
Algorithms to identify failure pattern

Bhuwan Krishna Som
Poudel

Master in Information Systems

Supervisor: Tor Stålhane, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Algorithms to Identify Failure Pattern Master‘s Thesis

i

ACKNOWLEDGEMENT

I would like to thank my supervisor, Professor Tor Stålhane for giving me opportunity to

work with him and for helping me by giving feedback on my work time to time. I would also

like to express my gratitude towards Dr. Surya Bahadur Kathayat who provided me

guidelines in the research process.

Algorithms to Identify Failure Pattern Master‘s Thesis

ii

ABSTRACT

This project report was written for ―Algorithms to Identify Failure Pattern‖ at NTNU

(Norwegian University of Science and Technology), IME (Faculty of Information

Technology, Mathematics and Electrical Engineering) and IDI (Department of Computer

Science).

In software application, there are three types of failure pattern: point pattern, block pattern

and stripe pattern. The purpose of the report is to prepare an algorithm that identifies the

pattern in a software application. Only theoretical concept is written in this report. My goal is

to compare these algorithms and find the efficient one.

The report is written in the period from February 2013 to June 2013.

Algorithms to Identify Failure Pattern Master‘s Thesis

iii

CONTENTS

Acknowledgement .. i

Abstract .. ii

Lists of tables ... v

Lists of figures .. vi

1 Introduction and Problem statements ... 1

1.1 Introduction ... 1

1.2 Problem definition ... 1

1.3 Research Questions: .. 2

2 State of the Art .. 3

2.1 Point type pattern .. 6

2.2 Block type pattern ... 7

2.3 Stripe type pattern ... 8

3 Purpose of Testing .. 10

3.1 To assure quality ... 10

3.2 Validity and verification.. 10

3.3 Reliability estimation .. 11

4 Algorithms .. 12

4.1 Some often used terms: ... 12

4.2 Simple distance computation method ... 15

4.3 Circular method ... 17

4.4 The heuristic method ... 18

5 Mapping .. 21

5.1 The purpose of mapping .. 21

5.2 Related and Similar features: .. 25

5.3 Rules for mapping ... 27

5.4 Boundary test... 27

6 Scenario Description ... 29

6.1 Features with modules ... 33

6.3 Step Size .. 34

Algorithms to Identify Failure Pattern Master‘s Thesis

iv

7 Experiments .. 35

7.1 Defects Seeding ... 35

7.2 Algorithms Tracing ... 37

7.2.1 Algorithm tracing for Simple distance computation method 37

7.2.2 Algorithm tracing for Circular method .. 47

7.2.3 Algorithm tracing for Heuristic method .. 56

8 Analysis and Discussion ... 65

9 Conclusion and future work ... 67

10 Appendices .. 69

A.1 Tracing of algorithm for Circular Method .. 69

A.1.1 Point Pattern.. 69

A.1.2 Block Pattern .. 74

A.1.3 Strip Pattern .. 76

A.2 Tracing of algorithm for the Simple Distance Computation Method 78

A.2.2 Block Pattern .. 81

A.2.3 Strip Pattern .. 83

A.3 Flowchart of the Simple Distance Computation Method .. 85

A.4 Flowchart of the Circular Method ... 88

A.5 Flowchart of the Heuristic Method ... 91

11 BIBLIOGRAPHY ... 94

Algorithms to Identify Failure Pattern Master‘s Thesis

v

LISTS OF TABLES

Table 5.1: Table showing properties of different modules ... 25

Table 5.2: Table showing the neighbors of a point ... 26

Table 5.3: Boundaries of application .. 27

Table 6.1: defects in database table... 31

Table 7.1: Point type defect seeding in real application (shows defects in sixth feature of

―LoginForm‖ module and ―FeatureDisplay‖ Module) 40

Table 7.2: Block pattern detected by the algorithm .. 43

Table 7.3: Geometric structure of the defects. .. 44

Table 7.4: Strip pattern detected by the algorithm. ... 46

Table 7.5: Point type defect seeding in real application(shows defects in sixth feature of

―LoginForm‖ module and ―FeatureDisplay‖ Module) 49

Table 7.6: Block pattern detected by the algorithm .. 52

Table 7.7: Geometric structure of the defects ... 53

Table 7.8: Strip pattern detected by the algorithm .. 55

Table 7.9: Point type defect seeding in real application(shows defects in sixth feature of

―LoginForm‖ module and ―FeatureDisplay‖ Module) 58

Table 7.10: Block pattern detected by the algorithm .. 61

Table 7.11: Geometric structure of the defects ... 62

Table 7.12: Strip pattern detected by the algorithm .. 64

Table 8.1: Execution times of all the algorithms .. 65

Algorithms to Identify Failure Pattern Master‘s Thesis

vi

LISTS OF FIGURES

Figure 2.1: Partition Adaptive Random Testing... 4

Figure 2.2: Mirror adaptive random testing ... 6

Figure 2.3: Point type pattern ... 7

Figure 2.4: Block type pattern .. 7

Figure 2.5: Stripe type pattern .. 8

Figure 4.1: All patterns in a single application... 12

Figure 4.2: MainFrame of the application .. 13

Figure 4.3: process showing simple distance computation method with step size 1 15

Figure 4.4: Process showing the Circular method .. 17

Figure 4.5: Process showing Heuristic method .. 19

Figure 5.1: Two-dimensional view of application ... 22

Figure 5.2: Sequence diagram of mapping ... 22

Figure 5.3: User Login Form .. 23

Figure 6.1: Different modules of software tool .. 31

Figure 6.2: Snapshots showing plotting of pattern ... 31

Figure 6.3: Use case diagram of the system ... 32

Figure 6.4: Sequence diagram of the system .. 33

Figure 7.1: Point type defect seeding ... 39

Figure 7.2: Point type defect seeding in tabular form .. 40

Figure 7.3: Point type defect detected by the algorithm ... 41

Figure 7.4: Block type defect seeding .. 42

Figure 7.5: Block type defect seeding in tabular form ... 43

Figure 7.6: Strip type defect seeding .. 45

Figure 7.7: Strip type defect seeding in tabular form ... 46

Figure 7.8: Point type defect seeding ... 48

Figure 7.9: Point type defect seeding in tabular form .. 49

Figure 7.10: Point type defect detected by the algorithm ... 50

Figure 7.11: Block type defect seeding .. 51

Algorithms to Identify Failure Pattern Master‘s Thesis

vii

Figure 7.12: Block type defect seeding in tabular form ... 52

Figure 7.13: Strip type defect seeding .. 54

Figure 7.14: Strip type defect seeding in tabular form ... 55

Figure 7.15: Point type defect seeding.. 57

Figure 7.16: Point type defect seeding in tabular form... 58

Figure 7.17: Point type defect detected by the algorithm ... 59

Figure 7.18: Block type defect seeding .. 60

Figure 7.19: Block type defect seeding in tabular form ... 61

Figure 7.20: Strip type defect seeding .. 63

Figure 7.21: Strip type defect seeding in tabular form ... 64

Figure 8.1: Graph showing the effect of step size to the pattern .. 66

Algorithms to Identify Failure Pattern Master‘s Thesis

1

1 INTRODUCTION AND PROBLEM STATEMENTS

1.1 Introduction

The dependency on computer system has been steadily increasing and thus, the quality of the

systems becomes more and more important. This can be partly done by testing the software

part of the systems using appropriate testing mechanism.

Software testing is an activity that helps to assure the quality of software under test, by

detecting bugs before serious failures takes place during operation. The inputs that are used

for testing are called test cases and those that lead to software failures are called defects or

failure causing inputs. Due to limited resources and huge set of possible inputs to the

software under test, it is impossible to do exhaustive testing but if we identify how the defects

are distributed in the input domain, it will be easier to reveal failures. According to Chen et

al. [1,9], the defects or failure causing inputs can be distributed in a software input domain in

three different ways. Some defects may be distributed all over the input domain while others

make some types of clusters along an area in the software domain. Chen et al. categorized

those failure-causing inputs into three categories: point pattern, block pattern and stripe

pattern.

Test case selection is a time consuming and costly task in software engineering. Once the

type of pattern is identified, we can apply the appropriate testing mechanism for the selection

of the test cases in that particular software domain. There are different types of testing

mechanisms that can be used for testing and removing the defects and a short description of

the testing mechanisms are given in the section State of the art.

1.2 Problem definition

The selection of the most efficient testing method depends on the types of failure pattern in

the software system. The problem here is to identify the type of failure pattern before testing

the software. In this paper I have discussed three algorithms that can be used to find the

failure pattern that exists in a software application. The algorithm first selects a point-

containing defect in the input domain and finds the other defects around it. It then categories

the types of defects into one of the three failure patterns i.e. point, stripe and block, thus

making testing faster and thus, cheaper. Only the simulation of the algorithm is done to wee if

it is possible to identify failure patterns that are already inserted for simulation purposes. I

made real defects in a software application that is used for this simulation process assuming

that the features with defects are clustered in the same way as defects are clustered in code.

For the simulation, we first made the real defects in features and tested with the algorithm to

identify a pattern.

Algorithms to Identify Failure Pattern Master‘s Thesis

2

1.3 Research Questions:

RQ1- How is textual data transformed to numeric- data?

RQ2 - What is the most efficient strategy for identifying pattern type?

RQ3 – How does the efficient algorithm works with non-numeric data?

RQ3 - What is the best way to determine step size?

The step size is the value of distance by how much we move from one point to another. In our

case, it is the distance from one feature to another. This is explained in section step size 4.

Algorithms to Identify Failure Pattern Master‘s Thesis

3

2 STATE OF THE ART

The orientation, shape, size and location of the geometric structure of the failure causing

inputs in the input program under test is a topic of great interest in software engineering. A

number of researchers have looked both theoretically and empirically at the types of failure

patterns present in programs. Ammann and Knight [1988] observed that failure causing

inputs tended to be clustered together in contiguous regions of the input space with varying

cross-section sizes and also observed the existence of continuous failure regions in a missile

launch control program [13]. Bishop in 1993 observed that many programs have contiguous

areas of failures in some parts of the input domain. Also - according to them (Ammann and

Knight, Bishop), the parts of the input domain that contains failure causing inputs are most

often contiguous [12]. In the field of testing, researches are mainly focused on finding

methods for the improvement of faultfinding effectiveness random testing [12]. Random

testing is a testing approach in which inputs are selected randomly.

Regarding the issue of test input generation, two different techniques are possible: either the

deterministic way, or the probabilistic way. Deterministic testing is the mostly focused

technique in the field of testing, with focus on coverage of either a structural (i.e. white box)

model of the software or a functional (i.e. black box) model of the software (see e.g., [Myers

1979, Howden 1987, Beizer 1990, Roper 1992]). As for functional test criteria, emphasis is

put on the coverage of black box models of the program provided by the software

specifications, whether they are informal or whether they are semi-formal (i.e. graphical).

Concerning the probabilistic generation, the conventional random testing approach involves

exercising the software with inputs that are randomly generated according to a uniform

distribution over the input domain (see e.g. [DeMillo et al. 1978, Ntafos 1981, Duran and

Ntafos 1984]). But the fault revealing power of this approach is questionable: uniform testing

is probably the poorest test strategy, since it does not take into account information relative to

the target piece of software [7].

Ad Chen et al. [1, 9] observed that most of the faulty programs contain certain type of

failures occurring in regular pattern throughout the input domain. According to him, inputs

that are close to each other in the domain tend to go through the same path. Thus, in order to

find most of the errors, test cases should be spread as much as possible. In the last few years,

Chen purposed four approaches for the proper distribution of the test cases [Jonas G. Brustad,

2012].

 Partition Adaptive Random Testing

 Basic Adaptive Random Testing - ART

 Basic Random Testing

 Mirror Adaptive Random Testing – MART

Algorithms to Identify Failure Pattern Master‘s Thesis

4

For the explanation of the above different types of random testing, some assumptions are

done:

 D: input domain type

 n: number of test cases

 m: number of test that fail

 F = D/m

The larger the value of m, the smaller will be the failure rate and the smaller the value of m

the larger will be the failure rate.

Probability of failure rate is given by

 = 1/F and

Frel = Fobs *

Where Frel is real failure rate and Fobs is observed failure rate

Partition Adaptive Random Testing:

In this method test cases are selected by continuously partitioning the input domain. If C is

the input domain that extends from (Xmin, Ymin) to (Xmax, Ymax), a point (X1, Y1) is randomly

selected and from the location of the selected point the domain is divided into four parts (R1,

R2, R3, R4) as shown in the figure 2.1 below.

 (Xmax, Ymax)

 R1

 T = R2

 T = R2

 (X2, Y2)

 (X1, Y1)

 R3

 R4

 (Xmin, Ymin)

Figure 2.1: Partition Adaptive Random Testing

Among these four partitions, the largest part is selected for the next test case and the

processes are repeated until a failure containing point is found.

Algorithms to Identify Failure Pattern Master‘s Thesis

5

Basic Adaptive Random Testing:

In Adaptive Random testing, test cases are selected on the basis of previous records. The

Euclidean distance is calculated between the previously selected test cases and new test case

is selected on the basis of the calculated distance.

For the selection of best data, Jonas G. Brustad [16] found an algorithm.

Maximum distance algorithm:

Function select_the_Best_Data(select_set, candidate_set, total_number_of_candidates);

best_distance: = -1.0;

for i: = 1 to otal_number_of_candidates do

candidate:= randomly generate one test data from the program input domain, the test data

cannot be in candidate_set nor in selected_set;

candidate_set:= candidate_set + {candidate};

nim_candidate_distance:= Max_Integer;

foreach j in selected_set do

min_candidate_distance:= Minimum (min_candidate_distance, Euclidean_Dostance(j,

candidate));

end_foreach

if best_distance < min_candidate_distance) then

 best_data: = candidate;

 best_distance: = min_candidate_distance;

end_if

end_for

return best_data;

end_function

Example:

Let T and C are the already executed tests and candidate test set respectively.

 T = {t1, t2} where t1 = (1, 1), t2 = (3, 4)

 C = {} where c1 = (1, 2), c2 = (3,4)

Using the above maximum distance algorithm we get

j = 1 => (c1, t1) dist = 1.0, (c1, t2) dist = 2.8

j = 2 => (c2, t1) dist = 2.0, (c2, t2) dist = 3.0

Minimum distance, min(dist) = 1.0 and first distance larger than min(dist) is 2.0. Hence next

test case is C2 = (3, 1)

Algorithms to Identify Failure Pattern Master‘s Thesis

6

Basic Random Testing:

In the Basic Random Testing methodology, every test case is selected randomly.

Mirror Adaptive Random Testing (MART):

In MART, the input domain is divided into several partitions. Adaptive random testing is

applied to one of the partitions and duplicate test cases are generated in all the remaining

partitions. The more the number of partitions better is the distribution of test cases.

X2Y1

X2Y2

X4Y2

X4Y1

Figure 2.2: Mirror adaptive random testing

X2Y1 : X is bisected, Y is unchanged

X2Y2 : both X and Y are bisected

X4Y2 : X is split into four parts, Y ino two parts.

X4Y1 : X is split into four parts, Y is unchanged.

Adaptive random testing spreads the tests cases by computing the distance between them,

while random testing selects test cases without taking care of the previously selected test

cases. Thus, it is slower than random testing. Mirror adaptive random testing is a variant of

random testing where distance computation is done only in a small portion or the input

domain.

Exclusion Factor (f)

This factor will force the new tests away from the tests that have already been run and

depends upon the failure rate and the failure pattern.

According to Chen et al., error patterns are categorized into three categories.

2.1 Point type pattern

In a point pattern, the defects are distributed throughout the input domain. There is not any

type of pattern or geometric structure between the defects when the defects are organized in

Algorithms to Identify Failure Pattern Master‘s Thesis

7

point type patterns. The following figure 2.3 shows how defects are distributed in a point type

failure pattern.

INTEGER X, Y, Z

INPUT X, Y

IF(X mod 4 = 0 and Y mod 6 = 0)

THEN

Z = X/2 * Y

 // correct statement is: Z = X / 7 * Y

ELSE

 Z = X * Y;

OUTPUT Z

Figure 2.3: Point type pattern

2.2 Block type pattern

If the defects are grouped at one place it is called a block type pattern. In a block pattern,

defects are contiguously arranged at one place making a small sub-domain of the input

domain in which the structure of the area covered by the defects is of a rectangular type. It

does not have to be the shape of a rectangle, but if we draw a rectangle around this area, then

all the defects lie inside the rectangle. Some possible shapes of the block type pattern are

shown in the figure 2.4 below.

INTEGER X, Y, Z

INPUT X, Y

IF(X >= 10 AND Y <=11)

THEN

 Z = X/2 * Y

// correct statement is : Z = X/7 * Y

ELSE

 Z = X * Y

OUTPUT Z

Figure 2.4: Block type pattern

Algorithms to Identify Failure Pattern Master‘s Thesis

8

2.3 Stripe type pattern

As in block pattern, the defects of the stripe pattern are also clustered in one place but the two

ends of the pattern touches the borders of the input domain. The shape of the structure of the

area covered by defects is a stripe where the length of the area covered usually is much

greater than its breadth. This is shown in the figure 2.4 below.

INTEGER X, Y, Z

INPUT X, Y

IF(2 * X – Y > 10)

 // should be if (2 * X – Y > 18)

THEN

Z = X / 2 * Y

ELSE

Z = X * Y

OUTPUT Z

Figure 2.5: Stripe type pattern

According to Chen et al., stripe and block patterns of failure occur more frequently than point

patterns [2]. White-box testing and black box testing are the two common approaches to test

the generated cases. White-box testing considers the structure of the program under test while

black-box testing selects the test cases without considering the internal structure and

functions of the program under test. In this paper, I have considered only black box testing

and white box testing is out of the scope of my thesis.

Black-box testing techniques are the most used tests to test software applications. A person

with no information or very little knowledge of the application can do black box testing.

Random testing is one of the black-box techniques in which test cases are selected randomly

under the assumption of uniform distribution of inputs. Random testing is a commonly used

technique by practitioners [4, 6, 8] since it is intuitively simple, easy to implement and can be

used to estimate the reliability of the software system. The system‘s reliability is expressed in

terms of probability (described in section 5.2.1).

 Reliability (R) = 1 – P(Ѳ)

 where P(Ѳ) is the probability of finding a defect.

As the cases are randomly selected from the input domain without considering the

information of the program under test, generated test cases may be too close. Thus, Adaptive

Random Testing (ART) [3, 5] has been proposed to enhance random testing for non-point

failure patterns. In ART, computing some distance with the previously selected test cases will

spread the test cases evenly. It has greater chances of hitting the non-point failure pattern

since it prevents the selection of test cases from the same region as the previously selected

test cases.

Algorithms to Identify Failure Pattern Master‘s Thesis

9

Only the rate of failure-causing inputs is used in the measurement of effectiveness in

random testing studies. For example, the expected number of failures detected and the

probability of detecting at least one failure are all defined as functions of the failure rates.

However, in a recent study by Chan et al. [14], it has been found that the performance of a

partition testing strategy depends not only on the failure rate, but also on the geometric

pattern of the failure-causing inputs [15]. This has prompted the researchers to investigate

whether the performance of random testing can be improved by taking the patterns of failure-

causing inputs into consideration. So they developed adaptive random testing. Their studies

show that adaptive random testing outperforms ordinary random testing, as the effectiveness

of random testing can be significantly improved without incurring significant overheads.

All research activities within random testing is done on how to select proper test case so that

the test cases are distributed to cover the input domain of the software application in the best

possible way. This will reduce the probability of missing a defect. I have tried to extend this

research. Once a defect is found somewhere in the input domain, there is a high probability of

finding other defects near it. I therefore tried to identify the pattern of the defects grouped in

one place.

In real applications, all defects are not in integer form but in text and in clicking on icons or

form, so it is difficult to apply the algorithms (chapter 4) directly to the text type of input.

Thus, those features need to be mapped onto a 2-dimensional space (discussed in chapter 5),

from where we can get the numerical data that are suitable for the algorithms that I described

in chapter 4.

Algorithms to Identify Failure Pattern Master‘s Thesis

10

3 PURPOSE OF TESTING

For any software developer, at some point, there is a pressure to meet the deadline to release

the software product. Even if we use the best techniques in software development practices,

tools and engineers, we still need to test the product before it is released. Careful

consideration should be taken as to the overall impact of a customer finding a bug in the

released product. Testing is the first activity done by the programmers to check for bugs in

software products before it goes live. It is an important way of assuring the reliability of

software and it is the technique used to check the reliability of product and identify the

problems that remain. The bugs may be buried deep somewhere in an obscure function in the

software product, and if it results in a typo within a seldom used report, the level of the

impact is low and the effect is negligible, but if the bug results in the program crashing and

loosing data, may be in a traffic control system, the impact will be high and may result in loss

of life. Thus, software testing must be performed to find the level of risk and the effect of the

bug, prior to its release.

Testing is a powerful tool in ensuring that software development results are aligned with the

customer‘s business objectives and is performed for the following reasons: to

 test the reliability of the product.

 prevent serious failure.

 ensure that software meets the requirement needed to satisfy the

customer.

 ensure that the software works with other software and hardware

that it needs to work with.

To summarize these points, testing is done for the reasons summed up in the three sections

below:

3.1 To assure quality

The quality of the software means fulfilling the requirements of the customers and giving

conformation to it. As many software products are used in critical applications, the outcome

of a bug can be severe [10]. To improve the quality of software is important since small bug

can cause severe problems such as airplane crash, giving wrong direction to space shuttle

missions, making loss in trade, and giving wrong directions to the nuclear weapons.

Functionality, engineering and adaptability are the three factors that determine the quality of

the software [10].

3.2 Validity and verification

During implementation of software, testing is used as a tool in the validation and verification

process where we try to verify whether the product works under certain conditions or not.

Verification checks whether the product behaves according to the requirements and design

Algorithms to Identify Failure Pattern Master‘s Thesis

11

specifications or not, while validation determines whether it fulfill the specified requirements

[11].

3.3 Reliability estimation

A system, for example the Facebook application, consists of many modules such as login,

chat, update as its component, whose individual or combined failure can lead to collapse of

the system. By performing testing before the implementation of any software system we can

estimate the reliability of the particular system.

Algorithms to Identify Failure Pattern Master‘s Thesis

12

4 ALGORITHMS

Once the structure of the pattern is identified in the software domain, it will be easy to apply

the appropriate testing mechanism. This saves time and cost in the testing process.

It is easy to distinguish the point type patterns from the others two patterns. After finding one

defect in any portion of the software domain, if we find any others around it, then it is either a

block or stripe type pattern. Otherwise it is simply a point type pattern. One input domain

may contain all three types of patterns as shown in the figure 4.1 below.

Figure 4.1: All patterns in a single application

To distinguish between these three types of pattern, three different algorithms are taken into

consideration for analysis.

 Simple distance computation method

 Circular method

 Heuristic method

In all the three methods, one defect is detected first and then we search for other defects

nearby by exploring its surroundings. For this we compute all the neighbors of the first point.

In the Heuristic method, only one of the neighbors is taken into consideration whereas in

other methods, each and every neighbor is considered. If defects are not found, then the

software is said to be error free. This is, however, a rare case.

In the end, all the test cases that contain defect are collected in the array list DF[]. If there is

only one test case in DF[], then it is point pattern. Otherwise it is either block pattern or strip

pattern. By doing some boundary tests - see section 5.4 - we can see whether it is a block

pattern or a strip pattern.

The structure of the failure pattern can also be shown in two dimensional graph by plotting

the points of the array DF[].

4.1 Some often used terms:

In this paper for the simulation purpose I have made a software tool which executes all the

algorithms discussed in chapter 4. The software tool contains ten modules (see chapter

Algorithms to Identify Failure Pattern Master‘s Thesis

13

4.11a). Loginform is the module which authenticates the user with a valid user name and

password. Through ‗New Defects‘ module, we can seed defects in the features of all

modules. ‗MainFrame‘ module displays three buttons which allows us to test three different

algorithms, which are explained in chapter 4. Figure 4.2 below shows the mainframe of the

software tool.

While tracing the algorithms the following terms are used:

I have described the system (tool) using UML use case diagrams and sequence diagrams.

4.11a Module: a module is a class file.

I have assumed a module as a part of a software application, which contains a class file. For

example we can take login part of any application as one module and update as another

module.

4.11b Feature: a feature is a method in a class file, which displays the characteristics of a

module.

For example cancel is a feature of a login form, which closes the form.

4.11c Point: a point is a location of feature in a module. P(n,m) represents a n
th

 feature of m
th

module.

4.12a MainFrame: Is the main frame of the software tool where the user can have access to

all the sections of the application as shown in the figure 4.2 below:

Figure 4.2: MainFrame of the application

4.12b Database table: Is the table in the database where all the records of the feature are

stored including the defects – remember: this tool is used to simulate a real software system

and we will need to know all the defects in order to run the simulations. When we seed a

defect in the application, it is stored in the table ―AllDefects‖ in a database named

―database4‖.

4.13a Continuous points: Those points, which come one after another. If i-1, j-1, i+1 and

j+1 are not outside the border, P(i, j), P(i+1, j), P(i+2, j), P(i+3, j) and P(i, j), P(i, j+1), P(i,

j+2), are continuous points.

Algorithms to Identify Failure Pattern Master‘s Thesis

14

4.13b Dis-continuous points: are points, which are not neighbors. If i-1, j-1, i+1 and j+1 are

not outside the border and ‗S‘ is the step size , P(i, j), P(i+N, j) and P(i, j), P(i, j+N), are dis-

continuous points. Where ‗S‘ is not equal to ‗N‘

4.14 Random numbers: are generated by using a java library function.

4.15a End Points: are the points at the border lines of the corresponding point.

If we have m numbers of modules and n numbers of features, the end points of a point P(i,

j)are :

P(1, j), P(m, j), P(i, n) and P(i, 1) as shown in figure 4.1c.

 For the point that is not at the borderline, there are four end points. If we have 10 modules

and 12 features, then;

- the end points of the point P(3, 4) are P(3, 1), P(1, 4), P(3, 12) and P(10, 4).

- the end points of the point P(1, 4) are P(1, 1), P(1, 12) and P(10, 4).

- The end points of the point P(1, 1) are P(1, 12) and P(10, 1) .

4.15b Neighbors: are the points around a point.

Assume a point P(i, j). If i-1, j-1, i+1 and j+1 are not outside the border, this point has the

following neighboring points:

P(i-1, j), P(i+1, j), P(i, j-1) and P(i, j+1)

For example, P(5, 6), P(7, 6), P(6, 5) and P(6, 7) are the neighbors of the point P(6, 6).

4.16 Conceptual distance between features: The function dist(x,y) measures the distance

between two features in a module (see chapter 4.11a), where x and y are the terms used to

describe the property of the features. The function dist(x,y) determines the similarity/relation

of each pair of terms from the two features which distance is to be calculated by considering

the distance of terms in a lexicon, according to lexicon relation of synonymy, hyponymy and

hyponymy.

 0 if x = y or synonym(x,y)

dist(x,y) = d if hyponym (x,y,d) nypernym(x,y,d)

 infinite otherwise

As an example, consider some features from the block ―Login Module‖. They are

1. Is the format of the title good?

2. Does the minimize button work?

3. Does the maximize button work?

In these three features, the last two features contain common terms such as ‗button‘ and

‗work‘ but there is not any common single term for the first feature and the last two features.

Thus, we consider feature number 2 and 3 to be related.

 4.18 getdetectedNeighbours(p,DT[]): This is a recursive function which takes two

parameters p(location of a point) and the array DT[] which stores the detected points only. At

Algorithms to Identify Failure Pattern Master‘s Thesis

15

the end of the execution of this function it stores all the location of the points it detects to be

failure causing inputs around the initial point to an array called DF[].

The ‗d‘ and asterisk in the table shows the defects and detected points by the algorithms

respectively. ―*0‖

is the initial point selected randomly, ―*1‖

is first detected neighbor

containing error and ―d‖

is the tested point that does not contain defect.

4.2 Simple distance computation method

The distance computation methods used here entails an algorithm that access data sets for a

pattern of defects, which is initiated by randomly searching point defects. If one is found, the

algorithm then tests entries adjacent of the defected point in all four directions; X axis (left

and right) and Y axis (up and down). The algorithm tests the datasets in both axes. If an error

is found, we will select points continuously in the same direction until a data point without a

defect is encountered. If a selected point contains a defect, a point next to it on the same axis

(i.e. X-axis) is selected and we test whether it contains an error or not, otherwise neighbors of

the initial point on the Y-axis are tested in the same way as those on the X-axis.

For example, if P(3,9) is the initially selected point amd the step size is 1, P(2,9) and P(4,9)

are its neighbors along the X-axis. The points P(2,9) and P(4,9) are tested. If any one of them

contains a defect, their neighbors on the X-axis are tested, otherwise the neighbors of the

initial point i.e. P(3,9) on the Y-axis are tested. Subscript on the asterisk and ‗d‘ represents

the step to show the process of selecting a point. In this method, the step size is taken as a

distance to compute the next test case from the previous one. The following figure 4.3 shows

the selection method of test cases in simple distance computation method. Flowchart for

simple distance computation method is given in appendix A3.

 1 2 3 4 5 6 7 8 9 10

1 * 15

2 * 14

3 * 13

4 * 12

5 * 11

6 * 10

7 * 9

8 * 8

9 d 7 * 6 * 0 * 1 * 2 * 3 * 4 d 5

10 * 16

11 * 17

12 * 18

Figure 4.3: process showing simple distance computation method with step size 1

Algorithm:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

Algorithms to Identify Failure Pattern Master‘s Thesis

16

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat step

one.

Step 3: Check if the detected point contains a defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as defected and put that point into array defected DF[]

Step 4: Take one point from neighbor along X-axis and repeat the process from Step 2.

Step 5: Take one point from the neighbor of the initial point along Y-axis and repeat the

process from Step 2.

Pseudo code:

Set DT[] , DF[] and NG[] to null.

Declare k as integer and p as point type which contains coordinates

getdetectedNeighbours(p,DT[])

 {

 Add p to DT[]

 If (DF(p))

 {

 Add p to DF[]

 for(k=0;k<2;k++)

 {

 if Pk DT[]

 getdetectedNeighboursinX(k,DT[])

 }

 for(k=0;k<2;k++)

 {

 if Pk DT[]

 getdetectedNeighboursY(k,DT[])

 }

 }

 }

Algorithms to Identify Failure Pattern Master‘s Thesis

17

4.3 Circular method

In the Circular method, one point is randomly selected and checked in the database table to

see if it contains a defect. If the point contains a defect, the neighbors (see chapter 4.15b) of

that point are checked and this process is repeated for all the neighbors until we either find a

point containing an error or, if the initially selected point does not contain a defect, select

another point at random and check this point. For example, let the initially selected point be

P(1, 2). According to our database record, the point P(1, 2) does not contain a defect. Thus

another point is randomly selected. Let this a point, which contains an error, be P(5, 7). Its

neighbors are computed. If we still use step size =1, these are P (4,7), P (6,7), P (5,6) and P

(5,8). Since the point P(5, 7) contains a defect, it is inserted in an array list and the same

process is repeated for every neighbors, first right and upper one, left and finally lower one as

shown in the figure 4.3a.

If P(i, j) is the selected defect containing point and i-1, j-1, i+1 and j+1 are not outside the

border, according to this algorithm first we test P(i+1, j) then P(i, j+1) followed by P(i-1, j)

and P(i, j-1).

In the end, all the defect-containing points around the initial point (in this case P (5, 7)), are

collected in the array list and by performing a boundary test (see chapter 5.4), the pattern of

the collected defects is identified. The steps for this procedure are given below. The

subscript along with the asterisk or ‗d‘ represents the step of the process. ‗d‘ denotes the

defect -free point and ‗*‘ denotes a defecting containing point. Flowchart for simple distance

computation method is given in appendix A4.

Figure 4.4: Process showing the Circular method

Algorithm:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat step

one.

1 2 3 4 5 6 7 8 9 10

1

2 d 12

3 d 13 * 10 d 11

4 d 15 * 14 * 8 d 9

5 d 17 * 16 * 5 * 6 d 7

6 d 18 * 18 * 2 * 3 d 4

7 d 20 * 0 d 1

8 d 25 * 24 * 21 * 22 d 23

9 d 26 d 27

10

11

12

Algorithms to Identify Failure Pattern Master‘s Thesis

18

Step 3: Check if the detected point contains defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as a defect and put that point into array defected DF[]

 and find its four neighbors.

Step 4. Repeat the process from Step 2 for all the neighbors.

Pseudo code:

Set DT[] , DF[] and NG[] to null.

Declare k as integer and p as point type which contains coordinates

getdetectedNeighbours(p,DT[])

 {

 Add p to DT[]

 If (DF(p))

 {

 Add p to DF[]

 for(k=0;k<4;k++)

 {

 if Pk DT[]

 getdetectedNeighbours(k,DT[])

 }

 }

 }

4.4 The heuristic method

As the name implies, the Heuristic method is a trial and error method and is risky that it may

conclude with a wrong pattern. It avoids complex computations, which is important in a large

domain, by testing a maximum of five points. In this method, an initial point is randomly

selected and its end points (see chapter 4.15a) are determined and tested. If the tested point

contains a defect, it is inserted into array DF[] otherwise it is inserted into array DT[]. If none

of the end points contain a defect, we assume that we have a point pattern. If the initially

selected point is not an end point and only one point among end points contains a defect, then

Algorithms to Identify Failure Pattern Master‘s Thesis

19

we assume it is a block pattern. If any two end points contain defect then we assume that it is

a strip pattern.

Let us look at example. If P(3,9) is an initially selected point, P(1, 9), P(10, 9) P(3, 1) and

P(3, 12) are its end points. The initially selected point P(3, 9) is not an end point. Among

four end points, two points (P(3, 1) and P(3,12)) contain defects that is in line X = 1 and Y =

12. Thus, we assume the following figure 4.5 a strip pattern. Flowchart for simple distance

computation method is given in appendix A5.

Figure 4.5: Process showing Heuristic method

Algorithm:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat step

one.

Step 3: Check if the detected point contains a defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as a defect and put that point into array defected DF[]

 Step 4: Find the four end points of point V(p).

Step 5: Test each end points to see whether it contains defects or not. If the tested point

contains defect, put it in DF[] else put it in DT[].

Pseudo code:

Set DT[] , DF[] and NG[] to null.

1 2 3 4 5 6 7 8 9 10

1 * 3

2

3

4

5

6

7

8

9 d2 * 0 d1

10

11

12 * 4

Algorithms to Identify Failure Pattern Master‘s Thesis

20

Declare k as integer and p as point type which contains coordinates

getDefect(p,DT[])

 {

 Add p to DT[]

 If (DF(p))

 {

 Add p to DF[]

 for(k=0;k<4;k++)

 {

 if Pk DT[]

 testAllEndPoints(k,DT[])

 }

 }

 }

Algorithms to Identify Failure Pattern Master‘s Thesis

21

5 MAPPING

5.1 The purpose of mapping

In computer science, mapping is a logical connection between two sets of entities. In our

case, the entities are: features of a real application, and a two dimensional space. The purpose

of the mapping is to show how a real software domain can be logically connected to the two

dimensional domain so that it will be possible to represent the position of a defect point.

Determination of a failure pattern starts when the development phase of the application is

completed. We assume that the patterns are meaningful- if there is a defect in a single feature

on a module (se chapter4.11a), then we will assume that as a point pattern. If the number of

defects clustered in a module is greater than one then we assume that as a block pattern. In

block pattern if the pattern is distributed from one boundary to another boundary (see chapter

5.4) of the input domain then that is a strip pattern. To start checking for a failure pattern

according to the algorithms described in chapter 4, mapping is done from the programmers‘

point of view to the patter checking algorithm‘s point of view. In order to perform the

mapping, the programmer has to perform the following activities:

 The application is divided into modules (see chapter 4.11a). This is done based on the

class files of the software application. If we take the Facebook application as an

example, the part that checks the authentication and authorization, ―login section‖ is

one class file and is defined to be a module and ―logout‖, ―edit profile‖ and ―upload

status‖ are other such modules.

 Each module has several properties, called features (see chapter 4.11b), and consists

of one or more lines of codes. The length of the password, characters type of

password, visibility of password is the feature related to password and is coded within

a single module of code.

 While writing code for features in a program, the features that are related to is coded

in one block of code. That is similar features are coded in one block of code. The first

work of the developer is to divide the program into modules and write code for each

feature in each module. Then the function dist(x,y) cabn be used to compute the

similarity between two features (see in section 5.2).

In order to implement the algorithms describes in chapter 4, the features are mapped onto a

two dimensional space. The modules are ordered along the x-axis and the features along the

y-axis. The numbering starts from 0 as shown in the figure 5.1 below. In my case I have

assigned module and feature number from one for the purpose of simplicity to explain. Here

feature (1,1) represents the first feature of the first module and the feature (6,12) represents

the 12
th

feature of 6
th

module.

Algorithms to Identify Failure Pattern Master‘s Thesis

22

Figure 5.1: Two-dimensional view of application

While mapping to two dimensional space the point P(X, Y) is represented as

P(<module> , <feature>)

When a software application is ready for testing, we first need to generate the feature list. The

system analyst, in cooperation with the developer, generates technical features according to

the implementation. Figure below is a sequence diagram of mapping process.

Figure 5.2: Sequence diagram of mapping

I have used the software tool that is used to implement the algorithms (chapter 4), as an

example of a software application containing several modules (4.11a) such as Login, Testing,

Feature display, Defects display and Feature Insertion. Each module is contained in one class

file.

Algorithms to Identify Failure Pattern Master‘s Thesis

23

In my software tool LoginForm is a module and is contained in the class file

―LoginForm.java‖. When we execute ―LoginForm.java‖ file, it displays a form as shown in

the figure below.

Figure 5.3: User Login Form

We need the corresponding class file and the requirements list from the customer to generate

a feature list for each module. This will enable us to map the customers‘ point of view to the

programmers‘ point of view. We can make many features (see 4.11b) from each module. For

example, a customer may want a login form to be displayed at the center of the screen. Thus

we need a feature for the location of the form. A high number of features increase the

complexity of the testing process but also increases the quality of the testing as we explore

the application in more detail with higher number of features. The coding of the

LoginForm.java is given below.

1. import javax.swing.*;

2. import java.awt.event.*;

3. import java.sql.*;

4. public class LoginForm extends JFrame implements ActionListener

5. {

6. JLabel lbluser,lblpass;

7. JTextField txtuser, txtpass;

8. //JPasswordField jpf;

9. JButton btnlogin;

10. public LoginForm()

11. {

12. setLayout(null);

13. lbluser=new JLabel("User Name:");

14. lblpass=new JLabel("Password:");

15. txtuser=new JTextField(20);

16. //jpf=new JPasswordField(20);

17. txtpass=new JTextField(20);

18. btnlogin=new JButton("Login");

19. add(lbluser);

20. lbluser.setBounds(20,30,100,25);

21. add(txtuser);

Algorithms to Identify Failure Pattern Master‘s Thesis

24

22. txtuser.setBounds(125,30,100,25);

23. add(lblpass);

24. lblpass.setBounds(20,60,100,25);

25. //add(jpf);

26. //jpf.setBounds(125,60,100,25);

27. add(txtpass);

28. txtpass.setBounds(125,60,100,25);

29. add(btnlogin);

30. btnlogin.setBounds(75,90,100,25);

31. setVisible(true);

32. setSize(300,150);

33. setLocation(250,250);

34. setTitle("User Login:");

35. setResizable(false);

36. setDefaultCloseOperation(EXIT_ON_CLOSE);

37. btnlogin.addActionListener(this);

In reality, an error can occur almost everywhere. For example, the size of the form may not

be according to the customer‘s requirements. The location of the form, the color or the font

size may be wrong and there may be some functional errors such as the close button may not

function properly. Likewise, the login button and cancel button may not behave as required.

Based on the required properties we can make a feature list for the module. In our case line

number 32 in the code, setSize(300,150); declares the size of the application form. The

following are the features that are generated from module LoginForm module.

1. Test the size of the form.

2. Test the title of the form.

3. Test the format of the title.

4. Test whether the minimize button work or not.

5. Test whether the maximize button work or not.

6. Test whether the close button work or not.

7. Test whether the form is resizable or not.

8. Test the position of the cursor.

9. Test the visibility of password characters.

10. Test the function of login button.

11. Test the function of close button.

12. Test the password length.

When generating features from all classes, we must follow the rule that the same types of

features should be numbered in the same way in all classes. For example, if we assign

number 1, 2, and 3 to the features: close operation, size of form and title of form respectively,

the same numbering must also be used for the same features in other classes. Similar features

Algorithms to Identify Failure Pattern Master‘s Thesis

25

may occur in all the classes. Such as all the modules have some specific title, close button,

size, font, color, location etc.

5.2 Related and Similar features:

In the section ―Mapping‖, two words are introduced: ‗related‘ and ‗similar‘. They are defined

as follows:

Related: Two features are related if they are in the

 In the same class file.

For example, let A be the feature about displaying a button and B be the feature about

the boundaries and size of the button. As both the features are about displaying the

same button, they are related each other. In the feature list, these types of features are

kept closer by assigning a continuous numbers.

 Similar:

Two features are similar if they have the same property.

Let A be the feature ―display the title of a module‖ (e.g. LoginForm) and B be the feature

―display the title of another module‖ (e.g. DefectsDisplay form). Since the features A and B

both are about displaying the title of a module, they are said to be similar and are assigned the

same numbers in a feature list. In my case, feature number two of all modules is about

displaying the title of the different modules so they all are similar.

The table below shows some example of numbering of features in three modules. Similar

features are assigned the same number and are kept in the same row but different columns

and related features are assigned sequential numbers and are kept in the same column.

Table 5.1: Table showing properties of different modules

 S.N
 LoginForm FeatureDisplay DefectsDisplay

 1 Size and position of the

display form
 Size and position of the

display form

 Size and position of the

display form

 2
 Existence of title Existence of title Existence of title

 3
 Format of title displayed Format of title displayed Format of title displayed

 4
 Function of minimize

button

 Function of minimize

button

 Function of minimize

button

 5
 Function of close button Function of close button Function of close button

 6
 Resizability of the form. Resizability of the form. Resizability of the form.

The similar features (chapter 5.2) in different modules are assigned the same number. This

makes it meaningful to identify strip and block pattern. Feature ‗n‘ in all the modules are

similar so they contain same error. To make it clear let us take an example, if the ―cancel‖

button of all the modules does not work, it is strip pattern and the developer can correct this

feature in all modules, since they are assigned a same number in all modules. The error may

Algorithms to Identify Failure Pattern Master‘s Thesis

26

be due to wrong selection of a key word or wrong selection of a library function. For

example, the code like this does not work:

setDefaultCloseOperation(EXIT_ON_CLOSE);

The function closes all tabs at the same time but the customer may want to close a particular

tab when pressing a close button. The following function works properly:

setDefaultCloseOperation(DISPOSE_ON_CLOSE);

In the ninth semester project report, only features in two dimensions were considered. That is,

if we take a feature from a module as a test case, then if it is a defect we move up and down

in the two dimensional input space to test the other features of the same class only. Other

modules were not taken into consideration. For example, if the sixth feature of module

number six is selected, then only the neighbors of the sixth feature in module number six

were tested while the moduels that are the neighbors of module six was not taken into

consideration. That is, no features of neighbor modules were tested. Now I have extended it

to four directions. If a sixth feature of a module is selected, then, sixth feature of other

modules (which are similar) are also tested in addition to 7
th

 and 5
th

 features of the same

module. To illustrate this, consider the following table:

Table 5.2: Table showing the neighbors of a point

Modules 1 2 3 4 5 6 7 8 9 10

Features

1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1

2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2

3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3

4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4

5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5

6 1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6

7 1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7 10,7

8 1,8 2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8 10,8

9 1,9 2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9 10,9

10 1,10 2,10 3,10 4,10 5,10 6,10 7,10 8,10 9,10 10,10

11 1,11 2,11 3,11 4,11 5,11 6,11 7,11 8,11 9,11 10,11

12 1,12 2,12 3,12 4,12 5,12 6,12 7,12 8,12 9,12 10,12

In Table 5.2, the sixth feature of module six is selected randomly and as it contains defects,

we test the 6
th

 feature of the neighbor module (fourth module and sixth module) and 7
th

feature and 5
th

 feature of the same module. It is due to that the neighbors of the point (6,6) are

(6,5), (6,7), (5,6) and (7,6).

Algorithms to Identify Failure Pattern Master‘s Thesis

27

5.3 Rules for mapping

To transform the real input of the software application into a two-dimensional space, the

following needs to be done:

1. Select software application

Decompose the software application into modules.

2. Analyze all features from each module. Modules are generated from the class files.

3. Identify relationships between features (see chapters 6.1 and 4.18).

4. According to the similarity and relativeness, assign different numbers are to the

modules and features.

5. Populate test matrix from step 4 as shown in table 5.2.

5.4 Boundary test

A boundary is one of the borders of an input domain. We need the boundary of the input

domain to determine the size of the input domain and to identify the pattern types of the

failure causing input. In the case of a stripe pattern, the end points (see chapter 4.15a) of the

failure region touch two opposite borders. Thus we always have to determine the border of

the input domain. In case of a two dimensional space, we specify the number of modules and

the numbers of features in terms of X and Y respectively which represent the borders. For

example, assume a two dimensional table as below:

Table 5.3: Boundaries of application

This domain is defined by four lines. Thus, these lines are the borders of this two dimensional

input domain. There are two vertical and two horizontal lines.

In the example above, the two vertical lines are given by X=1 and X=10 and the two

horizontal lines are given by Y=1 and Y=12.

To test whether the collected data is spread from one boundary to another, the boundary test

is done for every point containing a defect. If ‗m‘ is the number of modules and ‗n‘ is the

number of features then we define borders as:

X = 1 , X = m , Y = 1 and Y = n

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

11

12

Algorithms to Identify Failure Pattern Master‘s Thesis

28

In my example, software tool, there are 10 modules and 12 features in each module(we can

make more than 12 features in each module).

Therefore borders for this case are defined as:

X = 1 , X = 10 , Y = 1 and Y = 12

Let us assume that the following are the collected data in the array list DF[].

 P(1,2), P(3,2), P(4,2), P(5,2), P(6,2), P(7,2), P(8,2), P(9,2), P(10,2)

And if we take points P(1,2) and P(10,2), there are two points that satisfies the border

condition: X = 1 and X = 10

As there are four border lines, we checked whether they belong to the same border or not. As

X = 1 and X = 10 represents different borders, the collected data spread from one border to

another and hence we assume that we have a strip pattern.

Algorithms to Identify Failure Pattern Master‘s Thesis

29

6 SCENARIO DESCRIPTION

For simulation of the algorithms described in chapter four, a real application is needed. I have

used a software tool, which implements the three pattern idetification algorithms. In this

software tool there are ten modules: LoginForm, MainFrame, NewDefect, AllDefects,

Newfeature, FeatureDisplay, Calculator, Chatroom, Showgraph and ShowTestedpoints. Each

module is implemented as a of a class file. For example, LoginForm module is implemented

in a class file called ―LoginForm.java‖.

When the software tool is executed, a simple form is displayed as shown in figure 6.1a,

where the user has to enter his username and password. When a user is authenticated, he/she

is allowed to access other modules of the software tool. A main frame (figure 6.1b) is

displayed when the username and password entered by the user are matched. In the main

frame, a user can perform several activities (figure 6.1c). He can check the defect pattern of

the application by using three different methods, delete all the seeded defects, insert a new

feature to the database, chat with other users, use a calculator, and play games. While testing,

using the three pattern identification algorithms, we have to insert defects ourselves using the

module New Defects. When we click on the menu bar ‗Defects‘ we get three options and the

first option displays a form as shown in figure (figure 6.1c). When we select the menu item

‗New Defects‘ a form with all the features is displayed as shown in figure 6.1e. We can seed

a defect by clicking on the corresponding feature of a module. The following figures show

the modules of the software tool.

Algorithms to Identify Failure Pattern Master‘s Thesis

30

a

b

c

d

Algorithms to Identify Failure Pattern Master‘s Thesis

31

e

Figure 6.1: Different modules of software tool

Figure 6.2 shows a snapshot of simulation process for a point P(1,5) and Table 6.1 shows the

all the seeded defect. When we hit ―Start with Circular method‖ all the defects and detected

points around point P(1,5) were collected in array lists DF[] and DT[] respectively and when

we pressed the button ―Graph‖, the pattern of the defect type was plotted on the graph as

shown below.

Figure 6.2: Snapshots showing plotting of pattern

Table 6.1: defects in database table

Modules
1 2 3 4 5

Features

1 defect

2 defect

3 defect

4 defect

5 defect defect defect defect defect

Although we can define as many features as we wish for each module, for the simplicity of

the thesis, I have considered only twelve features for each module. As we have to test the

properties of the modules, I have set 12 features for the LoginForm Module:

Algorithms to Identify Failure Pattern Master‘s Thesis

32

1. The size of the form.

2. The title of the form.

3. The format of the title.

4. Whether the minimize button work or not.

5. Whether the maximize button work or not.

6. Whether the close button work or not.

7. Whether the form is resizable or not.

8. The position of the cursor.

9. The visibility of password characters.

10. The function of login button.

11. The function of close button.

12. The password length.

Through feature number one, we test the size of the form to see whether it is according to the

requirement or not. Through feature number two we test to see whether the title of the

module exists or not. Similarly, through feature number twelve we test the length of the

password is according to the requirement or not.

 A use case diagram is a graphic depiction of the interactions among the elements of a user

accesses all the modules of the software tool. In some modules (Login, FeatureDisplay,

DefectDisplay, DeleteDefects and InsertFeatures) data are retrieved from the database – e.g.

in login and defect seeding modules we have to access the database. Username and password

given by the user are checked to the database and defects seeded are saved in the database.

Figure 6.3: Use case diagram of the system

Algorithms to Identify Failure Pattern Master‘s Thesis

33

Sequence diagrams are used to create a scenario of events through one or more use cases. The

objects associated with this series of events and the interactions between the objects are

identified. These interactions are characterized by messages sent between the objects. Figure

6.4, shows a sequence diagram of the software tool I considered as an example.

Figure 6.4: Sequence diagram of the system

6.1 Features with modules

Features describe the properties of the module that the customers want in their application.

For example, while displaying a login form, a customer may want the password character to

be invisible, the location of the form (either at the center or corner), the size of the form, look

and feel style and etc. The following list represents the features of the LoginForm in my

application.

1. The size of the form.

2. The title of the form.

3. The format of the title.

4. Whether the minimize button work or not.

5. Whether the maximize button work or not.

Algorithms to Identify Failure Pattern Master‘s Thesis

34

6. Whether the close button work or not.

7. Whether the form is resizable or not.

8. The position of the cursor.

9. The visibility of password characters.

10. The function of login button.

11. The function of close button.

12. The password length.

Similarly, every module contains features, which are implemented by the developer and

through discussions with the customer. For a new application, before it is made, the analyst

makes feature lists of all modules based on the customers‘ requirements and provides them to

the developer who develops the application.

6.3 Step Size

In a software application, the input domain is usually large and testing each contiguous point

is too expensive. This means that we need to dynamically change the step size for the pattern

checking algorithms (in our case we have use 1 unit). We can start with fixing the step size to

1 unit and increase the value of the step size according to the density of the defects in the

application or the available resources. If we find defects around a chosen defect, we can

increase the step size to 2 units and if more defects are found to 3 units and so on. When we

reach an error free feature we can reduce the value of step size until it computes exact size of

the defect structure. For example, let us assume that the first defect be P(1,5). We then check

both sides of P(1,5) - that is P(1,4) and P(1,3) - and then checks P(1,2) and P(1,6)- If every

test case contains a defect then we can increase the step size value to 2. Then from P(1,6) we

go to P(1,8) and P(1,9) followed by P(1,10) and P(1,12). If we still find errors in all of them

then again we can increase the value of the step size, otherwise we should reduce the step size

and go back to the point P(1,10) and we test the point with the reduced step size. This way we

find the exact structure of the defect pattern.

In my case, the application is small - only 10 modules and 12 features in each module. There

are altogether only 120 points in two-dimensional space. Thus, we do not need to increase the

value of the step size. In large programs, however, where there may be more than 100

modules and more than hundred features in each module, the dynamic change of step size is

important.

In large systems, we increase the value of step size in two conditions:

1. If the system has defect density high.

This is done dynamically while running the software tool to test the pattern.

2. If we have few resources available and we need a quicker decision with a greater risk

of being wrong, we can fix a larger step size at the beginning manually.

Algorithms to Identify Failure Pattern Master‘s Thesis

35

7 EXPERIMENTS

7.1 Defects Seeding

Defect seeding is the process of inserting errors into the program for the software to fail. It is

also known as bebugging In defect seeding, a piece of the software is seeded with bugs that

are similar to real defects.

The purpose of defect seeding is to find the unseeded defects while finding the seeded

defects. It is done by inserting errors into a piece of software or by modifying the code of the

program and executing the test set to see how many of the seeded bugs are discovered and

how many new real defects are discovered. It‘s then possible to estimate the number of

remaining defects by using some type of mathematical formula.

In our case, defects are seeded and then a test set is run to find the defects and the area

covered by those defects. In this way the pattern of the defects can be computed.

An example of how errors are seeded is shown below. We can seed errors in any class of the

application. If the class LoginForm is taken as an example, it displays a form when we

execute the class file and contains twelve features. We can seed errors in any one of the

features or in all the features also. The following are the questions that represent features of

class LoginForm class.

1. The size of the form.

2. The title of the form.

3. The format of the title.

4. Whether the minimize button work or not.

5. Whether the maximize button work or not.

6. Whether the close button work or not.

7. Whether the form is resizable or not.

8. The position of the cursor.

9. The visibility of password characters.

10. The function of login button.

11. The function of close button.

12. The password length.

The code for this class file is as follows:

1. import javax.swing.*;

2. import java.awt.event.*;

3. import java.sql.*;

4. public class LoginForm extends JFrame implements ActionListener

5. {

Algorithms to Identify Failure Pattern Master‘s Thesis

36

6. JLabel lbluser,lblpass;

7. JTextField txtuser, txtpass;

8. //JPasswordField jpf;

9. JButton btnlogin;

10. public LoginForm()

11. {

12. setLayout(null);

13. lbluser=new JLabel("User Name:");

14. lblpass=new JLabel("Password:");

15. txtuser=new JTextField(20);

16. //jpf=new JPasswordField(20);

17. txtpass=new JTextField(20);

18. btnlogin=new JButton("Login");

19. add(lbluser);

20. lbluser.setBounds(20,30,100,25);

21. add(txtuser);

22. txtuser.setBounds(125,30,100,25);

23. add(lblpass);

24. lblpass.setBounds(20,60,100,25);

25. //add(jpf);

26. //jpf.setBounds(125,60,100,25);

27. add(txtpass);

28. txtpass.setBounds(125,60,100,25);

29. add(btnlogin);

30. btnlogin.setBounds(75,90,100,25);

31. setVisible(true);

32. setSize(300,150);

33. setLocation(250,250);

34. setTitle("User Login:");

35. setResizable(false);

36. setDefaultCloseOperation(EXIT_ON_CLOSE);

37. btnlogin.addActionListener(this);

Let us choose some features in order to seed defects. Feature number one describes the size

and location of the display form. The customer may want the form to be displayed in the

center of the screen and if it is in the corner, then it is an error. Feature two describes a

proper title displayed on the form. Feature number six and ten describes the function of the

close button and Login button respectively.

Let us seed defects to the features one, two, three, four and five. After the defects are seeded,

these features will not behave according to the customer‘s requirements. These features are

Algorithms to Identify Failure Pattern Master‘s Thesis

37

coded in lines 32, 34, 36 and 37 respectively in the code snippet below. If we modify the

number inside the parenthesis, these features do not behave according to the customer‘s

requirements. After seeding the defects, these line look like below:

32. setSize(900,150); ——— appropriate size to the customer is (300 *

150)

33. setLocation(250,250);——— specifies the location of the form

34. setTitle("User Login///:"); ———— title given should be proper

35. setResizable(false); this function may be missing

36. setDefaultCloseOperation(EXIT_ON_CLOSE); ———— dispose

should be written instead of exit

37. btnlogin.addActionListener(this); —— this function may be missing

This part of code is copied from the LoginForm.java along with the line numbers and this

type of defect in code are assumed to be inserted in the database table.

7.2 Algorithms Tracing

When simulating the algorithm, some assumptions have to be made. Each feature of each

module is arranged according to their similarity as explained in chapter 5.2, and the defects

are seeded to see if the algorithm works properly. We keep on selecting and running test

cases until a defect free point is found inside the frature. Simulation for all the algorithms is

done for all the three types of defect patterns and for this simulation defects are seeded by the

user for the testing purpose. The same defect pattern is used for all the algorithms.

7.2.1 Algorithm tracing for Simple distance computation method

In the Simple distance computation method, we first randomly select a point by generating

two random numbers. The point is tested to see whether it contains error or not. If it contains

error, the neighbors along X-axis are computed and tested first and the neighbors along Y-

axis are tested. Otherwise another point is selected randomly. The algorithm used for the

Circular method is given below:

Algorithm:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat step

one.

Step 3: Check if the detected point contains a defect.

 If it is not a defect

 Return null

 If it is a defect

Algorithms to Identify Failure Pattern Master‘s Thesis

38

 Mark it as defected and put that point into array defected DF[]

Step 4: Take one point from neighbor along X-axis and repeat the process from Step 2.

Step 5: Take one point from the neighbor of the initial point along Y-axis and repeat the

process from Step 2.

7.2.1.1 Point pattern

For simulation purposes a point type pattern generated, first by seeding defect in only one

feature in each module. We seeded defect into ―LoginForm‖ and ―FeatureDisplay‖ in feature

number 6 and 4 respectively. In the two-dimensional form they are denoted P(1,6) and P(3,4)

since the ―LoginForm‖ module is module number 1 and the ―FeatureDisplay‖ module was

module number 3. The modules with the seeded defects are shown in the figure below

marked as an asterisk.

Algorithms to Identify Failure Pattern Master‘s Thesis

39

Figure 7.1: Point type defect seeding

When the ―Start testing with Simple method‖ button of the main frame was pressed in the

software tool, a point was randomly selected and tested to see whether it was an error

Algorithms to Identify Failure Pattern Master‘s Thesis

40

containing feature or not by matching it with the data kept in table ―AllDefects‖ in the

database. In my case, after six trials the point P(1,6) was selected and depicted as a point type

pattern since none of its neighbor contains an error. Details of the simulation are shown in

appendix A.2.1.

Figure 7.2: Point type defect seeding in tabular form

Table 7.1: Point type defect seeding in real application (shows defects in sixth feature of

―LoginForm‖ module and ―FeatureDisplay‖ Module)

Although the process was repeated ten times, the algorithm depicted the defect of only

‗LoginForm‘ due to random selection. There was a defect-containing feature in

―FeatureDisplay‖ also, which could not be depicted. This is a drawback of this algorithm.

The solution to this drawback is to evenly spread the generation of test cases. An asterisk

represents the location of the defect depicted by the algorithm.

Modules

Features

1

2

3

4 defect

5

6 defect

7

8

9

10

11

12

DefectDisplay FeatureDisplay MainFrameLoginForm

Algorithms to Identify Failure Pattern Master‘s Thesis

41

Figure 7.3: Point type defect detected by the algorithm

7.2.1.2 Block pattern

After simulation of the point pattern, the block type defects were seeded into the application.

For this module ―one‖, ―two‖ and ―three‖ were used. These were LoginForm, FeatureDisplay

and DefectsDisplay respectively. Eight continuous (see section 4.13a) defects were seeded

into module one, ten discontinuous defects (4.13b) were seeded in module ―Three‖ and no

defect were seeded in module ―two‖ as shown in the figure 7.4. Defects in the ―LoginForm‖

module were seeded in features two to eleven. In the two-dimensional form they are denoted

as P(1,2), P(1,3), P(1,4), P(1,5), P(1,6) P(1,7), P(1,8), P(1,9), P(1,10), and P(1,11). Similarly,

some discontinuous defects were seeded in Module ―DefectsDisplay‖ as shown in the figure

below.

Algorithms to Identify Failure Pattern Master‘s Thesis

42

Figure 7.4: Block type defect seeding

Algorithms to Identify Failure Pattern Master‘s Thesis

43

When the ―Start testing with Simple method‖ button of the main frame was pressed, a point

was randomly selected and the tool tests whether it was an error containing feature or not by

comparing the point with the data kept in table ―AllDefects‖ in the database. In this case, in

the 3rd trial, the point P(1, 6) was selected and in the fifth trial the point P(3, 4) was selected

and all the error containing points around these points were collected in the array list and

depicted as a block type pattern. Detail of the simulation is kept in appendix A.2.2.

Figure 7.5: Block type defect seeding in tabular form

Table 7.2: Block pattern detected by the algorithm

After the completion of five attempts all the detected points and defect containing points were

collected in the arrays DT[] and DF[] respectively. By performing boundary test (see chapter

5.4), the pattern type was identified. As the array DF[] did not contain points that contain two

boundaries, and there were more than two defects containing points, we assumed that it was a

block pattern. The geometric structure of the pattern is shown in the table below:

Modules

Features

1 defect

2 defect

3 defect

4 defect

5 defect

6

7

8

9

10

11

12

DefectDisplay FeatureDisplay MainFrameLoginForm

Algorithms to Identify Failure Pattern Master‘s Thesis

44

Table 7.3: Geometric structure of the defects.

There were defects in features number eight to eleven in model ‗DefectsDisplay‘, which were

not found by the algorithm. This is a drawback with this algorithm, which can be overcome

by distributing the test cases uniformly using Adaptive Random testing methods (discussed in

chapter 2).

7.2.1.3 Strip pattern

After simulation of point and block pattern, strip type defects were seeded into the

application. For this module ―one‖, ―two‖ and ―three‖ were used. Modules one, two and three

were LoginForm, FeatureDisplay and DefectsDisplay respectively. Twelve continuous

defects (see section 4.13a) were seeded to module one, ten discontinuous defects (see section

4.13b) were seeded to module ―Three‖ and no defect was seeded in module ―two‖ as shown

in figure 7.6. Defects in the ―LoginForm‖ module were seeded into features one to twelve. In

the two-dimensional form they are denoted as P(1,2), P(1, 3), P(1, 4), P(1, 5), P(1, 6) P(1, 7),

P(1, 8), P(1, 9), P(1, 10), P(1, 11), and P(1, 12). In the same way,Similarly nine discontinuous

defects were seeded in Module ―DefectsDisplay‖ as shown in the figure below.

Modules

Features

1 defect

2 defect

3 defect

4 defect

5 defect

6

7

8

9

10

11

12

LoginForm DefectDisplay FeatureDisplay MainFrame

Algorithms to Identify Failure Pattern Master‘s Thesis

45

Figure 7.6: Strip type defect seeding

When the ―Start testing with Simple method‖ button of the main frame is pressed, a point is

randomly selected each time and tested to see whether it is an error containing feature or not

by matching it to the data kept in table ―allDefects‖ in the database. In this case, in the first

Algorithms to Identify Failure Pattern Master‘s Thesis

46

trial the point P(1, 6) was selected and in the fifth trial the point P(3, 5) was selected and all

the error containing points around these points are collected in the array list and depicted as a

block type pattern. Detail of the simulation is kept in appendix A.1.2.

Figure 7.7: Strip type defect seeding in tabular form

After five experiments, all the detected points and defect containing points are collected in

the array lists DT[] and DF[] respectively. By performing a boundary test (see chapter 5.4),

the pattern type was identified. As the array DF[] contains points that contain two boundaries

(viz. P(1, 1) and P(1, 10)), it is a strip pattern. The geometric structure of the pattern is shown

in the table below:

Table 7.4: Strip pattern detected by the algorithm.

The defects in features eight to eleven of module DefectsDisplay are not found. This is a

drawback with this algorithm, which can be overcome by uniformly distributing the test cases

using Adaptive Random testing methods (discussed in chapter 2).

Modules

Features

1 defect defect

2 defect defect

3 defect defect

4 defect defect

5 defect defect

6 defect

7 defect

8 defect

9 defect

10 defect

11 defect

12 defect

LoginForm DefectDisplay FeatureDisplay MainFrame

Algorithms to Identify Failure Pattern Master‘s Thesis

47

7.2.2 Algorithm tracing for Circular method

In the Circular method, we first randomly select a point by generating two random numbers.

The point is tested to see whether it contains error or not. If it contains an error, all the

neighbors are computed and the process is repeated for each neighbors. Otherwise another

point is selected randomly. The algorithm used for Circular method is given below:

Algorithm:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat step

one.

Step 3: Check if the detected point contains defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as a defect and put that point into array defected DF[]

 and find its four neighbors.

Step 4. Repeat the process from Step 2 for all the neighbors.

7.2.2.1 Point pattern

For simulation purposes a point type pattern was assumed first by seeding a defect in only

one feature in each module. We seeded defects into ―LoginForm‖ and ―FeatureDisplay‖ in

features number 6 and 4 respectively. In the two-dimensional form they are denoted P(1, 6)

and P(3, 4) since the ―LoginForm‖ module is module number 1 and the ―FeatureDisplay‖

module is module number 3. The modules with the seeded defects are shown in the figure

below marked with an asterisk.

Algorithms to Identify Failure Pattern Master‘s Thesis

48

Figure 7.8: Point type defect seeding

 When the ―Start testing with Simple method‖ button of the main frame was pressed in the

software tool, a point was randomly selected and tested to see whether it was an error

Algorithms to Identify Failure Pattern Master‘s Thesis

49

containing feature or not by matching it with the data kept in table ―AllDefects‖ in the

database. In this case, after six trials, the point P(1, 6) was selected and depicted as a point

type pattern since none of its neighbor contains an error. Details of the simulation are shown

in appendix A.1.1.

Figure 7.9: Point type defect seeding in tabular form

Table 7.5: Point type defect seeding in real application(shows defects in sixth feature of

―LoginForm‖ module and ―FeatureDisplay‖ Module)

Although the process was repeated ten times, the algorithm depicted the defect of only

‗LoginForm‘. There is one defect-containing feature in ―FeatureDisplay‖, which could not be

depicted. This is a drawback of this algorithm. The solution to this drawback is to evenly

spread the generation of test cases (see chapter 2). An asterisk represents the location of the

defect.

Modules

Features

1

2

3

4 defect

5

6 defect

7

8

9

10

11

12

DefectDisplay FeatureDisplay MainFrameLoginForm

Algorithms to Identify Failure Pattern Master‘s Thesis

50

Figure 7.10: Point type defect detected by the algorithm

7.2.2.2 Block pattern

After the simulation of point pattern, block type defects were seeded into the application. For

this, module ―one‖, ―two‖ and ―three‖ were use – LoginForm, FeatureDisplay and

DefectsDisplay respectively. Eight continuous defects (see sction 4.13a) were seeded to

module one, ten discontinuous defects (see section 4.13b) were seeded in module ―Three‖

and no defects were seeded in module ―two‖ as shown in the figure 7.11. Defects in the

―LoginForm‖ module were seeded in features two to eleven. In the two-dimensional form

they are denoted as P(1, 2), P(1, 3), P(1, 4), P(1, 5), P(1, 6) P(1, 7), P(1, 8), P(1, 9), P(1, 10),

and P(1, 11). In the same way, nine discontinuous features were seeded in Module

―DefectsDisplay‖ as shown in the figure below.

Algorithms to Identify Failure Pattern Master‘s Thesis

51

Figure 7.11: Block type defect seeding

Algorithms to Identify Failure Pattern Master‘s Thesis

52

When the ―Start testing with Simple method‖ button of the main frame was pressed in the

software tool, a point was randomly selected and the tool tested whether it was an error

containing feature or not by comparing to the data kept in table ―AllDefects‖ in the database.

In this case, in the 3rd trial, the point P(1, 6) was selected and in the fifth trial the point P(3,

4) was selected and all the error containing points around these points were collected in the

array list and depicted as a block type pattern. Detail of the simulation is kept in appendix

A.1.2.

Figure 7.12: Block type defect seeding in tabular form

Table 7.6: Block pattern detected by the algorithm

After the completion of the five attempts, all the detected points and defect containing points

were collected in the arrays DT[] and DF[] respectively. By performing boundary test (see

chapter 5.4), the pattern type was identified. As the array DF[] does not contain points that

contain two boundaries, and there are more than two defects containing points, we assumed it

as block pattern. The geometric structure of the pattern is shown in the table below:

Modules

Features

1 defect

2 defect

3 defect

4 defect

5 defect

6

7

8

9

10

11

12

DefectDisplay FeatureDisplay MainFrameLoginForm

Algorithms to Identify Failure Pattern Master‘s Thesis

53

Table 7.7: Geometric structure of the defects

There were defects in features number eight to eleven in model ‗DefectsDisplay‘, which were

not found by the algorithm. This is a drawback with this algorithm which can be overcome by

distributing the test cases uniformly using the Adaptive Random testing methods (see chapter

2).

7.2.2.3 Strip pattern

After simulation of point and block pattern, strip type defects were seeded into the

application. For this, module ―one‖, ―two‖ and ―three‖ are used – LoginForm, FeatureDisplay

and DefectsDisplay respectively. Twelve continuous defects (see section 4.13a) were seeded

to module one, ten discontinuous defects (see section 4.13b) were seeded to module ―Three‖

and no defect was seeded in module ―two‖ as shown in figure 7.13. Defects in the

―LoginForm‖ module were seeded in features one to twelve. In the two-dimensional form

they are denoted as P(1, 2), P(1, 3), P(1, 4), P(1, 5), P(1, 6) P(1, 7), P(1, 8), P(1, 9), P(1, 10),

P(1, 11), and P(1, 12). In the same way, nine discontinuous features were seeded in Module

―DefectsDisplay‖ as shown in the figure below.

Modules

Features

1 defect

2 defect defect

3 defect defect

4 defect defect

5 defect defect

6 defect

7 defect

8 defect

9 defect

10 defect

11 defect

12

LoginForm DefectDisplay FeatureDisplay MainFrame

Algorithms to Identify Failure Pattern Master‘s Thesis

54

Figure 7.13: Strip type defect seeding

Algorithms to Identify Failure Pattern Master‘s Thesis

55

When the ―Start testing with Simple method‖ button of the main frame was pressed, a point

was randomly selected each time and we checked whether it was an error containing feature

or not by matching it to the data kept in table ―AllDefects‖ in the database. In this case, in the

first trial the point P(1, 6) was selected and in the fifth trial the point P(3, 5) was selected and

all the error containing points around these points were collected in the array lists. Details of

the simulation are shown in appendix A.1.2.

Figure 7.14: Strip type defect seeding in tabular form

After five attempts all the detected points and defect containing points were collected in the

array lists DT[] and DF[] respectively. By performing a boundary test (see chapter 5.4), the

pattern type was identified. As the array DF[] contains points that contain two boundaries

(viz. P(1, 1) and P(1, 10)), it was assumed to be strip pattern. The geometric structure of the

pattern is shown in the figure below:

Table 7.8: Strip pattern detected by the algorithm

Modules

Features

1 defect defect defect

2 defect defect

3 defect defect

4 defect defect

5 defect defect

6 defect

7 defect

8 defect

9 defect

10 defect

11 defect

12 defect

LoginForm DefectDisplay FeatureDisplay MainFrame

Algorithms to Identify Failure Pattern Master‘s Thesis

56

The defects in features eight to eleven of models DefectsDisplay were not found. This is a

drawback with this algorithm which can be overcome by uniformly distributing the test cases

using Adaptive Random testing methods (see chapter 2).

7.2.3 Algorithm tracing for Heuristic method

In the Heuristic method, we first randomly select a point by generating random numbers. The

point is checked to see whether it contains error or not. If the selected point contains an error

all its end points (see 4.15a) are computed and checked to see whether the point contains an

error. Otherwise another point is selected randomly. All the tested and defect containing

points are put into the arrays DT[] and DF[] respectively and by performing a boundary test,

(see section 5.4) the pattern type is identified. The algorithm used for the heuristic method is

given below:

Algorithm:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat step

one.

Step 3: Check if the detected point contains a defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as a defect and put that point into array defected DF[]

 Step 4: Find the four end points of point V(p).

Step 5: Test each end point to see whether it contains defects or not. If the tested point

contains defect, put it in DF[] else put it in DT[].

7.2.3.1 Point pattern

For simulation purposes, a point type pattern was generated by first seeding a defect in only

one feature in each module. We seeded defects into ―LoginForm‖ and ―FeatureDisplay‖ in

feature number 6 and 4 respectively. In the two-dimensional form they are denoted P(1, 6)

and P(3, 4) since the ―LoginForm‖ module is noted as module number 1 and the

―FeatureDisplay‖ module is module number 3. The modules with the seeded defects are

shown in the figure 7.2.3.1a below, marked with an asterisk.

Algorithms to Identify Failure Pattern Master‘s Thesis

57

Figure 7.15: Point type defect seeding

 When the ―Start testing with Heuristic method‖ button of the main frame was pressed in the

software tool, a point was randomly selected and we checked whether it was an error

Algorithms to Identify Failure Pattern Master‘s Thesis

58

containing feature or not by matching it to the data kept in table ―AllDefects‖ in the database.

In this case after six trials, the point P(1, 6) was selected and depicted as a point type pattern

since none of its end points contains an error. Details of the simulation are shown in appendix

A.1.1.

Figure 7.16: Point type defect seeding in tabular form

Table 7.9: Point type defect seeding in real application(shows defects in sixth feature of

―LoginForm‖ module and ―FeatureDisplay‖ Module)

Although the process was repeated for ten times, the algorithm depicted the defect of only

‗LoginForm‘. There was one defect-containing feature in ―FeatureDisplay‖, which could not

be depicted. This is a drawback of this algorithm. The solution to this drawback is to evenly

spread the generation of test cases. An asterisk represents the location of the defect.

Modules

Features

1

2

3

4 defect

5

6 defect

7

8

9

10

11

12

DefectDisplay FeatureDisplay MainFrameLoginForm

Algorithms to Identify Failure Pattern Master‘s Thesis

59

Figure 7.17: Point type defect detected by the algorithm

7.2.3.2 Block pattern

After the simulation of the point pattern, block type defects were seeded into the application.

For this module ―one‖, ―two‖ and ―three‖ are used – LoginForm, FeatureDisplay and

DefectsDisplay respectively. Eight continuous defects (see section 4.13a) are seeded into

module one, ten discontinuous defects (see section 4.13b) were seeded in module ―Three‖

and no defect was seeded in module ―two‖ as shown in the figure 7.18. In the ―LoginForm‖

module defects were seeded into features two to eleven. In the two-dimensional form they are

denoted as P(1, 2), P(1, 3), P(1, 4), P(1, 5), P(1, 6) P(1, 7), P(1, 8), P(1, 9), P(1, 10), and P(1,

11). In the smae way nine discontinuous features are seeded into Module ―DefectsDisplay‖ as

shown in the figure below.

Algorithms to Identify Failure Pattern Master‘s Thesis

60

Figure 7.18: Block type defect seeding

Algorithms to Identify Failure Pattern Master‘s Thesis

61

When the ―Start testing with Heuristic method‖ button of the main frame was pressed in the

software tool, a point was randomly selected and we tested whether it was an error containing

feature or not by comparing it to the data in table ―AllDefects‖ in the database. In this case, in

the 3rd trial, the point P(2, 6) was selected and in the fifth trial the point P(3, 4) was selected

and all the end points were computed. All the end points of point P(1, 6) were error free , so it

was assumed to be a point pattern although it was block pattern. One of the end points of the

point P(3, 4), that is P(3, 1), contained an error Thus, the points P(3, 1), P(3, 2), P(3, 3), P(3,

4) and P(3, 5) make up a block pattern. Detail of the simulation is shown in appendix A.1.2.

Figure 7.19: Block type defect seeding in tabular form

Table 7.10: Block pattern detected by the algorithm

After the completion of five run, all the detected points and defect containing points were

collected in the arrays DT[] and DF[] respectively. By performing boundary test (see chapter

5.4), the pattern type was identified. As the array DF[] does not contain points that contain

two boundaries, and there were more than two defect containing points, we assumed that this

Modules

Features

1 defect

2 defect

3 defect

4 defect

5 defect

6

7

8

9

10

11

12

DefectDisplay FeatureDisplay MainFrameLoginForm

Algorithms to Identify Failure Pattern Master‘s Thesis

62

pattern was a block pattern. The geometric structure of the pattern is shown in the table

below:

Table 7.11: Geometric structure of the defects

There were defects in features number eight to eleven in module ‗DefectsDisplay‘, which

were not found by the algorithm and also no defects of module one was found. This is a

drawback with this algorithm which can be overcome by distributing the test cases uniformly

using Adaptive Random testing methods (see chapter 2). According to this algorithm, block

pattern whose end points do not contain defect are assumed to be point patterns. In above

figure 7.19 points P(1, 2) to P(1, 11) were assumed to be a point pattern although it was a

block pattern.

7.2.3.3 Strip pattern

After simulation of point and block pattern, strip pattern defects were seeded into the

application. For this module ―one‖, ―two‖ and ―three‖ were used - LoginForm,

FeatureDisplay and DefectsDisplay respectively. Twelve continuous defects (see section

4.13a) were seeded into module one, ten discontinuous defects (see section 4.13b) were

seeded into module ―Three‖ and no defect was seeded into module ―two‖ as shown in figure

7.20. Defects in the ―LoginForm‖ module were seeded in features one to twelve. In the two-

dimensional space they are denoted as P(1, 2), P(1, 3), P(1, 4), P(1, 5), P(1, 6) P(1, 7), P(1, 8),

P(1, 9), P(1, 10), P(1, 11), and P(1, 12). In the same way, nine discontinuous features were

seeded in Module ―DefectsDisplay‖ as shown in the figure below.

Modules

Features

1 defect

2 defect

3 defect

4 defect

5 defect

6 defect

7

8

9

10

11

12

LoginForm DefectDisplay FeatureDisplay MainFrame

Algorithms to Identify Failure Pattern Master‘s Thesis

63

Figure 7.20: Strip type defect seeding

When the ―Start testing with Heuristic method‖ button of the main frame was pressed, a point

was randomly selected and checked to see whether it was an error containing feature or not

by matching it to the data kept in table ―AllDefects‖ in the database. In this case, in the first

Algorithms to Identify Failure Pattern Master‘s Thesis

64

trial the point P(1, 6) was selected and in the fifth trial the point P(3,5) was selected and all

the error containing points around these points were collected in the array list and depicted as

a strip pattern. Details of the simulation are shown in appendix A.1.2.

Figure 7.21: Strip type defect seeding in tabular form

After five attempts all the detected points and defect containing points were collected in the

array lists DT[] and DF[] respectively. By performing a boundary test (see chapter 5.4), the

pattern type was identified. As the array DF[] contains points that contain two boundaries

(viz. P(1, 1) and P(1, 12)), it was assumed to be a strip pattern. The geometric structure of the

pattern is shown in the table below:

Table 7.12: Strip pattern detected by the algorithm

The defects in features eight to eleven of models DefectsDisplay were not found. This is a

drawback with this algorithm which can be overcome by uniformly distributing the test cases

using Adaptive Random testing methods (see chapter 2).

Modules

Features

1 defect defect

2 defect defect

3 defect defect

4 defect defect

5 defect defect

6 defect

7 defect

8 defect

9 defect

10 defect

11 defect

12 defect

LoginForm DefectDisplay FeatureDisplay MainFrame

Algorithms to Identify Failure Pattern Master‘s Thesis

65

8 ANALYSIS AND DISCUSSION

For analysis and evaluation, we should answer the research questions.

RQ1- How is textual data transformed to numeric- data?

The software application is first divided into modules (see chapter 4.11a) and several features

(see chapter 4.11b) and by the process of mapping (chapter 5), textual information of a

software application is transformed to numeric data.

RQ2: What is the most efficient strategy for identifying pattern type?

Among the three algorithms, the Circular method explores all the points around a defect

containing point while the remaining algorithms do not test all the neighbors of a defect-

containing point. Thus, the Circular method is the most efficient and smart method for

identifying failure pattern.

RQ3: How does the efficient algorithm works with non-numeric data?

By the process of mapping (see chapter 5), we can transform a real application into a two-

dimensional input space and a test matrix as shown in figure 5.1.3. Thus, all the algorithms

can use the numeric data, which is generated, in the test matrix.

RQ4: What is the best way to determine the optimal step size?

The value of step size depends on the density of defects in the application and the risk you are

willing to take when making a conclusion. If the density of defects is high we can increase

the value of step size and small step size for low density defect containing application

(discussed in chapter 6.2). If we have few resources available and we need a quicker decision

with a greater risk of being wrong, we can fix a larger step size at the beginning manually.

Assuming the working conditions of processor and defect sets constant, all the algorithms

were executed ten times for each type of pattern and the average executing time was

calculated as shown in table 8.1.

Table 8.1: Execution times of all the algorithms

 Method

Patterns

Time in terms of millisecond (ms)

Simple method Heuristic method Circular Method

Point Patern 142 143

 143

Block Pattern 203 142 281

Strip Pattern 219 143 401

Algorithms to Identify Failure Pattern Master‘s Thesis

66

In terms of time, the cost for point pattern identification was found to be the same for all the

algorithms. For block and strip patterns, however, the Circular method was the most

expensive one and the Heuristic method was the cheapest one.

From the table above we can say that Circular method is the most efficient method when it

comes to identifying patterns but the most expensive one and the Heuristic method is the

fastest and less reliable than other two. When we analyzed the above table 8, we found that:

CA > CS > CH and

(CA > CS + CH)

where we have used

CS = Cost for Simple method

CA = Cost for Circular method

CH = Cost for Heuristic method

If CP is the cost for pattern identification, CE is the cost of the most efficient algorithm and

CR is the cost of Random testing, then just to identify the pattern we don‘t need to explore

all the points if it can be identified by two or three end points. The most efficient algorithm

explores the defect containing points only. But if we take all the test cases randomly, it takes

more time than CP and CE same point may repeat again.

CR > CE > CP

The cost of identifying the pattern is inversely proportional to the step size. If the step size is

small, the algorithm uses more time to identify a pattern, as we have to explore more datasets.

Thus the cost will be high but if we explore more datasets with small a step size, the result

will be more precise. The approximate relation between step size, cost in terms of time and

precision of pattern is shown in the diagram below.

Figure 8.1: Graph showing the effect of step size to the pattern

Algorithms to Identify Failure Pattern Master‘s Thesis

67

9 CONCLUSION AND FUTURE WORK

In this report, I have discussed the concept of mapping a real application into two-

dimensional space (textual to numeric data mapping). Instead of doing a real testing, I

discussed three algorithms and traced them to see if it is possible to identify failure patterns

that are already inserted for simulation purposes. The three algorithms are:

 Simple distance computation method

 Circular method

 Heuristic method

In all of these methods, a first defect is selected randomly and the points around it are

explored. In the Simple distance computation method all the points on the horizontal axis of

the initially selected point are explored first and then all the points of the vertical axis are

explored. In the Circular method, all the points around the selected point are explored in a

circular way – i.e. right neighbor is tested first and then the top neighbor, left and finally

down is explored while in the Heuristic method, as the name implies, a trial-and-error method

which is a short cut way of determining the pattern. In this case, only the end points of the

initially selected point are tested. In the end all the tested data are collected in an array and

boundary test (see chapter 5.4) is performed to identify the pattern of the failure data.

 As all the neighbors of the selected point are tested in the Circular method, this is the most

reliable and efficient method among the three methods but it is costly in terms of execution

time. The Heuristic method, which takes only the end points of a defect containing point, has

the same execution time for all patterns but may mistake a strip pattern for a point pattern.

Thus, the Heuristic method is the cheapest but least reliable method.

While implementing the algorithms for all types of pattern, we saw that the Circular method

is the most expensive one, followed by Simple method and Heuristic method (see table 8.1).

The most important result of this thesis is that we can work on non-numeric data by

transforming the real application into two-dimensional numeric data. In the real world, we

have to work on real application containing non-numeric data sets but the computer cannot

directly recognize the non-numeric data for the computation. For that we divide the

application into modules and list their features. For the transformation to two-dimensional

input spaces, we insert each module at a point on the x-axis and the corresponding features on

the y-axis. We can then map the system‘s features on to numeric data using the functions

explained in chapter 4.18.

Future work:

1. Step size:

We need to find the optimal step size – the lowest possible failure rate at an

acceptable cost. It is assumed that fixing the step size to 1 unit gives a right pattern.

Algorithms to Identify Failure Pattern Master‘s Thesis

68

For the application having high density of defects, large value of step size may also

give a right pattern.

As we took example of small program, there was no need to change the step size.

Usually input domains are large for real application with hundreds of modules and

thousands of features. In that case dynamic change of step size is important. Thus

simulation of step size is kept for future work.

2. Conceptual distance between features (dist(x,y))

Similarity and relatedness between two features can be computed by using the

function dist(x,y). For this function, we need more studies of the analysis of lexicon

relation of synonymy, hyponymy and hyponymy. Because of limited time, I could not

complete this part, which is thus kept for future work.

Algorithms to Identify Failure Pattern Master‘s Thesis

69

10 APPENDICES

 A.1 Tracing of algorithm for Circular Method

The algorithm for the Circular method is given as:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[]. Otherwise repeat

step one.

Step 3: Check if the detected point contains defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as a defect and put that point into array defected DF[]

and find its four neighbors.

Step 4. Repeat the process from Step 2 for all the neighbors.

A.1.1 Point Pattern

When the ―Start Checking with Circular method‖ button of the mainframe of the software is

pressed, it starts generating the tests cases randomly and testing whether it contains defectsor

not with the help of the database where all the features are kept along with the seeded defects.

In the end, it computes the type of pattern by performing some type of boundary test

mechanisms (explained in section 5.2).

Figure A1: Main frame of the application

For simulation purpose, this algorithm was repeated 10 times, that is the button was pressed

10 times. Before starting simulation for next type pattern, ‗Reset‘ button was pressed to clear

Algorithms to Identify Failure Pattern Master‘s Thesis

70

the log of DF[] and DT[]. Simulation for point type defect with the Simple distance

computation method is given below:

A.1.11 Attempt 1

Step1: The point P(4,6) was selected.

Step2: First we tested to see whether it was already detected or not by matching the point in

the array list DT[]. As DT[] is null this time no match is found, therefore it is not detected

yet. Then we test whether the feature corresponding to the point P(4,6), contains a defect or

not using the database table ―allDefects‖. It is found that this point is bug free. The algorithm

is then terminated returning the value of the array list DT[] and DF[]and another attempt is

done.

A.1.12 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), it is found that the

selected point is not tested before. With the help of database table we test whether the

selected point contains defect or not. This showed that the point is bug free and the algorithm

is terminated appending the point P(9,8) to DT[]. Till this attempt, no defects are found.

Therefore the array list DF[] which consists only features containing defect are empty.

P(4,6)

P(9,8)

Figure A2: Array List DT[] showing the detected test cases

A.2.13 Attempt 3

Step 1: The point P(3,8) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6) and P(9,8), it is found

that the selected point is not tested before. With the help of the database table we tested to see

whether it contains a defect or not. Which showed that the point is bug free and the algorithm

is terminated appending the point P(3,8) in DT[]. Till this attempt, no defects are found.

Therefore the array list DF[] that consists only features containing defect is empty.

P(4,6)

P(9,8)

P(3,8)

Figure A3: Array List DT[] showing the detected test cases A.2.14 Attempt 4

Algorithms to Identify Failure Pattern Master‘s Thesis

71

A.2.14 Attempt 4

Step 1: The point P(10,2) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8) and P(3,8), it is

found that it is not tested before. With the help of the database table we tested to see whether

it contains defect or not. Which showed that the point is bug free and the algorithm is

terminated appending the point P(10,2) in DT[]. Till this attempt, no defects are found.

Therefore the array list DF[] that consists only features-containing defect is empty.

P(4,6)

P(9,8)

P(3,8),

P(10,2),

Figure A4: Array List DT[] showing the detected test cases

A.2.15 Attempt 5

Step 1: The point P(1,9) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8), P(3,8) and

P(10,2), it is found that the selected point is not tested before. With the help of the database

table we tested to see whether it contains defect or not. Which showed that the point is bug

free and the algorithm is terminated appending the point P(1,9) in DT[]. Till this attempt, no

defects are found. Therefore the array list DF[] that consists only features containing defect is

empty.

P(4,6)

P(9,8)

P(3,8)

P(10,2)

P(1,9)

Figure A5: Array List DT[] showing the detected test cases

A.2.16 Attempt 6

Step 1: The point P(5,1) was selected randomly.

Algorithms to Identify Failure Pattern Master‘s Thesis

72

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8), P(3,8), P(10,2)

and P(1,9), it is found that the point is not tested before. With the help of the database table

we tested to see whether it contains defect or not. Which showed that the point is bug free

and the algorithm is terminated appending the point P(5,1) in DT[]. Till this attempt, no

defects are found. Therefore the array list DF[] that consists only features containing defect is

empty.

P(4,6)

P(9,8)

P(3,8)

P(10,2)

P(1,9)

P(5,1)

Figure A6: Array List DT[] showing the detected test cases

A.2.17 Attempt 7

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(4,6), P(9,8), P(3,8), P(10,2),

P(1,9) and P(5,1), it is found that it is not tested before. With the help of the database table

we tested to see whether it contains defect or not. This time the point P(1,6) is matched to the

point of database table ―allDefects‖. That is feature containing defect is found. As for the

algorithm, the point P(1,6) is appended in DT[] and all the neighbors of the point P(1,6) are

computed. The neighbors are P(2,6), P(1,5) and P(1,7).

Step 3: The algorithm is repeated for all neighbors of point P(1,6). As none of the neighbors

contains defects, the algorithm is terminated putting all the detected points into the array list

DT[]. The array lists DT[] and DF[] contains detected and defected points respectively as

shown in the diagram below.

Algorithms to Identify Failure Pattern Master‘s Thesis

73

P(1,6)

P(4,6)

P(9,8)

P(3,8)

P(10,2)

P(1,9)

P(5,1)

P(1,6)

P(2,6)

P(1,6)

P(1,7)

a b

Figure A7: Array Lists DF[] (a) and DT[] (b) showing the detected test cases

A.2.18 Attempt 8

Step 1: The point P(2,6) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. It is found to be detected as the array list DT[] contains the point P(4,6),

P(9,8), P(3,8), P(10,2), P(1,9) and P(5,1). Therefore the algorithm was terminated.

A.2.19 Attempt 9

Step 1: The point P(1,5) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it detected as the array list DT[] contained the point P(4,6), P(9,8),

P(3,8), P(10,2), P(1,9), P(5,1), P(1,6), P(2,6), P(1,5) and P(1,5). No updates were done in the

array lists DT[] and DF[] as the point was already detected. Therefor the algorithm is then

terminated.

A.2.110 Attempt 10

Step 1: The point P(3,1) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained only the point P(4,6), P(9,8), P(3,8), P(10,2),

P(1,9), P(5,1), P(1,6), P(2,6), P(1,5) and P(1,5), we found the selected point not tested before.

With the help of the database table we tested to see whether it contained defect or not and

found that it did not contain a defect. Therefore the algorithm was terminated. The array lists

Algorithms to Identify Failure Pattern Master‘s Thesis

74

DT[] and DF[] contains detected and defected points respectively as shown in the diagram

below.

Figure A8: Array Lists DF[] (a) and DT[] (b) showing the detected test cases

In the end, when the required number of trial was completed, the array list with the points

having defects was plotted in the graph to see the type of the failure pattern. Plotting was

done in the table containing modules and features by assigning asterisk to the corresponding

location of the point as shown in the figure below:

Figure A9: Point type defect detected by the algorithm

A.1.2 Block Pattern

A.1.21 Attempt 1:

Step1: The point P(6,6) was selected.

Algorithms to Identify Failure Pattern Master‘s Thesis

75

Step2: First we tested to see whether the selected point was already detected or not by

matching the point in the array list DT[]. As DT[] was null this time no match was found,

therefore it was not detected yet. Then we tested to see whether the feature corresponding to

the point P(6,6), contains a defect or not using the database table ―allDefects‖. It was found

that this point was bug free. The algorithm was then terminated returning the value of the

array list DT[] and DF[]and another attempt was done.

A.1.22 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point is already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(6,6), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contains defect or not and it was found that the point was bug free and the

algorithm was terminated appending the point P(9,8) to DT[]. Till this attempt, no defects are

found. Therefore the array list DF[], which consists only features containing defect are

empty.

P(6,6)

P(9,8)

Figure A10: Array List DT[] showing the detected test cases

A.2.23 Attempt 3

Step 1: The point P(11,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(6,6) and P(9,8), we found that

it was not tested before. With the help of the database table we tested to see whether it

contains defect or not. This time also the point P(11,6) was not matched to the point of

database table ―allDefects‖. As for the algorithm, the point P(11,6) was appended and another

point was tested. Till this time the array list containing defects was empty.

P(6,6)

P(9,8)

P(9,8)

Figure A11: Array List DT[] showing the detected test cases

Algorithms to Identify Failure Pattern Master‘s Thesis

76

A.2.24 Attempt 4

Step 1: The point P(6,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be detected as the array list DT[] contained the point P(2,8).

Therefore the algorithm was terminated.

A.2.25 Attempt 5

Step 1: The point P(3,4) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] does not contain the point P(3,4), we found that it was

not tested before and the point was put into DT[]. With the help of the database table we

tested to see whether the selected point contains defect or not. This time, the point P(3,4) was

matched to the database table ―allDefects‖. That is feature-containing defect was found. As

for the algorithm, the point P(3,4) was appended in DF[] and all the neighbors of the point

P(3,4) were computed. The neighbors were P(2,4) and P(4,4), P(3,3) and P(3,5).

Step 3: The algorithm was repeated for all neighbors of point P(3,4). Point P(4,4) was taken

first, which was not defect containing point then P(3,3) was taken, where we found error and

its neighbors were computed and tested to see whether they contain defect or not. For each

point step 2 was repeated and finally the defect containing features were collected in array

DF[] and detected features are collected in DT[].

a

b

Figure A12: Array List DT[] and DF[]

A.1.3 Strip Pattern

A.2.31 Attempt 1

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. Initially, as the array list DT[] was empty, we found that it was not tested

before. With the help of the database table we tested to whether it contains defect or not. The

point P(1,6) was matched to the point of database table ―allDefects‖. That is feature-

containing a defect was found. As for the algorithm, the point P(1,6) was appended in DT[]

and all the neighbors of the point P(1,6) were computed. The neighbors are P(1,5) and P(1,7).

P(3,1 … P(3,5) P(6,6) P(9,8) P(11,6)

P(3,1 … P(3,5)

Algorithms to Identify Failure Pattern Master‘s Thesis

77

Step 3: The algorithm was repeated for all neighbors of point P(1,6). Point P(2,6) was tested

first, which was not a defect containing point then P(1,5) was tested, where we found error

and its neighbors were computed and tested to see whether they contain defect or not. For

each point step 2 was repeated and finally the defect containing features were collected in

array DF[] and detected features were collected in DT[] as shown in figure A13.

a

b

Figure A13: Array List DT[] and DF[]

A.1.22 Attempt 2:

Step 1: The point P(5,5) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(5,5), the selected point was

not tested before. With the help of database table we tested to see whether the selected point

contained defect or not and we found that the point was bug free and the algorithm was

terminated appending the point P(5,5) to DT[].

A.1.23 Attempt 3:

Step 1: The point P(10,9) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(10,9), the selected point was

not tested before. With the help of database table we tested to see whether the selected point

contains defect or not and we found that the point was bug free and the algorithm was

terminated appending the point P(10,9) to DT[].

A.1.34 Attempt 4:

Step 1: The point P(1,9) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained the point P(1,9), the selected point was

already tested before. The algorithm was then terminated.

A.2.25 Attempt 5

Step 1: The point P(3,5) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(3,5), we found that it was

P(1,1) P(1,2) P(1,3) P(1,4) P(1,5) P(1,6) P(1,7) P(1,8) P(1,9) P(1,10) P(1,11) P(1,12)

P(1,1) P(1,2) P(1,3) P(1,4) P(1,5) P(1,6) P(1,7) P(1,8) P(1,9) P(1,10) P(1,11) P(1,12) P(2,1) .. P(2,12)

Algorithms to Identify Failure Pattern Master‘s Thesis

78

not tested before and the point was put into DT[]. With the help of the database table we

tested to see whether the selected point contained defect or not. This time also, the point

P(3,5) was matched to the point of database table ―allDefects‖. That is feature-containing a

defect was found. As for the algorithm, the point P(3,4) was appended in DF[] and all the

neighbors of the point P(3,5) were computed. The neighbors were P(2,5) and P(4,5), P(3,4)

and P(3,6).

Step 3: The algorithm was repeated for all neighbors of point P(3,4). Point P(4,5) was tested

first, which was not defect containing point then P(3,4) was tested, where we found error and

its neighbors were computed and tested to see whether they contain defect or not. For each

point step 2 was repeated and finally the defect containing features are collected in array DF[]

and detected features were collected in DT[] as shown in figure A14.

Figure A14: DF[]

A.2 Tracing of algorithm for the Simple Distance Computation Method

The algorithm for the Simple Distance Computation method is given as:

Step1: Locate randomly a point V(p) in the domain(D).

Step 2: Check if it is already detected.

If it is not detected mark point P as detected and put into array DT[].

Otherwise repeat step one.

Step 3: Check if the detected point contains a defect.

 If it is not a defect

 Return null

 If it is a defect

 Mark it as defected and put that point into array defected DF[]

Step 4: Take one point from neighbor along X-axis and repeat the process

from Step 2.

Step 5: Take one point from the neighbor of the initial point along Y-axis

and repeat the process from Step 2.

P(1,1) P(1,2)

…………
…

P(1,12) P(3,1) P(3,2) P(3,5)

Algorithms to Identify Failure Pattern Master‘s Thesis

79

A.2.1 Point Pattern

When the ―Start Checking with Simple method‖ button of the mainframe of the software was

pressed, it started generating the tests cases randomly and testing whether it contains defects

or not with the help of the database where all the features were kept along with the seeded

defects. In the end, it computed the type of pattern by performing some type of boundary test

mechanisms (explained in section 5.2).

Figure A15: Main frame of the application

For simulation purpose, this algorithm was repeated 10 times, that is the button was pressed

10 times. The result is given below:

A.2.11 Attempt 1:

Step1: The point P(10,6) was selected.

Step2: First we tested to see whether it was already detected or not by matching the point in

the array list DT[]. As DT[] was null this time no match was found, therefore it was not

detected yet. Then we tested to see whether the feature corresponding to the point P(10,6),

contains a defect or not using the database table ―allDefects‖. We found that this point was

bug free. The algorithm was then terminated returning the value of the array list DT[] and

DF[] and another attempt was done.

A.2.12 Attempt 2:

Step 1: The point P(8,8) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(10,6), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contains defect or not. This showed that the point was bug free and the

algorithm was terminated appending the point P(8,8) to DT[]. Till this attempt, no defects

were found. Therefore the array list DF[] which consists only features containing defect was

empty.

Algorithms to Identify Failure Pattern Master‘s Thesis

80

P(10,6)

P(8,8)

Figure A16: Array List DT[] showing the detected test cases

A.2.13 Attempt 3

Step 1: The point P(7,2) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(10,6) and P(8,8), we found

that the selected point was not tested before. With the help of the database table we tested to

see whether it contains a defect or not. Which showed that the point was bug free and the

algorithm was terminated appending the point P(7,2) in DT[]. Till this attempt, no defects

were found. Therefore the array list DF[] that consists only features containing defect was

empty.

P(10,6)

P(8,8)

P(7,2)

FigureA17: Array List DT[] showing the detected test cases A.2.14 Attempt 4

A.2.14 Attempt 4

Step 1: The point P(9,2) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(10,6), P(8,8) and P(7,2), we

found that it was not tested before. With the help of the database table we tested to see

whether it contains defect or not. Which showed that the point was bug free and the algorithm

was terminated appending the point P(9,2) in DT[]. Till this attempt, we did not find any

defect. Therefore the array list DF[] that consists only features-containing defect was empty.

P(10,6)

P(8,8)

P(7,2)

P(9,2)

FigureA18: Array List DT[] showing the detected test cases

Algorithms to Identify Failure Pattern Master‘s Thesis

81

A.2.15 Attempt 5

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P P(10,6), P(8,8), P(7,2) and

P(9,2), we found that the selected point was not tested before. With the help of the database

table we tested to see whether it contains defect or not. Which showed that the point

contained bug and according to the algorithm, step 4 and step 5 were repeated until we found

error containing points along X-axis and Y-axis of the initial point P(1,6).

P(10,6)

P(8,8)

P(7,2)

P(9,2)

P(1,2)

FigureA19: Array List DT[] showing the detected test cases

A.2.2 Block Pattern

A.2.21 Attempt 1:

Step1: The point P(8,3) was selected.

Step2: First we tested to see whether the selected point was already detected or not by

matching the point in the array list DT[]. As DT[] was null this time no match was found,

therefore it was not detected then. Then we tested to see whether the feature corresponding to

the point P(8,3), contained a defect or not using the database table ―AllDefects‖. We found

that this point was bug free. The algorithm was then terminated returning the value of the

array list DT[] and DF[] and another attempt was done.

A.2.22 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained only the point P(8,3), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contained defect or not and we found that the point was bug free and the

algorithm was terminated appending the point P(9,8) to DT[]. Till this attempt, no defects

were found. Therefore the array list DF[], which consists only features containing defect are

empty.

Algorithms to Identify Failure Pattern Master‘s Thesis

82

P(8,3)

P(9,8)

FigureA20: Array List DT[] showing the detected test cases

A.2.23 Attempt 3

Step 1: The point P(7,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(8,3) and P(9,8), we found that

it was not tested before. With the help of the database table we tested to see whether it

contained defect or not. This time also, the point P(7,6) was not matched to the point of

database table ―AllDefects‖. As for the algorithm, the point P(7,6) was appended in DT[] and

another attempt was done.

P(8,3)

P(9,8)

P(7,6)

FigureA21: DT[]

A.2.24 Attempt 4

Step 1: The point P(3,1) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be not detected as the array list DT[] did not contain the point

P(2,8). Then the point P(3, 1) was checked in the database table containing defects. As we

found the point P(3,1) in ‗AllDefects‘, it was a point containing a defect. So it was inserted

into the array DF[] and its neighbors along X- axis were explored but no neighbor in X-axis

contained a defect. Then the neigher of P(3, 1) along Y- axis were explored where we found

P(3, 2), P(3, 3), P(3, 14) and P(3, 5) were containing error. Thus these points were inserted

into the array DF[] and terminated the algorithm.

A.2.25 Attempt 5

Step 1: The point P(3,3) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be detected as the array list DT[] contains the point P(3,3).

Therefore the algorithm was terminated

Algorithms to Identify Failure Pattern Master‘s Thesis

83

a

b

Figure A22: DF[] and DT[]

A.2.3 Strip Pattern

A.2.21 Attempt 1:

Step1: The point P(8,3) was selected.

Step2: First we tested to see whether the selected point was already detected or not by

matching the point in the array list DT[]. As DT[] was null this time no match was found,

therefore it was not detected. Then we tested to see whether the feature corresponding to the

point P(8,3), contains a defect or not using the database table ―allDefects‖. We found that this

point was bug free. The algorithm was then terminated returning the value of the array list

DT[] and DF[] and another attempt was done.

A.2.22 Attempt 2:

Step 1: The point P(9,8) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contained only the point P(8,3), we found that the

selected point was not tested before. With the help of database table we tested to see whether

the selected point contains defect or not and we found that the point was bug free and the

algorithm was terminated appending the point P(9,8) to DT[]. Till this attempt, no defects

were found. Therefore the array list DF[], which consists only features containing defect was

empty.

P(8,3)

P(9,8)

Figure A23: Array List DT[] showing the detected test cases

A.2.23 Attempt 3

Step 1: The point P(1,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] contains only the point P(8,3) and P(9,8), we found that

P(3,1) .. P(3,5)

P(3,1) .. P(3,5) P(9,8) P(9,8) P(7,6)

Algorithms to Identify Failure Pattern Master‘s Thesis

84

it was not tested before. With the help of the database table we tested to see whether it

contains defect or not. This time, the point P(1,6) was matched to the point of database table

―allDefects‖. That is feature-containing defect was found. As for the algorithm, the point

P(1,6) is appended in DT[] and the neighbors along the X – axis and Y- axis of the point

P(1,6) are computed and tested.

Step 3: Along X-axis, we kept on testing the next point along X-axis if we found the detected

point as a defect. After completing testing along X-axis the same process was repeated on Y-

axis.

A.2.24 Attempt 4

Step 1: The point P(2,6) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. We found it to be detected as the array list DT[] contains the point P(2,8).

Therefor the algorithm was terminated.

A.2.25 Attempt 5

Step 1: The point P(3,4) was selected randomly.

Step 2: We tested to see whether the selected point was already tested or not by checking the

array list DT[]. As the array list DT[] did not contain the point P(3,4), we found that it was

not tested before and the point was put into DT[]. With the help of the database table we

tested to see whether the selected point contains defect or not. This time also, the point P(3,4)

was matched to the point of database table ―allDefects‖. That is feature-containing defect

was found. As for the algorithm, the point P(3,4) was appended in DF[] and [] and the

neighbors along the X – axis and Y- axis of the point P(3,4) are computed and tested.

Step 3: Along X-axis, we kept on testing the next point along X-axis if we found the detected

point as a defect. After completing testing along X-axis the same process was repeated on Y-

axis. Following figures (a) and (b) shows the defects containing points and detected points.

Figure A24: DF[]

Figure A25: DT[]

P(1,2) . P(1,11) P(3,1) P(3,2) P(3,5) P(4,5) P(3,1) P(3,2) …….. P(3,5)

P(1,2)
…….

P(1,11) P(3,1) P(3,2) P(3,5)

Algorithms to Identify Failure Pattern Master‘s Thesis

85

A.3 Flowchart of the Simple Distance Computation Method

Algorithms to Identify Failure Pattern Master‘s Thesis

86

Algorithms to Identify Failure Pattern Master‘s Thesis

87

Algorithms to Identify Failure Pattern Master‘s Thesis

88

A.4 Flowchart of the Circular Method

Algorithms to Identify Failure Pattern Master‘s Thesis

89

Algorithms to Identify Failure Pattern Master‘s Thesis

90

Algorithms to Identify Failure Pattern Master‘s Thesis

91

A.5 Flowchart of the Heuristic Method

Algorithms to Identify Failure Pattern Master‘s Thesis

92

Algorithms to Identify Failure Pattern Master‘s Thesis

93

Algorithms to Identify Failure Pattern Master‘s Thesis

94

11 BIBLIOGRAPHY

[1] F.T. Chan, T.Y. Chen, I.K. Mak, Y.T. Yu, Proportional sampling strategy:

guidelines for software testing practitioners, Information and Software Technology 38

(12) (1996) 775–782.

[2] Mirror adaptive random testing , T.Y. Chen, F.-C. Kuo, R.G. Merkel, S.P. Ng,

2004

LNCS 2349.

[3] T.Y. Chen, T.H. Tse, Y.T. Yu, Proportional sampling strategy: a compendium and

some insights, The Journal of Systems and Software 58 (2001) 65–81.

 [4] R. Cobb, H.D. Mills, Engineering Software under Statistical Quality Control,

IEEE Software 7 (1990) 44–56.

 [5] I.K. Mak, On the effectiveness of random testing, Master Thesis, Department of

Computer Science, University of Melbourne, Australia, 1997.

[6] H.D. Mills, M. Dyer, R.C. Linger, Cleanroom software engineering, IEEE

Software 3 (1986) 19–24.

[7] G. Myers, The Art of Software Testing, Wiley, New York, 1979.

[8] R.A. Thayer, M. Lipow, E.C. Nelson, Software Reliability, NorthHolland,

Amsterdam, 1978.

[9] T.Y Chen, H.Leung and I.K Mak. Adaptive Random Testing. 2004

[10] Hong Zhu. Adequate Testing of Computer Software. An Online Book on

Software Testing, 1995.

[11] http://en.wikipedia.org/wiki/Verification_and_validation_(software)

[12] Efficient and Effective Random Testing Using the Voronoi Diagram, T. Y. Chen

and Robert Merkel

[13] P. E. Ammann and J. C. Knight, ―Data diversity: an approach to software fault

tolerance,‖ IEEE Transactions on Computers, vol. 37, no. 4, pp. 418–425, April 1988.

[14] Chan, F.T., Chen, T.Y., Mak, I.K., Yu, Y.T.: Proportional sampling strategy:

guidelines for software testing practitioners. Information and Software Technology

38 (1996) 775–782

[15] http://www.utdallas.edu/~ewong/SYSM-6310/03-Lecture/02-ART-paper-01.pdf

[16] http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-17756

http://en.wikipedia.org/wiki/Verification_and_validation_(software)
http://www.utdallas.edu/~ewong/SYSM-6310/03-Lecture/02-ART-paper-01.pdf
http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-17756

