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Sammendrag

Internett og World Wide Web har tatt over som standard for & lese og finne nyheter.
Dette gjor det mulig for nyhetslesere & noye velge nyhetene som er mest interessante
for dem. Pa grunn av de store mengder av artikler tilgjengelig, kan det veere en utfor-
drende og tidkrevende oppgave 4 finne den enskede informasjon. A forenkle denne
prosessen for leserne ville veere fordelaktig.

Denne avhandlingen utforsker ideen om 4 filtrere ut uenskede nyhetsartikler og serverer
de nyttige seg til leseren giennom mobile plattformer. Det er en del av et storre prosjekt
kalt SmartMedia som fokuserer pa bruk av komplekse strategier for 4 levere nyheter til
brukerne. Mens den overordnede strategien er basert pa bruk av den totale rammen
til brukerne for & gi nyheter, er den spesifikke omfanget av denne oppgaven a opprette
brukerprofiler fra brukerens handlinger logget av systemet. Motivasjonen er & utnytte
disse profilene i samarbeid med informasjonsfiltreringsteknikker for & bidra til & na det
overordnede malet.

En stor del av denne avhandlingen fokuserer pd & implementere Hadoopjobber som
oppsummerer brukeren logger inn profiler. I lasningen bestar hver brukerprofil av to
vektorer. En kategorivektor som beskriver brukerens interesser i de ulike nyheter kate-
gorier og en npkkelordvektor som utnytter enheter definert i nyhetsartikler & analysere
pa et lavt detaljniva niva. Resultatene evalueres og diskuteres til slutt.

Evaluering av effektiviteten og ngyaktigheten av brukerprofilene er vanskelig. Lite reelle
data var tilgjengelig i lopet av denne forskningen og faktiske data er nodvendig. Data
som agerer reelle brukere er vanskelig 4 forfalske og er nodvendig for bade evaluering
og kalibrering av implementasjonen. Dermed er fokus for diskusjonen hvordan man
utforer disse to oppgavene nar systemet er i produksjon.






Summary

The Internet and the World Wide Web have taken over as the standard for reading and
finding news. This makes it possible for news readers to carefully choose the news that
is most interesting for them. Due to the large amounts of articles, it can be a challeng-
ing and time consuming task to find the wanted information. Simplifying this process
for the news readers would be beneficial.

This thesis explores the idea of filtering out unwanted news articles and serving the
useful ones to the reader through mobile platforms. It is part of a bigger project named
SmartMedia that focuses on using complex strategies for delivering news to the users.
While the overall strategy is based on using the total context of users to serve new, the
specific scope of this thesis is creating user profiles from user acts logged by the sys-
tem. The motivation is to utilize these profiles in cooperation with information filtering
techniques to help reach the overall goal.

A big part of this thesis focuses on implementing Hadoop jobs that summarizes the
user logs into profiles. In the solution, each user profile consists of two vectors. A cat-
egory vector that describes the user’s interests in the different news categories and a
keyword vector that exploits entities defined in news articles to analyse at a low gran-
ularity level. The results are evaluated and discussed at the end.

How to evaluate the effectiveness and accuracy of the user profiles is difficult. Little
real data was available during this research and actual data is needed. Data that repli-
cates real users is hard to forge and is needed for both evaluation and calibration of
the implementation. Thus, the focus of the discussion is on how to perform these two
tasks when the system is deployed.
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Chapter 1

Introduction

Reading and finding news have changed drastically the last couple of decades. 20 years
ago the standard literal news source was paper printed newspapers. Today, the Internet
and the World Wide Web have taken over as the standard for this type of media. This
has opened the possibility for the news readers to carefully choose the sources that is
most interesting for them. Millions of sources spread around the globe has become
available to the readers. The vast amount of sources makes it hard to find articles and
sources that satisfies a specific users’ personal interest. This is an information overload
problem.

The websites of CNN! and VG? are examples of sources that generates news articles.
A problem for news readers is that each source delivers different types and quality of
news. If a reader wants other types of news, then a different source would be needed.
This implies that the reader would have to keep a portfolio of news sources to browse.
News aggregation applications solves this problem. Google News and Yahoo! News are
examples of news aggregation websites. The research in this thesis focuses mainly on
news delivered on mobile platforms, but the domains are very similar. On mobile plat-
forms there exists the same kind of solutions. Zite and Google Currents are examples
of mobile news aggregation applications. Still the problem with information overload
exists.

Information filtering is a technological approach that in general solves information
overload problems. Information filtering methods aims to extract the important infor-
mation from a large bundle of information with mostly non-important information. In
addition to news, email and web search are examples of domains where this approach
has been utilized. The most common approach to filter information is by exploiting a
profile that represents the preferences of each user. The research in this thesis focuses
on exploring how user profiling can help to lighten the burden on the news readers and

ICNN website: http://www.cnn.com
2VG website: http://www.vg.no.
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4 Chapter 1. Introduction

help them find interesting news stories on a mobile platform.

The work in this paper was done as part of a bigger project names SmartMedia, which
will be described below. A news recommender system was the main aim of the project.
Development of a module for personalization making user profiles was also key to this
thesis. Utilization of a large scale data processing framework named Apache Hadoop
were central. Another sub-project of SmartMedia were relying on this module to per-
form information filtering in the total system.

The remainder of this chapter consist of a short overview of the SmartMedia project.
Then the research questions are described. Following this, a section summarises the
approach for the module to be created. The results of the research is described after
this. Finally, the rest of the report is outlined.

1.1 SmartMedia

The SmartMedia program|[1] was established in 2012 by the Department of Computer
and Information Science at NTNU. The main objective of the project is to map out
new technologies that might give positive effects on the media industry in the current
environment. Therefore, close collaboration with the media industry is key for the pro-
gram.

The SmartMedia program has one ongoing project on news recommender systems that
takes advantage of complex strategies to deliver news to the users. This project will be
referred to as the SmartMedia project in this report. A lot of subprojects are running
concurrently within the overall project, this being one of them. Mobile application
development, geospatial filtering, and collaborative filtering are the focus on some of
the ongoing subprojects.

Figure 1.1 displays the architecture of the system that was given by SmartMedia. The
preprocesssing module takes in article data from RSS feeds. The data is pushed through

a pipeline that makes news recommendation possible. An Apache SolR server stores
these data. The middleware layer connects all the different subsystems. The iPhone
client is where the user interacts with the system. MongoDB is used to store log data.
The batch job system is where the development of this research takes place. The arcitech-
tural view can not be considered complete since a lot of modules like information fil-
tering and collaborative filtering are not present. This is because these modules have
not been completely initiated at the time being.

Figure 1.2 shows two screenshots of the news application. The one of the left is a cate-
gory view of the application and the right one is the front page.

Large-Scale User Click Analysis in News Recommendation
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Figure 1.1: SmartMedia project system architecture

1.2 Research Questions

The motivation for this thesis was to explore user click log analysis in the context of
a news recommender system and to realize this knowledge in form of a user profiling
system. The main target is to study and make user profiles that can be used by recom-
mendation methods in general. There are three research question in this study to aim
more specifically what the focus is. They are listed below:

1. What are common approaches to user log analysis for user profile construction?

2. How can user profiles be extracted automatically in news recommender systems
without any direct feedback on presented news from users?

Large-Scale User Click Analysis in News Recommendation
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Figure 1.2: Mobile application screenshots

3. What architectural and algorithmic approaches should be adopted to deal with
the magnitude of user clicks in news recommender systems?

The interpretation of the first question is that a literature review focusing on what prior
research have been done within this topic is needed. The second question also states
the importance of a literature review, but implementing an approach also is central.
The last question is focuses on what technologies that exists to handle large amount of
data and also how to use these technologies through implementation. To clarify that
this can be considered as a big data problem, an example can be used. Each day 2.000
new articles enters the system. If the user base consists of 10.000 users and each user
browses 15 articles a day, then 150.000 views have to be considered. When each display
of an article also has a collection of different events with different impact on the result,
it is clear that this can be considered as a large-scale operation. If the user base grows
beyond this point, it is even further emphasized as traditional programming would be
insufficient.

Large-Scale User Click Analysis in News Recommendation



1.3. Approach 7

1.3 Approach

A big part of our contribution is a literature review of related work to point out what
is the state-of-the-art within this topic. The literature is threefold where one part fo-
cuses on concepts generally applicable to the domain, one part that describes what ap-
proaches that have been experimented with by others, and one part centralized around
a big data and how to process it.

The implementation approach is to use click logs generated by users in the mobile ap-
plication to make user profiles. When the user browses through the application, the
gestures of the users are stored in a log database. These gestures are named user acts
in this thesis. Each type of user act has different weight impacting the final output. Vec-
tors were used to store the profiles. This was a design decision made by SmartMedia.
To compute the vectors, a large scale computation system called Hadoop is utilized.
The implementation is a series of MapReduce jobs that jointly serve as a batch job
outputting the vectors. This batch job is intended to run periodically to keep the user
profiles up to date.

Weights are constants that need to be calibrated as the system is put into operation and
the data can be analysed. Since the system was not put into production, an empirical
evaluation of this system was difficult. Therefore, the evaluation strategy focuses on
sensitivity analysis of the calibration factors.

1.4 Results

The results of the literature review showed that some work have been done within news
recommendation. Little literature have been published in the context of mobile news
recommendation, but since it is a subset of news recommendation the domains are
very similar. How to value heterogeneous user clicks is absent in all the literature stud-
ied, so this is a field that deserves more focus.

It is possible to use Hadoop and MapReduce frameworks to summarize click logs into
user profiles. It gets more challenging when introducing several inputs to a job and the
time complexity might also suffer from this.

The results of the evaluation implies that the most important user act (open article)
can be considered as a generalization of the rest of the events, although it is believed
that the other user acts also entails some knowledge to be discovered. The “news”
category also seems somewhat dominant in the tests, this could be due to the category
distribution or that the module that classifies articles has some weaknesses.

The results also show that one type of user act, named article preview time, is very
dominant in the logs. Nearly 80% of the keyword vector entries are, so this might be

Large-Scale User Click Analysis in News Recommendation



8 Chapter 1. Introduction

viewed upon as redundant data to process when considering cost versus benefit.

1.5 OQOutline

The rest of this report consists of 8 chapters.

Chapter 2 introduces necessary technological topics.

Chapter 3 describes some of the related work out there.

Chapter 4 focuses on the tools that were central in realizing the module.
Chapter 5 goes deeper into the main strategy of the module development.
Chapter 6 gives a low level insight into the implementation.

Chapter 7 states the evaluation of the user profiling system.

Chapter 8 discusses the finding of this research.

Chapter 9 concludes the report.

Large-Scale User Click Analysis in News Recommendation
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Chapter 2

Technological Overview

This chapter gives a technological overview of the relevant background. We start by
looking at recommender systems in general. Next we look at the information filtering
techniques commonly used. Then user profiles are discussed. The part following de-
scribe mobile news recommendation and it’s challenges, before looking at the context
of our news recommender system.

2.1 Recommender Systems

People often have to rely on the use of recommendations since they lack the needed
knowledge to make the decision with highest utility. If, for instance, a person wants to
spend the holiday in a new foreign country, then the decision regarding what hotel to
stay in might be hard to make. The person could ask friends that have experience with
the foreign place to conclude with a better decision than without. This is an analogy
describing how a recommender system works. The recommender system serves as the
friend that recommends hotels.

The standard recommender system uses peoples recommendation as input which is
then transformed and used to make recommendations to other people[2]. The sys-
tems vary in how and what they use as input and how they transform this input. Some
approaches uses matching between recommenders and users based on similarity mea-
sures, while other focuses on the direct aggregation of recommendations.

In [2], a framework for classifying recommender systems is suggested. The frame-
work is built up of two different spaces of dimension. One dimension that focuses
on the technical design and one describing the domain. The domain consists of rec-
ommended items, the actors in the system, and evaluations. The different spaces and
their dimensions are given in Table 2.1 where the domain space have been divided into

Large-Scale User Click Analysis in News Recommendation



12 Chapter 2. Technological Overview

two parts.

Table 2.1: Recommender systems framework

Technical design space - Contents of recommendation
- Explicit entry?

- Anonymous?

- Aggregation

- Use of recommendations
Domain space — - Type of items
Characteristics of items evaluated - How many

- Lifetime

- Cost structure

Domain space - - Recommenders
Characteristics of actors and evaluations | - Density of recommendations
- Consumers

- Consumer taste variability

2.2 Information Filtering

Information filtering is a "Big Data" problem by nature. The basic idea is to select the
information that is important from a large set of mostly unimportant information. The
quote below is a definition of information filtering:

"Information Filtering is a field of study designed for creating a systematic
approach to extracting information that a particular person finds impor-
tant from a larger stream of information."[3]

2.2.1 The Need for Information Filtering

Any person with access to the Internet can be an author that publishes material. The
consequencel[4] of this is that the quantity of information available is gigantic. The
quality of the information on the other hand is quite diverse. The main problem with
the Internet today is not how available information is, but rather how to find the infor-
mation of interest. The personal aspect affects this as well; what is important to one
person might not be important to another person. The following quote sums this up
well:

"At least 99% of available data is of no interest to at least 99% of the users."
(5]

Large-Scale User Click Analysis in News Recommendation
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2.2.2 Types of Filtering

There are two main types of information filtering. Namely, content-based filtering and
collaborative filtering. Content-based filtering[6] is a collection of methods that only
uses data related to the specific user to deduce what information is important. This
can be done by prompting the user to quantify his/hers desires. It can also be achieved
by looking on how the user relates with the items in the system. A combination of the
two information sources is also feasible.

Collaborative filtering[7], on the other hand, uses the similarity between different users
to perform filtering. A simple example of this is if two users like sports, then recom-
mending information that one user likes to the other would be considered collabora-
tive filtering. A hybrid of the two approaches is also possible and this can improve the
total filtering process.

Common for all information filtering methods are that they base the filtering on mod-
elling the user in a way that gains insight into the specific user’s preferences|8].

2.3 User Profiles

An user profile is a digital representation of the user. The profile can be used to store the
specific user’s characteristics. There are many possible ways to represent an user pro-
file. How they are stored depends on what the intention of the profile is. For instance,
in an operating system the user profile is used to allow different users safe access to the
system. On a social media web site, the user profile is used to represent data about the
user to be displayed to other users.

In the context of recommender systems there is also a lot of opportunities. Some im-
portant characteristics of a user profile have been defined in [9]. These characteristics
are taken from a web usage data mining domain, which can be considered as similar
to news recommendation. When converted to a more general domain, these charac-
teristics are:

* Possibility to compare users
* Differentiate the importance of different actions
¢ Uniform representation of the profiles

Given these distinguishing factors, [9] concludes that representing user profiles as weighted
collections are the most pleasing approach. This is basically a vector. The reasoning
behind this is that vectors are flexible, easy to understand and easy to use.

Large-Scale User Click Analysis in News Recommendation
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2.3.1 User Models

The types of user models are based on two different properties of the model[10]. The
type depends on how the users are being modelled and how the models are acquired.
The users can be modelled as individuals or in a canonical fashion. In individual mod-
els, each user has one interface and individual differences are prioritized. In canonical
models the user is considered as part of a group and the priority is to describe what the
users in the have in common.

The acquisition model can be explicit or implicit. Explicit means that the user model
is based on information provided by the user. Implicit is where the user have no in-
volvement with the process. User feedback and user behaviour are usually the basis
for implicit acquisition.

2.4 Mobile News Recommandation

Mobile news recommendation is getting the news you want, at the time you want it
and were you want. This with as minimum of work to get it. As an example, if a user
is riding a bus and want to check the news. Then instead of finding relevant news
manually a mobile news recommendation system could find the news articles wanted
for the user.

A challenge of making a mobile news recommendation system is that news are is al-
ways new information. This implies that most of the articles will be unseen by the
system when it arrives. Users are also unique in their interests, thus making gener-
alization of recommendation difficult and complex methods are needed to serve the
individual user the needed information. Quantifying the interests for each individual
user is difficult since the granularity of the solution has to be detailed to get the most
fitting profile. Factors like time of the day, a user’s interests opposed to trending news,
and not boxing the recommended articles in to specific categories also plays a role. On
mobile platforms, the bandwidth usage also has a part since minimalistic data trans-
fers is in the users interests.

2.5 User Context for Mobile News Recommandation

In our mobile news recommendation system, a user context is made up of the following
user features:

1. Time

2. Location

Large-Scale User Click Analysis in News Recommendation
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3. User groups
4. News category
5. News items

The time feature entails that the system should be able to serve different news to an
user in specific time periods. For instance when a user is at work then one type of news
might be more relevant than if the user is at home. Location implies that the location
of the user should be a driving factor in selecting news. If a user is in New York, then
news from this area is more relevant than news from Tokyo. Then again, if the user has
special interest in an area, then this also has to be taken into account. It is also intended
to take the underlying social networks of users in the mix. The three first features are
outside the scope of this paper.

Each user also has unique interests. Utilizing categories of news to distinguish users
interests is a possibility. Entities and items in articles can also be used in this fashion.
The categories can be used to give a general view of the users desires. If a user likes
technology news better than sports, then the intention is to weed out sports news and
recommend more technology news. However, to get a more detailed view of what the
user likes, then items in articles can be used. If a user don't like sports in general, but
likes a specific football team, then the solution should use these items so that it is taken
into account.

Large-Scale User Click Analysis in News Recommendation
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Chapter 3

Related Work

This chapter focuses on some of the related work out there. News recommendation
projects that have utilized content-based filtering is the aim of the first section. Then
collaborative and hybrid solutions are scoped out in the second part. In the third part,
user profiling by click logs in other areas are discussed. Finally, how news interests
change over time is outlined.

3.1 Content-Based Filtering

Content-based filtering methods have been applied in different areas. Email[11] and
web-search[12] are example areas. The approach has also been utilized in the news
sector to provide personalized news to users. Common approaches to news recom-
mendation utilizes the user’s explicitly stated preferences or the behaviour of the user
within the system to filter news. User profiles are generated from this information and
used as a basis for the filtering. Not a lot of work has been published regarding the use
of these kinds of systems on smartphone platforms, but other areas that are highly re-
lated has been explored. Intelligent agents constructed to serve a daily news program
for the specific user[13] are one related approach.

PIN[14], a web-based news aggregation system based on adaptive resonance associa-
tive maps, which belongs to a family of neural network systems, is another approach.
PIN initializes the user profile by letting the user rate a list of keywords, then the profile
is altered according to user feedback when the system is used.

The second version of the Daily Learner[15] is a system that uses a client/server based
architecture for recommending news. Their idea is to have a common interface for
multiple device types. Their research focuses on PDAs, but other types of device could
also be utilized. It bases the filtering on both explicitly by allowing users to mark news
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stories as interesting which increases the rating and not interesting which decreases
the rating. Implicitly they use user behaviour such as entering an article, scrolling
through the article, and requesting more information about an article to increase the
rating. Their profile consists of marking news articles as interesting and uninterest-
ing on a scale between 0 and 1. Their results states that the effective personalization
can be achieved without any user interaction and that the approach is superior to no
filtering.

WebClipping2[16] is another system that uses web-based technologies on PDAs to serve
users news with collaborative filtering is described. They use user profiles that is ini-
tialized by the user providing their interests on different subjects and then generating a
keyword database according to this, thus the user profiles consists of a set of keywords.
The keywords were gathered from different sources around the web. To keep the pro-
files up to date, they used the explicit feedback from users to determine whether the
profiles should be altered. The feedback would be coupled with specific articles and
their keywords. The users would rate the articles on a scale from 1 to 4 (not interest-
ing to very interesting). They also utilized inferring methods by using the total reading
time, number of lines read and such characteristics of user behaviour to determine
user’s interests. Their results states that they infer a user’s interest in an article with
90% precision.

What is common for these approaches is that they require the user’s input to base their
recommendation. Either initially, during the usage of the system, or both.

3.2 Collaborative Filtering and Hybrid Approaches

GroupLens[17] is a news recommendation system that utilizes collaborative filtering.
Their approach was to partition the news articles into clusters that are commonly read
together. The user models are made of clusters of users that have read and rated the
same articles. These two clusters together are used as to perform collaborative filter-
ing.

The first version of Google News recommender[18] utilized collaborative filtering tech-
niques on large-scale data. They use cluster users by applying a MinHash algorithm
and PLSI. The focus of this research was scalability, so no evaluation of recommenda-
tion accuracy were done.

A hybrid of the two approaches is also possible, where benefits from both methods can
be achieved. Claypool et al.[19] utilizes both content-based and collaborative filtering.
It is not directly a hybrid approach, since the methods used are separated, but it uses
both. Content-based filtering is executed by matching keywords of articles with key-
words in the user profiles. Collaborative filtering is achieved by computing similarities
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between user profiles. The results are combined in a combination filter that takes each
both approaches into account.

Google News tested out a hybrid approach [20]. The collaborative filtering is done by
utilizing the work in [18]. Their content-based filtering is done by recommending ar-
ticles in a specific category that is considered as highly relevant by the user profile.
The user profiles are constructed by analysing user clicks on articles. On average they
showed that utilizing both methods improved the quality of the recommendations and
traffic to the news application.

3.3 User Modelling Based on Click Stream

Most of the research on click streams comes from the web search domain. Lee, Liu, and
Chol[21] modelled users based on click stream to enhance personalized web search.
Their assumptions was that the specific user’s goal could be learned and identified by
how other users in the past have used the results of the specific query. Their results
states that they can identify the goals of 90% of the queries they studied.

Speretta and Gauch[22] builds user profiles from search history. The user profiles are
structured as weighted concept hierarchies. The click logs they used consisted of spe-
cific queries and the results clicked on by the users.

Kim and Chan|[23] tries to learn a topic hierarchy of interests by utilizing click logs of
a user to provide a context for personalization. The hierarchy is a general-to-specific
hierarchy and is learned by usage of clustering methods.

Nasraoui et al.[24] proposes a framework for web usage mining. They process user
sessions with clustering techniques and summarizes these clusters into user profiles.
Then they enrich the profiles with additional log data and domain knowledge. They
use category vectors to store the user profiles.

There are little research done regarding how to value and utilize heterogeneous types
of user clicks, which is important in our research.

3.4 Changing Interests

User interests changes over time. This makes user modelling difficult. In news read-
ing short-term and long-term interests have been defined[13]. Short-term relates to
hot topics like big events and is rapidly changing. Long-term refers the interests of the
user without these special events. In [13] they create separate models for long-term
and short-term interests. A user profile consists of a collection of articles rated by the
user on a scale between 0 and 1 (1 being highly rated). The short-term user profiles
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consists of recent events and a nearest neighbour algorithmic approach on the highest
rated article is used to recommend new articles. The long-term profile consists of all
article ratings and a naive Bayesian classifier is used to decide what article to recom-
mend.

Liu et al.[20] did some research regarding this subject. Their findings implied that the
user interest do change over time. They also emphasized that the general public re-
flects the current trends. Location of the news and the user’s also play a big role when
considering such trends. In their research, the long-term user profile consisted of vec-
tors that weighted the categories:

Ge N N, N,
Ntoml’ Ntoml o Ntotal

)

where C is the category vector, N, is the amount of clicks within the specific category,
and Ny, is the total amount of clicks.

To calculate the short-term interest they used the fact that the general population in a
area partly represents a specific individual’s interest. With short time intervals (e.g. 1
hour) they calculated the general population interest in a specific category to recom-
mend news to individual users. This might imply that content-based methods cap-
tures the long-term interests, while collaborative approaches can be used efficiently to
calculate short-term interests.
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Chapter 4

Big Data Environment

This chapter introduces some of the tools and systems important for this thesis. First,
big data in general is described. Second off is a large scale computational platform
named Apache Hadoop that uses the MapReduce programming model for parallel pro-
cessing. The third section describes MongoDB, a database system that is used as a log
storage. The two last chapters explains some other related tools that did not get very
much attention in the implementation, but should be considered when the system
goes into production.

4.1 BigData

“Big Data” has become a buzzword in most industries. The direct meaning of big data is
that the world as whole stores and generates unbelievable amounts of data. According
to IBM, every day, 2.5 - 10'8 bytes of data is created[25]. 90% of existing data has been
generated during the last two years. These estimates imply an exploding and expo-
nential growth in data stored in the world. Every single search made in search engines
is stored; the smallest interaction on social platforms gets stored; videos and digital
photos are also in this equation. To phrase the reasoning short: data is generated from
everywhere.

Historically, the processing power has limited the possibilities with using large data
sets for constructive and revenue increasing ways. As the years has passed, processing
power has become cheaper and cheaper. Moore’s law[26] states that the number of
transistors integrated circuits doubles every second year. The performance of proces-
sors has improved even better than this due to faster transistors. This has opened the
opportunity to exploit data in new and innovative ways. The general tendency in most
businesses is to use big data approaches to get a competitive advantage. This is done
by extracting meaning from the stored data.
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4.2 Hadoop

Apache Hadoop[27] is an open-source implementation of MapReduce. It is the most
popular implementation of the programming model. Hadoop is the definition of a
large scale parallel cloud environment for parallel processing of unstructured, semistruc-
tured, and structured data types.

4.2.1 MapReduce

MapReduce [28] is a framework for parallel processing. The intended use of MapRe-
duce is on computer clusters. The main intention of the framework is to simplify pro-
cessing of enormous data sets ("Big Data"). The model has gotten very popular be-
cause users find the programming model easy to use. Apache Hadoop is considered as
one of the most worthy implementations.

The MapReduce framework consists of two main phases, these are the Map phase and
the Reduce phase. The Map phase is when a user defined map function is executed.
The function takes in key/value pairs as input and performs some action on the data
to produce intermediate results. The results is also on the form key/value. The Reduce
phase takes place when a user specified reduce function runs on the intermediate data
and reduces the result to a small amount of outputs, typically zero or one output value.
The data from the Map phase is shuffled to machines in the reduce phase.

The dataflow through the MapReduce framework can be summarized in six steps:

1. Inputreader: The input reader partitions the input into splits. Splits are the data
unit the map task does the processing on. The typical size ranges from 16 MB
to 128 MB. The framework assigns one split to each map task. The input reader
reads data from stable storage (e.g. Google File System or Hadoop’s HDFS)and
generates key/value pairs. The file system is usually distributed.

2. Map function: The input to a map function is a collection of key/value pairs
which are generated by the input reader. Each pair is then processed by the map
function logic and new key/value pairs are generated. Usually a small amout
of pairs comes from the execution. The map function outputs spill files in the
end are sorted and merged into one structured file. An example of the mapper
is given in Figure 4.1. The map function maps the input values to their specific
output values.

3. Combiner function: The combiner function is optional. The main use of this
function is to get better performance. When there are many repetitions in the
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Figure 4.1: Mapping function

halfway results and the implementation of the reduce function is considered
commutative and exclusive. When these preconditions are true, the combiner
function will partially merge the map results making it so pairs with identical
keys will be processed as one collection.

Partition function: Each Map function output is allocated to a particular reducer
by the application’s partition function for sharding purposes. The partition func-
tion is given the key and the number of reducers and returns the index of the
desired reduce. A typical default is to hash the key and use the hash value mod-
ulo the number of reducers. It is important to pick a partition function that gives
an approximately uniform distribution of data per shard for load-balancing pur-
poses, otherwise the MapReduce operation can be held up waiting for slow re-
ducers (reducers assigned more than their share of data) to finish. Between the
map and reduce stages, the data is shuffled (parallel-sorted / exchanged between
nodes) in order to move the data from the map node that produced it to the shard
in which it will be reduced. The shuffle can sometimes take longer than the com-
putation time depending on network bandwidth, CPU speeds, data produced
and time taken by map and reduce computations.

. Reduce function: Once, for each unique key, the reduce function is called. All

the associated values for a specific key are processed as a group. The reduce
function combines the data according to the implemented logic and outputs the
result. Figure 4.2 visualizes how the reduce function works. It aggregates the data
coupled with a key into a summary of all the input data.
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6. Output writer: The output writer simply stores the results of the reduce func-
tion in to stable storage as a file. The writer can also be modified to suit storing
facilities, an example is to store results in a standard database.

Input data\:

Reducer

_______ Yy

( Output value

Figure 4.2: Reducer function

4.2.2 Intended Arena

Hadoop is a batch infrastructure with the main intention to run large scale data. It can
run on a single machine, but the only activity benefitting from that is the development
process of MapReduce jobs. There is a substantial startup overhead in Hadoop. Small
problems, which in this context means examples similar to processing some gigabytes
of data running on 4-8 nodes, would most likely benefit from another parallel process-
ing environment. This is because the overhead would be substantial in comparison
with the processing in a small scaled project. The fraction of influence that the over-
head introduces decreases as the problem gets bigger. The real benefit of Hadoop is
when the problems get gigantic. The true power of Hadoop shows when processing
problems in the tera or petabyte class running on for instance 100 or 1000 nodes.

Hadoop provides a simple programming model that scales in a flat manner. The engi-
neering effort required for regular approaches (e.g. MPI) increases exponentially when
the problems scale out of bounds. Hadoop jobs running on 4 nodes would run equally
well on 1000 nodes with minimum engineering work needed. One of the reasons for
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this is the special purpose distributed file system (HDFES). The filesystem distributes
data automatically between nodes and the Hadoop system takes care of the commu-
nication between nodes. The only part a developer needs to worry about is writing a
map function, a reduce function, and a driver function which is a simple initialization
method of a job. Of course the input data needs a definition as well.

4.2.3 HDFS

One of the biggest selling points of the Hadoop system is the special purpose file sys-
tem, the Hadoop distributed file system (HDFS)[29]. A distributed file system’s main
purpose is to store big data files. The data should be accessible by multiple clients dis-
tributed on a local or wide area network. The regular types of distributed file systems
(e.g. NFS) are not well suited for running MapReduce jobs. They usually do not have
mechanisms to equally distribute data over nodes and are not very reliable.

HDFS was based on a file system proposed by Google, the Google File System (GFS)[30].
The most important design goal for HDEFS is to allow storing very much data. This is
done by spreading data over the different nodes in the system. This implies that files
larger than a single node’s storage will also fit in the system. Another design goal is reli-
ability. More specifically, node malfunction should not influence data availability. Re-
dundancy of data is the solution to this. In a standard configuration each file is stored
three times, but it is possible to alter the configuration. The system is also designed to
fast access on every scale and more nodes should be the basis of scaling the number
of clients able to use the service. And of course it is designed to be complementing
the Hadoop MapReduce engine well. HDFES should not be considered as a general pur-
pose file system. Random access is not very efficient as the system is designed for long
sequential streams of data.

The basic building piece in HDEFS is blocks. A file is split up into fixed size blocks that
is spread across the cluster. A single machine that stores data is named a DataNode.
Accessing a single file might require cooperation between several machines because of
distribution of data. The standard block size in HDFS is 64 MB which is very large when
considering standard file systems. The intention is to minimize the needed metadata
and faster streaming of data due to less jumping between blocks.

The metadata of the files and blocks is handled by a single machine called the NameN-
ode. The data of the NameNode is also reliable due to redundancy with secondary
NameNodes. The reason for centralizing all the metadata is that files follow a write
once and read many model. Metadata modification can be done by many machines at
in parallel. A single node in charge preserves synchronization.

The basic data flow in HDEFS is initiated by retrieval of a file’s location by a client. A file
can be considered as arecord of block locations pointing to the specific DataNodes that
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hold the different blocks. This is the only function of the NameNode in the data transfer
process; the remaining process parts are directly between the specific client and the
specific DataNode. This might also be done in parallel including several DataNodes.
An illustration of the HDFS architecture is given in Figure 4.3. The file redundancy
in this figure is 2 and there are a secondary NameNode that is a mirror of the main
NameNode.

NameNode Secondary NameNode
File 1: 1, 2, 4 File1: 1,2, 4
File 2: 3, 5 File 2: 3,5
File 3: ... File 3: ...
DataNode DataNode DateNode
1 4 4 2
. 3
2 5 il 5

Figure 4.3: HDEFS architecture.

4.2.4 Mapreduce Engine

In the most basic sense, one can view Hadoop MapReduce as a black stateless box. The
only function of the MapReduce engine in Hadoop is to transform input data lists into
output data lists. Data in Hadoop is considered immutable. This implies that Hadoop
can only write new output files and not overwrite old files.

A special node named the JobTracker node plays a crucial part in Hadoop. The Job-
Tracker node is where clients add jobs to the system. Clients also use it for getting
job information. It can be considered as a single point of failure in the system. If
the JobTracker node fails, all ongoing jobs will halt and might have to be restarted.
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It distributes the work to TaskTracker nodes in the system. A TaskTracker node can be
considered as normal processing node. An architectural goal that minimizes commu-
nication cost is location of processing and data. Processing on nodes that have have
the needed data minimizes the communication. If this is not a possible option, then
nodes on the same rack (nearby nodes) are chosen. The main intention of the Job-
Tracker node is to keep the processing as close to the data as possible while balancing
the work evenly between TaskTracker nodes. If a TaskTracker node fails, then the Job-
Tracker relocates the partial job to new available TaskTracker nodes. If the JobTracker
fails then a check pointing process keeps track of the system state, thus making it less
critical for the overall system.

The MapReduce architecture is illustrated in Figure 4.4. The illustrastion has three
TaskTracker nodes and depicts that the entry points for clients is the JobTracker. The
HDFS and the MapReduce architecture can together be considered as a layered archi-
tecture where HDFS is the lowest level and the MapReduce lies on top. This implies
that a DataNode can also be a JobTracker but if the viewpoint is from the HDFS side,
then it is a DataNode and vice versa.

( Client )

{ JobTracker

.
.

\

TaskTracker TaskTracker TaskTracker

Figure 4.4: MapReduce architecture
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4.2,5 The Hadoop Environment

HDFS and MapReduce is considered as the basic components of Hadoop. There also
exist other systems and libraries that are widely used. The Hadoop platform has it’s
base in a big open souce community and thus new systems suited for interconnection
with Hadoop and libraries focusing on other apects are added consistently. The most
imporant are surveyed in a short fashion below to give an overview of the wide range
of possibilites there are.

Avro is a data serialization system. The services provided consists of remote procedure
calls, integration with dynamic languages, rich data structures, a compact binary data
forma, and a container file to store persistent data.

Cassandra is a distributed database management system. The design goals are to store
and handle a large scale of database data in a distributed and reliable fashion.

Chukwa is a data collection system for monitoring large distributed systems. It is in-
tegrated with the Hadoop framework and uses HDFS for data storing. It also includes
toolkits for working with and analyzing results.

Flume is a sevice designed for delivery of data from applications to Hadoop’s HDFS.
It is a distributed service for collecting, aggregating, and relocateing big amounts of
log data. It is considered robust and fault tolerant with strong reliability and recovery
mechanisms.

HBase is an open-source implementation based on Google’s Bigtable[31]. It is a exten-
sion of the HDFS. Storing in HBase is structured as non-relational colums. MapReduce
jobs in Hadoop can use HBase tables as input or output.

Hive[32] extends Hadoop giving it data warehouse infrastructure. It was originally de-
veloped by Facebook. HiveQL is the query language, which resembles SQL to some
degree. The queries are compiled and executed as MapReducs jobs on Hadoop.

Oozie is a workflow engine for Hadoop. The intention is to allow performingg workflow
management and coordination to manage jobs running on Hadoop. Oozie workflow
jobs can be considered as Directed Acyclical Graphs (DAGs) of actions. It is integrated
with the rest of the Hadoop environment and support most types of jobs Hadoop can
perform.

Pig([33] is a high-level framework for creating MapReduce jobs. Pig Latin, the language
used, and its execution environment is the contents of Pig. Pig Latin is a procedural
scripting language and allows abstraction of regualar Java MapReduce jobs. An impor-
tant property is UDF (User Defined Functions) which can extend Pig Latin. They can
be written in a regular programming language.
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Sqoop is a framework designed to transfer raw data between Apache Hadoop and struc-
tured data stores such as relational databases in an efficient manner. This includes im-
ports from external data sources, such as data warehouse information, into the Hadoop
environment (HDFS or HBase etc.).

Mahout is a project driven to produce scalable implementations of machine learning
algorithms. It is a rapidly growing framwork with a strong community behind it.

Zookeeper provides a distributed service for configuration information, naming, dis-
tributed synchronization, and providing group services for large distributed systems[34].
ZooKeeper was a sub project of Hadoop but is now an own project since this kind of
services are needed for most distributed systems.

4,2.6 Limitations

Some of the main limitation of Hadoop and MapReduce are discussed below.

Security

The main architectural goals for Hadoop are reliability and high fault-tolerance. Secu-
rity has not had much impact of the development of the framework. This means that
relying on the basic Hadoop implementation would not ensure that communication
between node-machines in the system is transferred in a safe way. People sniffing on
the network would be able to use the communication data.

Costly communication

The output of the Map function can be large, thus the time needed for communication
can scale in the same manner. This issue usually comes from badly partitioned data.
If different data related to each other could be distributed on topologically close nodes
(preferably on the same node), then the problem would be minimized. Unfortunately
this is not a service Hadoop provides. The problem is left to the developing engineer,
but it is a complex problem to partition the data optimally. This is due to the SIMD type
architecture of the Hadoop system. Communication between nodes is supposed to be
restricted to make the programming model easier to use. This also implies that embar-
rassingly parallel problems are what are best suited for this type of application.
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Iteration

It is possible to chain MapReduce jobs in a serial fashion. This approach is needed
for iterative programming. It is not considered as a straight forward task and it is also
costly because of the overhead introduced by many consecutive Map phases.

4.3 MongoDB

MongoDB|[35] is a NoSQL[36] type of database. NoSQL databases are designed to be
fastwhen reading and writing data, low cost, scalable, and support massive data amounts.
An example of a downside with NoSQL databases is that it does not support SQL, which

is considered industry standard. Also, the different NoSQL options is not considered
mature since it has gained popularity recently and the implementations are not very
old.

MongoDB is a schema-free document type of NoSQL database. A document type database
is designed to store big amounts of data and to have efficient queries. Concurrent
read and write performance is not the main goals of this class of databases. MongoDB
databases reside on a MongoDB server that can host more than one of such databases
which are independent and stored separately by the MongoDB server. A database con-
tains one or more collections consisting of documents. Collections inside databases
are referred to by the MongoDB manual as named groupings of documents. MongoDB
persists documents by a format called BSON which is very similar to JSON but in a
binary representation for reasons of efficiency and because of additional data types
compared to JSON

4.4 LogData Transferring Tools

This section focuses on two tools designed for making data transfers to the Hadoop
environment better. The first tool discussed is Apache Flume, which is designed for
transferring log data from one or several sources to one or several storages. The second
one is the MongoDB + Hadoop Connector, which is a MongoDB specific tool.

4.4.1 Apache Flume

Apache Flume[37] is a large scale log aggregation framework. The framework is de-
signed for delivery of data from external applications to an external data store. It is a
distributed service for collecting, aggregating, and relocating big amounts of log data.
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It is considered robust and fault tolerant with strong reliability and recovery mecha-
nisms. An abstract architectural view of Flume is given in Figure 4.5. A short descrip-
tion of Flume is that it listens to a port for incoming event that it understands. Then it
stores the event temporarily. Finally, when the external storage is ready to accept new
data, then it forwards the temporal data into the external store. The external source
could for instance be a web application and the external storage could be Hadoop’s
HDES.

________________________________________________ N

Flume Agent|

External Store

External Source ‘

Figure 4.5: Flume Architecture

4.4.2 MongoDB+Hadoop Connector

The Mongo+Hadoop Connector([38] is a collection of plugins designed for Hadoop to
improve the connection with MongoDB. A basic Hadoop installation can only read text
files from the HDFS without any alteration. The connector makes it possible to feed
input to MapReduce jobs directly from MongoDB without going through the HDFS.
The connector is written in Java and is basically a translator of MongoDB data. The
basic functionality is that the connector forwards a single JSON file from the source
collection to the map function. The connector also supports streaming functionality
implying that a MapReduce job could start before all data is finished loaded.

4.5 Scheduling Tools

In this section two alternatives for scheduling batch jobs in Hadoop is considered. The
first is Apache Oozie which is designed to solve for this type of problem for Hadoop.
The second one is a more general Unix-based tool called cron.
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4.5.1 Apache Oozie

Apache Oozie is a workflow engine for Hadoop. It acts as a middle-man between the
user and Hadoop. The intention is to allow performing workflow management and
coordination to manage jobs running on Hadoop. Oozie workflow jobs can be consid-
ered as Directed Acyclic Graphs (DAGs) of actions. It is integrated with the rest of the
Hadoop environment and support most types of jobs Hadoop can perform.

Oozie is designed to handle two scenarios based on time and on data availability. Work-
flows that should start periodically (e.g. once a day) and jobs that should start when
the needed data is available are these scenarios. The Oozie DAGs are expressed in XML
and it supports chaining MapReduce jobs, running jobs concurrently, and also allows
to decide between jobs.

When using Oozie, the driver method becomes unnecessary, since the configuration
properties should be stated in the XML file. An example of a workflow is given in Figure
4.6. This illustration shows the entry point followed by two MapReduce jobs running
in sequence, where the second job is dependent on the results from the first. There is
also possible to state what actions to execute when errors happens as shown.

Wordcount »| Average Wordocunt

Figure 4.6: Example Oozie workflow

4.5.2 cron

In Unix-based operating systems, which is the usual Hadoop hosting operating sys-
tems, there exist a time based job scheduler called cron. The basic functionality is that
it allows users to create text files with commands or scripts to be run at given times.
This could be utilized for scheduling jobs in Hadoop, but might be best suited for de-
velopment use and not in production.
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Chapter 5

Approach

This chapter focuses on the approach for creating the user profiles. Our recommender
system is classified in the first sub section. The environment surrounding the scoped
module is addressed in the second sub chapter, with the neighbouring interfaces em-
phasized. The general idea for the solution is explained after this. The fifth sub section
explains the creation of logs and what data is available in the logs.

5.1 Recommender System Type

The SmartMedia project is a recommender system. The use case consists of users
reading new on the mobile that is recommended to them, with as little explicit user
involvement to recommend the new. The system classified in accordance with the
framework[2] described in an earlier chapter is given in Tables 5.1-5.3.

Table 5.1: System technical design space

Contents of recommendation | User click logs; possible to override

Explicit entry? Implicit

Anonymous? Anonymous

Aggregation Personalized weighting based on click logs;
collaborative approaches

Use of recommendations Display of news articles

Table 5.1 describes the technical class of the system. The recommendations are based
on user click logs that is gathered without prompting the user for the information. This
is kind of unusual compared to standard recommender systems where users give infor-
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mation. It is possible to override the recommendation process to influence the system,
but this is just considered as an alternative.

The aggregation part of the system is where this work is located. The intention is to
use a hybrid approach of content-based filtering and collaborative filtering to recom-
mend news. Specifically this work relates to the content-based approach, but it could
be used in the collaborative approaches as well. This is due to the fact that both ap-
proaches needs good user models. The intention is to make user profiles to be used in
content-based filtering.

Table 5.2: Description of items

Type of items | Internet news articles

How many Thousands per day

Lifetime 1-2 weeks

Cost structure | Bad recommendation unimportant

Table 5.2 describes the items that are to be recommended. The items are news arti-
cles published by Norwegian news sites. At the time being, around 2000 articles are
generated per day and the lifetime of the articles are considered to be very short. If
the recommendation misses, it is not that important, since the user could always just
browse ahead. Several bad recommendations in sequence would be unwanted.

Table 5.3: Description of actors

Recommenders Application users
Density of recommendations | Dense
Consumers Application users
Consumer taste variability High

In Table 5.3 the actors are defined. It is basically the users of the system. From a
content-based perspective a specific user recommends news articles to himself. From
a collaborative perspective the users recommends articles to himself and to others.
The density of recommendations is considered to be high the pace of browsing news
articles are fast and the variability of the users are also high.

5.2 Environment overview

To give a perspective of where to place the module, a visualized version of the system
is given in Figure 5.1. This figure only shows the parts of that system that are crucial for
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the module constructed. The arrows represents how the data normally flows within the
system. The mobile application forwards user act data, through a mobile connection
to the internet, to a centralized server. This server stores the data in a database. The
data is then gathered by the Hadoop cluster and processed into profiles. After this, the
profiles are sent to the centralized server again for further usage. This implies that the
only communication points visual to the module are the log database and the middle-
ware server.

Mobile Application Log Database

- $

Internet Middleware Server Hadoop Cluster

Figure 5.1: Environment overview

5.3 General Idea

From a black-box perspective, we could say that the input to the module is a set of new
user acts and the output are user profiles. With a little more detail, the approach taken
to create user profiles could be stated in the following steps:

1. Mobile client forwards user acts as they occur to a log.

2. Periodically, a Hadoop installation gathers the newly logged data into the Hadoop
environment.

3. The Hadoop installation runs a series of MapReduce jobs.

4. The output of the MapReduce jobs is a set of vectors coupled with the unique
user IDs.
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The specific system module in scope of this thesis, was a solution that solved the prob-
lems stated in step 2 and 3. The reason for introducing MongoDB was an architectural
decision made by the SmartMedia project. The implementation of these steps will be
explained on a low level in the next chapter.

5.4 Creation of Logs

Whenever a user does an action within the mobile application, the user act is for-
warded through a REST API to a MongoDB installation. The data stored per user act
is displayed in Table 5.4. The left column consists of the different data fields found
in the database and the right column displays the description of the data within the
fields.

Table 5.4: MongoDB log data fields

Data field Description

ID Unique identifier for the user act

User ID ID of the user performing the act

Article ID ID of the article coupled with the act

User Act Type The type of user act

Timestamp The time the act occurred

Geographical Location | The coordinates of the client at the time of the act
Tags Keywords related to the article coupled with the act
Categories The categories classifying the in scope article
Properties Extra field for additional data

The fields that are important for the module are the user ID, the user act type, the
tags, the categories and the properties. The user ID field is key to couple the results
with the specific user. User act type is important since knowing what actions that have
been performed would allow weighing different acts with regards to what influence
they should have on the results. The tags and the categories gives insight into what the
profile of the user should since it allows coupling between users and their actions. The
timestamps also have a function when gathering and using data in time frames. In the
current state of the system, the only use for the properties field is to store duration of
timed acts (e.g. time spent viewing an article). The article information (article ID, tags
and categories) are not present in acts not involving any article.

The different types of defined user acts are listed in Table 5.5. Each user act follows
from a specific action the user perform in the system. Figure 5.2 shows example view
from the mobile application. The screenshot on the left is the preview screen for an
article and the right one is an instance of the article view. Scrolling over the preview
screen will produce an user act that is logs the time the user spends in the view for
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that article. The right hand session could produce a series of user acts for the specific
article. Preview view time, opened article, and article view time could be the result of
opening an article.

Listing 5.1 displays a textual example of an entry in the log database. In this specific
case the user shared an article through email. The tags of the article are consists of 6
objects and it is in the news category. Listing 5.2 show a preview view act and Listing
5.3 displays an article view act. These types of acts are generetad when the users are in
the views in Figure 5.2. In these acts the properties have a duration that indicates how
long the user spent in the specific view.

Table 5.5: User act types

User act type Description

Opened article view The user opened the full text version of this article
Time spent article view | The time the user spent viewing this article

Time spent preview The time the user spent viewing the preview of this article
Clicked category The user clicked on a category

Shared twitter The user shared the this article via twitter

Shared facebook The user shared the this article via facebook
Shared mail The user shared the this article via mail

Starred article The user added this article to favourites

Viewed map The user viewed the location this article

Vieved entity view The user viewed the tags this article

Clicked entity The user clicked on a tag coupled with this article
Viewed similar article | The user viewed an article similar to this article

Listing 5.1: User act dump

{
"_id" : "F4E43303-27D1-4E5B-95A7-2285EC026D9E"
"articleId" : "1560609210" |,
"userId" : "bf4d2b7adec01da0ddc8¢331788bcdc6"
"eventType" : "SHARED_MAIL"
"timestamp" : { "\$date" : "1970-01-16T19:10:12.909Z" }
"geoLocation"

{ "name" : "nn

thpeﬂ : nwia s

"longitude" : 10.338135 |,

"latitude" : 63.40136 } ,

b
3

3

”tags”
[ "frode granhus" ,
"henning juul" ,
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Figure 5.2: Examples of user acts

"flere norske" ,
"Orkdal" |,
"Sor-Trondelag" ,
"Norway"
1,
"categories" : [ "NEWS"]
}

Listing 5.2: Time spent preview user act

{
"_id" : "7791A4D5-9550-4FEF-9A18-5FDDOSCECC3B" ,
"articleId" : "441816664" |,

"userId" : "bf4d2b7adec01da0ddc8c331788bcdc6" |,
"eventType" : "TIME_SPENT_PREVIEW" |,
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"timestamp" : { "$date" : "2013-06-02T16:39:53.928Z"} ,
"geoLocation"
{ "name" : "
thpen : nu s
"longitude" : 8.00354 |,
"latitude" : 58.138821 } ,
"properties" : { "duration" : "1.259043"} ,
Htagsﬂ

[ "politiet" ,
"Sogne" |,
"Norway" ,

"Vest -Agder" ,
"Kristiansand" |,
"Norway" ,

"Vest -Agder"] ,

"categories" : [ "NEWS"]
}
{
"_id" : "241B50BE-DFF5-4AAB-A12D-98D4A4606028" ,
"articleId" : "318218311"
"userId" : "bf4d2b7adec01da0ddc8c331788bcdc6" ,
"eventType" : "TIME_SPENT_ARTICLE_VIEW" ,
"timestamp" : { "$date" : "2013-06-02T16:41:15.511Z"} ,
"geoLocation"

{ "name" : "n ,

thpeﬂ : i s

"longitude" : 8.00354 |,

"latitude" : 58.138821} |,
"properties" : { "duration" : "1.427272"} ,
Htagsﬂ

[ "agder politidistrikt" |,
"havnet" |,

"satt" ,

"rebelsk mannen'" ,
"operasjonsleder" ,
"kristiansand slo" ,
"politiet" |,

"kristiansand skallet" ,
"Maharashtra" |,

"India" ,
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"Egersund" ,

"Rogaland" ,

"Norway" 1 ,
"categories" : [ "NEWS"]1}

5.5 User Profile Vectors

The user model we applied is an individual and implicit type of model. It is individual
since it has one unique interface for each single user and the similarity between the
users are not considered at all. It is implicit since it only considers user actions to be
generated. The user have the possibility to give information regarding how he would
like to be modelled, but this is not considered at this level of the system.

The most precise definition of a user profile in our domain is characterizing it as a
personalization of all the clicklog information. The representation of user profiles were
chosen to consist of vectors. This is due to that it is a flexible and easy-to-understand
way of making a digital representation of a user[9]. It is also computationally efficient
and integrates well with recommendation strategies.

Our solution to the problem was using two vectors with paired valued elements. A
vector C representing categories and a vector K representing keywords. A generalized
view of these vectors are given below:

C=<(c1,01), (C2, V2), .0y (Cy V) >

I_é =< (kl) Vl)) (kZ) UZ)) ) (kn) Vn) >
The ¢ and k entries are text elements and the v elements are the numerical weight
value of the of the specific category or keyword. The n variable represent the index
number. In the category vector this will be a finite static sized number. The keyword
vector is dynamic sized and could in theory have infinite entries. New elements in the

keyword vector are added to the end. Proposed initialized vectors are given below as
examples taken from the final system:

C =< ("News",100.0), ("Sports",13.1),("Travelling",7.5),
("Entertainment",80.3),("Domestic",23.6),("Technology",3.14) >

K =< ("46354",1.866), ("Akatsi", 1.866), ("Forbruker",1.866),
("mortenthomassen",0.933),("jeg",0.9444),("Lodzkie",19.633),
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("Stromstad",1.8666, ("Paysdelaloire",1.866),("150",2.833),
("RueBenjaminFranklin",1.866),("Nordrhein— Westfalen",1.866),
("rachelnordtomme",1.866),("Nordland",7.555),("—",0.933),("3",2.811),
("S§ST13",19.633),("2",81.844), ("BestWesternAnker Hotel",1.888),... >

The keyword vector is clearly larger than the category vector. The keyword vector also
has some odd entries (e.g. "-" or "3"), which implies that there are some weaknesses in
the noise handling in the module that tags articles.

The vectors are normalized as a number between 0 and 100. The normalization strat-
egy is to use the largest weighted category or keyword and making all the weights a
fraction of this. Then the results are multiplied by 100. This means that the heaviest
weighted entities will always have 100 on the scale and all that are less will also be less
than 100. A bigger number coupled with the category or keyword means that it is more
important. The main reason for choosing this approach was that it suited the content-
based filtering module that are to use the vectors.

Another way of normalizing the vector could be to sum all the weights and divide each
weight with the sum. This would make all the weights a number between 0 and 1. The
reason for choosing the first approach is because it is simple to implement and the
weights will not all be very smart fractions. Multiplying by 100 is done out of personal
favouring as it is considered more intuitive for human inspection.

Large-Scale User Click Analysis in News Recommendation



44

Chapter 5. Approach

Large-Scale User Click Analysis in News Recommendation



45

Chapter 6

Implementation

This chapter covers the implementation done in the project. Algorithms and code are
stated through listings in a java-like pseudocode to explain the logic. The first subchap-
ter explains the intentions and scope of the implementation. Subsection two gives a
brief overview. The three following parts focuses the the code that has been written.
The calibrating factors are summarized in the last sub chapter.

6.1 Intention and Scope

The main intention for the implementation was to provide a framework for creating
user profiles. There are a lot of strategies and algorithms that can be utilized to achieve
good models of the users, but evaluation and verification of the approaches are difficult
when real data are unavailable. Therefore, instead of constructing a complete final
solution, the scope is narrowed down to constructing a framework that requires tuning
in coherence with user data before it is put in production.

6.2 Overview

The solution developed during this work can be described as a workflow of processes.
The processes ends with the user profiles as the output. A visual version of the work-
flow is given, as an activity diagram in Figure 6.1.

The black dot is the entry point of the of the compounded job. The black dot with a cir-
cle around it means that the activity is finished. The rounded rectangles are processes
that needs to be done. When two lines exits an entity and two lines enters an entity, it
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Batch Job Start

Data Gathering Process < Log Data
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< Log Data Stored

N
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Figure 6.1: Batch job overview
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entails, respectively, forks and joins in the activity. Finally, the lines show the order of
execution.

In a literal description of the activity, one can say that it starts by gathering new log
data. Then statistics per user is computed. This consists of two different jobs that can
be executed in parallel. Following this, the user profiles are generated by construction
of the two vectors it consists of. The latter two processes can also be run in parallel.
The output is forwarded to the centralized system through REST API functions. The
batch job is intended to run in a periodic fashion.

Figure 6.2 displays a package diagram of the implementation. I consists of two pack-
ages. The designated functionality of the left package is to provide the computational
jobs. The right package is implemented as an interface between the log storage and
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the Hadoop environment.

no.ntnu.newsrec.mapreduce

[ no.ntnu.newsrec.upmongoreader 1

ArticleTimeSummary
CategoryVector
CategoryVectorV2

MongoDailyExtractor
MongoExtractor
MongoReader

CategoryVectorV3
Constants
KeywordVector
KeywordVectorV2
KeywordVectorV3
PreviewTimeSummary

Figure 6.2: Package diagram

The classes of the packages are also visualized in the diagram. The classes in the
mapreduce package are mainly the specific MapReduce jobs. It also contains a class
with constants common for the jobs. The ArticleTimeSummary and PreviewTime-
Summary classes are the jobs that computes statistics related to the users. The Cat-
egoryVector and KeywordVector classes contains jobs that calculates the vectors. Each
vector has three different versions. These classes are built up by 200-300 lines of code.
This is the reason they are described in pseudocode later in this chapter.

The upmongoreader package consists of three classes. The MongoReader class is the
interface to the log database. The MongoExtractor class extracts data from the database
based on a time interval and the MongoDailyExtractor only gathers data that has been
added since the last run. Daily is part of the name because the intention is to run the
program on a daily basis. Othe rfrequencies that are more or less rapid should also be
possible.

6.3 Importing Data to the Hadoop Environment

Two different programs was created to extract the data from the MongoDB installation
to the Hadoop environment. The basic process of this action is to use the MongoDB
API to transfer the data over a connecting network. Other approaches for gaining data
will is discussed in the discussion chapter.

The first program is taking a simple dump of the collection aimed for (in this case the
log collection). A time-range is used to gather the data that has been stored within this
range.The data is stored as a text file in the HDFS. This approach will not be optimal
when the data amount stored scales, but the program could have its use when first
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initializing a new Hadoop installation, when recovering a faulty one, or when focusing
on data from specific time intervals.

The second program uses find queries to locate data that has arrived since the last
updated extraction was performed. This is the optimal way of gathering the data when
using the MongoDB API directly, since the past data is already located on the HDFS
and this minimizes the data transfer over the network and time consumption. The last
time an update was made is stored on the HDFS and updated when new data has been
aquired.

These programs can be executed the Hadoop environment in the same fashion as
MapReduce jobs, even though they are not in that category. Two other approaches
to filling the HDFS with data will be mapped out in the discussion.

Listing 5.1 shows an example of a single line that the program writes for a specific user
act. This is the basic structure the MapReduce jobs work with. It is in JSON format as
these types of lines are parsed further down in the activity. The figure has additional
spacing to keep it easy to read.

6.4 User Statistics Jobs

Two of the user act types is based on timing: time spent in article view and time spent
in preview view. To be able to extract knowledge from these user acts, a strategy is
needed. How much time spent in each of the views should be considered as meaning-
ful regarding to the profile?

Six possible strategies were considered:

1. Using global pre set variables as a threshold to decide whether enough time was
spent to make it meaningful.

2. Using global variables computed by the data to as a threshold.
3. Using variables computed per user as a threshold.

4. Increasing the impact of the act according to time spent in the views with global
weight on the time spent.

5. Increasing the impact of the act according to time spent in the views with globally
computed weight.

6. Increasing the impact of the act according to how much time is spent in the views
with personalized weight.

The two first strategies were considered as too general. This is due to the fact that
every user is unique and will have an unique application usage pattern. The fourth
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and fifth strategy could likely perform better that the two first ones, but is somewhat
complex. The diversity of users would also have impact on this strategy, since the way
of weighting the time spent is global. The sixth approach would likely be the most
accurate strategy, but was considered too complex. The decision fell upon strategy
three. The rationale was that the trade-off between simplicity and generality was most
rewarding.

Two MapReduce jobs was constructed to compute the mean time spent in the views.
The jobs were almost equal, only disjoint due to the different event types. Thus, the
algorithm described below suits both the jobs.

User statistics map function

The function is described in Listing 6.1. The code simply iterates over the logged user
acts and checks whether each separate act can be considered as an timed event. Ifit is,
then it is mapped to the output as a tuple of user-IDs and seconds.

Listing 6.1: User statistic map function

void UserStatisticMap (Text userActLogs){
Iterator linelterator = userActLogs.lineSplit ();

while(linelterator.hasMoreLines ()) {
if (userActType == timedActType){
double seconds = userAct.getSeconds ();
output(userID, seconds);

User statistics reduce function

The reduce function is described in Listing 6.2. The reduce function iterates over all the
timed user acts related to the specific user and adds it to a sum. It also keeps a count of
all the user acts encountered to be used in in the average function which is the simple
mathematical function: A = S/n. A is average time spent, S is the sum of time spent
per user act, and the n is the total of user acts for the specific user.
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Listing 6.2: User statistic reduce function

void UserStatisticReduce (Text userID,
Iterator <Double> secondslIterator){

double sum = 0:
double count = O0;

while (secondsIterator.hasMoreSeconds ()) {
sum += seconds;
count += 1;

double averageTime = sum / count;
output(userID, averageTime);

The output of the reduce function is stored to the HDFS as a text file. It is used in the
user vector jobs to determine the impact of the timed events. A more efficient way to
do this would be to gather the user times through a database that can look up such
information efficiently. A sample output is given in Listing 6.3. The left column in the
listing is user-IDs and the right column is the average time computed.

Listing 6.3: User statistics dump

408ae611d7c683fe5d3aecdd33e05d10 5.118645344827586
719adad934ebaad9ce84dd8da293da84 7.923057302837432
a2ladabc93ade934ede034ee043e5e43 25.50341930694725
ad28eee9321aee734aa3d732dda9dd21 39.51237823457982
bf798fb8990fbda026423bf7665adeeb 22.31612484237698
fald3ea243890aecd8cd65ad76cd3231 38.29132703523934

6.5 User Profile Creation Jobs

As the user statistics jobs, the user profile creation consist of two separate jobs. One for
creating vectors that weighs the different categories per user and one for weighing the
different keywords that is discovered by the user through the articles. The algorithms
are very similar, but differs in some ways. The job calculating the category vector out-
puts a constant sized vector. On the other hand, the output of the keyword vector
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job could in theory house infinite entries. The user act input normally contains a lot
more keywords than categories per act. This does not force significant alteration to
the algorithm, but entails a larger amount of work per job. With this in mind, the two
algorithms are described together, with the different properties emphasized.

Three different approaches were implemented. The approaches are separated by the
way old data is forgotten. This was done due to the fact that older data becomes less
and less relevant as time goes by, as stated in earlier chapters. The three different angles
are described in the list below:

1. Only using data within a limited time frame from now.

2. Only using data within a limited time frame from now, where older data are de-
creased by a constant.

3. Using previously created user vectors degraded by a constant in addition to data
newly collected.

6.5.1 User act weighing

All the approaches use the same type of weighing. The possibility of giving the user
acts different influence on the profile is considered as an important feature. Sharing
an article could say more about the user than if he only viewed the article. What these
weights should be is another question that needs an answer.

To support this feature, a constant class was added to the project. The only functional-
ity of this class was to give the jobs access to a hashmap that allowed the algorithm to
gather the weighing information with the user act as the key.

6.5.2 The time frame approaches

The two time frame approaches have been compounded due to similarity. The only
difference is that the second approach uses a time degrading function.

Time frame map function

The map function is described in Listing 6.4. Due to brevity, keywords and categories
are joined together in the listing by the letters kc. The map function takes text files with
user act logs as input. It then iterates over the lines in the input files. While iterating
it gathers the weight constants for the specific user act. Then it degrades the weight if
the the degrading function is active. Finally, it put each of the category tags or keyword
tags into a map that is outputted with the user-ID.
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Listing 6.4: User profile map function

void UserProfileMap (Text userActLogs){

Map kcMap = new Map();
Iterator linelterator = userActLogs.lineSplit ();

while (linelterator.hasMoreLines ()) {
double weight = userAct.getWeight ();

/] degrading function
weight = weight — weight+(days/totalDays);

for (kc in userAct){
kcMap . put (keyword/category, weigth);
}

output (userID, kcMap);
kcMap. clear ();

Mathematically the degrading of the weight is done by the following function:

Wy = wq(l- d_t)

where the w,, is the weight for the specific user act with time taken in consideration.
w, is the constant value that the type of user act is given. The d is the days that has
passed since today. Finally, the d; is the total time frame (e.g. 90 days if the data in
scope is within the last 90 days). This means that data from today is weighted fully
since the statement right of the subtraction sign is 0. When going back one day, the
weight will be smaller by 1/d; part of w,.

Time frame reduce function

The reduce function of the time frame approaches are described in Listing 6.5. The
input is the a userID and the output from the mapping function. The algorithm iterates
over the incoming maps. It then enters another iteration loop, where the elements of
the maps are gone through. In these loops it sums all the weights in coherence with the
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categories or keywords that the acts is part of. When the iteration is done the output
vector, represented by a hashmap, is normalized. The normalization is done by making
every entry a fraction of the biggest weighted keyword or category. Finally, the results
is forwarded to the the centralized system through the REST API.

Listing 6.5: User profile reduce function

void UserProfileReduce (Text userID, Iterator kcMaplterator){
Map<String , Double> outputMap = new Map<String, Double>();

while (kclterator .hasMoreMaps () ) {
Iterator category/keylterator = nextMap.iterator ();

while (kcIterator.hasMore ()) {
outputMap.add (kc, number);

t
normalize (outputMap ) ;

output (userID, outputMap);
kcMap. clear ();

6.5.3 The previous vector approach

This approach is foundationally different from the two previous approaches. It limits
the processing of total user acts, since computation is only performed on newly ac-
quired data. On the other hand, more overhead is encountered in the reduce function
due to multiple input sources.

Previous vector map function

The map function algorithm is the same as in the previous approaches (Listing 6.4).
The only differences are that the degrading function is not in use and the input would
normally be fractionally smaller in this version.
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Previous vector reduce function

The reduce function is also similar to the previous approaches. The difference is that
the old result from previous calculations of vectors are used to combine the new one.
The function is given in Listing 6.6. The weight deducting procedure is just multiplying
the old vector by a constant that makes it less important than the new data. Mathemat-
ically, the function can be described by vector algebra in the following way:

where V,, is the user vector, V}, is the new vector computed by the new user acts, and
V, is the old vector.

Listing 6.6: User profile reduce function

void UserProfileReduce (Text userID, Iterator kcMaplterator){
Map<String , Double> outputMap = new Map<String, Double ();

while (kclterator.hasMoreMaps () ) {
Iterator category/keylterator = nextMap.iterator ();

while (kclterator.hasMore ()) {
outputMap . add (kc, number);

normalize (outputMap ) ;
Map<String , Double> oldOutputMap = MongoDB. find (userID );

\\ weight deduction precedure
outputMap = outputMap + oldOutputMap * c;

output (userID, outputMap);
kcMap. clear () ;
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6.5.4 User Profiling Output

The output of the jobs is user-IDs coupled with the vectors. An example output dump
is given in Listing 6.7. This example is taken from a job that has computed the weight
on each category that has been encountered by the user. The left column in the listing
houses the userIDs. The right column displays the vectors on the form category =
weight. The keyword vector would have similar structure, but it will usually contain
more entries.

Listing 6.7: User profile dump

408ae611d7c683fe5d3aecdd33e05d10 {NEWS=100.0,
SPORT=23.0,
TRAVELLING=1.0,
LIFESTYLE=16.0,
BOONOMY=9.0}

719adad934ebaad9ce84dd8da293da84 {TECHNOLOGY=62.0,
NEWS=100.0,
SPORT=23.0,
MOIOR=1.0,
TRAVELLING=6.0,
BEQONOMY=9.0}

a2ladabc93ade934ede034ee043e5e43 {NEWS=75.0,
SPORT=100.0,
ENTERTAINMENT=13.0,
LIFESTYLE=3.0,
BOONOMY=45.0}

6.6 Tuning Factors

To summarize, there are in this solution four main factors that will impact the resulting
vectors. The type of forgetting function is important. The solution provides three dif-
ferent algorithms that will all produce different weighted vectors. The specific weigh-
ing of the user acts will also make the output vectors react. The time threshold method
deciding how many timed user acts also needs to be configured. Finally, the job execu-
tion frequency will decide how many new events that are considered per vector.
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Chapter 6. Implementation
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Chapter 7

Evaluation

This chapter describes how we evaluate the system.

7.1 Evaluation Strategy

Since the overall system had not gone live at the moments of this research, the data
available was insufficient for evaluating specifically tuned instances of the system. There-
fore, to evaluate the the results, a sensitivity analysis of how different configurations
would affect a small amount of test user vectors.

7.1.1 One factor at a time (OFAT)

The OFAT method is a simple method used in sensitivity analysis. The basic idea is
to change one factor to see how it affects the output. The usual way to do this is by
changing one variable and keeping the other variables normal. Then changing the
original variable back to its baseline value and repeating the procedure for the other
variables. The sensitivity can then be measured by looking at the impact of the changes
made. This will produce outputs that is solely dependent on the single variable change
that has been made.

A limitation of this approach is that the input space is not fully mapped out. This is
because the simultaneous variations of the factors are not considered. This implies
that it is impossible to address how the different variables related to each other.
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7.2 Weight Sensitivity

In this section we look at how the different weighting constants affect the final result.
The experiment was done with data from two test users. Some of the user acts was
excluded from this experiment due to lack of data. The OFAT method was utilized
in this experiment. It was performed by giving every weighting every event by zero.
Following this, an user act type were given a weight of one. After the experiment was
done, the weight was switched back to zero again. This was done for all the user act
types in the result set.

7.2.1 Hypothesis

The hypothesis for this experiment was that the different user acts should mildly re-
semble the opened article user act. The reason for this is that most of the acts has to
follow this act. The idea is that the opened article act as a basis, while the other types
of acts should amplify the weights or decrease the final result.

7.2.2 Results

The results of this experiment is given in Table 7.1 and 7.2. The columns represents the
user act type in focus and the rows consists of the categories. The results show that the
hypothesis could be true in most cases. This is because the vector values shows, with
exception of the preview time type, that the opened article type can be a generalization
of the rest of the acts.

The preview time act type adds information about the categories that have not got-
ten any information from other types of events. This is due to the fact that the user
does not seek this information actively, but is forced to give execute these act by the
system.

The news category is also always the dominant category. This might imply that the
categorization is too general, that a lot of articles in this category are generated, or
simply that this is what the users prefer to read.

7.3 Preview Time Vector Size Influence

Because of the results from the last section, it came to presence that the preview time
acts affects the size of the vectors a lot. Therefore, an experiment were performed to
check if it was. The experiment were performed on the same sets of data as before. The
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Table 7.1: User 1 vectors
Opened article | Article time | Preview time | Similar article | Viewed map
Technology 0.0 0.0 1.348 0.0 0.0
News 100.0 100.0 100.0 100.0 100.0
Sport 0.0 0.0 1.468 0.0 0.0
Entertainment | 3.960 19.881 11.611 32.201 16.568
Travelling 0.0 0.0 12.638 0.0 0.0
Economy 0.0 0.0 7.308 0.0 0.0
Table 7.2: User 2 vectors
Opened article | Article time | Preview time | Similar article | Viewed map
Technology 8.919 3.968 57.145 0.0 7.095
News 100.0 100.0 100.0 100.0 100.0
Sport 9.024 14.052 38.481 29.944 7.178
Entertainment | 0.0 0.0 24.443 0.0 0.0
Motor 0.0 0.0 0.524 0.0 0.0
Travelling 8.919 11.904 12.638 29.596 7.033
Lifestyle 0.0 0.0 0.530 0.0 0.0
Economy 0.0 0.0 6.396 0.0 0.0

approach consisted test the vector generation of keywords. One time with the preview
time active and one that had it deactivated. Then a comparison of vector lengths were

performed.

7.3.1 Result

The result showed that when preview time was active, the total length of the two vectors
were 514. When inactive the result were 92. This a very big difference. 92/514 = 0,18,
which implies that almost 80% of the data stored in the keyword vectors is grounded in
the preview time user acts.
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Chapter 8

Discussion

In this section we discuss the elements in this project.

8.1 Experimental Results

The data utilized in the experiments were very scarce, thus a very critical eye has to
gaze upon the results. A large set of data is needed to evaluate the system is needed. In
fact, the question regarding how to evaluate the system as a whole is very important. A
large amount of data is needed and it can not be auto generated. This is because the
data needs to be constructed in a way that resembles users. Creating data from surveys
could be a good idea, but this would require a lot of people to attend to get an amount
that would suit the system. Generating data from logs of similar systems is another
idea that could give a more sturdy evaluation platform.

In the subsections below, we discuss the results of the experiments executed.

8.1.1 Weight Sensitivity

The main finding of this experiment was that preview time acts influence the vectors
in a different way than the rest of the user acts. It adds data to categories that no other
acts influence. The main questions that needs to be answered is how much influence
it should have on the final vector and more importantly if it is needed at all. From
a logical perspective, the preview time should have some influence on vectors since
it should contain some information of value about the users. This information could
however be very inferior to the other value of the other acts. It can be considered as
a cost/benefit dilemma. The results show that 80% of the data generated comes from
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preview time acts. This is very much and a lot of computation could be avoided by not
considering this data.

Getting the weight right is also a problem. Setting them manually would not be a good
way of doing it. A better approach would be to use data mining techniques on real data
to find the weights. By utilizing machine learning procedures, it should be possible to
learn what these factors should be. However, the problem is two-fold. The weighting
would change over time, since the recommender system would force the user to look at
news that it recommends. If this is not taken into consideration, then the users might
get "stuck" at certain types of news, but this a problem that has to be dealed with in
the module that serves the user news. A suggestion to avoid this problem could be to
present some random news to the user.

8.2 Data Transfer Alternatives

Two alternatives that should work better than the data transferring program described
in the implementation part. First off is Apache Flume is discussed as an alternative to
this. Following this the Hadoop-Mongo in this environment is described. Finally, we
discuss what would be the best option.

8.2.1 Apache Flume

Apache Flume[37] will a more robust and safe way of transferring data to HDFS is used
than the approach used in the implementation. Apache Flume guarantees that the
data will be transferred since it uses a single-hop guarantee semantics. This provides
robust end-to-end reliability. A proposed instance is given as an example in Figure
8.1. In this example, the source is the middleware system and the sink is the HDFS
installation.

"""""""""""""""""""""" Flume Agent]

Middleware System

‘

Figure 8.1: Flume instance
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Another property that favours Flume is the fact that new events are pushed to HDFS
as they arrive. This implies that small messages are sent to the HDFS. In the present
state, all data is transferred in a batch, which could be a congestion point when the
amount of data scales. Adding new external storage spaces would also be simplifies
since it would only require the Flume agent to forward the user acts to this storage as
well. As it is now, separate implementation will have to be done for this.

The physical architecture of the system would with the addition of Flume be altered.
Figure 8.2 displays a proposed architecture showing how the data flows through the
system. The log database has been maintained in the architecture since a separate
stable storage for the logs would increase stability due to redundancy.

Mobile Application Flume Server Log Database

"

>

' T
L L 1 4y

Cad
&

=

Internet Middleware Server Hadoop Cluster

Figure 8.2: Architecture with Flume

8.2.2 MongoDB + Hadoop Connector

Research[39] implies that this connector is very suitable if small amounts of data are
to be transferred from MongoDB to the MapReduce job. However, if the solution are to
use an analytical approach exploiting large portions of the stored data, then the Mon-
goDB would be inferior to using HDFS directly. The work done in this thesis could be
considered as an approach in the first category, due to only utilizing newly acquired
data. So in this case the connector should be well suited. However, if the intention is
to expand the MapReduce job base to perform more analytical tasks, then using HDFS
would be the best choice. Considering both, the last choice would be most benefi-
cial, since the other modules that are to be added could benefit from this. The Flume
approach would definitely be best since it removes the need for MongoDB and the in-
tegration with Hadoop.
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8.3 Scheduling Alternatives

Apache Oozie was not used in the development process, but should be used when the
system is deployed. There exists a lot of different tools for scheduling Hadoop jobs, but
it is by far the most popular solution which implies that it is well supported. It suits
this system well since it is easy to integrate new jobs and introduce new functionality
to the system as a whole.
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Chapter 9

Conclusion

News recommender systems are designed to serve the news that a specific user want.
The Internet and it’s vast amounts of articles have made this a possible problem for
the news readers. Time-consumption and difficulty of finding the right news would be
lowered if it is done correctly.

This thesis considers the idea of using user profiles in a larger process to filter out re-
dundant news articles. The basis for these profiles were the logs that users created
while using the recommender application. Usage of Hadoop and it’s features when
achieving this was also a goal of the research.

The literature review were that some work have been done within news recommenda-
tion. Little literature have been published in the context of mobile news recommen-
dation, but since it is a subset of news recommendation the domains are very similar.
How to value heterogeneous user clicks is absent in all the literature studied, so thisis a
field that deserves more focus. Little focus of how the logs were computed into profiles
were given, but how they were represented digitally had good descriptions.

How to evaluate the effectiveness and accuracy of the user profiles is difficult. Little
real data was available during this research and actual data is needed. Data that repli-
cates real users is hard to forge and is needed for both evaluation and calibration of
the implementation. These calibration factors consists of the user act weights, time
degrading functions, the time threshold for timed user acts, and the interval between
two running jobs.

The evaluation implies that the most important user act (open article) can be con-
sidered as a generalization of the rest of the events, although it is believed that the
other user acts also entails some knowledge to be discovered. The “news” category
also seems somewhat dominant in the tests, this could be due to the category distri-
bution or that the module that classifies articles has some weaknesses. One type of
user act, named article preview time, is very dominant in the logs. Nearly 80% of the
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keyword vector entries are, so this might be viewed upon as redundant data to process
when considering cost versus benefit.
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