
Using Infrastructure-less Wireless
Networks to Synchronize Data among
Mobile Devices
Extending UbiShare

Kato Stølen

Master of Science in Computer Science

Supervisor: Babak Farshchian, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

NORWEGIAN UNIVETSITY OF SCIENCE AND TECHNOLOGY

Abstract
Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Computer and Information Science

Master of Science in Computer Science

Using Infrastructure-less Wireless Networks to Synchronize Data among
Mobile Devices

by Kato Stølen

During the last ten years, social networking has become an integral part of modern
society. People use the wide range of available social networking services to create rela-
tionships and communities, in which they share data with family, friends and co-workers.
These social networking services works great for their intended purpose, connecting peo-
ple, but a privacy issue arises when using such services. Even though you have the
ownership of everything you share, you often grant the service provider the possibility
to use your data as they please.

UbiShare was proposed as a solution of this problem. By using UbiShare, innovative
sharing applications could provide smaller, private communities, such as rescue crews, a
way of communicating while in action. The idea was to use private social networks to en-
hance disaster management by providing an easy and intuitive way of sending messages
and sharing data that would aid in decision making. This way, disaster management
would be much easier to coordinate, but if the disaster wipes out communication infras-
tructure, the current version of UbiShare would not work.

This thesis presents the development and evaluation of a data synchronization system
that uses infrastructure-less wireless networks, such as Bluetooth or Wi-Fi Direct, as
communication channel. By making this an extension of UbiShare, community members
in close proximity can continue to share and synchronize data even when fixed internet
infrastructure is inaccessible. The motivation behind this system is to show how it
can enhance disaster management in situations when only infrastructure-less wireless
networks are available.

http://www.ntnu.edu
http://www.ntnu.edu/ime
http://www.idi.ntnu.no/

ii

(Norwegian)

Sosiale nettverk har, de siste ti årene, blitt en del av det moderne samfunn. Folk bruker
de utallige sosiale nettverkene til å lage relasjoner til andre og grupper hvor de kan dele
data med familie, venner og kolleger. Disse sosiale nettverkene fungerer veldig bra for sitt
form̊al, å knytte mennesker sammen, men det er ikke alt som egner seg å dele gjennom
de. Selv om du eier det som blir delt, m̊a du ofte tillate at de sosiale nettverkene kan
bruke det du deler som de vil.

UbiShare ble utviklet som en løsning til dette problemet. Innovative datadelingsapp-
likasjoner kan bruke UbiShare til å gi mindre, private grupper, som for eksempel red-
ningsmannskap, en m̊ate å kommunisere p̊a mens de er i aksjon. Ideen var å bruke
private sosiale nettverk til å forbedre katastrofeh̊andtering ved å tilby en enkel og intu-
itiv m̊ate å sende meldinger og dele data som kan hjelpe med å ta avgjørelser. P̊a denne
m̊aten blir katastrofeh̊andtering enklere å koordinere, men dersom katastrofen ødelegger
kommunikasjonsinfrastruktur, vil den n̊aværende versjonen av UbiShare ikke fungere.

Denne masteroppgaven presenterer utviklingen og evalueringen av et datasynkroniser-
ingssystem som bruker infrastrukturløse tr̊adløse nettverk, som for eksempel Bluetooth
og Wi-Fi Direct, til å kommunisere mellom mobile enheter. Ved å gjøre dette til en
utvidelse av UbiShare, kan gruppemedlemmer i nærheten av hverandre fortsette å dele
og synkronisere data, selv om internettinfrastruktur ikke er tilgjengelig. Motivasjonen
bak dette systemet er å vise hvordan det kan brukes til å forbedre katastrofeh̊andtering
n̊ar bare infrastrukturløse tr̊adløse nettverk er tilgjengelig.

Acknowledgements

I would like to thank my supervisor, Babak Farshchian, for the continuous feedback and
help during this master thesis. His encouragement and input made the project exciting
to work with.

I would also like to thank my parents for their unconditional love and support during
the project. Mamma, I’m coming home. At least for the summer holiday.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1
1.1 Thesis Backgroud . 1

1.1.1 UbiShare . 2
Scenario: Crowd Management 2

1.2 Problem Description . 3
Scenario: Earthquake . 3
Scenario: Transient Meeting 3

1.3 Thesis Goal . 4
1.4 Thesis Structure . 4

Chapter 2: Problem Analysis 4
Chapter 3: State of the Art 4
Chapter 4: Proposed Solution 4
Chapter 5: Development . 4
Chapter 6: Evaluation . 5
Chapter 7: Conclusions and Further Work 5

2 Problem Analysis 7
2.1 Requirements Specification . 7
2.2 Problem Breakdown . 9
2.3 Communication Technologies . 11
2.4 Data Synchronization . 13

2.4.1 Strategies . 13
2.4.1.1 Peer-to-Peer . 13
2.4.1.2 Client-Server . 15

Server Push . 15
Client Pull . 16

2.4.2 Synchronization among Mobile Devices 18

v

Contents vi

3 State of the Art 19
3.1 Communication Technologies . 19

3.1.1 Bluetooth . 19
3.1.2 Wi-Fi Direct . 22
3.1.3 Near Field Communication (NFC) 23

3.2 Data Synchronization . 24
3.2.1 Couchbase Server . 24
3.2.2 BitTorrent Sync . 25
3.2.3 JXTA . 26
3.2.4 AGAPE . 27

Scenario: Firefighters using AGAPE 27
3.2.5 Summary . 27

4 Proposed Solution 29

5 Development 31
5.1 System Architecture . 31

5.1.1 Approach . 31
5.1.2 Resulting Architecture . 33

5.2 Implementation . 35
5.2.1 P2PSyncManager . 35
5.2.2 Synchronization Services . 36

5.2.2.1 P2PSyncServer . 39
5.2.2.2 P2PSyncClient . 40

6 Evaluation 43
6.1 Communication Technology . 43

6.1.1 Discovery and Connection Initiation 44
6.1.2 Range . 45
6.1.3 Data Transfer Rate . 45
6.1.4 Battery Lifetime . 46
6.1.5 Scalability . 46
6.1.6 Summary . 47

6.2 Data Synchronization . 47

7 Conclusion and Further Work 49
7.1 Further Work . 49

A UML Diagrams 51

Bibliography 59

List of Figures

2.1 Layered View of the Problem . 10
2.2 Peer-to-Peer Strategy: Unicast . 14
2.3 Peer-to-Peer Strategy: Broadcast . 15
2.4 Client-Server Strategy: Server Push . 16
2.5 Client-Server Strategy: Client Pull . 17

3.1 Bluetooth: Scatternet . 20
3.2 Wi-Fi Direct Network . 22
3.3 Couchbase Server . 25
3.4 The Layers of JXTA . 26

4.1 Physical View of the System . 29

5.1 Class Diagram of the Initial Architecture 32
5.2 System Component View . 34

6.1 Test Results: Data Transfer Rates . 45

A.1 Class Diagram: org.societies.android.p2p 51
A.2 Class Diagram: org.societies.android.p2p.net 52
A.3 Class Diagram: org.societies.android.p2p.entity 53
A.4 Class Diagram: org.societies.android.p2p.service 54
A.5 Sequence Diagram: Discover and Connect 55
A.6 Sequence Diagram: Server Push . 56
A.7 Sequence Diagram: Handshake Request 57

vii

List of Tables

2.1 Table of System Requirements . 9
2.2 Comparison of Synchronization Strategies 18

3.1 Table of Bluetooth Versions . 21
3.2 Table of Bluetooth Radio Classes . 21
3.3 Comparison of Communication Technologies 24
3.4 Summary of State-of-the-Art Data Synchronization Systems 28

ix

Abbreviations

AGAPE Allocation and Group Aware Pervasive Environment

API Application Programming Interface

DBMS Database Management System

ER Entity-relationship

IP Internet Protocol

JSON JavaScript Object Notation

JXTA Juxtapose

MANET Mobile Ad-hoc Network

NFC Near Field Communication

NTNU Norwegian University of Science and Technology

P2P Peer-to-Peer

RFID Radio-frequency Identification

SN Shared-nothing

TCP Transmission Control Protocol

UDP User Datagram Protocol

UML Unified Modeling Language

WAP Wireless Access Point

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

xi

Chapter 1

Introduction

This chapter introduces the master thesis by presenting its background, problem de-

scription and goal.

1.1 Thesis Backgroud

This thesis is a continuation of the specialization project. In the course TDT4501

Computer Science, Specialization Project students learn how to complete a larger, inde-

pendent project and how to go into a specific problem using scientific methods [1]. This

course introduced a project where the goal was to develop an innovative sharing tool

called UbiShare. UbiShare was developed for Android and its purpose was to help other

mobile applications to share data in a group of mobile devices. The original project

description was the following:

“It has become a known fact that even if users on e.g. Facebook have hun-

dreds of friends, they interaction only with a small fraction of their friends

at any time. Social media such as Facebook are therefore implementing func-

tionality for supporting smaller groups of people share information with each

other. In UbiCollab we are developing an innovative sharing tool for Android

devices called UbiShare. UbiShare allows users to share information about

their physical environment. This task aims to implement the next generation

of UbiShare based on cutting edge technologies such as XMPP and Android.”

[2]

1

Chapter 1. Introduction 2

Due to some complexities with XMPP, the project description was slightly modified.

Instead of using XMPP and a peer-to-peer protocol, UbiShare would use a centralized

online storage service to store the master copy of the shared data.

1.1.1 UbiShare

UbiShare is a service that lets Android applications create small, private social networks.

The purpose of UbiShare was to inspire the development of mobile applications that use

innovative ways of sharing data within communities. An example of such application

is one that helps rescue crews communicate when in action. This application would

use UbiShare to create a community and synchronize data between the members of the

community. UbiShare was developed to provide an alternative to sharing data through

larger, less private social networks, such as Facebook or Google Plus, but also to have

the possibility to interact with these [3]. To put UbiShare into perspective, we can

consider the following scenario:

Scenario: Crowd Management There is a concert with an audience of several

thousand people. A couple of hundred crew members are hired to manage the crowd.

The crew members are equipped with a mobile device that can send and receive messages

and share the location of the crew members within the crowd management community.

UbiShare is used to synchronize the data among the crew members. The mobile devices

are used to share the status of a crew member’s assigned area. A coordinator uses

these statuses, in addition to the location of the crew members, to manage the crew

members. If an accident happens, the coordinator can easily choose the most suitable

crew members to come to aid. Also, if a severe accident happens and people have to

be evacuated, the coordinator can notify the crew members of where to evacuate the

crowd, based on the statuses of the different areas.

The scenario above shows how UbiShare can be used to share data within a community.

After the completion of the first version of UbiShare, there was a growing desire for

UbiShare to work without an internet connection. This would make UbiShare usable

in places and situations where an internet connection is nonexistent, such as disaster

management in places where internet infrastructure has been wiped out or is inaccessible

for some other reason. It is this idea that forms the base of this thesis.

Chapter 1. Introduction 3

1.2 Problem Description

During the last ten years, social networking has become an integral part of modern

society. People use the wide range of available social networking services to create rela-

tionships and communities, in which they share data with family, friends and co-workers.

These social networking services works great for their intended purpose, connecting peo-

ple, but a privacy issue arises when using such services. Even though you have the

ownership of everything you share, you often grant the service provider the possibility

to use your data as they please.

UbiShare was proposed as a solution of this problem. By using UbiShare, innovative

sharing applications could provide smaller, private communities, such as rescue crews, a

way of communicating while in action. The idea was to use private social networks to en-

hance disaster management by providing an easy and intuitive way of sending messages

and sharing data that would aid in decision making. This way, disaster management

would be much easier to coordinate, but if the disaster wipes out communication in-

frastructure, the current version of UbiShare would not work. Consider the following

scenario:

Scenario: Earthquake A severe earthquake has occurred and a rescue crew is

searching for survivors in the ruins. The crew members are equipped with devices to

receive messages and share environmental data which a coordinator can use to organize

the search. These devices use UbiShare to share the data within the disaster manage-

ment community. The only problem is that the earthquake has wiped out network and

communication infrastructure. UbiShare cannot access the online storage service used

to synchronize the mobile devices.

There is a need for a system that can share data within a community when internet

infrastructure is absent; a system that can aid in scenarios like the one above. Such

system could also be used in less serious situations. Consider the following scenario:

Scenario: Transient Meeting A group of people gathers for a transient meeting.

In the meeting a large set of photos have to be shared among the attendants. There are

no wireless network available and using the mobile network would take too much time.

Chapter 1. Introduction 4

In this scenario, a system that could synchronize data among mobile devices using an

infrastructure-less wireless network would be beneficial. Such system would also make

the data sharing more natural by providing a communication channel between devices

in close proximity, as discussed in [4]. This is a step towards Mark Weiser’s vision of

ubiquitous computing [5].

1.3 Thesis Goal

The goal of this thesis is to develop a proof-of-concept system that lets you synchro-

nize social data in a group of mobile devices using infrastructure-less wireless networks.

Since UbiShare already has the underlying functionality; the possibility to create social

networks and manipulate their data through APIs, it is natural to extend UbiShare with

a synchronization feature that uses infrastructure-less wireless networks. The purpose of

this extension is to demonstrate how the coordination of disaster management can ben-

efit from having a system that can provide a communication channel between members

of a rescue crew in action.

1.4 Thesis Structure

The thesis has the following structure:

Chapter 2: Problem Analysis presents an analysis of the problem and the re-

quirements of a proof-of-concept system that aims to solve it.

Chapter 3: State of the Art presents cutting edge communication technologies

and the latest advances in mobile data synchronization.

Chapter 4: Proposed Solution presents the proposed solution to solve the prob-

lem.

Chapter 5: Development presents this thesis’ contribution to solve the problem;

the design and implementation of the proof-of-concept system.

Chapter 1. Introduction 5

Chapter 6: Evaluation presents the evaluation of the developed system.

Chapter 7: Conclusions and Further Work concludes the thesis and suggests

enhancements that can be implemented into the proof-of-concept system to make it

more suitable for disaster management.

Chapter 2

Problem Analysis

This chapter presents a deeper analysis of the problem at hand.

2.1 Requirements Specification

In order to form the requirements of the system, we have to consider the earthquake

scenario. In this scenario the internet infrastructure has been wiped out, and to enable

data sharing, the system must support data synchronization using infrastructure-less

wireless networks. The rescue crew consists of several people, hence the system must

support data synchronization among several devices. In this proof-of-concept system, we

can assume that a rescue crew consists of 2-8 people. This will form a more measurable

requirement.

When synchronizing data within a group people, a community, the system needs to have

notions of different parts of a social network, such as people, communities, relationships

and memberships. UbiShare already has these notions and can easily be extended with

this infrastructure-less data synchronization system. The fact that UbiShare is devel-

oped for Android results in the requirement that the proof-of-concept system should be

available for Android devices. In order to support as many Android devices as possible

the system should work out-of-the-box on high-end, non-rooted Android devices.

Since the primary focus are disaster management groups, the system needs to have some

requirements of range, throughput and battery usage, where range and battery usage

7

Chapter 2. Problem Analysis 8

are most important. It is desirable to have as high values for these as possible, but since

both range and throughput affect the battery usage, more realistic values needs to be

set. For this proof-of-concept system a range of 15 meters inside (30 meters outside), a

throughput of at least 1 Mbps and a battery lifetime greater than 6 hours are realistic

requirements. The requirements mentioned so far is of high priority since they are

essential to prove the use of this system.

Even though the system could easily synchronize several communities and their be-

longing data simultaneously, a more realistic scenario would be that only members of

a specific community would gather to share data. This forms a new requirement; the

system should let the user choose which community is to be synchronized, or create a

new one if none of the existing communities are satisfactory. When adding this feature

the system should also only allow members of the selected community to participate in

the peer-to-peer synchronization. These requirements are of medium priority.

Another requirement is that the system should be easy and quick to set up. If you are a

member of a disaster management crew or you just want to quickly share a document to

the members of a meeting, you wouldn’t want the system to take several minutes to set

up. A realistic maximum initiation time of this system is 30 seconds. This requirement

is of low priority since it does not affect the purpose of this proof-of-concept system.

Since this system is just a proof-of-concept, non-functional requirements, like usability

and security, are not listed. Table 2.1 sums up the requirements of the system.

ID Requirement Dependency Priority

FR1 The system should be available for high-end, non-

rooted Android devices

High

FR2 The system should be an extension of UbiShare FR1 High

FR3 The system should support data synchronization

using a infrastructure-less wireless network

High

FR4 The system should support data synchronization

among 2-8 devices

FR3 High

FR5 The system should have a range of at least 15

meters inside and 30 meters outside

High

Continued on next page

Chapter 2. Problem Analysis 9

Table 2.1 – continued from previous page

ID Requirement Dependency Priority

FR6 The system should have a throughput of at least

1 Mbps

High

FR7 The system should have a battery lifetime of at

least 6 hours

High

FR8 The system should let the user choose which com-

munity that is to be synchronized

Medium

FR9 The system should allow only the members of the

chosen community to participate in the synchro-

nization

FR8 Medium

FR10 The system should have a maximum initiation

time of 30 seconds

Low

Table 2.1: Table of System Requirements

2.2 Problem Breakdown

The problem can be broken down into four layers, as shown in Figure 2.1. The three

bottom layers, local data storage, communication technologies and data synchronization,

are a part of UbiShare. UbiShare is a platform for mobile applications that require data

synchronization among mobile devices. Through a set of APIs, applications can use the

UbiShare platform to create social networks, and store and synchronize data within these

social networks among mobile devices. UbiShare implements the OpenSocial standard,

which specifies APIs of how applications can be built on top of social networks.

The bottom layer is the local data storage. UbiShare provides a local data storage where

applications can store data that is to be synchronized. The local data storage acts as a

local cache of the data, enabling the applications to access the data without having to

request it from a remote service for each use. The problem introduced in this thesis is

not concerned about the local data storage layer, as this layer was covered in [3], but

the layer is included here to better explain which part of UbiShare this thesis relates to.

Chapter 2. Problem Analysis 10

Figure 2.1: The problem broken down into three layers.

As mentioned, the system that is to be developed in this thesis should be an extension

of UbiShare. Currently, UbiShare synchronizes the data with online storage services

through wireless networks with fixed infrastructure; through wireless access points with

an internet connection. It is at these layers, the communication technologies and data

synchronization layer, this thesis has its focus.

The problem in the communication technologies layer is to find suitable technologies

that do not rely on fixed infrastructure and meet the requirements of the system. Char-

acteristics that affect the choice of communication technology are its discovery method,

range, transfer rates and network protocol. Section 2.3 presents a deeper analysis of

communication technologies.

Data synchronization is the next layer of the problem. The problem here is to find a

data synchronization strategy that is compliant with the chosen communication tech-

nology and suitable for synchronizing data among mobile devices. Challenges with data

synchronization among mobile devices are their mobility; in terms of sudden discon-

nects and network partitioning, and their reduced resources, such as battery lifetime

and computational power. A deeper analysis of data synchronization is presented in

Section 2.4.

The top layer is the applications using the system. The development of such applications

are not covered in this thesis, but they are an essential part of the problem. UbiShare is

Chapter 2. Problem Analysis 11

only a platform, and without applications built on top, the purpose of the system would

be completely defeated. Applications built on top of UbiShare are responsible for the

creation of social networks, and provides the data that is to be synchronized with other

devices. They also specify which service to use when synchronizing the data. In order

properly evaluate the proof-of-concept system developed in this thesis, such applications

are needed.

2.3 Communication Technologies

The choice of communication technology depends on a variety of factors. Since the

system to be developed is run on mobile devices, the mobility of the devices and their

reduced resources are key factors. The mobility of the devices can cause sudden dis-

connects and network partitioning, and with their reduced resources, such as battery

lifetime and computational power, the communication technology needs to be lightweight

and less power demanding. One of the most important requirements is that the chosen

communication technology is supported on as many mobile devices as possible, so that

the system can be used on a variety of devices.

Discovery method and connection setup are important factors when choosing commu-

nication technology. When a group of mobile devices are brought together to form a

network, each device needs to know how to discover and connect to each other. This

requires the communication technology to allow publishing of services and have a ser-

vice discovery method, so that devices can filter them and choose the correct service.

The connection setup are also important, since it defines the process of connecting the

devices. The amount of manual labor is key here. It is desired that the connection setup

is as automated, quick and intuitive as possible. This will enhance the usability of the

system.

The mobility of the devices may cause sudden disconnects and frequent network parti-

tioning. A key factor is how the communication technologies handles these. If one or

more of the mobile devices disconnects from the network, it is desired that the network

is still operative, so that the other devices can continue synchronizing data within the

partitioned network. Another factor to consider is how the communication technology

handles reconnects. If a device loses the connection to the network, because it is out of

Chapter 2. Problem Analysis 12

range, it is desired that the communication technology automatically reconnects when

the device reenters the network area.

Security is another key factor when choosing communication technology. You wouldn’t

want intruders to be able to connect to the network or sniff the data traffic between

the devices. This requires the communication technology to have a secure connection

setup and an encrypted data transfer protocol. Security features are usually tradeoffs.

A secure connection setup would probably require more manual labor, and encrypted

data traffic uses more computational power and has a negative effect on battery lifetime.

Since the system developed in this thesis aims to connect members of a rescue crew, it

needs a communication technology with a great range. If the rescue crew are searching

for survivors after a severe earthquake, it is desired that the members of the crew

could be as far apart as possible to broaden the search. Again, there are tradeoffs

with respect to battery lifetime. The best thing would probably be to support different

communication technologies with different range and battery usage. This way, different

communication technologies could be used in different scenarios. When battery lifetime

is more important than range, a less power demanding, lower ranged communication

technology could be used.

Another factor to consider is the data transfer rates of the communication technology.

The data shared in this system is ranging from simple text messages to photos, and

maybe even videos. In order to transfer such data in a satisfactory manner, the commu-

nication technology has to have great transfer rates. As with range, there are tradeoffs

regarding battery lifetime. An optimal communication technology combines great range

and transfer rates with long battery life.

When choosing a communication technology, the supported transfer protocols are also

a key factor. If none of the supported protocols have reliable data transmission, a com-

plex architecture might be needed to ensure that the data is delivered to its destination.

Most of today’s communication technologies support reliable data transmission, hence

the more interesting question is whether they support broadcasting and multicasting.

Broadcasting refers to transmitting data packets to all the devices on the network, simul-

taneously. This can be used to reduce the number of packets needed to transfer data to

multiple devices. The same goes for multicasting, but when sending a multicast packet,

Chapter 2. Problem Analysis 13

only devices in the multicast group can receive it. Some data synchronization strate-

gies require either broadcasting or multicasting. Section 2.4 describes such strategies in

further detail.

2.4 Data Synchronization

The idea behind data synchronization is to establish consistency among two or more

data sources. If one of them changes, the same change needs to be performed on the

other sources in order to keep them consistent. In this thesis, data synchronization will

be used to keep the data on multiple mobile devices consistent [6]. These mobile devices

form a synchronization group, and acts as peers in a peer-to-peer network. If a mobile

device makes a change to its data, it needs to notify the other devices of the changes that

have been made in order to keep them in sync. This can be done by sending a change

notification. The following section about synchronization strategies presents different

ways of doing this.

2.4.1 Strategies

This section presents a couple of synchronization strategies that can be used in a peer-

to-peer system.

2.4.1.1 Peer-to-Peer

In the peer-to-peer strategy, each peer is responsible for notifying all the other peers when

changes occur. If a peer adds, modifies or deletes some data, it has to send a notification

to all the other peers in the group in order to keep them up to date. This can be done

by either sending the notification explicitly to each peer (shown in Figure 2.2), or by

broadcasting it. The former requires that each peer is aware of all the other peers in

the synchronization group and how to reach each one of them. When a peer joins a

synchronization group, it needs a way to introduce itself to the other peers. In a peer-

to-peer group without a centralized “peer lookup” service, it is an awkward process to

find the other peers. One way would be to scan IP ranges hoping for a strike of luck,

but this is like placing a group of deaf people in a completely dark room, instructed to

Chapter 2. Problem Analysis 14

find each other without making a sound. This is why the preferred method, when using

this strategy, is to broadcast the notifications.

Figure 2.2: When using the unicast method and a peer has made a change, it needs
to send a notification to each of the peers in the network.

When broadcasting, notifications are sent to all the recipients, simultaneously. This way

the peers does not need to know of each other. When a peer needs to notify the others

of a change, the notification can be broadcasted to all the peers that are listening for

broadcast messages (shown in Figure 2.3). Peers are not required to introduce themselves

when joining a synchronization group. It is also safe to assume that broadcasting is

less resource demanding, since a peer only needs to send the notification once instead

of one for each peer in the group. There are, however, some disadvantages of using

this method. First, since everyone can receive the broadcasted notifications, there is a

need for enhanced security. Encrypting the messages can solve this problem, but this

requires a safe way to distribute the encryption keys. Second, broadcasting is carried

over an unreliable network protocol, e.g. the User Datagram Protocol (UDP). There

is no way for a peer broadcasting a notification to know if every recipient received the

notification without implementing a more complex architecture. There are several ways

of broadcasting reliably, but they all result in more complex architectures.

A drawback of the peer-to-peer strategy is that there is no master copy of the data

that can be used to solve conflicts. Conflicts occur when multiple peers modifies the

Chapter 2. Problem Analysis 15

Figure 2.3: Using the broadcast method, a peer that has made a change only needs to
send the notification once, and the router will deliver it to all the peers in the network.

same data before they are able to notify each other. In best case scenario, the only

consequence is that the most recent change overwrites the conflicting change. The data

on the peers are still consistent, but if peers receive notifications of the same data in

different orders, they will become inconsistent and from there on out the peers will

not be in sync. Either way, none of the scenarios are desirable, hence a more complex

architecture are needed to handle conflicts.

2.4.1.2 Client-Server

When using a client-server strategy, one of the peers takes on the role as a server, while

the rest of the peers are clients. The server peer has the master copy of the data and the

client peers sends data changes to the server peer only. Depending on which technology

is used, the server peer could either push changes to the client peers, or the client peers

could pull the changes from the server peer. The client-server strategy is inspired by

the ward model described in [7].

Server Push When the server peer receives a change notification from a client peer,

or makes changes to some data itself, it pushes a change notification to the rest of the

Chapter 2. Problem Analysis 16

client peers (Figure 2.4). This technology requires the server peer to have an overview

of all the client peers. A simple client register where client peers are added when they

first connect to the server, will satisfy this requirement.

Figure 2.4: When using the server push method, a peer that has made a change sends
the notification to the server, and the server will send the notification to the other peers.

Client Pull Using this method, clients periodically pulls changes from the server

peer (Figure 2.5). This way, the server peer does not need to have an overview of the

client peers. It is merely a servant handling requests from the clients, requiring a less

complex architecture to function satisfactory.

When comparing the two technologies, we see that the client pull technology has more

overhead when it comes to data traffic. The client peers might continually request

changes from the server peer when there are no changes made. This would create

unnecessary data traffic, hence client pull is more resource demanding.

Conflict solving is less complex when having a master copy of the data. Conflicts will

still occur if multiple peers modifies the same data at the same time, but the server peer

who has the master copy could easily detect conflicts and respond to them accordingly.

This would prevent inconsistency among the peers.

Chapter 2. Problem Analysis 17

Figure 2.5: When using the client pull method, a peer that has made a change sends
the notification to the server, and the other peers will receive the change by continually

requesting changes from the server.

The client-server strategy would also be less complex than the peer-to-peer strategy in

terms of communication. Since the communication of the client-server strategy can be

carried over a reliable network protocol, e.g. the Transmission Control Protocol (TCP),

there is no need for a complex communication architecture. However, the client-server

strategy is more resource demanding than the peer-to-peer strategy, since it requires

more network traffic. Table 2.2 presents a comparison of the strategies.

Strategy Method Pros Cons

Peer-to-Peer
Unicast No server peer with

heavy load

Requires knowledge of

all the peers in the

group, and complex ar-

chitecture to ensure re-

liable data transfer

Broadcast/Multicast No server peer with

heavy load, and least

network traffic

Requires complex archi-

tecture to ensure reli-

able data transfer

Continued on next page

Chapter 2. Problem Analysis 18

Table 2.2 – continued from previous page

Strategy Method Pros Cons

Client-Server
Client Pull Less complex server ar-

chitecture than Server

Push

Unnecessary requests

for changes, when no

changes have been

made

Server Push Less power demanding

than Client Pull

Requires knowledge of

all the client peers,

more complex server ar-

chitecture

Table 2.2: Comparison of Synchronization Strategies

2.4.2 Synchronization among Mobile Devices

The mobility of the devices introduces some challenges when synchronizing data among

mobile devices. Sudden disconnects and frequent network partitioning needs to be ad-

dressed by the synchronization logic. If a device loses its connection to the network and

changes are made during this period, it is essential that the disconnected device receives

these changes when it rejoins the synchronization group. This can prove quite challeng-

ing when using the peer-to-peer strategy, since none of the devices have a master copy of

the data. With the client-server strategy, the rejoining device could just send a request

to the server, requesting the changes made during the time the device was disconnected,

given that the server has such functionality.

Network partitioning can also cause problems during the synchronization. If a device

disconnects from the synchronization group, the data synchronization should continue

among the still active devices as if nothing happened. Handling such disconnects should

be pretty straight forward for non-server devices, but if a server device disconnects from

the synchronization group, there is a need for a server migration functionality. This

would allow the still active devices to continue synchronizing data by appointing a new

server peer.

Chapter 3

State of the Art

This chapter presents the state-of-the-art communication technologies and mobile data

synchronization systems. Both communication technologies and the data synchroniza-

tion systems are compared with the requirements of the proof-of-concept system that is

to be developed in this thesis.

3.1 Communication Technologies

This section presents state-of-the-art communication technologies in mobile devices.

3.1.1 Bluetooth

Bluetooth is a short-range, peer-to-peer, communication technology intended for trans-

ferring data from fixed and mobile devices. It is a popular technology embedded in a

wide range of devices ranging from mobile devices and computers to medical devices and

home entertainment products. Bluetooth has for many years been used to transfer data

between mobile phones. It has also been the preferred communication technology in

wireless keyboards and mice and in hands-free headsets due to its low power consump-

tion. Most of today’s mobile phones are Bluetooth enabled, hence it is highly relevant

for the system that is to be developed in this thesis.

The Bluetooth technology uses a master-slave structure. This means that when two

Bluetooth enabled devices connects to each other, also known as pairing, one of them

19

Chapter 3. State of the Art 20

Figure 3.1: A scatternet can consist of several piconets.

takes the role of a master. One master may communicate with up to seven slave devices

simultaneously forming an ad hoc network known as a piconet. A device can belong to

several piconets simultaneously, forming scatternets [8]. This is illustrated in Figure 3.1.

The fact that Bluetooth is a low power consuming communication technology results

in a limited range. It was meant to be an easy-to-set-up communication channel used

to transfer data between devices in close proximity, hence there is no need for a great

range. However, when providing a communication channel between members of a rescue

crew that might be far apart, Bluetooth might fall short.

The transfer rates and range of Bluetooth is dependent on which version is implemented

and the class of the Bluetooth radio. Table 3.1 lists the different version and transfer

rates, while Table 3.2 lists the different radio classes and their approximated range.

Chapter 3. State of the Art 21

Version Maximum Transfer Rate

Version 1.2 1 Mbps

Version 2.0 + EDR (Enhanced Data Rate) 3 Mbps

Version 3.0 + HS (High Speed) 24 Mbps

Version 4.0 + LE (Low Energy) 1 Mbps

Table 3.1: Table of Bluetooth Versions

Radio Class Range

Class 1 ∼100 m

Class 2 ∼10 m

Class 3 ∼1 m

Table 3.2: Table of Bluetooth Radio Classes

The classical Bluetooth versions, 1.2 and 2.0, have low transfer rates. However, Bluetooth

Version 3.0 + HS (High Speed) introduced a new architecture where the Bluetooth

channel was used for negotiation and establishment, while the high speed data traffic

was carried over a 802.11 link (Wi-Fi). This resulted in higher data rates and throughput

(up to 24 Mbps). The range, however, was unaffected by the new architecture. This

is due to the fact that, even though the data transfer is carried over a longer ranged

802.11 link, the classic Bluetooth link is still needed to maintain the connection between

devices [9].

Version 4.0 of Bluetooth did not make any changes regarding the transfer rates, hence

it uses the same technology as Version 3.0 + HS. However, it introduced a new tech-

nology called Bluetooth low energy. This technology aims to provide the same range,

but with a considerably reduced power consumption [10]. Bluetooth Version 4.0 + LE

(Low Energy) has a transfer rate of only 1 Mbps, but targets devices where low power

consumption is essential.

In mobile devices, the Class 2 radio is the most common [8]. This means that most of the

mobile devices only have a range of approximately 10 meters. However, newer mobile

phones have started using the Class 1 radio, which means ranges up to 100 meters. In

order to reach such ranges, it is required that a Class 1 radio is present in all the devices

Chapter 3. State of the Art 22

in the piconet. Chances are that only a few, if any, of the devices have the Class 1 radio,

and the range is limited by the shorter ranged devices.

3.1.2 Wi-Fi Direct

Wi-Fi Direct is a standard that allows Wi-Fi devices to connect and transfer data to

each other without the need for a wireless access point (WAP). It uses software to utilize

the 802.11 radio on Wi-Fi enabled devices to act as a WAP with a limited set of services.

Wi-Fi Direct-certified devices can connect one-to-one or one-to-many. In one-to-many

connections one of the devices is chosen to be the group owner. The group owner acts

as a WAP and all other devices transfers data through this device. This is illustrated in

Figure 3.2.

Figure 3.2: One of the devices in a Wi-Fi Direct network has the role as Group
Owner.

Wi-Fi Direct has greater transfer rates and range than Bluetooth, but also more power

consuming. The maximum number of devices in a Wi-Fi Direct network is expected to

be smaller than the number supported by standalone access points [11]. This is due to

the fact that Wi-Fi Direct is run on mobile devices with less powerful hardware.

By using the 802.11 radio for all its operations, Wi-Fi Direct supports typical Wi-Fi

speeds and ranges, with data transfer rates up to 250 Mbps and ranges up to 200 meters

[11]. Speeds and ranges are, however, dependent on the hardware used. It is safe to

Chapter 3. State of the Art 23

assume that today’s mobile devices offer slower speeds and shorter ranges than the

maximum values of Wi-Fi, due to the fact that they use less power consuming hardware

components. However, mobile devices are rapidly evolving, hence transfer rates and

ranges of Wi-Fi Direct will likely increase as more powerful hardware is embedded in

the devices.

3.1.3 Near Field Communication (NFC)

Near Field Communication is a short-range communications protocol that has evolved

from Radio-Frequency Identification (RFID). RFID is a wireless data transfer protocol

that uses electromagnetic fields to read tags attached to objects [12]. These tags contain

electronically stored information. In opposition to RFID, NFC is a two-way communi-

cation protocol. This means that NFC can be used to exchange data between two NFC

enabled devices, in addition to read tags [13].

NFC is a short range communication technology with low transfer rates. The strength

of NFC lies in its low power consumption and ease of use. NFC does, in opposition to

Bluetooth and Wi-Fi Direct, not require the process of pairing the devices. Due to NFC’s

transfer rates and range, it is not suitable for use as the primary communication channel

of the proof-of-concept system that is to be developed in this thesis. However, due to

the fact that NFC is very light weight, it can be used to make the process of initiating

a Bluetooth or Wi-Fi Direct connection less labor intensive. Using NFC, you could

just hold two devices in close proximity and with a push of a button the devices would

exchange information to automatically initiate a Bluetooth or Wi-Fi Direct connection.

NFC has a maximum range of approximately 20 cm and a maximum data transfer

speed of 0.424 Mbps [13]. It is estimated that 53 per cent of the mobile phones will

be NFC-enabled by 2015 [14]. Table 3.3 presents a comparison of the communication

technologies.

Chapter 3. State of the Art 24

Technology Topology Range Transfer Rate

Bluetooth (v3.1+) One-to-One,

One-to-Many

10 m (Class 2 Radio)∗,

100 m (Class 1 Radio)

24 Mbps

Wi-Fi Direct One-to-One,

One-to-Many

Up to 200 m Up to 250 Mbps

NFC One-to-One∗ 20 cm∗ 0.424 Mbps∗

* Does not satisfy the requirements of the proof-of-concept system.

Table 3.3: Comparison of Communication Technologies

3.2 Data Synchronization

This section presents state-of-the-art data synchronization systems in mobile environ-

ments.

3.2.1 Couchbase Server

Couchbase Server is a distributed NoSQL database management system (DBMS) [15].

It uses a shared-nothing (SN) architecture where each node is independent and self-

sufficient [16]. This results in great scalability. Nodes can be linked together in order to

create several copies of the same data. If the connection is broken between linked nodes,

each node can operate independently of each other due to the SN architecture, and

when the connection is back up, the nodes get synchronized to make the data consistent

among them.

The interesting thing about Couchbase Server, is that it has a version for mobile devices

that support peer-to-peer synchronization of databases – Couchbase Mobile. Couchbase

Mobile can be set up to accept connections, enabling other devices to connect and

synchronize their database using peer-to-peer. This can be used to share data among

mobile devices that lack an internet connection. Figure 3.3 illustrates this scenario.

Chapter 3. State of the Art 25

Figure 3.3: If the connection to the online master database is broken, a mobile device
can be set up to accept connections, so that mobile devices in close proximity can

continue to work on the same data.

3.2.2 BitTorrent Sync

BitTorrent Sync provides peer-to-peer synchronization of data among multiple devices.

It uses the popular BitTorrent protocol with enhanced security to synchronize data

within the local network or across the web. Currently, BitTorrent Sync is in the alpha

stage and no mobile platforms are supported yet. However, it is stated that BitTorrent

Sync is to support most of the popular mobile platforms in the future [17]. When

support for mobile platforms is added, it is expected that BitTorrent Sync can be used

to synchronize data among a group of mobile devices using the BitTorrent protocol.

Chapter 3. State of the Art 26

3.2.3 JXTA

JXTA (Juxtapose) is a set of protocols that can be used to establish a peer-to-peer

connection among devices. The purpose of JXTA is to provide a peer-to-peer commu-

nication layer that is independent of which communication technology is used. This

way, JXTA can be used in many different scenarios and on many different devices. The

implementation of JXTA is available in several programming languages, such as Java

and C/C++ [18]. JXTA is not a standalone application, but rather a protocol that can

be implemented into systems that need peer-to-peer group communication.

The peers can be divided into two categories; edge peers and super-peers [18]. Edge

peers are usually peers run on devices with reduced resources, such as mobile devices,

and have low responsibility within the peer-to-peer network. The super-peers can be

further divided into rendezvous and relay peers. Rendezvous peers are responsible for

coordinating the peers within the peer-to-peer network, and have stricter network, stor-

age, memory and computation power requirements. The relay peers are used to allow

peers that resides behind firewalls or NAT systems to take part in the peer-to-peer net-

work. Any of the JXTA peers can be a rendezvous or relay peer as long as they satisfies

the resource requirements.

Figure 3.4: JXTA consists of three layers.

JXTA consists of three layers (Figure 3.4); the platform, services and applications layer

[19]. The platform layer is the base layer and consists of the implementation of essential

peer-to-peer functionality. Ideally, JXTA peers implement all the functionality defined

by the platform layer, but they are not required to [19]. The services layer consists of

functionality that is not necessarily required in order for the peer-to-peer network to op-

erate, but might be useful. File sharing is an example of such service. Applications built

on top of JXTA defines the applications layer. These applications use the functionality

defined by the platform and services layer to perform peer-to-peer operations.

Chapter 3. State of the Art 27

XML is used to issue and exchange messages between JXTA peers. The fact that XML

is human readable, and hence more verbose than e.g. binary data documents, may

cause performance issues. This is due to the fact that XML documents are bigger than

binary data documents containing the same information. It is suggested to use data

compression within the XML documents to mitigate this issue [19].

3.2.4 AGAPE

AGAPE (Allocation and Group Aware Pervasive Environment) is a framework that uses

context information, such as proximity and user attributes and preferences, to help form

collaboration groups on mobile devices [20]. The purpose of AGAPE is to provide users

with the same agenda (e.g. rescue crews) a way of communicating and sharing data

in groups. The proximity of the mobile devices determines their visibility to others,

and by using a predefined set of user attributes and preferences, AGAPE provides a set

of services to arrange/dissolve and manage ad-hoc groups [20]. Consider the following

scenario:

Scenario: Firefighters using AGAPE A group of firefighters are working in the

same area. The captain starts the dynamic formation of a collaboration group, specifying

that it is a group for firefighters. Other firefighters can join the newly created group

since they are in close proximity and their user attributes states that they are firefighters.

AGAPE assigns the captain a role of a coordinator since his user attributes states that

he is of higher rank, while the other firefighters are assigned a generic “firefighter” role.

The collaboration group is used to exchange messages and pictures that aid in decision

making.

As the scenario shows, proximity and user attributes are used to form a collaboration

group and to assign roles within the created group. AGAPE is a middleware framework

using mobile ad-hoc networks (MANETs) as communication channel.

3.2.5 Summary

As a summary, each system is compared with the requirements of the proof-of-concept

system that is to be developed in this thesis. Not all of the requirements are relevant in

Chapter 3. State of the Art 28

this comparison, hence only a few is selected. The selected requirements are whether the

systems support Android (FR1), data synchronization using infrastructure-less wireless

networks (FR3) and data synchronization among 2-8 devices (FR4). Table 3.4 presents

the comparison.

Requirement Couchbase BitTorrent Sync JXTA AGAPE

Android support Yes Not yet Yes Yes

Data synchronization

using infrastructure-less

wireless networks

Yes Yes Yes Yes

Data synchronization

among 2-8 devices

Yes Yes Yes Yes

Table 3.4: Summary of State-of-the-Art Data Synchronization Systems

All the systems satisfy the requirements, except BitTorrent Sync which does support

mobile devices yet. However, since the proof-of-concept system that is to be developed

in this thesis is to be an extension of an existing system, embedding these systems might

require a redesign of UbiShare, which is outside the scope of this thesis. Hence, they

will only be used as inspiration when designing and implementing the proof-of-concept

system.

Chapter 4

Proposed Solution

The peer-to-peer synchronization was going to be an extension of UbiShare. This meant

that the target system was Android, and the synchronization strategy and communica-

tion technology had to be compatible with this operating system.

Figure 4.1: Physical view of the chosen strategy – Server Push. Clients send changes
to the server, and the server pushes changes to the clients.

One of the most important requirements of the system, is its range. When providing a

communication channel between members of a rescue crew, it is important that they can

29

Chapter 4. Proposed Solution 30

be as far apart as possible to broaden the search of survivors. This made the choice of

communication technology easy. Wi-Fi Direct has the greatest range, on paper, of the

peer-to-peer communication technologies in today’s mobile devices, and became available

to Android devices in version 4.0 (API level 14). Android 4.0 was released 19 October

2011, which makes Wi-Fi Direct support for Android devices fairly new. Legacy devices

will not be able to run this system if Wi-Fi Direct is used as communication technology.

A choice was made to support both Wi-Fi Direct and Bluetooth, with Wi-Fi Direct as

the main focus. Bluetooth is a much older technology, enabling legacy devices to use the

system. The choice of communication technologies satisfies the requirements FR3-FR6,

and hopefully also FR10.

When it comes to synchronization strategy, the initial thought was to use the peer-

to-peer strategy with broadcasting. The reason was that this approach is the least

resource demanding, since it requires the least amount of network traffic. After a failed

experiment of sending broadcast messages over Wi-Fi Direct, it was decided that the

client-server strategy would be a better fit. Not only does it result in a less complex

architecture, it also seems a better fit for both Wi-Fi Direct and Bluetooth. Both

technologies have a group owner or a master device that could also act as a server, since

it is known to all the other devices in the network. The proposed physical architecture

is shown in Figure 4.1. Chosen synchronization strategy satisfies the requirements FR3

and FR4.

Consider the earthquake scenario. If UbiShare had such infrastructure-less synchroniza-

tion feature, the rescue crew members in close proximity could continue to use UbiShare

even after the internet infrastructure is wiped out by the earthquake. By placing the

crew member equipped with the server device in the middle, the system could poten-

tially cover an area of π ∗ (200m)2 ≈ 125000m2, considering Wi-Fi Directs theoretical

maximum range. It is, however, highly unlikely that today’s mobile devices can achieve

such coverage, but future devices might.

Chapter 5

Development

This chapter presents the thesis’ contribution to solve the problem; the design and

implementation of a proof-of-concept, infrastructure-less data synchronization system.

5.1 System Architecture

This section presents the architecture of the proof-of-concept system.

5.1.1 Approach

The development of the proof-of-concept system was quite experimental. Using un-

familiar technologies, the approach was to make the first draft of the architecture as

minimalistic as possible. The main focus was to get core components up and running,

and then to gradually extend these with the required functionality. There was also a

focus on making the components as generic as possible, since multiple communication

technologies were to be supported. The system was designed to have the same behavior

independent of which communication technology is used. A class diagram of the initial

architecture is shown in Figure 5.1.

UbiShare uses sync adapters to synchronize the data with an online storage service [3].

These sync adapters are run by the Android operation system, and only if an internet

connection is present. The whole purpose of the proof-of-concept system was to be

able to synchronize data without an internet connection, but it was still desired to have

31

Chapter 5. Development 32

Figure 5.1: The initial architecture of the system contains only core components of
the system.

a similar behavior as of using sync adapters. This way, UbiShare will have the same

behavior independent on which synchronization technology is used. A solution was to

create two internal threads; P2PSyncServer and P2PSyncClient. These threads were

to mimic the behavior of sync adapters.

In order to encapsulate which communication technology is used, a generic P2PConnection

interface was proposed. This interface forces the functionality of the different commu-

nication technologies to be the same, hence the synchronization services would have the

same behavior independent of communication technology.

The P2PSyncManager class is the API of the peer-to-peer synchronization. This class

has the functionality to find and connect to other peers, and starts the appropriate

synchronization service when a group is formed. P2PSyncManager is the glue that holds

the different components of the peer-to-peer synchronization system together.

Chapter 5. Development 33

5.1.2 Resulting Architecture

The initial architecture proved to be a bit too minimalistic, and a few components was

added in order to get the system to work with minimal functionality. One of these

components was a connection listener – P2PConnectionListener. The synchroniza-

tion server needed some way of accepting incoming peer-to-peer connections from client

peers, and since the chosen synchronization strategy was Server Push, the client peers

also required a connection listener to accept connections from the server in order to

receive change notifications. A P2PConnectionListener is required at the initializa-

tion of both P2PSyncServer and P2PSyncClient. Again, in order to support different

communication technologies, the P2PConnectionListener needed to be generic and en-

capsulate the underlying technology. A class diagram of the classes related to network

communication are shown in Figure A.2, Appendix A.

Another problem that arose when using the initial architecture, was the lifetime of the

two threads P2PSyncServer and P2PSyncClient. If these threads are spawned in any of

the applications activities, they would be terminated when the operating system decided

that the activity was inactive and could be destroyed. In order to get the synchroniza-

tion to work with this architecture, the activity that spawned the threads needed to be

visible at all times. This meant that the device could not be used to anything other

than running the synchronization. Without the possibility to close the synchroniza-

tion application and use other applications to fill the database with data, there would

not be any data to synchronize. This defeated the purpose of the system completely.

The solution to the problem was to create two services; P2PSyncServerService and

P2PSyncClientService. These services would spawn the synchronization threads and

run in the background, outliving the applications user interface. The new architecture

is presented in Figure A.4.

P2PSyncManager handles the initiation of peer discovery and connection. These op-

erations were quite different for Wi-Fi Direct and Bluetooth, and having the imple-

mentation of both communication technologies cramped up in a single class resulted

in an unnecessary complex architecture. In the final architecture, the P2PSyncManager

class is made abstract, providing a clean interface independent on which communication

technology is used. WiFiDirectSyncManager and BluetoothSyncManager contain the

Chapter 5. Development 34

specific implementations of the different communication technologies. This is illustrated

in Figure A.1.

Since the system that was to be developed was only a proof-of-concept, and was to

contain only a subset of the functionality of a complete system, there was a focus on

making the architecture as modular as possible. This way, the proof-of-concept system

could easily be extended with new functionality and formed into a complete version. If

a future communication technology proved to be better suited than the current ones,

this technology could be added without affecting the behavior of system, due to the

modularity of the system. Class diagrams of the final architecture are presented in

Appendix A.

Figure 5.2: The components of the infrastructure-less synchronization system.

Figure 5.2 shows the interaction of the different components of the system. Application

built on top of the synchronization platform reads and writes data to the local database.

When the synchronization service detects that data in the local database has been

changed, it triggers a synchronization. The new or modified database entries are then

converted into entity objects. These entity objects contains properties that reflect the

columns in the database tables. Then, the synchronization service serializes the entity

objects into the JSON-format and sends them to another device, in our case the server

device. The server device then de-serializes the JSON-formatted objects back into entity

Chapter 5. Development 35

objects and inserts them into the local database. The application on the server device

can now read and manipulate the new changes.

5.2 Implementation

This section presents the implementation of the proof-of-concept system.

5.2.1 P2PSyncManager

The P2PSyncManager is the single point of entry of the peer-to-peer synchronization

system. All operations of the system, such as discovering and connecting to a peer,

are accessible through this class. These operations are somewhat different for Bluetooth

and Wi-Fi Direct, and having both implementations within the same class resulted in an

unnecessary complex implementation. The solution was to make P2PSyncManager ab-

stract, and separate the specific implementations of the two communication technologies

in two subclasses – BluetoothSyncManager and WiFiDirectSyncManager. In order to

encapsulate which of the two implementations were used, and to make a cleaner API, the

factory method pattern was used. This way, programmers can specify the behavior of

the P2PSyncManager through parameters, and do not need to understand the potentially

complex class hierarchy. The only way to obtain an instance of P2PSyncManager is to

call the getSyncManager(Context, IP2PChangeListener, ConnectionType) method

(Listing 5.1). To initialize a P2PSyncManager using Wi-Fi Direct, this method should

be called with the parameter ConnectionType.WIFI DIRECT.

Operations using the Bluetooth or Wi-Fi Direct framework are all asynchronous. An-

droid reports the result of these operations by broadcasting intents. These broadcasts

are received by BluetoothBroadcastReceiver and WiFiDirectBroadcastReceiver,

who notifies the P2PSyncManager of changes related to the communication technolo-

gies. In order to receive notifications of the different events of the peer-to-peer synchro-

nization system, such as the discovery of peers or the change of connection status, a

IP2PChangeListener needs to be supplied to the P2PSyncManager. This listener will

be used to report the results of the asynchronous operations.

Chapter 5. Development 36

1 public static P2PSyncManager getSyncManager (

2 Context context ,

3 IP2PChangeListener listener ,

4 ConnectionType connectionType) {

5 P2PSyncManager syncManager = null;

6

7 if (connectionType == ConnectionType . WIFI_DIRECT)

8 syncManager = new WiFiDirectSyncManager (context , listener);

9 else if (connectionType == ConnectionType . BLUETOOTH)

10 syncManager = new BluetoothSyncManager (context , listener);

11 else

12 throw new IllegalArgumentException (

13 " Unknown connection type: " + connectionType);

14

15 syncManager . initialize ();

16

17 return syncManager ;

18 }

Listing 5.1: P2PSyncManager – Factory Method Pattern

After a successful connection to another peer, the P2PSyncManager starts either the

P2PSyncServerService or the P2PSyncClientService. Which of the services is started

depends on the synchronization role of the peer. If the peer is the group owner in a Wi-

Fi Direct network or the master in a Bluetooth piconet, the P2PSyncServerService is

started. Otherwise, the peer is a client peer or a slave, hence the P2PSyncClientService

is started. Section 5.2.2 describes the implementation of these services in further de-

tail. The sequence of discovering and connecting to peers is presented in Figure A.5,

Appendix A.

5.2.2 Synchronization Services

The synchronization services are the main components of the system. These services

handles the actual data synchronization. P2PSyncServerService is run on the server

peer, and P2PSyncClientService is run on client peers. The services are local, which

means that they run in the same process alongside the rest of the system. Since they are

Chapter 5. Development 37

local, the interaction between the application and the services are greatly simplified. By

using the LocalServiceBinder, you can obtain the actual instance of the service, and

make direct calls to its methods. Both services implement the ISyncService interface.

This interface specifies methods to stop the services.

1 public void onReceive (Context context , Intent intent) {

2 String action = intent . getAction ();

3

4 if (WifiP2pManager . WIFI_P2P_STATE_CHANGED_ACTION

5 . equals (action)) {

6 int state = intent . getIntExtra (

7 WifiP2pManager . EXTRA_WIFI_STATE , -1);

8

9 if (state == WifiP2pManager . WIFI_P2P_STATE_DISABLED)

10 stopSyncService ();

11 } else if (WifiP2pManager . WIFI_P2P_CONNECTION_CHANGED_ACTION

12 . equals (action)) {

13 NetworkInfo networkInfo = (NetworkInfo)

14 intent . getParcelableExtra (

15 WifiP2pManager . EXTRA_NETWORK_INFO);

16

17 if (! networkInfo . isConnected ())

18 stopSyncService ();

19 }

20 }

Listing 5.2: WiFiDirectServiceBroadcastReceiver – When Wi-Fi Direct is turned

off or the connection to the synchronization group is lost, the synchronization service

is stopped.

In order to receive notifications of changes from the Bluetooth and Wi-Fi Direct frame-

work, the services had to implement a couple of broadcast receivers.

BluetoothServiceBroadcastReceiver and WiFiDirectServiceBroadcastReceiver are

used to receive broadcasts from the Bluetooth and Wi-Fi Direct framework, respectively.

They both are subclasses of ServiceBroadcastReceiver, which provides a clean ab-

straction of the two specific implementations. When a broadcast receiver gets notified

Chapter 5. Development 38

that the peer-to-peer network has dissolved, the synchronization service could be grace-

fully terminated (Listing 5.2). This way, there is no need for a manual termination when

losing the connection to the synchronization group.

The services was implemented to have the same behavior independent of which com-

munication technology is used. This was done by using generic classes, P2PConnection

and P2PConnectionListener, when performing network related operations. In order

to get this to work as intended, the P2PSyncManager has to initialize these generic

classes with specific implementations, depending on which communication technology is

used, and pass them as arguments when starting the synchronization services. When the

WiFiDirectSyncManager starts a synchronization service (e.g., P2PSyncClientService),

it initializes a WiFiDirectConnection and a WiFiDirectConnectionListener, and

passes these as arguments to the service (Listing 5.3). If it was the BluetoothSyncManager,

Bluetooth related implementations would be initialized. This way, the synchronization

services have the same behavior independent of communication technology.

1 Intent intent = new Intent (mContext , P2PSyncClientService .class);

2

3 intent . putExtra (

4 P2PSyncClientService . EXTRA_CONNECTION ,

5 new WiFiDirectConnection (groupOwnerAddress));

6 intent . putExtra (

7 P2PSyncClientService . EXTRA_LISTENER ,

8 new WiFiDirectConnectionListener (

9 P2PConstants . WIFI_DIRECT_CLIENT_PORT));

10

11 mContext . startService (intent);

Listing 5.3: Starting P2PSyncClientService using Wi-Fi Direct as communication

technology.

Both services are designed to be able to run multiple synchronization threads. This

way, the system could run synchronization threads using both Bluetooth and Wi-Fi

Direct simultaneously, which can be useful if the synchronization group is to support

both communication technologies. The synchronization threads are described in further

detail in the following sections.

Chapter 5. Development 39

5.2.2.1 P2PSyncServer

The P2PSyncServer is the thread running the synchronization server. This thread

accepts incoming connections from client peers and handles their notifications of change.

The handling of change notifications consists of applying the changes locally on the server

peer and pushing the notification to all the client peers, except the peer that originally

sent the notification. This sequence is presented in Figure A.6, Appendix A.

In order to push notifications to client peers, the synchronization server needs to have

a register of active client peers and how to connect to them. This is solved by requiring

the client peers to send a handshake request when connecting to the server for the first

time. When receiving a handshake request, the server can add the client peer to the

register, and bring it up to speed by sending a response that contains all the data that

has been synchronized so far. The sequence of the handshake request is presented in

Figure A.7.

1 private void handleHandshake (Request request) throws Exception {

2 mHandshakeLock .lock(LockType . HANDSHAKE);

3

4 Peer peer = null;

5 if ((peer = getPeer (request . getUniqueId ())) == null) {

6 peer = Peer. getPeer (request . getUniqueId (), mConnection);

7 addPeer (peer);

8 }

9 peer. setActive (true);

10

11 sendEntities (Entity . getAllEntities (

12 mContext . getContentResolver ()));

13

14 mHandshakeLock . unlock (LockType . HANDSHAKE);

15 }

Listing 5.4: When handling a handshake request, the HandshakeLock is used to ensure

that changes will not happen during the handshake.

When synchronizing data among several devices, there is a chance that a client peer

makes changes while the server is handling a handshake request. This would result in

Chapter 5. Development 40

the client peer, sending the handshake request, not receiving the changes made during

the period of the handshake. To avoid this scenario, a HandshakeLock was imple-

mented. The synchronization server uses this lock to ensure that the handling of change

notifications are postponed to after currently active handshake requests are handled,

or vice versa, that handshakes are handled after currently active change notifications

(Listing 5.4).

The peer running the synchronization server, the server peer, is not only accepting

connections and handling requests, it can also make changes to the data, just like the

client peers. To check if any changes have been made, the P2PSyncServer uses an

UpdatePoller. The UpdatePoller continuously checks the local database and sends

a notification when it detects any changes. When the P2PSyncServer receives this

notification it pushes the notification to all the available client peers.

5.2.2.2 P2PSyncClient

The P2PSyncClient is the thread that runs on the client peers. This thread sends local

changes to the server and listens for change notifications sent by other peers. When

connecting to the synchronization server for the first time, a handshake request is sent.

After a successful handshake request, the client peer has all the data that has been

synchronized before she joined the synchronization group, and can start manipulating

it. An UpdatePoller is started to keep track of local changes. When the P2PSyncClient

is notified of local changes, an update request, containing all the local changes, is sent

to the server (Listing 5.5).

In order to receive push notifications from the server, P2PSyncClinet has a separate

thread accepting connections from the server. This thread applies the received changes

to the local database.

When a client peer has been offline for a while and decides to rejoin the synchronization

group, there might be changes that have been made while the peer was offline. In order

to get these changes, the rejoining peer needs to send a new handshake request. This

lets the server know that the peer is active and ready to receive change notifications,

and all the data of the synchronization group is sent as a response.

Chapter 5. Development 41

1 private void sendEntities (

2 Collection <Entity > entities) throws IOException {

3 if (entities .size () > 0) {

4 Request request = new Request (

5 mUniqueId , RequestType . UPDATE);

6 request . setUpdatedEntities (entities);

7

8 try {

9 mServerConnection . connect ();

10 mServerConnection .send(request);

11 } finally {

12 mServerConnection .close ();

13 }

14 }

15 }

Listing 5.5: When local changes have been made, an update request containing the

changes is sent to the server.

Chapter 6

Evaluation

This chapter presents the evaluation of the proof-of-concept system.

6.1 Communication Technology

A series of tests were performed to evaluate the communication technology of the proof-

of-concept system. The test setup consisted of the following devices:

• HTC One X (Android 4.1.1)

• Samsung Galaxy Note (Android 4.0.4)

• ASUS Transformer Pad TF700T (Android 4.2.1)

Since the system is only a platform, a test application was needed to populate the

database with data to be synchronized. A simple chat application was developed for

this purpose. This chat application has the functionality to create communities, add

members and to post activities (messages) on community feeds. This data was then

synchronized among the test devices.

Using Wi-Fi Direct as communication technology was the main focus. Even though

the architecture of the system was designed to support any communication technology,

only Wi-Fi Direct was completely implemented into the system. The plan was to also

support Bluetooth in order to compare different communication technologies, but due

43

Chapter 6. Evaluation 44

to time constraints, Bluetooth support was not fully implemented. Hence, all the tests

was made using Wi-Fi Direct.

6.1.1 Discovery and Connection Initiation

The discovery and connection initiation test consisted of finding other devices and con-

necting to them. This process was benchmarked by measuring the time between discov-

ery initiation to a successful connection was made. As it turned out, this process was

quite awkward.

Consider the device discovery process. The Galaxy Note device has a dedicated Wi-Fi

Direct setting, making it possible to run Wi-Fi Direct separately from the standard

Wi-Fi. The HTC One X, however, did not have a separate Wi-Fi Direct setting, but

Wi-Fi Direct was enabled when the standard Wi-Fi was turned on. When discovery was

started on the Galaxy Note device, no devices was found, even though the HTC device

had Wi-Fi turned on. Only after initiating a device discovery on the HTC device, would

this device appear on the Galaxy Note. This is probably due to a setting suspending

Wi-Fi Direct on the HTC device until a call to the Wi-Fi Direct API is triggered, in

order to prevent battery drainage. At first, this did not seem like a problem, since it

was possible to discover the Galaxy Note device from the HTC device. The HTC device

could be used to both discover and connect to the Galaxy Note device, but the problems

did not end here.

While using the HTC device to discover and connect to the Galaxy Note, only a few

connection attempts succeeded. After an unsuccessful attempt, it seemed impossible to

connect without turning Wi-Fi Direct off and on again between attempts. The most

successful strategy was to use the Galaxy Note to connect to the HTC device, but this

required that the discovery process was initiated on the HTC device first in order to

make it discoverable by the Galaxy Note. Even this strategy had a disappointing ratio

of unsuccessful connection attempts. The duration of the discovery and connection

initiation process of successful attempts was approximately 10 seconds, which is within

the maximum of 30 seconds, specified by requirement FR10. However, it is a labor

intensive process to establish a connection between the devices, regardless of which of

the devices are used. It seems to be the immatureness of Wi-Fi Direct in mobile devices

that causes the problems.

Chapter 6. Evaluation 45

6.1.2 Range

In order to measure maximum range, a connection was established between two de-

vices and then the connected devices were gradually moved away from each other until

the connected was broken. Indoors, the connection was lost when the devices was ap-

proximately 20 meters apart, with several thick walls in between. This seemed like a

reasonable range, considering the thick walls, and satisfies the requirement of a minimum

range of 15 meters (FR5). However, the range outdoors was disappointing. After sev-

eral tests outdoors, the connection only seemed to sustain within a radius of 25 meters,

which is not far, considering that there were no obstructions in between the devices.

This would only cover an area of π ∗ (25m)2 ≈ 1950m2 (compared to the theoretical

coverage of 125000m2), and does not satisfy the requirement of a minimum range of 30

meters outdoors (FR5).

6.1.3 Data Transfer Rate

When testing the data transfer rate of the system, an application called Network Speed

was used to measure the data traffic over the Wi-Fi Direct connection. This application

monitors the network traffic in real time and presents the results in a chart. The data

transferred was images with a size of a couple of megabytes. Figure 6.1 presents the

results of the test runs.

Figure 6.1: The results of the data transfer rate testing.

Chapter 6. Evaluation 46

The transfer rate varied between each test run, and peaked at 24 Mbps. With an average

of approximately 20 Mbps, the requirement of a minimum transfer rate of 1 Mbps (FR6)

was satisfied.

6.1.4 Battery Lifetime

In order to test the battery lifetime of the system, the chat application was set up

to automatically send messages. To simulate a heavy load, each device would send a

message every second. The synchronization was to run until one of the devices powered

off due to lack of power. By using the timestamp of the last received message, the battery

lifetime could be calculated. In theory, this approach should have worked. However, it

did not. After about 20 minutes, the Wi-Fi Direct connection between the devices

was lost, and there is no automatic reconnect. This made it impossible to test the

battery lifetime of the system. The problem isn’t the synchronization system draining

the battery, it’s the fact that the devices could only maintain a Wi-Fi Direct connection

for about 20 minutes.

6.1.5 Scalability

Most of the tests were run with only two devices, but since there most likely would be

more than two people in a rescue crew, the system had to support a synchronization

group of more than two devices. A third device was brought in on the action. The system

proved to handle the three devices effortlessly. With Server Push as synchronization

strategy, only the server peer would be affected by the increase of client peers. Sudden

disconnects and frequent network partitioning did not cause any problems. However, if

the server peer was to disconnect, it would dissolve the whole synchronization group.

There is no server migration system present. The remaining client peers would then

have to redo the labor intensive process of establishing a connection among them.

Due to the lack of test devices, it was not possible to test with more than three de-

vices, hence it is unknown whether the system satisfies the requirement of supporting

data synchronization among 2-8 devices (FR4). However, the only difference between a

synchronization group of three and eight devices, is the amount of network traffic of the

Chapter 6. Evaluation 47

server peer. Presumably, a synchronization group of eight devices should work with only

the cost of shorter battery life of the server peer. This is, however, only speculation.

6.1.6 Summary

The implementation of Wi-Fi Direct in today’s mobile devices seems very immature.

With huge problems with both device discovery and connectivity, the communication

technology seems unusable in the scenario of providing a communication channel between

members of a rescue crew. For this system to be usable in such scenario, the connection

issues needs to be fixed. Wi-Fi Direct is, however, a fairly new technology, and it

is expected that its implementation in mobile devices will improve as the technology

becomes more popular.

6.2 Data Synchronization

The data synchronization of the system is not as straight forward to evaluate as with

communication technology. Key factors that needs to be addressed by the data syn-

chronization system are the mobility and reduced resources of the devices. The mobility

of the devices causes sudden disconnects and network partitioning, and with reduced

resources it is required that the system is lightweight and energy efficient.

Sudden disconnects and network partitioning was handled quite well, as long as the server

device stayed connected. If the server device lost the connection to the network, the

whole synchronization group was dissolved. As discovered while testing the scalability

of the system, a new server device was not appointed when the initial server device

disconnected from the network. Hence, in order for the still active devices to continue

synchronizing, the labor intensive process of establishing connection between the devices

would have to be performed again. However, network partitioning due to disconnect of

client devices did not affect the data synchronization among the still connected devices.

The proof-of-concept system developed in this thesis was to be an extension of UbiShare.

UbiShare already had a data storage system in place, hence the introduction of a new

storage system, such as Couchbase Mobile, would result in a complex restructuring of

the system, which is outside the scope of this thesis. However, Couchbase Mobile might

Chapter 6. Evaluation 48

be worth further investigation. Since Couchbase Mobile is a complete DBMS, it can be

used the same way as the standard SQLite database. In addition to this, Couchbase

Mobile has the functionality to connect to any other node running Couchbase, such

as another mobile device. This could be used to synchronize the databases by using

infrastructure-less wireless networks, in a peer-to-peer fashion.

Since the battery lifetime test failed, it is hard to say how energy efficient the data

synchronization system is. Considering the chosen synchronization strategy, server push,

the system should be less power demanding than by using client pull. This is due to

the fact that client pull would continue to request changes from the server device even

though no changes have been made. Resulting in unnecessary network traffic, and since

the radio antennas of the mobile devices are the most power consuming components

(except for the display) [21], it is safe to assume that the client pull approach would be

more resource demanding than server push. In terms of network traffic, the peer-to-peer

strategy using broadcasting/multicasting would be the best choice. This is arguably also

the best strategy in terms of battery lifetime, due to its low network usage. However,

this strategy requires a complex architecture to ensure reliable transmission of data.

Chapter 7

Conclusion and Further Work

The purpose of the proof-of-concept system developed in this thesis was to demonstrate

how data synchronization using infrastructure-less wireless networks can aid disaster

management in situations where internet infrastructure is inaccessible. Even though the

system only was tested by using a simple chat application, it showed great potential.

However, the today’s implementation of Wi-Fi Direct in mobile devices was disappoint-

ing. Using Wi-Fi Direct as communication technology in the proof-of-concept system

did suffice, but the implementation of the technology would need to be greatly improved

for this system to be usable in a real life scenario. With a range of only 25 meters and

an ability to only sustain a connection for approximately 20 minutes, the system would

perform far from satisfactory.

7.1 Further Work

The implementation of the proof-of-concept is minimal. In order to make the system

usable in real life scenarios, several features needs to be implemented.

Conflict resolution is such feature. If two devices makes changes to the same data

simultaneously, it would cause a conflict. The proof-of-concept system does not handle

such conflicts. A conflicting change would just overwrite any previously made changes.

Conflict resolution can be implemented by marking the data with revision numbers,

compare these when receiving a change and send a notification if the revision numbers

do not match. This does, however, require a more extensive dialog between the client

49

Chapter 7. Conclusion and Further Work 50

and the server. Currently, a client device does not expect a response when notifying the

server of changes. The server needs to send a response which the client could use to

determine whether the change notification was successful or a conflict was detected.

The requirement stating that the user should be able to choose which community is

to be synchronized (FR8), and the requirement that only members of this community

should be able to participate in the synchronization group (FR9), was not satisfied

with the proof-of-concept system. Currently, anyone in range can request to join the

synchronization group. This is a security issue, and would have to be solved before using

the system in real life scenarios.

Another improvement that can be made to the system is the handling of rejoining client

devices. If a device disconnects and reconnects to the synchronization group later on, it

currently needs to fetch all the data previously synchronized, even data it already has.

A much better solution would be to only fetch the changes made while the client was

offline. This could be done by storing the timestamp of the last change received by the

client server-side. When the client then reconnects to the synchronization group, the

server could use this timestamp to only send changes made while the client was offline.

Bluetooth was not fully implemented into the system due to time constraints. A nice

feature to have in a complete system would be to support both Wi-Fi Direct and Blue-

tooth. Even though Bluetooth offers slower transfer rates and a shorter range then Wi-Fi

Direct, its implementation in today’s mobile devices seem much more robust than the

implementation of Wi-Fi Direct. Bluetooth would also add support for legacy devices

and devices with stricter requirements concerning battery usage.

The robustness of the proof-of-concept system could also be improved. If an error occurs,

the system would forcefully terminate and only the logs can be used to determine what

went wrong. A complete implementation of the system would have to handle errors and

give better feedback to the user.

Appendix A

UML Diagrams

This appendix contains UML diagrams, such as class diagrams and database ER models.

Figure A.1: Class diagram of the org.societies.android.p2p package.

51

Appendix A. UML Diagrams 52

Figure A.2: Class diagram of the org.societies.android.p2p.net package.

Appendix A. UML Diagrams 53

Figure A.3: Class diagram of the org.societies.android.p2p.entity package.

Appendix A. UML Diagrams 54

Figure A.4: Class diagram of the org.societies.android.p2p.service package.

Appendix A. UML Diagrams 55

Figure A.5: Sequence diagram of the discovering and connecting to peers.

Appendix A. UML Diagrams 56

Figure A.6: Sequence diagram of pushing notifications.

Appendix A. UML Diagrams 57

Figure A.7: Sequence diagram of the handshake request.

Bibliography

[1] NTNU. Tdt4501 - computer science, specialization project. 2012. URL http:

//www.idi.ntnu.no/emner/tdt4501/english.php.

[2] Babak A. Farshchian. Project description - ubishare: Social group management

for android devices. 2012. URL http://ubicollab.org/projects/#UbiShare_

Social_Group_Management_for_Android_Devices.

[3] Kato Stølen. Ubishare: Social group management for android devices. 2012.

[4] Saul Greenberg, Nicolai Marquardt, Till Ballendat, Rob Diaz-Marino, and Miaosen

Wang. Proxemic interactions: the new ubicomp? interactions, 18(1):42–50, January

2011. ISSN 1072-5520. doi: 10.1145/1897239.1897250. URL http://doi.acm.org/

10.1145/1897239.1897250.

[5] Mark Weiser. The computer for the 21st century. 1991. URL http://wiki.daimi.

au.dk/pca/_files/weiser-orig.pdf.

[6] Sachin Agarwal, David Starobinski, and Ari Trachtenberg. On the scalability of

data synchronization protocols for pdas and mobile devices. Network, IEEE, 16(4):

22–28, 2002.

[7] David Ratner Gerald J Popeky and Peter Reiher. The ward model: A replication

architecture for mobile environments.

[8] Inc. Bluetooth SIG. A look at the basics of bluetooth wireless technology. 2013.

URL http://www.bluetooth.com/Pages/Basics.aspx.

[9] Wikipedia. Bluetooth. 2013. URL http://en.wikipedia.org/wiki/Bluetooth.

[10] Wikipedia. Bluetooth low energy. 2013. URL http://en.wikipedia.org/wiki/

Bluetooth_low_energy.

59

http://www.idi.ntnu.no/emner/tdt4501/english.php
http://www.idi.ntnu.no/emner/tdt4501/english.php
http://ubicollab.org/projects/#UbiShare_Social_Group_Management_for_Android_Devices
http://ubicollab.org/projects/#UbiShare_Social_Group_Management_for_Android_Devices
http://doi.acm.org/10.1145/1897239.1897250
http://doi.acm.org/10.1145/1897239.1897250
http://wiki.daimi.au.dk/pca/_files/weiser-orig.pdf
http://wiki.daimi.au.dk/pca/_files/weiser-orig.pdf
http://www.bluetooth.com/Pages/Basics.aspx
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Bluetooth_low_energy
http://en.wikipedia.org/wiki/Bluetooth_low_energy

Bibliography 60

[11] Wi-Fi Alliance. Wi-fi certified wi-fi directTM: Frequently asked questions.

2010. URL http://www.wi-fi.org/sites/default/files/downloads-public/

faq_20101021_Wi-Fi_Direct_FAQ.pdf.

[12] Wikipedia. Radio-frequency identification. 2013. URL http://en.wikipedia.

org/wiki/Radio-frequency_identification.

[13] Wikipedia. Near field communication. 2013. URL https://en.wikipedia.org/

wiki/Near_field_communication.

[14] David Murphy. 53 per cent of phones nfc-enabled by 2015, says

frost. 2011. URL http://mobilemarketingmagazine.com/content/

53-cent-phones-nfc-enabled-2015-says-frost.

[15] Wikipedia. Couchbase server. 2013. URL http://en.wikipedia.org/wiki/

Couchbase_Server.

[16] Wikipedia. Shared nothing architecture. 2013. URL http://en.wikipedia.org/

wiki/Shared-nothing_architecture.

[17] BitTorrent Inc. Bittorrent sync: Technology. 2012. URL http://labs.

bittorrent.com/experiments/sync/technology.html.

[18] Wikipedia. Jxta. 2013. URL http://en.wikipedia.org/wiki/JXTA.

[19] Jérôme Verstrynge. Practical jxta ii. 2010. URL http://www.scribd.com/doc/

47538921/Practical-JXTA-II.

[20] Dario Bottazzi, Antonio Corradi, and Rebecca Montanari. Enabling context-aware

group collaboration in manets. In Autonomous Decentralized Systems, 2005. ISADS

2005. Proceedings, pages 310–318. IEEE, 2005.

[21] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smart-

phone. 2010. URL http://static.usenix.org/event/usenix10/tech/full_

papers/Carroll.pdf.

http://www.wi-fi.org/sites/default/files/downloads-public/faq_20101021_Wi-Fi_Direct_FAQ.pdf
http://www.wi-fi.org/sites/default/files/downloads-public/faq_20101021_Wi-Fi_Direct_FAQ.pdf
http://en.wikipedia.org/wiki/Radio-frequency_identification
http://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Near_field_communication
https://en.wikipedia.org/wiki/Near_field_communication
http://mobilemarketingmagazine.com/content/53-cent-phones-nfc-enabled-2015-says-frost
http://mobilemarketingmagazine.com/content/53-cent-phones-nfc-enabled-2015-says-frost
http://en.wikipedia.org/wiki/Couchbase_Server
http://en.wikipedia.org/wiki/Couchbase_Server
http://en.wikipedia.org/wiki/Shared-nothing_architecture
http://en.wikipedia.org/wiki/Shared-nothing_architecture
http://labs.bittorrent.com/experiments/sync/technology.html
http://labs.bittorrent.com/experiments/sync/technology.html
http://en.wikipedia.org/wiki/JXTA
http://www.scribd.com/doc/47538921/Practical-JXTA-II
http://www.scribd.com/doc/47538921/Practical-JXTA-II
http://static.usenix.org/event/usenix10/tech/full_papers/Carroll.pdf
http://static.usenix.org/event/usenix10/tech/full_papers/Carroll.pdf

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Thesis Backgroud
	1.1.1 UbiShare
	Scenario: Crowd Management

	1.2 Problem Description
	Scenario: Earthquake
	Scenario: Transient Meeting

	1.3 Thesis Goal
	1.4 Thesis Structure
	Chapter 2: Problem Analysis
	Chapter 3: State of the Art
	Chapter 4: Proposed Solution
	Chapter 5: Development
	Chapter 6: Evaluation
	Chapter 7: Conclusions and Further Work

	2 Problem Analysis
	2.1 Requirements Specification
	2.2 Problem Breakdown
	2.3 Communication Technologies
	2.4 Data Synchronization
	2.4.1 Strategies
	2.4.1.1 Peer-to-Peer
	2.4.1.2 Client-Server
	Server Push
	Client Pull

	2.4.2 Synchronization among Mobile Devices

	3 State of the Art
	3.1 Communication Technologies
	3.1.1 Bluetooth
	3.1.2 Wi-Fi Direct
	3.1.3 Near Field Communication (NFC)

	3.2 Data Synchronization
	3.2.1 Couchbase Server
	3.2.2 BitTorrent Sync
	3.2.3 JXTA
	3.2.4 AGAPE
	Scenario: Firefighters using AGAPE

	3.2.5 Summary

	4 Proposed Solution
	5 Development
	5.1 System Architecture
	5.1.1 Approach
	5.1.2 Resulting Architecture

	5.2 Implementation
	5.2.1 P2PSyncManager
	5.2.2 Synchronization Services
	5.2.2.1 P2PSyncServer
	5.2.2.2 P2PSyncClient

	6 Evaluation
	6.1 Communication Technology
	6.1.1 Discovery and Connection Initiation
	6.1.2 Range
	6.1.3 Data Transfer Rate
	6.1.4 Battery Lifetime
	6.1.5 Scalability
	6.1.6 Summary

	6.2 Data Synchronization

	7 Conclusion and Further Work
	7.1 Further Work

	A UML Diagrams
	Bibliography

