
Ray Tracing for Simulation of Wireless
Networks in 3D Scenes

Lars Espen Strand Nordhus

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Ray Tracing for Simulation of Wireless Networks in 3D Scenes

In this project, we will investigate GPU-based ray tracers for simulation of wireless
networks in 3D scenes. This includes using existing methods to generate a scene
based on OpenStreetMaps, and using the NVIDIA OptiX ray tracing framework to
simulate wireless network (WiFi) coverage, with a focus towards Intelligent Traffic
Systems. The solution should be able to simulate WiFi nodes along the streets and
in vehicles in motion.

The goal for the project is to build a wireless simulator, although a fairly simple
model for wireless communication should first be considered.

2

Abstract
Simulating WIFI and other similar radio waves in real-time environments has a
tremendous potential, and is a hot topic in modern computer science. The
Norwegian Road Authority in Trondheim (Norway) has created a physical test road
for simulating future road to vehicle communications in a realistic setting. By doing
so they get an excellent physical simulator for realistic small scale testing which can
be used to verify a computational simulator. IEEE has created a vehicle-to-vehicle
communication standard called IEEE 802.11p: Wireless Access for the Vehicular
Environment (WAVE) [1]. On the 24th of April 2013, the cross country cooperation
Compass4D met in Denmark, where 90 buses will be equipped and tested using this
standard for at least one year [2]. These examples are just some of the many great
contributions which are aiming towards developing a technology to better the
efficiency and safety of roads.

In this project, we develop a comprehensive real-time large scale WiFi simulator. It
simulates vehicle-to-vehicle and vehicle-to-road communication, and can be a good
supplement to systems like the ones in Denmark and Norway. To make large scale
testing possible and affordable, we have created a way to generate simplified
versions of real life streets and structures using Open Street Maps. The goal of this
thesis is to make it possible to simulate dynamic traffic environments with
communication in real-time.

To achieve this, we harness the compute power of graphics cards which is shown to
be extremely powerful in solving massive parallel tasks like ray tracing, the core
computational method used in our work. In our case, we use it to trace line-of-sight
for the mobile WiFi signals (rather than photon rays). This is done by using the
NVIDIA OptiX ray tracing engine for most of the heavy calculations. Using the
same framework, we also implement a dynamic environment with both static and
moving senders/receivers to illustrate a realistic traffic scenario.

Our system has been tested on several benchmarks to examine how it performs in
different scenarios. Our results show that it is feasible to created a system capable of
simulating medium resolution scenarios with a great number of senders, buildings
and moving obstacles in real-time with a frame rate of at least 24fps. We also show
that the number of objects, the resolution and even the number of receivers can be
increased substantially when simulating vehicle-to- vehicle communication, since it
requires lower update rates. Several ideas for how to extend this work is also
included.

3

4

Norwegian abstract
Å simulere trådløst nett og andre lignende radiobølger i sanntid har et enormt
potensial, og er et populært emne innen moderne datateknikk. I Norge har
Vegvesenet laget en fysisk test vei for simulering av fremtidens
kjøretøykommunikasjon i en realistisk setting. Ved å gjøre dette får de en god fysisk
simulator for realistisk småskala testing, som også kan brukes til å bekrefte en
virtuell simulator. IEEE har laget en standard for kommunikasjon mellom kjøretøy
som heter IEEE 802.11p: Wireless Access for the Vehicular Environment (WAVE)
[1]. Den 24. april 2013 møttes den internasjonale samarbeidsorganisasjonen
Compass4D i Danmark, hvor 90 busser vil bli utstyrt og teste denne standarden i
hvertfall et år [2]. Disse eksemplene er bare noen av de mange gode bidragene som
er rettet mot utvikling av teknologi for å forbedre effektivitet og sikkerhet på veiene.

I dette prosjektet har vi laget en omfattende trådløs simulator med mulighet for
storskala testing i sanntid. Den simulerer kommunikasjon mellom biler og mellom
veistasjoner og biler og kan være et godt supplement til systemer som de funnet i
Danmark og Norge. For å lage storskala testing mulig og kosteffektivt har vi laget
en måte generere forenklede versjoner av ekte gater og bygninger ved hjelp av Open
Street Maps. Målet for denne oppgaven er å simulere dynamisk trafikk miljøer med
kommunikasjon i sanntid.

For å oppnå dette har vi utnyttet regnekraften til grafikk kort, noe som tidligere har
vist seg å være ekstremt kraftig for å løse massivt parallelle oppgaver som
strålesporing (ray tracing). Dette er gjort ved bruk av NVIDIA OptiX sitt
strålespringverktøy for å håndtere mesteparten av den tunge kalkulasjonen. Ved
hjelp av det samme rammeverket har vi også implementer et dynamisk miljø med
både statiske og flyttbare sendere/mottakere for å simulere et realistisk trafikkbilde.

Vårt system har blitt kjørt gjennom en rekke tester for å utforske hvordan det
håndterer forskjellige scenarioer. Våre resultater vise at det er gjennomførbart å lage
et system som er i stand til å simulere medium oppløsnings scenarioer med et stort
antall sender, bygninger og bevegelige objekter i sanntid, og fortsatt opprettholde
hvertfall 24 oppdateringer per sekund. Vi har også vist at antallet objekter,
oppløsningen og antall mottakere kan bli økt drastisk når man simulerer
kommunikasjon mellom kjøretøy, siden det krever lavere oppdateringshastighet.
Flere ideer for hvordan man kan utvide dette arbeidet er også inkludert.

5

6

Acknowledgements
I would like to thank Dr. Anne C. Elster for her supervision during this project and
for the opportunity to test my code on different high-end systems in the HPC-lab.

I would also like to thank Dr. Jo Skjermo from SINTEF and Erik Olsen from The
Norwegian Road Authority (Vegvesenet) for their time spent explaining how the
system can be used in real life situations in intelligent road systems.

Further, I would like to thank the other students in the HPC-lab for always helping
when needed, and for making the lab a good supporting environment with friendly
people sharing knowledge.

Rune Erlend Jensen also deserves a big thank for his help with solving difficult
computer problems.

I also wish to thank NVIDIA for their support of HPC-Lab through their CUDA
Research Center and CUDA Teaching Center programs.

Finally, I would like to give a special thanks to my two brothers Per Erik and John
André Nordhus and my sister-in-law Mari Vårdal for their fantastic support and help
on this thesis. You are always there when I need it, and I will never forget it.

Lars Espen Strand Nordhus
Trondheim, Norway, June 11, 2013

7

Contents

1Introduction ... 11

1.1Motivation ... 12

1.2Thesis outline ... 12

2Background ... 15

2.1Rasterization .. 15

2.2Ray tracing ... 16

2.3Radio waves ... 18

2.4Acceleration structures ... 21

2.5The background of NVIDIA OptiX ... 23

2.6The Obj format ... 24

2.7State of the art .. 25

3Implementation .. 29

3.1Information flow .. 29

3.2Implementing ray tracing using OptiX .. 32

4Scalability Tests ... 43

4.1Test beds .. 43

4.2 Test benches .. 45

4.3Benchmarks ... 47

5Conclusion and future work ... 57

5.1Future work .. 58

6Appendix ... 65

6.1How to use the system ... 65

6.2How to set up the system ... 66

6.3Raw test result data .. 67

8

List of figures

Illustration of how parts of the wave get reflected, absorbed or pass through the
object it hits...18

Waves going through a medium with a higher density..19

Diffraction of waves passing a mountain..20

Comparison of commonly used wave lengths and IEEE 802.11p (vehicle-to-vehicle
communication)...20

Illustration of a scene with two binding boxes. This Figure is inspired by [26].......21

Illustration of a scene with two splitting planes. This Figure is inspired by [26].....22

Illustration of the call sequence in OptiX at23

Example of a polygon represented in an object-file..24

Some of the many uses for ITS [36]..26

Information flow through the simulator system..29

A car and a bus created using 3D-studio Max to simulate traffic.30

NTNU Gløshaugen and the main building modelled in more detail.........................31

A close-up rendering of NTNU Gløshaugen...31

360 degree camera, where every ray is traced in the direction calculated according
to the given ray-index..33

The code for handling a single ray..34

The focal distance and focal point of a lens. ..34

Code for launching multiple cameras..35

 The code for handling reflection and refraction...36

9

Code for calculating the light received form hitting a light sphere...........................37

Two moving light spheres in the simulator..38

A breakdown of the scene hierarchy. ..40

Table of building and traverser combinations with subsequent run speeds. The table
data originates from the OptiX documentation...41

Benchmark score for the three CPUs used, the best scoring model, and highest rated
commonly used CPU. These benchmarks are created by "PassMark R Software Pty
Ltd" on the 27th of May 2013 [51]. Permission was granted to create subsets of their
data for this thesis..45

The hardware specifications for the three test benches used in the thesis................47

Benchmark score for two of the GPUs used, the best scoring model, and highest
rated commonly used GPU. These benchmarks are created by "PassMark R
Software Pty Ltd" on the 27th of May 2013 [51]. Permission was granted to create
subsets of their data for this thesis...47

Compares the run time and FPS of the three test benches..48

Shows the s and FPS when changing the resolution of the camera..........................49

Compares the of the simulator and its FPS to linear when the number of cameras
increase..50

Shows the correlation between the number of light sources, the and the FPS.
Logarithmic run time is also drawn in comparison...51

Compares the different acceleration structures tested. The first variable is used for
moving objects and the second is used for stationary objects...................................52

The changes in , dependent on resolution and number of GPUs..............................53

Shows the comparison between (sec) and number of buildings in the scene...........54

10

1 Introduction

Computers are all around us and are rapidly becoming vital elements in everything
we own. There are computers in everything, from your car to your refrigerator, and
they are now starting to talk to each other to ease everyday life for the user. This
makes the potential of intelligent portable systems tremendous but also introduces
several challenges.

One of the main challenges for these mobile devices is interacting with dynamically
changing environments in a stable manner. Therefore, many researchers are looking
for ways to simulate electromagnetic wave propagation and how the environment
will affect the data quality. A common and simplified approach is creating sectors
based on predicted signal strengths relative to the sender [3][4]. Studies have also
tried to estimate the signal strengths in indoor environment, and by using statistical
analysis they have found it possible to estimate the signal strength at any given
point within 5dB margin of error [5]. Ray tracing has shown even better results, but
the cost of computation increases as well [6][7]. As computers are acquiring the
sufficient computing power, ray tracing has become a valid alternative for
simulating these kinds of complex scenarios more realistically, and in real-time.

Since graphic cards have proven to be the most effective way to handle these kinds
of problems, we chose to use GPUs to accelerate the calculations in this project.
This is done by using the NVIDIA OptiX ray tracing engine for most of the heavy
calculations. We also implemented a dynamically changing environment with both
static and moving senders and receivers to simulate a realistic traffic environment.

We added a city generator to provide the wide range of scenarios possible in the real
world. This lets you simulate any given location without having to create all the
buildings by hand. By combining Open Street Maps and a python script we were
able to automatically generate a city segment of our choice, and import it into the
ray tracing simulator.

11

1.1 Motivation

There are countless numbers of accidents yearly in the world caused by the lack of
information and endless miles of traffic jams every day. Many of these can be
prohibited by just making the roads smarter. An intelligent road system can inform
the driver if the road is slippery, or if a traffic jam will erupt the next mile.

NTNU/SINTEF and The Norwegian Road Authority (Vegvesenet) have both
worked on developing driving simulators to test how roads perform before they are
built [8]. These two systems are both built with high realism, but need a way to
simulate road communication. Originally they use a hard coded distance limit to
determine if the signal is reached or not, thus being a less realistic solution.

The Snow Simulator Project [9] was started in 2006 at the NTNU HPC-lab, and has
since been the subject of many master thesis and projects. As a result the snow
simulator has gotten a substantial speed-up and many extensions, and is now
utilizing CUDA and high-end NVIDIA graphic cards [10].

We hope this thesis is the start of a similar long term project. In this case, for auto-
generating scenarios and looking at complex wave simulations for WiFi and
telecommunication. As a benefit, this can also be combined with the snow simulator
to create even more realistic renderings of snow and mountains using the OptiX ray
tracing engine.

1.2 Thesis outline

Chapter 1, Introduction:

In this chapter, we give a short introduction to the problem at hand and why we
want to solve it.

Chapter 2, Background:

This chapter presents an introduction to the useful background information which is
helpful to know when reading the rest of the thesis. The background chapter is
divided into subsections where the reader can skip subsections already know at a
higher level. Many of the later chapters are based on the information found in this
chapter. The chapter also looks more thoroughly at the combination of ray tracing
and wave simulation.

12

Chapter 3, Implementation:

This is where we present our implementation of the system in more detail and some
notes on what we found when programming the solution. But first we give a quick
walk-through of how the system piece together and which parts of the system we
have created.

Chapter 4, System scalability test:

This chapter explains the strengths and weaknesses of the simulator and how we
tested to find these.

Chapter 5, Conclusion and future work:

The thesis finishes of with a summary of the results and facts found during this
project, before exploring some thoughts for further extensions and possible
optimizations.

Appendix:

At the end of the thesis you can find a guide for how to use the system, how to
install the system, and the raw test results.

13

14

2 Background

Simulating WiFi signals in a realistic and efficient manner is a complex
problem. Therefore we have added some background material on how
electromagnetic waves and image rendering work, before we look at how
these two can be combined. This chapter also contains an introduction to
the state of the art research done in the field.

2.1 Rasterization

real-time graphics is often defined as an image stream with at least 24
frames per second (FPS in shortened form). Around this point the eye
“stops” seeing the change of pictures and starts seeing a more constant
flow like in a film. 24 FPS is a demanding requirement to maintain when
the level of detail increases. For games where the player can “feel” the
latency through game-play the requirements set to the update speed are
often even higher.

Rasterization is currently the most popular technique for producing real-
time 3D in the world of computer graphics [11]. It is a fairly fast sequence
of algorithms which transform a three-dimensional scene, often composed
of triangles, into a two-dimensional image of pixels. At run time,
rasterization processes the individual primitives through the rendering
pipeline and thereby extracts the 2D forms appearing on the screen [12].

This pipeline contains many different elements that have been well
optimized and accelerated using the specialized hardware on GPUs. The
rasterization process contains the following five algorithms: Clipping,
perspective division, back-face culling, viewport transform, and scan
conversion.

Clipping selects the parts of the scene that is placed fully or partially
inside the view frustum and is implemented in hardware.

15

Perspective division scales the models to create the illusion of distance.
Objects fare away gets scaled down thereby making objects close by look
larger in comparison.

Back-face culling can remove the backside of objects if no reflection is
planned, thereby saving much rendering.

Viewport transform changes the coordinate system to fit the viewport. This is done
by reflecting the scene across the XZ-plane, scaling the image to fit the chosen
resolution, and finally finishing off by translating the scene to fit the screen
coordinate system where 0,0,0 is in the top left corner.

The final part of rasterization is scan conversion, where the primitives are drawn
using pixels following a given algorithm.

Systems where the real-time requirement is absent is often referred to as being “pre-
rendered” or “offline rendered” and make use of more time-consuming algorithms
to achieve better qualities like ray tracing, radiosity and photon mapping.

2.2 Ray tracing

Whereas illumination models like “Flat shading”, “Gouraud shading”,
“Phong shading” and the simplified version of ray tracing called ray-
casting are all examples of “local illumination rendering methods”, ray
tracing is a “global illumination rendering method” [13]. A global
illumination rendering method does not only use lights to specify the
brightness of a surface, but also take into account the reflection of light
emitted by surrounding surfaces. This creates a much more realistic
representation of the given scene, but comes at the cost of rendering speed.

Ray tracing is often used when creating 3D-animated movies [14] [15] [16]
[17] [18] and have also in recent years become a valid option for use in
real-time graphics games like Quake 3 and 4 [19] [20]. This is mainly due
to the improvements done to graphic hardware and the massively parallel
nature of the ray tracing algorithm. The research done on the subject has
also played a significant roll in the progress and still new fields of research
look into alternative use-cases for ray tracing. One alternative application
for ray tracing is to use it for displaying X-ray data, which is extremely
complex and computationally expensive [21].

16

To calculate shadows, lighting, transparency and reflections realistically in
a three-dimensional scenario is a challenging problem. Ray tracing solves
this problem by simulating the movement of light through the scene
simulating a chosen set of light-rays [22]. This is done by casting a ray
from a given camera point and through every pixel on the wanted screen. If
a ray does not hit an object within a limited distance on its journey through
the scene, a default colour or texture is returned and set as the colour of
the given pixel. If the ray hits an object, the colour of the position is noted
just as with ray-casting. But this is where the algorithm gets advanced.
Instead of just returning the colour of the surface the algorithm spawns a
set of new recursive rays that are going to simulate the different effects
mentioned earlier.

A shadow ray is spawned for every light source and is traced to determine
if the given source contribute with light of any colour or intensity. If the
ray collides with a non-opaque object the ray terminates and no light is
contributed by it. If the ray hits the light source, the colour and intensity
produced taking into account the distance and potential opaque object
passed through is returned and combined with the results of the other rays
spawned.

A number of reflection rays are spawned. The number and angle are
depending on how defuse the object is supposed to be, for example a cone
of rays can be sent to make a smooth matt finish. These new rays are all
recursive and behave like the original rays sent from the camera.

To simulate the transparency of objects a final ray is spawned when an
intersection is found. The ray is sent through the object in a calculated
angle given that the surface is opaque enough. This gives a new recursive
ray just like the ones coming from the camera.

When all the rays have terminated either by hitting the scene walls or by
reaching the maximum number of recursions, the rays and the surface
colour are scaled, summed, and set as the pixel colour of the original pixel
on the screen.

The ray tracing algorithm scales exceptionally well with the number of
vertexes in the scene compared to for example rasterization [23]. In best
case it scales logarithmically with the number of vertexes, and this is very
important when we look at the development of 3D scenes where both the
size and the number of details tends to increase.

17

In many cases, increasing the number of GPUs has also proven to scale
excellent. H. Ludvigsen and A. C. Elster [24] found that as long as the
computational complexity outweighed the cost of transferring the data,
great speed-ups may be achieved.

2.3 Radio waves

To get at complete picture of the problem of simulating electromagnetic
waves like in WiFi, we first need to look at how radio waves behave in the
real world. When waves interact with the environment three distinct effects
occurs: reflection, refraction and diffraction. These effects are described in
more detail in the subsections below [25].

2.3.1 Reflection
When a wave encounters a surface, a part of the wave gets reflected. A similar effect
is seen when playing pool and a ball hits the table wall. Some of the energy of the
ball is lost due to the material absorbing some of the energy. In addition to this
effect, a wave hitting a material also passes a portion of the wave through the
material, dependent on the density/opacity of the material. This effect is like a glass
window which is both reflective and transparent at the same time.

18

Figure 1: Illustration of how parts of the wave get reflected, absorbed or pass
through the object it hits.

As you see in Figure 1, the angles x1 and x2 are always the same for wave
reflection, just like a perfect mirror. The amount of energy absorbed by
hitting a surface depends on the material of the surface and often (in the
real world) the amount of water in the material.

2.3.2 Refraction
Refraction comes to play when a wave moves into a material with another
density. This is shown in Figure 2. This effect is utilized in lenses to bend
the light in the desired direction. According to Snell's Law [13] shown in
(1), the relationship between the variables is constant.

This fact can be used to calculate the wanted angle of refraction. With
some reorganizing of (1), the formula can be written like in (2). R is short
for refraction vector, I for incidence vector, n1 and n2 refers to refractive
index 1 and 2 respectively.

19

(2)

 (1)

Figure 2: Waves going through a medium with a higher density.

2.3.3 Diffraction
A wave diffract when it passes an object or through a small opening. This
effect is seen when a wave enters the inside of a breakwater and spreads
out. One of many exploitations of diffraction is to send communication and
TV signals into valleys which have no line of sight to the sender like
shown in Figure 3.

2.3.4 Simulating electromagnetic waves using ray tracing
In this thesis, we look at simulating the electromagnetic waves sent from a
WiFi sender and received by a mobile receiver using ray tracing. Although
both ray tracing and electromagnetic waves are based on the concept of
wave physics, the wave length of ray tracing is much smaller in
comparison. As a result of this, ray tracing does not simulate diffraction.
This is estimated to have a minor impact on the outcome of this simulation
since the wavelength of the IEEE 802.11p standard (specified for vehicle-
to-vehicle communication) is quite small. The extension is mentioned as
potential improvement in further work 5.1.4.

Visual light 390nm – 750nm 790THz - 405THz

IEEE 802.11p 51282 μm - 50632 μm 5.85 GHz - 5.925GHz

FM radio 2,8 m – 3,4 m Usually 87.5 to 108.0 MHz

TV and AM radio higher wave lengths even lower frequencies

Figure 4: Comparison of commonly used wave lengths and IEEE 802.11p (vehicle-
to-vehicle communication).

20

Figure 3: Diffraction of waves passing a mountain.

2.4 Acceleration structures

To ray trace a large scene in high resolution, without doing some sort of
optimization, will result in a pretty slow system. Turner Whitted, the
creator of ray tracing, stated that he used up to 95% of the checking for
intersections between rays and objects [22]. As a result of this, much
research have been done on optimizing this search [26] [27]. These
algorithms scale logarithmically at best with the number of vertexes, which
is exceptionally well compared to rasterization. A simplified version of the
two most commonly used acceleration structures is therefore explained in
the following subsections.

2.4.1 Bounded volume hierarchy
The goal of this algorithm is to create a hierarchy of bounding volumes
which can help to reduce the time spent testing for intersections. When the
hierarchy is built, you should be able to calculate the intersection point
with any object by just using the process of elimination. This is possible
since you know that no intersection is possible with objects within a box if
there are no intersections with the outer box in the first place. And by
using boxes or other simple structures as binding volumes the time used to
calculate if an object is hit or missed is reduced substantially.

21

Figure 5: Illustration of a scene with two binding boxes. This
Figure is inspired by [26].

When creating a bounding volume hierarchy, you first start with a scene of
objects as the root in your tree structure. Part one of the algorithm is to
split the scene into large boxes containing collections of objects. These
boxes should not intersect with each other. This way, objects closer
together will be in the same box. These boxes are then added to the root
node as children. The scene is now split into smaller scenes/boxes and can
be reduced like this recursively until a goal condition or the recursion
depth is met.

2.4.2 Kd-tree
The goal of this algorithm is to create a hierarchy to reduce time spent
testing for intersections [27]. The essential difference between creating a
bounded volume hierarchy (bvh) and a kd-tree is that the kd-trees use
splitting planes, not bounding volumes.

To create a Kd-tree you first start with a single node containing the whole
scene and all the objects within it. Then you split the scene in two with a
plane, save the splitting plane to the node and create two child nodes. All
objects to the left of the split are moved to the left child node and the
objects to the right are moved to the right child node. This split is done
recursively on the new child nodes until the goal conditions are met or the
recursion depth is reached.

22

Figure 6: Illustration of a scene with two splitting planes. This Figure is inspired by
[26].

2.5 The background of NVIDIA OptiX

In September 2009, NVIDIA released its ray tracing engine named OptiX
[28]. It uses the NVIDIA CUDA GPU computing architecture for GPU
programming and can therefore only be run on NVIDIA hardware. OptiX
has proven to be a good ray tracing engine and have the capability of using
multiple GPUs simultaneously [24]. It uses Glut and OpenGL to display
the output on screen.

23

Figure 7: Illustration of the call sequence in OptiX at .

Figure 7 illustrates the interaction made in a typical OptiX program. A
material can be created for each object to specify its behaviour. A range of
settings can be linked to the material to simulate effects like reflection,
refraction, colour, shadow and lighting. By for example setting the closest
hit program, the programmer may choose what action OptiX should take
when the selected object intersects with a ray in the future. This is shown
in the lower right corner, where Glut calls the closestHit program of the hit
object. ObjLoader::load() lets us load objects from file and place them in
the system hierarchy. The Launch() command starts the process of
rendering a new frame.

2.6 The Obj format

This format consist of a list of textures, vertices, lines and normals [29].
This list can be translated into objects in systems like OptiX and 3D-
Studio Max. Figure 8 shows how the objects are split into four lists. Each
vertex, normal and texture then only needs to be listed once, even if used
to create numerous polygons. Each polygon is simply a combination of the
vertices, textures and normals listed earlier in the format:
vertex/texture/normal.

24

Figure 8: Example of a polygon represented in an object-file.

2.7 State of the art

Much research has been done in the recent years on the related subjects,
and we have therefore chosen to give a quick walk-through of how far
research has come in this field.

2.7.1 Automatic city generation
The techniques of generating cities has come far and is essential in many
systems like games, films and simulators where large scenarios will have
to be created [30]. As a result of the users' expectations for the quality of
3D modelling to always improve, the creation of a realistic 3D
environment may take years to create, even for hundreds of artists. This is
extremely expensive and can be improved substantially by automating this
process.

Georges Nakhle [31] has produced an advanced city generator, which
automatically creates a three-dimensional map of buildings based on GPS
information derived from OpenStreetMaps.org. He has also created a
building generator which focuses on creating more detailed buildings [32].
In [33], Claus Brenner implemented an algorithm for automatically
reconstructing buildings based on digital ground planes and laser scanned
digital surface models.

David Gary [34] has also created an advanced city generator, which focuses more
on creating detailed cities. This implementation depends on users placing the
buildings, setting the parameters, and is therefore not as automatic as the others
mentioned above. Pearl Goswell and Jun Jo [35] researched the possibility of
creating a grammar-based real-time city generator. Their system utilized shape
grammar rules to automatically generate buildings with high levels of variety in
assets, while keeping the memory cost low. These two generators create new fictive
structures instead of deriving data from an external map.

2.7.2 Intelligent Transport Systems
The construction of intelligent transport systems (ITS) have in the recent years
become a hot field of research. Some of the many uses for ITS is shown in Figure 9.

25

Emergency warning system for vehicles

Cooperative Adaptive Cruise Control

Cooperative Forward Collision Warning

Intersection collision avoidance

Approaching emergency vehicle warning (Blue Waves)

Vehicle safety inspection

Transit or emergency vehicle signal priority

Electronic parking payments

Commercial vehicle clearance and safety inspections

In-vehicle signing

Probe data collection

Highway-rail intersection warning

Electronic toll collection

Figure 9: Some of the many uses for ITS [36].

The Norwegian Road Authority in Trondheim (Norway) has created a
physical test road for simulating future road-to-vehicle communications in
a realistic setting. This test road is based on cooperative vehicle-
infrastructure systems (CVIS [37]) and is an excellent simulator for
realistic small scale testing [38]. Likewise the cross country cooperation
Compass4D met in Denmark on the 24th of April 2013, where 90 buses
will be equipped and trailed for at least one year.

ERTICO - Intelligent Transport Systems and Services for Europe [2] is
also a cross country cooperation where the United Kingdom - Department
for Transport and Norwegian Public Roads Administration are two of the
over 100 members. Their goal is to have zero accidents, zero delays,
reduced impact on the environment, and fully informed people driving the
roads by utilizing technology.

In [39], they have implemented a simplified open source two-dimensional
simulator with vehicle-to-vehicle and vehicle-to-road communication
which realistically simulates traffic. Although using a fairly simplified
transmission range simulator, their system has an advanced traffic
simulator and proved to scale excellent.

26

A vehicle-to-vehicle communication standard called IEEE 802.11p:
Wireless Access for the Vehicular Environment have been created in July
2010 to hinder miscommunication [1]. It is created and maintained by the
IEEE LAN/MAN Standards Committee as part of the IEEE 802 standard.
According to [40], this standard appears to be a great basis for future
traffic communication systems. The article also points at the need for
improvements to secure a controlled network load for safety applications.

2.7.3 Optimizing Ray tracing
Since ray tracing was first described in 1980 [22], the run time has gone
from taking days to calculate down to potential real-time rendering. This
improvement is much related to the improvement in graphic hardware,
which specializes in solving massively parallel problems like these.
Another reason for the drastic improvement in run time is the
implementation of for example acceleration structures like mentioned in
Section 2.4. Some of the newer optimizations look into suboptimal
solutions through progressive rendering [41].

2.7.4 Alternative ray tracing engines
In addition to NVIDIA OptiX, there are other highly optimized ray tracing
implementations out on the market. Some alternatives are: RTSL, Rtfact,
RTRT/OpenRT and OpenRL.

OpenRL is an open source ray tracing library created by Caustic
Professional which is a division of Imagination Technologies [42].

The RTRT/OpenRT ray tracing engine was created by The Saarland
University in 2001 [43]. In 2008 this open source engine was used to
implement a ray traced version of Quake 4 which proved to scale by a
factor of 15.2 when run on 16 cores [44].

The ray tracing shading language RTSL was built in 2007 as an open
source project and builds on the GLSL language that is a part of the
OpenGL specification [45]. RTSL have shown the potential to compete
with hand optimized ray tracing implementations.

Rtfact is a template library consisting of packet-centric components and
was created in 2008 [46]. Unlike the others, Rtfact uses only the CPU to
accelerate the ray tracing and provides the building blocks for creating
custom ray tracing-based solutions instead of supplying a stand-alone ray
tracing engine.

27

28

3 Implementation

As part of this project, we have implemented a simulator based on the background
found in the previous chapter. This simulator is capable of simulating vehicle-to-
vehicle communication in real-time, and includes movement, multiple cameras,
reflections, refraction, illumination, 360 degree vision, and output analysis. In
addition to creating the simulator, we also established ways to obtain or alter test
scenarios, and ways to handle the output. In the following section, the data-flow of
the system will be explained followed by a more detailed explanation.

3.1 Information flow

In this thesis, the system is split into smaller and more standardized parts which
follow known formats to stay as dynamic as possible. To get a better understanding
of how the different pieces of the system work together, a quick overview will be
given before the next sections go into more detail. This section will describe the
flow of information through the system from the online map on
OpenStreetMaps.org to the final product shown on the screen.

29

Figure 10: Information flow through the simulator system.

3.1.1 OpenStreetMaps.org
OpenStreetMaps.org is a free to use online map database that gives you the
possibility to export information of a selected environment of your choice with ease
[47]. The data is then saved in an osm file, which is formatted using XML syntax
[48]. Unfortunately, OpenStreetMaps.org calculates the altitude data using GPS,
which is lacking precision, and is only saving the data for road elevation and not the
terrain. This comes to show especially in areas without drivable roads, like in
between large buildings. The data is so corrupt in some cases, that it gives better
results ignoring the altitude data ending in one flat area.

3.1.2 XML translator
When the XML formatted map is derived from OpenStreetMaps.org, we extract the
needed information. In our case, it is of how tall a building is, its shape and where it
is located. This is done using a python script based on Georges Nakhles tutorials
[31] which imports an osm file, and translates it to a recipe for constructing the
given buildings in a 3D environment. The python script outputs this build recipe to
an obj file like described in Section 2.6. All the buildings created using the script are
set to the same height and the floor is not modelled. This is done to conserve
resources while preserving the details that are important for the simulation. This
scripts was provided through doctor Jo Skjermo.

3.1.3 Implementations made using 3D-Studio Max
We used the 3D-modelling program 3D-Studio Max to import the obj file
produced in the previous section to swap the axis for a better fit of the
OptiX standard coordinate system. We also added a flat ground floor to
simulate the ground of the city while not increasing the number of vertices
in particular.

30

Figure 11: A car and a bus created using 3D-studio Max to simulate traffic.

To improve the scene, we made a more realistic testing scenario with more
detail and differences in elevation. Cars and buses were also made and
exported to improve the simulation even further. This is a very important
aspect since traffic itself can prove a hinder for vehicle-to-road
communication. These new objects follow the same physics as the
buildings when it comes to reflection and refraction, but can in the future
get their own refraction index to simulate the difference in density.

31

Figure 13: A close-up rendering of NTNU Gløshaugen.

Figure 12: NTNU Gløshaugen and the main building modelled in more detail.

3.1.4 Reading input using OptiX
To create useful 3d models from the given obj file we created a file-reader, which
read useful 3d models and outputted a list of OptiX commands. This reader was
created by first reading the file, then interpreting and storing the data in lists of the
given type. Since the buildings used more vertexes than needed the list was
optimized to only contain the minimum number of vertices per surface. These lists
where then used to create a set of OptiX commands for building the read structure.

The negative consequence of reading and assembling the structures one surface at
the time is that it would create a large amount of individual surfaces which would
have to be checked separately for collision. We would then have a suboptimal
solution, but with fewer vertices than originally. Luckily we found a function within
OptiX which read the obj files and outputted a complete model structure, resulting
in a radical reduction in number of objects thus giving a much better solution.

3.1.5 The simulation output from OptiX
The ray tracer uses the object given as input and outputs a buffer containing the
colour information for each pixel on the screen. The buffered colour information,
which can be thought of as a picture of a landscape seen through a camera lens, is
what we are interested in. By searching for the brightest point in the picture we find
the precise signal strength of the radio, or in this case the light intensity hitting the
receiver. This maximum value can be used as input for another system to act as a
real-time WiFi signal simulator.

A side effect of the simulation is an image stream which can be displayed on screen
using GLUT. This makes it easier to find where the strongest signal comes from to
potentially send the reply in this direction, amplify the signal strength or to do other
optimizations.

3.2 Implementing ray tracing using OptiX

To simulate the electromagnetic waves from a sender to a receiver
realistically many factors needed to be taken into account. As said in
Section 2.3.4 we have chosen to use the NVIDIA ray tracing engine since
it is a great tool for realistic simulations of light in real-time. The jump
from short wave electromagnetic waves to light is luckily not very far and
we were able to mimic most of the effects.

32

3.2.1 View area
To simulate a radio antenna, our system needed to be able to receive
signals from all possible directions. Achieving this using a camera was no
easy case, but we ended up with distributing the rays in both axes equally
throughout the 360 degrees view, like shown in Figure 14.

As this is done in massive parallel, some calculation needs to be done to estimate
the direction of every single ray. The CUDA method for starting and initializing a
single ray is shown in Figure 15. The variable launch_index contain two integers
which indicate the index of the given thread in the two-dimensional array. These
values range from zero to the wanted camera output width and from zero to the
wanted output height respectively.

33

Figure 14: 360 degree camera, where every ray is traced in the direction calculated
according to the given ray-index.

RT_PROGRAM void env_camera(){
 float2 d = launch_index/launch_dim*make_float2(2.0f*PI,PI)
 +make_float2(PI, 0);
 float3 angle = make_float3(cos(d.x)*sin(d.y),-cos(d.y), sin(d.x)
 * sin(d.y));
 float3 ray_direction = normalize(angle.x*normalize(U[cameraIndex])
 +angle.y*normalize(V[cameraIndex])
 +angle.z*normalize(W[cameraIndex]));
 float3 ray_origin = eye[cameraIndex];
 optix::Ray ray(ray_origin, ray_direction,
 radiance_ray_type, scene_epsilon);
 PerRayData_radiance prd;
 prd.importance = 1.f;
 prd.depth = 0;
 rtTrace(top_object, ray, prd);
 uint2 LI = make_uint2(launch_index.x+launch_dim.x*cameraIndex ,

launch_index.y);
 output_buffer[LI] = make_color(prd.result);
}

Figure 15: The code for handling a single ray.

The value launch_dim is set as the wanted camera output width and height.
The eye, W, U, and V variables are used to pass current camera info to the
ray generation program at render time. The four buffers all contain a three
float vector for each of the cameras to be displayed. Eye contains the
position of the camera. W is used to define the viewing direction where the
length of W is set as the focal distance [49]. The focal distance of the
camera is an estimate of how far away the lens has to be for all light to hit
the focal point and is shown in Figure 16.

34

Figure 16: The focal distance and focal point of a lens.

The U vector describes the horizontal axis of the view plane, with the
length of U being the width of the view plane at focal distance. V is the
vertical equivalent of U where the length describes the height of the view
plane at focal distance.

3.2.2 Our implementation of multiple cameras
To simulate large scale vehicle-to-vehicle communication we implemented
the possibility for multiple cameras at the same time. By repeating the
command for launching a set of rays like shown in Figure 17, we can
simulate as many cameras as we want. It does not seem like NVIDIA have
intended for OptiX to be used in this way since ray tracing tends to be
complex enough on its own. Therefore we had to write the return values
for all cameras to the same array, but with an offset dependent on the given
cameraIndex. By sending the camera data in arrays instead of single values
and with the help of the camera index, we are able to change the variable
sets used without having to send new information when changing camera.

for(int i = 0; i<numberOfCams ;i++) {
 camUpdate(camera_data,i);
 m_context["cameraIndex"]->setInt(i);
 m_context->launch(i, m_WIDTH, m_HEIGHT);
}

Figure 17: Code for launching multiple cameras.

3.2.3 Our implementation of reflections and transparency
As mentioned in Section 2.2 there are many ways to implement ray tracing.
Since we in this thesis look at simulating WiFi communication, we chose
to implement mirror-like reflections (which act like wave reflection found
in Subsection 2.3.1) in combination with refraction.

35

RT_PROGRAM void closest_hit_radiance(){
 float3 result = make_float3(0.0f);
 if(prd.depth < 10){
 float reflectRefractRatio = 0.3f;
 float3 hit_point = ray.origin + t_hit * ray.direction;
 float3 world_geometric_normal =normalize(rtTransformNormal(
 RT_OBJECT_TO_WORLD,geometric_normal));
 float3 dir = ray.direction;
 PerRayData_radiance new_prd;
 new_prd.importance = prd.importance;
 new_prd.depth = prd.depth + 1;

 if(dot(world_geometric_normal,dir)<0){ //if outer surface;
 Reflect
 const float3 refl = reflect(dir, world_geometric_normal);
 const optix::Ray refl_ray = optix::make_Ray(hit_point,
 refl, 0, 1e-3f,RT_DEFAULT_MAX);
 //cast a reflection ray in this direction
 rtTrace(top_object, refl_ray, new_prd);

 result = (1-reflectRefractRatio) * new_prd.result;
 }
 // refraction
 float3 t; // transmission direction
 float refraction_index = 1.1f; //n1/n2
 if(refract(t, dir, world_geometric_normal, refraction_index)){
 float cos_theta = dot(dir, world_geometric_normal);
 if (cos_theta < 0.0f)
 cos_theta = -cos_theta;
 else
 cos_theta = dot(t, world_geometric_normal);

 optix::Ray ray(hit_point, t, 0, scene_epsilon);
 PerRayData_radiance refr_prd;
 refr_prd.depth = prd.depth+1;
 rtTrace(top_object, ray, refr_prd);
 result += reflectRefractRatio * refr_prd.result;
 }
 }
 prd.result = result;
}

Figure 18: The code for handling reflection and refraction.

36

By using the variable reflectRefractRatio to scale the two separate effects,
we are able to combine both reflection and refraction in the simulator. One
ray is sent into the material and one is reflected. This also takes into
account some loss of intensity for every time a light is reflected or seen
through an object. To simulate the loss in signal strength when sending
waves across long distances we also subtract a portion of the light. This is
done as the last action before the ray returns the found signal strength. The
exact formula for simulating the loss of signal strength in vacuum is to
divide the signal strength by four every time the travel distance doubles.
As this function depend on being in vacuum and knowing the complete
distance travelled, the solution was simplified to using linear signal loss as
shown in Figure 19. The fact that ray tracing is a recursive algorithm
introduces much complexity and the exact computation of signal strength
is therefore beyond the scope of this thesis.

RT_PROGRAM void chrome_ch_radiance(){
float3 hit_point = ray.origin + isect_t * ray.direction;
float distanceTravelled = length(hit_point-ray.origin);
float signalLoss = distanceTraveled/1000;
prd_radiance.result = make_float3(1-signalLoss);

}

Figure 19: Code for calculating the light received form hitting a light
sphere.

To define the ratio between the density of air and the density of buildings
(that cause the effect shown in Figure 2 Section 2.3.2) we used a constant
we called refraction_index. Optimally the refraction_index should be set
for every building dependent on construction material and so on. This is
discussed further in Subsection 5.1.1.

To hinder waves from reflecting on the inner surface of buildings we
included a check dot(world_geometric_normal,dir)<0 . By dotting the
surface normal and the ray direction we are able to sort out the back sides.
This is because vectors pointing in the same direction return a positive
value when dotted.

37

3.2.4 Lighting
In normal ray tracing systems, lights and background colours (the miss
program) would be used to illuminate the scene. In ray tracing, lights are
not implemented as objects which can be intersected by rays and illuminate
objects it hit, independent of the view direction. In our system, where the
light sources are supposed to simulate senders and the cameras are
supposed to simulate receivers, this creates some problems. To simulate a
sender we need to be able to see the light source, not only the effects of it
being there. The solution is to remove all lights usually used, and create a
special sphere which returns the wanted light (independent of the
illumination) at the point of the intersection. Doing this saves us much ray
tracing since no shadow rays needs to be cast, and we also get the wave
simulation effects we are looking for.

By using light to simulate the WiFi waves, we may use different light
colours to simulate different signals in the same environment without
interference.

38

Figure 20: Two moving light spheres in the simulator.

3.2.5 Geometry hierarchy
To keep track of all the different objects, materials and acceleration structures,
OptiX utilize a storage hierarchy. Figure 21 shows the hierarchy of our implemented
WiFi simulator. Top object contains the whole scene and is the root node of the
hierarchy. The hierarchy is split into different elements with different capabilities. A
Geometry group is a collection of geometry instances. Group is a collection of
Transforms, Geometry groups and Geometry instances. Top object is an example of
a Group. An Acceleration structure can be attached to a Geometry group or a
Group. All nodes below a Transform node will be moved, rotated and scaled
according to its transform matrix. A Geometry node is created for each object in the
scene which contains the vertex, normal and texture information of the object. A
Geometry instance links a geometry and its given Material. A Material describes
the properties of the given object and can be reused for different objects to behave
alike.

39

40

Figure 21: A breakdown of the scene hierarchy.

3.2.6 Acceleration structures
As explained earlier in Section 2.4, choosing the right acceleration structures is a
very important part of a ray tracing system. Therefore NVIDIA have implemented a
set of acceleration structures in OptiX [50]. These acceleration structures have
different applications and have to be benchmarked to find the best fit for our system.
This is shown in Subsection 4.3.5.

To let OptiX iterate through the primitives without any acceleration structure, you
can set the geometry group to use NoAccel. This is best suited for nodes with few
children, often positioned at a higher level in the hierarchy. Normally, you should
select a more specific builder and traverser combination. OptiX has two traversers
and five different implementations of the corresponding builders included by
default. These algorithms build on the theory found in Section 2.4.

Builder Traverser Construction speed Traversal speed

NoAccel NoAccel - Very slow

Bvh Bvh Slow Fast

Sbv Bvh Very slow Very fast

MedianBvh Bvh Medium Medium

Lbvh Bvh Fast Slow

TriangleKdTree KdTree Medium Medium

Figure 22: Table of building and traverser combinations with subsequent run speeds.
The table data originates from the OptiX documentation.

Sbv is used to build a high quality BVH variant for optimal performance.
It is great for ray tracing buildings and such, but have a slower build speed
and slightly higher memory footprint than for example normal Bvh. Lbvh
is on the other hand a good choice for moving objects which need to
rebuild the structure for each iteration.

3.2.7 Movement
The moving light spheres update their positions by altering the position
variables sent to the GPU once for each frame. As a result of reading the
buildings from file, and thereby not knowing the starting positions of each
object, this approach could not be reused for these objects. Instead a
transform node in combination with matrix multiplication was
implemented for moving the cars and buses as shown in Figure 21.

41

3.2.8 Input and Output
To send information from the CPU to the GPU before rendering a new
frame we use RT_BUFFER_INPUT. This type of buffer is used for sending
information to the GPU and cannot be used to return values. The camera
values U,V,EYE and W plus the array of sphere positions are all sent
through such buffers. The output buffer is the opposite type, which can
only return a two-dimensional array from the GPU to the CPU once the
trace call returns. This two-dimensional array is shared between all the
cameras when using multiple cameras. Each camera uses its unique offset
parameter to distinguish the results.

42

4 Scalability Tests

To look at the strengths and weaknesses of the system, we ran some tests
using three different machines with different hardware. The following
sections will give a walk-through of these tests and the results we found.

4.1 Test beds

To get a good scenario for testing different parts of the system, we created
a path of way points for both the cameras and the light spheres to follow.
This way all simulations behave the same, except from the intended
changes made for the specific benchmark. The test scenario is set to use a
map with 438 buildings extracted from OpenStreetMaps.org, displaying an
area around the NTNU.

We have used two estimates when evaluating the simulator; the and the
average number of frames per second of the system when following the
way points from start to end. All movement is updated in the same loop as
the rendering, resulting in being a good estimate for the efficiency of the
algorithm. We also used 24FPS as a requirement for real-time graphic and
2FPS as requirement for vehicle-to-vehicle communication. The latter is
based on the transmission intervals of the communication interface used in
the SINTEF driving simulator which is specified as 1-2 Hz, although, for
safety critical applications, communication at 10Hz is required.

A set of default settings have been chosen so if nothing else is noted, the
maximum reflection depth is set to 10 times. Two glowing spheres act as
moving light sources, and an analysis of the output buffer is done to
estimate the maximum intensities found. This is done individually for
every camera and frame during the simulation. Unless otherwise stated,
these maximums are not displayed since they are meant as input for
another system.

43

We had our doubts to whether the implementation of refraction rays would
be too challenging and time consuming to manage during the limited time
of a master thesis, but luckily we managed to complete a simplified
version. Sadly, as this was a high risk section of the project, this version
did not make it in time to be a part of the testing phase of the thesis. It can
therefore be regarded as turned off unless otherwise stated.

One camera with a 1024x768 resolution and 360 degree view angle is used.
The output buffer is not displayed on screen if not specified in the
benchmark. The acceleration structure of the root node containing the
whole scene is set to use builder=MedianBvh and traverser=Bvh. The
moving light sources use builder=Lbvh and traverser=Bvh. For more
details on how acceleration structures work; see Section 2.4.

OptiX uses a stack to keep track of the massive number of threads used
when running a ray tracing scenario. This stack is set to a fixed maximum
size, which cause errors if exceeded. The stack size should in theory be
width*height*maximum recursion depth * number of different ray types
cast. For the standard resolution, this would be 1024*768*10*1= 7 864
320. The stack size is set using an unsigned integer, which is defined as a
positive number lower than 2^16 = 65536. The implementation of integer
can vary much dependent on operation system and compiler. On all the
three computers used, the maximum size of unsigned integer was found to
be 2^32 -1= 4 294 967 295 which fits well with norm of 64 bit operating
systems.

Much research was done to find documentation which could help us create
a more scientific formula. The hope was to create a formula which
calculates a lower, but still valid, stack size than the original theory, but no
documentation was found. After much testing and tweaking the formula
“width*2+1000” was used in the final system. In the future, more research
should be done on the subject, since this formula might depend on race
conditions.

To test the scalability of the simulator a second test city was produced,
where all houses contain the same number of vertices. This “BoxCity”
contains a varying number of boxes in the range from 2 to 2048, where
each box contains 12 polygons.

44

4.2 Test benches

To run our simulations we have chosen three different computers, which
range from high performance to medium. Computer1 and Computer2 are
fairly new machines and provide a good estimate of how well the simulator
runs on normal computers. The CPUs on these two computers are rated in
the "High End CPUs" list on the benchmark created by "PassMark R
Software Pty Ltd" on the 27th of May 2013 [51]. By being on this list
shows us that we are using hardware from modern commercial computers.
Intel Xeon E5-4650 can be found on the top, scoring 14,969 points and the
Intel Core i7-3930K CPU rates as the top model of the commonly used
CPUs scoring 12,081 points in comparison. To look at how the powers of
modern computers have developed we also tested the simulation on an
older computer. The CPU in Computer3 is rated in the “Medium-High
End” class. A comparison of these five CPUs is shown in Figure 23.

The four graphic cards used were also rated in the "High End Video cards"
list at the same web page, although Computer3 is ranked in the bottom part
of this list. Tesla C2070 scored between 3,478-4,305 comparing to the top
model being GTX Titan scoring 8,390 points and the top commonly used
GPU being GTX 680 with 5.685 points.

45

Figure 23: Benchmark score for the three CPUs used, the best scoring model, and
highest rated commonly used CPU. These benchmarks are created by "PassMark R
Software Pty Ltd" on the 27th of May 2013 [51]. Permission was granted to create
subsets of their data for this thesis.

Computer 1

GPU 1
GeForce GTX 480
Total Memory: 1610153984
bytes
Clock Rate: 1401000
kilohertz
Max. Threads per Block:
1024
SM Count: 15
Max. HW Texture Count:
128

- -

CPU
Intel Core i5 CPU 750
2,67GHz

RAM
8GB

Operating system
Ubuntu 64 bit

Computer 2

GPU 1
GeForce GTX 480
Total Memory: 1609760768
bytes
Clock Rate:
1401000 kilohertz
Max. Threads per Block:
1024
SM Count: 15
Max. HW Texture Count:
128

GPU 2
Tesla C2070
Total Memory:
6442123264
bytes
Clock Rate:
1147000
kilohertz
Max. Threads
per Block: 1024
SM Count: 14
Max. HW
Texture Count:
128

GPU 3
Tesla C2070
Total Memory:
6442123264 bytes
Clock Rate:
1147000 kilohertz
Max. Threads per
Block: 1024
SM Count: 14
Max. HW Texture
Count: 128

CPU
Intel Core i7 3770 3.4GHz

RAM
32GB

Operating system
Ubuntu 64 bit

Computer 3

GPU 1
GeForce GTX 285
Total Memory:
107374824 bytes
Clock Rate:
1476000 kilohertz
Max. Threads per Block:
512
SM Count: 30
Max. HW Texture Count:
128

- -

CPU
Intel Core 2 6700 2.66GHz

RAM
4GB

Operating system
Windows 7 64 bit

46

Figure 24: The hardware specifications for the three test benches used in the thesis.

All the test machines use OptiX version 3.0.0 and Cuda 5.0.35 for running all
simulations. Computer number one and two both run 64bit Ubuntu and Computer3
runs 64bit Windows 7.

If nothing else is mentioned in the sections below, computer1 is used.

4.3 Benchmarks

We ran simulations to check whether printing the maximum values to the screen had
any effect on . Although it had no notable effect, we still chose to leave this feature
turned off during the rest of the tests to limit the sources of errors. As arguments to
run the simulations we used “-B” for benchmarking without display, “-sizeI=2” for
1024x768 resolution and “-D=1” for the simulator to run on one GPU.

47

Figure 25: Benchmark score for two of the GPUs used, the best scoring model, and
highest rated commonly used GPU. These benchmarks are created by "PassMark R
Software Pty Ltd" on the 27th of May 2013 [51]. Permission was granted to create
subsets of their data for this thesis.

4.3.1 The three computers in comparison
To compare the three computers fairly, we used only one of their GPUs
while running the simulation. Although the first two computers use the
same graphic card, there is a significant improvement in as a result of the
difference in CPU and RAM. As shown in Figure 26 the increase in
compute power shows tremendous results in run time and FPS. If hardware
continues to improve at this rate we will have real-time ray tracing systems
simulating large scale traffic communication scenarios smoothly very soon.

4.3.2 Different numbers of rays.
As described in Section 3.2.1 each camera sends a chosen number of rays
every frame. In our system, the rays are distributed throughout both axes
equally in the full 360 degrees view. Since this view field does not change
size, the resolution of an area is directly dependent on the number of rays
sent in the given direction. This is why it is very important to test how the
system reacts to changes in resolution.

48

Figure 26: Compares the run time and FPS of the three test benches.

As shown in Figure 27, the system scale well with changes in resolution compared
to linear scalability shown in yellow. Even when the amount of rays have increased
64 times the has only increased by a factor of 7.31.

Although the system scales well, the starting cost of the algorithm is so high that
only the two smallest resolutions uphold the requirements for real-time graphics of
24PFS. Luckily, systems like the driving simulator only need a minimum of 2
updates per second to keep up with the flow of communication, and this holds for
all four resolutions with the largest having 5.5 FPS. Keep in mind that the resolution
doubles the size in both directions and thereby increase by a factor of four for each
iteration.

49

Figure 27: Shows the s and FPS when changing the resolution of the camera.

4.3.3 Different numbers of cameras.
For large scale simulations where dozens of cars will communicate it is
very important that the system allows as many cameras as possible. As you
see in Figure 28, the system dos not scale well enough at this time to run
large scale traffic simulations where much more than 16 vehicles
communicate with each other. This is not surprising as OptiX is not built
for running multiple cameras simultaneously. The potentially for
optimization at this area may be huge, but is a complex and unknown area
of research, and is therefore noted as future work.

It is worth noting that there are many more combinations of settings in the
simulator which is not yet tried. There may be much to save in optimizing
these variables to fit a realistic setting, for instance changing the
resolution, the recursion depth, the view area and much more. More
optimized settings may make larger simulations possible.

50

Figure 28: Compares the of the simulator and its FPS to linear when the number
of cameras increase.

4.3.4 Different numbers of moving objects.
As explained in Subsection 3.2.4, the simulator uses moving light spheres
to simulate light sources (WiFi senders). The simulator scales excellent
with increasing number of senders, and is not far from scaling logarithmic
as shown in Figure 29. This shows that the system has reached its goal of
being able to run large scale simulations with more than 1024 senders at
above 2fps. The simulator is also capable of displaying up to 64 senders in
a real-time system where the requirement is set to 24 FPS.

4.3.5 Different acceleration structures.
To further optimize the simulator, some of the acceleration structures implemented
in OptiX were tested. The details of the implementation are shown in Subsection
3.2.6.

51

Figure 29: Shows the correlation between the number of light sources, the and the
FPS. Logarithmic run time is also drawn in comparison.

Figure 30, shows the correlation between the s of the tested acceleration structures
and the number of light spheres used. As expected, bvh preforms best with few
objects and worse as the number rises. This is because the slow build time of the
stationary city only occurs once. Since the city does not move, its acceleration
structure only have to be altered, not rebuilt. The fast traverse speed makes up for
the time lost while the number of stationary buildings (438) is far superior to the
number of moving objects (2-32). When the number of light spheres increase, the
time spent rebuilding the acceleration structures increase rapidly. Resulting in a
drop in for the whole simulator.

The second simulation use Lbvh to build, but then suffers from the opposite
problem. The fast build time never catches up with the high cost of the slow traverse
speed. It scales well for achieving the requirement of having above 2 FPS but
cannot be used for real-time graphic simulations.

52

Figure 30: Compares the different acceleration structures tested. The first variable
is used for moving objects and the second is used for stationary objects.

We achieved the best results while using Lbvh as acceleration structure for the
moving objects and MedianBvh as acceleration structure for the stationary objects.
This performs better on average and will therefore be easier to work with as the
different factors vary.

To show how much compilation the system have to do as a result of having moving
objects, we ran a simulation with resolution 2048 where we left out the moving
objects. This also removes the make_dirty call to the acceleration structures which
in turn cause them not to rebuild for every frame. The result was a 1.76 sec
simulation running at 56.8 FPS in comparison to the normal 16.6 FPS.

4.3.6 Different number of GPUs.
NVIDIA OptiX is a great tool for multi GPU ray tracing. It handles all of
the work and there is no visual difference for the programmer, that is if he
programs for one or more GPUs. With this said, there are some down sides
to this as well. When the programmer knows that multiple cameras can be
traced in parallel on different GPUs, he could have achieved a great speed-
up. But, since OptiX hides all the “magic” from the users they have no way
of knowing that each camera is independent. As a result, we ended up with
the s for 16 cameras on one, two and tree GPUs being 19,4 – 16,4 – 15,4
respectively using a resolution of 1024x768. This is a 15,4% and 20,6%
better for two and three GPUs compared to using just one. There are
clearly potential for improvements here, and as we selects a smaller
resolution, 512x384, we get a 14,6% and 25,1% slowdown in run speed for
two and three GPUs compared to using just one.

53

Figure 31: The changes in , dependent on resolution and number of GPUs.

Also when we simulated with a large amount of moving object we found that the
use of multiple GPUs was inefficient in our system. The simulation containing 1024
moving light spheres resulted in a 39,6% and 79,0% slowdown when using two and
tree GPUs respectively.

The third test which utilizes multiple GPUs is shown in Figure 31. This
time, the simulator was run at the four different resolutions. It gave a
negative speed-up for the lowest resolution, but sped up as the number of
threads increased up to a 43% faster . As noted in [24], scenes with little
computational complexity do not scale optimally on multiple GPUs. This
seems to fit good with the results we have found as well. When the
amounts of data needing to be distributed is at its lowest, compared to the
amount of computation and number of threads, OptiX scales at its best
with multiple GPUs. We therefore have a suspicion that turning on and
adding more effects, like refraction, will in the future let the simulator
scale better with multiple GPUs.

54

Figure 32: Shows the comparison between (sec) and number of buildings in the
scene.

4.3.7 Different number of vertices.
As mentioned earlier, a second test city was created, where all houses contain the
same number of vertices. This “BoxCity” contains a varying number of boxes in the
range from 2 to 2048, where each box contains 12 polygons. The BoxCity is an
excellent scene to test the scalability of the simulator and as shown in Figure 32 the
simulator scales very well up to 2048 buildings. Keep in mind that the number of
buildings double for every step in the graph and that the choice of acceleration
structure can alter the outcome of this graph significantly. When the number of
buildings rise from 512 to 1024 the rise by a factor of 2,34 which is a bit high.
Around this number of buildings is also where the simulator first encounter FPSs
lower than 24.

Another interesting fact found when simulating was that the auto generated city
(containing 438 houses) had a 52% worse than the BoxCity (containing 512
buildings). This shows that it may be possible to optimize the city generator a bit
further.

55

56

5 Conclusion and future work

The research and development of new hardware is opening for new and
interesting uses of known algorithms. Ray tracing is one of these, and have
gone from being a theoretical curiosity in 1980 to being a possible
successor for rasterization in the time to come.

From our experiments (Chapter 4), we found that the use of multiple GPUs
in our simulation implemented in NVIDIA´s OptiX framework, did not
scale as much as our theoretical estimates. Our best multi-GPU speed-up
was 43% on 3 GPUs with 4096x3072 resolution over a single GPU. This
may be due to the downside of having a framework which automatically
takes care of all the heavy lifting for the programmer. The scalability of
using multiple GPUs may also improve as the complexity of the simulator
increases and the massive parallel sections becomes the dominant
computational element.

Although our original goal was to build a simplified prototype, few
simplification were actually made, so our results can be used as part of a
complete and fairly realistic simulator. Overall our system shows great
scalability with most of the settings and can sustain calculating over 6144
polygons distributed among 512 objects in real-time. The number of rays
sent, moving spheres and boxes in the scene scaled a lot better than
linearly. This is likely a result of the high initial cost of ray tracing and the
use of acceleration structures to eliminate objects from the search.

In the range of 2 to 128 light spheres (Section 4.3.4), the simulator even
scaled better than logarithmic which was the optimal goal estimated in
Section 2.4. The run time only increase from 3.23 seconds to 4,74 seconds
while the number of lights doubles 6 times. As with the other variables this
is likely a result of the high high initial cost of ray tracing and the use of
acceleration structures.

57

5.1 Future work

During the course of this project we have found many possible extensions
which can improve the realism or the of the simulator. Here are five of the
concrete ideas we have come up with.

5.1.1 Define building density
By defining the materials for each individual building according to
pictures from sources like google street view, the simulator could take the
difference in building densities into account. Some research on car and bus
densities would also be a great improvement for the simulator. This way
the simulator can get much more realistic results.

5.1.2 Optimized ray tracing for multiple cameras
The results found in Subsection 4.3.6 show that our implementation of
multiple cameras in OptiX may be optimized further. By running the
different cameras in parallel instead of in series the run time may decrease
substantially, especially for multiple GPUs. This can lead to run times
which allow large scale testing of receivers as well.

5.1.3 Find a new stack size formula
As noted in Section 4.1 OptiX uses a stack to keep track of its rays. The
stack size of the simulator is a crucial element of the system and needs to
be as low as possible and as high as necessary. The relationship between
this stack size and the number of potential rays needs to be thoroughly
explored to guarantee the safety of the stack, while keeping the overhead
as low as possible.

5.1.4 Diffraction can be added
By creating a shell of glass which bend/split light in the wanted direction
the simulation of diffraction may be possible without much altering of the
simulator. The diffraction can also be calculated at edges like done in [52]
using the OptiX ray tracing engine. The theory of diffraction is shown in
SubSection 2.3.3.

58

5.1.5 Implement photon mapping
To simulate communication speed and packet delay Arne Schmitz and Leif
Kobbelt suggest using a Photon Path Map [53]. This extension is possible
to achieve in OptiX, and can be based on the SDK example called
ProgressivePhotonMap. This feature would be a great supplement to the
existing simulator.

59

References

[1]: Standard Number: IEEE 1609.3-2010 , "IEEE standard for wireless access in
vehicular environments (WAVE) networking services, IEEE Std 1609.3-2010
(Revision of IEEE Std 1609.3-2007)", July 15 2010, 1 - 144, Institute of Electrical
and Electronics Engineers,

[2]: "http://www.ertico.com/compass4d-project-consortium-meets-in-denmark-
where-90-buses-will-be-equipped-and-trialed-for-at-least-one-year/" , ,

[3]: Goel, S. Dept. of Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA
Imielinski, T. Ozbay, K. , "Ascertaining viability of WiFi based vehicle-to-vehicle
network for traffic information dissemination", 3-6 Oct 2004, pages 1086 - 1091,
Intelligent Transportation Systems, 2004. Proceedings. The 7th International IEEE
Conference on, 0-7803-8500-4

[4]: David B. Johnson , David A. Maltz , "Dynamic Source Routingin Ad Hoc
Wireless Networks", 1996, pages 153-181, In Mobile Computing, volume 353.
Kluwer Academic Publishers,

[5]: M. Hassan-Ali and K. Pahlavan , "A new statistical modelfor site-specific
indoor radio propagation prediction basedon geometric optics and geometric
probability", Jan. 2002, Pages 112–124, IEEE Transactions on Wireless
Communications (Volume:1 , Issue: 1), 1536-1276

[6]: M. Hassan-Ali and K. Pahlavan , " Site-specific widebandand narrowband
modeling for indoor radio channel using ray-tracing", 8-11 Sep 1998, pages 65 - 68
vol.1, Personal, Indoor and Mobile Radio Communications, 1998. The Ninth IEEE
International Symposium on (Volume:1), 0-7803-4872-9

[7]: Balamati Choudhury and R M Jha , "A Refined Ray Tracing approach for
Wireless Communications inside Underground Mines and Metrorail Tunnels", 2011,
pages 1 - 4, Applied Electromagnetics Conference (AEMC), IEEE, 978-1-4577-
1098-8

[8]: Jo Skjermo and Cato Mausethagen , "Software Intergration for Implementation

60

and Testing of CVIS ITS Application in a Driving Simulator Environment, ITS
Europe, Dublin", 6 june,2013, , ,

[9]: Ingar Saltvik, Anne C. Elster and Henrik R. Nagel , "Parallel Visualization of
Snow", 2006, pages 218-227, PARA'06 Proceedings of the 8th international
conference on Applied parallel computing: state of the art in scientific computing, 3-
540-75754-6 978-3-540-75754-2

[10]: Kjetil Babington, Anne C. Elster , "Terrain Rendering Techniques for the
HPC-Lab Snow Simulator", 2012, , NTNU,

[11]: Heiko Friedrich, Johannes Günther, Andreas Dietrich, Michael Scherbaum,
Hans-Peter Seidel, Philipp Slusallek , "Exploring the Use of Ray Tracing for Future
Games", 2006, Pages 41-50, Sandbox '06 Proceedings of the 2006 ACM
SIGGRAPH symposium on Videogames, 1-59593-386-7

[12]: JungHyun Han et al., 3D Graphics for Game programming, 2011, Pages 53-
81, a Capman & Hallbook

[13]: JungHyun Han et al., 3D Graphics for Game programming, 2011, Pages 122-
125, a Capman & Hallbook

[14]: Per H. Christensen, George Harker, Jonathan Shade, Brenden Schubert, Dana
Batali , "Multiresolution Radiosity Caching forEfficient Preview and Final
QualityGlobal Illumination in Movies", July, 2012, , SIGGRAPH '12 ACM
SIGGRAPH 2012 Talks, Article No. 47 , 978-1-4503-1683-5

[15]: Per H. Christensen , "Adjoints and Importance in Rendering:An Overview",
JULY-SEPTEMBER 2003, pages 329-340, IEEE TRANSACTIONS ON
VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 3, 1077-2626

[16]: Per H. Christensen, David M. Laur, Julian Fong, Wayne L. Wooten, Dana
Batali , "Ray Differentials and Multiresolution Geometry Cachingfor Distribution
Ray Tracing in Complex Scenes", Volume 22 (2003),Number 3, pages 543-552,
EUROGRAPHICS,

[17]: Henrik Wann Jensen, Per Christensen , "High Quality RenderingusingRay
Tracing and Photon Mapping", August 5, 2007, , SIGGRAPH '07 ACM
SIGGRAPH 2007 courses, rticle No. 1, 978-1-4503-1823-5

[18]: Per H. Christensen , "Point-Based Global Illuminationfor Movie Production",
July 2010, , Pixar,

[19]: Sven Woop, Jörg Schmittler, Philipp Slusallek , "RPU: A Programmable Ray

61

Processing Unit for Realtime Ray Tracing", 2005, pages 434-444, ACM
Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2005,

[20]: Heiko Friedrich , "Ray tracing techniques for computer games and isosurface
visualization", 2009, http://scidok.sulb.uni-saarland.de/volltexte/2012/4917,
Saarlaendische Universitaets- und Landesbibliothek,

[21]: Thomas L Falch , "3D Visualization of X-ray Diffraction Data", June 2012, ,
NTNU,

[22]: Turner Whitted et-al. , "An Improved Illumination Model for Shaded Display",
1980, pages 343-349, Communications of the ACM, Volume 23 Issue 6, June 1980,

[23]: "www.pcper.com/reviews/Processors/Ray-Tracing-and-Gaming-One-Year-
Later/Ray-tracing-faster-rasterization-Example-1" , , Intel

[24]: Holger Ludvigsen and Anne Elster , "Real-Time Ray Tracing Using Nvidia
OptiX", May 3-7 2010, pages 65-68, presented and published at EuroGraphics in
Norrköping,

[25]: "Electromagnetic waves - reflection, refraction, diffraction" , www.radio-
electronics.com/info/propagation/em_waves/electromagnetic-reflection-refraction-
diffraction.php, Adrio Communications Ltd

[26]: Kjetil Babington, Anne C. Elster , "Real-Time Ray Tracing for the HPC-lab
Snow Simulator", 17.jun 2011, Pages 6-13, NTNU,

[27]: Niels Thrane, Lars Ole Simonsen , "A Comparison of Acceleration
Structuresfor GPU Assisted Ray Tracing", August 1, 2005, , ,

[28]: "http://www.nvidia.com/object/optix.html" , ,

[29]: Gogueny, Joseph A., et al. , "Introducing obj.", 1993, , ,

[30]: B. Watson, P. Müller, O. Veryovka, A. Fuller, P.Wonka, and C. Sexton ,
"Procedural Urban Modeling in Practice", May 2008, pages 18-26, Journal of
IEEE Computer Graphics and Applications, vol. 28, no 3,

[31]: "http://cmivfx.com/store/233-Houdini+XML+Based+Procedural+Cities" , ,

[32]: "http://cmivfx.com/store/253-Houdini+Building+Generation" , ,

[33]: Claus BRENNER , "TOWARDS FULLY AUTOMATIC GENERATION OF

62

CITY MODELS", 2000, pages 85-92, Institute for Photogrammetry (ifp), Stuttgart
University, Germany, In: IAPRS ,

[34]: "http://cmivfx.com/store/47-Houdini+Procedural+Cities" , ,

[35]: Pearl Goswell and Jun Jo , "Real-Time 3D City Generation using Shape
Grammars with LOD Variations", 2012, , WASET 2012 : World Academy of
Science, Engineering and Technology, Issue 61, 2010-376X

[36]: "http://en.wikipedia.org/wiki/Dedicated_short-range_communications" , ,

[37]: "http://www.cvisproject.org/" , , Cooperative vehicle-infrastructure systems

[38]: "http://www.vegvesen.no/Fag/Trafikk/ITS " , ,

[39]: Jérôme Härri, Marco Fiore, Fethi Filali,Christian Bonnet , "Vehicular Mobility
Simulation withVanetMobiSim", 2009, pages 275-300, eurecom, Simulation Volume
87 Issue 4, April 2011,

[40]: Sebastian Gräfling, Petri Mähönen and Janne Riihijärvi , "Performance
Evaluation of IEEE 1609 WAVEand IEEE 802.11p for Vehicular Communications",
2010, pages 344 - 348, Institute for Networked Systems, RWTH Aachen
UniversityKackertstrasse, 2010 Second International Conference on Ubiquitous and
Future Networks (ICUFN), 978-1-4244-8088-3

[41]: Irena Notkin, Craig Gotsman , "Parallel Progressive Ray-tracing", March
1997, pages 43-55, The Eurographics Association, Computer Graphics Forum,
Volume 16, Issue 1,

[42]: "https://www.caustic.com/openrlsdk.php" , ,

[43]: Ingo Wald , "Realtime Ray Tracing andInteractive Global Illumination", 2004,
, Computer Graphics GroupSaarland UniversitySaarbrücken, Germany,

[44]: "http://www.pcper.com/reviews/Processors/Ray-Tracing-and-Gaming-One-
Year-Later/Progress" , , pcper

[45]: S. G. Parker, S. Boulos, J. Bigler, and A. Robison , "RTSL: A ray tracing
shading language", Sep. 2007, Pages 149-160, RT '07 Proceedings of the 2007
IEEE Symposium on Interactive Ray Tracing, 978-1-4244-1629-5

[46]: I. Georgiev and P. Slusallek , "RTfact: Generic concepts for flexible and high
performance ray tracing", Aug. 2008, pages 115 - 122, IEEE Symposium on

63

Interactive Ray Tracing, 978-1-4244-2741-3

[47]: "http://www.openstreetmap.org/copyright/en" , ,

[48]: Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,
John Cowan , "Extensible Markup Language (XML)", 16 August 2006, , W3C®
(MIT, ERCIM, Keio), ID: fdd000075

[49]: John E. Greivenkamp , "Field guide to geometrical optics", 20 January 2004, ,
SPIE Optical Engineering Press,Volume: FG01, 9780819452948

[50]: , "NVIDIA-OptiX-SDK-3.0.0-B1-OptiX_API_Reference", 2013-01-03, Chapter
1.6, NVIDIA,

[51]: "Passmark^AR software pty ltd, www.cpubenchmark.net" , ,

[52]: Okada, M. ,Onoye, T. , Kobayashi, W. , "A Ray Tracing Simulation of Sound
Diffraction Based on the Analytic Secondary Source Model", Nov. 2012, pages 2448
- 2460, IEEE Transactions on Audio, Speech, and Language Processing
(Volume:20 , Issue: 9), 1558-7916

[53]: Arne Schmitz, Leif Kobbelt , "Wave Propagation Using the Photon Path
Map", 2006, pages 158-161, In Proceedings of the 3rd ACMInternational Workshop
on Performance Evaluation ofWireless Ad hoc, Sensor and Ubiquitous
networks(PE-WASUN ’06), 1-59593-487-1

64

6 Appendix

In the following sections you can find a guide for how to use the system, how to
install the system, and the raw test results from the scalability test in Chapter 4.

6.1 How to use the system

To define some of the often used variables without having to recompile we have
implemented the possibility of sending them in as input.

Some of the input arguments at start-up:

'-D=Number' can be used to define the number of GPUs the simulator should run at.
The default value is the computers maximum number of GPUs.

'-B' and '-b' both tell the simulator to run a benchmark. The upper case version also
turns the display off while benchmarking.

'-sizeI=Number' defines the resolution used for each camera to be Number*512
wide and Number*384 high. The default value is set to 1024x768.

At run time these commands and more can be used:

'a': Pushing 'a' will change the camera mode of camera one from guided movement
to free movement using the mouse. The left mouse button rotates the camera around
the “look at” point. The right mouse button zooms the camera, while the middle one
moves it.

'c': Pushing 'c' will change from the 360 degree camera to a normal ratio camera and
can be very useful when debugging.

'q': Push 'q' to quit the simulator.

The number of light spheres and the number of cameras used can be changed
altering the numberOfSpheres value and the numberOfCams value found in the
constructor of JuliScene at the top of Julia.cpp.

65

To change the maximum number of reflections and refractions set the maxDepth
value found in closest_hit_radiance() in one_bounce_diffuse.cu.

6.2 How to set up the system

Install OptiX and Cuda.

Copy the files our julia folder to the newly installed folder. For example:
C:\MasterProject\OptiX SDK 3.0.0\SDK\julia.

For Windows:

Be sure not to put the OptiX files in the default program files folder. That folder is
often read only for programs and will cause problems.

At http://www.cmake.org/cmake/resources/software.html you can download cmake,
which is used to create a working solution.

Copy the object files into the solution folder. For example:

C:\MasterProject\test2\julia

We used Microsoft Visual C++ 2010 Express to open the solution file.

66

http://www.cmake.org/cmake/resources/software.html

Use build and debug as shown below.

For linux:

sudo apt-get install cmake

create a empty folder and change directory to inside it. Type cmake and the
directory of the SDK.

 C:\MasterProject\test2: Cmake C:\MasterProject\OptiX SDK 3.0.0\SDK
Copy the object files into the solution folder. For example:

C:\MasterProject\test2\bin

cd julia && make

cd ../bin && ./julia

6.3 Raw test result data

This following tables contain the test data received when benchmarking the
simulator. Although such amounts of data cant be displayed in other parts
of the thesis it can be useful to have the details of both s and FPS of the
different scenarios tested for comparisons in the future.

Default settings

Width Height FPS Run time(sec) ms/frame

512 384 40.51 2.47 24.68

1024 768 30.99 3.23 32.26

2048 1536 16.55 6.04 60.41

4096 3072 5.54 18.05 180.5

67

Displaying the output on screen using -b instead of -B

Width Height FPS Run time(sec) ms/frame

512 384 30.86 3.24 32.4

1024 768 27.86 3.59 35.9

2048 1536 15.03 6.66 66.55

4096 3072 5.44 18.4 183.96

Without output analysis

Width Height FPS Run time(sec) ms/frame

512 384 43.7 2.29 22.88

1024 768 36.23 2.76 27.6

2048 1536 20.64 4.85 48.46

4096 3072 7.97 12.55 125.54

2 cameras

Width Height FPS Run time(sec) ms/frame

512 384 33.87 2.95 29.52

1024 768 22.79 4.39 43.87

2048 1536 9.97 10.03 100.34

4096 3072 2.93 34.11 341.1

4 cameras

Width Height FPS Run time(sec) ms/frame

512 384 25.27 3.96 39.57

1024 768 14.57 6.86 68.63

2048 1536 5.17 19.34 193.4

4096 3072 1.5 66.56 665.56

68

Resolution 1024x768

Number of cameras FPS Run time(sec) ms/frame

8 8.62 11.59 115.95

16 4.45 22.47 224.68

Resolution 1024x768

Number moving spheres FPS Run time(sec) ms/frame

4 31.07 3.22 32.19

8 31.12 3.22 32.19

16 31.47 3.18 31.78

32 30.29 3.3 33.02

64 27.1 3.69 36.9

128 21.08 4.74 47.43

256 14.78 6.76 67.65

512 12.74 7.85 78.48

1024 7.39 13.53 135.27

Using bvh as acceleration structure on all objects. Resoultion 1024x768

Number moving spheres FPS Run time(sec) ms/frame

2 36.14 2.77 27.67

32 34.5 2.9 28.98

64 25.13 3.98 39.79

256 2.51 39.92 399.18

69

Using Lbvh as acceleration structure on all objects. Resoultion 1024x768

Number moving spheres FPS Run time(sec) ms/frame

2 6.92 14.46 144.56

32 6.89 14.52 145.21

256 5.57 17.95 179.46

1024 4.42 22.6 226.02

Resolution Number of
GPUs

FPS Run time(sec) ms/frame

4096x3072

3 10.76 9.29 92.91

2 9.26 10.8 108.04

1 6.14 16.3 162.99

2048x1536

3 26.43 3.78 37.83

2 25.84 3.87 38.7

1 19.89 5.03 50.27

1024x768

3 43.99 2.27 22.73

2 44.51 2.25 22.47

1 40.25 2.48 24.85

512x384

3 49.02 2.04 20.4

2 56.18 1.78 17.8

1 60.78 1.65 16.45

1024 light spheres. Resolution 1024x768

Number of GPUs FPS Run time(sec) ms/frame

3 4.57 21.86 218.58

2 5.87 17.05 170.48

1 8.19 12.21 122.11

70

16 cameras

Resolution Number of GPUs FPS Run time(sec) ms/frame

1024x768

3 6.48 15.44 154.36

2 6.09 16.43 164.32

1 5.15 19.42 194.16

512x384 3 10.31 9.7 96.97

2 11.26 8.88 88.83

1 12.9 7.75 77.5

Resolution 1024x768

Number of buildings FPS Run time(sec) ms/frame

2 227.43 0.44 4.4

4 227.72 0.44 4.39

8 224.39 0.45 4.46

16 184.53 0.54 5.42

32 162.87 0.61 6.14

64 138.04 0.72 7.24

128 110.28 0.91 9.07

256 78.92 1.27 12.67

512 47.2 2.12 21.19

1024 20.17 4.96 49.58

2048 9.59 10.43 104.31

2048 if no objects move and the not making dirty.
Resolution 1024 x 768 | 56.8367 fps | 1.75943 sec | 17.5943 ms/f

Computer3
Resolution 1024 x 768 | 2.99178 fps | 33.4249 sec | 334.249 ms/f

71

	1 Introduction
	1.1 Motivation
	1.2 Thesis outline

	2 Background
	2.1 Rasterization
	2.2 Ray tracing
	2.3 Radio waves
	2.3.1 Reflection
	2.3.2 Refraction
	2.3.3 Diffraction
	2.3.4 Simulating electromagnetic waves using ray tracing

	2.4 Acceleration structures
	2.4.1 Bounded volume hierarchy
	2.4.2 Kd-tree

	2.5 The background of NVIDIA OptiX
	2.6 The Obj format
	2.7 State of the art
	2.7.1 Automatic city generation
	2.7.2 Intelligent Transport Systems
	2.7.3 Optimizing Ray tracing
	2.7.4 Alternative ray tracing engines

	3 Implementation
	3.1 Information flow
	3.1.1 OpenStreetMaps.org
	3.1.2 XML translator
	3.1.3 Implementations made using 3D-Studio Max
	3.1.4 Reading input using OptiX
	3.1.5 The simulation output from OptiX

	3.2 Implementing ray tracing using OptiX
	3.2.1 View area
	3.2.2 Our implementation of multiple cameras
	3.2.3 Our implementation of reflections and transparency
	3.2.4 Lighting
	3.2.5 Geometry hierarchy
	3.2.6 Acceleration structures
	3.2.7 Movement
	3.2.8 Input and Output

	4 Scalability Tests
	4.1 Test beds
	4.2 Test benches
	4.3 Benchmarks
	4.3.1 The three computers in comparison
	4.3.2 Different numbers of rays.
	4.3.3 Different numbers of cameras.
	4.3.4 Different numbers of moving objects.
	4.3.5 Different acceleration structures.
	4.3.6 Different number of GPUs.
	4.3.7 Different number of vertices.

	5 Conclusion and future work
	5.1 Future work
	5.1.1 Define building density
	5.1.2 Optimized ray tracing for multiple cameras
	5.1.3 Find a new stack size formula
	5.1.4 Diffraction can be added
	5.1.5 Implement photon mapping

	6 Appendix
	6.1 How to use the system
	6.2 How to set up the system
	6.3 Raw test result data

