
Progressive Photon Mapping on GPUs

Stian Aaraas Pedersen

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

P R O J E C T D E S C R I P T I O N

Progressive Photon Mapping on GPUs

Ray tracing is a method capable of producing much more realistic images than
rasterization. Global illumination methods consider both illumination directly
from light sources, as well as reflections from other surfaces in the scene. How-
ever, the computational costs associated with exploring all paths of light are huge;
it can take hours to render high quality images of complex scenes.

Taking advantage of the computational power of modern GPUs, Nvidia OptiX,
a generic GPU ray tracing engine, runs on top of the Nvidia CUDA parallel com-
puting architecture. This project will investigate how well global illumination
calculations using a recent technique known as memoryless progressive photon
mapping can be off-loaded onto GPUs. This will be done by implementing the
method in the Nvidia OptiX ray-tracing framework, and comparing its strengths
and weaknesses to the original progressive photon mapping algorithm. Demon-
strating effects such as depth-of-field and/or motion blur, and discussion of pros
and cons will be included. In addition, volumetric (participating media) effects
like smoke and fog will be considered, with the aim of implementing it in the
NTNU HPC-lab Snow Simulator. If time permits, the thesis will pursue creating
a CUDA implementation of the algorithm and compare it with to OptiX with
regards to speed, especially on multi-GPU systems.

i

A B S T R A C T

Physically based rendering using ray tracing is capable of producing realistic
images of much higher quality than other methods. However, the computational
costs associated with exploring all paths of light are huge; it can take hours to
render high quality images of complex scenes. Using graphics processing units
has emerged as a popular way to speed up this process. The recent appearance of
libraries like Nvidia’s CUDA and OptiX make the processing power of modern
GPUs more available than ever before.

This project includes an overview of current photon mapping techniques. We
present a complete render application based on photon mapping which runs en-
tirely on the GPU. Several different photon map implementations suitable for
modern GPU architectures are considered and evaluated. A uniform grid ap-
proach based on photon sorting on the GPU is found to be fast to construct and
efficient for photon gathering.

The application is extended to support volumetric effects like fog and smoke.
Our implementation is tested on a set of benchmark scenes exhibiting phenomenon
like global illumination, reflections and refractions, and participating volumetric
media.

A major contribution of this thesis is to demonstrate how recent advances in
photon mapping can be used to render an image using many GPUs simultane-
ously. Our results show that we are able to get close to linear speedup employing
up to six GPUs in a distributed system. We can emit up to 18 million photons per
second on six Nvidia GTX 480 and generate images of our test scenes with little
to no noise in a few minutes. Our implementation is straightforward to extend
to a cluster of GPUs.

iii

S A M M E N D R A G

Fysisk-basert rendering ved bruk av stråle-simulering kan produsere realistiske
bilder av en mye høyere kvalitet enn andre metoder. Dessverre er beregningskost-
nadene knyttet til utforskning av lysbaner store: det kan ta mange timer å generere
bilder av kompliserte scener og effekter. Bruk av skjermkort (GPU) for å aksel-
erere denne prosessen har blitt svært populært de siste årene. Lanseringen av
bibliotek og verktøy som Nvidias CUDA og OptiX gjør prosesseringskraften til
moderne skjermkort tilgjengelig for flere.

Dette prosjektet inneholder en gjennomgang av aktuelle teknikker basert på
“photon mapping”. Vi presenterer en komplett applikasjon som kjører i sin hel-
het på skjermkortet. Flere alternativer for datastrukturer i “photon mapping” er
testet og vurdert. Å oppdele scenen i et rutenett og så sortere fotonene viser seg
å være raskt å konsturere, og effektivt å bruke.

Vår applikasjon er så utvidet for å støtte volumetriske effekter som røyk og tåke.
Vi tester vår implementasjon på et sett av testscener som demonstrerer global
illuminasjon, refleksjoner og refraksjoner, og volumetriske media.

Et stort bidrag fra denne oppgaven er å demonstrere hvordan nylige utvidelser
av photon mapping-metoden kan brukes til å generere et bilde med bruk av flere
skjermkort samtidig. Våre resultater viser at vi får nær lineær speedup ved bruk
av opp til seks GPU-er i et distribuert system. Vi kan sende ut 18 millioner
fotoner per sekund fra lyskildene med seks Nvidia GTX 480 samtidig. Bilder av
våre testscener med lite støy genereres i løpet av få minutter. Vår implementasjon
kan enkelt utvides for å støtte en klynge av skjermkort.

v

A C K N O W L E D G M E N T S

I would like to thank Dr. Anne Cathrine Elster for supervising me for the dura-
tion of this Master’s thesis, for invaluable feedback on this report, and also for
her efforts as a manager of the NTNU HPC-lab. The HPC-lab certainly would not
exist if it wasn’t for her. Special thanks go out to all the supporters of the HPC-
lab, especially Nvidia which on several occasions has donated graphics cards and
resources through their CUDA Research Center and CUDA Teaching Center pro-
grams. The work carried out in this project would not been possible without their
support.

Last but not least, thanks goes out to all the co-students at the HPC-lab who
have made the duration of this project much more enjoyable.

Stian Pedersen,
June 13, 2013

vii

C O N T E N T S

1 introduction 1

1.1 Contribution 2

1.2 Report Outline 2

2 related work 3

2.1 Ray tracing on GPU 3

2.2 Photon Mapping on GPU 4

2.3 Distributed rendering of images 5

3 background 7

3.1 Probability Theory 8

3.1.1 Monte Carlo methods 8

3.1.2 Bias and consistency of estimators 8

3.1.3 Russian roulette 8

3.2 Ray Tracing 9

3.2.1 The ray equation 9

3.2.2 Geometry and acceleration structures 9

3.3 Radiometry 10

3.3.1 Radiant Flux 10

3.3.2 Irradiance and Radiant Exitance 11

3.3.3 Radiance 11

3.4 Light-surface interaction 12

3.4.1 Diffuse surfaces 13

3.4.2 Specular surfaces 13

3.4.3 Shading models 13

3.5 Global Illumination 14

3.5.1 The rendering equation 14

3.5.2 Using radiance for ray-tracing 15

3.5.3 Path tracing 15

3.6 Photon mapping 18

3.6.1 The original PM algorithm 18

Radiance estimation 19

3.6.2 Progressive photon mapping 19

Algorithm 21

Radiant flux estimate 21

Radiance estimate 22

Memoryless Progressive Photon Mapping 22

Parallel Progressive Photon Mapping 23

3.7 Participating Media 24

Volume Emission 24

Absorption and out-scattering 24

In-scattering 26

3.7.1 The Radiative Transfer Equation 26

ix

3.7.2 Volumetric Photon Mapping 27

3.7.3 The Beam Radiance Estimate 27

3.8 Graphics Processing Unit and CUDA 29

3.8.1 Compute Unified Device Architecture (CUDA) 30

3.9 OptiX 30

3.9.1 The OptiX pipeline 31

3.9.2 OptiX runtime 32

4 implementation 33

4.1 The Photon Map 34

4.1.1 Kd-tree 35

4.1.2 Sorted Grid 35

Finding photon bounding box 36

Calculating indices for each photon 36

Sorting the photons 37

Offset Table 37

Photon Gathering using the Sorted Grid 37

4.1.3 Stochastic Hash 39

4.2 Participating Media 40

4.3 Parallel rendering 42

4.3.1 Multiple GPUs using Nvidia OptiX 42

4.3.2 Distributed multiple-GPU rendering 43

4.3.3 Architecture 43

4.3.4 Distributing the Progressive Photon Mapping algorithm 44

5 results and analysis 47

5.1 Our test scenes 47

5.2 Test Bed 48

5.3 Photon Map Performance 54

5.4 Single GPU rendering 57

5.5 Multi-GPU rendering 59

5.6 Distributed rendering 60

5.7 Comparison with a CPU-based ray tracer 62

6 conclusion and future work 63

6.1 Conclusion 63

6.2 Future Work 64

a opposite renderer user guide 71

b diffuse shader 75

c participating medium shader 77

x

1
I N T R O D U C T I O N

Efficient simulation of global illumination is a standing research problem in com-
puter graphics. It involves exploring all kinds of light transport in a scene to solve
the rendering equation [Kaj86]. Informally, the light upon any point depends on the
light reflected or emitted at every other point in the entire universe. Many of the
most popular global illumination algorithms are based on Monte Carlo methods,
which use random sampling to evaluate a function at sample points to estimate
the true solution.

Photon mapping [JC98] is one method able to efficiently capture effects due to
specular reflections and refractions, which often are difficult to find with other,
unbiased methods based on path tracing. Light due to specular-diffuse-specular
paths are particularly problematic [HOJ08]. Photon mapping caches a number
of Monte Carlo photon samples emitted from the light sources, and reuses these
samples in a second step to estimate indirect illumination at any point. This esti-
mation introduces bias in the form of a blurring of the image, which is reduced
with the number of photons used. Progressive photon mapping [HOJ08] is a vari-
ant of photon mapping which removes the memory constraint by executing the
algorithm in iterations.

While the computational power of processors continuously increases at impres-
sive rates, the demands of the audience grow just as fast. A paradox known as
Blinn’s Law1 states that render times remain constant despite advances in hard-
ware and algorithms. Pixar’s Toy Story (1995), the first fully computer-animated
feature film, required on average 7 processor-hours to render - per frame [Bet12].
For Cars 2 (2011) from the same studio, some of the most demanding frames
involving ray-tracing took as much as 80 to 90 processor-hours to render [Ter11].
Motion-blur, depth-of-field, high-definition resolution and 3D, as well as realistic
lighting, reflections, hair, fur, skin, cloth, fog, smoke, fire and so on are expected
of modern pictures. These phenomenon are in no way cheap to model realisti-
cally. The sheer computational workload required to render complicated scenes
to high quality may take days, even on high-end computers. Clearly, performance
is a major concern: 3D artists and visual architects would prefer to have interac-
tive editing of objects, materials and lights in a scene. Slow feedback hinders the
creative process and prevent experimentation. Even a tiny reduction in render
times can accumulate to thousands of dollars saved for a big production.

1 Jim Blinn is known for his work as a computer graphics expert at NASA’s Jet Propulsion Labora-
tory.

1

Modern GPUs are manycore architectures with thousands of cores which can
be exploited to get impressive performance at a budget. These cards are first and
foremost designed for the gaming industry, but a trend the last years has been
to use these cards to accelerate other algorithms of a parallel nature. The GPU
has become more widely available due to the appearance of APIs like CUDA and
OpenCL.

Ray tracing is well suited for the GPU since it is inherently a slow operation
and each pixel can be rendered in parallel. The GPU has attracted the interest
of rendering scientists and professionals, and a number of new rendering algo-
rithms well suited for their architecture [HOJ08, KZ11] have been developed. In
this thesis, we investigate how the rendering process can be offloaded efficiently
onto GPUs.

1.1 contribution

Our focus is on implementing the photon mapping method [Jen09, HOJ08] entirely
on the GPU. The Nvidia OptiX ray-tracing engine is chosen as a foundation for
our renderer. We present a complete application available for others to test and
experiment with. Different photon map structures, a CPU-based k-d tree, a uni-
form grid based on sorting, and a stochastic hash are considered. We analyze
their construction times as well as photon gathering performance. Volumetric
effects like fog and smoke are described and implemented in the renderer. Our
suite of test scenes is benchmarked on three different GPUs, including the re-
cent Nvidia Tesla K20. Finally, we present a distributed renderer for the first
time able to execute photon mapping using many GPUs simultaneously with im-
pressive efficiency. Results are presented for up to 6 Nvidia GeForce GTX 480

rendering a single image in parallel.

1.2 report outline

The rest of the report is structured as follows:

• Chapter 2 presents related work.

• Chapter 3 contains background material on ray-tracing and physically based
rendering. Main focus is on the (progressive) photon mapping algorithm
and rendering of volumetric effects.

• Our implementation is described in detail in Chapter 4.

• We present results and rendered images on a set of benchmark scenes in
Chapter 5.

• Chapter 6 contains conclusive remarks.

• Finally, Chapter 7 mentions interesting future work.

2

2
R E L AT E D W O R K

This section presents earlier work related to ray tracing and photon mapping on
the Graphics Processing Unit.

2.1 ray tracing on gpu

Numerous articles have been written on ray tracing on the Graphics Processing
Unit. Some of the earliest work done was in 2002 with the “Ray Engine” [CHH02],
implementing only the ray-triangle intersection on the GPU.

In 2002, Purcell et al.[PBMH02] investigated ray tracing on the programmable
graphics hardware that was emerging at the time. Previously, graphics hardware
were fixed function pipelines and difficult to program. Now, customizable ver-
tex and fragment programs meant you could use the GPU for other things than
rasterization. Purcell et al. implemented a four pass ray tracing algorithm: ray
generation, traversing, intersection and shading. However, they were still limited
by the fact that the programmable framework was mapped to graphics problems.
Their application was written as a set of fragment programs, using textures for
storage and the stencil buffer to control conditional execution. Due to the difficul-
ties of implementing better acceleration structures, such as k-d trees or bounding
volume hierarchies, they used a simple uniform grid. Still, they demonstrated
that it was possible to move the entire ray tracing algorithm over to the GPU.

Foley and Sugerman [FS05] presented the first k-d tree traversal algorithm that
could be efficiently run on the GPU. Their approach was able to significantly
outperform uniform grids. Since the GPU could not efficiently support stacks,
several stack-less traversal algorithms was suggested.

Horn et al. [HSHH07] were the first to present interactive frame-rates using
the GPU. They based their implementation on a rasterizer with a ray tracer for
secondary and shadow rays. Since GPU thread-local memory was scarce, a k-d
tree short-stack approach with a stack-less fallback was their method of choice.

In 2007, Nvidia launched the Compute Unified Device Architecture (CUDA)
parallel computing architecture [Nvi07]. Since its release, CUDA has been widely
utilized for parallel ray tracing research. In this period, the GPU took major
steps away from a fixed-function rasterization pipeline to a programmable and
dynamic unit applicable to many problems.

Nvidia OptiX was unveiled at SIGGRAPH 2009 [Nvi09]. OptiX is a frame-
work built on CUDA with the purpose of simplifying development of ray-tracing

3

based applications. Holger Ludvigsen [LE10] explored OptiX the same year. He
found it to be flexible and capable of rendering scenes at interactive frame rates.
Ludvigsen also discovered that it gives near perfect speed-up on several GPUs
in certain scenarios. However, at the time, the framework was found to be 3-5
times slower than comparable, hand-optimized ray tracers on similar scenes and
hardware.

2.2 photon mapping on gpu

Purcell et al. described the first implementation of photon mapping for GPU
in 2003 [PDC+

03]. They used a grid-based photon map where the photons are
sorted into their correct cell. Since sorting at the time was slow to perform on the
GPU, a stencil routing approach which directs photons to their final destination
was suggested.

Hachisuka et al. [HOJ08] presented the progressive photon mapping method
in 2008, which removed the memory constraint. Since GPUs usually have less
available memory than the CPU, this approach is more suitable for GPUs.

Several implementations of photon mapping has appeared the latest years, es-
pecially after the release of CUDA [Nvi07]. Fleisz [Fle09] implemented photon
mapping on the GPU using CUDA in 2009 and considered several alternatives of
photon maps.

In 2009, McGuire and Luebke [ML09] presented an approach based on image-
space photon mapping combining the CPU and GPU. This approach exploits the
fact that the initial camera and light rays/photons have a common center of pro-
jection. This assumes point lights and a pinhole camera, but is able to get inter-
active rates at high resolutions.

Knaus and Zwicker [KZ11] introduced a “memoryless” progressive photon
mapping approach in 2011, which effectively removed the dependency between
iterations in PPM.

Alongside the OptiX framework Nvidia also released a small demo using pro-
gressive photon mapping [Nvi09].

Hachisuka and Wann Jensen [HJ10] described an GPU implementation where
the photons are stochastically stored in a hash table, which avoids any kind of
list generation at the cost of increased variance.

Jarosz et al. introduced photon beams [JNSJ11] to improve rendering of par-
ticipating media. They also described a progressive version of photon beams
[JNT+

11], drawing insight from memoryless PPM. Several implementations was
mentioned, and one of these implementations was based on the OptiX frame-
work.

Mara et al. [MLM13] consider screen-space photon mapping techniques for
interactive applications. Interactive frame rates is achieved for some scenes and
some conditions, at the cost of amortizing photon tracing among several frames
and applying reconstruction filters to remove noise.

4

2.3 distributed rendering of images

Distributed rendering (using several computers communicating over a network)
is desirable to speed up the rendering process. Animated sequences can be ren-
dered each distinct frame in parallel. We consider rendering of a single image on
multiple CPUs and/or GPUs at the same time, since this requires a lower level of
work division.

V-Ray from Chaos Software [Cha13], Indigo Renderer from Glare Technologies
[Gla13], and Luxrender [Lux13] are some of the available renderers which sup-
port network acceleration. These can also accelerate (a subset of) the rendering
process to the GPU. In March 2013, Otoy announced a GPU cloud-based ver-
sion of their Octane Render [Oto13]. A demo was presented at the GTC 2013

conference where 112 GPUs were utilized at the same time. All these renderers
are unbiased, i.e. based on path-tracing and derived algorithms, and not photon
mapping.

Knaus and Zwicker [KZ11] rendered an image on a heterogeneous cluster of
166 nodes using progressive photon mapping. The individual images was ren-
dered using pbrt [PH04] and then averaged. A speedup of 4.5 was achieved over
a single CPU. To the best of our knowledge, there is no photon mapping-based
renderer which can utilize several GPUs simultaneously.

5

3
B A C K G R O U N D

This chapter contains material to back up our work. To keep this chapter succinct,
some of the material is just briefly touched upon for readers with no background
in ray tracing or rendering. Some of the more advanced topics and analytical
proofs are outside the scope of this thesis, but references are included so the
reader can look it up.

The rest of this chapter is structured as follows;

• Section 3.1 introduces some probability theory we base ourselves on for the
rest of this chapter.

• Section 3.2 touches upon the concept of ray-tracing, the ray equation and
acceleration structures.

• Section 3.3 describes radiometry, a set of quantities and equations that gov-
ern light transport.

• Section 3.4 deals with light-surface interactions and some common material
types.

• Section 3.5 introduces global illumination, including the rendering equation
and the path tracing algorithm.

• Section 3.6 goes on to describe photon mapping, with focus on recent ad-
vantages in progressive photon mapping.

• Section 3.7 discusses participating media.

• Section 3.8 contains a brief introduction to the Graphics Processing Unit
(GPU). CUDA, Nvidia’s GPU programming framework, is also mentioned.

• Section 3.9 describes OptiX, a framework for ray-tracing built on top of
CUDA, which we employ in this thesis.

7

3.1 probability theory

This section briefly introduces some of the probability concepts that we’ll use
later to describe rendering algorithms.

3.1.1 Monte Carlo methods

Monte Carlo methods (named after the Monte Carlo casino in Monaco) rely on
repeated random sampling in order to find an approximate solution to a prob-
lem.

The Monte Carlo estimator to compute an integral I =
´

f (x) dx is [DBB06]

Î =
1
N

N

∑
i=1

f (xi)

p(xi)

where p(x) is the probability distribution function. From this, it is easy to
see that E(Î) =

´
f (x) dx = I. The Monte Carlo method is independent of the

dimensionality of the integrand [PH04]; however, it has a slow convergence of
O(
√

N). Monte Carlo is applicable for problems where a closed-form solution is
impractical or even impossible. This is often the case with rendering algorithms.
In fact, the path tracing algorithm introduced later in this chapter is an integral
of infinite dimensionality.

3.1.2 Bias and consistency of estimators

We briefly touch the concepts of estimator bias and consistency. We’ll denote
a fixed parameter as X, and our estimator for X as X̂n, where n is the number
of sampled used for calculating the estimate of X. The bias of the estimator
X̂n is E(X̂n) − X = E(X̂n − X), which can be considered the expected value of
the error of the estimate. The estimator is unbiased if the expected error is zero;
E(X̂n − X) = 0. Otherwise, the estimator is biased. A biased estimator X̂n is
consistent if limn→∞ X̂n = X, that is, if it converges to the correct value X.

Unbiased estimators have the advantage that the expected error is zero after
any number of samples. Increasing the number of samples will typically reduce
the variance of the estimate. A biased but consistent estimator’s error vanishes
only in the limit.

3.1.3 Russian roulette

The Russian roulette technique [PH04] can increase the probability that an eval-
uated sample will have a significant contribution to the result. Intuitively, it is
wasted work to calculate many samples that have close to no impact on the end
result. However, we cannot simply ignore these calculations without introducing
bias.

Russian roulette is applied by introducing a termination probability q. Before
the evaluation of an expensive function, we stop with a probability q. With prob-

8

ability 1− q, the evaluation is still performed, but scaled by a factor 1
1−q . The

expected value of the modified estimator remains the same as the original. Since
Russian roulette methods increase variance, the choice of q is very important.
1− q should be proportional to the importance of the evaluation to the final re-
sult.

3.2 ray tracing

Ray tracing is an image-generation technique where rays are generated from a
virtual camera and into a scene. A renderer will simulate how these rays interact
with objects in the scene to produce an image. Usually, ray tracing is recursive:
each surface hit can spawn a number of new rays, on reflection off specular
surfaces, or refraction through transmissive materials. Methods based on screen-
space projection (rasterization) have problems accurately capturing reflections and
shadows. Since ray tracing model how light propagate (at a simplified level), it
captures these effects by nature.

The first ray tracing algorithm was introduced by Appel [App68] in 1968. His
idea was to shoot rays from the eye, through each pixel of an image plane, and
find the closest object intersecting the path of the ray. Appel would stop his
algorithm when the ray hit the closest object, which we today call “ray casting”.
In 1979, Whitted [Whi80] took the next step, by making it a recursive process.

3.2.1 The ray equation

A ray is defined by its origin o and direction d, parameterized by a distance
parameter t, R(t) = o + td. Using a pinhole camera, primary rays are generated
so that they start at the eye and pass through the pixels of some defined image
plane. More complicated camera models are able to capture focus (depth-of-field).

3.2.2 Geometry and acceleration structures

Since ray tracing simulates how rays interact with geometry, the most basic oper-
ation is ray-geometry intersection tests. Objects usually have some mathematical
description allowing them to be intersected against rays directly. Some common
types of objects are spheres, cylinders, quadrangles and cubes. The most impor-
tant primitive, however, is the triangle, as larger models usually are built up from
triangles. The most common and effective ray-triangle intersection algorithms
are based on barycentric coordinates [Wal06].

A naive linear-time intersection algorithm would test a ray against every object
in the scene. Since large scenes may contain millions of objects, this approach
quickly becomes infeasible. Acceleration structures are space subdivision hierar-
chies that substantially reduce intersection time. Their idea is to group objects
that are close in larger entities, and skip bunches of objects at a time if they are
nowhere near the ray. Common acceleration structures include k-d trees and
bounding volume hierarchies.

9

Symbol Description

x, y Positions

ψ, ω Directions, dω often serving as the differential solid angle

θ, φ Planar angles

t A distance along a ray

Ω4π , Ω2π The sphere and hemisphere of directions

L(x → ψ) Exitant radiance from x in outgoing direction ψ

L(x ← ψ) Incident radiance at x in incoming direction ψ

fr(x, ω ↔ ψ) The surface BRDF at x between directions ω and ψ

p(x, ω ↔ ψ) The phase function at x between directions ω and ψ

ζ A random number uniformly distributed between 0 and 1

σs, σa, σt Scattering, absorption and extinction coefficients

Tr(x ↔ y) Transmittance between points x and y

Table 1: The notation we use throughout this thesis.

3.3 radiometry

The goal of rendering algorithms is to produce photo-realistic images that accu-
rately capture the appearance of objects in a scene. Radiometry is the field of
physics that addresses the measurement of light propagation and reflection. Ra-
diometry describes light at the geometrical optics level, where it travels as rays.
Effects due to the wave nature of light, such as polarization, diffraction and in-
terference, are not captured by radiometry without extending the framework.
However, dealing with everyday objects that are substantially larger than the
wavelength of light this approximation is good.

Photometry, a distinct but related field of science, covers measurement of light
as it is perceived by the human visual system. The visual response of the human
eye to the frequency range of visible light has been standardized, and photometry
takes this standard into account. Since photometric quantities can be derived
from their corresponding radiometric units, rendering systems prefer to work
with radiometry units internally. The process of converting into photometric
units is usually delayed to the last stage of the render pipeline.

Text-books on physically based rendering will typically cover radiometry thor-
oughly. We base this chapter mainly on [DBB06] and [PH04]. The reader is
encouraged to consult these works for more information.

3.3.1 Radiant Flux

The basic unit in radiometry is radiant flux, often called radiant power, denoted Φ.
Radiant flux is radiant energy per unit time and is expressed in watts (joules/sec-
ond). Radiant flux captures how much energy flows through a surface per time.

10

Emission from light sources is usually declared using radiant flux. For instance,
a light source can emit 50 watts of flux, while a table can receive 200 watts of flux.

3.3.2 Irradiance and Radiant Exitance

Irradiance, noted E, represent the incident power on a surface per unit surface
area. The unit is watts/m2. For example, if 100 watts of power is incident on a
table with an area of 2m2, the irradiance on each surface point is 50 watts/m2.

A similar term is radiant exitance M, used when the power is leaving as op-
posed to arriving at a surface. An area light source of 0.2m2 which emits 100

watts has a radiant exitance of 500 watts/m2.

3.3.3 Radiance

Radiance L (Fig. 3.3.1) is defined as radiant flux per unit projected area per unit
solid angle, watts/(sr·m2)

L =
d2Φ

dA dω cos θ
(3.3.1)

Notice that the cone dω will hit the surface point at an angle. The cross-section
of the cone and the surface is a differential area dA. The area dA will be “smeared
out” over a larger surface area when the ray comes from a grazing angle. The
cos θ term takes this increased area into account.

Radiance is the most important quantity in rendering algorithms because it
captures how surfaces appear from the viewpoint of the observer. In vacuum,
radiance remains constant as it propagates along rays, so it is a natural unit to
compute in ray tracing. Looking at a red car from close up and far away, it will
appear equally bright. However, far away the car subtends a smaller solid angle,
so the power that reaches the eye is less. Finally, all the other quantities can be
derived in terms of integrals of radiance over directions and surfaces.

We use a notation which is based on [DBB06], listed in Table 1. Table 2 contains
the basic physical units as a reference for the next sections.

dA dA cos θ

dω

θ
dΦ

Figure 3.3.1: Radiance.

11

Name Symbol Unit Description

Radiant energy Q Joule Energy

Radiant power Φ Watt Energy per unit time

Irradiance E Watt/m2 Power incident on a surface

Radiant exitance M Watt/m2 Power emitted from a surface

Radiance L Watt/(sr ·m2) Power per unit solid angle per unit projected area

Table 2: Units in radiometry.

3.4 light-surface interaction

Some materials, like metals or glossy plastics, have a mirror-like appearance.
“Matte” materials like painted walls appear about the same from any angle. This
section will describe how we model these light-surface interactions.

A function which defines the distribution of light reflection at a surface is called
a reflectance distribution function. In the most general case, light which enters a
surface at a point p in direction ψ may leave at another point q in a new direction
ω. The function fr(p, ψ, q, ω) defining the ratio of incident and exitant radiance
between (p, ψ) and (q, ω) is called the bidirectional surface scattering reflectance
distribution function (BSSRDF).

We can simplify the function under the assumption that the light arriving at
some point leaves the surface at the same point, i.e. we ignore subsurface scattering.
The simplified function is called the bidirectional reflectance distribution function
(BRDF), and is defined as the ratio between the differential radiance in exitant
direction ω, and the differential irradiance incident through a differential solid
angle dψ [DBB06];

fr(p, ψ→ ω) =
dL(x → ω)

dE(x ← ψ)
=

dL(x → ω)

L(x ← ψ)(Nx · ψ) dψ

The BRDF is a four-dimensional function defined at each point on the surface,
two dimensions (azimuth and zenith angles) for each of the directions.

Physically based BRDFs have some additional properties. The Helmholtz Reci-
procity property implies that the value of the BRDF is unchanged if we exchange
incident and exitant directions. fr(p, ψ → ω) = fr(p, ω → ψ). Therefore, we use
the notation fr(p, ψ↔ ω).

Conservation of energy dictates that a surface cannot reflect more energy than
it receives,

∀x, ψ

ˆ
Ω

fr(x, ω ↔ ψ) cos θdω ≤ 1

It is essential that these properties hold true for physically-based materials, or
else the assumptions of the rendering algorithm may break down.

12

ψ ψ N

Figure 3.4.1: Perfectly diffuse (left) and perfectly specular (right) surfaces.

3.4.1 Diffuse surfaces

The simplest material type is an ideal diffuse BRDF (Fig. 3.4.1), often called Lam-
bertian [DBB06]. A diffuse material reflects light uniformly across the hemisphere,
independently of the incoming direction. To an observer, a diffuse material looks
the same from every viewing direction. No real-world material is a perfect dif-
fuse reflector; however, it is a good approximation for many day-to-day materials
like matte walls and ceilings. The BRDF for a diffuse material is

fr(p, ψ↔ ω) =
ρd
π

where ρd is the reflectivity of the material, a number between 0 and 1 that
represents the fraction of the energy which is reflected.

3.4.2 Specular surfaces

A perfectly specular surface will reflect or refract light in one direction only (Fig.
3.4.1). A mirror is an example of a specular surface. The law of reflection gives
the direction of the reflected ray from incident direction ψ and the normal of the
surface N:

R = 2(N · ψ)N − ψ

Glass materials can both reflect and refract light. The direction of refraction
can be found using Snell’s law, while the ratio between reflected and refracted
light is given by Fresnel’s equations [DBB06, PH04].

3.4.3 Shading models

Real-life materials are neither perfectly diffuse nor perfectly specular, but rather
something in between. A number of shading models have been described in lit-
erature [DBB06, PH04]. Examples of popular models are Phong, Blinn-Phong
and Cook-Torrance. They differ both in their sophistication and cost of imple-
mentation. Some materials, like metals, react with light in intricate ways that
are difficult to describe accurately. Materials like plastics and wallpaper can be
approximated with simpler BRDFs.

13

3.5 global illumination

This section focuses on methods of finding global illumination. We can consider
illumination as composed of two parts;

• Direct illumination includes the light that comes directly from a light source.
Direct illumination is cheap to calculate, by finding the light sources that
illuminate a point in the scene and accumulate their individual radiance
contributions.

• Indirect illumination includes the light that has reflected off other surfaces
at least once. Indirect illumination is more expensive to calculate, but adds
to the realism of a scene. In computer games, indirect illumination is typ-
ically approximated using an ambient term. The ambient term can be con-
sidered as the average indirect illumination on a surface, and is usually
estimated by level designers.

Global illumination is the sum of the contributions from direct and indirect illu-
mination. Global illumination methods are tasked with finding the total illumi-
nation in a scene.

3.5.1 The rendering equation

“The rendering equation” was first coined by Kajiya in 1986 [Kaj86]. The render-
ing equation generalized an existing number of algorithms into a simple integral
equation, and has since been considered as a fundamental equation in physically
based rendering.

Some assumptions are made by the rendering equation:

• The rendering equation assumes a steady-state system of radiance equilibrium.
The law of conservation of energy states that the total energy in such a
system remains constant.

• We let light travel instantly, a reasonable assumption at the scale we are
operating. This implies that the steady state is achieved instantly.

• We assume the absence of participating media. Light travel between surfaces
along straight lines in vacuum.

• Finally, we ignore sub-surface scattering, where radiance entering a surface
at position p may scatter below the surface and leave at another location q.

At each surface point x and direction ψ, the rendering equation formulates exitant
radiance L(x → ψ). The rendering equation is given as

L(x → ψ) = Le(x → ψ) + Lr(x → ψ)

= Le(x → ψ) +

ˆ

Ω2π

fr(x, ψ↔ ω)L(x ← ω) cos θ dω (3.5.1)

14

where Le is the emitted radiance and Lr is the reflected radiance from x in outgo-
ing direction ψ. The integral in the second line is over all incoming hemispherical
directions ω at x. fr is the BRDF of the surface, and θ is the angle between ω and
the surface normal Nx, cos θ = Nx ·ω.

Notice how the rendering equation makes no separation by radiance directly
from light sources, and radiance reflected from other surfaces, they are both cap-
tured by L. This unification makes the rendering equation so concise. Le(x → ψ)
is non-zero for light sources (emitters), while most materials only reflect incoming
radiance as specified by the BRDF.

At this point we should note that the radiance is dependent on wavelength
λ, which can be considered an extra parameter to the radiance and BRDF func-
tions. Wavelength is usually implicit in these equations. In rendering systems,
we typically sample the rendering equation to obtain a RGB color triplet.

3.5.2 Using radiance for ray-tracing

If we want to render a physically based image with full global illumination, we
need to find the total radiance incident on each pixel of the image plane. This
can be described by the following integral over the pixel:

Lpixel =

ˆ

imageplane

L(p→ ψ)h(p)dp =

ˆ

imageplane

L(r(p→ ψ)→ −ψ)h(p)dp

where p is a point on the image plane, h(p) is a filter/weight function, and
r(p → ψ) is the ray-trace function which returns the point visible from point p
looking in direction ψ. Usually, h(p) is a box filter so that the final radiance value
for a pixel is the average incident radiance over the image plane pixel footprint.
h(p) can also contain the area of a lens to capture depth-of-field.

3.5.3 Path tracing

Photon mapping is the main topic of this thesis, and will be covered in detail in
the next section. First we briefly introduce path tracing because it is simple to ex-
plain, unbiased, and the foundation for more complex methods like bidirectional
path tracing [LW93] and Metropolis light transport [VG97]. Some of the same
techniques used in path tracing are also used for photon mapping, including
direct sampling of light sources in the scene.

Path tracing estimates the integral for

Lr(x → ψ) =

ˆ

Ω

fr(x, ψ↔ ω)L(x ← ω) cos θ dω

in the rendering equation (3.5.1) using Monte Carlo integration (Sec. 3.1.1). The
idea is simply to pick random directions ω over the hemisphere Ω2π, distributed
according to a probability density function p(ω).

15

The estimator for Lr is [DBB06]

〈Lr(x → ψ)〉 =
1
N

N

∑
i=1

fr(x, ψ↔ ωi)L(x ← ωi)(ωi · Nx)

p(ωi)

=
1
N

N

∑
i=1

fr(x, ψ↔ ωi)L(r(x,−ωi)→ ωi)(ωi · Nx)

p(ωi)
(3.5.2)

r(x, ω) is the closest surface point from x in direction ω, and is found by ray
tracing. Now we have to perform another radiance estimation of L(r(x,−ωi) →
ωi) using the rendering equation recursively. These recursive estimations form
a path traced through the scene. This path may be infinite, so we need a stop-
ping criterion. We use Russian roulette (3.1.3) to find an unbiased solution of an
infinite series using a finite number of evaluations. The idea is to sample paths
based on their importance to the final scene. Therefore, we pick the termination
probability q based on surface properties. A dark surface will absorb more en-
ergy compared to a bright surface. Therefore, the probability of termination on a
dark surface should be higher.

The simplest choice of the probability density function p(ω) is the uniform
p(ω) = 1/(2π). However, it is inefficient to sample many directions near the
horizon where cos θ = (ω · Nx) ≈ 0. Therefore, we use a cosine-distribution
p(ω) = cos θ/π. This choice of p(ω) prevents us from having to calculate cos θ
explicitly, and, in the case of a diffuse BRDF, it will cancel out the 1/π factor.

We can split Lr into Ldirect and Lindirect and sample light sources directly. We
exploit that we already know the location of the light sources in the scene. This
technique reduces noise, since a path does not have to end with an emitter to
give radiance contribution. To evaluate the emitted radiance from a light source
upon a point x, we must transform the integral over hemisphere to an integral
over surface points y on the light. This gives the following integral for incident
radiance [DBB06]

Ldirect(x → ψ) =

ˆ
A

fr(x, ψ↔ ~yx)Le(y→ ~yx)V(x, y)G(x, y)dAy

G(x, y) = cos(Nx,−~yx) cos(Ny, ~yx)/r2
xy

where ~yx is the direction from y to x, and V is a visibility term, 1 if x and y are
mutually visible and 0 otherwise.

The efficiency of path tracing is connected to the probability of hitting an emit-
ter. If emitters are small and encapsulated in a specular fixture (like a tiny light
bulb in a large stadium), the probability that a path starting from the camera
will end up at the light is microscopic. This is an important problem with naive
path tracing. It is still unbiased, so after a sufficient amount of time the correct
image will appear. Derived algorithms like bidirectional path tracing [LW93] and
Metropolis light transport [VG97] tries to connect light and camera paths smarter
to speed up this process.

16

Figure 3.5.1: Top image: full global illumination demonstrated on the Conference Room

test scene. Middle image: only light directly from the light sources con-
tributes. Bottom image: Only indirect radiance (light that has bounded at
least one time, multiplied with the surface BRDF).

17

Photon tracing Ray tracing

Figure 3.6.1: Photon mapping.

3.6 photon mapping

Photon mapping is a global illumination method developed by Wann Jensen
[Jen96, Jen09]. It is considered robust to many difficult lighting scenarios which
is almost impossible to capture with unbiased methods (based on path tracing).
Illumination due to specular-diffuse-specular paths are particularly problematic
[HOJ08]. Photon mapping excels for caustics formed by focus of glass materi-
als. It is in fact the only practical method to find many light paths common in
everyday scenes, for instance, the combination of a glass light bulb and a glossy
floor seen through a lens camera. Photon mapping captures these effects by com-
bining light rays and camera rays via a kernel.

The remainder of this sub-chapter will go on to describe the photon mapping
method in detail.

3.6.1 The original PM algorithm

Photon mapping is a two-phased algorithm;
In the first pass, flux packets named photons are emitted out from the light

sources in the scene. They react with surfaces the same way as rays, they can be
reflected or transmitted, and some of the energy in the photon may be absorbed,
depending on the properties of the material. When photons react with surfaces,
they are deposited in a data structure called the photon map. The data that is
stored with each photon includes hit position x, flux/power ∆Φ, and incoming
photon direction ωi.

In the second pass, ray tracing is carried out. Rays are traced from the eye
onto surfaces in the scene. Typically, direct illumination is calculated directly
tracing shadow rays towards all light sources. If the point in question is visible
from a light, the incoming radiance contribution from that light is accumulated.
Indirect illumination, on the other hand, is estimated using the photons stored in
the photon map. The photon map needs to support fast retrieval of the N closest
photons to any query location. Therefore, the photon map is often implemented
as a k-d tree.

18

Radiance estimation

To estimate the radiance at a point x on a surface, we locate the closest N photons
in the photon map and use them for the radiance estimate. The idea behind
radiance estimation in PM is to expand a sphere around x until it contains N
photons and use these photons to estimate the value of the radiance at x. ∆Φp is
the flux carried by photon p, ωp is the incoming direction of the photon, and r is
the radius of the sphere which contains all N photons. Combining the rendering
equation (3.5.1) and the definition of radiance (3.3.1), we get

L(x → ψ) =

ˆ

Ω

fr(x, ψ, ω)L(x ← ω) cos θ dω

=

ˆ

Ω

fr(x, ψ↔ ω)
d2Φ

dAdω cos θ
cos θ dω

≈
N

∑
p=1

fr(x, ψ↔ ωp)
∆Φp

πr2 (3.6.1)

Under the assumption that the surface is locally flat, dA is in the last step
approximated as the projected surface area of the sphere, πr2.

bias in photon mapping The radiance estimation step works as a low-pass
filter and introduces bias to the image. It connects light and camera paths via
a non-zero bandwidth kernel. The error is manifested as low-frequency noise
(blur) in the rendered image. The bias is unfortunate, since unbiased solutions
are considered the gold standard. However, photon mapping is consistent, so
the error will vanish if an infinite number of photons are used. Both photon
mapping and unbiased methods require an infinite number of samples to reach
the solution. For a small number of samples, low-frequency blur is more pleasing
to the eye than high-frequency variance (salt and pepper noise).

3.6.2 Progressive photon mapping

In photon mapping, each and every photon used must be in memory for the
duration of the algorithm. Therefore, photon mapping is both time and memory
constrained. For complex scenes, hundreds of millions to billions of photons may
be required to reach acceptable quality.

Progressive photon mapping was introduced by Hachisuka et al. in 2008 [HOJ08],
and then extended to support stochastic effects1 in 2009 [HJ09]. For complete-
ness and discussion, we’ll first describe the original PPM algorithm (including
the stochastic extension), then consider newer improvements.

Progressive photon mapping removes the memory constraint by performing
the radiance estimation in iterations. Each iteration use a new, randomly traced

1 Stochastic/distributed ray tracing is a refinement of ray tracing that allows us to model “soft”
phenomena. Stochastic effects include anti-aliasing, depth-of-field, motion-blur, and glossy reflec-
tions.

19

Ray tracing Radiance estimationPhoton tracing

Figure 3.6.2: Progressive photon mapping.

set of photons to update the radiance estimate in the scene. The photons are
tossed after the end of an iteration. The bounded memory requirement makes
the algorithm well suited for GPUs, which are efficient compute units with fast
(but limited) memory.

The idea behind progressive photon mapping is to reorder the original photon
mapping by first performing ray-tracing, then photon tracing, and finally radi-
ance estimation. This sequence is repeated in iterations. The rendered image is
progressively more accurate.

ray tracing pass Find points in the scene visible through each pixel of the
camera. Each pixel footprint is denoted as a region, and each ray tracing
pass finds a new surface point inside this region. If we encounter a surface
which spawns two rays, like a glass material that both reflects and refracts,
we use probability sampling to keep the path linear. Each region stores
hit position p, the direction of the incoming ray ω, surface BRDF identifier,
and surface normal n. Every region (pixel) includes space for three values
used in the algorithm: current photon radius R, a count of photons N, and
accumulated unnormalized power τ. These values are passed on from one
iteration to the next.

photon tracing Photons are emitted from the light sources in the scene and
stored in the photon map. Photons may be absorbed, reflected or transmit-
ted when they hit surfaces. In fact, this procedure is performed identically
to regular photon mapping. A constant number of photons are emitted
each pass, which makes the memory requirement bounded.

estimation pass After the ray tracing pass, we have a set of new surface
points in the scene visible through the camera. A new set of photons was
generated in the photon tracing step. We loop through hit points and ac-
cumulate power from photons that are within a distance Ri. We use these
new photons to refine our radiance estimate for the pixel.

These passes are then repeated any number of times. After an estimation pass it
is possible to render an approximate image. As more iterations are executed, the

20

quality of the radiance estimate is improved. The image will converge towards
the correct solution. This property is useful since we can stop the algorithm at a
point where the image is of acceptable quality.

Algorithm

We use the recently traced photons to update the radiance estimate for a pixel.
Each pixel stores current photon radius R, a current number of photons N, and
accumulated power τ. Initially N0 = 0, τ0 = 0, and R0 is set to some scene-
dependent initial radius.

After photon tracing iteration i, and for each scene hit point x, we find all pho-
tons that are within a distance Ri of x. Assume we have Ni photons accumulated
prior to this iteration, and we have just found M new photons to add to Ni. Note
that M can be zero if there are no photons within the radius. In the limit, we
need an infinite number of photons within an infinitely small radius to have the
correct solution. Our goal is to reduce the radius R while simultaneously increase
N, the number of photons that are within this radius.

We let the updated value of Ni be Ni+1 and find it as,

Ni+1 = Ni + αM (3.6.2)

α is a parameter which controls what fraction of the M photons we should include
in our estimate. If the radiance estimate of photon mapping is to converge to the
correct solution, we must have an increase in the number of photons. Therefore,
α > 0. Also, we don’t want to add more than M photons. Therefore, we let α =
(0, 1). Recently, Kaplanyan and Dachsbacher [KD13] found the asymptotically
optimal α for shrinking the radius to be α = 2/3, although the choice of R0 is still
important for the convergence rate.

We also need to reduce Ri. Under the assumption that the photon density is
uniform within the radius, [HOJ08] shows that we can find the value Ri+1 as

Ri+1 = Ri

√
Ni + αM
Ni + M

(3.6.3)

Since the square root factor must be less than or equal to one, R cannot in-
crease. At this point, we have found the new values Ri+1 and Ni+1 and have
simultaneously ensured that N increases or stays the same while R decreases or
stays the same between iterations. In case we have found any photons within R,
i.e. M > 0, the radius will always be reduced.

Radiant flux estimate

The estimate τM for the total unnormalized flux from the M new photons is given
as

τM =
M

∑
p=1

fr(x, ψ↔ ωp)∆Φ′p (3.6.4)

21

where ∆Φ
′
p is the unnormalized power carried by the photon p. Unnormalized

in this sense implies that we don’t divide by the number of emitted photons at
this step, which is an important difference from regular photon mapping.

At any iteration i, we combine τi and τM to find τi+1. We need to take into
account that the radius Ri decreases between iterations. By assuming that the
power density is uniform inside the disc, the reduction of power is equal to the
reduction in area. This gives

τi+1 = (τi + τM)
R2

i+1

R2
i

(3.6.5)

Radiance estimate

The previous sections have described how we update the statistics needed for
the progressive photon mapping algorithm. This section will explain how these
statistics are used to estimate radiance for any iteration i. The radiance estimate
is

L̂(x → ψ) =

ˆ

Ω

fr(x, ψ↔ ω)L(x ← ω) cos θ dω

≈ 1
∆A

N

∑
p=1

fr(x, ψ↔ ωp)∆Φp

≈ τi

πR2
i

1
Nemitted, i

(3.6.6)

The radiance L(x → ψ) is the limit as i goes towards infinity:

L(x → ψ) = lim
i→∞

τi

πR2
i

1
Nemitted, i

The radiance estimate is the same as in regular photon mapping (Eq. 3.6.1),
except that we have moved the division by Nemitted, i to the last step. This is neces-
sary since Nemitted, i increases each iteration and we need to ensure that photons
emitted in all iterations are equally important.

The values Ri and τi are stored in the per-pixel data structure. Nemitted, i is the
total number of photons emitted from the light sources after i iterations of the
algorithm, so Nemitted, i = i · Nemitted_per_iteration.

Memoryless Progressive Photon Mapping

Unfortunately, the PPM algorithm is dependent on the maintenance of local statis-
tics (Ri and Ni) per pixel. These values need to be passed over from an iteration to
the next, preventing any possible parallelization across iterations. A recent refor-
mulation of progressive photon mapping by Knaus and Zwicker [KZ11] proves
that PPM can be executed without keeping these statistics.

22

The authors took a “probabilistic approach”, studying the error εi of each iter-
ation of the algorithm.

By letting the variance of εi increase by a factor

Var(εi+1)

Var(εi)
=

i + 1
i + α

the authors show that the variance and the expected value of the average error,
Var(ε̄i) and E(ε̄i), both converge to 0.

By proving and using the fact that the variance between to iterations is inversely
proportional to the square radius used in the estimate,

r2
i+1

r2
i

=
Var(εi)

Var(εi+1)
=

i + α

i + 1
(3.6.7)

we can find the sequence of per-iteration radii in the algorithm. [KZ11] contains
a proof which shows that the new radii reduction scheme is equivalent to that
of the original PPM [HOJ08]. Since this new sequence is independent of the
number of photons we find in any iteration, the authors have in fact proved that
the rate of radii reduction is independent of local statistics. Therefore, gathering
the statistics is no longer necessary, which simplifies implementation and reduces
the memory requirement. Since there is no data to carry along from one iteration
to the next, these iterations can be run completely in parallel.

The novel memoryless PPM approach was compared with the previous (stochas-
tic) version in terms of image quality. Visual results were found to be practically
identical and any difference was due to noise. This new fixed radii reduction
scheme provides numerous advantages, which we employ in our own work, and
no clear disadvantages.

Parallel Progressive Photon Mapping

Knaus and Zwicker [KZ11] pointed to the connection between progressive pho-
ton mapping and regular photon mapping. Progressive photon mapping is sim-
ply an iterative execution of regular photon mapping with a constant number of
photons per iteration. The sequence of radii Ri used in the photon map radiance
estimate is predetermined, given by Eq. 3.6.7. We do not have to execute these it-
erations in any particular order, however, to estimate an iteration i we need every
computation up until that point.

The authors briefly describe an implementation that uses multiple CPUs to ren-
der an image by averaging the individual iterations, using a photon mapper as a
“black box”. The radiance estimate in progressive photon mapping differs from
regular photon mapping only by normalizing the result in the last step. This nor-
malization accounts for the total number of photons emitted after any iteration.
It is obvious that this is equivalent to taking the average of all radiance estimates.

23

3.7 participating media

The rendering equation (Sec. 3.5.1) makes the assumption that light travels in a
vacuum between surfaces in a scene, so radiance is conserved along its path. While
this simplification is acceptable for some environments, it rarely holds up in real
life. Fog, clouds, smoke and dust are examples of participating media which re-
act in different ways with light that traverses through. Imagine driving on the
freeway an early, foggy morning, looking at the head lights of the oncoming
cars. Light is scattered by water drops and changes directions, which produce
interesting visual effects. Even the atmosphere reacts as a participating media,
which explains why it appears blue. If we want to render scenes with participat-
ing media, we need to extend our mathematical framework to include this more
complicated scenario.

In a vacuum, the radiance between two mutually visible points x and y is
conserved; L(x ← ψ) = L(y → ψ). A participating medium can affect the
radiance from x to y in four different ways [DBB06]:

Volume Emission

Some mediums, like a lighter fire, contribute with additional light to a scene.
Energy in the form of a flammable fluid is converted into visible light. The
volume emittance function ε(x) [Watt/m3] describes how much energy is emitted
per unit volume per second. Modeling volumetric light sources can create many
interesting scenes, for instance, a bon-fire at night, but is outside the scope of this
thesis.

Absorption and out-scattering

Photons which travel through a medium may be absorbed by particles in the
medium. The energy of the photons are then converted into other forms of energy,
for example, kinetic energy of the particles. Thick black smoke is an example of
a medium which absorbs most of the photons that pass through. The absorption
coefficient σa(z) has units [1/m] and gives the probability of absorption per unit
distance travelled in the medium.

The photons that travel along a ray may also collide with particles in the
medium and change directions, a phenomenon called out-scattering. The scat-
tering coefficient σs is similar to the absorption coefficient σa, with unit [1/m]. It
gives the probability of scattering per unit of distance travelled in the medium.
Since both absorption and out-scattering reduce the radiance along a ray, we de-
fine the extinction coefficient σt = σa + σs. If the extinction coefficient is uniform
across the medium, the medium is homogeneous. If the extinction coefficient varies,
the medium is heterogeneous.

A photon which travels a small distance ds will have a probability σt ds of being
absorbed or out-scattered. The scatter albedo α = σs/σt gives the probability that
an event is an out-scatter rather than an absorption.

We define the transmittance function τ(x ↔ y) as the fraction of the radiance
that remains after traveling from x to y. The transmittance function is a value

24

Emission

x

y

Absorption Out-scattering

x

y

x

y

x

y

In-scattering

Figure 3.7.1: Radiance in a participating medium may be affected by emission, absorp-
tion, out- and in-scattering.

between 0 and 1, where 0 indicates that no radiance is left or, in other words, that
every photon has been absorbed or out-scattered. By solving for the differential
equation for radiance [DBB06], the transmittance function is

Tr(x ↔ y) = e−
´ s

0 σt(x+tω) dt

where s is the distance in space between the two points, and ω is the direction
between them. For homogeneous media, the extinction coefficient σt is constant,
so the transmittance can be evaluated directly;

Tr(x ↔ y) = e−σts

The reduced radiance due to absorption and out-scattering in the medium can
then be found as

L(x ← ψ) = τ(x ↔ y)L(y→ ψ)

When an out-scattering event happens in a medium, the new direction of the
photon is given by the phase function p(x, ω, ψ). The phase function defines the
probability that a photon which enters in a direction ω will leave in a direction ψ.
Since the phase function is a probability distribution, it must be normalized and
integrate to 1 across the sphere,

∀x, ψ

ˆ
Ω4π

p(x, ω, ψ)dω = 1

If the photon has the same chance of being scattered in every direction, we
say that the medium is isotropic. In an isotropic medium, the phase function can
be found to be the constant 1/4π [DBB06]. An isotropic medium is the volume
equivalent to a diffuse surface. If the phase function is dependent on ω and ψ,
the medium is anisotropic.

Anisotropic phase functions can be used to model more complicated medias
[Jar08]. The Henyey-Greenstein phase function is commonly used to model light
scattering in clouds [HG41]. It has a single parameter g which controls if the
medium is mainly forwards- or backwards scattering. The Schlick phase func-
tion [BSS93] is often used as an approximation to Henyey-Greenstein since it is
cheaper to evaluate. Smaller particles and electrons may scatter light according
to the Rayleigh phase function [Ray71]. Lorenz-Mie [Lor90, Mie08] model particles
of size comparable to the wavelength of light.

25

In-scattering

Just as some photons scatter and change direction along a ray, out-scattered pho-
tons from other rays will enter the current one. The in-scattering is described by
a volume density Lvi(x → ψ) with unit [Watt/m3sr]. In a small distance ds, the
amount of in-scattered radiance is dLi(x → ψ) = Lvi(x → ψ) ds [DBB06].

The volume scattering equation is

Lvi(x → ψ) = σs(x)
ˆ

Ω4π

p(x, ω, ψ)L(x → ω)dω

Finding the in-scattered radiance is the most difficult step, since we need to
take out-scattered radiance from other rays into consideration.

3.7.1 The Radiative Transfer Equation

We have now considered emission, absorption, out-scattering and in-scattering,
and we are ready to consider how these combined alter the radiance in a scene.
The change in radiance at a point x is [JC98]

dL(x → ψ)

dx
= σa(x)Le(x → ψ) + σs(x)Li(x → ψ)− σt(x)L(x → ψ)

where Li(xt → ψ), the in-scattered radiance at xt in direction ψ, depends on
incoming radiance from the sphere of directions Ω4π

Li(xt → ψ) =

ˆ
Ω4π

p(xt, ω, ψ)L(xt ← ω) dω

Radiance transfer in participating media is then described by the radiative trans-
fer equation [Cha60, JNSJ11]. The radiance for a point x in an incoming direction
ψ is

L(x ← ψ) = τ(x ↔ y)L(y→ ψ)

+

ˆ s

0
Tr(x ↔ xt)σs(xt)Li(xt → ψ) dt (3.7.1)

In these equations, y is the closest visible surface point, and L(y → ψ) is the
surface radiance at this point (given by the rendering equation), p is the phase
function, and s is the distance from x to y, i.e. the distance travelled in the
medium.

summary When we want to solve for the radiance in a participating medium,
we consider it to be made up of two terms. The first term is the radiance leaving
the closest visible surface in our direction, multiplied by the transmittance τ. The
transmittance factor covers the fact that some of the photons will be absorbed
or scattered along its flight. The second term and the most difficult to calculate
is in-scattered radiance. In-scattering can happen at every location on the path
between points x and y. Therefore, the RTE (3.7.1) integrates along the path
and accumulates in-scattered radiance at each point, multiplied by the scattering

26

coefficient σs and the transmittance from x to the current point on the path (xt =
x + (−ω)t).

3.7.2 Volumetric Photon Mapping

The photon mapping method was extended by Jensen and Christensen [JC98] to
consider participating media. Volumetric photon mapping stores photons in a
photon map when they scatter in a medium, analogous to photon mapping for
surfaces. Since photon mapping is a surface-based algorithm, some adjustments
to the radiance estimate are required to consider radiance in a 3D volume. The
main difference is that while surface photon mapping uses the projected 2D area
in the estimate (Eq. 3.6.1), volumetric photon mapping uses the full volume
[JC98].

Li(x → ψ) ≈ 1
σs(x)

N

∑
i=1

p(x, ωi, ψ)
∆Φi
4
3 πr3

(3.7.2)

where ∆Φi is the power/flux of the photon, and r is the radius of the sphere
that contains these N photons. Typically, N is set to some limit. We then perform
a nearest-neighbor query to find the closest N photons and estimate the power
density. Since the direction of the photon ωi is stored with each photon, it is also
possible to handle anisotropic phase functions.

One way to estimate the volumetric radiance of a ray is to use ray marching.
Ray marching estimates the integral by small steps ∆s and iteratively adjusts the
radiance. In-scattered and emitted radiance for the current step is computed, and
the radiance from the previous step is reduced due to extinction (out-scattering
and/or absorption). At each step, we must query the photon map to find the N
nearest photons and calculate the in-scattered radiance with (3.7.2).

3.7.3 The Beam Radiance Estimate

Ray marching is costly, especially on GPU architectures. An improvement was
introduced by Jarosz et. al [JZJ08, JNSJ11], known as the beam radiance estimate.

The beam radiance estimate can estimate the radiance for a ray in one single
operation and costly marching is avoided. A ray is extended with a radius to be-
come a beam (Fig. 3.7.2). We can consider all volumetric photons which intersect
this beam directly. An equivalent dual interpretation is that all volumetric pho-
tons are converted into spheres, and each ray is intersected with these spheres. If
the ray intersects the sphere, photon contribution is added to the radiance esti-
mate. The sphere is interpreted as a photon disc perpendicular to the direction of
the ray. A two dimensional kernel is then applied to estimate the density, similar
to photon mapping on surfaces. The radius of each beam (or equivalently, the
radius of each sphere) controls the noise to blur ratio.

27

ψ

R x1

t1

R

x0

t0

R

x0

x1

ψ

x

Figure 3.7.2: A beam (left) and equivalent disc/sphere interpretation (right).

The beam radiance estimate is [JNSJ11]:

L(x ← ψ) =
1

K(r2) ∑
i∈B

p(xi, ωi, ψ)Φie−σtti (3.7.3)

where the sum is over all photons which intersect the beam B (direction ψ
with a radius r), p is the phase function, Φi is the power of photon i, and σt
is the extinction coefficient of the medium. ti is the projected distance from x
to the photon along the ray and can be found using vector projection onto ψ as
ti = (x− xi) · ψ. Finally, K is a kernel to convert into a density, and for cylindrical
beams, we let K(r2) = πr2. The beam radiance estimate is an improvement over
ray marching since we can enumerate every photon sphere which intersects the
ray one time. This is a standard ray-tracing operation, so we can base ourselves
on existing accelerated code to perform intersection tests. Beams also have signifi-
cant quality benefits over marching since every photon is counted. Ray marching
may miss photons if the step size is too large. Finally, noise is reduced since the
blur dimensionality is 2D rather than 3D.

28

3.8 graphics processing unit and cuda

The success of the GPU, short for Graphics Processing Unit, is first and foremost
launched by the fast-growing games industry, which has an unending appetite for
more power. The GPU is a specialized device used for processing and rasterizing
of huge amounts of vertices and triangles at real-time frame rates. It is a many-
core device that specializes on high execution throughput of parallel applications.

Figure 3.8.1: Theoretical GFLOP/s for Nvidia GPU and Intel CPU architectures shows
that the GPU performance has outgrown CPU performance. Graph with
permission from Nvidia [NVI13c].

The GPU surpassed the CPU in theoretical maximum FLOP/second perfor-
mance around 2002-2003 (Fig. ??). The performance of the GPU has increased
much faster than the CPU since - so the gap has grown tremendously. It is ex-
pected that the GPU will get even more powerful in the future. Nvidia claim that
their Maxwell architecture, slated for a release in 2014, will have a speedup in
performance per watt between 2 and 3 [NVI11] over the current Kepler.

The GPU has also surpassed the CPU in number of transistors on the chip. For
instance, the GK104 has 3.5 billion, while an Intel i7 Ivy Bridge has around 1.7
billion. The biggest difference between the GPU and the CPU is how the space
on the chip is divided. The CPU has advanced branch prediction features, in-
struction level parallelism, and a sophisticated multi-leveled cache hierarchy to
overcome the memory wall. These features take a lot of space on the die. Typical
CPUs will consist of 4-8 cores with identical functionality and a multi-level cache.
GPUs are simpler in their structure and are built up with more repeated logic. A

29

GPU mainly consists of an on-chip global RAM memory and an array of identical
streaming multiprocessors, each able to switch between hundreds to thousands
of threads in almost no time. Most of its transistors are devoted to data process-
ing. The GPUs performance stems from the streaming multiprocessors ability to
quickly launch and switch between thousands of threads.

3.8.1 Compute Unified Device Architecture (CUDA)

Using the massive power of the GPU is an emerging trend in high-performance
computing. The GPU is first and foremost a numeric computing engine, so it can-
not be applied for all tasks. The best candidates for GPU optimization inhibits
natural “data parallelism”, where the same operations are done on many (hun-
dreds of thousands to millions) points of data. Preferably, there should be many
arithmetic operations per memory “load” or “store”. A number of areas within
math, finance, medicine, biology and visualization offer problems that exhibit
just this kind of highly parallel nature. These problems can be accelerated to get
a solution in faster time - or the increased efficiency could be used to find a more
accurate/high-resolution solution, for instance, in medical imaging.

In 2007 Nvidia released CUDA to support joint CPU/GPU applications. This
was an important step towards general-purpose programming on the GPU. CUDA
is a programming environment that consists of the NVCC compiler, libraries, IDE
plug ins and useful tools like a debugger and visual profiler. Introductory re-
sources for CUDA information are the C Programming Guide [NVI13c] and Best
Practices Guide [NVI13b] from Nvidia. The reader is also suggested to consult
[Far11] which contain a complete walkthrough of the functionality offered by
CUDA.

3.9 optix

OptiX was introduced by Nvidia in 2010 as a “general purpose GPU-based ray
tracing engine” [PBD+

10]. OptiX is not a full-featured renderer, but a frame-
work which builds upon the observation that most ray-tracing algorithms follow
a similar outline and can be implemented as a user-programmable pipeline of
operations. OptiX focuses on the low-level operations of ray-tracing and avoids
embracing rendering-specific constructs. This philosophy makes OptiX “general
purpose”, capable of solving many problems which follows the same outline. The
creators suggest that OptiX can be used for both interactive and offline rendering
algorithms, as well as other problems like collision detection, artificial intelligence
and scientific simulations. Since OptiX is built on CUDA, it is available for all
systems which have a CUDA-enabled GPU.

OptiX provides many useful features while abstracting away the low-level de-
tails of ray-tracing on a GPU. Therefore, we use it for our implementation in this
thesis.

30

3.9.1 The OptiX pipeline

The OptiX programmable pipeline resembles graphics libraries like OpenGL and
DirectX. The user-programmable units in OptiX are simply called programs.
There are several program types which are executed at different stages of the
pipeline:

ray generation programs are the entry point into the pipeline. Their pur-
pose is to produce rays that are to be traced in the scene. In a rendering
application, the ray generation program will generate the camera ray using,
for instance, a pinhole model. Each ray carries a user-customized payload
structure, like surface attenuation or photon power. This flexible approach
means that the “rays” in OptiX are abstract and can be used for other con-
cepts, for instance, photons in photon mapping. OptiX supports multiple
entry points with connected ray-generation programs.

intersection programs determine if a ray intersects a piece of geometry, and
if so, return useful values like the hit position and surface normal. Inter-
section programs can implement spheres, triangles, quads, cylinders or any
other form of geometry that can be intersected with rays.

bounding box programs return an axis-aligned bounding box of a geometric
primitive. These bounding boxes are used to optimize ray tracing perfor-
mance.

closest hit programs are invoked when the ray has found its closest object in
the scene. They resemble shaders in graphics pipelines and will typically
implement a shading model. Closest hit programs can recursively spawn
new rays to render reflections or refractions.

any hit programs are invoked when it is known that a ray will intersect an
object. They are useful for shadow queries, where we are concerned about
occlusion but do not need to find the closest occluder. They are also useful
if we want to find every object that intersect a ray, but do not care about
their order.

miss programs are invoked if a ray misses all geometry. They can be used to
provide a background color or implement environment maps [Gre86].

selector visit programs can be used to implement more sophisticated scene
traversal schemes. For example, they can be used to implement a level-
of-detail system where the distance to the object determines if a coarse or
detailed model is used.

exception programs are invoked when the engine encounters an exceptional
situation, like a stack overflow during ray-tracing. They are useful for de-
bugging and error reporting purposes.

31

3.9.2 OptiX runtime

OptiX consists of a host-side and a device-side API. The host-side API provides
functions to create and configure the OptiX context, define geometry and materi-
als, create buffers and textures, and finally launch the ray-tracing. The host-side
API is C-based, which makes it available for all programming languages that can
bind to C libraries. There is also a convenient C++ wrapper available.

The device-side API is used by the programs to trace rays, report intersections,
access buffers, and so on. Programs are simply CUDA kernels annotated with
some macros, and then compiled like any other CUDA kernel. The compila-
tion produces a Parallel Thread Execution (.PTX) file, an assembly language for a
low-level parallel virtual machine. PTX provides basic mathematical operations,
memory access and control flow, as well as hardware-accelerated texture accesses.
PTX is defined from the perspective of a single thread, which makes it simpler to
comprehend.

An important part of the runtime is the just-in-time compiler [PBD+
10]. The

JIT compiler takes all the programs defined by the user and performs a set of opti-
mization passes. The optimization passes try to combine the flexibility offered by
OptiX with the performance of a custom-tailored solution. For instance, it tries
to make the scene graph shallower, utilize constant memory for small read-only
data, convert recursion into iteration, and so on.

The compiler takes the intricate nature of GPUs into consideration. The per-
formance of a GPU application can be significantly reduced if there are thread
divergence inside warps, or if only some of the execution units are processing
at the same time. Currently, a monolithic mega-kernel solution [AL09] is con-
sidered the best approach to GPU ray tracing as it minimizes kernel launch
overhead. OptiX will merge different .PTX programs into a single mega-kernel
and use state machines to provide the same functionality. OptiX also provides
fine-grained scheduling of ray-trace launches. The runtime will load-balance ray-
batches across individual execution units using queues. It can also load-balance
across multiple GPUs.

As the architecture of GPUs evolves, the most efficient way to use them will
probably change as well. OptiX is free to improve its runtime while providing
the same pipeline to the developer, since the pipeline generally makes few as-
sumptions about how it is implemented. For instance, the Nvidia Kepler GK110

architecture [NVI12] supports dynamic parallelism, where GPU threads can spawn
new threads without involving the CPU. Dynamic parallelism could provide a
new range of optimizations to further improve the speed of OptiX. So far, it has
been apparent that the OptiX team continuously provides performance improve-
ments with new releases.

32

4
I M P L E M E N TAT I O N

We implemented a renderer, which we call the Opposite Renderer
1, using C++

and the Qt Framework [Qt13]. We use the Visual Studio 2010 IDE and com-
piler, but it should be possible to compile the application for any system which
supports Qt. Opposite Renderer is licensed as open-source project and available
online for anyone to check out, test and improve 2.

The rendering engine was implemented using the OptiX framework [NVI13a],
version 3.0.0. The OptiX SDK contains a minimalistic example on progressive
photon mapping, which was used as a starting point for our implementation.
The sample from the SDK contains two hard-coded scenes and one material type,
and is not optimized for GPU. We have significantly modified and extended it in
many ways.

To summarize its core functions, our Opposite Renderer contains:

• The path tracing and “memoryless” stochastic progressive photon mapping
algorithms, both of which can be executed on multiple GPUs in parallel.

• Diffuse, glass, mirror and textured materials (with support for normal maps),
as well as homogeneous participating media.

• Stochastic effects like anti-aliasing and depth-of-field using a thin lens cam-
era model.

• Object-oriented structure, making it simple to extend the renderer with new
materials or geometry by writing the corresponding OptiX programs.

• An user interface with status information and configurable output settings,
and a viewport where the user can move the camera.

• Proper GPU random number generation using CuRAND [Nvi13d].

• Two GPU-only photon map implementations, Sorted Grid and Stochas-
tic Hash, which offer significant performance increase over a CPU-based
k-d tree implementation.

1 The name is a reference to the Seinfeld episode The Opposite.
2 https://github.com/apartridge

33

https://github.com/apartridge

Figure 4.0.1: A screenshot of our implementation, named Opposite Renderer. The user
interface displays status information and lists every connected GPU. Here,
we render the Conference Room test scene using two GPUs.

• Loading of custom scenes from standard formats like Collada, 3DS and
Blend. Most 3D modelers can export to these formats, including open
source Blender. Geometry, material properties, lights and camera are de-
fined in the 3D modeler and then imported. This makes our implementation
available for others to experiment with.3

The rest of this chapter will focus on the features we implemented directly related
to photon mapping. First, we describe three different implementations of the
photon map. Then, we discuss how we extended the renderer to support partici-
pating media using only the GPU. Finally, we present our distributed multi-GPU
implementation.

4.1 the photon map

The tracing, storage and subsequent gathering of photons is the most expensive
part of the photon mapping algorithm. We consider three implementations of the
photon map. The first option is a CPU-based k-d tree. The other two approaches
are GPU-specialized data structures; a sorted uniform grid and a stochastic hash.
In the results chapter, Sec. 5.3, we present a benchmark comparison of the three
implementations and analyze their performance.

3 We use the Open Asset Import Library (assimp, http://assimp.sourceforge.net/) to import
scenes.

34

http://assimp.sourceforge.net/

4.1.1 Kd-tree

We start by presenting the CPU-based k-d tree implementation from the OptiX
SDK [NVI13a]. A k-d tree is a specialized binary space partitioning tree which
is efficient for nearest neighbor queries. Each node in the k-d tree divides the
space in two along one of the axes. In a balanced k-d tree, each leaf node is the
same distance from the root (plus/minus one level). A balanced k-d tree can be
constructed by placing the root node at index 0, and the children of any interior
node i on position 2i + 1 and 2i + 2. This implementation make parent and child
indices implicitly available from the current node index.

The k-d tree implementation stores all traced photons in a GPU buffer during
the photon tracing phase. Space for a maximum of M photon deposits for each
emitted photon is reserved. Each emitted photon thread owns a part of this buffer
(M elements) in which it stores interactions with non-specular surfaces. When
photon tracing is completed, this buffer is transferred to the CPU. The CPU then
constructs the balanced tree. It rotates between the axes (X, Y or Z) as it recurses
down the tree, and split on the median photon along this axis. All interior nodes
store the axis which the photon splits the space (using a bit flag). The leaf level of
the tree is filled with specially tagged null nodes to simplify photon gathering.

Photon gathering is performed using a thread-local stack. We start at the root
node and recurse down the side which is closest to the query position. If the
splitting plane is closer than the radius r, we must push the far child on the stack
so we can investigate it later. We accumulate the power of all photons within r.
When we hit a leaf or null node, we pop the next node from the stack. Since
each interior node splits the space in half, nearest neighbor search for random
points is O(height) = O(log n). For typical photon map sizes, like 5122, at least
18 lookups are required to find every photon.

The k-d tree is slow to construct on the CPU, and GPU-CPU transfer speeds
add additional overhead. Any kind of tree construction does not naturally par-
allelize to the GPU because of the scattered nature of reads and writes. GPU
implementations have been investigated, for instance by [ZHWG08], but it is not
trivial and requires substantial host-device synchronization. Instead, we opted
to test out two approaches which map better to the GPU, a sorted grid and a
stochastic hash.

4.1.2 Sorted Grid

A uniform grid divides a scene into a 3D-grid of cells (voxels) (see Fig. 4.1.1). A
photon P’s index value Idx(P) is its linear index in this 3D grid. By sorting the
photons based on their index value and creating an offset table, we can find the
first photon in any voxel in constant time and then enumerate all photons in that
cell sequentially.

The algorithm we implemented follows the description of Fleisz [Fle09], which
used it for (non-progressive) photon mapping on the GPU. Fleisz named it a
spatial hash, however, to be precise we choose to denote to it as a sorted grid.

35

0 1

2 3

Scene grid Offset table

0

1

2

3

Sorted photonsHistogram

0 1 32

3 1 0 1

Traced photons

Figure 4.1.1: The sorted grid with five photons in a 2D-scene. The offset table points to
the first photon in any cell.

The idea is not new; for instance, Purcell et al. [PDC+
03] suggested it in 2003,

several years before CUDA and mainstream GPU programming.
We use the Thrust framework [Thr13] to construct the sorted grid. Thrust is

a parallel algorithms library which resembles the C++ Standard Template Library
interface, boosting useful features like sorting and partitioning. We present this
approach, which resulted in a GPU only efficient and easy to implement solution,
over the next subsections.

Finding photon bounding box

The first step is to trace photons and store them in a photon array. This step
is identical to the k-d tree. The initial step of the construction algorithm is to
find the axis-aligned bounding box (AABB) of all photons, so we can calculate
grid indices. The bounding box can be found efficiently using transform_reduce

in Thrust. First, each photon is transformed to an AABB that contains only that
photon. In the reduce step, two AABBs are combined to a single AABB that encapsu-
lates both. The result of the reduction is an AABB that encapsulates the entire scene.
While it is certainly possible to use the scene’s AABB, this approach adopts better
to the situation if photons are deposited in a part of the scene. The reduction
operation was observed to take only a small percentage of the total construction
time.

Calculating indices for each photon

With the photon AABB, we can calculate grid indices for each photon. We can find
the 3D grid index of any point P inside the grid as G(P) = b(P−worldOrigo)/cellSizec.
The subtraction of worldOrigo normalizes the extent of the photons. The 1D index
is

Idx(P) = G(P).x + G(P).y ·GridSize.x + G(P).z ·GridSize.x ·GridSize.y

The number of distinct voxels is N = GridSize.x · GridSize.y · GridSize.z, and the
index values range from 0 to N − 1. We calculate the grid index for each photon
using a simple CUDA kernel with one thread per photon.

36

Sorting the photons

With the one-dimensional grid index for each photon, we need to sort the pho-
tons by this value. We store the grid index for each photon in a separate array;
therefore we use Thrust’s sort_by_key. We found this to be faster than storing
the hash value as a part of the photon structure and sorting photons directly.
However, this is dependent on hardware and also the size of each photon. Since
some of the photons in the photon buffer are invalid (they may have missed the
scene entirely), we move invalid photons to the very end of the photon array
where they can be forgotten.

Offset Table

At this time, we have the photons sorted by their cell. The last required piece is
the offset table. This table gives the offset of the first photon in any cell. First, we
produce a histogram of grid indices; a count of the number of photons that map
to each cell. The simplest approach is to do an atomic addition to a histogram
array when we calculate indices (Sec. 4.1.2). This prevents another pass over the
photons. This approach has good performance since the photons are distributed
among many cells. If many photons map to a few cells, a serialization penalty
can incur.

With a histogram of the grid indices, the offset table is constructed with a prefix
sum (cumulative sum) operation. In Thrust, we use the exclusive_scan function.
We construct the offset table with an added entry at the end, where we store the
total number of photons. This is necessary so that we can find the total number
of photons in the last cell during photon gathering.

Photon Gathering using the Sorted Grid

With the sorted photon array and the offset table, we can find the first photon in
any cell in constant time, and then enumerate every photon in that cell sequen-
tially. We can get the number of photons in any cell by finding its offset in the
photon array, using the offset table, and subtracting that from the offset of the
next cell. Listing 4.1 explains this in code.

During radiance estimation, we need to find all photons within a distance r of
a query point p. We are required to find all cells that intersect a sphere of radius
r placed at p (Fig. 4.1.2). We consider each axis in turn. For the x axis, we can
find xMin and xMax as

xMin = max(0, b(p.x−worldOrigo.x− radius)/cellSizec)
xMax = min(GridSize.x− 1, b(p.x−worldOrigo.x + radius)/cellSizec)

Similarly for y and z. Now we have intervals (xMin, xMax), (yMin, yMax) and
(zMin, zMax) of the grid we need to check for photons. We can exploit the fact
that for sequential x′s, Idx(P) is sequential, and their photons are sequential in
the photon array. This removes one nested loop.

37

0 1 2 3

0

1 p

R

worldOrigo cellSize

4

Figure 4.1.2: The sorted grid investigates every cell which intersects a sphere of radius
R around p.

Listing 4.1 Finding photons in a radius R of a query point p using the sorted

grid.

normPosition := p - worldOrigo;

xMin := max(0, floor(normPosition.x - R)/cellSize));

xMax := min(GridSize.x-1, floor(normPosition.x + R)/cellSize));

yMin := max(0, floor(normPosition.y - R)/cellSize));

yMax := min(GridSize.y-1, floor(normPosition.y + R)/cellSize));

zMin := max(0, floor(normPosition.z - R)/cellSize));

zMax := min(GridSize.z-1, floor(normPosition.z + R)/cellSize));

getHashValue(x, y, z){

return x + y*gridSize.x + z*gridSize.x*gridSize.y;

}

if(xMin <= xMax){

for(y := yMin; y <= yMax; y++){

for(z := zMin; z <= zMax; z++){

hashFrom := getHashValue(xMin, y, z);

hashTo := hashFrom + (xMax-xMin);

offsetFrom := offsetTable[hashFrom];

offsetTo := offsetTable[hashTo+1];

for(i := offsetFrom; i < offsetTo; i++){

photon := photons[i];

if(length(photon.position-p) <= R){

// Accumulate Power of Photon i

}

}

}

}

}

38

The main difference between our approach and Fleisz [Fle09] is that we do not
enforce a relationship between the size of each grid cell and r, the query radius. If
cellSize = r, we must enumerate exactly 33 = 27 voxels; the voxel that contains p
and each neighboring voxel in every dimension. We observed that our dynamic
approach gives better results on our test scenes and hardware. While we may
evaluate more photons due to larger cells, we may also get away with checking
fewer voxels.

Larger scenes where the camera points at a small part would require a denser
grid. It is a good idea to set the cell size to some function f (R), since R is
configured by the user and is scene-dependent. Further investigation is required
to get a better understanding of the impact of the cell size and how it should
be related to R. If memory space is limited, it is possible to use a hash function
instead of linear grid index Idx(P). Each unique value requires an unsigned
integer (4 byte). We typically use 1003 to 1503 voxels in our test scenes, which is
4MB to 13MB of overhead memory.

An important observation is that the uniform grid approach used naively will
introduce bias. Since each emitted photon tracing thread has some maximum
limit of deposited photons M, there is a possibility that we may run out of space
for photon deposits. In our test scenes, we usually use M = 4, so any photon
which bounces more than five times will be dropped from consideration. Since
only a fraction of the photon power is left after 5 surface interactions on our
scenes, the dropped photons contribute little to the overall image. But this is
very scene dependent - a closed room with bright surfaces would require a larger
limit. Russian roulette can be useful to stop infinite paths and keep the photons
at about the same power. One possible unbiased solution is to maintain a small
overrun buffer with an atomic counter, and write to this buffer when we reach
the limit. This overrun buffer will then have to be considered during radiance
estimation. While it is important to stay below M deposits per emitted photons,
we do want to keep M as small as possible, since each extra photon requires
space and will have to be handled later.

4.1.3 Stochastic Hash

The second photon map we implemented is a stochastic hash based on ideas
presented by Hachisuka and Wann Jensen [HJ10]. It shares some similarities with
the sorted grid; we divide the scene into a Cartesian grid of voxels. The differ-
ence is that we stochastically store a single photon per voxel in a separate hash
table (Figure 4.1.3). This effectively removes the need for any post-processing
(sorting) of photons.

During photon tracing, we calculate the hash value for the photon directly,
running the grid index through a hash function. We then store the photon into
the hash table directly. Every photon in the same voxel will have the same hash
value. In practice, many photons belong to the same voxel, and therefore map
to the same hash table entry. Under the assumption that photon tracing is a
random process, the authors suggest we can write to the photon map without
synchronization. In the end, a random photon has survived. This is why this

39

0 1

2 3

Scene grid Hash function Stochastic hash table

H

Figure 4.1.3: Stochastic hash. The grid index is passed through a hash function to
find the hash table index. When multiple photons map to a single index, a
random photon survives and the power is scaled by the number of collisions.

approach is named a stochastic hash. In order to remain consistent, we must keep
a count of how many photons n map to each hash table entry. The power of the
photon is then scaled by n. We can find n with an atomic increment operation.
To simplify the gathering process, we let the side length of each voxel equal the
radius of the photon gathering.

The main difference between stochastic hash and the sorted grid is that
the stochastic hash stores a single photon in each hash cell. We do not have
to sort any photons, since we write directly to its correct position in the hash
table during tracing. There is no added space requirement beyond the hash table.
The size of the hash table can be set to the number of emitted photons or 2-4
times larger to reduce collisions. It is advantageous for the hash table size to be a
power of 2 to avoid an expensive modulo in the hash function. The need for the
offset table is removed, since the photon stored in a voxel can be found directly
in a single lookup. Stochastic hash increase variance, like any Russian roulette
technique, since most of the photons are simply ignored. This introduces some
noise to the final image.

4.2 participating media

This section will describe how our GPU renderer was extended to support par-
ticipating media (Sec. 3.7). The beam radiance estimate [JNSJ11] (Sec. 3.7.3) was
chosen because of its simplicity: it requires few extensions to our existing frame-
work and OptiX can do much of the heavy lifting. Our implementation currently
supports heterogeneous media, where the properties of the medium are constant.

A photon in a participating medium may be absorbed, it could change direc-
tion, or it may pass unaffected trough. A medium with a high extinction coef-
ficient (σt = σs + σa) has increased probability that the photon is affected by an
event. The average propagation distance in the medium before an event can be
found as [JNSJ11]

tE =
−log(ζ)

σt
(4.2.1)

where ζ is a random number between 0 and 1.

40

1

2
3

4

5

6

Participating medium

tE

tE

Figure 4.2.1: The life of a photon in a participating medium. 1. Photon enters medium
and an event distance tE is sampled. 2. Nothing obstructs the photon, so it
is stored in the volume photon map and scattered in a random direction. A
new event distance tE is sampled. 3. Photon leaves the medium before tE. 4.
Photon is reflected off an diffuse object. 5. Photon re-enters medium, and
a third event distance is sampled. 6. The life of the photon ends when it is
absorbed by an object inside the medium.

When a photon enters a participating medium at a point x (Fig. 4.2.1) we sam-
ple a random event distance tE using (4.2.1). The photon will then continue for a
maximum distance tE. If the photon leaves the medium or collides with another
object between x and xtE = x + ωtE, it is not affected by the medium. Otherwise,
we let an event happen at xtE . The scatter albedo α = σs/σt gives the probability
that the photon is scattered rather than absorbed. The photon path can be ended
using Russian roulette (Sec. 3.1.3), or we may scale the photon power by α. In
case of a scatter event, we store the photon in the volumetric photon map. Finally,
we find the scattered direction by sampling the phase function at xtE . The pho-
ton is then redirected in the scattered direction and the same procedure happen
recursively.

Each photon in the volumetric photon map is interpreted as a sphere with a
radius R. We use the stochastic hash data structure for volumetric photons. A
hash function is applied to find the index. We then write into the table randomly.
In order to scale photon powers correctly, we atomically increment a counter
per hash cell. A stochastic approach is unbiased and the only viable option for
volumetric photons due to the unpredictable nature of volume scatter events.

We model a volumetric region as an axis-aligned box (AAB). The box is con-
nected to two closest-hit programs for photon and radiance rays (Appendix C).
Since this volumetric box typically covers the entire scene, we need to support
geometry inside this volumetric region. Each time a scatter event has happened
at a position x, we need to sample a new event distance tE from x (Eq. 4.2.1).
Furthermore, each time a photon is reflected off a surface inside the volumetric
region it should immediately “enter” the medium at t = 0. The intuition is that
the medium is “everywhere” in the scene. Naive ray-tracing will not capture this
since the ray is actually in the middle of the volumetric AAB that represents the
volumetric region. If the scene is a closed room completely inside the volume, we

41

would never intersect the volume geometry. We need to modify the intersection
program of the volumetric AAB so that it reports an immediate intersection at
t = 0. We can then sample an event distance tE at this point.

We found the simplest approach was to have an additional “ray in participating
medium” ray-type. If the ray is of the standard type, the intersection program for
AAB’s report an intersection at t = 0 . Otherwise, the intersection program
reports the distance to the outer perimeter of the AAB (as usual). The second ray
type is used when we know that we are inside the medium, i.e. when we have
sampled a distance tE and are tracing towards tE to see if we hit any objects or
leave the medium. Clearly, in that case we do not want to keep re-intersecting the
medium at t = 0. Both ray types are connected to the same closest hit programs,
so this adjustment is transparent for most material types.

We turn volumetric photons into spheres using OptiX’s support for custom
geometry. The photons are organized in a bounding volume hierarchy, which
OptiX can rebuild quickly on the GPU. We use the MedianBVH builder, which
offers a good compromise between construction time and quality. Photon spheres
are kept in a separate acceleration structure. To gather volumetric radiance along
any ray, we simply find every sphere that intersects that ray using regular ray
tracing. Since we do not have to evaluate the photons in any particular order, we
implement the beam radiance estimate (Eq. 3.7.3) in an OptiX any-hit program. If
we call rtIgnoreIntersection in the program, OptiX enumerates every photon
which intersects the ray in the most efficient order.

Since the blur in the beam radiance estimate is two-dimensional, we use a
similar sequence of Ri as for surface photons; Ri+1 = Ri

√
i+α
i+1 [JNSJ11]. The

initial radius R0 can be different than surface R0, which allow us to control the
amount of blur on surfaces and in volumes independently.

4.3 parallel rendering

After we spent time optimizing performance of progressive photon mapping on a
single GPU, the next step is to utilize several GPUs. Most modern motherboards
have support for 2 or 3 GPUs connected to the system over the PCI-Express bus.
It would be highly desirable to utilize every GPU available on the system to speed
up the rendering process. As we have seen in the background chapter (Sec. 3.6.2)
the new memoryless PPM algorithm is well suited for parallelization, since each
iteration can be performed completely independent of any other.

4.3.1 Multiple GPUs using Nvidia OptiX

OptiX has built-in support for multiple GPUs, and the user is able to specify
which devices should be used. OptiX will schedule launches on the available
GPUs and distribute the load. In fact, the details of the kernel launch are invisible
to the developer, which simplifies development at the cost of absent low-level
control. If multiple GPUs are enabled, buffers are stored on the host and shared
between the GPUs. This will drastically slow down any multi-GPU algorithm

42

which is very dependent on writing and reading buffers. The PPM algorithm
uses buffers for photons and acceleration structures.

Additionally, ray trace launches in OptiX are synchronous, which prevents us
from starting multiple launches in parallel. Even if they were asynchronous, Op-
tiX does not provide low-level control to set which device is to be used. Using
raw CUDA would give us the necessary level of control; however, forfeiting Op-
tiX’s other useful features would be a major setback.

Some time and effort was spent on trying to do single-process multiple-GPUs
in OptiX. One option could be to do multiple threads, where each thread man-
ages its own OptiX context. However, OptiX is not thread-safe, so this approach
is not viable.

In summary, OptiX simply does not provide enough level of control for us to
use multiple GPUs efficiently.

4.3.2 Distributed multiple-GPU rendering

The next step is to do multi-process distributed rendering4. The idea is to have
a single process per GPU and let multiple processes communicate using sockets.
Using a multi-process approach, the GPUs could be a part of the same system,
or, in fact, they could be physically separated nodes. Taking it one step further, a
distributed system could be used to offload rendering to a cluster of GPUs.

4.3.3 Architecture

At this point, we separated our implementation into several components;

embedded is a version of the renderer which supports one GPU at the time.
The render engine is embedded in the application, in the sense that there is
no network communication overhead.

server responds to requests from a client and performs rendering on a single
GPU. On multi-GPU systems there is would be one server process running
per GPU.

client can connect to multiple servers over the network and distribute the ren-
der process. The client has a GUI with status information about each
connected server, and a preview of the rendered image.

These are different executables with large amounts of shared functionality, includ-
ing the core OptiX-based renderer and parts of the user interface. We implement
the render engine and GUI as shared libraries. Qt [Qt13] is extensively used for
GUI, multi-threading and inter-process communication.

4 Here, distributed refers to parallel ray tracing over a network. Distributed ray tracing is an
overloaded term which can also refer to rendering soft phenomena like anti-aliasing and depth
of field.

43

Client

Server

RenderClient

RenderResultReceiver

RenderServerConnection

RenderRequest

RenderServer

RenderResultPacket

RenderServerRenderer

ClientWindow

Figure 4.3.1: A client-server communication flowchart.

4.3.4 Distributing the Progressive Photon Mapping algorithm

We distribute progressive photon mapping (PPM) as described in Sec. 3.6.2. In
summary, we can take the average of all iterations 0, 1, ..., k, where each iteration
has a specified radius Ri used in the radiance estimate. The parallel algorithm
has many advantages we exploit in our implementation;

• There is no dependency between iterations, so we can render them in par-
allel.

• We can combine several iterations into a single “packet” as long as we do a
proper weighted average.

Right off the bat, some challenges present themselves;

• The client and server will need to communicate using a protocol in order
to perform the rendering.

• Large amounts of data will be transferred between the entities. Network
latency will pose a challenge as to maximize the performance and keep
every GPU fed on work.

• When the user moves the camera or adjusts other parameters, we should
take these changes into account as soon as possible.

The client can connect to a number of server processes, where each server

is in control of a single GPU. On a single computer with dual GPUs, two server

processes are started and configured to listen at specified ports. The client can
then connect to the servers.

When the user wants to render an image, the client sends RenderRequests to
all its connected servers. A RenderRequest contains the necessary data describ-
ing the rendering task: scene file name, camera properties, and image width and

44

42... 46 47 48 49 50 56 57

Out-of-order RenderResultPacket arrives

46 47 48 49 50 56 5742...

46 47 48 49 50 56 5742... 43 44 45

42... 46 47 48 49 5043 44 45
56 57

50... 56 57

Expected RenderResultPacket arrives

Front Buffer Back Buffer

Figure 4.3.2: Arriving packets are first merged into the back buffer. If possible, the back
buffer is merged with the front buffer and the iteration number forwarded.

height. The request also contains a list of N iteration numbers and their corre-
sponding PPM radii, Ri. In a single packet, the iterations are always sequential j,
j + 1, ... , j + N to simplify processing later. We use Qt’s QDataStream to serialize
and unserialize data for network transfer.

When a server receives a RenderRequest on its network socket, it will perform
the rendering procedure for each iteration in the request, using Ri as the radii in
photon mapping. The packet contains a list of N iterations. We take the average
rendered image of these and return the result as a RenderResultPacket. The size
of a RenderResultPacket is an image-sized float3 array plus some header bytes.
For a 1280x720 pixel image, this is about 10.5 MB.

Upon reception of a RenderResultPacket, the client must combine this packet
with others and update the rendered image. To ensure correctness of the PPM
algorithm, after any iteration i the radii sequence R0 to Ri must be used in photon
gathering. Since this is a distributed computation, results are likely to come back
out-of-order. Keeping two separate buffers, a front and back buffer, is necessary.

The front buffer contains the rendered image for the current iteration i. The
back buffer, in a sense, represents iterations > i computed ahead of time; waiting
to be merged with the front buffer. Each time we receive a RenderResultPacket,
we initially add it to the back buffer (Fig. 4.3.2). We keep the packets in the
back buffer sorted on iteration numbers. First, two and two adjacent packets are
compared to see if they are neighbors (consists of sequential iteration numbers).
If so, we merge these two packets, taking the average weighted by the number
of iterations in each packet. Finally, we try to merge the first packet in the back
buffer with the front buffer. If the front buffer is updated, the iteration number
of the algorithm is forwarded and we refresh the render on the screen.

45

This approach will bring iterations into the front buffer as soon as possible.
Since we continuously merge packets in the back buffer, so that packets contain
the longest possible sequence of iteration numbers, memory overhead is kept as
low as possible. We rarely reach more than 50-60 MB of back buffer data, even
after hours of rendering.

If one GPU is lagging behind, newer packets from other GPUs will fill up in
the back buffer. When the missing iterations finally show up, a leap in iteration
number can be observed. The consequence is that the time between updated
previews, as well as performance indicators, will vary. When rendering detailed
and complicated scenes, it is not a problem; we want a progressive update at
regular intervals, for instance, at least every five seconds, so we can evaluate the
quality and optionally stop.

To maximize GPU efficiency, they should be fed on work at all times, even as
requests and results are in transit. We let the client send multiple RenderRequests
to each server. Upon reception, the server pushes these requests to a queue. A
dedicated render thread pulls new requests and executes them as they arrive.
The client keeps on sending new requests for every response, to keep the server
queue non-empty.

Each time a setting is adjusted or the camera is moved, we need to restart the
render process. We keep a sequence number which we increment each time we
restart. The sequence number is attached to every RenderRequest so the packet
can be properly identified. When we move the camera, change the scene, or do
other adjustments, the image should be updated as soon as possible. Since each
server can have a long queue of pending requests, we need to “flush the pipe”
and drop all iterations which belong to an outdated sequence number. When the
sequence number is incremented, we immediately send RenderRequests to each
server, to notify them about the change. If a server receives a request with an up-
dated sequence number, it will forget old requests as soon as possible. Since ren-
dering a packet may take many seconds, we check if the current packet has gone
stale before iteration execution. Still, it will take some time for these messages to
reach the servers and then come back. Unfortunately, there is a noticeable latency
before the new image is rendered. A possible optimization is to use a local GPU
to render the first frames of a new sequence.

46

5
R E S U LT S A N D A N A LY S I S

This chapter will present results we discovered during this thesis. Rendered im-
ages of our set of benchmark scenes are presented. The performance of the three
different photon map implementations we support is analyzed. Subsequently,
we benchmark our scenes on three graphics cards, including the recent Nvidia

Tesla K20. Finally, the performance increase offered by our distributed, multi-
GPU implementation is investigated.

5.1 our test scenes

We test our implementation on four different scenes. The purpose of the scenes
is to demonstrate global illumination effects; light reaching areas and corners of
the scenes which are difficult to capture. The last scene contains a participating
medium which creates some very interesting volumetric effects. Several scenes
are employed to stress our implementation under varying conditions. Table 3

contains scene statistics and parameters.

cornell box The Cornell Box (Fig. 5.1.1) was first created by Donald Gold-
berg and students at Cornell, and presented in a paper on diffuse reflections
[GTGB84]. It consists of an open box with two colored side walls. Boxes and/or
spheres inside the box demonstrate inter-reflections. The simplicity of the Cor-
nell Box has made it the most widely adopted test scene for rendering applica-
tions. We created our own version of the box with a number of different sized
cubes, a mirror sphere, and a glass sphere.

conference room The Conference Room (Fig. 5.1.2) is another classical
scene, modeled after a real conference room at Lawrence Berkeley National Lab-
oratory. The original model was created by Anat Grynberg and Greg Ward circa
1991. We use a version remodeled by Kenzie Lamar1 with some adjustments
(fixed inwards-facing normals and moved some geometry). The Conference

Room is a medium-sized scene with Lambertian (diffuse) surfaces only. The
room is lit from eight area light sources on the ceiling, as well as a red point light
behind the exit sign.

1 Model downloaded from the Morgan McGuire’s Computer Graphics Archive, http://graphics.
cs.williams.edu/data.

47

http://graphics.cs.williams.edu/data
http://graphics.cs.williams.edu/data

scene triangles ppm radius R0 resolution σs σa

Cornell Box 17 600 0.02 1024× 768 0 0

Conference Room 324 000 0.02 1280× 720 0 0

Sponza 408 000 0.08 1280× 720 0 0

Disco Room 70 840 0.033 1280× 720 0.05 0.01

Table 3: Scene information and parameters used for the presented rendered images.

sponza Our third scene is a model of the Sponza Palace in Dubrovnik (Fig-
ure 5.1.3). This scene was initially created by Marko Dabrovic as an entry in a
rendering contest. Over the years it has reached widespread adoption by the
community. We use a version of the scene created by Frank Meinl at Crytek 2.
Meinl’s version consists of more textures and geometry, making it more colorful
and interesting. We illuminate the Sponza Atrium by a distant point light source
to approximate the sun. It is a relatively large scene, so many photons are needed
to illuminate its darkest corners.

disco room Our last scene, Disco Room (Fig. 5.1.4), is the only one in this
set which demonstrates a participating media. We modeled a simple room with
an open back wall. The room is illuminated from 5 colored spot lights hanging
from the ceiling. The entire room is covered by a fog, and light scattering between
lights and the fog is particularly visible against the black background. The fog
is approximated as a diffuse, homogeneous medium covering the room. A spot
light focused on a glass sphere create an interesting volumetric caustics effect.
This is one example of a scene which is very difficult to render with unbiased
methods; however, with photon mapping and beam radiance estimate we get
nice results rather quickly.

5.2 test bed

We test our system on up to three computers simultaneously. Our primary pair
is identical; they have a MSI Z77A-G45 motherboard with an Intel I7 3770 Ivy
Bridge 3.40 GhZ processor, 32GB of RAM and a 1200 Watt power-supply. The
third machine has 16GB of RAM and an 850 Watt power supply. In all cases we
test on the Windows 7 64-bit OS. The computers are connected together via a
gigabit Ethernet switch.

Three different graphics cards are employed in our benchmarks. Nvidia Tesla

C2070 and the Nvidia Geforce GTX 480 were released in 2010. Nvidia Tesla

K20 was released in the end of 2012. Specifications for these cards are listed in
Table 4.

2 Model released to the public by Crytek. http://www.crytek.com/cryengine/cryengine3/

downloads

48

http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads

Figure 5.1.1: Cornell Box. Rendered with slight depth-of-field. Large image: a reference
image to demonstrate a noise-free result, taken after 70 500 iterations (using
2 GTX 480 for 3h43m). With 10242 emitted photons per iteration, a total of
74 billion photons have been emitted. Small images, from left to right: 10

iterations, 50 iterations, 200 iterations, 1000 iterations, and reference. After
1000 iterations the overall image is of high quality, albeit some noise can
be observed up close. We render 1000 iterations using progressive photon
mapping in less than 1 minute on 6 Nvidia GTX 480’s concurrently.

49

Figure 5.1.2: Conference Room. This scene is modeled using diffuse materials exclu-
sively. Eight square light sources on the ceiling produce realistic interior
lighting and multiple shadows. The closest chairs are slightly out of focus.
Large image: taken after 45 500 iterations of progressive photon mapping
(a total of 47 billion emitted photons), using 2 GTX 480 for 4 hours. Small
images, from left to right: 10 iterations, 50 iterations, 200 iterations, 1000

iterations, and reference. Even after 1000 iterations, noise is still prominent,
especially on the ceiling. A few thousand iterations are required to get close
to noise-free results. We render 1000 iterations in about 1 minute 45 seconds
on six Nvidia GTX 480.

50

Figure 5.1.3: Sponza. Large image: taken after 353 000 iterations (370 billion emitted
photons), using 2 Nvidia GTX 480 for almost 18 hours. Small images, from
left to right: 10 iterations, 50 iterations, 200 iterations, 1000 iterations, 2000

iterations, and 353 000 iterations. Notice the direct sunlight burning on
the courtyard, reflecting and reaching the interior hallways. Also, appreci-
ate the soft shadows behind the colored banners, and subtle color bleeding
onto the pillars. The inner hallways, including the lion face and shield, are
illuminated exclusively by indirect illumination. Even after 2000 iterations,
there is still noise in these challenging regions. Using 6 GTX 480’s we can
render approximately 1000 iterations per minute.

51

Figure 5.1.4: Disco Room. Large image: Taken after 208 100 iterations (218 billion emit-
ted photons), using 3 Nvidia GTX 480 for almost 19 hours. Small images,
from left to right: 10 iterations, 50 iterations, 200 iterations, 1000 iterations,
3000 iterations, and 208 100 iterations. This scene contains an homoge-
neous diffuse participating medium to model a fog. Light scattering is more
intense near the light sources. Volumetric effects are particularly visible
against the black background. An interesting volume caustic is formed under
the glass sphere, reflected in the mirror as well. In early iterations of the
algorithm, blur in circular patterns is a problem due to large beam radii.
Even after 3000 iterations, 9 minutes of rendering with six GPUs, we have
not reached razor sharp light boundaries.

52

Figure 5.1.5: Disco Room. Top: volumetric radiance contribution only (12 000 iterations).
The volume caustic (which is self-reflected in the glass sphere) is quite re-
markable in this image. The different colored spot lights are more distinct
as well. Bottom: only surface radiance. The final image (Figure 5.1.4) is the
sum of these contributions.

53

card cuda cores core freq . global ram peak performance

GeForce GTX 480 448 700 MhZ 1536 MB GDDR5 1.35 TFLOPS

Tesla C2070 448 575 MhZ 6144 MB GDDR5 1.03 TFLOPS

Tesla K20 2496 705 MhZ 5120 MB GDDR5 3.52 TFLOPS

Table 4: Specifications for our test bed of graphics cards. Source: Wikipedia list
of Nvidia GPU specifications. http://en.wikipedia.org/wiki/Comparison_of_

Nvidia_graphics_processing_units.

5.3 photon map performance

In a photon mapping implementation, creating and accessing the photon map
will account for a large chunk of the total computation time. In this section, we
compare the three photon map implementations we presented in Sec. 4.1: k-d
tree, sorted grid, and stochastic hash.

This benchmark is performed on the Cornell Box using Nvidia Tesla C2070.
We measure the time it takes to trace photons, construct the photon map, trans-
fer any data necessary between CPU and GPU, and finally perform the indirect
radiance estimate (photon gathering). Note that ray tracing and direct radiance
estimation will take a chunk of the render time per frame as well. We test with
both 5122 and 10242 emitted photons per iterations, as the number of photons is
directly related to the time it takes to construct the photon map. For sorted grid

and k-d tree, each emitted photon can be stored up to four times. In sorted

grid the scene is divided into 1003 voxels. Measurements are done using Nvidia

Visual Profiler. The reported timings are the average between iterations 200

and 204.
Fig. 5.3.1 illustrates the performance difference between the three compared

photon map implementations. Table 5 contains measured timings.

Part of algorithm
k-d tree Sorted Stochastic k-d tree Sorted Stochastic

5122 emitted photons/iteration 10242 emitted photons/iteration

Photon tracing 90.32 89.47 88.34 351.59 351.75 347.34

Photon map construction 163.50 14.51 0.00 723.10 38.36 0.00

GPU-CPU transfers 30.52 0.00 0.00 121.39 0.00 0.00

Photon Gathering 19.33 4.36 16.41 38.45 12.59 18.02

Other 43.50 39.83 40.79 40.40 39.95 41.40

Total 347.16 148.17 145.56 1274.93 442.65 406.76

Table 5: A benchmark of photon map construction and photon gathering for k-d tree,
sorted grid and stochastic hash. Timings are in milliseconds.

54

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

0 50 100 150 200 250 300 350

Stochastic

Sorted

K-d tree

145.56

148.17

347.16

Execution times per part, 5122 photons per iteration

0 200 400 600 800 1,000 1,200

Stochastic

Sorted

K-d tree

406.76

442.65

1,274.93

Execution times per part, 10242 photons per iteration

Photon tracing
Photon map construction
GPU-CPU data transfers

Photon gathering
Other

Figure 5.3.1: A stacked bar plot with timings (in milliseconds) for each part of the pro-
gressive photon mapping algorithm.

photon tracing There is (as we can observe) minimal performance differ-
ence in the photon tracing phase. Stochastic hash stores photons directly to a
hash table of size equal to the number of emitted photons (5122 and 10242). For
the other two the photon buffer is four times as large, since each emitted photon
may be deposited four times. The hash-based implementation must atomically
increment a counter per hash entry, but since this is run among entries in parallel,
the penalty appears to be small.

photon map construction Since stochastic hash stores its photons di-
rectly to the hash table, the need for a construction phase is avoided entirely.
Sorted grid and k-d tree require post-processing of photons to arrange them
for gathering. Our measurements show that sorted grid boosts superior con-
struction performance due to its GPU-only implementation. At 5122 photons per
iteration, it is about 13.3 times faster to construct. When we increase the photon
count by 4, to 10242 emitted photons per iteration, the speedup increased to a fac-
tor 22.0. This is not surprising, since the construction algorithm is well-suited for

55

execution on the GPU. Just the transfer of photons from the GPU to the CPU and
back takes more than twice as much time as the entire sorted grid algorithm.

We observe that about 78% of the time in sorted grid construction is spent on
sorting photons. Therefore, we believe this algorithm will be accelerated further
as GPU sorting performance increases. Since we use Thrust for sorting, we’ll
benefit from all future optimizations in its sorting kernels.

photon gathering The performance of photon gathering is also important,
and should be weighed against the time it takes to construct the photon map.

A surprising observation is that in our implementation, sorted grid performs
best, it even outperforms stochastic hash. We believe the main reason for
this behavior is related to the size of each voxel. Since stochastic hash uses a
voxel width equal to the gather radius, it must enumerate 27 hash table entries,
the neighbors in all dimensions. Sorted grid can use a larger volume of each
cell so that, on average, fewer cells must be investigated. The algorithm will
enumerate every photon in every voxel that intersects the sphere of the photon
search. Obviously, only a fraction of these photons may be within the radius
and actually contribute. On the other hand, since photons in the same voxel are
stored sequentially, the GPU can efficiently stream the data. It is also likely that
the L1 and L2 caches on the GPU will mitigate this penalty.

In any case, k-d tree traversal is the slowest alternative. K-d tree gathering
is based on a stack-based traversal, generally considered efficient for nearest-
neighbor queries on the CPU. The number of reads is at least the height of the tree,
and probably more. In our benchmarks, the tree is 20-22 levels high. Furthermore,
these reads are spread out across the entire photon array. This pattern of scattered
reads is not ideal for the GPU.

summary We have analyzed two implementations, sorted grid and stochas-
tic hash, both of which outperforms the k-d tree based implementation from
the OptiX SDK by a landslide. These improved photon maps significantly acceler-
ate the photon mapping algorithm. Stochastic hash has the lowest construction
time; in fact, it does not require any processing after the tracing phase. Sorted

grid must sort photons, which does take some time, but the gather step is a bit
faster and, most importantly, the end results suffer from less noise. Therefore,
sorted grid is our preferred choice for surface photons. Stochastic hash is
the best choice for volume photons since it can handle any number of photon
deposits without introducing bias.

It may be possible to optimize both k-d tree and stochastic grid traversal, for
instance, looking at shared or texture memory, but it may require functionality
currently not available in OptiX. We have not investigated this matter further,
since we discovered that the sorted grid is both fast to construct and fast to
traverse. The overhead of construction and gathering is only a fraction of the
entire render process.

We believe the sorted grid is more viable with recent advances in GPU archi-
tecture, and the availability of optimized sorting libraries like Thrust. Stochas-

56

tic hash may suit older, more pipelined graphics cards better. Stochastic hash

is more practical to implement if we are limited to graphics shaders.

We conclude from our measurements that photon tracing is a major bottleneck.
When emitting 10242 photons per iteration close to 80% of the time is currently
spent on tracing photons. Since each emitted photon is sent in a random direc-
tion from a random light in the scene, inter-warp coherency is low. It might be
possible that OptiX sub-optimally schedules photons across stream processors in
this scenario. Unfortunately, there is no end-user control over how threads are
launched, so we are prevented from investigating this matter further. We present
some other ideas to improve this situation in the chapter on future work.

5.4 single gpu rendering

We test rendering performance on our benchmark scenes using three different
graphics cards: Nvidia GTX 480, Nvidia Tesla C2070 and Nvidia Tesla K20

(Table 4). We emit 5122 and 10242 photons per iteration, using the sorted grid

photon map implementation with 1003 voxels. We use four shadow samples
per pixel in the direct radiance estimate. These measurements do not include any
start-up time, nor the time it takes to construct the scene, transfer geometry, build
the acceleration structure, and so on. We restart the render process a couple times
to prevent “cold start” bias. Measurements are done after 200 iterations of the
algorithm, at which point we calculate the number of iterations per second (over
the entire interval). The reported numbers are the average of four individual
runs.

Absolute and relative performance for our cards is presented in Fig. 5.4.1. The
Tesla C2070 performs a bit slower than GTX 480 on all our scenes. These are
cards of a similar generation; however the Tesla is operating at a lower clock
rate which accounts for some of this difference. Overhead related to ECC (Error
Correcting Code) on the Tesla may also decrease render performance. We are not
exploiting the C2070’s extra memory capacity since our scenes are well within
the 1.5GB limit of GTX 480.

The Tesla K20 is demonstrated to offer a speedup of 1.55x to 2.10x over Tesla

C2070 on our scenes. This is less than the theoretical FLOPS increase offered
by Tesla K20 (about 3.4x). It is possible that OptiX does not take full advan-
tage of K20’s new hardware features, like dynamic parallelism [NVI12]. Since
thread launches are handled by OptiX and not the developer, we are unable to
experiment with other choices of grid and block dimensions.

We see that performance is closely related to the image resolution, the complex-
ity of the scene (the number of triangles), the number of lights, and the presence
of participating media. Cornell Box is the fastest scene to render since it has the
lowest resolution and triangle count. Conference Room is a bit slower to render
due to the number of lights (many lights decrease GPU warp efficiency in the
photon tracing phase). Disco Room is the slowest scene due to the participating
medium effects.

57

0

3

6

9

12

6.
79

6

3.
03

6

3.
73

5

2.
53

3

8.
62

4

3.
93

9

5.
16

9

3.
25

5

11
.7

60

5.
48

1 7.
75

4

4.
98

6

It
er

at
io

ns
/s

ec
on

d
5122 photons per iteration

Cornell Box Conf. Room Sponza Disco Room

0

1

2

1.
00

1.
00

1.
00

1.
001.

27

1.
30 1.
38

1.
28

1.
73 1.
81 2.

08

1.
97

R
el

at
iv

e
pe

rf
or

m
an

ce

0

2

4

2.
23

4

1.
20

6 1.
97

0

0.
78

1

2.
92

3

1.
58

0

2.
76

0

0.
99

1

3.
46

5

2.
19

3

4.
15

0

1.
54

8

It
er

at
io

ns
/s

ec
on

d

10242 photons per iteration

Cornell Box Conf. Room Sponza Disco Room

0

1

2

1.
00

1.
00

1.
00

1.
001.

31

1.
31 1.
40

1.
271.

55 1.
82 2.

11

1.
98

R
el

at
iv

e
pe

rf
or

m
an

ce

Tesla C2070 GeForce GTX 480 Tesla K20

Figure 5.4.1: Graphs with absolute performance (iterations/second) in top plot, and rela-
tive performance in bottom plot.

58

GPUs
After 200 iterations After 1000 iterations

Iterations/sec Speedup Efficiency Iterations/sec Speedup Efficiency
C

o
r

n
e

l
l

Bo
x 1 2.89 1.00x 1.000 2.92 1.00x 1.000

2 5.77 1.99x 0.997 5.83 1.99x 0.997

3 8.15 2.82x 0.940 8.56 2.93x 0.976

2 + 2 = 4 10.93 3.78x 0.945 11.29 3.86x 0.966

2 + 2 + 2 = 6 15.38 5.32x 0.886 16.84 5.76x 0.960

C
o

n
f
e

r
e

n
c

e 1 1.58 1.00x 1.000 1.59 1.00x 1.000

2 3.13 1.98x 0.992 3.16 1.99x 0.993

3 4.58 2.90x 0.966 4.70 2.95x 0.984

2 + 2 = 4 6.04 3.82x 0.955 6.20 3.89x 0.974

2 + 2 + 2 = 6 8.66 5.48x 0.913 9.12 5.73x 0.955

Sp
o

n
z

a

1 2.75 1.00x 1.000 2.76 1.00x 1.000

2 5.41 1.97x 0.985 5.48 1.99x 0.993

3 7.78 2.83x 0.944 8.03 2.91x 0.970

2 + 2 = 4 10.35 3.77x 0.942 10.84 3.93x 0.982

2 + 2 + 2 = 6 14.29 5.21x 0.868 15.71 5.69x 0.949

D
i
s
c

o
R

o
o

m

1 0.99 1.00x 1.000 1.01 1.00x 1.000

2 1.97 1.98x 0.992 2.01 2.00x 0.999

3 2.83 2.85x 0.951 2.96 2.94x 0.980

2 + 2 = 4 3.75 3.78x 0.946 3.92 3.89x 0.973

2 + 2 + 2 = 6 5.41 5.46x 0.909 5.77 5.73x 0.955

Table 6: Multi-GPU render performance in iterations per second (using Nvidia GTX 480),
as well as speedup and efficiency metrics on our set of benchmark scenes.

5.5 multi-gpu rendering

Our implementation is able to execute the progressive photon mapping algorithm
using several GPUs at the same time. We implemented a distributed approach
using network sockets. First, we investigate the performance on a single system
with three Nvidia GeForce GTX 480. We find it interesting to measure single-
system performance with multiple GPUs, since this is a home-friendly and eco-
nomic setup. Three GPUs running simultaneously should really put the memory
bus to a stress test. The third GPU is connected to a slower PCI-Express 2.0 slot
and also acts as the display adapter.

We emit 10242 photons per iteration and measure after 200 and 1000 iterations
of the algorithm. The tests with a single GPU have the render engine embedded,
while dual and triple GPU measurements use the distributed implementation.
Aside from that, we use exactly the same setup and methodology as described in
the previous section.

Table 6 contains measured timings. Fig. 5.5.1 is a bar plot showing achieved
speedup. Our results demonstrate that we reach close to linear speedup on two
and three GPUs. After 200 iterations we reach speedups of over 1.97 and 2.81. Af-

59

Cornell Box Conf. Room Sponza Disco Room

200 1000 200 1000 200 1000 200 1000

0

1

2

3

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
99

5

1.
99

5

1.
98

4

1.
98

6

1.
97

1

1.
98

5

1.
98

4

1.
99

8

2.
81

9

2.
92

9

2.
89

8

2.
95

2

2.
83

3

2.
90

9

2.
85

4

2.
94

0

Speedup using two and three GPUs on a single system
(after 200 and 1000 iterations)

1 GPU 2 GPUs 3 GPUs

Figure 5.5.1: A bar plot illustrating speedup on a multi-GPU system. Using three GPUs
simultaneously, we can present a speedup of 2.90 to 2.95 after 1000 iterations.

ter 1000 iterations we have reached better saturation of resources; we get 1.98-2.00
speedup using two GPUs, and 2.90-2.95 using three GPUs. Since 200 iterations
are performed quickly with 3 GPUs, the latency of the first RenderRequest to the
servers to get it all starting gives a slight, but noticeable latency. We also see that
in the case of a single GPU, efficiency is increased from iteration 200 to iteration
1000 by about 1%, which suggest that the GPU needs some time to reach full
utilization of hardware.

We believe this is as close as it is possible to get to linear speedup using three
GPUs on one system. PCI-Express bus congestion, process communication delays
and slightly lower performance of that third GPU will prevent us from reaching
perfect efficiency.

5.6 distributed rendering

Our presented implementation is able to distribute the rendering process on
several computers using TCP/IP. This section will present and analyze multi-
computer performance. We connect three computers with two Nvidia GeForce

GTX 480 GPUs each using a fast gigabit switch. Two of the GPUs are at the same
computer as the client, so we avoid network transfer in that case. We start four
server instances on the additional pair of computers and connect to them using
TCP/IP.

60

Cornell Box Conference Room Sponza Disco Room

0

1

2

3

4

5

6

1.
00

0

1.
00

0

1.
00

0

1.
00

0

1.
99

5

1.
98

6

1.
98

5

1.
99

8

2.
92

9

2.
95

2

2.
90

9

2.
94

0

3.
86

3

3.
89

4

3.
92

7

3.
89

1

5.
76

0

5.
72

8

5.
69

2

5.
73

3

Sp
ee

du
p

1 GPU 2 GPUs 3 GPUs 2+2 GPUs 2+2+2 GPUs

Figure 5.6.1: Speedup using up to six concurrent GPUs.

Measured timings for 200 and 100 iterations including speedup and efficiency
metrics are listed in Table 6. Speedup after 1000 iterations is presented in Figure
5.6.1.

Our numbers prove that we are able to get reasonably close to ideal speedup
using up to 6 GPUs concurrently. After 200 iterations, 6 GPUs can offer a speedup
of 5.2-5.3. After 1000 iterations, the speedup is increased to 5.70. Since 200

iterations on 6 GPUs are executed in about 10-30 seconds on our tests, we have
not reached full utilization of individual GPUs. The same phenomenon was
exhibited on single-system multi-GPU rendering (previous section), however it is
even more prevalent here.

We conclude that we get good speedups quickly and that multiple GPUs can
accelerate the rendering of simple scenes requiring a few hundred to a thousand
iterations. For complicated scenes which require thousands of iterations the ef-
ficiency is close to perfect. Feedback from the system shows that every GPU is
continuously fed on work after it gets its first RenderRequest.

The network seems to handle this load without problems. In these tests, we
reach close to 30MB/sec of data over the network, which is well within the the-
oretical maximum of gigabit Ethernet (~120MB/sec). Since the algorithm is triv-
ially parallelizable, more sophisticated load balancing techniques can be imple-
mented to handle a larger number of GPUs. For example, it is possible to adjust
the number of iterations per packet if latencies are detected.

61

5.7 comparison with a cpu-based ray tracer

In this section, we present the timings reported by Knaus and Zwicker [KZ11] for
their Cornell Box scene. They use a single-threaded application running on an
2.67 GhZ Intel Xeon Processor with 2 million photons per iteration. They render
at a resolution of 768× 768. We create a scene which matches theirs and use the
same settings. They render 20 iterations of the Cornell Box in 459 seconds; a
rate of 87200 emitted photons per second. With a single Nvidia GTX 480 we emit
1000 · 2 · 106 photons in 444.6 seconds, a rate of 4.49 million emitted photons per
second - a speedup of 51. Using six GPUs concurrently we get another speedup of
5.70. In total, this is a speedup of over 290. While it is difficult to compare results
directly, this is an indication of the level of speedup achieved using multiple
GPUs over a single-threaded application on the CPU.

62

6
C O N C L U S I O N A N D F U T U R E W O R K

6.1 conclusion

We have described an implementation of the progressive photon mapping algo-
rithm on the Graphics Processing Unit. A complete application based on the
OptiX framework, available for others to experiment with, was presented. Sev-
eral photon map variants for the GPU have been considered and analyzed. Our
conclusion is that dividing the scene into a uniform grid and sorting photons
by their grid index is a good approach on modern GPUs. This approach is a
bit slower than a stochastic hash table-based photon map, but it produces better
results, and much faster than a k-d tree based implementation.

Subsequently, we extended our implementation to support homogeneous par-
ticipating media. We base ourselves on the beam radiance estimate, which is easy
to implement with the support of the OptiX framework. We used our implemen-
tation to render an interesting image of a disco room covered in fog.

Finally, we have described recent advances of the progressive photon mapping
algorithm that removed the dependency between iterations. We exploited these
advances to render an image in parallel using multiple GPUs at the same time.
Our described renderer is able to get near linear speedup using two and three
GPUs on the same system, and even four and six GPUs connected via a fast
network. Results are presented for four different test scenes exhibiting a range of
scenarios. As far as we know, we present the very first implementation which is
able to execute photon mapping on several GPUs at the same time. Our approach
is straightforward to extend to a cluster of GPUs.

The work carried out in thesis has demonstrated that multiple GPUs can dras-
tically cut down the execution time of the photon mapping algorithm. We believe
more applications will take advantage of several GPUs to render images in the
future. Cloud-based applications are particularly interesting since it gives artists
and designers access to enormous amounts of power from their laptops.

We are able to render images of very good quality in a few minutes. However,
minutes are not real time. The goal of implementing fog and smoke in the NTNU
Snow Simulator was not achieved. For real-time simulators approximations us-
ing the depth buffer are much more efficient, although they cannot model light
scattering at a physical level. We are able to capture effects like colored volumes,
surface-volume light bleeding, and volume caustics.

63

6.2 future work

There is almost an endless list of possible extensions to our renderer. To improve
performance with a large number of GPUs (larger than, let’s say, 8), we could
introduce more sophisticated load-balancing techniques. There are numerous
other improvements and functions necessary to make this renderer viable for
broader use; better handling of scene files, support for more materials, scene-
and image formats, better error-handling, more customizable settings, and so on.

In the current state, the photon tracing step is a major bottleneck. Techniques
based on stratified sampling may increase performance. Using point-lights as an
example, we could divide the sphere of directions around the light into regions,
or strata. Every photon in the same warp could be sent through a random di-
rection inside the same region. This would increase the possibility that they will
follow a similar path in the scene for better warp efficiency. We consider this one
of the most promising tracks for future performance increases.

Other optimizations at the micro-level are certainly applicable. We can com-
press Photons down to 20 bytes [Jen09] using spherical coordinates for the incom-
ing directions, and storing powers in a shared-exponent 4-byte RGBE format. We
have not spent that much time on this level of optimizations, since we were more
interested in experimenting with multiple GPUs concurrently. Our work is at
a higher level, so we can combine it with techniques introduced by others and
increase efficiency by a solid margin.

Currently, our implementation uses the same global initial radius R0 for every
pixel. To reduce blur in the image, we can use an initial radius per pixel, where
the radius is larger in areas with few photons, and smaller in areas with many
photons. This way, the blur introduced is approximately constant with respect
to pixel size [KZ11]. Initial radii Ri could be found by doing an initial k-nearest
neighbor pass, or using ray differentials [Ige99].

We have implemented and demonstrated homogeneous participating media,
but smoke, clouds, dust and so on are more accurately modeled as heterogeneous.
Heterogeneous media is more difficult to implement since the properties of the
medium varies by location. It is an interesting track for future work to consider
how this could be done efficiently.

Our implementation uses the beam radiance estimate [JZJ08, JNSJ11]. A novel
method based on photon beams rather than photon points as data have been
demonstrated to produce better results faster, and is also well-suited for GPUs
[JNT+

11]. However, photon points could be implemented easily with support
from OptiX, while beams would require more implementation. Photon beams
are therefore considered future work as well.

64

B I B L I O G R A P H Y

[AL09] Timo Aila and Samuli Laine. Understanding the efficiency of ray traver-
sal on gpus. In Proceedings of the Conference on High Performance Graphics
2009, pages 145–149. ACM, 2009.

[App68] A. Appel. Some techniques for shading machine renderings of solids.
In Proceedings of the April 30–May 2, 1968, spring joint computer conference,
pages 37–45. ACM, 1968.

[Bet12] Brendan Bettinger. Pixar by the numbers - from toy story to brave.
Collider.com, 2012. [Online; accessed 4-June-2013].

[BSS93] Philippe Blasi, Bertrand Saec, and Christophe Schlick. A rendering
algorithm for discrete volume density objects. In Computer Graphics
Forum, volume 12, pages 201–210. Wiley Online Library, 1993.

[Cha60] S. Chandrasekhar. Radiative transfer. Dover Books on Intermediate and
Advanced Mathematics. DOVER PUBN Incorporated, 1960.

[Cha13] Chaos Software. V-Ray renderer. http://www.chaosgroup.com/en/2/

index.html, 2013. [Online; accessed 29-April-2013].

[CHH02] N.A. Carr, J.D. Hall, and J.C. Hart. The ray engine. In Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 37–46. Eurographics Association, 2002.

[DBB06] P. Dutré, K. Bala, and P. Bekaert. Advanced Global Illumination. Ak
Peters Series. A K Peters, Limited, 2006.

[Far11] R. Farber. CUDA Application Design and Development. Applications of
GPU computing series. Morgan Kaufmann, 2011.

[Fle09] Martin Fleisz. Photon mapping on the gpu. Master’s Thesis, 2009.

[FS05] T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu
raytracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS con-
ference on Graphics hardware, pages 15–22. ACM, 2005.

[Gla13] Glare Technologies. IndigoRenderer Home Page. http://www.

indigorenderer.com/home, 2013. [Online; accessed 08-June-2013].

[Gre86] Ned Greene. Environment mapping and other applications of world
projections. IEEE Comput. Graph. Appl., 6(11):21–29, November 1986.

65

http://www.chaosgroup.com/en/2/index.html
http://www.chaosgroup.com/en/2/index.html
http://www.indigorenderer.com/home
http://www.indigorenderer.com/home

[GTGB84] Cindy M Goral, Kenneth E Torrance, Donald P Greenberg, and Ben-
nett Battaile. Modeling the interaction of light between diffuse sur-
faces. In ACM SIGGRAPH Computer Graphics, volume 18, pages 213–
222. ACM, 1984.

[HG41] Louis G Henyey and Jesse L Greenstein. Diffuse radiation in the galaxy.
The Astrophysical Journal, 93:70–83, 1941.

[HJ09] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive
photon mapping. ACM Trans. Graph., 28(5):141:1–141:8, December 2009.

[HJ10] Toshiya Hachisuka and Henrik Wann Jensen. Parallel progressive pho-
ton mapping on gpus. In ACM SIGGRAPH ASIA 2010 Sketches, page 54.
ACM, 2010.

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive
photon mapping. ACM Trans. Graph., 27(5):130:1–130:8, December 2008.

[HSHH07] Daniel Reiter Horn, Jeremy Sugerman, Mike Houston, and Pat Han-
rahan. Interactive k-d tree gpu raytracing. In Proceedings of the 2007
symposium on Interactive 3D graphics and games, I3D ’07, pages 167–174,
New York, NY, USA, 2007. ACM.

[Ige99] Homan Igehy. Tracing ray differentials. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 179–186.
ACM Press/Addison-Wesley Publishing Co., 1999.

[Jar08] Wojciech Jarosz. Efficient monte carlo methods for light transport in scatter-
ing media. PhD thesis, La Jolla, CA, USA, 2008. AAI3320228.

[JC98] Henrik Wann Jensen and Per H Christensen. Efficient simulation of
light transport in scences with participating media using photon maps.
In Proceedings of the 25th annual conference on Computer graphics and in-
teractive techniques, pages 311–320. ACM, 1998.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Ren-
dering Techniques 96, pages 21–30. Springer, 1996.

[Jen09] H.W. Jensen. Realistic Image Synthesis Using Photon Mapping. Ak Peters
Series. A K Peters, Limited, 2009.

[JNSJ11] Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Hen-
rik Wann Jensen. A comprehensive theory of volumetric radiance esti-
mation using photon points and beams. ACM Transactions on Graphics
(Presented at ACM SIGGRAPH 2011), 30(1):5:1–5:19, January 2011.

[JNT+
11] Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike

Sloan, and Matthias Zwicker. Progressive photon beams. ACM Trans.
Graph., 30(6):181:1–181:12, December 2011.

66

[JZJ08] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. The beam
radiance estimate for volumetric photon mapping. Computer Graphics
Forum (Proceedings of Eurographics 2008), 27(2):557–566, April 2008.

[Kaj86] James T Kajiya. The rendering equation. In ACM SIGGRAPH Computer
Graphics, volume 20, pages 143–150. ACM, 1986.

[KD13] Anton S. Kaplanyan and Carsten Dachsbacher. Adaptive progressive
photon mapping. ACM Trans. Graph., 32(2):16:1–16:13, April 2013.

[KZ11] Claude Knaus and Matthias Zwicker. Progressive photon mapping: A
probabilistic approach. ACM Trans. Graph., 30(3):25:1–25:13, May 2011.

[LE10] Holger Ludvigsen and Anne Cathrine Elster. Real-time ray tracing
using nvidia optix. Eurographics Short Papers, pages 65–68, 2010.

[Lor90] Ludvig Valentin Lorenz. Lysbevægelsen i Og Unden for en Af Plane Lys-
bølger Belyst Kugle. 1890.

[Lux13] Luxrender. Luxrender Home Page. http://www.luxrender.net/en_

GB/index, 2013. [Online; accessed 08-June-2013].

[LW93] Eric P Lafortune and Yves D Willems. Bi-directional path tracing. In
Proceedings of CompuGraphics, volume 93, pages 145–153, 1993.

[Mie08] Gustav Mie. Beiträge zur optik trüber medien, speziell kolloidaler met-
allösungen. Annalen der Physik, 330(3):377–445, 1908.

[ML09] Morgan McGuire and David Luebke. Hardware-accelerated global il-
lumination by image space photon mapping. In Proceedings of the Con-
ference on High Performance Graphics 2009, HPG ’09, pages 77–89, New
York, NY, USA, 2009. ACM.

[MLM13] Michael Mara, David Luebke, and Morgan McGuire. Toward practical
real-time photon mapping: efficient gpu density estimation. In Proceed-
ings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, I3D ’13, pages 71–78, New York, NY, USA, 2013. ACM.

[Nvi07] Nvidia Corporation. CUDA ToolKit HomePage. https://developer.

nvidia.com/cuda-toolkit, 2007. [Online; accessed 08-June-2013].

[Nvi09] Nvidia Corporation. Nvidia launches the world’s first interactive ray
tracing engine. Nvidia.com, 2009. [Online; accessed 08-June-2013].

[NVI11] NVIDIA Corporation. CUDA Architecture Roadmap. http://www.

nvidia.com/docs/IO/113297/ISC-Briefing-Sumit-June11-Final.

pdf, 2011. [Online; accessed 5-May-2013].

[NVI12] NVIDIA Corporation. NVIDIA Kepler GK110 White Paper. Technical
report, 2012. [Online; accessed 1-May-2013].

67

http://www.luxrender.net/en_GB/index
http://www.luxrender.net/en_GB/index
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/docs/IO/113297/ISC-Briefing-Sumit-June11-Final.pdf
http://www.nvidia.com/docs/IO/113297/ISC-Briefing-Sumit-June11-Final.pdf
http://www.nvidia.com/docs/IO/113297/ISC-Briefing-Sumit-June11-Final.pdf

[NVI13a] NVIDIA. NVIDIA OptiX Ray-tracing framework. https://developer.
nvidia.com/optix, 2013. [Online; accessed 29-April-2013].

[NVI13b] NVIDIA Corporation. CUDA 5.0 Best Practices Guide. http://docs.

nvidia.com/cuda/cuda-c-best-practices-guide/index.html, 2013.
[Online; accessed 11-June-2013].

[NVI13c] NVIDIA Corporation. CUDA 5.0 C Programming Guide. http://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html, 2013. [On-
line; accessed 11-June-2013].

[Nvi13d] Nvidia Corporation. CuRAND framework. http://developer.nvidia.
com/curand, 2013. [Online; accessed 09-June-2013].

[Oto13] Otoy. Octane Render Cloud Edition. http://render.otoy.com/forum/
viewtopic.php?f=7&t=29544, 2013. [Online; accessed 29-April-2013].

[PBD+
10] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich,

Jared Hoberock, David Luebke, David McAllister, Morgan McGuire,
Keith Morley, Austin Robison, and Martin Stich. Optix: a general pur-
pose ray tracing engine. ACM Trans. Graph., 29(4):66:1–66:13, July 2010.

[PBMH02] T.J. Purcell, I. Buck, W.R. Mark, and P. Hanrahan. Ray tracing on pro-
grammable graphics hardware. ACM Transactions on Graphics (TOG),
21(3):703–712, 2002.

[PDC+
03] Timothy J Purcell, Craig Donner, Mike Cammarano, Henrik Wann

Jensen, and Pat Hanrahan. Photon mapping on programmable graph-
ics hardware. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 41–50. Eurographics Association,
2003.

[PH04] Matt Pharr and Greg Humphreys. Physically Based Rendering: From The-
ory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2004.

[Qt13] Qt. The Qt framework. http://qt.digia.com/, 2013. [Online; accessed
29-April-2013].

[Ray71] John William Strutt Baron Rayleigh. On the scattering of light by small
particles. 1871.

[Ter11] Daniel Terdiman. New technology revs up pixar’s ’cars 2’. CNET, 2011.
[Online; accessed 1-June-2013].

[Thr13] Thrust. Thrust Framework. http://thrust.github.io/, 2013. [Online;
accessed 26-May-2013].

[VG97] Eric Veach and Leonidas J Guibas. Metropolis light transport. In Pro-
ceedings of the 24th annual conference on Computer graphics and interactive
techniques, pages 65–76. ACM Press/Addison-Wesley Publishing Co.,
1997.

68

https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://developer.nvidia.com/curand
http://developer.nvidia.com/curand
http://render.otoy.com/forum/viewtopic.php?f=7&t=29544
http://render.otoy.com/forum/viewtopic.php?f=7&t=29544
http://qt.digia.com/
http://thrust.github.io/

[Wal06] I. Wald. Realtime ray tracing and interactive global illumination. IT-
MUNCHEN, 48(4):242, 2006.

[Whi80] T. Whitted. An improved illumination model for shaded display. Com-
munications of the ACM, 23(6):343–349, 1980.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time
kd-tree construction on graphics hardware. In ACM Transactions on
Graphics (TOG), volume 27, page 126. ACM, 2008.

69

A
O P P O S I T E R E N D E R E R U S E R G U I D E

We append a short user guide to our application. The application is available in
source-code format for Windows. A 64-bit precompiled version is also available1.

The application consists of three main entry points:

1. Standalone.exe supports a single GPU. In case of a multi-GPU system, the
user can select the compute device initially.

2. Server.exe contains a server interface which clients can connect to. The
user must first select compute device (Fig. A.0.2), then pick a unique port
number (Fig. A.0.3). The server will start listening for client connections.
When a client is connected, status information is available in the log (Fig.
A.0.5).

3. Client.exe must be started if multiple GPUs are to be employed. This appli-
cation contains the user interface where the user can connect to servers over
TCP/IP (Fig. A.0.4). If the server is at the same system as the client, you
should connect to it using the virtual loopback interface address (127.0.0.1)
rather than public IP. If you connect to another system, we recommend
using a gigabit switch to ensure that you have enough network bandwidth.

caveats

The preferred tool to model scenes was Blender
2. Blender supports Collada

(.dae) files, an XML schema for digital asset exchange. Collada is the preferred
scene format for this application since it can store camera information as well
as geometry and light properties. There are currently some difficulties using
textures, due to bugs in Blender’s export. We recommend exporting to a blank
folder and use the Copy option, which moves the textures into the same folder.
At the time of writing, textures must be .tga image files.

Some of the settings (like the number of emitted photons per iteration, stack
depth and so on) must be reconfigured in source code and then recompiled. Par-
ticipating media must be hard-coded as well (since we cannot extract this infor-
mation from the scene file). It is possible to write a scene source code file yourself.
Look at the scene/Cornell.cpp file.

1 https://github.com/apartridge
2 http://www.blender.org/

71

http://www.blender.org/

Figure A.0.1: A screenshot of the client application.

Figure A.0.2: Server: Selecting compute device. Various specifications for the card is
listed.

72

Figure A.0.3: Server: Set which port to listen to.

Figure A.0.4: Client: Connect to a server using its IP and port.

73

Figure A.0.5: Server: When connected to a client, a list of log entries is visible.

74

B
D I F F U S E S H A D E R

We include an example of a diffuse shader in OptiX (material/Diffuse.cu). The
shader has two closest-hit programs, one for radiance rays and one for photons.
Headers are omitted.
using namespace optix;

rtDeclareVariable(uint2, launchIndex, rtLaunchIndex,);

rtDeclareVariable(RadiancePRD, radiancePrd, rtPayload,);

rtDeclareVariable(PhotonPRD, photonPrd, rtPayload,);

rtDeclareVariable(optix::Ray, ray, rtCurrentRay,);

rtDeclareVariable(float, tHit, rtIntersectionDistance,);

rtDeclareVariable(float3, geometricNormal, attribute geometricNormal,);

rtDeclareVariable(float3, shadingNormal, attribute shadingNormal,);

rtBuffer<Photon, 1> photons;

rtBuffer<Hitpoint, 2> raytracePassOutputBuffer;

rtDeclareVariable(rtObject, sceneRootObject, ,);

rtDeclareVariable(uint, maxPhotonDepositsPerEmitted, ,);

rtDeclareVariable(float3, Kd, ,);

RT_PROGRAM void closestHitRadiance()

{

float3 worldShadingNormal = normalize(rtTransformNormal(

RT_OBJECT_TO_WORLD, shadingNormal));

float3 hitPoint = ray.origin + tHit*ray.direction;

radiancePrd.flags |= PRD_HIT_NON_SPECULAR;

radiancePrd.attenuation *= Kd;

radiancePrd.normal = worldShadingNormal;

radiancePrd.position = hitPoint;

radiancePrd.lastTHit = tHit;

if(radiancePrd.flags & PRD_PATH_TRACING)

{

radiancePrd.randomNewDirection = sampleUnitHemisphereCos(

worldShadingNormal, getRandomUniformFloat2(&radiancePrd.

randomState));

}

}

75

RT_PROGRAM void closestHitPhoton()

{

float3 worldShadingNormal = normalize(rtTransformNormal(

RT_OBJECT_TO_WORLD, shadingNormal));

float3 hitPoint = ray.origin + tHit*ray.direction;

float3 newPhotonDirection;

if(photonPrd.depth >= 1 && photonPrd.numStoredPhotons <

maxPhotonDepositsPerEmitted)

{

Photon photon (photonPrd.power, hitPoint, ray.direction,

worldShadingNormal);

photons[photonPrd.pm_index + photonPrd.numStoredPhotons] = photon;

photonPrd.numStoredPhotons++;

}

photonPrd.power *= Kd;

photonPrd.weight *= fmaxf(Kd);

// Use russian roulette sampling to limit the length of the path

if(photonPrd.depth >= PHOTON_TRACING_RR_START_DEPTH)

{

float probContinue = favgf(Kd);

float probSample = getRandomUniformFloat(&photonPrd.randomState);

if(probSample >= probContinue)

{

return;

}

photonPrd.power /= probContinue;

}

photonPrd.depth++;

if(photonPrd.depth >= MAX_PHOTON_TRACE_DEPTH || photonPrd.weight < 0.001)

{

return;

}

if(photonPrd.numStoredPhotons >= maxPhotonDepositsPerEmitted)

{

return;

}

newPhotonDirection = sampleUnitHemisphereCos(worldShadingNormal,

getRandomUniformFloat2(&photonPrd.randomState));

optix::Ray newRay(hitPoint, newPhotonDirection, RayType::PHOTON, 0.0001

);

rtTrace(sceneRootObject, newRay, photonPrd);

}

76

C
PA RT I C I PAT I N G M E D I U M S H A D E R

We also include the participating medium closest-hit programs for radiance and
photons (material/ParticipatingMedium.cu). Headers are omitted.

using namespace optix;

rtDeclareVariable(rtObject, volumetricPhotonsRoot, ,);

rtDeclareVariable(rtObject, sceneRootObject, ,);

rtDeclareVariable(uint2, launchIndex, rtLaunchIndex,);

rtDeclareVariable(RadiancePRD, radiancePrd, rtPayload,);

rtDeclareVariable(VolumetricRadiancePRD, volRadiancePrd, rtPayload,);

rtDeclareVariable(ShadowPRD, shadowPrd, rtPayload,);

rtDeclareVariable(PhotonPRD, photonPrd, rtPayload,);

rtDeclareVariable(TransmissionPRD, transmissionPrd, rtPayload,);

rtDeclareVariable(optix::Ray, ray, rtCurrentRay,);

rtDeclareVariable(float, tHit, rtIntersectionDistance,);

rtDeclareVariable(float3, geometricNormal, attribute geometricNormal,);

rtDeclareVariable(float3, shadingNormal, attribute shadingNormal,);

rtBuffer<Photon, 1> photons;

rtBuffer<Photon, 1> volumetricPhotons;

rtDeclareVariable(float, sigma_a, ,);

rtDeclareVariable(float, sigma_s, ,);

rtDeclareVariable(float3, Ks, ,);

rtDeclareVariable(float3, Kd, ,);

rtDeclareVariable(float, indexOfRefraction, ,);

rtDeclareVariable(uint, maxPhotonDepositsPerEmitted, ,);

RT_PROGRAM void closestHitRadiance()

{

const float sigma_t = sigma_a + sigma_s;

float3 worldShadingNormal = normalize(rtTransformNormal(

RT_OBJECT_TO_WORLD, shadingNormal));

float3 hitPoint = ray.origin + tHit*ray.direction;

bool isHitFromOutside = hitFromOutside(ray.direction, worldShadingNormal)

;

double tHitStack = tHit;

if(isHitFromOutside)

{

77

float3 attenSaved = radiancePrd.attenuation;

// Send ray through the medium

Ray newRay(hitPoint, ray.direction, RayType::

RADIANCE_IN_PARTICIPATING_MEDIUM, 0.01);

rtTrace(sceneRootObject, newRay, radiancePrd);

float distance = radiancePrd.lastTHit;

float transmittance = exp(-distance*sigma_t);

VolumetricRadiancePRD volRadiancePrd;

volRadiancePrd.radiance = make_float3(0);

volRadiancePrd.numHits = 0;

volRadiancePrd.sigma_t = sigma_t;

volRadiancePrd.sigma_s = sigma_s;

// Get volumetric radiance

Ray ray(hitPoint, ray.direction, RayType::VOLUMETRIC_RADIANCE,

0.0000001, distance);

rtTrace(volumetricPhotonsRoot, ray, volRadiancePrd);

/* Multiply existing volumetric transmittance with current

transmittance, and add gathered volumetric radiance

from this path */

radiancePrd.volumetricRadiance *= transmittance;

radiancePrd.volumetricRadiance += attenSaved*volRadiancePrd.radiance;

radiancePrd.attenuation *= transmittance;

}

else

{

/* We are escaping the boundary of the participating medium, so we’ll

compute the attenuation and volumetric radiance for the

remaining path

and deliver it to a parent stack frame. */

Ray newRay = Ray(hitPoint, ray.direction, RayType::RADIANCE, 0.01);

rtTrace(sceneRootObject, newRay, radiancePrd);

}

radiancePrd.lastTHit = tHitStack;

}

/*
//

*/

RT_PROGRAM void closestHitPhoton()

{

const float sigma_t = sigma_a + sigma_s;

78

photonPrd.depth++;

float3 worldShadingNormal = normalize(rtTransformNormal(

RT_OBJECT_TO_WORLD, shadingNormal));

float3 hitPoint = ray.origin + tHit*ray.direction;

bool hitInside = (dot(worldShadingNormal, ray.direction) > 0);

// If we hit from the inside with a PHOTON_IN_PARTICIPATING_MEDIUM ray,

we have escaped the boundry of the medium.

// We move the ray just a tad to the outside and continue ray tracing

there

if(hitInside && ray.ray_type == RayType::PHOTON_IN_PARTICIPATING_MEDIUM)

{

Ray newRay = Ray(hitPoint+0.0001*ray.direction, ray.direction,

RayType::PHOTON, 0.001, RT_DEFAULT_MAX);

rtTrace(sceneRootObject, newRay, photonPrd);

return;

}

float sample = getRandomUniformFloat(&photonPrd.randomState);

float scatterLocationT = - logf(1-sample)/sigma_t;

float3 scatterPosition = hitPoint + scatterLocationT*ray.direction;

int depth = photonPrd.depth;

/* We need to see if anything obstructs the ray in the interval from the

hitpoint to the scatter location.

If nothings obstructs then we scatter at eventPosition. Otherwise, the

photon continues on its path and we don’t do anything

when we return to this stack frame. We keep the photonPRD depth on the

stack to compare it when the rtTrace returns. */

Ray newRay(hitPoint, ray.direction, RayType::

PHOTON_IN_PARTICIPATING_MEDIUM, 0.001, scatterLocationT);

rtTrace(sceneRootObject, newRay, photonPrd);

/* If depth is unmodified, no surface was hit from hitpoint to

scatterLocation, so we store it as a scatter event.

We also scatter a photon in a new direction sampled by the phase

function at this location. */

if(depth == photonPrd.depth)

{

const float scatterAlbedo = sigma_s/sigma_t;

if(getRandomUniformFloat(&photonPrd.randomState) >= scatterAlbedo)

{

return;

}

// Store photon at scatter location

79

int volumetricPhotonIdx = photonPrd.pm_index % NUM_VOLUMETRIC_PHOTONS

;

volumetricPhotons[volumetricPhotonIdx].power = photonPrd.power;

volumetricPhotons[volumetricPhotonIdx].position = scatterPosition;

atomicAdd(&volumetricPhotons[volumetricPhotonIdx].numDeposits, 1);

// Check if we have gone above max number of photons or stack depth

if(photonPrd.depth >= MAX_PHOTON_TRACE_DEPTH)

{

return;

}

// Create the scattered ray with a direction given by importance

sampling of the phase function

float3 scatterDirection = sampleUnitSphere(getRandomUniformFloat2(&

photonPrd.randomState));

Ray scatteredRay(scatterPosition, scatterDirection, RayType::PHOTON,

0.001, RT_DEFAULT_MAX);

rtTrace(sceneRootObject, scatteredRay, photonPrd);

}

}

80

	1 Introduction
	1.1 Contribution
	1.2 Report Outline

	2 Related Work
	2.1 Ray tracing on GPU
	2.2 Photon Mapping on GPU
	2.3 Distributed rendering of images

	3 Background
	3.1 Probability Theory
	3.1.1 Monte Carlo methods
	3.1.2 Bias and consistency of estimators
	3.1.3 Russian roulette

	3.2 Ray Tracing
	3.2.1 The ray equation
	3.2.2 Geometry and acceleration structures

	3.3 Radiometry
	3.3.1 Radiant Flux
	3.3.2 Irradiance and Radiant Exitance
	3.3.3 Radiance

	3.4 Light-surface interaction
	3.4.1 Diffuse surfaces
	3.4.2 Specular surfaces
	3.4.3 Shading models

	3.5 Global Illumination
	3.5.1 The rendering equation
	3.5.2 Using radiance for ray-tracing
	3.5.3 Path tracing

	3.6 Photon mapping
	3.6.1 The original PM algorithm
	Radiance estimation

	3.6.2 Progressive photon mapping
	Algorithm
	Radiant flux estimate
	Radiance estimate
	Memoryless Progressive Photon Mapping
	Parallel Progressive Photon Mapping

	3.7 Participating Media
	Volume Emission
	Absorption and out-scattering
	In-scattering
	3.7.1 The Radiative Transfer Equation
	3.7.2 Volumetric Photon Mapping
	3.7.3 The Beam Radiance Estimate

	3.8 Graphics Processing Unit and CUDA
	3.8.1 Compute Unified Device Architecture (CUDA)

	3.9 OptiX
	3.9.1 The OptiX pipeline
	3.9.2 OptiX runtime

	4 Implementation
	4.1 The Photon Map
	4.1.1 Kd-tree
	4.1.2 Sorted Grid
	Finding photon bounding box
	Calculating indices for each photon
	Sorting the photons
	Offset Table
	Photon Gathering using the Sorted Grid

	4.1.3 Stochastic Hash

	4.2 Participating Media
	4.3 Parallel rendering
	4.3.1 Multiple GPUs using Nvidia OptiX
	4.3.2 Distributed multiple-GPU rendering
	4.3.3 Architecture
	4.3.4 Distributing the Progressive Photon Mapping algorithm

	5 Results and analysis
	5.1 Our test scenes
	5.2 Test Bed
	5.3 Photon Map Performance
	5.4 Single GPU rendering
	5.5 Multi-GPU rendering
	5.6 Distributed rendering
	5.7 Comparison with a CPU-based ray tracer

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future Work

	A Opposite Renderer User Guide
	B Diffuse shader
	C Participating medium shader

