern 142 143

 143

Block Pattern 203 142 281

Strip Pattern 219 143 401

Algorithms to Identify Failure Pattern Master‘s Thesis

66

In terms of time, the cost for point pattern identification was found to be the same for all the

algorithms. For block and strip patterns, however, the Circular method was the most

expensive one and the Heuristic method was the cheapest one.

From the table above we can say that Circular method is the most efficient method when it

comes to identifying patterns but the most expensive one and the Heuristic method is the

fastest and less reliable than other two. When we analyzed the above table 8, we found that:

CA > CS > CH and

(CA > CS + CH)

where we have used

CS = Cost for Simple method

CA = Cost for Circular method

CH = Cost for Heuristic method

If CP is the cost for pattern identification, CE is the cost of the most efficient algorithm and

CR is the cost of Random testing, then just to identify the pattern we don‘t need to explore

all the points if it can be identified by two or three end points. The most efficient algorithm

explores the defect containing points only. But if we take all the test cases randomly, it takes

more time than CP and CE same point may repeat again.

CR > CE > CP

The cost of identifying the pattern is inversely proportional to the step size. If the step size is

small, the algorithm uses more time to identify a pattern, as we have to explore more datasets.

Thus the cost will be high but if we explore more datasets with small a step size, the result

will be more precise. The approximate relation between step size, cost in terms of time and

precision of pattern is shown in the diagram below.

Figure 8.1: Graph showing the effect of step size to the pattern

Algorithms to Identify Failure Pattern Master‘s Thesis

67

9 CONCLUSION AND FUTURE WORK

In this report, I have discussed the concept of mapping a real application into two-

dimensional space (textual to numeric data mapping). Instead of doing a real testing, I

discussed three algorithms and traced them to see if it is possible to identify failure patterns

that are already inserted for simulation purposes. The three algorithms are:

 Simple distance computation method

 Circular method

 Heuristic method

In all of these methods, a first defect is selected randomly and the points around it are

explored. In the Simple distance computation method all the points on the horizontal axis of

the initially selected point are explored first and then all the points of the vertical axis are

explored. In the Circular method, all the points around the selected point are explored in a

circular way – i.e. right neighbor is tested first and then the top neighbor, left and finally

down is explored while in the Heuristic method, as the name implies, a trial-and-error method

which is a short cut way of determining the pattern. In this case, only the end points of the

initially selected point are tested. In the end all the tested data are collected in an array and

boundary test (see chapter 5.4) is performed to identify the pattern of the failure data.

 As all the neighbors of the selected point are tested in the Circular method, this is the most

reliable and efficient method among the three methods but it is costly in terms of execution

time. The Heuristic method, which takes only the end points of a defect containing point, has

the same execution time for all patterns but may mistake a strip pattern for a point pattern.

Thus, the Heuristic method is the cheapest but least reliable method.

While implementing the algorithms for all types of pattern, we saw that the Circular method

is the most expensive one, followed by Simple method and Heuristic method (see table 8.1).

The most important result of this thesis is that we can work on non-numeric data by

transforming the real application into two-dimensional numeric data. In the real world, we

have to work on real application containing non-numeric data sets but the computer cannot

directly recognize the non-numeric data for the computation. For that we divide the

application into modules and list their features. For the transformation to two-dimensional

input spaces, we insert each module at a point on the x-axis and the corresponding features on

the y-axis. We can then map the system‘s features on to numeric data using the functions

explained in chapter 4.18.

Future work:

1. Step size:

We need to find the optimal step size – the lowest possible failure rate at an

acceptable cost. It is assumed that fixing the step size to 1 unit gives a right pattern.

Algorithms to Identify Failure Pattern Master‘s Thesis

68

For the application having high density of defects, large value of step size may also

give a right pattern.

As we took example of small program, there was no need to change the step size.

Usually input domains are large for real application with hundreds of modules and

thousands of features. In that case dynamic change of step size is important. Thus

simulation of step size is kept for future work.

2. Conceptual distance between features (dist(x,y))

Similarity and relatedness between two features can be computed by using the

function dist(x,y). For this function, we need more studies of the analysis of lexicon

relation of synonymy, hyponymy and hyponymy. Because of limited time, I could not

complete this part, which is thus kept for future work.

Algorithms to Identify Failure Pattern Master‘s Thesis

69

10 APPENDICES

 A.1 Tracing of algorithm for Circular Method

The algorithm for the Circular method is given as:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat

step one.

Step 3: Check if the detected point contains defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as a defect and put that point into array defected DF[]

and find its four neighbors.

Step 4. Repeat the process from Step 2 for all the neighbors.

A.1.1 Point Pattern

When the ―Start Checking with Circular method‖ button of the mainframe of the software is

pressed, it starts generating the tests cases randomly and testing whether it contains defectsor

not with the help of the database where all the features are kept along with the seeded defects.

In the end, it computes the type of pattern by performing some type of boundary test

mechanisms (explained in section 5.2).

Figure A1: Main frame of the application

For simulation purpose, this algorithm was repeated 10 times, that is the button was pressed

10 times. Before starting simulation for next type pattern, ‗Reset‘ button was pressed to clear

Algorithms to Identify Failure Pattern Master‘s Thesis

70

the log of DF[] and DT[]. Simulation for point type defect with the Simple distance

computation method is given below:

A.1.11 Attempt 1

Step1: The point P(4,6) was selected.

Step2: First we tested to see whether it was already detected or not by matching the point in

the array list DT[]. As DT[] is null this time no match is found, therefore it is not detected

yet. Then we test whether the feature corresponding to the point P(4,6), contains a defect or

not using the database table ―allDefects‖. It is found that this point is bug free. The algorithm

is then terminated returning the value of the array list DT[] and DF[]and another attempt is

done.

A.1.12 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), it is found that the

selected point is not tested before. With the help of database table we test whether the

selected point contains defect or not. This showed that the point is bug free and the algorithm

is terminated appending the point P(9,8) to DT[]. Till this attempt, no defects are found.

Therefore the array list DF[] which consists only features containing defect are empty.

P(4,6)

P(9,8)

Figure A2: Array List DT[] showing the detected test cases

A.2.13 Attempt 3

Step 1: The point P(3,8) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6) and P(9,8), it is found

that the selected point is not tested before. With the help of the database table we tested to see

whether it contains a defect or not. Which showed that the point is bug free and the algorithm

is terminated appending the point P(3,8) in DT[]. Till this attempt, no defects are found.

Therefore the array list DF[] that consists only features containing defect is empty.

P(4,6)

P(9,8)

P(3,8)

Figure A3: Array List DT[] showing the detected test cases A.2.14 Attempt 4

Algorithms to Identify Failure Pattern Master‘s Thesis

71

A.2.14 Attempt 4

Step 1: The point P(10,2) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8) and P(3,8), it is

found that it is not tested before. With the help of the database table we tested to see whether

it contains defect or not. Which showed that the point is bug free and the algorithm is

terminated appending the point P(10,2) in DT[]. Till this attempt, no defects are found.

Therefore the array list DF[] that consists only features-containing defect is empty.

P(4,6)

P(9,8)

P(3,8),

P(10,2),

Figure A4: Array List DT[] showing the detected test cases

A.2.15 Attempt 5

Step 1: The point P(1,9) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8), P(3,8) and

P(10,2), it is found that the selected point is not tested before. With the help of the database

table we tested to see whether it contains defect or not. Which showed that the point is bug

free and the algorithm is terminated appending the point P(1,9) in DT[]. Till this attempt, no

defects are found. Therefore the array list DF[] that consists only features containing defect is

empty.

P(4,6)

P(9,8)

P(3,8)

P(10,2)

P(1,9)

Figure A5: Array List DT[] showing the detected test cases

A.2.16 Attempt 6

Step 1: The point P(5,1) was selected randomly.

Algorithms to Identify Failure Pattern Master‘s Thesis

72

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8), P(3,8), P(10,2)

and P(1,9), it is found that the point is not tested before. With the help of the database table

we tested to see whether it contains defect or not. Which showed that the point is bug free

and the algorithm is terminated appending the point P(5,1) in DT[]. Till this attempt, no

defects are found. Therefore the array list DF[] that consists only features containing defect is

empty.

P(4,6)

P(9,8)

P(3,8)

P(10,2)

P(1,9)

P(5,1)

Figure A6: Array List DT[] showing the detected test cases

A.2.17 Attempt 7

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8), P(3,8), P(10,2),

P(1,9) and P(5,1), it is found that it is not tested before. With the help of the database table

we tested to see whether it contains defect or not. This time the point P(1,6) is matched to the

point of database table ―allDefects‖. That is feature containing defect is found. As for the

algorithm, the point P(1,6) is appended in DT[] and all the neighbors of the point P(1,6) are

computed. The neighbors are P(2,6), P(1,5) and P(1,7).

Step 3: The algorithm is repeated for all neighbors of point P(1,6). As none of the neighbors

contains defects, the algorithm is terminated putting all the detected points into the array list

DT[]. The array lists DT[] and DF[] contains detected and defected points respectively as

shown in the diagram below.

Algorithms to Identify Failure Pattern Master‘s Thesis

73

P(1,6)

P(4,6)

P(9,8)

P(3,8)

P(10,2)

P(1,9)

P(5,1)

P(1,6)

P(2,6)

P(1,6)

P(1,7)

a b

Figure A7: Array Lists DF[] (a) and DT[] (b) showing the detected test cases

A.2.18 Attempt 8

Step 1: The point P(2,6) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. It is found to be detected as the array list DT[] contains the point P(4,6),

P(9,8), P(3,8), P(10,2), P(1,9) and P(5,1). Therefore the algorithm was terminated.

A.2.19 Attempt 9

Step 1: The point P(1,5) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it detected as the array list DT[] contained the point P(4,6), P(9,8),

P(3,8), P(10,2), P(1,9), P(5,1), P(1,6), P(2,6), P(1,5) and P(1,5). No updates were done in the

array lists DT[] and DF[] as the point was already detected. Therefor the algorithm is then

terminated.

A.2.110 Attempt 10

Step 1: The point P(3,1) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained only the point P(4,6), P(9,8), P(3,8), P(10,2),

P(1,9), P(5,1), P(1,6), P(2,6), P(1,5) and P(1,5), we found the selected point not tested before.

With the help of the database table we tested to see whether it contained defect or not and

found that it did not contain a defect. Therefore the algorithm was terminated. The array lists

Algorithms to Identify Failure Pattern Master‘s Thesis

74

DT[] and DF[] contains detected and defected points respectively as shown in the diagram

below.

Figure A8: Array Lists DF[] (a) and DT[] (b) showing the detected test cases

In the end, when the required number of trial was completed, the array list with the points

having defects was plotted in the graph to see the type of the failure pattern. Plotting was

done in the table containing modules and features by assigning asterisk to the corresponding

location of the point as shown in the figure below:

Figure A9: Point type defect detected by the algorithm

A.1.2 Block Pattern

A.1.21 Attempt 1:

Step1: The point P(6,6) was selected.

Algorithms to Identify Failure Pattern Master‘s Thesis

75

Step2: First we tested to see whether the selected point was already detected or not by

matching the point in the array list DT[]. As DT[] was null this time no match was found,

therefore it was not detected yet. Then we tested to see whether the feature corresponding to

the point P(6,6), contains a defect or not using the database table ―allDefects‖. It was found

that this point was bug free. The algorithm was then terminated returning the value of the

array list DT[] and DF[]and another attempt was done.

A.1.22 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(6,6), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contains defect or not and it was found that the point was bug free and the

algorithm was terminated appending the point P(9,8) to DT[]. Till this attempt, no defects are

found. Therefore the array list DF[], which consists only features containing defect are

empty.

P(6,6)

P(9,8)

Figure A10: Array List DT[] showing the detected test cases

A.2.23 Attempt 3

Step 1: The point P(11,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(6,6) and P(9,8), we found that

it was not tested before. With the help of the database table we tested to see whether it

contains defect or not. This time also the point P(11,6) was not matched to the point of

database table ―allDefects‖. As for the algorithm, the point P(11,6) was appended and another

point was tested. Till this time the array list containing defects was empty.

P(6,6)

P(9,8)

P(9,8)

Figure A11: Array List DT[] showing the detected test cases

Algorithms to Identify Failure Pattern Master‘s Thesis

76

A.2.24 Attempt 4

Step 1: The point P(6,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be detected as the array list DT[] contained the point P(2,8).

Therefore the algorithm was terminated.

A.2.25 Attempt 5

Step 1: The point P(3,4) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] does not contain the point P(3,4), we found that it was

not tested before and the point was put into DT[]. With the help of the database table we

tested to see whether the selected point contains defect or not. This time, the point P(3,4) was

matched to the database table ―allDefects‖. That is feature-containing defect was found. As

for the algorithm, the point P(3,4) was appended in DF[] and all the neighbors of the point

P(3,4) were computed. The neighbors were P(2,4) and P(4,4), P(3,3) and P(3,5).

Step 3: The algorithm was repeated for all neighbors of point P(3,4). Point P(4,4) was taken

first, which was not defect containing point then P(3,3) was taken, where we found error and

its neighbors were computed and tested to see whether they contain defect or not. For each

point step 2 was repeated and finally the defect containing features were collected in array

DF[] and detected features are collected in DT[].

a

b

Figure A12: Array List DT[] and DF[]

A.1.3 Strip Pattern

A.2.31 Attempt 1

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. Initially, as the array list DT[] was empty, we found that it was not tested

before. With the help of the database table we tested to whether it contains defect or not. The

point P(1,6) was matched to the point of database table ―allDefects‖. That is feature-

containing a defect was found. As for the algorithm, the point P(1,6) was appended in DT[]

and all the neighbors of the point P(1,6) were computed. The neighbors are P(1,5) and P(1,7).

P(3,1 … P(3,5) P(6,6) P(9,8) P(11,6)

P(3,1 … P(3,5)

Algorithms to Identify Failure Pattern Master‘s Thesis

77

Step 3: The algorithm was repeated for all neighbors of point P(1,6). Point P(2,6) was tested

first, which was not a defect containing point then P(1,5) was tested, where we found error

and its neighbors were computed and tested to see whether they contain defect or not. For

each point step 2 was repeated and finally the defect containing features were collected in

array DF[] and detected features were collected in DT[] as shown in figure A13.

a

b

Figure A13: Array List DT[] and DF[]

A.1.22 Attempt 2:

Step 1: The point P(5,5) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(5,5), the selected point was

not tested before. With the help of database table we tested to see whether the selected point

contained defect or not and we found that the point was bug free and the algorithm was

terminated appending the point P(5,5) to DT[].

A.1.23 Attempt 3:

Step 1: The point P(10,9) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(10,9), the selected point was

not tested before. With the help of database table we tested to see whether the selected point

contains defect or not and we found that the point was bug free and the algorithm was

terminated appending the point P(10,9) to DT[].

A.1.34 Attempt 4:

Step 1: The point P(1,9) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained the point P(1,9), the selected point was

already tested before. The algorithm was then terminated.

A.2.25 Attempt 5

Step 1: The point P(3,5) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(3,5), we found that it was

P(1,1) P(1,2) P(1,3) P(1,4) P(1,5) P(1,6) P(1,7) P(1,8) P(1,9) P(1,10) P(1,11) P(1,12)

P(1,1) P(1,2) P(1,3) P(1,4) P(1,5) P(1,6) P(1,7) P(1,8) P(1,9) P(1,10) P(1,11) P(1,12) P(2,1) .. P(2,12)

Algorithms to Identify Failure Pattern Master‘s Thesis

78

not tested before and the point was put into DT[]. With the help of the database table we

tested to see whether the selected point contained defect or not. This time also, the point

P(3,5) was matched to the point of database table ―allDefects‖. That is feature-containing a

defect was found. As for the algorithm, the point P(3,4) was appended in DF[] and all the

neighbors of the point P(3,5) were computed. The neighbors were P(2,5) and P(4,5), P(3,4)

and P(3,6).

Step 3: The algorithm was repeated for all neighbors of point P(3,4). Point P(4,5) was tested

first, which was not defect containing point then P(3,4) was tested, where we found error and

its neighbors were computed and tested to see whether they contain defect or not. For each

point step 2 was repeated and finally the defect containing features are collected in array DF[]

and detected features were collected in DT[] as shown in figure A14.

Figure A14: DF[]

A.2 Tracing of algorithm for the Simple Distance Computation Method

The algorithm for the Simple Distance Computation method is given as:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[].

Otherwise repeat step one.

Step 3: Check if the detected point contains a defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as defected and put that point into array defected DF[]

Step 4: Take one point from neighbor along X-axis and repeat the process

from Step 2.

Step 5: Take one point from the neighbor of the initial point along Y-axis

and repeat the process from Step 2.

P(1,1) P(1,2)

…………
…

P(1,12) P(3,1) P(3,2) P(3,5)

Algorithms to Identify Failure Pattern Master‘s Thesis

79

A.2.1 Point Pattern

When the ―Start Checking with Simple method‖ button of the mainframe of the software was

pressed, it started generating the tests cases randomly and testing whether it contains defects

or not with the help of the database where all the features were kept along with the seeded

defects. In the end, it computed the type of pattern by performing some type of boundary test

mechanisms (explained in section 5.2).

Figure A15: Main frame of the application

For simulation purpose, this algorithm was repeated 10 times, that is the button was pressed

10 times. The result is given below:

A.2.11 Attempt 1:

Step1: The point P(10,6) was selected.

Step2: First we tested to see whether it was already detected or not by matching the point in

the array list DT[]. As DT[] was null this time no match was found, therefore it was not

detected yet. Then we tested to see whether the feature corresponding to the point P(10,6),

contains a defect or not using the database table ―allDefects‖. We found that this point was

bug free. The algorithm was then terminated returning the value of the array list DT[] and

DF[] and another attempt was done.

A.2.12 Attempt 2:

Step 1: The point P(8,8) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(10,6), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contains defect or not. This showed that the point was bug free and the

algorithm was terminated appending the point P(8,8) to DT[]. Till this attempt, no defects

were found. Therefore the array list DF[] which consists only features containing defect was

empty.

Algorithms to Identify Failure Pattern Master‘s Thesis

80

P(10,6)

P(8,8)

Figure A16: Array List DT[] showing the detected test cases

A.2.13 Attempt 3

Step 1: The point P(7,2) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(10,6) and P(8,8), we found

that the selected point was not tested before. With the help of the database table we tested to

see whether it contains a defect or not. Which showed that the point was bug free and the

algorithm was terminated appending the point P(7,2) in DT[]. Till this attempt, no defects

were found. Therefore the array list DF[] that consists only features containing defect was

empty.

P(10,6)

P(8,8)

P(7,2)

FigureA17: Array List DT[] showing the detected test cases A.2.14 Attempt 4

A.2.14 Attempt 4

Step 1: The point P(9,2) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(10,6), P(8,8) and P(7,2), we

found that it was not tested before. With the help of the database table we tested to see

whether it contains defect or not. Which showed that the point was bug free and the algorithm

was terminated appending the point P(9,2) in DT[]. Till this attempt, we did not find any

defect. Therefore the array list DF[] that consists only features-containing defect was empty.

P(10,6)

P(8,8)

P(7,2)

P(9,2)

FigureA18: Array List DT[] showing the detected test cases

Algorithms to Identify Failure Pattern Master‘s Thesis

81

A.2.15 Attempt 5

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P P(10,6), P(8,8), P(7,2) and

P(9,2), we found that the selected point was not tested before. With the help of the database

table we tested to see whether it contains defect or not. Which showed that the point

contained bug and according to the algorithm, step 4 and step 5 were repeated until we found

error containing points along X-axis and Y-axis of the initial point P(1,6).

P(10,6)

P(8,8)

P(7,2)

P(9,2)

P(1,2)

FigureA19: Array List DT[] showing the detected test cases

A.2.2 Block Pattern

A.2.21 Attempt 1:

Step1: The point P(8,3) was selected.

Step2: First we tested to see whether the selected point was already detected or not by

matching the point in the array list DT[]. As DT[] was null this time no match was found,

therefore it was not detected then. Then we tested to see whether the feature corresponding to

the point P(8,3), contained a defect or not using the database table ―AllDefects‖. We found

that this point was bug free. The algorithm was then terminated returning the value of the

array list DT[] and DF[] and another attempt was done.

A.2.22 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained only the point P(8,3), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contained defect or not and we found that the point was bug free and the

algorithm was terminated appending the point P(9,8) to DT[]. Till this attempt, no defects

were found. Therefore the array list DF[], which consists only features containing defect are

empty.

Algorithms to Identify Failure Pattern Master‘s Thesis

82

P(8,3)

P(9,8)

FigureA20: Array List DT[] showing the detected test cases

A.2.23 Attempt 3

Step 1: The point P(7,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(8,3) and P(9,8), we found that

it was not tested before. With the help of the database table we tested to see whether it

contained defect or not. This time also, the point P(7,6) was not matched to the point of

database table ―AllDefects‖. As for the algorithm, the point P(7,6) was appended in DT[] and

another attempt was done.

P(8,3)

P(9,8)

P(7,6)

FigureA21: DT[]

A.2.24 Attempt 4

Step 1: The point P(3,1) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be not detected as the array list DT[] did not contain the point

P(2,8). Then the point P(3, 1) was checked in the database table containing defects. As we

found the point P(3,1) in ‗AllDefects‘, it was a point containing a defect. So it was inserted

into the array DF[] and its neighbors along X- axis were explored but no neighbor in X-axis

contained a defect. Then the neigher of P(3, 1) along Y- axis were explored where we found

P(3, 2), P(3, 3), P(3, 14) and P(3, 5) were containing error. Thus these points were inserted

into the array DF[] and terminated the algorithm.

A.2.25 Attempt 5

Step 1: The point P(3,3) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be detected as the array list DT[] contains the point P(3,3).

Therefore the algorithm was terminated

Algorithms to Identify Failure Pattern Master‘s Thesis

83

a

b

Figure A22: DF[] and DT[]

A.2.3 Strip Pattern

A.2.21 Attempt 1:

Step1: The point P(8,3) was selected.

Step2: First we tested to see whether the selected point was already detected or not by

matching the point in the array list DT[]. As DT[] was null this time no match was found,

therefore it was not detected. Then we tested to see whether the feature corresponding to the

point P(8,3), contains a defect or not using the database table ―allDefects‖. We found that this

point was bug free. The algorithm was then terminated returning the value of the array list

DT[] and DF[] and another attempt was done.

A.2.22 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained only the point P(8,3), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contains defect or not and we found that the point was bug free and the

algorithm was terminated appending the point P(9,8) to DT[]. Till this attempt, no defects

were found. Therefore the array list DF[], which consists only features containing defect was

empty.

P(8,3)

P(9,8)

Figure A23: Array List DT[] showing the detected test cases

A.2.23 Attempt 3

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(8,3) and P(9,8), we found that

P(3,1) .. P(3,5)

P(3,1) .. P(3,5) P(9,8) P(9,8) P(7,6)

Algorithms to Identify Failure Pattern Master‘s Thesis

84

it was not tested before. With the help of the database table we tested to see whether it

contains defect or not. This time, the point P(1,6) was matched to the point of database table

―allDefects‖. That is feature-containing defect was found. As for the algorithm, the point

P(1,6) is appended in DT[] and the neighbors along the X – axis and Y- axis of the point

P(1,6) are computed and tested.

Step 3: Along X-axis, we kept on testing the next point along X-axis if we found the detected

point as a defect. After completing testing along X-axis the same process was repeated on Y-

axis.

A.2.24 Attempt 4

Step 1: The point P(2,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be detected as the array list DT[] contains the point P(2,8).

Therefor the algorithm was terminated.

A.2.25 Attempt 5

Step 1: The point P(3,4) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(3,4), we found that it was

not tested before and the point was put into DT[]. With the help of the database table we

tested to see whether the selected point contains defect or not. This time also, the point P(3,4)

was matched to the point of database table ―allDefects‖. That is feature-containing defect

was found. As for the algorithm, the point P(3,4) was appended in DF[] and [] and the

neighbors along the X – axis and Y- axis of the point P(3,4) are computed and tested.

Step 3: Along X-axis, we kept on testing the next point along X-axis if we found the detected

point as a defect. After completing testing along X-axis the same process was repeated on Y-

axis. Following figures (a) and (b) shows the defects containing points and detected points.

Figure A24: DF[]

Figure A25: DT[]

P(1,2) . P(1,11) P(3,1) P(3,2) P(3,5) P(4,5) P(3,1) P(3,2) …….. P(3,5)

P(1,2)
…….

P(1,11) P(3,1) P(3,2) P(3,5)

Algorithms to Identify Failure Pattern Master‘s Thesis

85

A.3 Flowchart of the Simple Distance Computation Method

Algorithms to Identify Failure Pattern Master‘s Thesis

86

Algorithms to Identify Failure Pattern Master‘s Thesis

87

Algorithms to Identify Failure Pattern Master‘s Thesis

88

A.4 Flowchart of the Circular Method

Algorithms to Identify Failure Pattern Master‘s Thesis

89

Algorithms to Identify Failure Pattern Master‘s Thesis

90

Algorithms to Identify Failure Pattern Master‘s Thesis

91

A.5 Flowchart of the Heuristic Method

Algorithms to Identify Failure Pattern Master‘s Thesis

92

Algorithms to Identify Failure Pattern Master‘s Thesis

93

Algorithms to Identify Failure Pattern Master‘s Thesis

94

11 BIBLIOGRAPHY

[1] F.T. Chan, T.Y. Chen, I.K. Mak, Y.T. Yu, Proportional sampling strategy:

guidelines for software testing practitioners, Information and Software Technology 38

(12) (1996) 775–782.

[2] Mirror adaptive random testing , T.Y. Chen, F.-C. Kuo, R.G. Merkel, S.P. Ng,

2004

LNCS 2349.

[3] T.Y. Chen, T.H. Tse, Y.T. Yu, Proportional sampling strategy: a compendium and

some insights, The Journal of Systems and Software 58 (2001) 65–81.

 [4] R. Cobb, H.D. Mills, Engineering Software under Statistical Quality Control,

IEEE Software 7 (1990) 44–56.

 [5] I.K. Mak, On the effectiveness of random testing, Master Thesis, Department of

Computer Science, University of Melbourne, Australia, 1997.

[6] H.D. Mills, M. Dyer, R.C. Linger, Cleanroom software engineering, IEEE

Software 3 (1986) 19–24.

[7] G. Myers, The Art of Software Testing, Wiley, New York, 1979.

[8] R.A. Thayer, M. Lipow, E.C. Nelson, Software Reliability, NorthHolland,

Amsterdam, 1978.

[9] T.Y Chen, H.Leung and I.K Mak. Adaptive Random Testing. 2004

[10] Hong Zhu. Adequate Testing of Computer Software. An Online Book on

Software Testing, 1995.

[11] http://en.wikipedia.org/wiki/Verification_and_validation_(software)

[12] Efficient and Effective Random Testing Using the Voronoi Diagram, T. Y. Chen

and Robert Merkel

[13] P. E. Ammann and J. C. Knight, ―Data diversity: an approach to software fault

tolerance,‖ IEEE Transactions on Computers, vol. 37, no. 4, pp. 418–425, April 1988.

[14] Chan, F.T., Chen, T.Y., Mak, I.K., Yu, Y.T.: Proportional sampling strategy:

guidelines for software testing practitioners. Information and Software Technology

38 (1996) 775–782

[15] http://www.utdallas.edu/~ewong/SYSM-6310/03-Lecture/02-ART-paper-01.pdf

[16] http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-17756

http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://www.utdallas.edu/~ewong/SYSM-6310/03-Lecture/02-ART-paper-01.pdf
http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-17756

