
Heterogeneous FTDT for Seismic
Processing

Andreas Berg Skomedal

Master of Science in Computer Science

Supervisor: Anne Cathrine Elster, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description

Our previous project looked at how to port Yee bench’s FTDT implemntaton to
CUDA. This project extends this work, including taking advantage of the process-
ing powers of both CPU cores and a GPU, including heterogeneous scheduling,
optimizing for throughput of relatively small jobs suitable for seismic processing.
Fitting the implementation to EMGS’ problem and improving the underlying
algorithm (differential length operator) may also be included.

Assignment given: 15. January 2013
Supervisor: Anne Cathrine Elster, IDI

Abstract

In the early days of computing, scientific calculations were done by specialized
hardware. More recently, increasingly powerful CPUs took over and have been
dominant for a long time. Now though, scientific computation is not only for
the general CPU environment anymore. GPUs are specialized processors with
their own memory hierarchy requiring more effort to program, but for suitable
algorithms they may significantly outperform serially optimized CPUs. In recent
years, these GPUs have become a lot more easily programmable, where they in the
past had to be programmed through the abstraction of a graphics pipeline.

EMGS in Trondheim is an oil-finding service working with analysis of seismic
readings of the ocean floor, to provide information about possible oil reservoirs.
Data-centers comprised of CPU nodes does all the work today, however GPU
installations could be more cost effective and faster.

In this thesis we look at the implementation of the main part of one of their
data analysis algorithms. For this we use the FDTD method implemented in
Yee bench[3] by Ulf Andersson. We look at how to adapt it for GPU using CUDA,
parallelize the CPU implementations and how to run this efficiently together
heterogeneously.

It is shown that this method has great potential for use on GPUs, speedups
just short of 19x over single thread CPU are achieved in this work. The FDTD
method we use does however have some erratic memory operations which limits
our performance compared to great GPU implementations these days which can
reach speedups of over 100x. However, many of them still compare to single
CPU performance. The order in which we address memory is therefore even
more important, we show that optimizing memory writes when half the memory
reads will not coalesce still improves our performance considerably. We show that
care is needed when scheduling jobs on both CPU and GPU on the same node to
avoid the total performance going down. Using all available resources on the host
may not be beneficial. Utilizing several parallel CUDA streams proves effective to
hide a lot of overhead and delay caused by busy CPU and main memory.

This work is not a final solution for EMGS’ needs for this tool, other consid-
erations and options than those discussed are also of interest. These topics are
included in the future work section.

Sammendrag

I datamaskinens barndom ble vitenskapelige kalkulasjoner gjort av spesialisert
hardware. Mer nylig tok stadig mer kraftige CPUer over og har dominert i lang
tid. Men n̊a er ikke vitenskapelige beregninger bare for det generelle CPU miljøet
lenger. GPUer er spesialiserte prosessorer med egne minnehierarkier som krever
mer arbeid å programmere. For passende algoritmer kan de derimot betydelig
utkonkurrere de serielt optimaliserte CPUene. I nyere år har disse GPUene ogs̊a
blitt en god del enklere å programmere, for bare en ca. 10 år siden krevdes det
at du programerte de som en grafikk prosessor med abstrakte.

EMGS i Trondheim er et firma som driver med oljesøkingstjenester, de er in-
teresert i analyse av seismiske avlesninger fra havbunnen for å gi informasjon
om mulige oljereservoarer. Datasentre med CPU-baserte servere gjør all jobben
i dag, men et inntog av GPU processorer vil kunne være mer kostnadseffektivt
og ha bedre ytelse.

I denne masteroppgaven vil se p̊a implementeringen av hoveddelen av en av
deres data-analyse algoritmer. For dette bruker vi FDTD-metoden som er imple-
mentert i Yee bench[3] av Ulf Andersson. Vi ser p̊a hvordan vi tilpasser denne
til GPU ved å bruke CUDA, parallelliserer CPU implementasjonen og hvordan
vi bør kjøre dette effektivt sammen heterogent.

Det vises at denne metoden har bra potensiale for bruk p̊a GPUer, vi opplever
ytelser rett under 20 ganger det av en enkel CPU kjerne i v̊art resultat. FDTD
metoden vi bruker har dog ikke særlig normaliserte minneaksesser som begrenser
ytelsen vi oppn̊ar i forhold til gode GPU implementasjoner i disse dager, disse
n̊ar ofte ytelser over 100 ganger CPU. Men fortsatt vil mange ikke yte stort
bedre enn p̊a CPU. Rekkefølgen vi adresserer minnet er derfor enda mer viktig,
vi viser at optimalisering av skriving til minnet n̊ar halvparten av lesetrafikken
ikke er sekvensielle og derfor ikke sammenfalder gir oss gode ytelsesforbedringer.
Vi viser at vi m̊a være forsiktige n̊ar vi kjører oppgaver p̊a b̊ade CPU og GPU
sammtidig p̊a en node i “scheduleren” for å unng̊a at den totale ytelsen ikke g̊ar
ned. Om vi bruker alle tilgjengelige ressurser er det ikke nødvendigvis bra for
ytelsen. Å bruke flere parallelle CUDA “streams” vises å være effektivt for å
gjemme “overhead” og forsinkelser som kommer av at CPU og hovedminnet er i
bruk.

Arbeidet her er ikke en fullstendig løsning p̊a EMGS’ verktøy, andre betrakt-
ninger og muligheter enn de presentert her er ogs̊a av interesse. Disse emnene er
inkludert i videre arbeid seksjonen.

Acknowledgments

This is a master thesis for TDT4900 - Computer and Information Science, at the
Department of Computer and Information Science, the Norwegian University of
Science and Technology.

I would like to thank my advisor Dr. Anne C. Elster for guiding me along, Dr.
Cyril Banino-Rokkones from Electromagnetic Geoservices (EMGS) in Trondheim
for providing the project and providing assistance. A great thanks to NVIDIA for
providing hardware and their knowledge to the HPC-Lab through their CUDA
Research Center and CUDA Teaching Center programs. I would also like to
thank all my friends from Datateknikk 2013. And lastly a thanks to the guys at
the HPC-Lab.

Andreas Berg Skomedal, Trondheim, Norway, May 20, 2013.

Table of Contents

Problem Description i

Abstract i

Sammendrag iii

Acknowledgments v

Table of Contents vi

List of Tables x

List of Figures xii

List of Listings xv

1 Introduction 1
1.1 Outline . 2
1.2 Setup . 2

2 Background 5
2.1 Parallel Computing on GPU . 5

2.1.1 GPU . 6
2.2 Compute Unified Device Architecture 8

2.2.1 Architecture . 9
2.2.2 Kepler Architecture . 11
2.2.3 Utilizing GPGPU and CUDA 12

2.3 Yee bench . 14
2.3.1 Conclusions Made by Andersson 17
2.3.2 Personal Conclusions . 17

viii Table of Contents

2.4 The FDTD Method . 18

3 Yee bench CUDA 21
3.1 Implementation . 21
3.2 Overall Design . 23

3.2.1 Launch Configuration . 23
3.2.2 . 24
3.2.3 Problem Size Variations . 24

3.3 Profiler Analysis . 25
3.4 Intermediate Results and Implications 27

4 The Heterogeneous Yee bench Scheduler 29
4.1 Implementation . 30

4.1.1 Overall Design . 30
4.1.2 Plot Script . 31
4.1.3 Computation Implementations 32

4.2 Assignment Scheduler . 32
4.2.1 Load Balancer . 34
4.2.2 Detailed Description of the Implementation 35
4.2.3 Flow . 36

4.3 Other versions . 39
4.3.1 Greedy Scheduler . 39
4.3.2 Homogeneous Device Plotter 40
4.3.3 Heterogeneous Device Plotter 40
4.3.4 Resource Plotter . 41

5 Results 43
5.1 CPU Performance, Resources Used Compared to Results 43
5.2 Memory Implications . 46
5.3 Performance in Main Loop and in the Big Picture 47

5.3.1 Runtime Breakdown . 48
5.4 Scheduler Performance . 49
5.5 Kepler Performance . 52

6 Conclusion and Future Work 53
6.1 Future Work . 54

6.1.1 Distributed Memory Version 55
6.1.2 Self Tuning . 55
6.1.3 Stencil Size . 55
6.1.4 Comparison of Different GPU Implementations 56
6.1.5 Extension to Full EMGS Implementation 56

Table of Contents ix

6.1.6 Alternative Maxwell Solvers and Redefined Mathematical
Problem . 56

6.1.7 Other GPU Architectures 57

Bibliography 59

Appendices 63

A User Manual 63
A.1 How to Run the Scheduler . 63

A.1.1 Schedulers . 64
A.1.2 Homogeneous Device Plotter 65
A.1.3 Heterogeneous Device Plotter 66
A.1.4 Resource Plotter . 66

A.2 Python Plot Script . 66
A.3 Comments on Kepler . 68

B Source Code 69
B.1 Yeebench . 69
B.2 Utility . 75

List of Tables

1.1 Hardware and Compiler Configuration 3

2.1 Main CUDA Memories, GF100 . 11
2.2 GeForce 480 GTX GF100 vs Tesla K20 GK110 12
2.3 Calcmet Options . 16
2.4 Maximum Problem Size vs Available Memory for Yee bench. . . . 16

3.1 Launch Configurations . 23

5.1 Performance for N = 150 on CPU 44
5.2 Performance for N = 150 on CPU, 50% of Maximum Frequency . . 45
5.3 Time Spent in Each Stage of a Task 48
5.4 Relative Device Performance . 52

A.1 Runnable Makefile Targets . 63

List of Figures

2.1 GPU vs CPU Cores . 6

2.2 GPU vs CPU Performance . 7

2.3 Multi CPU Node vs Multi GPU Node 8

2.4 CUDA Fermi Architecture . 10

2.5 CUDA Fermi Memory Architecture for a Thread 11

2.6 Yee bench Flow Chart . 15

2.7 Positions of the Electric and Magnetic Field Components in a Yee
Cell. 18

3.1 Yee bench method Flow Chart . 22

3.2 Overview of a Yee bench Iteration in the CUDA Profiler 26

3.3 Profiler Instructions and Cache Miss of the CUDA Implementation 26

3.4 Profiler Memory and Occupancy of the CUDA Implementation . . 27

3.5 GPU Speed, Floating Point Precision for Main Loop 28

4.1 Scheduler Flow Chart . 31

4.2 Assignment Scheduler Flow Chart 33

4.3 Error Bar Example . 42

5.1 CPU Speed for Main Loop . 44

5.2 Performance with Different Combinations of OpenMP Threads
and CUDA GPU Streams . 45

5.3 Main Loop vs. Total Time for One GPU Stream 47

5.4 Performance with Different Number of CUDA GPU Streams for 2
OMP Threads . 49

5.5 Performance Comparison for Different Number of CUDA Streams . 49

5.6 Different Number of Iterations for 2 OMP Threads and 2 CUDA
Streams . 50

xiv List of Figures

5.7 Performance Comparison for CPU Alone and Together With 2
CUDA . 51

List of Listings

3.1 Cleanup Kernel for XY-Plane . 25
4.1 Data Struct Containing a Task . 36
4.2 Scheduler on Host . 37
4.3 Work Assigner . 37
4.4 Task Acquisition on Worker . 38
4.5 Error Correction of Hybrid Device Plotter 40
A.1 Manual settings in Plot Script . 68
B.1 Configuration File . 69
B.2 CUDA Kernels . 69
B.3 Header File . 71
B.4 Makefile . 75

Chapter 1

Introduction

The oil and natural gas production is one of todays most important industries,
especially in Norway. More than 87 million barrels are produced every day world-
wide, and over two million a day in Norway alone[1]. With oil priced at up to
one hundred USD a barrel this is a substantial economical market, supplying very
important resources, supplying thousands of jobs, and creating the foundation of
millions more.

Finding this oil is down to a number of techniques, one of which is controlled-
source electromagnetic surveying (CSEM) done by EMGS, a powerful horizontal
electric dipole is towed above the sea floor transmitting an electromagnetic signal
into the subsurface. Electromagnetic signals propagate differently in different
layers, so that it is possible to distinguish the the sea-bed’s composition. Grids
of seabed receivers measure the energy that has propagated through the sea and
the subsurface. The received data at this point requires data processing and
analysis to gain a three dimensional image of the seabed and determine drilling
decisions[7].

This data processing is very computationally heavy, computing using supercom-
puters is therefore often the only option with large datasets or large quantities
of jobs to execute. Until just a few years ago, data-centers would use almost
exclusively general purpose CPUs to do this computation. However, the CPU is
optimized for fast serial code, logic and running desktop programs. Recent im-
provements in GPU hardware, scientific GPU research and the availability of sci-
entifically aimed compilers have made GPU more and more attractive as it’s area
of expertise is crunching large amounts of data in parallel. Similar work includes
work done at the HPC lab earlier such as The Lattice Boltzmann Simulation on

2 Chapter 1. Introduction

Multi-GPU Systems[26] and CPU and GPU Co-processing for Sound[10].

A central part of the data analysis done at EMGS is running the FDTD method
we will look into, running faster and more efficiently is always desirable. The
prospect of running on GPUs and in heterogeneous environments is very inter-
esting for EMGS, creating a GPU solution and a scheduler to utilize this to-
gether with existing CPU implementations will be explored. The goal is to adapt
Yee bench, an open FDTD method implementation to EMGS’ needs and bring
it into todays heterogeneous reality. We will adapt the CPU implementations as
well to utilize multi core parallelization.

1.1 Outline

In Chapter 2 we will present background information, the rise of parallelization
on GPU, the CUDA API and Yee bench.

In Chapter 3 we introduce the CUDA Implementation of the Yee bench code,
how it was modified and the optimizations used.

Chapter 4 introduces the scheduler, our CPU modifications, the single device
benchmark codes and general implementation.

Chapter 5 shows the results of the implementation and benchmarks comparing
different versions to the already existing CPU version.

Lastly in Chapter 6 we conclude the findings of the thesis and discuss future
work.

The Appendices include a user manual for Yeebench CUDA in Chapter A de-
scribing how to run the scheduler and it’s benchmarks as well as the plot script.
In Chapter B we list some relevant source code to the project.

1.2 Setup

Throughout this thesis, timings and performances will be run on the following
system unless specified otherwise. This includes compiling, development and
trialruns.

1.2. Setup 3

Table 1.1: Hardware and Compiler Configuration

Hardware and System

CPU Intel i5-3470 @ 3.2GHz Ivy Bridge

GPU NVIDIA GeForce 480 GTX

GPU NVIDIA Tesla K20

Memory 16GB 1333MHz

Motherboard MSI Z77A G45

Operating System Linux Mint 14, 3.5.0-23 64bit

Program

Version Yee bench CUDA

GPU Compiler NVIDIA nvcc 5.0 V0.2.1221

CPU Compiler gcc 4.6.3

GPU Driver NVIDIA Driver 304.88

Compiler flags -O2

Chapter 2

Background

In this chapter, we will introduce parallel computing of different types, from mul-
tiple computers with one CPU to the massively parallel GPUs. The foundation
of the thesis Yee bench is presented along with it’s scientific basis, the FDTD
method. This Chapter is built on the background section from my project in the
fall of 2012[24].

2.1 Parallel Computing on GPU

Since the birth of the microprocessor at the end 1960s, it’s performance has
steadily increased, until a few years ago the serial performance was doubled every
18 or so months. This is related to Moore’s Law stating that the number of
transistors doubled approximately every 24 months. However since the number of
transistors for a given area is now so large the amount of energy generated at this
level is exceeding what heat sinks can realistically handle. The performance still
increases to this day but at a slower pace, and in many cases due to other factors
such as architecture size and optimizations. CPUs are optimized to increase
the performance of serial code, focusing on single core speed, branch prediction,
memory pre-fetching etc.

Todays greatest performance increases come from parallelism, commercial off-
the-shelf hardware consist of CPUs consisting of several processing-cores. Each of
these cores have equal processing power and increase the performance by allowing
several programs to run in parallel at the same time or use parallel programs
which split it’s work amongst the cores. Traditional servers and HPC data centers

6 Chapter 2. Background

have had multi CPU nodes for years, but in todays environment even commodity
home computers benefit from parallelism. In supercomputers there are thousands
of cores, spread amongst thousands of nodes. Building carefully designed software
to take use of this can be difficult, as stated by Amdahl’s Law[2], the size of the
serial region of a program limits it’s parallel peak performance so minimizing this
region and creating clever solutions is imperative to utilize the resources.

2.1.1 GPU

The GPU is a specialized processing unit aimed initially at accelerating graphics
computations. At first the graphics controllers were only 2D image rendering to
be used as the basis of generating the image for computer displays. However in
the 1990s this evolved into GPUs with more and more functionality moved from
the CPU, creating true GPUs with shader programs to allow 3D rendering with
programmable functionality.

Around the turn of the millennium scientists started using GPUs to accelerate
scientific applications, this offered speedups of over 100x for certain applications
however programmers were limited to using graphics APIs like OpenGL to pro-
gram the GPU. When using these APIs the programmer would have to relate to
functions and structures such as shaders and frame buffers making it difficult and
raising the bar for writing such programs. Newer fully programmable GPU hard-
ware and API with compilers like CUDA and OpenCL opens this tremendous
resource up to the rest of the world and improving previous implementations.
This is where the notation of GPGPU or General-Purpose Graphics Processing
Unit starts to be a broader and more accurate term than simply GPU.

Figure 2.1: GPU vs CPU Cores [21] with permission from NVIDIA

The GPU consists of thousands of cores designed for parallel performance, but
with little serial optimization making applications with a lot of control or serial

2.1. Parallel Computing on GPU 7

regions ineffective. Using the CPU to control the flow of an application and ac-
celerating the the compute-intensive regions “kernels”, on the GPU is a powerful
combination. [21]

Figure 2.2: GPU vs CPU Performance [18] with permission from NVIDIA

Due to optimization for compute-intensive highly parallel computation on GPUs
and reduced logic for control the GPU can achieve far higher throughput on
operations, visible in the comparison above in Figure 2.2 between Intel CPUs
and NVIDIA GPUs.

A GPU is as shown earlier usually at least one order of magnitude better than
CPU, and in many cases two orders of magnitude, scaling more nodes instead to
get the same amount of CPU power is inefficient in many ways. Using several
nodes require more communication in many applications, additional nodes is more
expensive than a GPU, one can pace up to 4 GPUs in one host for increased
performance. In the given example of FDTD in OpenCL [25], one node of 4
GPUs is more than three times as fast as 4 nodes with 2 hyper threaded quad
core CPUs from Intel.

From the results in Figure 2.3 the relative difference in power between CPU and
GPU can be viewed in an actual application. In their implementation however
the actual benefit from more than 4 GPUs was small, the speed increases slowly

8 Chapter 2. Background

1 2 3 4
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Nodes

P
ea
k
S
p
ee
d
(M

ce
ll
s/
se
c)

2x Xeon E5620 CPUs
4x Radeon HD5870 GPUs

Figure 2.3: Multi CPU Node vs Multi GPU Node in OpenCL FDTD, note that
the speed for GPU is on larger problem sets when increasing number of nodes.
With data from article[25]

with more nodes, but on much larger problem sets, allowed by additional memory,
as each GPU in their example is has 1GB of memory.

2.2 Compute Unified Device Architecture

As creating scientific programs using graphics based programming languages like
OpenGL was complex and difficult, the GPU business created APIs for pro-
gramming these processors in a simplified and precise way. NVIDIA developed
Compute Unified Device Architecture, or CUDA in short. Programmers can also
choose to use alternatives such as OpenCL, Microsoft’s DirectCompute or the
OpenACC directives for existing languages.

NVIDIA’s “nvcc” is a C/C++ (from now on mentioned as just C) compiler that
creates an extension to C that removes dependencies on knowledge about the
inner workings of the graphics pipeline. The program consists of a traditional
C program, initial setup like selection of GPU devices and allocation of memory
on the GPU devices. To run anything on the GPU, special functions called

2.2. Compute Unified Device Architecture 9

kernels are scheduled from the main program running on the CPU of the host.
These kernels are asynchronous calls which are scheduled, the device needs to be
“synchronized” in order to retrieve or write new data to the device memory. For
newer models, independent “streams” of kernels can be used in parallel meaning
different kernels may run at the same time on different SMs.

2.2.1 Architecture

The architecture of CUDA devices is important for how you use them. In Figure
2.4 we can see the overview for the Fermi architecture[17] with compute capability
2.0 which is present in the NVIDIA 480GTX card used in this thesis.

A GPU executes kernels in grids of thread blocks, thread blocks are executed in
the streaming multiprocessors (SM). The SM consists of many CUDA cores, for
Fermi there are 32 CUDA cores and 4 special function units (cosine, square root
calculations etc) per SM, the SM executes 32 threads in groups of 32 called a
warp. One SM has many load/store units, 16 for fermi, which is less than the
number of cores but should keep it busy.

The 408GTX has 15 SMs, which in a way is like CPU SIMD core on steroids.
Kernels are launched in parallel on all SMs, utilizing as many cores as possible
based on the amount of memory used.

10 Chapter 2. Background

Figure 2.4: CUDA Fermi Architecture, [17] with permission from NVIDIA

Memory

CUDA GPUs have both on-chip and on-board memory, see Table 2.1. Manag-
ing and using the correct memory is the main concern when programming for
CUDA.

Compute capability 2.0 units have several significant improvements in memory
handling. Register spilling uses L1 cache instead of global memory (imagine
suddenly having registers perform at 1/1000 of it’s peak performance). An added
L2 LRU cache for global memory accesses and implicit broadcast of constant data
from global memory.

2.2. Compute Unified Device Architecture 11

Table 2.1: Main CUDA Memories, GF100

Type Speed Perspective

Registers 8,000 GB/s Per thread

Shared Memory 1,600 GB/s Per thread block

Global Memory 177 GB/s All threads and host

For GF100 (Fermi) architecture the size of the L1 cache is 16KB with 48KB
shared memory, or 48KB L1 cache with 16KB shared memory with a L2 cache
of 768KB. The memory from the viewpoint of a thread is depicted in Figure
2.5.

Figure 2.5: CUDA Fermi Memory Architecture for a Thread, [17] with permission
from NVIDIA

2.2.2 Kepler Architecture

Also available to us is the NVIDIA Tesla K20 card[20] with compute compat-
ibility 3.5. While GeForce cards are designed for consumer graphics the Tesla
family is created for scientific parallel computations, exactly what we are working

12 Chapter 2. Background

with. The Tesla products offer us a range of features compared to the ordinary
GeForce family, some of the most interesting are as follows. Far greater perfor-
mance for double precision computing, up to four times the performance. Faster
PCIe communication with double DMA engines and InfiniBand. Larger on-board
memory to allow larger problem sizes or more parallel work to take place. These
improvements as well as specialized drivers to reduce kernel overhead makes the
Tesla family better suited to our needs.

Table 2.2: GeForce 480 GTX GF100 vs Tesla K20 GK110

480 GTX Tesla K20

CUDA Cores 480 2496

Streaming multiprocessors 15 8

Peak Double Floating Point Perf. 0.168 Tflops 1.17 Tflops

Peak Floating Point Perf. 1.35 Tflops 3.52 Tflops

Core Clock 700MHz 706MHz

Memory 1.5GB 5GB

Maximum Memory Bandwidth 177GB/s 208 GB/s

2.2.3 Utilizing GPGPU and CUDA

There are some important aspects when using GPGPU instead of CPUs. Ac-
cording to Farber[9] we have the three rules of GPGPU,

• Get the data on the GPGPU and keep it there

• Give the GPGPU enough work to do

• Focus on data reuse on the GPGPU to avoid memory bandwidth limitations

which from previous descriptions of how things are specialized seems natural and
are in fact very important. Data transfer between host and GPU is in essence a
waste of time if avoidable, and much slower than any ordinary memory lookup or
similar. There is always a small overhead to launching work, the GPU will have
the ability to run millions of floating point operations in the time the CPU even
launches a kernel. Having the GPU under saturated means it’s wasting resources
when executing, as the ration between time spent launching kernels and running
them can get skewed. Lastly using memory local to the CUDA core is imperative
to utilize the processing power available, if each floating point operation was read

2.2. Compute Unified Device Architecture 13

and written directly to global memory (even with perfect memory coalescing) the
performance is lowered by a factor of 40-50.

Other than this we have considerations such as, memory handling, strengths
and weaknesses of GPU cores compared to CPU cores, a requirement of being
significantly parallelizable and the importance of launch configuration.

A CPU will have main memory which is big and slow, and then it’s internally
managed cache hierarchies. A GPU has it’s own independent memory, a large
global memory, but this is divided into different types, you have the ordinary
registers but also fast shared memory within a single thread block. Using the
correct memory here is vital, using the fastest and closest memory is always a
best practice, not only is it faster but memory access conflicts are reduced as
well.

As previously mentioned, a CPU is optimized for serial code with features such
as branch predictions and memory pre-fetching. When programming the GPU
these differences lead to significant performance differentiations, a number-heavy
mathematical algorithm will have severe performance dips if too much control is
imposed, many cycles will be wasted on diverging branches. The CUDA frame-
work gives you large control over where you put your data and how you access
it, meaning extra care is needed to utilize this freedom. For example if any data
is shared inside a thread block it should be accessed as shared memory.

You also have the simple and overarching requirement that a problem is signifi-
cantly parallelizable, even if just a section of code has little to no parallel regions
the overall performance will drop by a lot. This is well documented by Amdahl’s
Law[2].

For the CUDA framework we have some limitations and specific behavior com-
pared to ordinary C code,

• A kernel has to return void.

• Library functions are not available.

• Function calls from kernels are auto in-lined, and not actually called.

• Recursion is only supported on compute capability 2.0 and up.

• There are no static variables, values can’t be kept between kernels.

• Debugging is complicated, no c out functions are available within a kernel.

• Use intrinsic functions if available as they are optimized for the NVIDIA
GPU.

14 Chapter 2. Background

A relatively new problem is launch configurations, in the past days of CPU pro-
gramming highly optimized libraries such as BLAS have hardware optimized
code, self tuning code and the likes to really get the best out of your hardware
and specific setup. For GPUs you have the added complexity of always specify-
ing how the GPU will execute the kernels. Dimensions of threads, their order of
execution, drawing properties from the amount of registers used etc., the number
of CUDA threads launched needs to be a multiplum of the warp size for exam-
ple. This is to ensure all compute cores in the GPU are used when it schedules
threads.

For compute bound algorithms, the number of registers must be balanced with
the shared memory to maximize the throughput of calculations[14]. Addition-
ally, these resources should be maximized for a single block per multiprocessor.
Techniques to optimize compute-bound algorithms include storing reusable, inter-
mediate values in shared memory and assigning multiple data points to a thread
to overcome the unused resources of idle threads.

For memory-bound algorithms, the challenge is to fit the working set of data
into the fast GPU memory resources or leverage the low latency memory caches.
This can be achieved by reorganizing the data into self-contained data structures
and using a multi-pass approach to process a subset of these self-contained data
structures during each pass. Additionally, the type of memory used should be
carefully considered.

Optimized implementations are several times as fast as unoptimized implemen-
tations of CUDA algorithms. GPU acceleration of code has great potential,
which we have seen to be utilized in other projects already. But carefully design-
ing these algorithms to handle memory is imperative to achieve optimal perfor-
mance.

2.3 Yee bench

The Yee bench[3] code is a benchmark implementing the finite-difference time-
domain method (FDTD). This mathematical method was introduced by Yee in
1966. The FDTD method involved is explained further in Section 2.4. The
Yee bench code is the basis of the work performed during this thesis, and is what
the result will be compared to. This section gives an overview of Yee bench, a
summary and look into the official paper published by Ulf Andersson.

Yee bench contains complete code in Fortran90 and C, the documentation is
focused on Fortran90. Code also exists in Fortran77, Matlab and C++. All

2.3. Yee bench 15

versions are available on request. Fortran90 has 6 editions with different electro
magnetic field storage models.

PDC has two related parallel benchmarking codes. psycyee: A parallel imple-
mentation of the FDTD kernel using point-to-point MPI, available on request.
GemsTD/frida: A hybrid time-domain solver, not available.

Setup and
initialize

yee.dat

identify
calculation

model

more iter-
ations?

update
H fields

apply
boundary
conditions
to E fields

update
E fields

add value
to mid

Ez-element

more
calcmets?

present
results

yes

no

yes

no

Figure 2.6: Yee bench Flow Chart

16 Chapter 2. Background

The flow of the code is depicted in Figure 2.6. The domain lx,ly,lz is divided into
Nx,Ny,Nz cells of equally sized dx,dy,dz cells with cubic computational domain,
Nx = Ny = Nz ≡ N

Dirichlet boundary condition apply, a perfect electrical conductor (PEC) is as-
sumed, so that the electrical field component at the outer boundary is set to zero.
All initial values are set to zero as well.

For each N, Nt time steps are taken and an average time per time step is com-
puted. Initialization overhead is excluded, along with time step 0, Nt is automati-
cally scaled to make a problem of size N take about 20 seconds to complete.

The benchmark can repeat each time stepping, it then chooses the fastest, the
initial value of Nt for first N is specified by user along with Nmin, Nmax and
runs/repetitions per N.

Three implementations of the leap-frog update is available,1 specified by the
“calcmet” input in the settings file, see Table 2.3. Option 5 is used for results
provided and has been shown to provide the best results as it optimizes register
use.

Table 2.3: Calcmet Options

Calcmet Method

3 array syntax

4 three separate loops

5 fused do loops

The memory requirement for FDTD is significant, for 64bit it is 24N3+24(N+1)3

bytes reaching 4Gb at N=446. The amount of memory is often restrictive for how
large a problem to create, since it is cubic and therefore increases rapidly. For
32bit the memory print will be halved.

Table 2.4: Maximum Problem Size vs Available Memory for Yee bench.

128kbyte 2 Mbyte 4 Mbyte 1 Gbyte 2 Gbyte 4 Gbyte

N = 13 N = 34 N = 43 N = 281 N = 354 N = 446

There are 12 additions, 12 subtractions and 12 multiplications per cell per time
step. Multiplication to addition/subtraction ratio is suboptimal however the

1leap frog method, updating velocity a halftime step after position update, “leaping over
the velocity”[6].

2.3. Yee bench 17

problem is memory bound with 20 loads and six stores per cell per time step.
Depending slightly on the implementations mentioned above and the compiler.
Memory bandwidth can be measured with benchmark “DAXPY stream2”.

The problem size in the implementation is mostly limited by memory, both mem-
ory traffic and available memory. For non parallelized implementations the com-
pute time is not a factor.

Yee bench is reported to be equipped with OpenMP however no results are given
as to it’s usefulness, multiprocess per node is given with severe performance
reductions because of a memory bound problem. The same is assumed to be true
for threaded runs.

2.3.1 Conclusions Made by Andersson

It is shown that the “stream2” DAXPY results can be used to predict limits for
the performance of Yee bench (with exception on one IBM computer and a SGI
computer).

2.3.2 Personal Conclusions

Multi core parallelization of FDTD allegedly impossible, multi-CPU suggested
to be viable still. The two way associative cache of the CPU used in 2002 shows
severe memory dips at certain problem sizes, necessary to take care to avoid these.
The effect is smaller for todays 8 way associative caches. Parallelization is to be
made using several nodes, or memory independent compute devices. Their own
conclusion seems to be more towards bandwidth prediction and bottlenecks of
the implementation and less about the problem itself. The problem is a typical
GPGU problem, with iteratively high amounts of floating point operations on
large dataset.

As shown later in the results of Section 5 we see that many of these predictions
are untrue with the modern hardware today. It should be noted that the article
which originially introducees yee bench is from 2002 and a lot has changed in the
last 10 years, computing performance does rise faster than memory bandwidth
but increasing the computing power of the cpu does improve performance. The
code delivered did not contain any OpenMP directives.

18 Chapter 2. Background

2.4 The FDTD Method

Here follows a brief overview of the FDTD method used in the Yee bench frame-
work for solving Maxwell equations. FDTD refers to a specific finite-difference
method, namely the leap-frog method on staggered Cartesian grids. The FDTD
method is derived from Ampère’s and Faraday’s laws, applying central difference.
A cubed domain (lx, ly, lz) is divided into (Nx, Ny, Nz) equally sized cells with
sizes (∆x,∆y,∆z) = (lx/Nx, ly/Ny, lz/Nz) [3]

∆z Ez

∆x

Ex

Ey ∆y

Hy

Hx

Hz

Figure 2.7: Positions of the Electric and Magnetic Field Components in a Yee
Cell.

The grid consists of three magnetic fields and three electrical fields which are
staggered, meaning all electromagnetic fields elements are defined at different

2.4. The FDTD Method 19

locations, see Figure 2.7.

ε
∂Ex

∂t
=
∂Hz

∂y
− ∂Hy

∂z
− σEx,

ε
∂Ey

∂t
=
∂Hx

∂z
− ∂Hz

∂x
− σEy,

ε
∂Ez

∂t
=
∂Hy

∂x
− ∂Hx

∂y
− σEz,

µ
∂Hx

∂t
=
∂Ey

∂z
− ∂Ez

∂y
,

µ
∂Hy

∂t
=
∂Ez

∂x
− ∂Ex

∂z
,

µ
∂Hz

∂t
=
∂Ex

∂y
− ∂Ey

∂x
.

(2.1)

The Maxwell equations for the FDTD method can be seen in Equation 2.1. Which
is the basis of the equations mentioned below.

Hx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

= Hx|
n− 1

2

i,j+ 1
2
,k+ 1

2

+
∆t

µ∆z

[
Ey|ni,j+ 1

2
,k+1−Ey|ni,j+ 1

2
,k

]
− ∆t

µ∆y

[
Ez|ni,j+1,k+ 1

2
−Ez|ni,j,k+ 1

2

]
(2.2)

Hy|
n+ 1

2

i+ 1
2
,j,k+ 1

2

= Hy|
n− 1

2

i+ 1
2
,j,k+ 1

2

+
∆t

µ∆x

[
Ez|ni+1,j,k+ 1

2
−Ez|ni+ 1

2
,j,k+1

]
− ∆t

µ∆z

[
Ex|ni+ 1

2
,j,k+1−Ex|ni+ 1

2
,j,k

]
(2.3)

Hz|
n+ 1

2

i+ 1
2
,j+ 1

2
,k

= Hz|
n− 1

2

i+ 1
2
,j+ 1

2
,k

+
∆t

µ∆y

[
Ex|ni+ 1

2
,j+1,k−Ex|ni+ 1

2
,j,k

]
− ∆t

µ∆x

[
Ey|ni+1,j+ 1

2
,k−Ey|ni,j+ 1

2
,k

]
(2.4)

Ex|n+1

i+ 1
2
,j,k

= Ex|ni+ 1
2
,j,k−

∆t

ε∆z

[
Hy|

n+ 1
2

i+ 1
2
,j,k+ 1

2

−Hy|
n+ 1

2

i+ 1
2
,j,k− 1

2

]
+

∆t

ε∆y

[
Hz|

n+ 1
2

i+ 1
2
,j+ 1

2
,k
−Hz|

n+ 1
2

i+ 1
2
,j− 1

2
,k

]
(2.5)

Ey|n+1

i,j+ 1
2
,k

= Ey|ni,j+ 1
2
,k−

∆t

ε∆x

[
Hz|

n+ 1
2

i+ 1
2
,j+ 1

2
,k
−Hz|

n+ 1
2

i− 1
2
,j+ 1

2
,k

]
+

∆t

ε∆z

[
Hx|

n+ 1
2

i,j+ 1
2
,k+ 1

2

−Hx|
n+ 1

2

i,j+ 1
2
,k+ 1

2

]
(2.6)

20 Chapter 2. Background

Ez|n+1

i,j,k+ 1
2

= Ez|ni,j,k+ 1
2
− ∆t

ε∆y

[
Hx|

n+ 1
2

i,j+ 1
2
,k+ 1

2

−Hx|
n+ 1

2

i,j− 1
2
,k+ 1

2

]
+

∆t

ε∆x

[
Hy|

n+ 1
2

i+ 1
2
,j,k+ 1

2

−Hy|
n+ 1

2

i− 1
2
,j,k+ 1

2

]
(2.7)

At each time step the fields are updated from stencils based on equations 2.2 to
2.7. The three first are the stencils for the magnetic fields and the last three the
electrical fields. The electrical fields are one half time-step ahead of the magnetic
fields. These equations are based on the assumption of a homogeneous media
where σ is zero. The method is explicit, meaning all values only depend on
values in earlier time steps. The FDTD method is second order accurate in time
and space.

Chapter 3

Yee bench CUDA

For now we have looked at GPGPU, parallelizing and the FDTD method. In
Chapter 4, we will introduce a heterogeneous scheduler for Yee bench, which
is the main goal of this thesis. Before we get to that we need something to
schedule. Ulf Andersson has supplied us with a CPU edition, which leaves us to
create a GPU version. In this chapter we will describe the main component of
the heterogeneous scheduler, the CUDA implementation of Yee bench.

The CUDA version took basis in the released C version of Yee bench. This
chapter describes this GPGPU implementation and the changes made to accom-
modate the requirements of EMGS. This Chapter describes work that was started
on in my project in the fall of 2012[24], some of the text will contain exerts from
that report. However a bug which affected the results of the previous report,
in combination with new requirements made the specific results invalid and are
therefore new.

3.1 Implementation

The existing implementation of Yee bench consists of three 3D arrays of magnetic
fields and three 3D arrays of electronic fields. These arrays consist of one array
for each three-dimensional direction of the fields. The execution is performed
iteratively, with each iteration including the following operations. First the elec-
tronic fields are updated, then the magnetic fields have their boundary conditions
applied. Then the magnetic fields are updated followed by an effect applied to

22 Chapter 3. Yee bench CUDA

the center element of the Z directional electrical field. After all time steps are
calculated the time consumed and corresponding MFlops are displayed.

FDTD
yee bench

task
started

more iter-
ations?

more iter-
ations?

update
H fields

apply
boundary
conditions
to E fields

update
E fields

add value
to mid

Ez-element

return to
scheduler

yes

Figure 3.1: Yee bench method Flow Chart

The overall flow of Yee bench was unchanged in the CUDA version which is
depicted in Figure 3.1. Update functions that are GPU kernels in the CUDA
version are colored orange to extinguish them. In the update kernels, each field
array updates it’s elements with data from all three of the opposite field array
type.

Other than the size of the arrays, the E field update kernel works the same way
as the H field update kernel. For each element in the N3 domain, there are 15
reads and 3 writes to global memory in each of these kernels.

3.2. Overall Design 23

3.2 Overall Design

At the start of the execution, following the declarations of variables, CUDA is
initialized and device memory allocated. One CUDA array is created for each of
the six field arrays, where the memory is initialized to zero on the device. The
execution is launched with the configurations listed in Table 3.1, default values
apply if not mentioned.

The update functions or “kernels”, work mostly as before, updating the field
arrays. The kernels are launched with one thread for each element in the YZ-
plane, then iterating over the elements in the X dimension.

3.2.1 Launch Configuration

The block and grid configurations are squares which might suggest the process-
ing to start at regular intervals throughout the domain. Which would happen
if you have thread X,Y in iteration Z compute element X,Y,Z. Addressing in-
side the kernel ensures that consecutive CUDA threads are launched to compute
neighboring cells to improve cache hit and data coalescing at both reads and
writes.

Launching the CUDA kernels in block configurations of 16 × 16 produces the
best effect due to warp effiency and maximizing threads. Grids are launched
as described in Table 3.1, this will ensure that more threads than necessary are
created, as the total number of elements is never exactly this number. This means
that threads addressing elements outside the domain will be terminated after
launch as they don’t belong to an actual element, creating “dead” threads.

Table 3.1: Launch Configurations

Property

Block configuration X × Y = 16× 16 square

Grid configuration
X = Y =

⌈
2

√
n2

Blocky×Blockz

⌉
square

time steps 200

Other CUDA settings made include setting the cache size for the L1 Cache
with

cudaDeviceSetCacheConfig(cudaFuncCachePreferL1)

24 Chapter 3. Yee bench CUDA

This ensures that the L1 cache is larger, increasing cache hit at the expense of
the shared memory size, as shared memory is not used this is a trade off without
disadvantages. See Section 2.2.1.

3.2.2

To optimize the original implementation for CUDA, fewer parameters are passed
to the kernels to reduce the register count, data addresses are computed locally
as the problem is memory bound, for example offset variables that are originally
precomputed.

All constants are passed at the end of the parameter list to utilize constant mem-
ory broadcast to the threads, with some in front of the array pointers and some
after like in the original implementation this automation did not function.

The innermost loop, and the only actual loop in the CUDA implementation is
changed to the X dimension. As this is the slowest moving dimension it increases
memory access across threads and increases cache hits for shared data between
threads.

Many other strategies and techniques were looked into during implementation
that did not provide a beneficial speedup. Such as improved memory addressing
calculations, but this utilized more registers and had a negative effect. Shared
memory options were considered but as the stencil radius is small, actual elements
needed are not very systematic and the availability of the cache function on Fermi
this reuse did not justify increased complexity.

The algorithm is strongly memory bound, the memory utilization compared to
theoretical maximum is fair at best as the data is accessed in a very irregular
fashion, see Section 3.3 for results from code profiler. This is because calculations
in the FDTD method read data from many different arrays in different directions,
as listed in Section 2.4.

3.2.3 Problem Size Variations

The original specification of Yee bench was that it was meant for problems of the
size Nx = Ny = Nz, but the code allowed non uniform sizes.

For the CUDA version, the cleanup kernel was split up into three different kernels,
each with it’s own 2D-plane. For example the XY-plane as in Listing 3.1.

For the update kernels, each thread which corresponds to an element in the YZ-
plane finds it’s id with the same method as in the cleanup kernel in Listing 3.1.

3.3. Profiler Analysis 25

Listing 3.1: Cleanup Kernel for XY-Plane

1 __global__ void cleanupE_xy_cuda(my_float *cHx, my_float *cHy, my_float *cEz, int

nx, int ny, int nz, my_float Dbdx, my_float Dbdy)

{

3 // Global thread id in CUDA, corresponding to the launch number

int i = (blockIdx.x + gridDim.x * blockIdx.y) * (blockDim.x * blockDim.y) +

5 (threadIdx.x + blockDim.x * threadIdx.y);

7 int x = i/ny + 1;

int y = i%ny + 1;

9

if (x < nx && y < ny)

11 EzC(x,y,0) += (HyC(x, y ,0)-HyC(x-1,y,0))*Dbdx +

(HxC(x,y-1,0)-HxC(x ,y,0))*Dbdy;

13 }

This addressing order is significant for the overall performance, in early tests it
sped up the implementation by several hundred percent. In the profiler section
we see that this is apparent for one of the cleanup kernels.

3.3 Profiler Analysis

Analysis is drawn from data gathered by running NVIDIA Visual Profiler 5.0.0[19].
The overall execution can be seen in Figure 3.2, it depicts a cutout of slightly
more than one iteration. The updateE and updateH kernels take up most of the
execution time, with the boundary condition kernels cleanupE only taking a few
percent of the time spent executing.

The dead time between each iteration is partly due to profiling overhead, but
also due to using a kernel with a single thread to calculate a single value for the
middle element of Ez. However adding a conditional to an existing kernel is not
worth it due to a few reasons. It would increase the number of registers needed
and data copied to the kernel for all kernels to have the data needed to perform
the computation, and the extra divergence will also punish performance.

26 Chapter 3. Yee bench CUDA

Figure 3.2: Overview of a Yee bench Iteration in the CUDA Profiler

From Figure 3.3 we can see that cache miss is at 51%, this is due to most data
being fresh for each thread with about half of it reused by other threads. As a re-
sult from this each thread will have varying execution time leading to instructions
getting out of sync. This is reflected in high instruction replay, however as the
main bottleneck of the execution is fetching and storing memory it is unlikely to
be of importance. The cache misses leads to the main bottleneck of the program,
memory.

Figure 3.3: Profiler Instructions and Cache Miss of the CUDA Implementation

Figure 3.4 displays the memory throughput and efficiency for reading and writ-
ing global memory. Keep in mind the maximum throughput of the GTX480 is
177GB/s. For the memory data depicted, the maximum values apply to the two
kernels that take up 95%+ of the execution time, the average numbers are a
result of less effective accesses in the boundary condition kernel. It can be seen
that the memory writes have a high efficiency, this is due to the fact that no

3.4. Intermediate Results and Implications 27

irregularities exist in the the writing addresses. Each array that is written is
iterated in predictably and writes mostly coalesce. This is only untrue for one
kernel, the cleanup kernel for the XY-Plane. This creates a bad writing structure
and is the reason why this kernel is 4% vs 0.3% for the other two cleanup kernels.
Global memory load efficiency however is limiting with an average of 56% for the
two time consuming kernels. This is due to the irregular memory access in the
kernels, where each thread accesses data plus one, and minus one in a direction
for each field array. From before around 50% achieved cache hit, the remaining
memory accesses often do not coalesce, reducing the memory performance.

Figure 3.4: Profiler Memory and Occupancy of the CUDA Implementation

High warp execution efficiency was achieved by using proper block sizes and
sufficient amount of blocks. Occupancy was commented by the profiler to be at
57%, limited by the number of threads used by the kernels. Yet occupancy only
shows a part of the picture and 25% is said to be enough to give sufficient work
to the GPU.

3.4 Intermediate Results and Implications

The hardware and configuration used is shown in Table 1.1, it is the hardware
provided by the NTNU HPC Lab. The results from a single GPU run can be
seen in Figure 3.5.

From the graph it is seen that the improvement from CPU implementation is
considerable yet not as significant as many other GPGPU projects which can get
close to a speedup of 100x, this solution is just shy of 20x for a single core. A

28 Chapter 3. Yee bench CUDA

50 100 150 200 250
n

0

10000

20000

30000

40000

50000

60000

m
fl
op

s

480GTX Float

i3470 1omp float

i3470 2omp float

i3470 3omp float

i3470 4omp float

Figure 3.5: GPU Speed, Floating Point Precision for Main Loop

modern day GPU will in all likelihood perform even better than these numbers
tell when comparing to a CPU. The main focus of this thesis is a heterogeneous
implementation utilizing both CPU and GPU, maximizing the number of CPU
cores might not be beneficial. First off the GPU implementation utilizes some
CPU to keep the GPU busy, but it is also required to transfer data to and from
the already strained RAM memory.

For results from the NVIDIA K20 GPU using the Kepler architecture see Section
5.5.

Chapter 4

The Heterogeneous
Yee bench Scheduler

Now that we have both a CPU and a GPU implementation of the Yee bench
code we can explore how to best use these together. In this chapter, we will
describe the heterogeneous scheduler we have created to utilize both CPU- and
GPU-calculation to execute FDTD based jobs.

The overall program has five different versions it can run.

1. Assignment Scheduler - The main scheduler that will run FDTD tasks in a
heterogeneous environment.

2. Greedy Scheduler - A simple implementation that has each thread select a
new task to perform after they complete their previous one.

3. Homogeneous Device Plotter - A benchmark created to plot performance
across different problem sizes for a single device, CPU or GPU (used during
development and to create graphs like Figure 3.5 in Section 3.4).

4. Heterogeneous Device Plotter - A benchmark created to plot performance
for a heterogeneous scheduler, it emulates the assignment scheduler to cre-
ate performance charts for different problem sizes.

5. Resource Plotter - A benchmark for comparison of different number of CPU
threads and GPU threads, based off of the heterogeneous device plotter.

The one of interest is the Assignment Scheduler described in Section 4.2. For
all versions the overall structure is the same, in which the program starts off

30 Chapter 4. The Heterogeneous Yee bench Scheduler

by identifying which type is to be run from the five types specified above. This
is determined by the parameter to the program. The default or “greedy” for
#2, “assignment” for #1, “plot” for #3, “hybridplot” for #4 and “resource” for
#5.

4.1 Implementation

The overall program is no longer shaped as a simple benchmark with varying
calculation methods which specified which algorithm to utilize. Yee bench origi-
nally had several calculation methods to choose from and ran through the same
problem size one or many times in a row to benchmark the method on a single
core CPU.

The scheduler now supports both GPU and CPU, and with different types of
parallelism.

4.1.1 Overall Design

Files in the implementation

• main.cu - Main file of the project, contains the main sequences of the pro-
gram with setup and initializations.

• main.h - Header file for the project, contains includes, macros, definitions
and declarations.

• jobs.cu - Contains code for running a FDTD task. CPU and GPU.

• update.cpp - Contains the CPU kernels.

• yee.cu - Contains the CUDA kernels.

• yee.dat - The configuration file containing numbers specific to the launch.

• plot.py - The plot script used to create graphs.

Common for all implementations is the general flow depicted in Figure 4.1. With
minor differences or simply repeating the launch step in case of the hybrid device
plotter.

4.1. Implementation 31

setup and
initialize

yee.dat

launch
control
threads

more
tasks?

get new
assignment

perform
task

join
threads
and end

for all tasks

yes

no

Figure 4.1: Scheduler Flow Chart

4.1.2 Plot Script

For creating graphs used with this implementation a small Python script utilizing
matplotlib[11] was created. This script accepts data from “csv” files created by
Yee bench CUDA. These “csv” files are column based, where column one is the
problem size or X-axis on the graph, column two is the Y-axis describing the
performance in megaflop per second, and the optional third column can be used
to create error bars in the Y direction. For and in-depth description look at
Section A.2.

32 Chapter 4. The Heterogeneous Yee bench Scheduler

4.1.3 Computation Implementations

There are two sets of computation implementations, one for CPU and one for
GPU, the GPU version is implemented in CUDA and is described in length in
Chapter 3.

The program can be launched with any number of CPU or GPU threads. This
is specified in the configuration file. The CPU version is based on the original
C implementation of Yee bench. The Kernels themselves are based off of the
calculation method “5”, which use fused for loops for the computation algorithm.
The other CPU kernels are still in the code base but are not actively in use, this
can be modified by changing the “calcmet used” field in the task struct.

CPU parallelization of a single task is implemented by adding an OpenMP “for”
statement before the outer “for loop” in the CPU kernel, and a “parallel” state-
ment before the launch of this kernel. The number of OpenMP threads to be used
can be specified in the configuration file that contains all the launch specific num-
bers. This is not an automatic number for a number of reasons, firstly allowing
the user to change it to test out different configurations, but most importantly
to avoid throttling the total performance by capping out all the CPU resources.
CPU parallelization of a task is slightly better than parallelizing several tasks at
once on the same system.

4.2 Assignment Scheduler

The assignment scheduler is based on a simple load balancing scheme. It is
implemented using Pthreads, a POSIX standard for threading and mutexes to
control the flow of the program. A mutex or mutual exclusion is a structure to
make sure only one thread in a parallel implementation can perform a section of
the code at one time. These mutexes can also be used as barriers or signals in
the code to make one thread wait for an event. The flow of this scheduler can be
seen in Figure 4.2. Orange boxes signify a task done by the control thread, blue
boxes signify one of potentially many threads1.

1The work performed in the “run task” node is as shown in Figure 3.1 in Section 3 and is
the same for both GPU and CPU.

4.2. Assignment Scheduler 33

start all
workers

thread
started

benchmark
speed

get new
assignment

run task
assign
work

calculate
load for
worker

all tasks
assigned?

join
threads
and end

more
assign-
ments?

next

yes

no

yes

no

Figure 4.2: Assignment Scheduler Flow Chart

The program starts off by reading problem size parameters and CPU/GPU com-
bination from the configuration file. A number of tasks will then be generated
based on these attributes.

When this has been done, the Pthread worker threads are created and launched.
While the worker threads initialize and benchmark their speed, the host thread
waits. When a worker is ready it sends a signal to the host, telling it to calculate

34 Chapter 4. The Heterogeneous Yee bench Scheduler

the load it should need to be busy for X seconds. After the host has assigned
work to a thread, it gives them a ready signal.

At this point the worker has received a list of task IDs based on the performance
reported by to the host. Each worker will wait until these tasks are done before
requesting new assignments.

If a worker receives a workload of zero tasks it means that the task list is empty
and it will end, the first worker to perform this action will notify the host, which
will go into the thread joining state and wait for all others workers to end as
well.

The design has been implemented with the possibility of easily porting it to
distributed memory and message passing frameworks such as OpenMPI in mind.
With one host thread assigning work and keeping track of the others, while
the workers don’t directly contact the host to get new work, they communicate
indirectly through shared memory.

4.2.1 Load Balancer

The load balancer was originally inspired by the concept used in “Evaluation of
Likelihood Functions on CPU and GPU Devices”[13]. In the problem described
in the likelihood article, parallelization is done by splitting the domain of a big
problem into partitions and balancing the devices to share the work of an iter-
ation. In this setting the distribution is started out even among devices and an
iterative process is started to converge on a good distribution.

To create a balancer that would work in our environment, with potentially varying
workloads per task, relative power of devices is not that important if you are
instead balancing towards a static entity such as time.

In our case a single workload or task is performed on it’s own and therefore the
load-balancing does not need to be iterative like the original. To determine each
device’s compute power, a task of the same size as the first scheduled ones is run
at the start to determine the initial speed S0

k for device k.

All tasks are ideally computed at the same time as running devices k0 and k1
concurrently will affect their results. However in most cases they will not be
accurate for this first benchmark, as one device will complete before another and
skew the numbers. We will see that this is not really a problem.

Each time a worker requests new tasks, the host takes the current speed Sk and
calculates the target flop count Fk for the next batch of tasks.

4.2. Assignment Scheduler 35

Fk = Sk × Tktarget

The host then starts building a list of tasks for the worker, each with a load Ftaski

until at least Fk load has been assigned.

Fkactual
=

Fkactual
>Fk∑

i=nextavailable

FTaski

The current load balancer could also be defined from the slowest device. This
was the basis for the original balancer, but by the time it was completed a simple
balancing towards a static time seems more stable.

A relative power balancer would be implemented as follows. After all devices have
reported back their speed, the slowest device is identified. For K devices

Sslow = min[S0
0 , S

0
1 , ..., S

0
K]

Now each new partition can be computed for the next number of tasks to be
performed

Nk = dNslow ×
St
k

Sslow
e

where Nslow is the load to be performed by the slowest device before getting a
new assignment.

4.2.2 Detailed Description of the Implementation

The main file is quite large, close to 1300 lines of code. This is mainly due to
the fair amount of global variables combined with several fairly similar functions.
All the five mode specific functions are in base fairly similar, they all follow the
same style and structure. The two different worker functions for CPU and GPU
are also quite similar. All scheduling or benchmarking is similar between the two
worker functions, with two exceptions.

For the heterogeneous benchmark, the CPU thread has an “if” at the end, it
checks whether the specified amount of CPU tasks have been performed, it will
then exit if it has. The GPU counterpart will check a variable to see if all CPU
threads have retired yet, if so, it will exit. The other exception is for the greedy
scheduler, the CPU function will test if the number of remaining tasks is very
low compared to it’s own performance, this is not so important as this scheduler
is only meant for testing.

36 Chapter 4. The Heterogeneous Yee bench Scheduler

Data relating to a task is stored in a struct, see Listing 4.1. The first grouping of
variables relate to values read from the configuration file. The second is the data
arrays of the electric and magnetic fields respectively. The third grouping relates
to task size and performance, while the fourth and final grouping is information
about how it was run, and weather it has run yet (or did at all in the case of
some of the benchmarks).

Listing 4.1: Data Struct Containing a Task

1 /* Contains data for a task */

2 typedef struct {

3 int nts;

4 int nx, ny, nz;

5 int dx, dy, dz;

6

7 my_float *ex, *ey, *ez;

8 my_float *hx, *hy, *hz;

9

10 int bytes;

11 double flop;

12 double mflops;

13 double t[TIMERS];

14

15 int id;

16 int workerid;

17 int done;

18 int calcmet_used;

19 } task_data;

When launching Yeebench CUDA the parameter will be parsed and the type of
mode to run in in will be stored in the int “state” which reflects the enum in
“main.h”. This will be used in the worker threads to control how they acquire
work.

1 /* Enum for run type */

2 enum { GREEDY=0, ASSIGNMENT=1, PLOT=2, HPLOT=3, RESOURCE=4};

4.2.3 Flow

Flow charts and overall description already exist in Section. 4.2.

First off the number of tasks specified in the configuration file is allocated as an
array of the data structs specified above, the values read from configuration are
also written to the tasks in this array. Arrays for worker performance and worker
assignments are then allocated as well.

4.2. Assignment Scheduler 37

The number of CPU and GPU worker threads specified is then launched after all
mutexes are initialized, three mutexes in total exist.

• “pmutex” - The primary mutex that governs the workers, it is there to
make sure only one worker is communicating with the scheduler at a time.
For a worker to request more work it needs to make claim to this mutex.

• “hostmutex” - This mutex works as a sleep interrupt for the scheduler. The
host will start off polling this mutex. When it is unlocked, it will read the
value in “requesting worker”, calculate the work for this worker to perform
next, and go back to wait for “hostmutex” again.

• “tmutex” - When the host is done allocating work to a thread, it will
unlock this mutex which the worker thread initially started waiting on after
unlocking the “hostmutex”.

Listing 4.2: Scheduler on Host

1 while (true)

2 {

3 /* Wait for worker threads */

4 pthread_mutex_lock (&hostmutex);

5 /* if requesting_worker is -2 it means all work has been assigned, so end */

6 if (requesting_worker == -2)

7 {

8 /* unlock to make sure any workers don’t hang */

9 pthread_mutex_unlock(&tmutex);

10 break;

11 }

12 assign_workload(requesting_worker);

13 /* Signal the worker that the scheduler has done it’s scheduling */

14 pthread_mutex_unlock(&tmutex);

15 }

In Listing 4.2 we see the host side of the scheduler with the work assignement in
Listing 4.3, in Listing 4.4 we have a cutout of the worker-thread function that
requests work to be done.

Listing 4.3: Work Assigner

1 void assign_workload(int worker_id)

2 {

3 if (next_task >= number_of_tasks)

4 {

5 printf("#HOST# All assignments assigned already\n");

6 /* Tell worker it has zero assignments to perform */

7 TaskNum(worker_id) = 0;

8 return;

9 }

10 /* Target flop for a worker to perform

38 Chapter 4. The Heterogeneous Yee bench Scheduler

11 * will try to make it as close to but at least

12 * SECONDS_TARGET seconds

13 */

14 double flop_target = workerperf[worker_id] / (((double)tasks[next_task].nts

-1.0)/(SECONDS_TARGET*1000000.0));

15 printf("target for %d is %f\n", worker_id, flop_target/1000000);

16 double flopassigned = 0;

17 int tasks_assigned = 0;

18

19 while (flopassigned < flop_target && tasks_assigned < MAX_TASKS_PER_THREAD &&

next_task < number_of_tasks)

20 {

21 /* Assign task */

22 TaskId(worker_id, tasks_assigned) = next_task++;

23 /* Keep track of how much work there is in the tasks we have assigned so

far */

24 flopassigned += get_flop(tasks[TaskId(worker_id, tasks_assigned++)]);

25 }

26 /* How many tasks in the tasklist for a worker */

27 TaskNum(worker_id) = tasks_assigned;

28 printf("#HOST# Assigning %d jobs to worker %d\n", TaskNum(worker_id),

worker_id);

29 }

At the start of a worker thread, it runs a small job of similar problem size to the
first job in the task list. It will not run the full length of it, only 40 iterations
of the normal 200+ iterations. They will then start requesting work from the
scheduler by using the mutexes described above. This whole process is quite
similar to message passing, in message passing we would replace the mutexes
with messages containing the relevant data instead. This data would be worker
id for the request, and the response a number of tasks with a list of tasks. These
tasks would include their individual task-data instead of reading these values
from a global array.

Listing 4.4: Task Acquisition on Worker

1

2 /* If the worker has completed all the currently scheduled tasks */

3 if (tasks_performed_for_assignment == tasks_assigned)

4 {

5 pthread_mutex_lock (&pmutex);

6

7 // Send signal to host

8 workerperf[threadid] = lastperf;

9 requesting_worker = threadid;

10 pthread_mutex_unlock (&hostmutex);

11

12 // Barrier to wait for host to assign

13 pthread_mutex_lock (&tmutex);

14

4.3. Other versions 39

15 tasks_assigned = TaskNum(threadid);

16 tasks_performed_for_assignment = 0;

17 pthread_mutex_unlock (&pmutex);

18 }

19

20 /* Next task to perform */

21 my_task = TaskId(threadid, tasks_performed_for_assignment);

If a worker gets an assignment of zero tasks to perform it means the scheduler ran
out of tasks to run. This worker then sets the “requesting worker” variable to −2,
−1 denotes no threads have yet requested work. The worker will also unlock the
host and exit the thread, the host will read the “requesting worker” variable, end
the assignment phase and start joining threads. When other workers end their
assignments, they will also read the “requesting worker” variable, see it’s value
and exit. At the end, the host thread will present performance results based on
the tasks run, broken down by CPU and GPU as well as total performance.

4.3 Other versions

As mentioned in the intro a few other version exist that perform their own small
roles, mostly for presenting results or as part of the development cycle.

4.3.1 Greedy Scheduler

The greedy scheduler is the initial version and a very simple implementation. In
fact no real scheduling is done at all. All threads are started in parallel at the
start, when the host thread releases the mutex each thread will in order select
the next available task until the task list is empty. After all threads have joined
up the performance for the run will be listed, including timings for each part of
the task; setup, compute, data copy and total for both CPU and GPU.

It was implemented with a simple mechanism to halt the slowest devices (CPU
threads) slightly before all tasks are performed as to not let some slow CPU tasks
run alone and ruin the average.

This version will produce fair output for performance but has some obvious draw-
backs, as individual tasks will end at close to any given moment. This will nega-
tively affect the reported performance, only for lengthy runs will this negligible.
In other words to produce results for a single problem size the scheduler would
have to run for as much as ten to thirty minutes.

40 Chapter 4. The Heterogeneous Yee bench Scheduler

Also it does not produce output on it’s own, like the main scheduler it requires
you to run it manually for all problem sizes. This is where the device plotters
come in.

4.3.2 Homogeneous Device Plotter

The homogeneous device plotter is made to benchmark single devices, allow par-
allelizing of a single task and create plots of the performance over a wide problem
size domain. It requires you to only launch the program with one device active,
or it will give incorrect data. The homogeneous plotter will also produce un-
defined performance output for devices parallelizing several tasks at once. The
heterogeneous device plotter could in theory do the same work but it will not for
GPU plotting as it is based on matching CPU workloads.

The plotter starts off by creating tasks equal to the number of tasks specified in
the code, splitting the problem size equally among these tasks and running them
in sequence on the available resources specified. At the end of the run it will
output data to a CSV file and plot it using the Python plot-script.

4.3.3 Heterogeneous Device Plotter

The heterogeneous device plotter based around the assumption that the CPU
workers are slowest and closely match each others speed. Like the previous plotter
it runs tasks equal to the number of tasks specified in the code, splitting the
problem size equally among these tasks. However it will create several tasks
per problem size, it will schedule a specific number of tasks per CPU worker
and constantly resupply the GPU workers until the CPU workers are done. The
uncertainty is larger than desirable when the number of CPU tasks per problem
size is only one, but already at two the error margin is low.

Depending on the number of task level parallel threads per device the relative
performance will vary. Even with close predictions of matching the number of
tasks run per device, some variations will occur on when each device will end it’s
work. To compensate for this, error estimation was added to this plotter to close
the gap.

Listing 4.5: Error Correction of Hybrid Device Plotter

1 double extraflop = 0;

// Sort data of the last tasks performed with the oldest first

3 qsort(ending_data, nthreads, sizeof(enddata), cmp_enddata);

double modifier;

4.3. Other versions 41

5 for (int j = 0; j < nthreads - 1; j++)

{

7 if (ending_data[j].calcmet == 7)

modifier = 0.4;

9 else

modifier = 1.0;

11 // Difference in time from when it ended vs the entire iteration

double diff = (ending_data[nthreads-1].end_time - ending_data[j].end_time) /

ending_data[j].tot_time;

13 extraflop += diff * ending_data[j].flop * modifier;

}

15

mflops = (extraflop/2+flop) * (timesteps-1.0) / (run_time*1000000.0);

17 est_error = extraflop/2 * (timesteps-1.0) / (run_time*1000000.0);

As shown in Listing 4.5 the timestamps for the last task performed by each device
thread is collected. Error correction is added by modifying the amount of work
to have been performed to emulate the last task of the device thread continuing
to work until the end of the last. This is then halved and added back as an
error bar. As in the case of CUDA threads, the performance of other threads
ending will improve the performance for the rest, therefore the error correction
has been reduced to 40% for these, meaning only 20% in the end after cutting it
in half.

This estimation will be visualized with the lower end of the error bar being where
the performance was actually measured, and the top of the error bar signifying
where the performance would have been in a best case scenario. This is illustrated
in Figure 4.3. The top performance is notably unlikely as the last tasks running
might perform better than they otherwise should as they are competing less for
the same resources. In some cases the first task to actually get started might have
slightly better performance, but this does not affect the error estimation done at
the end. In most cases the error would not impact the performance too much if
the benchmark is launched with reasonable parameters and resources.

4.3.4 Resource Plotter

A final mode of the benchmarks is the resource plotter. This version will utilize
the problem size listed in the configuration file, create a number of tasks to
schedule and try out different combinations of CPU threads and GPU threads to
find the optimal combination. This is also meant as a predecessor to self tuning
for the scheduler.

The overall flow of this plotter is the same as for the heterogeneous plotter of the
previous section, with difference that now instead of varying the problem size it

42 Chapter 4. The Heterogeneous Yee bench Scheduler

40 60 80 100 120 140 160 180 200
n

0

10000

20000

30000

40000

50000

60000

m
fl
op

s

Figure 4.3: Error Bar Example

varies thread counts for CPU and GPU. To look at all reasonable configurations
of threads does take it’s time however, and might prove difficult in a production
environment if set up incorrectly. This is especially true if the need to increase
the number of CPU tasks before it rests is high.

A specific weakness to this model is that the results produced may be sufficiently
different for different problem sizes for this to cause you to make the wrong
decision. This problem arises from the fact that different hardware hit different
performance peaks and dips at different times. Combination X might also cause
the different compute units to affect each other at other points in the execution
than combination Y. Usually the difference is within a fair distance, and between
the optimal configurations the performance is close.

An example of this plotter is Figure 5.2 in Section 5.1.

Chapter 5

Results

This chapter describes the results of the implementation, the CUDA implemen-
tation as well as the overall scheduler. Yee bench does not use an accurate rep-
resentation of actual CPU or GPU performance. It is a synthetic performance
based on the actual work of the FDTD method. The performance in MFlop/sec-
ond is the performance of the implementation relative to the method, internal
operations, addressing or partial calculations are omitted. This is based off of the
original memory operations of the CPU implementation, which in theory should
be the same for the GPU implementation.

5.1 CPU Performance, Resources Used Compared
to Results

The relative performance of the CUDA implementation compared to different
levels of CPU parallelization can be seen in Figure 3.5 in Section 3.4. From
this we can see that CPU parallelization adds a decent amount of performance
but small compared to the CUDA implementation when approaching the core
limit.

In Figure 5.1 we see the performance of different number of OpenMP threading
on our quad core processor for different even cubic problem sizes.

If we look at performances for N = 150, we get Table 5.1, this is a relevant
problem size just short of the performance peak of our GPGPU implementation
at N = 153. This area also hits right before the performance starts dipping

44 Chapter 5. Results

50 100 150 200 250
n

0

2000

4000

6000

8000

10000

12000

14000

m
fl
op

s
i3470 1omp float

i3470 2omp float

i3470 3omp float

i3470 4omp float

Figure 5.1: CPU Speed for Main Loop

on the CPU implementation as well, this is likely due to inner data structures
getting pushed out of L2 cache. According to valgrind[16] the miss rate for L2
and L3 together was only very slightly higher at 250 compared 150, this further
suggests it’s a L2 cache issue. We see that the performance gain from one to
two cores is almost doubled, from three to four is a 22% increase, and three to
four almost negligible. This is due to the already discussed memory restrictions
of this method. It appears that the memory buss reaches it’s limit when using 3
threads. This gives reason to suspect that using all available CPU cores might
not be beneficial.

Table 5.1: Performance for N = 150 on CPU

1 CPU 2 CPU 3 CPU 4 CPU

MFlops 3417 6669 8138 8223

Speedup from 1 CPU 1.0 1.95 2.38 2.41

When we lower the CPU frequency from 3.2Ghz to 1.6Ghz we observe some inter-
esting results. This is listed in Table 5.2. At this frequency using multithreading

5.1. CPU Performance, Resources Used Compared to Results 45

is almost linear, using three cores is almost three times the speed of a single core.
Even when using all four cores we get a speedup of 3.59 compared to one core.
This confirms our earlier claims that the memory is the limiting factor.

Table 5.2: Performance for N = 150 on CPU, 50% of Maximum Frequency

1 CPU 2 CPU 3 CPU 4 CPU

MFlops 2136 4220 6246 7674

Speedup from 1 CPU 1.0 1.98 2.92 3.59

Figure 5.2 gives us a quick look at the performance of different combinations of
resources allocated for the benchmark at a set problem size. This graph was
created with the benchmark described in Section 4.3.4. In this case we have
Nx ×Ny ×Nz× = 150× 150× 150 and we see that two OMP threads and three
CUDA streams works best. This is however is not universally true for the entire
problem size.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
GPU Streams

50500

51000

51500

52000

52500

53000

53500

m
fl
op

s

1CPU

2CPU

3CPU

4CPU

Figure 5.2: Performance with Different Combinations of OpenMP Threads and
CUDA GPU Streams

For the most part 2 OMP threads turns out as the best option for CPU config-
uration, and in the events it isn’t the difference is fairly small. It is also worth

46 Chapter 5. Results

contemplating that if using all CPU cores only rewards you with perhaps a single
percent performance increase at some problem sizes, this will use a fair bit more
energy. It will use more energy on the CPU, and also for cooling. If the system
is used for anything else in the background, be that other intentional tasks or
implicit operating system tasks. Utilizing all available resources in this setting
will most likely have a much larger impact on the performance than if only some
of the resources are used.

5.2 Memory Implications

The memory requirement for Yee bench is cubic, for 32bit it is 12N3+12(N+1)3

bytes. There are three H arrays of floats with the size N3 and three E array of
floats with the size (N + 1)3, where one float is 4 bytes. This reaches the limit
for our NVIDIA 480 GTX at 1535MB at N=405 if all dimensions are of the same
size.

12n3 + 12(n+ 1)3byte = 1535MB × 10242byte/MB

n = 405.786

We will instead look at some numbers where the Z dimension is locked at Nz =
150, as this is the most common case for EMGS. Equipment to measure the fields
in the seabed rarely go beyond this distance.

12n2 × 150 + 12(n+ 1)2 × 151byte = 1535× 10242byte/MB

n = 606.040

Interesting dimensions in the X and Y directions for EMGS are mostly within
the N = 100...250. We see that this is well within the available memory on
our device and most devices in the same category of the future. But running
simply one task at a time is not the full scope of our problem. We want to run
multiple tasks at once, and schedule many more while others are still in memory.
A “large” task would then be of the size 250 × 250 × 150 with a memory print
of

12byte× 2502 × 150 + 12byte× (250 + 1)2 × 151 = 216.16MB

The total number of concurrent tasks in memory of our GPU would then be

1535MB

216.16MB
= 7.1

5.3. Performance in Main Loop and in the Big Picture 47

From our experience the best performance is achieved when using two GPU
streams which from our calculations is well within our potential. When one tasks
is done on the GPU the data is copied back to main memory before it is released
and another task started. For main memory we have 16Gb in total leaving us
available to use

16GB × 1024MB/GB

216.16MB
= 75.8

75 tasks if no other memory is occupied. Obviously it is but this a consid-
erably large number giving us freedom to keep many tasks in memory. Our
benchmark or scheduler does not take into account storing the results to disk or
otherwise.

5.3 Performance in Main Loop and in the Big
Picture

Throughout this thesis performances are listed as “main loop” performance when
not looking at a scheduler. This is due to the original Yee bench implementation
listing performances as such. This is the performance of the method on a device
within the main loop of the program, and doesn’t list the overhead there is for a
task. A task has an initial setup of allocating memory, deallocating memory at
the end and for GPU tasks copying data back to main memory. These times are
necessary to include to get the full impact of running one task.

50 100 150 200 250
n

30000

35000

40000

45000

50000

55000

60000

m
fl
op

s

CUDA Main Loop

CUDA Total Task

Figure 5.3: Main Loop vs. Total Time for One GPU Stream

48 Chapter 5. Results

With relatively few iterations compared to many other physics or mathematical
problems, and at smaller problem sizes this overhead will be considerable for the
total time. An example of this is seen in Figure 5.3 where Nx × Ny × Nz =
250× 250× 150.

5.3.1 Runtime Breakdown

The total runtime of a task is divided into four parts. Setup deals with calculating
parameters used in the FDTD method based on constants and problem size, as
well as initializing memory to be used. Compute contains the most intensive
part with the calculations taking place. For the CUDA implementation the act
of copying data back to main memory takes some time. After all these steps are
completed there is overhead for all actions within the life of the task execution
as well as deallocating the memory used for this task, and example run can be
seen in Table 5.3.

Table 5.3: Time Spent in Each Stage of a Task. With N = 150, 1 CPU thread
with 2 OMP threads, 2 GPU threads with their own streams

CUDA CPU

Setup 0.035 sec. 0.032 sec.

Compute 0.853 sec. 3.537 sec.

Copy 0.044 sec. 0.000 sec.

Other 0.014 sec. 0.022 sec.

Total 0.946 sec. 3.611 sec.

For CPU we can observe that the total time spent outside compute is less than
1.5% of the total time and there is no copying. In the case of the CUDA imple-
mentation we have some copying taking place, but this is unavoidable. The time
spent in setup and other is for CUDA about 5%, considerably more than CPU
as the total runtime is far lower.

A scheme of having the scheduler preallocate the memories to bring down this
effect was considered. For the CPU tasks we observe that this effect would be
of little use to us, but the CUDA version does slow down considerably because
of this dilemma. However, when we utilize two CUDA streams, the overhead
time consumed dealing with memory is pipelined parallel between the streams.
When one stream is performing memory copy or allocations the other stream will
benefit from the available compute resources.

5.4. Scheduler Performance 49

5.4 Scheduler Performance

50 100 150 200 250
n

40000

45000

50000

55000

60000

m
fl
op

s

1 CUDA

2 CUDA

3 CUDA

4 CUDA

Figure 5.4: Performance with Different Number of CUDA GPU Streams for 2
OMP Threads

In Figure 5.4 we present full results when using different number of GPU streams,
again we have Nx × Ny × Nz× = 150 × 150 × 150. From this we see that the
performances are in fact quite similar for most number of combinations. For large
N we can observe that 2 GPU streams perform the best. At small N utilizing
more GPU streams to benefit from parallelizing the overhead of copying data to
host as well as other memory operations and continually launching many small
kernels is beneficial.

50 100 150 200 250
n

30000

35000

40000

45000

50000

55000

m
fl
op

s

1 CUDA

2 CUDA

3 CUDA

4 CUDA

Figure 5.5: Performance Comparison for Different Number of CUDA Streams

50 Chapter 5. Results

From what we’ve previously seen, as shown in Figure 5.5 the performance of two
concurrent CUDA streams compared to only one improves the results. When
one stream has downtime doing memory operations or other CUDA overhead,
the other stream will keep the GPU busy.

100 120 140 160 180 200 220 240 260
n

40000

45000

50000

55000

60000

m
fl
op

s

200 Time Steps

400 Time Steps

600 Time Steps

Figure 5.6: Different Number of Iterations for 2 OMP Threads and 2 CUDA
Streams

So far we’ve mostly looked at the standard case of 200 time steps when running
as this is what Yee bench originally used. The number of time steps or iterations
can go well beyond 200 depending on the highest resistivity value in the FDTD
model. Runtime for with only 200 iterations is as we’ve seen so far fairly short. At
N = 1503 for example it’s still less than a second even when running two parallel
GPU streams. In Figure 5.6 we see look at longer runs with more iterations.
At 400 iterations we get a fair performance boost, a slight improvement is alos
observed at 600 but we are approaching the point where overhead seems to be
minimalized. If we were still using only one GPU stream we could probably still
benefit from more iterations.

5.4. Scheduler Performance 51

140 145 150 155 160
n

0

10000

20000

30000

40000

50000

60000
m
fl
op

s 2 CUDA

2 OMP 2 CUDA

2 OMP

Figure 5.7: Performance Comparison for CPU Alone and Together With 2 CUDA

From Figure 5.7 we see that using CPU resources in addition to the GPU improves
total performance. This is what we desire in a heterogeneous scheduler. The total
performance is understandably not the same as adding them together as one will
impact the other. The decline in CUDA performance with CPU load is not related
to lower GPU performance, however the kernel launches and system memory
operations will affect the GPU to have longer overall runtime[5], also transfering
data to and from memory does affect CPU performance as well.

This difference is shown in Table 5.4, when we use all four cores we see a huge
difference in individual performance for the devices.

We see the relative performance for each device when running alone and in com-
bination, from before 2 CPU threads and 2 CUDA streams yields the best perfor-
mance most of the times. We keep the Z-axis at 150 for all tests. It is apparent
that the devices are competing too much for memory and CPU resources when
we use too many cores. We also see that when we use two CPU threads, the
performance for CPU is almost the same while GPU performance is slightly less
forgiving.

52 Chapter 5. Results

Table 5.4: Relative Device Performance

Problem Size CPUxGPU CPU Perf. GPU Perf.

150

2x2 6200 2× 25000

2x0 6450 0

0x2 0 2× 26500

4x0 8130 0

4x2 3170 2× 26080

200

2x2 5150 2× 26700

2x0 5270 0

0x2 0 2× 27400

4x0 7250 0

4x2 3700 2× 26630

250

2x2 4400 2× 24500

2x0 4427 0

0x2 0 2× 25200

4x0 6527 0

4x2 3720 2× 24170

5.5 Kepler Performance

We did some testing on the NVIDIA Tesla K20 GPU. Although the K20 is a lot
better on paper, there is a downside. The architecture is not necessarily an im-
provement for all types of algorithms. There are fewer streaming multiprocessors,
the memory is more optimized for coalesced reads and writes. The memory speed
is is around 17.5% faster while the compute power is is almost tripled compared
to the GTX 480 Fermi GPU.

With our algorithm, which is strongly memory bound, and with large amount
of uncoalesced memory transactions this is detrimental to the performance as
a whole. The performance on preliminary testing on the K20 card was around
5-10% less that our presented results.

It is possible that our implementation would work satisfactory on the Kepler
architecture still, but more time would have to be put down into the work needed
to get good results.

Chapter 6

Conclusion and Future
Work

Scientific computations have been a cornerstone of many engineering businesses
for quite some time, from the days of punch cards to the supercomputers of today.
An emerging field in the past decade is the use of GPGPU processing power, orig-
inating as graphical pipelines to create accelerated 2D and 3D projections. These
massively parallel processors are perfect for solving parallel and iterative algo-
rithms and scientific problems. With today’s ecosystem, a GPU can be several
orders of magnitude faster than a CPU. With the possibility of adding several
GPU’s to a node, the overhead cost of a node compared to the performance
unleashed by the processor drops while the speed increases as well.

The goal of this work was to implement a GPU solver for Yee bench in CUDA,
parallelize the CPU implementation and create a scheduler to utilize these. Yee bench
implements the basis of certain calculations done by EMGS in Trondheim to in-
crease drilling success in search for hydrocarbons.

The CUDA solution on our three year old GPU did achieve good speedups com-
pared our contemporary CPU. The erratic nature of memory addressing in the
FDTD method however limits this compared to the great examples these days
of with speedups past 100x. Yee bench CUDA has a speedup of 7.5x compared
to quad-core parallelization on the CPU and just shy of 19x for the single core
implementation.

Speedup is mainly achieved by optimizing memory stores by addressing CUDA
threads in execution order. This also improves loads but by getting elements in

54 Chapter 6. Conclusion and Future Work

different direction across different arrays is difficult to do optimally. These loads
will have issues getting many coalesced values. With varying dimensions making
sure enough threads are launched, and in a good order is important. Having
the Z dimension fairly well situated around 150 guarantees a fair size of parallel
CUDA threads. Especially below problem sizes of 100 the performance is very
much all over the place as the problems are so small.

Using several CUDA streams to compute several FDTD tasks at once is impor-
tant to saturate the GPU to take use of downtime during overhead. Considering
the high amount of irregular data access and lack of explicit cache, the imple-
mentation might suffer greatly if executed on a device with compute capability
below 2.0 as they have no L2 cache.

The scheduler does however reveal certain things when it comes to CPU and
GPU being utilized concurrently. As noted at the very start the problem is
memory bound, utilizing the fourth core in the CPU barely affects results at all,
and reducing CPU performance shows the parallel nature of the method very
well. The GPU performance dips when utilizing more CPU cores, and CPU
performance is reduced to around 2/3 of it’s optimal performance when the GPU
is working. This shows us that the peak performance is not necessarily achieved
when pumping all our resources at the problem.

CPU does not scale fully when on top of the GPU performance, but does add
to the overall throughput. The GPU needs some CPU resources as well as main
memory to schedule kernels and move data around. High CPU load delays some of
this resulting in longer runtime even if the GPU performs at the same top speed.
The system is more prone to performance loss if all resources are used to achieve
the same speed or even lower in many cases. Modern Intel processors benefit from
Turbo Boost Technology[12], meaning the serial performance is higher when fewer
cores are active. This feature further gives credit to using fewer CPU cores.

6.1 Future Work

This work is meant as an exploration of GPU and heterogeneous solutions to
the FDTD method. While we have looked at many relevant aspects there are
still some issues to address or at least give some thought to. Some outside the
scope of the work, but some work that was not possible to complete within the
time.

6.1. Future Work 55

6.1.1 Distributed Memory Version

This scheduler is a shared memory single node scheduler, however implemented
with distributed memory in mind. Porting it to for example an OpenMPI solution
should be fairly trivial, at least compared to the work required to implement the
rest of the solution to put it into production.

6.1.2 Self Tuning

To be an operational scheduler it needs an important feature if the hardware
across nodes are different. Either it identify what hardware it has available and
make decisions for how to configure the thread configuration, or it will run self
tuning live. It should at startup identify the number of CUDA devices, and
launch the right number of streams relative to that.

From our results it might seem like a good idea to run a node with zero CPU
threads and two CUDA streams per CUDA device. This is both simple and
also most likely a very good configuration. Say we have as much as 4 CUDA
devices on a node, the performance battle for main memory and CPU time for
these is large. Optimally we might squeeze out 6-7000 MFlops from the CPU,
but each GPU will put out 50 000-60 000 MFlops or more depending on the
hardware. We quickly see that the performance gain, if it at all exists is not
that useful on a heterogeneous node with this much GPU power. However in the
case of a data center with many CPU nodes already in place, these old nodes
may very well not have GPU power at all. We already discussed the uncertainty
of live benchmarking, a decision making algorithm might very well be the best
solution.

6.1.3 Stencil Size

Our version remains with the standard Yee bench stencil, EMGS uses a slightly
different one that wasn’t implemented in this work. For larger stencils, or stencils
with larger distances the performance will most likely change. If these new data
elements are neighboring values the performance is likely to improve over the
standard five point stencil used in this implementation. Further care when looking
at the domain for the calculation would be needed as well as new formulas for
the number of floating point operations per iteration.

56 Chapter 6. Conclusion and Future Work

6.1.4 Comparison of Different GPU Implementations

In this project the solution was created using CUDA to accelerate the code
on GPU. EMGS has already received a version of the original Yee bench in
FORTRAN, modified for acceleration with OpenACC[22] PGI directives from
NVIDIA. PGI is only one of several compilers which compile OpenACC “#pragma”
directives to CUDA or OpenCL code, others include Cray, CAPS and Laguna.

These directive standards works in a similar fashion to the already established
OpenMP[23] which simplifies multi threading of code segments. Using these
directives instead of a full CUDA or OpenCL implementation simplifies the im-
plementation and understandability of the code. The performance of implemen-
tations using these methods, as well as OpenCL implementations might be inter-
esting for future development in the future.

6.1.5 Extension to Full EMGS Implementation

As of right now the project envelops only a non-complete implementation of
the FDTD method explained earlier, the production implementation has a few
more details to it, which could potentially also impact the design. Such issues
would have to addressed and solved, and the algorithms wrapped in the existing
program.

6.1.6 Alternative Maxwell Solvers and Redefined Mathe-
matical Problem

The FDTD method is a solution of some Maxwell equations, several solvers exist.
Yee bench uses vector field iterations to solve them. Other solutions have been
used to solve similar equations, for example FFT[6]. It could be interesting to see
if our problem would be possible to redefine to fit such solutions as we already
have highly optimized algorithms for them.

The possibility of redefining the problem to only use one type of field vectors
has also been mentioned. Only one type is interesting as a final product, and
the other is essentially a partial computation, used one at a time. Reducing the
algorithm to only one type of field vectors would alleviate memory and potentially
unnecessary memory writes.

6.1. Future Work 57

6.1.7 Other GPU Architectures

As shown already, we did not have time to get a good version for the Kepler
architecture. New considerations must be done, potentially launch configura-
tions or kernel addressing need be changed to get good performance. This is a
valid problem for any future architectures as well. Work on self tuning GPU
algorithms across different GPUs and architectures is a field on it’s own with
on-going projects.

Bibliography

[1] International Energy Agency. Key world energy statistics, 2011. 1

[2] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilitie, 1967. 6, 13

[3] Ulf Andersson. Yee bench – a pdc benchmark code, 2002. i, iii, 14, 18

[4] Ulf Andersson and Philip Mucci. Analysis and optimization of yee bench us-
ing hardware performance counters. Parallel Computing: Current and Future
Issues of High-End Computing, Proceedings of the International Conference
ParCo 2005, 33:179–186, 2006.

[5] M. Bobrov, R. Melton, S. Radziszowski, and M. Lukowiak. Effects of gpu
and cpu loads on performance of cuda applications. 2011. 51

[6] Anne Cathrine Elster. Parallelization issues and particle-in-cell codes. PhD
thesis, Cornell University, 1994. 16, 56

[7] EMGS. Official website. http://www.emgs.com, 2012. 1

[8] Anne C. Elster Erik Smistad and Frank Lindseth. Gpu accelerated segmen-
tation and centerline extraction of tubular structures from medical images.
NTNU, 2013. 68

[9] Rob Farber. CUDA Application Design and Development. Elsevier inc.,
2011. 12

[10] Aleksander Gjermundsen. Cpu and gpu co-processing for sound, 2010. 2

[11] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science
& Engineering, 9(3):90–95, 2007. 31

[12] Intel. Intel turbo boost technology - on-demand processor performance.
http://www.intel.com/technology/turboboost/, 2013. 54

60 Bibliography

[13] Sverre Jarp, Julien Leduc Alfio Lazzaro, and Yngve Sneen Lindal An-
drzej Nowak. Evaluation of likelihood functions on cpu and gpu devices.
Journal of Physics: Conference Series, 368, 2012. 34

[14] Daren Lee, Ivo D. Dinov, Bin Dong, Boris Gutman, Igor Yanovsky, and
Arthur W. Toga. Cuda optimization strategies for compute- and memory-
bound neuroimaging algorithms. Computer Methods and Programs in
Biomedicine, 106(3):175–187, 2012. 14

[15] Paulius Micikevicius. 3d finite difference computation on gpus using cuda.
Technical report, NVIDIA, 2009.

[16] Robert Walsh Nicholas Nethercote and Jeremy Fitzhardinge. Building work-
load characterization tools with valgrind. Invited tutorial, IEEE Interna-
tional Symposium on Workload Characterization (IISWC 2006), San Jose,
California, USA, October 2006. 44

[17] NVIDIA. Nvidias next generation cuda compute architecture fermi, 2010.
9, 10, 11

[18] NVIDIA. From graphics processing to general purpose parallel computing.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, 2012.
7

[19] NVIDIA. Cuda profiler. https://developer.nvidia.com/nvidia-visual-profiler,
2013. 25

[20] NVIDIA. High performance computing, accelerating science with tesla
gpus. http://www.nvidia.com/object/tesla-supercomputing-solutions.html,
2013. 11

[21] NVIDIA. History of gpu computing. http://www.nvidia.com/object/what-
is-gpu-computing.html, October 2012. 6, 7

[22] OpenACC. Official website. http://www.openacc.org, 2012. 56

[23] OpenMP Architecture Review Board. OpenMP application program inter-
face version 3.0, May 2008. 56

[24] Andreas Berg Skomedal. Gpu-accelerated seismology using cuda. NTNU,
2012. 5, 21

[25] N. Chavannes T. P. Stefański and N. Kuster. Parallelization of the fdtd
method based on the open computing language and the message passing
interface. Microw. Opt. Technol. Lett., 54:785–789, 2012. 7, 8

[26] Thor Kristian Valderhaug. The lattice boltzmann simulation on multi-gpu
systems, 2011. 2

Appendices

Appendix A

User Manual

This section is a description of how to use the benchmark / scheduler and specifics
to it’s implementation.

A.1 How to Run the Scheduler

As described in Section 4 the program has five different versions available. Run-
ning one of them is simply down to the argument passed to Yeebench cuda at
start. An entry in the makefile also exists for each of the versions

Table A.1: Runnable Makefile Targets

Number Name Program Parameter Makefile Target

1 Assignment Scheduler assignment run

2 Greedy Scheduler run greedy

3 Homogeneous Device Plotter plot plot

4 Heterogeneous Device Plotter hybridplot hplot

5 Resource Plotter resource resource plot

There is a compile flag in “main.h” that denotes running it in verbose mode

/* Run the benchmark with verbose output */

#define VERBOSE

64 Appendix A. User Manual

This will output more information while running, similar to that of the original
Yee bench but with some extra information especially connected to running the
CUDA versions. If run in verbose it will output a checksum for each calculation
based on the Ez array. This should be sufficient to see if the output is correct but
with single precision it is slightly inaccurate and so the numbers will not match
100%.

If more certainty to the correctness is needed there is also a compile flag in
“main.h” for this.

/* Run thourough check on GPU output,

requires that output from gpu and cpu are in tasks 0 and 1 */

#define gpucheck

The requirement is simple to achieve, simply set the number of tasks to two, set
the thread configuration to be one CPU control thread and one GPU thread.
When running the greedy scheduler the two outputs will reside in tasks 0 and
1.

Each version does however have some requirements connected to the values in
the configuration file “yee.dat”.

250 250 150 ! N_x, N_y, N_z: problem size (called nx, ny and nz in code)

1.0 1.0 1.0 ! Delta_x, Delta_y, Delta_z: cell size (dx, dy and dz in code)

200 ! N_t: Number of time steps (called nts in code)

1 ! Number of CPU Threads

2 ! Number of OpenMP Threads

3 ! Number of CUDA Streams

200 ! Number of Tasks to perform

The three benchmark versions listed in this section will produce an output file
called “data.csv” which is a tab separated value file. This file can be used together
with the plot script described in Section A.2.

A.1.1 Schedulers

For the two schedulers you will get what you ask for in the configuration file.
Set problem size, set number of tasks run on the set number of resources given.
There are no requirements for the deltas or the number of time steps, however
they will affect the runtime and results given.

They will both produce similar output at the end, listing how many tasks each
of the CPU and GPU performed.

A.1. How to Run the Scheduler 65

Total Launchtime = 44.797 sec. (0:44:797)

Total MFLOPS = 57540.79 MFlops/s

------------------CUDA-TASKS- 55-------------------

Setup 0.050 sec.

Compute 1.477 sec.

Copy 0.070 sec.

Other 0.019 sec.

Average MFlops 26601.940598

------------------CPU--TASKS- 5---------------------

Setup 0.058 sec.

Compute 8.276 sec.

Copy 0.000 sec.

Other 0.042 sec.

Average MFlops 5129.412769

Run completed successfully

But also underway, the only difference is how they acquire work.

A.1.2 Homogeneous Device Plotter

This benchmark will require only one device to be activated or the numbers will
not be useful. This means one CPU thread or one GPU thread, several OMP
threads however will still work. It is possible to use this benchmark with for X
times one device and then simply multiply the results by X, but this will most
likely be unreliable.

In order to specify the range of problem sizes calculated by this benchmark a
combination of problem size and number of tasks is used. The Benchmark will
plot from NX = 50Ny = 50 to the values specified in the configuration file as
Nx, with number of data points in between being the number of tasks. In the
current version Nz is locked at what is specified in the configuration file for all
plot values, but this can be changed. If the number of tasks is greater than
the number of actual integers between 50 and what is specified, the benchmark
will still continue to perform this many tasks, but each data point will always
be at least one greater than the previous. In other word if the configuration
file says Nx = 55 but the number of tasks is 7, the benchmark will plot for

66 Appendix A. User Manual

N = [50, 51, 52, 53, 54, 55, 56].

A.1.3 Heterogeneous Device Plotter

This benchmark will try to plot data similar to the output of an optimal sched-
uler.

The requirements are the same as the homogeneous plotter for problem sizes
and will behave in the same manner. The goal for this benchmark is to plot
the coexistence of the different hardware together and therefore any number of
resources will work unless the system runs out of resources. In the function named
“cpu thread(...)” of “main.cu” there is an entry at the top with

int plot_precision = 2;

at the top. This specifies the number of tasks a CPU thread will complete before
resting. When this number is one the error estimation is slightly higher but can
be used instead for a faster benchmark.

A.1.4 Resource Plotter

This benchmark will try to accurately display the performance for different num-
ber of CPU and GPU threads for one specific problem size denoted in the con-
figuration file. There are no requirements for this benchmark.

The maximum number of resources it will test is specified at the top of the
“resource bench(...)” function of “main.cu”.

int max_cpu = 4;

int max_gpu = 5;

The combination zero and zero will not be used.

A.2 Python Plot Script

The script requires python-matplotlib, latex and scipy. Latex can be avoided if
the part about using the latex backend is switched back to it’s default setting.
Scipy is only needed for graph smoothing.

The python script for creating graphs works as follows.

A.2. Python Plot Script 67

$./plot.py --help

usage: plot.py [-h] [-f FILE [FILE ...]] [-a] [-d DIR] [-s] [-t FILETYPE] [-v]

[-e] [-r] [-n FIRSTN] [-m]

Plot CSV files for yee_bench

optional arguments:

-h, --help show this help message and exit

-f FILE [FILE ...], --file FILE [FILE ...]

specify csv input filename, default is data.csv

-a, --all plot all local csv files

-d DIR, --dir DIR directory for all argument

-s, --save save output to file, default is png

-t FILETYPE, --filetype FILETYPE

file type for saved output

-v, --verbose be verbose

-e, --errorbars include error bars

-r, --resource test of resource allocation

-n FIRSTN, --firstn FIRSTN

start the graph at n

-m, --smoothing graph smoothing, the number of m signifying the number

of consolidated data points

This can be used to graph data given by the benchmarks, remember to copy the
output file and/or rename it to keep the results between runs. If the Makefile was
used it will do this for you, for the first two benchmarks. to create a file name
such as “1x2omp 4gpu 150x 150y 150z.csv”. This means that it was run with 1
CPU control thread with 2 OMP threads, accompanied by 4 CUDA streams, run
on the listed problem size.

Examples of using the plot script.

Create an Encapsulated PostScript file of all runs with 2 OMP threads run on
one CPU thread.

$./plot.py -f 1x2omp_*.csv -st eps

View the graph of all local csv files.

$./plot.py -a

Create graph for the resource benchmark with error bars, when the file name has
not been changed yet and then save it to a png file.

68 Appendix A. User Manual

$./plot.py -rse

View smoothed graph of plots in a folder named “powersave”, average two and
two data points.

$./plot.py -ad powersave/ -mm

Keep in mind error bars only work with version #4 and #5, as #3 does not
create any error estimation.

Some things may still be desirable to change manually to get the exact graph you
want, such as the minimum value for the Y-axis, positioning of the legend if the
standard is not good enough and the total size of the graph. These settings are
controlled by the lines in Listing A.1 respectively.

Listing A.1: Manual settings in Plot Script

plt.ylim(ymin=40000) # Y-min value

ax.legend(loc=’center left’, bbox_to_anchor=(0.5, 0.2)) # Location of the Legend

fig.set_size_inches(8.0,4.0) # Size of the graph

A.3 Comments on Kepler

The temporary results from Kepler are discussed in Section 5.5. To run on
the K20 card a few things need be changed. In the Makefile, see Listing B.4,
architecture must be changed to 35 from 20. Block size should be increased
considerably as discovered by other projects[8], suggestions would be 32x32 or
32x16 from our 16x16, see Listing B.3.

Appendix B

Source Code

Some relevant source code to the project. Full source code will be provided by
Dr. A. C. Elster.

B.1 Yeebench

Listing B.1: Configuration File

1 250 250 150 ! N_x, N_y, N_z: problemsize (called nx, ny and nz in code)

2 1.0 1.0 1.0 ! Delta_x, Delta_y, Delta_z: cell size (dx, dy and dz in code)

3 200 ! N_t: Number of time steps (called nts in code)

4 1 ! Number of CPU Threads

5 2 ! Number of OpenMP Threads

6 2 ! Number of CUDA Streams

7 200 ! Number of Tasks to perform

Listing B.2: CUDA Kernels

1 /* CUDA Kernels */

2 #define CUDAFILE

3 #include "main.h"

4

5 __global__ void updateH_cuda(my_float *cHx, my_float *cHy, my_float *cHz, my_float

*cEx, my_float *cEy, my_float *cEz, int nx, int ny, int nz, my_float Cbdx,

my_float Cbdy, my_float Cbdz)

6 {

7

8 int i = (blockIdx.x + gridDim.x * blockIdx.y) * (blockDim.x * blockDim.y) +

(threadIdx.x + blockDim.x * threadIdx.y);

70 Appendix B. Source Code

9

10 int y = i/nz;

11 int z = i%nz;

12

13 if (!(y < ny && z < nz)) return;

14

15 for(int x=0; x<nx; x++)

16 {

17 __syncthreads();

18 HxC(x,y,z) += (EyC(x,y,z+1)-EyC(x, y ,z))*Cbdz +

19 (EzC(x,y, z)-EzC(x,y+1,z))*Cbdy;

20

21 HyC(x,y,z) += (EzC(x+1,y,z)-EzC(x,y, z))*Cbdx +

22 (ExC(x ,y,z)-ExC(x,y,z+1))*Cbdz;

23

24 HzC(x,y,z) += (ExC(x,y+1,z)-ExC(x ,y,z))*Cbdy +

25 (EyC(x, y ,z)-EyC(x+1,y,z))*Cbdx;

26 }

27 }

28

29 __global__ void updateE_cuda(my_float *cHx, my_float *cHy, my_float *cHz,

my_float *cEx, my_float *cEy, my_float *cEz, int nx, int ny, int nz, my_float

Dbdx, my_float Dbdy, my_float Dbdz)

30 {

31

32 int i = (blockIdx.x + gridDim.x * blockIdx.y) * (blockDim.x * blockDim.y) +

(threadIdx.x + blockDim.x * threadIdx.y);

33

34 int y = i/nz + 1;

35 int z = i%nz + 1;

36

37 if (!(y < ny && z < nz)) return;

38

39 for(int x=1; x<nx; x++)

40 {

41 __syncthreads();

42 ExC(x,y,z) += (HzC(x,y, z)-HzC(x,y-1,z))*Dbdy +

43 (HyC(x,y,z-1)-HyC(x, y ,z))*Dbdz;

44

45 EyC(x,y,z) += (HxC(x ,y,z)-HxC(x,y,z-1))*Dbdz +

46 (HzC(x-1,y,z)-HzC(x,y, z))*Dbdx;

47

48 EzC(x,y,z) += (HyC(x, y ,z)-HyC(x-1,y,z))*Dbdx +

49 (HxC(x,y-1,z)-HxC(x ,y,z))*Dbdy;

50

51 }

52 }

53

54 __global__ void cleanupE_yz_cuda(my_float *cHy, my_float *cHz, my_float *cEx, int

nx, int ny, int nz, my_float Dbdy, my_float Dbdz)

55 {

56

B.1. Yeebench 71

57 int i = (blockIdx.x + gridDim.x * blockIdx.y) * (blockDim.x * blockDim.y) +

(threadIdx.x + blockDim.x * threadIdx.y);

58

59 int a = i/nz + 1;

60 int b = i%nz + 1;

61

62 if (a < ny && b < nz)

63 ExC(0,a,b) += (HzC(0,a, b)-HzC(0,a-1,b))*Dbdy +

64 (HyC(0,a,b-1)-HyC(0, a ,b))*Dbdz;

65 }

66

67 __global__ void cleanupE_xz_cuda(my_float *cHx, my_float *cHz, my_float *cEy, int

nx, int ny, int nz, my_float Dbdx, my_float Dbdz)

68 {

69

70 int i = (blockIdx.x + gridDim.x * blockIdx.y) * (blockDim.x * blockDim.y) +

(threadIdx.x + blockDim.x * threadIdx.y);

71

72 int a = i/nz + 1;

73 int b = i%nz + 1;

74

75 if (a < nx && b < nz)

76 EyC(a,0,b) += (HxC(a ,0,b)-HxC(a,0,b-1))*Dbdz +

77 (HzC(a-1,0,b)-HzC(a,0, b))*Dbdx;

78 }

79

80 __global__ void cleanupE_xy_cuda(my_float *cHx, my_float *cHy, my_float *cEz, int

nx, int ny, int nz, my_float Dbdx, my_float Dbdy)

81 {

82

83 int i = (blockIdx.x + gridDim.x * blockIdx.y) * (blockDim.x * blockDim.y) +

(threadIdx.x + blockDim.x * threadIdx.y);

84

85 int a = i/ny + 1;

86 int b = i%ny + 1;

87

88 if (a < nx && b < ny)

89 EzC(a,b,0) += (HyC(a, b ,0)-HyC(a-1,b,0))*Dbdx +

90 (HxC(a,b-1,0)-HxC(a ,b,0))*Dbdy;

91 }

92

93 __global__ void apply_source(my_float *cEz, my_float p_source_factor, int ts,

my_float dt, int is, int js, int ks, int ny, int nz)

94 {

95 EzC(is, js, ks) += - p_source_factor *((ts*dt-3.0*Tk)/(Tk*Tk))

96 *exp(-1.0*(ts*dt-3.0*Tk)*(ts*dt-3.0*Tk)/(Tk*Tk));

97 }

Listing B.3: Header File

1 #ifndef yeecudah

2 #define yeecudah

72 Appendix B. Source Code

3

4 #include <pthread.h>

5 #include <omp.h>

6 #include <stdio.h>

7 #include <stdlib.h>

8 #include <math.h>

9 #include <string.h>

10 #include <sys/types.h>

11

12

13 #ifndef _WIN32

14 #include <sys/time.h>

15 #include <unistd.h>

16 #else

17 #include <cuda_runtime.h>

18 #include <cuda.h>

19 #endif

20

21 /* Block Configuration for CUDA */

22 #define BLOCKX 16

23 #define BLOCKY 16

24

25

26 /* Use floating point precision */

27 #define use_float

28

29 #ifdef use_float

30 typedef float my_float ;

31 #else

32 typedef double my_float ;

33 #endif

34

35 #define Ex(I,J,K) Ex1D[ioff_e*(I) + (nz+1)*(J) + (K)]

36 #define Ey(I,J,K) Ey1D[ioff_e*(I) + (nz+1)*(J) + (K)]

37 #define Ez(I,J,K) Ez1D[ioff_e*(I) + (nz+1)*(J) + (K)]

38 #define Hx(I,J,K) Hx1D[ioff_h*(I) + nz*(J) + (K)]

39 #define Hy(I,J,K) Hy1D[ioff_h*(I) + nz*(J) + (K)]

40 #define Hz(I,J,K) Hz1D[ioff_h*(I) + nz*(J) + (K)]

41

42 #define cmEx(I,J,K) cEx[ioff_e*(I) + (nz+1)*(J) + (K)]

43 #define cmEy(I,J,K) cEy[ioff_e*(I) + (nz+1)*(J) + (K)]

44 #define cmEz(I,J,K) cEz[(ny+1)*(nz+1)*(I) + (nz+1)*(J) + (K)]

45 #define taskEz(I,J,K) task->ez[(task->ny+1)*(task->nz+1)*(I) + (task->nz+1)*(J) +

(K)]

46 #define cmHx(I,J,K) cHx[ioff_h*(I) + nz*(J) + (K)]

47 #define cmHy(I,J,K) cHy[ioff_h*(I) + nz*(J) + (K)]

48 #define cmHz(I,J,K) cHz[ioff_h*(I) + nz*(J) + (K)]

49

50 #define Ez1(I,J,K) tasks[0].ez[ioff_e*(I) + (nz+1)*(J) + (K)]

51 #define Ez2(I,J,K) tasks[1].ez[ioff_e*(I) + (nz+1)*(J) + (K)]

52 #define debugout(I,J,K) cEz[(ny+1)*(nz+1)*(I) + (nz+1)*(J) + (K)]

53

B.1. Yeebench 73

54 #define ExC(I,J,K) cEx[(ny+1)*(nz+1)*(I) + (nz+1)*(J) + (K)]

55 #define EyC(I,J,K) cEy[(ny+1)*(nz+1)*(I) + (nz+1)*(J) + (K)]

56 #define EzC(I,J,K) cEz[(ny+1)*(nz+1)*(I) + (nz+1)*(J) + (K)]

57 #define HxC(I,J,K) cHx[ny*nz*(I) + nz*(J) + (K)]

58 #define HyC(I,J,K) cHy[ny*nz*(I) + nz*(J) + (K)]

59 #define HzC(I,J,K) cHz[ny*nz*(I) + nz*(J) + (K)]

60

61 #define eps0 (my_float)8.8541878E-12 /* permittivity in vacuum */

62 #define mu0 (my_float)1.256637061E-6 /* permeability in vacuum */

63 #define c0 (my_float)2.99792458E+8 /* speed of light in vacuum */

64 #define Const (my_float)1.0e-10

65 #define Tk (my_float)2.0e-9

66

67 /* Macros for accessing assignment scheduler data */

68 /* Number of tasks assigned */

69 #define TaskNum(I) workerassignment[nthreads * MAX_TASKS_PER_THREAD + nthreads - I

]

70 /* Id of task J in current assignment for workerthread I */

71 #define TaskId(I,J) workerassignment[I * MAX_TASKS_PER_THREAD + J]

72

73 /* enum for timer array in task struct below */

74 #define TIMERS 5

75 enum { SETUP=0, COMPUTE=1, COPY=2, TOTAL=3, END=4 };

76

77 /* Fields in CSV file for benchmarks (does not apply to resource plot)*/

78 #define CSVFIELDS 3

79 enum { CSVN=0, CSVMFLOPS=1, CSVERR=2 };

80

81 /* Enum for run type */

82 enum { GREEDY=0, ASSIGNMENT=1, PLOT=2, HPLOT=3, RESOURCE=4};

83

84 /* Contains data for a task */

85 typedef struct {

86 int nts;

87 int nx, ny, nz;

88 int dx, dy, dz;

89

90 my_float *ex, *ey, *ez;

91 my_float *hx, *hy, *hz;

92

93 int bytes;

94 double flop;

95 double mflops;

96 double t[TIMERS];

97

98 int id;

99 int workerid;

100 int done;

101 int calcmet_used;

102 } task_data;

103

104 /* Struct for containing information when calculating

74 Appendix B. Source Code

105 * error estimation for some benchmarks

106 */

107 typedef struct {

108 double end_time;

109 double tot_time;

110 int calcmet;

111 double flop;

112 } enddata;

113

114 /* Read in main file, needed in jobs.cu, Number of OpenMP threads to be used */

115 extern int nomp;

116

117 /* Run the benchmark with verbose output */

118 //#define verbose

119

120 /* Run thourough check on GPU output, requires that output from gpu and cpu are in

tasks 0 and 1 */

121 //#define gpucheck

122

123 int init_task(task_data *task);

124 int destroy_task_arrays(task_data *task);

125

126 double msecond();

127 double get_flop(task_data task);

128

129 void launch_threads(pthread_t *pthreads);

130 void join_threads(pthread_t *pthreads);

131

132 void assignment_scheduler(int nts, int nx, int ny, int nz, my_float dx, my_float

dy, my_float dz);

133 void greedy_scheduler(int nts, int nx, int ny, int nz, my_float dx, my_float dy,

my_float dz);

134 void plot_single_device(int nts, int nx, int ny, int nz, my_float dx, my_float dy

, my_float dz);

135 void plot_hybrid_setup(int nts, int nx, int ny, int nz, my_float dx, my_float dy

, my_float dz);

136 void resource_bench(int nts, int nx, int ny, int nz, my_float dx, my_float dy,

my_float dz);

137

138 void assign_workload(int i);

139 void printresults(int nts, double tot_time);

140

141 void *gpu_thread(void *arg);

142 void *cpu_thread(void *arg);

143 void run_cpu_job(char *output, int threadid, task_data *task);

144

145

146 void StartCounter();

147 double GetCounter();

148 int cmp_enddata(const void *a,const void *b);

149

150

B.2. Utility 75

151 void updateH_homo(int calcmet, int nx, int ny, int nz, int ioff_e, int ioff_h,

152 my_float *Hx1D, my_float *Hy1D, my_float *Hz1D,

153 my_float *Ex1D, my_float *Ey1D, my_float *Ez1D,

154 my_float Cbdx, my_float Cbdy, my_float Cbdz);

155

156 void updateE_homo(int calcmet, int nx, int ny, int nz, int ioff_e, int ioff_h,

157 my_float *Hx1D, my_float *Hy1D, my_float *Hz1D,

158 my_float *Ex1D, my_float *Ey1D, my_float *Ez1D,

159 my_float Dbdx, my_float Dbdy, my_float Dbdz);

160

161 /* Since there is only one header file

162 * and the compilation uses different compilers

163 * we specify which files need the CUDA entries in main.h

164 */

165 #ifdef CUDAFILE

166 void CUDA_Success(cudaError_t error, char *str);

167 void CUDA_Success(cudaError_t error);

168

169 void run_gpu_job(char *output, int threadid, task_data *task, cudaStream_t stream)

;

170

171 __global__ void tid(my_float *H, int nx, int ny, int nz, my_float *np);

172 __global__ void updateH_cuda(my_float *cHx, my_float *cHy, my_float *cHz,

my_float *cEx, my_float *cEy, my_float *cEz, int nx, int ny, int nz, my_float

Cbdx, my_float Cbdy, my_float Cbdz);

173 __global__ void updateE_cuda(my_float *cHx, my_float *cHy, my_float *cHz,

my_float *cEx, my_float *cEy, my_float *cEz, int nx, int ny, int nz, my_float

Dbdx, my_float Dbdy, my_float Dbdz);

174

175 __global__ void cleanupE_yz_cuda(my_float *cHy, my_float *cHz, my_float *cEx, int

nx, int ny, int nz, my_float Dbdy, my_float Dbdz);

176 __global__ void cleanupE_xz_cuda(my_float *cHx, my_float *cHz, my_float *cEy, int

nx, int ny, int nz, my_float Dbdx, my_float Dbdz);

177 __global__ void cleanupE_xy_cuda(my_float *cHx, my_float *cHy, my_float *cEz, int

nx, int ny, int nz, my_float Dbdx, my_float Dbdy);

178

179 __global__ void apply_source(my_float *cEz, my_float p_source_factor, int ts,

my_float dt, int is, int js, int ks, int ny, int nz);

180

181 #endif

182 #endif // yeecudah

B.2 Utility

Listing B.4: Makefile

1 DEBUG = 0

2

76 Appendix B. Source Code

3 NCFLAGS = -c -O2 -Xcompiler -fopenmp -arch=compute_20 -code=sm_20

4 CFLAGS = -c -O2 -Wall -fopenmp

5 CLIBS = -lm -lpthread -lgomp -L/usr/local/cuda/lib -lcudart

6 OBJ = yee.o update.o jobs.o main.o

7 NCC = nvcc

8 CC = g++

9

10 .PHONY: plot plot_file hplot hplot_file clean

11

12 all: $(OBJ)

13 $(CC) -o yeebench_cuda $(OBJ) $(CLIBS)

14

15 main.o: main.cu

16 $(NCC) $(NCFLAGS) main.cu

17

18 yee.o: yee.cu

19 $(NCC) $(NCFLAGS) -lineinfo yee.cu

20

21 jobs.o: jobs.cu

22 $(NCC) $(NCFLAGS) jobs.cu

23

24 update.o: update.cpp

25 $(CC) $(CFLAGS) update.cpp

26

27 $(OBJ): main.h

28

29 run: all

30 ./yeebench_cuda assignment

31

32 run_greedy: all

33 ./yeebench_cuda

34

35 # Plot for single device from n = 50 to what is specified in yee.dat

36 # NUMTASKS in main.h will determine number of datapoints gathered

37 plot: all

38 ./yeebench_cuda plot

39 .plots/plot.py

40

41 # Same as above but save results to file

42 plot_file: all

43 ./yeebench_cuda plot

44 ./rename.sh

45

46 # Plot for hybdrid setup

47 # Same as above, but instead of one task per datapoint;

48 # one cpu task will be run per datapoint, filled with gputasks

49 # untill the cpu tasks retire

50 hplot: all

51 ./yeebench_cuda hybridplot

52 .plots/plot.py -e

53

54 # Same as above but save results to file

B.2. Utility 77

55 hplot_file: all

56 ./yeebench_cuda hybridplot

57 ./rename.sh

58

59 resource_plot: all

60 ./yeebench_cuda resource

61 ./plot.py -re

62

63 clean:

64 rm -f *.o yeebench_cuda

	Problem Description
	Abstract
	Sammendrag
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Outline
	Setup

	Background
	Parallel Computing on GPU
	GPU

	Compute Unified Device Architecture
	Architecture
	Kepler Architecture
	Utilizing GPGPU and CUDA

	Yee_bench
	Conclusions Made by Andersson
	Personal Conclusions

	The FDTD Method

	Yee_bench CUDA
	Implementation
	Overall Design
	Launch Configuration
	
	Problem Size Variations

	Profiler Analysis
	Intermediate Results and Implications

	The Heterogeneous Yee_bench Scheduler
	Implementation
	Overall Design
	Plot Script
	Computation Implementations

	Assignment Scheduler
	Load Balancer
	Detailed Description of the Implementation
	Flow

	Other versions
	Greedy Scheduler
	Homogeneous Device Plotter
	Heterogeneous Device Plotter
	Resource Plotter

	Results
	CPU Performance, Resources Used Compared to Results
	Memory Implications
	Performance in Main Loop and in the Big Picture
	Runtime Breakdown

	Scheduler Performance
	Kepler Performance

	Conclusion and Future Work
	Future Work
	Distributed Memory Version
	Self Tuning
	Stencil Size
	Comparison of Different GPU Implementations
	Extension to Full EMGS Implementation
	Alternative Maxwell Solvers and Redefined Mathematical Problem
	Other GPU Architectures

	Bibliography
	Appendices
	User Manual
	How to Run the Scheduler
	Schedulers
	Homogeneous Device Plotter
	Heterogeneous Device Plotter
	Resource Plotter

	Python Plot Script
	Comments on Kepler

	Source Code
	Yeebench
	Utility

