
Continuously adapting continuous
Queries for Data Streams in Raincoat

Ken Oscar Grønnbeck
Steffen Rendahl Stenersen

Master of Science in Computer Science

Supervisor: Kjetil Nørvåg, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description

Continuation of the specialization project ’Raincoat: High-level Framework for Twitter Storm’,
where a framework was created to simplify the process of creating Storm topologies. The
thesis involves researching the state of the art within the query optimization field, and
explore how it can be used in a distributed stream processing environment such as
Raincoat.

The result of the thesis should be a optimizer that can optimize continuous SQL-inspired
queries, which takes into account the volatile property of data streams, the real-time con-
straints such a system have and utilizes the parallelism of the system.

Assignment given: 27. January 2013
Supervisor: Kjetil Nørvåg

i

ii

Abstract

In the last decade, the world wide web has grown from being a platform where users
passively viewed content, to an active platform where the users themselves contributed
with new content. With this came an explosion of available data that ventures could use to
gain market advantage. Not only did the did the amount of available data grow massively,
but also newly produced data started to arrive at immense speed. This spawned a new
field of specialized computational framework being able to handle the change in the data
paradigm. Now, one must be able to process the massive amount of incoming data within
a reasonable response time, as well as be able to handle its high velocity. This spurred
several ideas for processing fast data. One of these ideas uses SQL-like languages for
processing fast data, taking advantage of the years of work on query optimization theory.

In the fall of 2012, we proposed and implemented the prototype of Raincoat. Raincoat
was developed to ease developers without any experience with distributed programming,
providing a familiar interface which they could use to deploy stream filtering jobs to a Storm
cluster. As the prototype did not include any query optimization techniques it does not
meet the expected performance requirements. In this thesis we research optimization
techniques for scaling Raincoat. We explore optimization techniques from different fields
including traditional, distributed, parallel, streaming and adaptive query optimization.

We propose an adaptive query optimizer, inspired by existing adaptive query optimizers.
The focus of the optimizer lies in detecting when an optimization is needed and which
optimization techniques that should be applied. In this thesis we explore the possibility
of adaptively achieving better performance and scalability by carefully selecting the join
order, select order, merging of selection operators, and applying intra-operator parallelism
on operators.

Based on our results from experiments on the different implemented optimizers, we
demonstrate their applicability and their significant contribution in increasing the perfor-
mance of a Raincoat query.

iii

iv

Sammendrag

Tidlig i forrige tiår forandret world wide web seg fra å være en passiv innholdsplatform,
til å bli en platform der brukere selv bidrar til å generere data dynamisk. Ut i fra denne
forandringen begynte størrelsen på tilgjengelig data på webben å vokse ut av kontroll. Ikke
bare må man håndtere størrelsen på den nye tilgjengelig dataen, men også den enorme
hastigheten dataene ble tilgjengelig i. Ut i fra dette vokste det frem nye spesialtilpassede
rammeverk for å håndtere prosessering av data fra dette paradigmet. Flere tilnærminger
for å håndtere disse dataene ble foreslått. En av disse ideene var å bruke SQL-lignende
språk for behandling av rask data. Ved å basere seg på SQL kunne man ta nytte av mange
års forskning med spørreoptimaliserings-teori.

I prosjektoppgaven vår fra høsten 2012 foreslo vi en prototype av rammeverket Raincoat.
Vi utviklet Raincoat som et system for å gi utviklere med lite erfaring innen distribuert
programmering en enkel måte å prosessere rask data på. Dette ble realisert ved at
utviklere kan bruke det velkjente grensesnittet til SQL til å distribuere prosesseringsjobber
over en Storm kluster via Raincoat-rammeverket.

Siden prototypen ikke hadde støtte for optimalisering vil den ikke møte ytelseskravene
til en bruker av systemet. I denne masteroppgaven forsker vi på forskjellige optimaliser-
ingsteknikker for skalering av Raincoat-spørringer. Vi utforsker hvilke spørreoptimaliser-
ingsteknikker kan tas i bruk i optimaliseringen av Raincoat-spørringer fra fagområdene til
tradisjonelle, distribuerte, parallelle, strømmende og adaptive spørringer.

I denne masteroppgaven foreslår vi en adaptiv spørreoptimalisering som er inspirert
av eksisterende optimaliseringsteknikker fra samme fagfelt. Vår tilnærming fokuserer på
å både detektere om en optimalisering trengs og hvilken teknikk for optimalisering som
skal tas i bruk for å oppnå ønsket ytelse. Vi undersøker hvordan vi adaptivt kan få bedre
ytelse og skalerbarhet ved å med omhu velge hvilke teknikker for optimalisering man skal
ta i bruk.

Med utgangspunkt i resultatene fra eksperimenter utført med de forskjellige optimaliser-
ingsteknikkene, viser vi hver av teknikkenes anvendbarhet og bidrag til å bedre ytelsen for
en Raincoat-spørring.

v

vi

Acknowledgments

We would like to acknowledge the help provided by professor Kjetil Nørvåg at the Depart-
ment of Computer and Information Science at NTNU. Kjetil has guided the thesis in the
right direction, as well as given us valuable feedback and critiques of our work.

1

2

Contents

Contents 3

Abbreviations 7

1 Introduction 9
1.1 Motivation . 9
1.2 Goals and research questions . 10
1.3 Outline . 11

2 Background 13
2.1 Big data . 13

2.1.1 Volume, velocity & variety . 13
2.1.2 Streaming data . 14
2.1.3 Batch vs real-time . 14

2.2 Database systems . 14
2.2.1 Relational database management system 14
2.2.2 Data-stream management system 14
2.2.3 Distributed query systems . 15
2.2.4 Distributed data-stream management system 15

2.3 MapReduce . 15
2.3.1 Introduction . 16
2.3.2 Programming model . 16
2.3.3 Execution . 17

2.4 Windows . 18

3 State of the art 21
3.1 Traditional query optimizing . 22
3.2 Adaptive query optimizing . 22

3.2.1 Adaptive query optimization on traditional queries 22
3.2.2 Eddies . 24
3.2.3 Common sub-queries . 24

3.3 Distributed query optimization . 25
3.3.1 Parallel query execution . 25

3

CONTENTS CONTENTS

3.3.2 Distributed queries . 26
3.3.3 Parallel distributed query execution 28

3.4 Cardinality estimation . 28
3.4.1 Histograms . 28
3.4.2 Self-tuning histograms . 28
3.4.3 Sampling . 29
3.4.4 Reservoir sampling . 29

3.5 Query plan structure . 30
3.6 Join order plan generation . 30

4 Frameworks used 33
4.1 Storm . 33

4.1.1 Concepts . 34
4.1.2 Architecture . 36
4.1.3 Life cycle of a topology . 36
4.1.4 Configuring Storm topologies . 38

4.2 Raincoat . 41
4.2.1 Architecture . 41
4.2.2 Query plan structure . 41
4.2.3 Adaptive query optimization . 42
4.2.4 Language syntax . 42
4.2.5 Similar work . 44

5 Design decisions 45
5.1 Message semantics . 45
5.2 Operator algorithms . 46

5.2.1 Join algorithm . 46
5.2.2 Windows . 47

5.3 Network resources . 48
5.4 State transition . 48
5.5 Windows & memory . 50
5.6 Connecting topologies . 50

5.6.1 Merging sub-topologies . 51
5.6.2 Separate topologies . 51

5.7 Joining static data . 51

6 Query optimization 55
6.1 Challenges and problem space . 55

6.1.1 Optimizer requirements . 55
6.1.2 Challenges . 56
6.1.3 Problem space . 56

6.2 Cost model . 57
6.2.1 Order of operation . 58

4

CONTENTS CONTENTS

6.2.2 Distributed costs . 58
6.2.3 Parallelism . 58
6.2.4 Parameters . 58
6.2.5 Cost formula . 59

6.3 Cost of swapping topologies . 60
6.3.1 Moving state strategy . 60

6.4 When to optimize . 61
6.4.1 Query environment . 62
6.4.2 Optimization time . 62

6.5 Optimization strategies . 63
6.5.1 Pre-optimization . 63
6.5.2 Join order optimization . 64
6.5.3 Storm optimization . 64
6.5.4 Select order and merging of operators 65
6.5.5 Distributed optimization . 65

6.6 Adaptive optimization . 69

7 Performance evaluation 71
7.1 Testing approach . 71
7.2 Test environment . 72
7.3 Test problem description . 72
7.4 Test plan . 74

7.4.1 Log records . 75
7.4.2 Test variables . 75
7.4.3 Test cases . 75

7.5 Results and analysis . 78
7.5.1 Results of parallel optimizations for joins 78
7.5.2 Results of parallel optimizations for selects 85
7.5.3 Analyzing operator behavior over time 87
7.5.4 Time of optimization analysis . 101
7.5.5 Results of query tree optimization 105

7.6 Concluding Remarks . 109

8 Conclusion and further work 113
8.1 Conclusion . 113
8.2 Further work . 114

8.2.1 Query optimization . 114
8.2.2 Custom task scheduler . 115
8.2.3 Resources . 115
8.2.4 Expanding raincoat . 115

Appendices 115

5

CONTENTS CONTENTS

A Storm 117

Bibliography 121

6

Abbreviations

API Application Programming Interface
AQP Adaptive Query Processing
DDSMS Distributed Data-Stream Management System
DSMS Data-Stream Management System
EBNF Extended Backus-Naur Form
HDD Hard Disk Drive
IEC International Electrotechnical Commission
ISO International Organization for Standardization
JVM Java Virtual Machine
RDBMS Relational Database Management System
SPJ Select-Project-Join
SQL Structured Query Language
TPC Transaction Performance Council

7

CONTENTS CONTENTS

8

Chapter 1

Introduction

1.1 Motivation

In the last decade, the world wide web has grown from being a platform where users
passively viewed content, to an active platform where the users themselves contributed
with new content. One can argue that Web 2.0 changed the web from static content to
user-generated content. It introduced new web-based ventures where the product was
the users and their generating content. Examples of such ventures are social networking
sites, blogs, wikis, and video sharing sites. Needless to say, when millions of users having
access to the internet suddenly starts producing content, the amount of new data available
every day was immense in comparison to its predecessor.

The traditional relational database management systems are not designed to solve the
new application domains introduced by the large quantity of data available on the internet.
The exponential growth of data made available online has nurtured the need of finding
better data processing tools. Having the better data processing tools has become a crucial
factor for being a competitive web-based company.

New application domains means new fields of study. This has spurred the creation of
new frameworks carefully adapted to a certain application domain. Google pioneered and
standardized the idea of processing large amounts of data offline using MapReduce [16].
While the processing of fast streaming data has not yet been standardized and remains
an open problem. In the past few years application frameworks such as Storm, S4 [32],
STREAM [31], Aurora DB [9], Tribeca [40], and Gigascope [15] have been developed for
simplifying the stream data processing. Generally, stream data processing frameworks
can be divided into two main approaches the general and continuous query approach.
Where the latter is basically the idea of a query that has no explicit end, thus, will process
incoming stream data whenever data arrives. However, they all try to provide users with an
application for processing fast streaming data.

Query optimization for data processing using continuous queries has been a subject
of study for the last decade. Optimizing for a data stream environment is often very
different than it has been for traditional database management systems. Therefore many

9

1.2. GOALS AND RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

new approaches has been proposed, one of these approaches is called Adaptive Query
Processing (AQP). AQP is best summarized as a collection of techniques rather than a
single technique of its own.

A problem brought to light by AQP is the process of continuously re-optimize continuous
queries in a data stream environment, where the property of the data of a data stream
might change over time. AQP tries to provide techniques and answers for questions in the
domain of continuous query optimization. An example of such a question can be how often
(or when) a continuous query should be optimized.

In the fall of 2012, we proposed a system to make processing of large data easier.
Built upon Storm, a distributed and fault-tolerant real-time computation system, created
by Nathan Marz, Raincoat allows the user to submit continuous queries described using
a SQL inspired syntax which is translated into Storm topologies. These topologies are
then distributed and ran over Storm cluster. The framework had however no optimization
implemented, which makes it scale poorly with increasing data volumes. In this master
thesis, we continue on the Raincoat system, focusing on researching and implementing
query optimization techniques, better support for parallelization, and techniques for adaptive
optimization.

1.2 Goals and research questions

With this master thesis we want to contribute with a set of optimization techniques for
continuous select-project-join queries implemented upon Storm. We explores the possibility
of dynamically and continuously optimize running queries supporting both soft- and hard
real-time constraints.

The main goal is to have a system that can automatically optimize queries that are
being processed in Raincoat. There are two requirements the optimization tries to meet:

1. Queries submitted to the system specifies a rate at which data should be outputted
to the user. The system must be able to compute the answer within that time frame.

2. The system must be able to scale with increases in resources(nodes in the cluster)
to handle increases in the rate at which the data arrives.

In order to meet the requirements, we want to explore how we can apply adaptive query
optimization techniques to Raincoat. We want to answer the following questions:

RQ1 How can we determine the cost of a Storm topology, and how can we use that data
to optimize the topology?

RQ2 Which methods exists in the field of query optimization, and can they be translated
into our domain?

RQ3 When should the system perform optimization on the topology?

RQ4 How should we dedicate and fully utilize the resources we have available to the
topology?

10

CHAPTER 1. INTRODUCTION 1.3. OUTLINE

1.3 Outline

Chapter 2 covers the background knowledge required in the thesis, where we introduce the
concept of Big Data and the different kinds of database system that exists. We also give
an introduction to the MapReduce framework, and the concept of windows in streaming
data applications.

Chapter 3 gives an overview of the state of the art techniques in traditional query
optimization and adaptive query optimization, and answer the research question RQ2. Next
we introduce the frameworks that is our basis for our thesis, in Chapter 4.

While designing the optimizer, we had to make several design decisions, and these
the arguments behind them are presented in Chapter 5. This chapter partly answers the
research question RQ4. The next chapter, Chapter 6, covers the optimization techniques
we have applied in Raincoat, as well as the cost model for the topologies. It answers the
research questions RQ1 and RQ3, and partly RQ4.

The testing and analysis of the optimization techniques is covered in Chapter 7. Finally,
Chapter 8 concludes the master thesis and presents some notes on further work that was
not covered in this thesis.

11

1.3. OUTLINE CHAPTER 1. INTRODUCTION

12

Chapter 2

Background

This chapter introduces the background knowledge required in the thesis. In Section
2.1, the concept of big data is introduced. We look at both traditional relational database
systems methods and newer methods used in the field of distributed database systems in
Section 2.2. Further, in Section 2.3 we introduce MapReduce, a programming model and
framework for processing big data offline. Section 2.4 introduces the concepts of Windows.

2.1 Big data

Big data can be defined as data that exceeds the processing capacity of conventional
database systems [17]. It is data that is difficult to both store and access, therefore
specialized software is often used to be able to perform meaningful computations and
analysis on it. This section is taken from our Raincoat paper written in the fall of 2012 [22].

2.1.1 Volume, velocity & variety

Data can be characterized in terms of three variables, volume, velocity & variety [17].
Volume is the size of the data. The size of the data becomes a problem when a conventional
database system is unable to store all of the data coming in to the system. When this
happens one might look at other ways to store the data than the conventional database
systems or do some processing of the data in order to reduce it is size before storing it.
Velocity is the rate at which data flows into the system. The faster the data comes into
the system, the bigger the challenge it is to process and store it. Variety, which is that the
data often is presented on different forms and its often hard to structure it into relational
structures. If, for instance, a system gets data from multiple sources with different types
of data, it might not be a easy way to structure the data. And if the data is structured into
relational structures, it becomes a challenge to change those structures in the event that
the incoming data changes or you add another data source to your system.

13

2.2. DATABASE SYSTEMS CHAPTER 2. BACKGROUND

2.1.2 Streaming data

First of all we need to define what a data stream is. We use Golab and Özsu [20]
definition of data stream, that is, a data stream is an unbounded data-set that is produced
incrementally over time. Such data streams can come from a variety of sources. A few
examples are given by the same authors. An excerpt of those examples are internet traffic
analysis, senors networks, log mining of credit card transactions, and financial tickers and
online trading. These sources comes from different areas of expertise but have one thing
in common, a large stream of data. They can vary from a few gigabytes of data a day to
several terabytes. An introductory example of such a data stream is the Twitter Firehose
which streams millions of tweets on a daily basis, and at the time of writing the amount of
tweets exceeded over 250 millions pr day. 1

At any given time, a stream can be defined as a finite set N of points x1..., xn that can
only be read in the same order as they enter the system [33].

2.1.3 Batch vs real-time

We have defined batch-oriented data processing systems as systems that is not designed to
support applications with real-time constraints. The most known and popular programming
model and system that implements it is MapReduce and Apache Hadoop, respectively.
MapReduce is discussed further in 2.3. On the other hand, a real-time system is designed
to allow the users to get results from queries in near real-time on the most recent data [10].
Because the input stream can be indefinitely long, getting an exact answer on that data is
in-feasible, but in many cases the systems that uses a real-time system requires the data
right away [38]. This is discussed further in Section 2.2.

2.2 Database systems

2.2.1 Relational database management system

The Relational Database Management System (RDBMS) are the traditional database
management system that are built on the relational model [35]. The relational model was
introduced in 1970 by Codd [14], and is the basis for SQL [25]. Basically, for a system to
be a RDBMS it must at a minimum be able to present the data stored in the system to the
user as relations, and provide relational operators to manipulate the data.

2.2.2 Data-stream management system

A data stream is a real-time, continuous, ordered (by arrival date) sequence of items [21].
A Data-Stream Management System (DSMS) is a system to manage data streams, similar
to how RDBMS manages relational data.

1http://news.cnet.com/8301-1023_3-57541566-93/report-twitter-hits-half-a-
billion-tweets-a-day/

14

http://news.cnet.com/8301-1023_3-57541566-93/report-twitter-hits-half-a-billion-tweets-a-day/
http://news.cnet.com/8301-1023_3-57541566-93/report-twitter-hits-half-a-billion-tweets-a-day/

CHAPTER 2. BACKGROUND 2.3. MAPREDUCE

DSMS have grown in popularity due to the number of data sources are expanding and
the size of the data grows. Examples of data sources can be sensors, satellites and stock
feeds [1], or more recent streams like Twitter Firehose. Since streams may be of infinite
size, storing all data that is needed for computing an exact answer may not be possible,
so you can not treat the operations which are to be done on the data like you would in a
relational database system. Another property of data-streams are that queries applied on
them often come with some constraints to the response time. An example are systems that
monitor network logs for intrusion attempts. These systems needs to respond in real time
as the intrusion attempt is going on. Because of the mentioned properties, data-stream
management system can use approximation techniques to give an answer to the user in
the appropriate time frame.

Two examples of existing Data-Stream Management Systems are the Aurora [1] and
The Stanford Data Stream Management System (STREAM) [2].

2.2.3 Distributed query systems

As data grows, more processing power is needed in order to process the data in a
reasonable amount of time, and a database running on a single machine is not capable of
meeting the same requirements for response time as a cluster of machines. Distributed
database systems such as HBase 2 and batch processing tools like MapReduce, presented
in-depth in Section 2.3, proposes two different strategies for processing large quantity of
data where traditional database systems fails.

2.2.4 Distributed data-stream management system

The DSMS and distributed query systems solves two different problems. There are
situations where we need the distributed query processing power on streaming data.
Systems that are within this category are Yahoo! S4 [32], Walmarts Muppet [29] and Twitter
Storm. Storm is introduced in Section 4.1.

2.3 MapReduce

The big data paradigm have been around for a while, but after the introduction of MapRe-
duce in 2004, the field has gained more public attention, and the open source implementa-
tion of the MapReduce computational model, Hadoop, have made the task of processing
large data sets easily available to the public. This section gives a brief overview of the
MapReduce computational model and the architecture of the system, and introduces some
of the issues that needs to be addressed in such systems. This section is taken from the
Raincoat paper by Gronnbeck and Stenersen [22].

2Apache HBase: http://hbase.apache.org/

15

2.3. MAPREDUCE CHAPTER 2. BACKGROUND

2.3.1 Introduction

MapReduce is a programming model (and a framework) developed by Google for doing
computations on large amounts of data. The framework is basically a distributed execution
of the two functions map and reduce. These two functions are implemented by the user of
MapReduce. Both functions are inspired from methods in functional languages such as
Lisp.

The run-time system of MapReduce takes care of partitioning of input data, scheduling
the programs execution across a set of machines, handling machine failure, and manag-
ing the required inter-machine communication. By doing all this it allows programmers
without any experience in parallel or distributed computing to fully take advantage of such
computing.

It can be used to process a variety of data-types, and many different scenarios of
large scale computations. MapReduce provides an abstraction for hiding complexity in a
distributed system that process large amount of data, so that programmers without any
experience with distributed systems can solve such tasks.

2.3.2 Programming model

The input for the computation is key/value pair and it produces a set of key/value pair as
output. The user has to express the two functions: map and reduce.

The MapReduce library groups together all intermediate values associated with the
same intermediate key I and passes them to the Reduce function. For examples of the
map and reduce functions, see [16]. The functional representation of map and reduce are
listed below.

map (k1, v1) → list(k2,v2)
reduce (k2, list(v2)) → list(v2)

In words, the map function takes in a key-value pair, performs an implementation specific
action, and returns list of key-value pairs. The reduce function takes in list of values belong-
ing to an inputted key, and performs an implemented analysis and recombination of inputs,
and finally returns a new list values. Both the map and reduce functions implementations
is specified by an user in form of a MapReduce job.

Example. MapReduce can be used to find URL occurrences in a large data set. In
such a MapReduce job, the map tasks would usually use the URL as the key and set its
corresponding value to 1. Then the reduce job would receive a list of 1s belonging to a
particular URL, sum up that list, and the return the sum being the number of occurrences
of that URL.

Other examples of what MapReduce has been used for are listed below. For a better
description of those problems, see the paper by Dean and Ghemawat [16].

1. Distributed Grep

16

CHAPTER 2. BACKGROUND 2.3. MAPREDUCE

Figure 2.1: Overview of the execution of MapReduce. This figure is taken from the MapReduce
paper [16]

2. Count of URL Access Frequency

3. Reverse Web-Link graph

4. Term-Vector per Host

5. Inverted Index

6. Distributed Sort

2.3.3 Execution

One of the nodes in the cluster is appointed as the master node. The rest are workers
that get assigned work by the master. The input is split into a set of M splits, which can
be processed in parallel. These splits are run through the given map function. The output
of the map task is distributed to R reduce functions. The output of all map tasks are then
sorted before delivered to the map functions, in order to group all occurrences of the same
key together to speed up the reduce phase. Figure 2.1 gives a overview of the execution
phase.

17

2.4. WINDOWS CHAPTER 2. BACKGROUND

Master data structures

The master keeps track of some data structures in order to maintain the state of the
tasks. For each completed map task the master stores the location and the sizes of the R
intermediate file regions produce by the map tasks. The information is pushed incrementally
to workers that have in-progress reduce tasks. For each map task and reduce task, it
stores the state (idle, in-progress or completed), and the identity of the worker machine.

Fault tolerance

Fault tolerance for workers and masters are handled differently. The master pings workers
periodically and awaits for an answer. If a worker fails to answer a ping the master re-
schedules the tasks executed that the faulty worker was currently executing. By doing so
MapReduce can guarantee that all tasks has been executed at least once. The master will
ignore any duplicate results.

Handling master faults is far more difficult. The master does checkpointing and uses
that to restart if a fault occurs. Dean & Ghemawat argues that since there is only one
master such events are unlikely, and therefore in the presence of such events the current
implementation (2004) of MapReduce just aborts the computation process.

Semantics in the presence of failures

When the user-supplied map and reduce operators are deterministic functions of their
input values, MapReduce produces the same output as would have been produced by a
non-faulting sequential execution of the entire program.

MapReduce does atomic commits of each task. Each in-progress task writes its output
to private temporary files. A reduce task produces one local file, a map task produces R
files (locally). When a map task completes, the worker sends a message to the master
with the location of the local files (master ignores if it’s a duplicate). When a reduce task
completes, the reduce worker atomically renames its temporary output file to the final
output file.

The main mechanism for fault tolerance is re-execution. Meaning, it will re-execute
operations if a machine fails to deliver results, aka crashes.

2.4 Windows

In traditional database management systems, one has access to the whole data-set and is
able to calculate an exact answer to queries. When dealing with continuous data streams
one has a completely different basis. Since the data set is potentially in-feasible to store,
one can not do operations on all the data the system have seen. In order to get results
from queries, the concept of windows have been introduced. When a query is submitted a
window is defined to limit how much data should be used in each calculation.

18

CHAPTER 2. BACKGROUND 2.4. WINDOWS

There are two types of windows, sliding and tumbling [21]. In sliding windows, new
tuples that enter are added in front of the window, pushing all other tuples one position
back. When the window is full, the oldest tuple gets invalidated and are removed from the
window. In a tumbling window, the queries wait until the window is full before executing the
query. When the query is executing, the window is flushed and new tuples start entering
the window. This result in that each tuple is only processed once.

The biggest difference between the windows is the semantics they give us. In sliding
windows, tuples can be used in several calculations, resulting in intersections between the
output of the queries. On the other hand, tumbling windows will operate on independent
data sets, which results in independent query results. Both tumbling and sliding windows
has their uses, all depending on the results the user expects.

(a) The window’s state after 9 tuples

(b) The window’s state after 13 tuples

(c) The window’s state after 17 tuples

Figure 2.2: A visual representation of a tumbling window. The operation only executes over the
tuples in the window when it is full.

19

2.4. WINDOWS CHAPTER 2. BACKGROUND

(a) The window’s state after 9 tuples

(b) The window’s state after 13 tuples

(c) The window’s state after 17 tuples

Figure 2.3: A visual representation of a sliding window. The operation can execute over the tuples
at any time.

A window can be either time-based or count-based [21]. In a time-based sliding window,
tuples expires after a given time-frame. In a time-based tumbling window, all tuples expires
after a given time-frame. In time-based windows, there are no guarantee that there are
any tuples in the window (this can happen if the data stream doesn’t produce any tuples
for a while). In a count-based sliding window, the oldest tuple expires when the window is
full and a new tuple enters. In a count-based tumbling window, all tuples expires when the
window is full.

20

Chapter 3

State of the art

This chapter gives an overview of the field of query optimization. Relational query lan-
guages such as SQL are parsed into relational algebra trees when submitted to the system.
The relational algebra tree is a algebraic representation of the query, and consists of a set
of operators nodes, such as select, project and join. The ordering of these operators have
a huge impact on the time it takes to execute the query.

Consider the example query:

SELECT p.name, COUNT(*)
FROM product AS p, transaction AS t, productsOnSale AS ps
WHERE p.id = t.productId AND p.id = PS.id
GROUP BY p.id;

From it, we can derive (among others) the trees seen in Figure 3.1. If we say that only
10 of the products are on sale on any given time, and there is 100 000 transactions, then
join(p, ps) results in 10 tuples, and join(p, t) results in 100 000 tuples. Then, the operation
join(join(p, ps), t) will produce a lot less tuples than (join(t, p), ps).

product

⋈

⋈

transaction

productOnSale

(a) Join order 1

product

⋈

⋈

transaction

productOnSale

(b) Join order 2

Figure 3.1: Example of two possible join orders for a SQL query.

21

3.1. TRADITIONAL QUERY OPTIMIZING CHAPTER 3. STATE OF THE ART

We introduce traditional query optimizing techniques in Section 3.1. Next, we introduce
the concept of adaptive query processing in Section 3.2, both for traditional queries and
for data streams. Further in Section 3.3, we look at techniques for optimizing distributed
queries. In Section 3.4 we present different methods to estimate the different cardinalities
for query optimizers. Query plans can be classified into two different structures, left-deep
and bushy, Section 3.5 covers the difference between them. Finally, in Section 3.6 we
present different ways to generate the query plans.

3.1 Traditional query optimizing

In traditional databases, queries are optimized before execution. The RDBMS usually have
a system catalog, which contains a description of the database, such as tables, value
ranges, indexes etc. It is based on this information the query optimizer decides how to
optimize the given query. The goal of the traditional query optimizer is to find a low cost
plan for executing a query [3]. The main variables that impacts the cost is disk usage and
CPU processing time. So the optimizer tries to minimize the expected number of pages
that needs to be fetched from secondary storage into the buffer and it tries to minimize
how many tuple comparisons the query executor needs to perform. System R is a RDBMS
which several newer RDBMS are based on. Its optimizer uses a cost model to estimate
the cost of a partial or complete plan, and it estimates the size of the data outputted from
each operator in the plan [12]. The cost model relies on formulas to estimate the selectivity
of predicates, and formulas to estimate the CPU usage and I/O cost for each operator.
Based on the cost model, the optimizer can choose the best plan for the query. In order to
generate plans, it uses dynamic programming where it enumerated over all possible plans
in a bottom-up fashion.

The system table only stores the sizes of the base relations. The challenge is to
estimate the cardinality of selectivity for the various parts of the query. The problem of
estimating cardinality is well-studied, and there exists various methods to do so [5]. Some
of these methods are presented in Section 3.4.

3.2 Adaptive query optimizing

3.2.1 Adaptive query optimization on traditional queries

Traditional query optimization optimizes the queries before execution. Even though there
has been a lot of research on pre-optimization of queries, the query optimizers can produce
a sub-optimal result [27]. Adaptive query optimization tries to solve this problem by
detecting sub-optimal query plans during query execution and improve the optimization.

The reason traditional query optimizers can produce sub-optimal results is because the
query plans are generated based on estimates. These estimates are stored in the system
catalogs, and might be inaccurate and not up-to-date. In addition, it does not take into

22

CHAPTER 3. STATE OF THE ART 3.2. ADAPTIVE QUERY OPTIMIZING

account parameters that only are available at run-time, such as resource availability and
system load [27].

Kabra and DeWitt [27] proposes a algorithm for doing adaptive query optimization, and
it can be summarized in five steps:

1. (Annotated) Query execution plans. The pre-run-time query execution plan cre-
ated by the optimizer does not store the information about the estimates used to
create the query plan. By storing the information, it is easier to decide whether
a runtime-generated plan is better than the current plan, as you can compare the
estimates used against the actual data distribution.

2. Runtime collection of statistics. In order to support adaptive query processing, we
must collect statistics from the running query. The collection is done by appending
another node in the relational algebra tree which is responsible for the collection. The
location of the node determines which part of the three can be optimized. Only the
nodes that are processed after the statistics collection can be optimized.

3. Dynamic resource re-allocation. DBMS allocates memory to operators based on
the estimated tuple cardinality coming into each operator. We can use the results
from the runtime collection of statistics to better allocate memory based on the actual
cardinality.

4. Query plan modification. There are two ways for the algorithm to change the
running query plan. The simplest way is to discard the already processed results,
and re-execute everything with a new query plan. This, however, is inefficient as it
discards work that has been done. The other solution is to only re-optimize the parts
of the query that has not yet started. The algorithm suspends the execution, and
resumes the processing with a new plan that is optimized. One important question
is when the re-optimization should be done. Kabra and DeWitt [27] suggest the
following two heuristics to determine this:

Topt,estimated

Tcur−plan,improved
> θ1 (3.1)

The heuristic presented in formula 3.1 determines whether it profitable to use time
to search for an optimized plan. Topt,estimated is the estimated time taken to re-
parse and re-optimize the query(based on the number of operators in the query).
Tcur−plan,improved is the estimate for executing the current plan based on collected
runtime statistics. It is only profitable if 3.1 does not hold, i.e, the time required to
optimize is significantly smaller than the time required to complete the current plan.
Where θ1 = 0.05 or a similar value.

Tcur−plan,improved − Tcur−plan,optimizer

Tcur−plan,optimizer
> θ2 (3.2)

23

3.2. ADAPTIVE QUERY OPTIMIZING CHAPTER 3. STATE OF THE ART

The heuristic presented in formula 3.2 checks if the current plan is sub-optimal. It is
done by comparing the original cost based on estimates of the current plan against
the improved cost based on the collected statistics. If the difference is bigger than
θ2 = 0.2, we should re-optimize.

5. Keeping overheads low. The algorithm takes care not to collect statistics in situ-
ations where the probability that the estimates are wrong is low. The probability is
based on the types of operators that are present in the query, so it for instance differs
between non-equi-joins and equi-joins. The details can be found in [27].

3.2.2 Eddies

An Eddy is an operator that is used to continuously reorder operators in a query plan as
it runs, and was introduced by Avnur and Hellerstein [4]. In a data stream environment
where the characteristics of the data are unstable and hard to predict, a query plan that is
optimal at one point might be sub-optimal right after. The concept of eddies was created
on the assumption that data changes, and in order to efficiently compute the query one
needs to consider which route the tuples should take on a tuple basis instead of using the
same route for all the tuples.

The eddy operator serves as a link between the input data and the operators. Tuples
that enter eddies are associated with a tuple descriptor containing a vector of Ready bits
and Done bits [4]. Eddies only route tuples to operators whose ready bit are on, and when
all done bits are turned on, the tuple is sent to the output.

Moments of symmetry The Eddy operator assumes that the operators used in the query
can be reordered without any consequences. Algorithms that are asymmetric, such as
nested-loop joins can only be reordered when it reaches its synchronization barrier - that is,
when it has reached the end of a scheduling dependency where the ordering of the tuples
won’t affect the result. Dependencies are present in operators that keeps state, such as
join operators and aggregators.

Choosing the route The choice of route is affected by their consumption rate and
production rate. The production rate is determined by cost and selectivity. The operators
with high efficiency (high consumption rate and low production rate) gets tuples early in
order to reduce the number of tuples and avoid bottlenecks. Eddies can be implemented
with a learning algorithm such as Lottery Scheduling[42].

3.2.3 Common sub-queries

A idea of finding common sub-queries among a set of queries are presented by Roy et al.
[36]. This strategy basically tries to reduce redundant computation time by reusing results
of a sub-query that two or more queries has in common. They address the performance

24

CHAPTER 3. STATE OF THE ART 3.3. DISTRIBUTED QUERY OPTIMIZATION

S

max min

⋈

(a) Inter operator parallelism

S

σ σ

⋈

(b) Intra operator parallelism

S

⋈ ⋈

T P

σ

(c) Inter-query parallelism

Figure 3.2: Parallelism approaches. The figure illustrates how the different parallelism approaches
can be applied in a query execution plan setting. Inter-operator parallelism: max and min are two
independent query operators which can be run in parallel and later be joined together to form the
end result. Intra-operator parallelism: A query containing a cloned selection operator, where better
performance is achieved by partitioning data between each operator. Inter-query parallelism: Two
independent queries that can be executed simultaneously.

issues of earlier exhaustive and inefficient algorithms by introducing a cost based algorithm
based heuristics.

3.3 Distributed query optimization

3.3.1 Parallel query execution

In the literature of parallel query execution there are three main approaches for achieving
parallelism in a multi-query system. The first two are introduced by Ganguly et al. [19]. First
we have Inter-operator parallelism which is basically two or more independent operators (or
sub-expressions) that can be executed in parallel. The second is Intra-operator parallelism
which is when an operator or a sub-query can be cloned and run in parallel. The third
is introduced by Chen et al. [13] and is termed Inter-query parallelism, it is achieved by
executing several queries simultaneously within a multiprocessor system.

For Intra-operator parallelism one can apply horizontal partitioning [8] on the source
data. The idea behind horizontal partitioning is to split the source data and execute each
subset of the source simultaneously, and it can be explained as follows. Let S be the
source of tuples, and let S be split into n subsets Si where i = {1, 2, ..., n}. Then execute
each subset of S in a sub-query plan Pi, where Si is executed on Pi. However, it may also
execute each subset of S or in i cloned query plans in parallel [26].

25

3.3. DISTRIBUTED QUERY OPTIMIZATION CHAPTER 3. STATE OF THE ART

In addition, one can route tuples through a query plan optimized for a particular tuple
classification to obtain an overall better query execution performance. More formally, let
C = {C1, C2, ..., Cm} be the different tuple classification of S, P = {P1, P2, ..., Pm}, and let Pk
be the current running plan. If for any classification Cj there exists an optimal query plan Pi
for tuples in Cj for 0 ≤ i, j ≤ m then there exists a horizontal partitioned query plan that
performs more optimal than Pk.

Another approach proposed is to run two or more different query plans in parallel, and
at some point choose the best query plan based on collected statistics. By measuring their
performance we can decide on the plan that is more optimal. However, such an approach
may not be cost-efficient if the cost of running several non-optimal query is more expensive
than pre- or progressively computing the same query plan.

Also, Ganguly et al. [19] mentions that data dependencies between operators and
resource contention as two deterrents for parallelism. The former deterrent brings to light
the issue of operators dependent upon the output data of a former operator. That is, an
operator Oj that is dependent upon another operator Oi must wait for Oi’s output before it
can perform data processing on its own. This mainly limits the Inter-operator parallelism
principle. The latter addresses the issue when two operators are running in parallel and
are dependent upon the same resource. In such a scenario the two operators can create a
bottleneck by competing for the same resource.

The concept of avoiding low utility plans on query optimization was introduced by [43].
If a query plan cannot fully utilize the parallel computing system it is by definition a low
utility plan. In other words, if a query plan uses unique keys to partition data among the
workers of the parallel computing system. Then a query plan that has low utility if it has
fewer unique keys than parallel workers. The idea can be formally presented as follows.
Let T1, T2, T3 and T4 be three tables in the following query:

((T1 1 T2) 1 T3) 1 T4 (3.3)

where T3 and T4 joins on some key k for some query plan. Let the cardinality of k be |k| = n,
and the current available parallel workers to be m. Then a query plan has low utility if and
only if n < m.

3.3.2 Distributed queries

In a centralized database systems, optimization focuses mainly on the ordering of operators,
such as joins and filters. When dealing with distributed queries over data streams, one
needs to consider multiple other factors that does not concern centralized database
systems. In this section we will discuss these factors.

In a distributed database systems several queries might be running simultaneously. The
placement of nodes in the network, the physical link between them will affect the overall
cost of the query, as physical distance between nodes have a major influence on the cost.
Example scenarios where different optimization techniques can be used is suggested by
Seshadri et al. [37]:

26

CHAPTER 3. STATE OF THE ART 3.3. DISTRIBUTED QUERY OPTIMIZATION

Unique operators

Optimal plans needs to take into account both the query plan and the actual network
placement of nodes. In order to decrease network communication, data-decreasing
operators should be placed near the source, and data-increasing operators should be near
the sinks. By putting data-decreasing operators near the source, we reduce the amount of
data that needs to be processed later on in the tree, which leads to better performance.

Operator re-use

Several queries might use equal sub-operations. By reusing these operations between
the queries the response time might go down. One has to consider plans which might
be sub-optimal in a single-query environment but not in a multi-query environment as the
end result might be better by re-using the operator. It is worth to mention that by re-using
operators we might have to project more data, as the queries sharing the operator can
project different attributes. Projecting more data will increase the network cost. One major
factor to whether or not re-use is better is physical node placement. Let c be a cluster
with n = 5 nodes. Let n1 and n2 share the same sub-query. If the nodes in the cluster are
separated over significant distances, at opposite ends of the network, then re-using the
operator might lead to a higher cost, as the cost of sending those tuples over the network
topology is expensive.

Operator duplication

Operator Re-use might not be efficient in all situation. The nodes in the distributed system
might be separated over long physical distances, and one needs to weight up the gain from
re-using the operator vs the network cost, to figure out whether it’s cheaper to re-use or
duplicate the operator.

Delayed filtering

Consider a case where two queries share the same join operator, and one unique filter
each, and the filters are different, and their selectivity rates are low (e.g 1%). It might
seem like doing filtering early is optimal as it will reduce the amount of data sent to the join
operators. But if you apply different filters you will not be able to reuse the join operator. In
a situation like this, one needs to consider the benefits vs the cost of the operators.

When optimizing distributed queries over data streams, we need to consider the
combination of execution plans and actual placement of operators, sources and sinks [37].
One needs to find the optimum over two conflicting objective functions, minimize the costs
and minimize response time between sources and sinks. Where the reduction of cost can
be achieved by reducing each cost component individually, and the reduction of response
time comes from trying to do as many things in parallel as possible.

27

3.4. CARDINALITY ESTIMATION CHAPTER 3. STATE OF THE ART

3.3.3 Parallel distributed query execution

By combining techniques used in both parallel and distributed query optimization one can
achieve a better performance by executing a query using the parallel query execution
technique over multiple nodes in a distributed system. Since the system is distributed
one also has to take into account the techniques presented above for distributed query
execution.

The main challenge is to decide which technique, or combination of techniques that will
yield the best results.

3.4 Cardinality estimation

There exists several ways to estimate the cardinality of queries, and the problem has been
widely researched. When deciding on a query plan for a given query, the estimates of
the cardinality for the different parts of the query are used as a base, and the ordering
of operations in a relational algebra tree will have a huge impact on the response time.
As described in the introduction to query optimization, the order of operations affect the
cardinality outputted from each operator, which in turn affect the response time. See Figure
3.1.

3.4.1 Histograms

Histograms are used in traditional databases for approximating the frequency distribution
of values in the attributes of relations, which is used to estimate the size of the query
result [24]. For each attribute, the histogram stores the number of tuples in that relation
that correlates to it, different attributes are stored into different subsets (buckets). Building
and maintaining histograms is expensive. You will have to do several read operations on
existing data to get satisfying results, and the computations might equalize the gain you
get from using histograms.

3.4.2 Self-tuning histograms

Ioannidis and Poosala [24] suggests self-tuning Histograms. The histograms are build not
by examining the data in advance of the execution, but by using feedback information about
the execution of the queries on the database. This way, you avoid extra read operations on
the data, as you do the execution and histogram-update in the stream operation. When a
query uses the histogram, it compares the estimated selectivity with the actual selectivity,
and refine the histogram based on the results [24]. This way, you negate the initial cost
associated with building traditional histograms. Self-tuning histograms needs to know the
required number of buckets, the number of tuples in the relation and the minimum and
maximum values of the attribute. However, knowing the minimum and maximum values

28

CHAPTER 3. STATE OF THE ART 3.4. CARDINALITY ESTIMATION

are not critical, and can be estimated. The histogram is updated for every selection based
on the estimation error.

Refining bucket frequencies Each bucket contains the frequency of the range of at-
tributes it contains. At every histogram update, the bucket frequencies must be refined.
To do this, we calculate the estimation error from the estimated selectivity and the actual
selectivity. The main problem is distributing the ’blame’ between the buckets that were
involved in the calculation, that is, which attributes contributed the most to the estimation
error. Ioannidis and Poosala [24] uses a heuristic where buckets with higher frequencies
contribute more to the estimation error than buckets with lower frequencies. The amount
of refinement the bucket need is based on the fraction of the bucket that overlaps the
selection, the frequency and a damping factor to avoid adjusting to much.

f rac = min(rangehigh, high(bi))−max(rangelow, low(bi)) +
1

high(bi)
− low(bi) + 1

(3.4)

f req(bi) = max(f req(bi) +
damp · esterr · f rac · f req(bi)

est
, 0) (3.5)

We refer the interested reader to read the paper [24] for an explanation of the algorithms.

Restructuring buckets Having buckets with large frequency variations will result in a
poor approximation, because the average frequency will be a poor approximation of the
actual attributes. To solve this, buckets with large variations are split into several buckets.
In order to keep a constant number of buckets, we apply a mechanism to merge other
buckets together. Ioannidis and Poosala [24] purposes to restructure buckets every R
selections. To select which buckets to merge, we set a merge threshold for the frequencies,
and merge those buckets who are under the threshold. Likewise, to select which buckets
to split, we set a split threshold.

3.4.3 Sampling

Random sampling is another method used to estimate cardinality. The advantages of
sampling is that it needs to store less data compared to histograms. This is especially
important in when the total data size is unknown, such as with data streams [41]. Another
advantage of sampling compared to histograms is that it takes less time to compute the
estimates as the data sizes are smaller. Sampling maintains a specified size k tuples that
have arrived in the past, where the sample acts as a summary of the whole data set.

3.4.4 Reservoir sampling

Reservoir sampling [41] have traditionally been used in cases where insertions and updates
of the sample sets are needed, as this procedure is too expensive to do in the normal

29

3.5. QUERY PLAN STRUCTURE CHAPTER 3. STATE OF THE ART

sampling methods. Reservoir sampling is not however suitable for deletions as one must
do a quite expensive scan over the data set [6]. It works by putting the first k tuples that are
processed into a ’reservoir’, which is basically a collection of tuples. Afterwards, tuples can
be marked as candidates for replacing the existing reservoir tuples. The candidates are
selected in a random fashion. One way to select tuples for the reservoir is to give each a
k/(t + 1) chance of being selected, where t is the number of tuples processed so far. The
tuple to be replaced is also selected on random.

The previously explained method does not handle expired tuples. In applications that
execute queries based on tuples stored in windows, the traditional reservoir method does
not work. Babcock and Chaudhuri [5] suggests keeping a reservoir sample of k tuples, and
when new tuples arrives it causes an existing older element to expire. The downside of
this method is that we end up with a periodic tuple list with only never tuples, as all the old
ones have expired.

3.5 Query plan structure

Queries are represented as relational algebra trees. These trees can have different internal
structures. The structures are mainly left-deep or bushy. Left-deep query plans are the
subset of all possible query plans where the inner relation of each join is a base relation, i.e
the inner relation is a leaf node [39]. Bushy query plans are all possible permutations of the
base relations. The main difference between the plans are the search space. Let n be the
number of relations in the query. The number of possible plans in the left-deep query plan
space is n!. For the bushy plan space, it is (2(n−1)

n−1)(n− 1)!, which is substantially larger. In
traditional relational databases, left-deep queries are the preferred choice [43]. It simplifies
the pipeline process, since at least one data-source is a base table, and even though the
search space is smaller, good solutions are likely to exists.

For distributed systems, bushy plans might prove more useful. In addition to having
a larger search space, and is therefore likely to find more optimal plans than in in the
left-deep space, it also lets you exploit the parallelism of distributed systems. One of the
downside in traditional systems is that you have to materialize more tuples, which can be a
benefit in distributed systems as more operations can be ran concurrently. Franklin et al.
[18] shows that bushy plans gain more performance with multiple nodes in a cluster, versus
the left-deep plans.

3.6 Join order plan generation

Join operations are very expensive operations, and are often a target for query optimizers.
As join operators generate data, the order of the operators will influence how much data
must be processed in total. See Figure 3.1 for an example. Due to the size of the available
search space, (see Section 3.5), several methods have been proposed which both focus

30

CHAPTER 3. STATE OF THE ART 3.6. JOIN ORDER PLAN GENERATION

S

⋈

T

U

⋈ V

⋈

(a) Left-deep tree

S

⋈

T U

⋈

V

⋈

(b) Bushy tree

S

⋈

T

⋈

U

⋈

(c) Directed-acyclic graph

Figure 3.3: Figure shows the different data structures that a query can be represented as.

on limiting the search space as much as possible while still finding near optimal plans.
Steinbrunn et al. [39] divides the methods in 4 categories:

• Deterministic Algorithms. Step by step algorithms that uses exhaustive search or
applies a heuristic to the search to determine the order. An example is the greedy
search algorithm that orders the join operators after their selection rate.

• Randomized Algorithms. The solution space is defined as a set of moves, where
moves is a edge between two solutions. The algorithm does random walks along the
edges according to some rules, terminating after a given time limit or to some other
rule, where the goal is to reach a global or local maxima.

• Genetic Algorithms. Random search algorithms that uses strategies from biological
evolution in the search.

• Hybrid Algorithms. Which is a mixture between deterministic algorithms and ran-
domized algorithms.

We refer the interested reader to the paper by Steinbrunn et al. [39].

31

3.6. JOIN ORDER PLAN GENERATION CHAPTER 3. STATE OF THE ART

32

Chapter 4

Frameworks used

This chapter introduces the frameworks we build our research on. Basically, there are two
frameworks that we use in our thesis. Storm, which is a open source distributed real-time
data processing system, presented in Section 4.1, and raincoat, which is a framework built
around storm to ease the use of it, presented in Section 4.2.

4.1 Storm

Storm is a free and open source distributed real-time data processing system 1 created by
Nathan Marz.

Being a distributed real-time data processing system makes Storm the logical counter
part to MapReduce. Basically, that means while MapReduce processes data collected,
and then computes results offline, Storm continuously collects and processes data without
going offline. To be able to process data fast Storm has to do computations in-memory
thus effectively sacrificing the computed results accuracy. That means Storm is forced to
compute approximations relative to MapReduce who will provide a developer with the exact
result.

While MapReduce provides developers with tools computing exact answers distributively
offline, Storm provides developers with an abstraction from the real-time data processing
paradigm. So without worrying about how data is passed between workers, the distribution
of workers on nodes, and setting up the system architecture a developer is able to easily
start a processing job fast on a large amount of data in no time. Storm as a framework
tries to deliver the following six key properties to developers,

1. extremely broad set of use cases

2. scalability

3. guarantees no data loss,

1http://storm-project.net/

33

4.1. STORM CHAPTER 4. FRAMEWORKS USED

4. extremely robust

5. fault-tolerant

6. programming language agnostic

In this section we will present the fundamental mechanics behind Storm including, but not
limited to, its architecture, key concepts and parallelism.

4.1.1 Concepts

This section introduces several important concepts that is used in Storm, which we refer to
later in the report.

Topologies

A topology is analogous to a MapReduce job, except that a topology does not finish.
Topologies defines the logic of the application. A topology gets its data from streams, and
the data get routed from Spouts to Bolts through the topology. In Storm, one can use
topologies as input to other topologies in order to create more sophisticated applications
and re-use existing logic.

Streams & tuples

Storm topologies operates on tuples. A tuple is a defined set of key-value pairs. A stream
is an unbounded sequence of tuples.

Stream groupings

Storm uses stream groupings to define how that stream should be partitioned among the
bolt’s tasks. One can implement custom stream groupings in Storm, but there are seven
built-in groupings. We list the five most relevant groupings:

Shuffle grouping Randomly partitions tuples across bolt tasks. This is used when you
want a uniform distribution of tuples across the tasks, without any requirements of
which tuple goes where.

Fields grouping Partitioned based on the fields specified in the grouping. Can be used
when you want to aggregate over tuples, e.g. a word count.

All grouping Tuples are replicated across all tasks. It is simply a broadcast.

Global grouping All tuples goes to a single one of the bolt’s tasks, specifically it goes to
the task with the lowest id.

Direct grouping The producer of the tuple decides which task should receive the tuple.

34

CHAPTER 4. FRAMEWORKS USED 4.1. STORM

None grouping A undefined distribution of tuples. Currently implemented as a shuffle
grouping.

Local or shuffle grouping If the target bolt has one or more tasks in the same worker
process, tuples will be shuffled to just those in-process tasks. If not, it behaves like a
normal shuffle grouping.

Bolts & spouts

Topologies are made out of two components, bolts and spouts. A spout is the stream
source in a topology. Spouts can read data from external sources, or simply read data from
existing topologies. Spouts are able to emit several streams. Spouts can be configured to
be either reliable or unreliable, see section 4.1.4. Reliable spouts will re-transmit tuples
who fail to be processed through the topology. Bolts are the processing units in Storm, and
they can do work such as filtering, aggregations, joins etc. Depending on the complexity of
the work, you can divide the logic into several bolts. As with spouts, bolts are also able to
emit several streams.

Tasks

A task in Storm is an instance of a spout or bolt that performs the data processing. All tasks
gets assigned a ID that can be used to locate the task. Spouts and bolts in a topology gets
executed as several tasks across a cluster.

Workers

Workers are JVMs (Java virtual machine) which executes a subset of all the tasks for the
topology, so each node in the cluster can have multiple workers. Workers spawn executor
threads that can run one or more tasks for the same component. The number of executors
for a component must be less than or equal to the number of tasks 2.

Tick tuples

Tick tuples are special tuples that Storm can emit in order to introduce a sense of time in
the topology. One can configure the tick tuples to be emitted at a certain interval. Then,
inside each bolt we can check if an incoming tuple is a tick tuple. See the following code
snippet:

1 Config conf = new Config();
2 conf.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, 60);
3

4 if(input.getSourceStreamId().equals("__tick")) {
5 System.out.println("Got a tick tuple here!");
6 }

2https://groups.google.com/forum/?fromgroups=#!topic/storm-user/VvXCG-TqMx0

35

4.1. STORM CHAPTER 4. FRAMEWORKS USED

4.1.2 Architecture

The main architecture of Storm can be divided into three parts, Nimbus, ZooKeeper and
Supervisors. In this section we present the aforementioned parts of Storm.

Nimbus

The first part of the architecture is Nimbus, which is the master node. Its responsibilities
are listed below:

• Receiving topology submissions.

• Distributing code/configs around the cluster.

• Launch a coordinator sub-process(and supervise it) for each topology.

• Monitor for failures.

ZooKeeper

Storm uses a ZooKeeper cluster in order to coordinate the Storm cluster. ZooKeeper is a
centralized service for maintaining configuration information, naming, providing distributed
synchronization, and providing group services3. ZooKeeper stores the cluster configuration
and state, such as topology, supervisor and task information, heartbeats from supervisors
and tasks, task statistics. Supervisors and workers get their configurations from ZooKeeper.

Supervisors

The last main part of Storm is the Supervisors. Each worker runs a daemon called
"Supervisor" which is responsible for listening for work from Nimbus and start and stop
worker processes based on the messages it receives. New workers are launched when
a task is assigned to an empty slot. The supervisor downloads the topology jar files and
configuration files from Nimbus and stores them locally.

4.1.3 Life cycle of a topology

This subsection describes the whole process of running a Storm topology on a cluster, and
what is done in the background. Specific details about the cost is presented in Chapter 6.

To run Storm topologies on a cluster, you must create a jar file out of your source code,
with a main method which uses the StormSubmitter.submitTopology() method.

First, you run the command storm jar topology-jar-path class-name from a commando
line. This command runs the main method of the jar file, as well as set the storm.jar
environment variable for use by StormSubmitter. 1. StormSubmitter uploads the jar if it is

3http://zookeeper.apache.org/

36

CHAPTER 4. FRAMEWORKS USED 4.1. STORM

not uploaded before. 2. StormSubmitter calls submitTopology which submits the topology
to Nimbus, along with a serialized version of the topology configuration.

Next, Nimbus sets up the static state for the topology, which includes:

• Copying the jar and config file on the local file system because it is to big for
ZooKeeper.

• Writes task-to-component mapping into zookeeper.

• Creates a zookeeper directory for heartbeats.

Nimbus then assigns tasks to machines. An assignment contains:

• The path to the jar and config files in nimbus.

• A mapping from the task id to the worker that task should be running on. A worker is
identified by a node/port pair.

• A map from node id to hostname. Used for communication within the cluster.

• A mapping of task launch timestamps, used by Nimbus to monitor topologies.

Next, nimbus runs start-storm which writes data into zookeeper so that the cluster knows
that the topology is active.

Each supervisor runs two functions in the background:

• Synchronize-supervisor downloads code from Nimbus for topologies assigned to the
machine for which it does not have the code yet. It also writes a map from port to
localAssignment. LocalAssignment contains topology id and a list of task ids for that
worker.

• The Sync-processes, which read data that synchronize-supervisor wrote and com-
pares that to what is actually running on the machine. Then starts/stops worker
processes as necessary to synchronize.

Next, worker processes start up, and the following steps are executed:

• The worker connects to other workers and starts a thread to monitor for changes.

• The worker monitors whether a topology is active or not and stores the result. It is
used by tasks to determine whether or not to call nextTuple on the spouts.

• Lastly, the worker launches the actual tasks as threads within it.

Nimbus is also monitoring the topology when it is running. In the event of a reassignment
to the topology, the supervisors will trigger its synchronize method and start/stop workers.

When the storm kill topology-name -w wait-time-secs command is run, Nimbus changes
the status of the topology to killed and schedules the remove event to run in the specified
-wait-time secs seconds. Removal of a topology includes clearing assignment information
in zookeeper and removing the jars/configs from the machines.

37

4.1. STORM CHAPTER 4. FRAMEWORKS USED

word count

Bolt split

Bolt count

s1

s2

c1

c2

c3

c4

se1

se2

Figure 4.1: The word count topology with initial parallelism of two spouts, two split bolts and four
count bolts.

4.1.4 Configuring Storm topologies

Below is an example of a topology in Storm. The implementation of the components
RandomSentenceSpout, SplitSentence, WordCount are emitted. For a full implementation
of the example code, see appendix A. TopologyBuilder is used for specifying a topology for
Storm to execute. The given example is a simple implementation of a word count program.
The spout "sentences" uses a input source who emits random sentences to the topology.
The bolt "split" reads those sentences and splits them into words, and finally the count-bolt
counts each occurrence of each word. It is worth to mention that fields Grouping is used
on the count-bolt in order to route the same words to the same tasks in the cluster to obtain
the correct result. See Figure 4.1 for an illustration of the topology.

1 TopologyBuilder builder = new TopologyBuilder();
2

3 builder.setSpout("sentences", new RandomSentenceSpout(), 2);
4 builder.setBolt("split", new SplitSentence(), 2)
5 .shuffleGrouping("sentences");
6 builder.setBolt("count", new WordCount(), 4)
7 .fieldsGrouping("split", new Fields("word"));

Configuring parallelism

The setSpout and setBolt methods have set the parallelismHint for their respective spouts
and bolts to 2, 2 and 4. The parallelismHint sets the initial number of executors for
the component. If nothing else is defined, the number of tasks will be equal to the
parallelismHint, but you can set the number of tasks on a component with the setNumTasks-
method.

38

CHAPTER 4. FRAMEWORKS USED 4.1. STORM

1 builder.setBolt("split", new SplitSentence(), 2).setNumTasks(6);

By calling setNumTasks on the bolt, we change the maximum number of tasks for that
bolt to 6. The number of executors will still be initially 2, but we are able to scale the number
of executors up and down on the fly, to a maximum of 6 executors. To specify the number of
workers, we can change the Config.TOPOLOGY_WORKERS field which sets how many
workers a topology gets allocated. For the example above, we get a initial parallelism
of 2 + 2 + 4 = 8 executors. Changing the parallelism must be done by the user, Storm
does not scale parallelism automatically. The way it is achieved is by issuing a re-balance
command to Nimbus, the master node. Re-balance will deactivate the specified topology
for a specified timeout, and then change the parallelism and redistribute the workers evenly
around the cluster. The re-balance command is on the following format:

1 storm rebalance [topology-name [-w wait-time-secs]
2 [-n new-num-workers] [-e component=parallelism]*]

Note that ZooKeeper does not support dynamic changes of the cluster size. That
means that if you want to add new nodes to your cluster, they must already be defined in
your storm.zookeeper.servers configuration when Nimbus is started. When you run up a
supervisor on a node in the cluster, it will register itself with ZooKeeper. In order to utilize
the node, we need to run the rebalance command, and Nimbus will take the new supervisor
into account and redistribute the work. See the appendix for a more detailed explanation
on how to configure a cluster.

Reliable vs unreliable topologies

Storm provides methods to guaranteeing that all tuples are processed in the topology. By
default it will drop tuples that fails, which gives you at-most-once semantics guarantee for
tuples. When you want a reliable topology, one needs to implement anchoring of tuples
in the components in the topology. Anchoring gives you at-least-once semantics, which
means that it guarantees that tuples are processed at least once through the topology.
Failed tuples will be replayed until they are fully processed through the topology, but they
might get processed several times. It is worth to mention that tracking tuples doubles the
number of messages transferred in the system. In addition to anchoring, your input source
needs to be reliable, that is, it must be able to replay messages in the event that they
are lost in the Storm environment (e.g the nodes running the Spout crashes). A tuple is
replayed when it fails to be processed through the topology before a timeout occurs. To
specify that a topology should be reliable one anchors the input tuple along when you emit
the output, and one must ack the tuple when the processing of it is complete.

1 _collector.emit(old_tuple, new Values(word));
2 _collector.ack(old_tuple);

Storm uses special acker tasks that track tuples through the topology. The number of
acker tasks can be tuned in CONFIG.TOPOLOGY_ACKERS. The timeout is defaulted to
30 seconds, and is controlled by the property
CONFIG.TOPOLOGY_MESSAGE_TIMEOUT_SECS.

39

4.1. STORM CHAPTER 4. FRAMEWORKS USED

Spout

Bolt A

Bolt B Bolt C

Figure 4.2: A topology that routes tuples in a cyclic fashion.

Transactional topologies

Transactional topologies lets you achieve exactly-once semantics in Storm. Storm achieves
this by sending tuples batched up into the topology. So if a batch fails, that batch get
replayed. The replay is possible by giving each batch its own unique id. Storms API
handles the management of the state, it coordinates the transactions, it detects faults and
handles the replay.

Cyclic topologies

If you have a topology where tuples are routed back to a component it already have visited
in the topology graph, you have a cyclic topology, see Section 4.2. Cyclic topologies can
cause performance issues. Storm has a maximum number of tuples that can be pending in
the system (processing have started but not yet finished), and when it reaches that number
no new tuples are sent into the system, which will lower the throughput. In addition, if the
topology have operations that are waiting for more tuples, it can result in a deadlock. In
order to prevent this, you can increase the maximum number of tuples that can be pending
on a spout task, by setting the Config.TOPOLOGY_MAX_SPOUT_PENDING property. As
this property applies to individual tasks, you can also increase the number of spout tasks
in the topology. TOPOLOGY_MAX_SPOUT_PENDING only applies to reliable spouts.

Pluggable scheduler

Storm comes with a feature that lets you write your own task schedulers. The task scheduler
decides how tasks get scheduled in the cluster. For instance, you are able to make sure
a particular task runs on a particular machine, which can be very helpful if you want to

40

CHAPTER 4. FRAMEWORKS USED 4.2. RAINCOAT

reduce network cost. Also, it lets you separate CPU heavy bolts so they don’t run on the
same machine. With the scheduler, you can also prioritize topologies, to make sure a
topology always get scheduled first. Using a custom scheduler gives you a lot of freedom,
but also a lot of responsibility, as you have to make sure the tasks are scheduled in a way
that utilizes the resources you have available.

4.2 Raincoat

Raincoat is a declarative scalable real-time data processing framework based on Storm
[22]. Raincoat is designed to be scalable and modifiable, and to process high velocity
streaming data using multiple distributed machines. It uses a custom SQL-like language for
defining continuous queries for expressing real-time stream processing jobs declaratively.
This stream processing jobs is executed on an already running Storm cluster, and does
automatically utilize the parallelism made available by Storm.

In the Raincoat framework developers are provided with interfaces for easily extending
the already existing functionality. Functionality such as adding new tuple sources, extension
of the query language, and query optimization were made customizable.

Optimization was a main area of focus in [22]. Being able to execute long running
continuous queries on a optimal query plan is essential for both performance and scalability
of the framework. Both compile-time and mid-query optimization was brought into focus
using some examples, but no explicit optimization solution was proposed.

4.2.1 Architecture

Raincoat is a framework built upon the Storm framework. Figure 4.3 gives an overview
of the architecture. Raincoat comes with an API that is controlled by a client. The client
submits queries to the API. Raincoat converts the queries to relational algebra, then to
Storm topologies. Figure 4.4 gives an overview of how Raincoat is structured. The query
butler receives the queries from the client, sends them to the parser, and passes the result
to the topology controller. The topology builder builds the topology based on the input
received and the available statistics. The statistics is used for optimizing the topology, and
is collected by the query butler and stored in the Meta Storage module.

4.2.2 Query plan structure

A query plan is structured as a Storm topology, that mean that any running Storm cluster
can execute a query expressed by Raincoats SQL. The processing plan modeled as a
Storm topologies generated by Raincoat is structured as a directed acyclic graph (DAG).
It is up to the optimizer to choose how a query plan is organized. It is here an optimizer
makes the decision if two operators/sub-expressions are independent and should be ran in
parallel, or not.

41

4.2. RAINCOAT CHAPTER 4. FRAMEWORKS USED

Figure 4.3: Shows the overall structure of the system, the arrows denotes a directed communication
path. It shows the intended communication paths.

4.2.3 Adaptive query optimization

An idea of adaptive query optimization in Raincoat was proposed in [22]. Basically, the
idea was to poll statistics from each operator of a running query, and periodically check
the statistics if a topology was structured sub-optimally. If the currently running topology
was sub-optimal it would stop the current one and replace that one with a new and optimal
topology. However, a step by step description of how to adaptive migrate from one query
plan to another was not in the scope of that project, but Raincoat is designed such that an
optimizer easily can be implemented into the system.

4.2.4 Language syntax

Below is the formal syntax of the language used in Raincoat. It is presented on the Ex-
tended Backus-Naur form (EBNF)4.

command = <create> | <select>

create =
CREATE STREAM|STATIC <name>
WITH FIELDS <name> (, <field_name>)*

TYPE <name>
[OPTIONS <name>=<name> (, <name>=<name>)*]

4ISO/IEC 14977

42

CHAPTER 4. FRAMEWORKS USED 4.2. RAINCOAT

Figure 4.4: Shows the main components of the Raincoat API. The purpose of each component is
explained below.

;

select =
SELECT <select_expr> (, <select_expr>)*
FROM <name> (, <name>)*
[WHERE <where_condition> (, <where_condition>)*]
EVERY <number> SECONDS|TUPLES
SIZE <number>
;

select_expr = (name | AGGREGATOR)

where_condition:
<condition> (AND|OR condition)*

condition =
<name>["<"|">"|"!"]=<name>

name:
(a-z, A-Z, ’, ", .,*, ’_’, ’-’)*

43

4.2. RAINCOAT CHAPTER 4. FRAMEWORKS USED

number:
(0-9)*

AGGREGATOR:
SUM(field_name) |
AVERAGE(field_name) |
COUNT(field_name) |
MIN(field_name) |
MAX(field_name)

As you can see from the query syntax, Raincoat only supports select-project-join queries
its the current state.

4.2.5 Similar work

Similar approaches has been researched on implementing SQL for MapReduce [11] [30],
and Pig [34] was commercial SQL approach for Apache Hadoop. These approaches
has shown that the SQL-like approach for data processing system is preferred by many
developers [34]. Thus, Raincoats tries to meet a need of being able to express real-time
stream data processing jobs declaratively.

44

Chapter 5

Design decisions

In this chapter we discuss several challenges that we had to address, and we give the
reasoning of architectural design choices and implementation choices we have made such
as message semantics (Section 5.1), and operator implementation choice (Section 5.2),
resource usage (Section 5.3), how to preserve state in operators between optimizations
(Section 5.4), and memory usage (Section 5.5). We also present discussion on topics that
are not implemented in the current version of Raincoat, but are relevant for further work,
such as how to connect topologies together to create more complex queries (Section 5.6)
and how to join static data with streaming data (Section 5.7).

5.1 Message semantics

In Section 4.1 we give an introduction to how at-least, at-most, and exactly-once message
semantics are implemented in Storm topologies. In this section we will look into the pros
and cons of supporting the different message semantics for the framework in the context of
optimization.

The main consideration when choosing message semantics is the trade-off between
performance and accuracy. Using at-most once messaging semantics one can process
data at full speed without any regards for accuracy at all. Using such semantics we can
calculate the drop rate of an operator but not determine if any tuples were lost, and thus
there is no way one can recomputing state in the event of failure.

At-least once messaging semantics trades some performance for accuracy. In this
messaging semantic tuples are marked as done through acking and anchoring. This
process increases the network usage therefore sacrificing some performance for accuracy,
as each tuple produces an extra message whenever a tuple is acked. However, the system
gains knowledge of what tuples has been completed and is therefore able to replay tuples
that failed so they can be fully processed through the topology. If order matters tuples can
be replayed from some snapshot, and if not, single tuples can be replayed at any point in
time, assuming that the input queue used is re-playable.

Exactly once messaging semantics will increase the complexity of the query migration

45

5.2. OPERATOR ALGORITHMS CHAPTER 5. DESIGN DECISIONS

process, since state has to be fully transferred from one topology to another before the
newly started topology can commence processing data. This state includes both the state
of each tuple in the topology, as well as inner state of every operator inside the topology.
Typically operators such as aggregators and joins contains inner state.

For at-least once messaging semantics, we also need to transfer some state, but one
does not have to worry if a tuple has been fully processed, thus it reduces the migration
complexity. In this case, a tuple that is cached in a aggregating operator might be calculated
several times.

Many applications of real-time processing of big data requires immediate answers,
and can tolerate approximations rather than exact answers. Basically, we want to support
applications that requires that all data gets processed, such as motoring applications, but
can tolerate some errors (duplicated calculation of tuples). With the argument given above
we choose to support at-least once semantics for our framework.

5.2 Operator algorithms

An important subject of query processing is the choice of operator algorithms. There
exists several algorithms and we need to make sure that the choice of algorithms does not
introduce any bottlenecks.

5.2.1 Join algorithm

The queries defined by Raincoat are contained inside defined windows, and the data that
will be joined is the data currently saved in the window. The general joining of streaming
tuples can be modeled as follows:

1. A new tuple enters stream A. 2. Scan stream Bs window for matching tuples,
propagate the result. 3. Insert the new value into stream As window, and invalidate expired
tuples.

Choosing the right operator for the right situation can give significant performance
improvement [28]. However, doing so is an entirely different scope than the one we have in
this thesis. We choose to use the one-way hash join operator. The optimizer we propose
can be extended to support operator optimization, but it is listed as further work. We refer
the interested reader to [28]. The hash algorithm works as follows:

46

CHAPTER 5. DESIGN DECISIONS 5.2. OPERATOR ALGORITHMS

Algorithm 1 One-way Hash Join

for each tuple aεA do
put a in bucket k = h(a.A)

end for
for each tuple bεB do

for each tuple a in bucket k = h(b.B) do
if a.A = b.B then

output a 1 b
end if

end for
end for
invalidateExpiredTuples(A)

5.2.2 Windows

In Section 2.4 we introduce the concept of windows in the context of streaming data. For
raincoat we have implemented two different time-based sliding window. One implementation
of the window uses a list as basis, and while the other is using a hashing structure. The
former is used for operators that iterate over data, such as aggregators. The latter is an
optimized version for operators using hashes, and is used in our implementation of hash
joins.

The window divides its tuples into n buckets, where n = window_size/tick_rate. Let t1
be the time a arbitrary tick tuple enters the system, and t2 be the time the next tick tuple
after t1 enters. All tuples that enters the window between t1 and t2 are put into the same
bucket. p is a pointer that points at the oldest bucket. At every tick tuple, the operator
holding the window iterates over all tuples in all buckets, and emits the result. It then
invalidates the bucket p points at, removing all those tuples from the window.

Algorithm 2 Time-based Sliding Window

n← window_size
tick_rate

buckets← createBuckets(n)
p← 0
procedure EXECUTE(tuple)

if isTick(tuple) then
executeOperation(buckets)
invalidateExpiredTuples(buckets[p])
p← (p + 1) mod n

else
buckets[p].addTuple(tuple)

end if
end procedure

47

5.3. NETWORK RESOURCES CHAPTER 5. DESIGN DECISIONS

5.3 Network resources

When running Storm in a cluster, each machine needs to start a daemon called supervisor
in order to take part of the cluster, and the machines must be registered in the Storm
configuration file. Because the way Storm is designed, once the Supervisor is started, one
can not configure whether to use the machine or not, it will be part of the Storm cluster.
Because of this, including the cost of using the machines is omitted from the optimization
phase as Storm will use all the Supervisors that is running. That is, we will always use all
the resources available.

This design choice is based on the work that has to be done in order to start up
supervisors and register new machines runtime. In order to control the cluster size, one
would need to first gain access to the machines (via ssh) in order to start up the supervisor.
Given that this machine is already registered in the distributed configuration file, all that is
left is to restart the topology in order to make use of the new resources. In the case where
the machine is not registered, one needs to distribute a new configuration file across the
cluster with the ip-address of the new resources added to it. The process of doing this
automatically is out of scope of this thesis and is marked as further work.

5.4 State transition

In the context of transferring state between topologies the topic of maintaining accuracy
needs to be discussed. First, in Storm it is recommended that one transfer state by
replaying tuples into the topology from some specified point in time. Other transition
techniques must be implemented outside of the functionality provided by the framework.

Having accurate results or not is a trade-off decision made by developers. Therefore
the optimizer must take a developers decision on accuracy into account before applying
any optimizations on a running query. To determine if state transition is suitable or not we
need to look into the different query scenarios. In some scenarios state transitioning might
be so hard or time consuming to be beneficial. These are scenarios where topologies has
to be restarted with resubmitting all tuples passed through a topology.

Replaying tuples Strategies for partial restarting queries in a distributed database man-
agement system is presented by Hauglid and Nørvåg [23]. They introduce an interesting
way of thinking about the restart of relational algebra nodes. They categorize operators
into two categories: stateless and stateful operators, and propose two different techniques
for resuming an operator without losing state.

In a stateless operator, e.g. selection and projection, each tuple is processed indepen-
dently. Basically, after a restart simply continue processing the remaining tuples after the
last processed tuple. That is, let ti, tj be the i, j-th tuple in a tuple table, where 0 < i, j < n.
If the last processed tuple is tj for some stateless operator, then the stateless operator will
continue processing from tj+1.

48

CHAPTER 5. DESIGN DECISIONS 5.4. STATE TRANSITION

However, the result of stateful operators, such as join and aggregators, will be affected
by the tuples held in-memory. Since all tuples are dependent upon each other in such
an operator. They argue that for such operators all tuples inside the state of a failing or
restarted operator has to be sent to the new operator. On restart Hauglid and Nørvåg [23]
proposes to avoid re-sending tuples already sent by the operator. They do so by sending
the new operator a number determining how many tuples that was received, and thus the
new operator discards as many tuples.

In the context of Storm, continue processing in stateless operators after a fail or restart
is straightforward, and is compatible with the replaying tuples scheme recommended by
Storm. On the other hand, we have the stateful operators, these techniques cannot directly
be implemented in our system. Considering state transition for stateful operators in the
context of distributed stream data processing, we found a few different cases where simply
replaying tuples would not be cost efficient for replicating state.

One such case occurs when pipelined and windowless aggregators such as maximum,
minimum, summing, and finding average is used. Such aggregating operators is not
performed as a batch process, but eagerly calculates and outputs results for each tuple
arrived. Therefore, trying to recompute state by replaying tuples into a new topology is not
cost efficient.

Moving state An approach is to apply the Moving State Strategy proposed by Zhu et al.
[44]. This strategy transfer state by connecting and transferring operators state of an old
query plan to its equivalent operator in the new query plan. However, transferring state
between operators of different topologies are not supported in Storm, and implementing
such functionality is out of scope of this thesis.

Saving state Another strategy is to save state somewhere outside of the run-time memory.
Either persistently on the same node, on the same cluster or on another distributed node,
where the new topology can read a serialized version of the state from disk to memory.

Choosing a strategy The three different state persisting strategies is basically a trade-
off between performance and availability. Where we can use the first method to gain
performance and moving to the last by sacrificing performance for availability. Note that
a strategy for how often state should be persisted is also an issue. Persisting state too
often will reduce the performance of a node either by accessing disk or using networking
resources. Where the latter can result in lower overall performance since the system is a
distributed system dependent upon scarce network resources.

Also, when choosing a state transition strategy one must take the type of query into
consideration. In our case the query types continuous and ad-hoc queries must use
different state transition strategies. For continuous queries one can argue that some
aggregator operators do not need state transition. Operators such as average, max, min
may over time converge to the same value as before over time. Also, if data is stored

49

5.5. WINDOWS & MEMORY CHAPTER 5. DESIGN DECISIONS

persistently divergent results can later be corrected by post-processing jobs. A strategy
has to carefully consider the options available and choose the most cost efficient one.

In the case of ad-hoc queries the cardinality of data is finite and known. So ad-hoc
queries will terminate after data sent from a static resource has been fully transmitted.
In such a scenario performing run-time optimization might not be a good strategy, since
the accuracy will be greatly reduced if a query is not running for a longer period of time.
Operators such as the pipelined and windowless aggregating operators are examples of
very state dependent operators. If such operators lose their state in the middle of a short
running query, the accuracy will be reduced greatly. So the only state transition strategy
that will make sense for ad-hoc queries will be to replay all previous tuples. As discussed
above this might not be cost-efficient, thus, performing optimization that requires state
transition does not seem to be beneficial.

With the information given above we choose to replay the tuples that has not yet been
fully processed.

5.5 Windows & memory

The hardware on the servers in the cluster Raincoat runs on is assumed to be hetero-
geneous. That is, we can not make any assumptions on the size of the memory on the
computers used in a Storm cluster. This becomes an issue when we need to store interme-
diate state in order to do operations such as aggregation over data. As the data coming into
the system might be an infinite stream of tuples, we need make some limitations on how
large the windows can be in order to prevent memory problems. This is a minor limitation
to the system because you will not get the same accuracy as you would if you could create
windows of any size, but the limitation does prevent the need to use database operations
to save intermediate data in the cases where the memory is used up. If we were to save
intermediate data to a database we would introduce overhead which would result in slower
operations. Even though we limit the window size, if the user wants to aggregate over
larger sets of data, they can aggregate over several window results returned by the system.

We do not propose a specific limit to the windows size, but assume that the window
sizes given by the user will not result in memory issues. Figuring out a accurate limitation
to the window size is out of scope of this thesis.

5.6 Connecting topologies

One of the features of Raincoat and Storm is the ability to use results from sub-queries to
as the base to new queries. In this section we discuss two different ways for supporting
this. One can either merge multiple topologies together to one large topology, or one can
keep them as two separate topologies.

50

CHAPTER 5. DESIGN DECISIONS 5.7. JOINING STATIC DATA

5.6.1 Merging sub-topologies

When merging multiple sub-topologies together into one topology, there are a couple of
things you need to keep in mind. First, you need a way to get the result of the predecending
sub-topologies to the end-user. This can be done by sending the result of each sub-
topology directly to the source of a subsequent topology, and to the end-user through a
message broker.

The benefit of this method is that you are able to optimize the topology as a whole, as
opposed to only a sub-topology. This expands the search space, and we might find better
plans. However, one needs to make sure when optimizing that the result of the original
sub-topology doesn’t get changed in the optimization phase.

5.6.2 Separate topologies

When one want to keep multiple topologies separated, one still need to send results through
a message broker. However, instead of sending the result directly to a subsequent topology.
The source of the subsequent topology listen to the message broker. But by keeping
topologies separated one get more flexibility since you can run different queries on different
machines, but it might add extra overhead since data between topologies has to be passed
through a message broker, adding extra layer of complexity. Figure 5.1 gives an illustration
of the different strategies.

Based on this, we choose to keep topologies separated. The reason being it is easier
to reason over the topologies and we avoid having to keep in mind not to change the result
of the sub-query which we have to if we merge the topologies together.

5.7 Joining static data

Even though Raincoat and Storm are built for data streams, there exists some use cases
for when you want to join stream data with static data. One such example is when geotags
from tweets needs to be joined with statically stored geo data. Such as finding cities
corresponding to a geotags longitude and latitude.

There are several of approaches for joining streaming and static data. Many of them
are simple but may be too naive to use in a large scale streaming application. Thus, one
has to discuss some of the different implementation approaching to avoid unnecessary
inefficiencies. An ideal static join operator should be scalable and not introduce unneces-
sary latency. That is, it should be highly parallelizable and fully perform join operations with
in-memory data avoiding I/O latencies.

The naive approach To simplify this discussion we assume that all static data does
not change over the lifetime of a running query/topology. We start by presenting a naive
approach. Such an approach would be to query a database for each incoming tuple. This
approach is simple but notice that it does not scale, and it is prone to network latencies.

51

5.7. JOINING STATIC DATA CHAPTER 5. DESIGN DECISIONS

It does not scale because complex queries with several static join operators, or a high
tuple input rate will increase the the load of the single static database and the network
causing an unavoidable bottleneck. Even without a bottlenecked database this approach
will introduce network latency from querying the database for joinable static data.

Caching and preloading Clearly, the approach given above was too naive. However,
some modifications can be added to improve the performance of the current approach.
Introducing caching of table rows will over time reduce the network latency introduced by
querying the database. The modified version of the current approach would perform well if
the cache hit rate is large. If the hit rate is low then it would be far better to load the whole
static data table into memory. Of course this approach assumes that the table fits into
memory. Since one only has to query for the table data at setup time the last modification
will completely remove the network latency, and potential of bottlenecked databases.

This approach of loading the whole static data table into memory can be solved in the
following way. Say we have a 1 GB static data table that we want to join with streaming
data. Assume that the workers in our Storm cluster only has 200 MB of memory each.
Then by splitting up the static data into more than five parts would reduce the number
of table rows stored in-memory for each worker. Not only have we distributed the data
successfully but we have also parallelized the static join operation. If an uniform hashing
function is used to partition and distribute the data among the workers then the load on
each operator will with a high probability also be uniformly distributed.

In Raincoat we use the third approach presented for performing static joins because of
its simplicity while still being highly scalable assuming that the static data table is small.

52

CHAPTER 5. DESIGN DECISIONS 5.7. JOINING STATIC DATA

spout

join

spout results-topA

join

spout

(a) Two separate topologies.

spout

join

spout

kafka results-topA

join

spout

(b) The topologies merged into one topology. The result from the left topology is outputted
to a message broker.

spout

join

spout

kafka

kafka-spout

join

spout

(c) Keeping the topologies separate, communicating via a message broker.

Figure 5.1: An illustration of the two possibilities we have for connecting topologies. (b) shows you
two topologies merged together. (c) shows you the same topologies kept as two, where the right
topology gets the output from the left topology via a message broker.

53

5.7. JOINING STATIC DATA CHAPTER 5. DESIGN DECISIONS

54

Chapter 6

Query optimization

In this chapter we propose a query plan optimizer for the distributed real-time data pro-
cessing system Raincoat [22]. The optimizer optimizes select-project-join queries, and
focuses on maximizing throughput and keeping the response time within the user-specified
time-frame.

We begin with describing the main challenges and the problem space for the optimizer
in Section 6.1. In Section 6.2, we design a cost model for the queries to use as a basis for
the query optimization and it is also used to reason about the effects of the optimization
techniques. Further, we look at the costs associated with swapping running topologies, that
is, taking down a running topology and uploading a new, optimized version, in Section 6.3.
The adaptive query optimizer needs to decide when it is reasonable to do optimization, and
our proposed heuristic is presented in Section 6.4. Section 6.5 presents the optimization
techniques we have implemented in the system. Each optimization is designed to be
independent of other optimizations, to make it easy to change the algorithms used. In the
final Section 6.6, everything is tied together to form a adaptive algorithm.

6.1 Challenges and problem space

For a distributed realtime data processing system to perform optimally at all times can be
though. It is so because of all the different requirements such a system can meet. Some
of the requirements that distributed realtime data processing systems must meet are fault
tolerance, data consistency, soft or hard realtime constraints, scalability, availability, high
throughput, low response time, etc. Where many of these constraints can be in conflict
with each other. In effect, when designing a distributed data processing system one has to
make certain sacrifices to meet the requirements needed for the system at hand.

6.1.1 Optimizer requirements

When designing the adaptive optimizer for Raincoat, we have focused on maximizing
throughput and keeping the query response time within a user-specified time frame. The

55

6.1. CHALLENGES AND PROBLEM SPACE CHAPTER 6. QUERY OPTIMIZATION

user-specified time frame is the tick-rate specified in the query. The challenge here lies in
the systems ability to handle increasing window sizes (increase in the number of tuples
stored in the window), as the operators in the topology needs to operate on that data at
each tick. Formally, our query optimizer have the following requirements:

1. Queries submitted to the system specifies a rate at which data should be outputted
to the user. The system must be able to compute the answer within that time frame.

2. The system must be able to scale with increases in resources (nodes in the cluster)
to handle increases in the rate at which the data arrives.

6.1.2 Challenges

There are several challenges that needs to be addressed when designing the optimizer,
which are described below.

• Time of optimization. It is hard to determine at what time one has to perform query
optimization. Only performing query optimization at compile time will reduce the
overall cost of optimizing. However, the classification of incoming data tuple may
change over time therefore an optimization calculated at compile time may not be
optimal for the lifespan of a continuous query. That introduces the idea of runtime
optimization presented earlier. However, questions such as when should such an
optimization occur? How much data loss is acceptable? How long down time is
acceptable for performing an optimization? These questions has to be answered
before choosing a model for at-runtime query optimization.

• The cardinality of data. The size of input data is unknown, and may possible be
infinite. The nodes performing calculations can run out of memory over the span
of time if the input rate is high enough. In that event, what subset of incoming data
should be used for calculating the results? What approximation techniques should
be applied?

• Unstable input rate. Data is not received to the system continuously. The system
must be able to handle bursts of incoming data. One has to chose between the
conflicting requirements of high throughput and low response time.

• Distributing work vs in-node computing. We need to consider the gain of dis-
tributing work over nodes against utilizing the computing power of each node, mainly
figuring out the amount of work a node can do without affecting the throughput.

6.1.3 Problem space

The problem space for our optimizer and the limitations we introduce are listed below.

• The optimizer optimizes select-project-join (SPJ) queries.

56

CHAPTER 6. QUERY OPTIMIZATION 6.2. COST MODEL

• The optimization is assumed to be used in environments with high tuple input rates,
or on complex queries that takes considerable CPU-usage to compute, or both.

• The optimizer is designed to meet both soft- and hard real-time constraints enabling
the user to configure the acceptable downtime of the system.

• We assume that approximations of answer to queries are good enough for the user.
That is, our system will use at-least once semantics for computing data. The reason
being the cost introduced by using exactly-once semantics. See Section 5.1 for a
discussion on the subject.

• Operator optimization and which operator is optimal for the situation is out of the
scope of this thesis. Our selection of operators is discussed in Section 5.2.

• The system should be able to handle large amount of traffic without sacrificing
performance in terms of throughput.

• The system is assumed to be running on a cluster of nodes with heterogeneous
commodity hardware, that is, hardware that is affordable, easy to obtain, and might
differ in specifications.

• The input source of the data stream is assumed to be a re-playable message broker
system, like Apache Kafka. A re-playable message broker system is needed to be
able to restore the state of the system in the event of a system crash or if you want to
swap topology plans.

• The system does not take resource cost into account, it is up to the user to define how
many resources it want to use, which must be done before the system has started.
See Section 5.3.

6.2 Cost model

In this section we present a cost model for query execution in terms of throughput. The
cost model is used as a basis to reason about the cost associated with running a topology
on a Storm cluster. Following is a summarized list of the costs taken into account when
designing our cost model.

• Order of operation. The costs of running a query can be measured in the amount of
data that has to be processed. From traditional query cost modeling we know that the
order of operation have a huge effect on the overall cost of running a query. Taking
selectivity into account is therefore an important aspect of the query cost model.

• Distributed costs. Since the system is distributed over several nodes we have to
take into account and model network costs.

57

6.2. COST MODEL CHAPTER 6. QUERY OPTIMIZATION

• Parallelism. Parallelism is a vital part of the system since it can increase throughput
if introduced to a system. Thus, introducing parallelism to a query can reduce the
cost (in terms of throughput).

The following subsections elaborates on on the aspects listed above.

6.2.1 Order of operation

As with traditional query optimizers we do also take operation selectivity into account when
calculation the cost of a query. Similar approach has been discussed for drop-rates of
stream filters in [7]. Changing the order of operations affects how much data is transmitted
through the topology, and needs to be included in the cost model.

6.2.2 Distributed costs

Processing data over a distributed system with multiple nodes will introduce issues and
costs related to networking. Issues such as network partitioning, congestions, race-
conditions, latency and throughput will affect the cost of sending data in between nodes of
a system. In our case the network throughout will affect our systems throughput. We can
go as far as to say that the network throughput will be the lower bound of our system, thus,
the cost model must reflect the network throughput for different topologies.

6.2.3 Parallelism

The last aspect of the cost model is parallelism. In a distributed system, the parallelism
level affects the load the system can handle. If enough CPU resources is available, then
executing the same task on several threads will increase throughput compared to running
that same task on a single thread. Some techniques and issues related to parallel query
execution was presented in Section 3.3.1. We propose a way to estimate the cost and cost
reduction when paralleling operators.

6.2.4 Parameters

The parameters that we emphasize on in our cost model is shown in Table 6.1

58

CHAPTER 6. QUERY OPTIMIZATION 6.2. COST MODEL

Cost formula parameters
CO: Total cost
COi: Cost of executing operator i
COn: Cost of transferring a tuple over the network.
T: Topology
i: Operator iεT
Ci: Child operators of operator i
N: Incoming tuples
S: Selectivity
pi: parallelism of operator i
k: parallelism overhead

Table 6.1: Cost model parameters

6.2.5 Cost formula

The cost formula is broken down into three steps. Each of the steps adds new factor into
the model. We begin with a simple model that only covers execution on a single machine
without any parallelism, and end up with a cost model that both includes network cost and
parallelism of components.

Step 1 Algorithm 6.1 shows the cost model for a topology that is running on a single
machine without any component parallelism.

CO = ∑
i⊂T

(COi ∗ Ni) (6.1)

Ni = ∑
c⊂Ci

(Nc ∗ Sc) (6.2)

The cost of the topology is the sum of the cost of each operator in the topology. The cost of
a operator in the topology is the cost of performing the operation on 1 tuple multiplied by
the number of tuples coming into the operator.

Step 2 Step two adds network cost into the cost model. As we cannot track which tasks
are running on which machines, we do assume the worst case; that each adjacent task in
the topology tree are run on different machines. As we have to ack each tuple in Storm
when they are done processing, the network cost must be applied twice. Algorithm 6.3
shows the cost model.

CO = ∑
i⊂T

((COi + 2 ∗ COn) ∗ Ni) (6.3)

59

6.3. COST OF SWAPPING TOPOLOGIES CHAPTER 6. QUERY OPTIMIZATION

Step 3 Step three includes the cost of a parallelized component in a topology. We reduce
the cost of the component by dividing the work by the parallelism level. There are some
overhead by paralleling components; there will be extra messages to be sent over the
network, this is covered by step two of the cost model. We might need to collect the results
of each of the parallelized tasks into one component, for example with a parallelized sum
operator, all the sums of the subsets needs to be iterated over in a new operator, but this is
covered by step one of the cost model. Any extra overhead of paralleling the task (CPU
cost and other parameters we don’t measure) are labeled as a constant k.

CO = ∑
i⊂T

((k ∗ COi

|pi|
+ 2 ∗ COn) ∗ Ni) (6.4)

Limitations

The cost model does not take into account the cost from the running spouts in the topology.
The spouts are the input source of the topology, and is assumed to to have a fixed cost
that cannot be optimized. The network cost of the topology is simplified by assuming the
worst case, in order to simplify the reasoning of the correctness of the cost model.

6.3 Cost of swapping topologies

An important question is how much does it cost to swap between two topologies. That is
how much efficient computational time is lost due to performing a swap. We now look at
the cost of applying the moving state strategy to Storm.

6.3.1 Moving state strategy

Since topologies are immutable we cannot connect old and new topologies together without
using some intermediate tuple queuing system listening on all operators output streams.
Such an approach will introduce unnecessary complexity to the construction of a topology,
and is prone to introduce bottlenecks. We therefore choose to replay unacked tuples
instead. Recall that in Section 5.1 we discuss the different message semantics and their
corresponding strength and weaknesses. Also, recall that we choose to use at-least once
messaging semantics guaranteeing tuples. This message semantics, in combination with
a replayable message broker system 1, lets us easily keep control over the tuples that has
not been fully acked.

With this in mind we can propose a moving state migration strategy as well as a
corresponding cost model. Let every tuple input to Storm have a timestamp t associated
with it. Also, let Y be the youngest tuple with the timestamp tY for the last output tuple
of topology A. We define Y to be the last tuple in A that has been fully processed (the

1Apache Kafka is a message broker system that lets you replay tuples from a specified offset
(http://kafka.apache.org/)

60

CHAPTER 6. QUERY OPTIMIZATION 6.4. WHEN TO OPTIMIZE

timestamp is managed by the message broker, so we assume that the message broker
keeps the tuples in the same order as they arrived). The following steps gives a general
description of the procedure for applying moving state strategy in Storm.

1. Bring a new topology B up.

2. Bring the old topology A down.

3. Replay tuples into B from timestamp tC

After some time, B will have the same state as A when it was brought down, unless
some tuples have been omitted. In the following paragraphs we will try to model that
elapsed time.

A formula for calculating the cost of this strategy can be expressed as follows. Let Cdown
be the cost of bringing a topology down, Cup for bringing another one up, and Creplay be the
cost of replaying the tuples to the new topology. We then get the following cost equation:

C = Cdown + Cup + Creplay (6.5)

Notice that the cost of bringing up a topology is partly hidden due to that we have
already brought up the new topology before taking the old one down. Assuming that a
topology has been uploaded to a running topology. We only need to model the cost of
scheduling tasks omitting the cost associated with uploading the topology. We represent
the cost of scheduling tasks as Cschedule, and we can now model the cost of swapping
topologies as:

C = Cdown + Cschedule + Creplay (6.6)

The time it takes to reschedule (bring down and schedule) a topology on a Storm cluster
is dependent on the number of tasks contained in a topology. Since the number of tasks is
usually much lower than the number of unacked tuples that has to be replayed through a
newly optimized query, we believe that the two costs Cdown and Cschedule can be assumed
to be constant for all topologies of reasonable size. Thus, we can assume that the cost
of rescheduling a topology is dominated by Creplay. Moreover, the process of replaying
tuples through a known topology can be viewed as the cost of executing a query. We can
therefore use the same cost model presented in Section 6.2 to estimate the cost of sending
unacked tuples through a newly submitted topology.

6.4 When to optimize

The adaptive optimizer needs to figure out when it needs to optimize the running topology.
Optimizing too often can negate the performance gained from the actual optimization,
because of the overhead associated with re-optimizing. The offset includes time taken to
generate new query plans, replaying tuples, taking down a topology and uploading a new
one. In this section, we discuss how the system should detect that it needs to perform the
adaptive optimization.

61

6.4. WHEN TO OPTIMIZE CHAPTER 6. QUERY OPTIMIZATION

6.4.1 Query environment

Before we present the different strategies, we need to define the different types of queries
that might be run. In some situations, it might not be desirable to perform optimization at
run time because downtime is unacceptable. The situation is the same for ad-hoc queries,
explained in Section 5.4, where accuracy is a more important property than efficiency.
However, for long running continuous queries, where response time and throughput is
more important than accuracy, it is desirable to do run-time optimization, as it is often more
important to receive the answers to the queries in a timely fashion rather than getting a
exact answer. For the reminder of this section, we assume that the queries are continuous
and long-running queries that allows some downtime during execution.

6.4.2 Optimization time

In adaptive query optimization in DBMS, one can use a heuristics that compares the
expected time it takes to generate a new plan against the estimated time it takes to
complete the running plan to decide whether to spend computation time on generating new
plans. If the query optimizer have decided that it want to generate a new plan, it must then
decide whether it want to apply the plan or not. The latter decision can be determined by
applying a heuristic that compares the expected running time of the current plan against
the expected running time of the improved plan. See Algorithm 3.1 and 3.2 in Section 3.2.1
for a more in depth explanation.

The aforementioned heuristics are based on that you have access to a system catalog
that have information about the data stored, and that the queries runs for a limited time.
Neither of these conditions apply to our situation. In our situation we have a limited set
of resources, and statistics about the throughput of tuples in the topology, as well as the
number of unfinished tuples in the system. We have earlier assumed that the system
should use all the resources available, so we will not optimize in order to limit the resource
usage.

We want to optimize the topologies in order to provide the best possible response time.
The response time is depending on how often a result is to be given to the user. This is
defined when the user sends in the query, see Section 4.1.1. Then, a logical time to do
optimization is when the response time is greater than tick tuple rate, Tr. We can detect this
by looking at the input rate, Iavg, and the ack rate, Aavg. If we for example have a topology
with an input rate of 1000 tuples per second, then system is not lagging if the rate of the
number of tuples acked (ack rate) to be the same as the input rate. If on the other hand,
the input rate is larger than the ack rate for some topology, it is time to try to optimize that
topology. Formally,

Iavg > Aavg (6.7)

The user is also able to define the tick rate to be based on the number of tuples that enters
the system. Then both the window size and output rate will be size based. In this case,

62

CHAPTER 6. QUERY OPTIMIZATION 6.5. OPTIMIZATION STRATEGIES

Optimizing parameters
Tr: Tick rate
Iavg: Average input rate per Tr

Aavg: Average tuples acked per Tr

Ut: Un-processed tuples in a Topology in time period t
t: time period, e.g 1 min

Figure 6.1: When to optimize topology parameters

we do not have a time to relate to, so we need to look at other factors to determine if the
system is responding fast enough. One way to do this is to look after tuple congestion in
the topology. Here we can use the statistics gathered by the ack tasks, and look on the
number of un-processed tuples in the system, U. If this value grows over time, we have a
situation where we need to optimize. Formally:

∑ Ut1 −∑ Ut2 > 0 (6.8)

Where t2 is the time period right after t1.
Detecting that the system needs to optimize the query based on the previous method

will detect that we need an optimization, but it does not detect whether we can find a more
optimal plan. In cases where Equation 6.8 does not hold, that is, the system throughputs
data fast enough, there might be more optimal plans but there is no need for the system to
optimize. This would have been the case if we also would optimize to reduce resources,
but that is out of the scope of this thesis.

6.5 Optimization strategies

This sections present the optimization strategies we have implemented in Raincoat. We
have split it up into four main categories, which are join order optimization, Storm relevant
optimization, select order optimization and merging of operators, and lastly distributed
optimization. We have split it up in separate strategies in order to easily measure the effect
of each optimization. The time of optimization is decided by the heuristics described in
Section 6.4.

6.5.1 Pre-optimization

At compile time, we do some lightweight optimization that does not require any runtime
statistics.

• Merge project node into its child. As the project node does not do any extra work,
only selects the fields that should be outputted, we will reduce the network traffic by
merging it into its child.

63

6.5. OPTIMIZATION STRATEGIES CHAPTER 6. QUERY OPTIMIZATION

• Re-order the tree so that select operations come before the join operations, in order
to reduce the amount of data the join operators have to execute on.

6.5.2 Join order optimization

There are several ways to search the plan space of different join orderings, which are
discussed in Section 3.6. As we in this step do not know whether or not the join operations
can be run in parallel, we only search the left-deep plan space. Algorithm 3 describes a
greedy algorithm that chooses the join operations with the lowest selectivity and joins them
together, resulting in a optimized RA-tree. The selectivity is calculated by the cost model.
The input is the set of join operators specified in the query. The selectivity of the operators
are determined by the cost model, further discussed in Section 6.2.

Algorithm 3 Greedy join order optimization based on selectivity
procedure OPTIMIZEJOINORDER(R) . R: List of join relations

while R.length > 1 do
a← r.pop()
b← r.pop()
c← joinNode()
c.addChild(a)
c.addChild(b)
R.append(c)

end while
end procedure

6.5.3 Storm optimization

Storm allows you to control how tasks get scheduled in the cluster. To do this, we need
to implement a custom task scheduler, see Section 4.1. A custom task scheduler gives
us control over network traffic, by specifying which operations you want to keep local on a
machine. The Scheduler can control which nodes task gets executed on. So we can use it
to schedule adjacent tasks on the same machine, or, in cases where we have CPU-heavy
operations, we can make sure that two CPU-heavy operations does not run on the same
machine. However, a proposed implementation of such a scheduler is out of scope of this
thesis, and is listed as further work.

Another optimization that is Storm specific is the selection of stream groupings in the
Topology. Stream groupings were introduced in Section 4.1. One of these groupings is the
local or shuffle grouping, which schedules tasks locally if the bolt with the grouping have
other worker tasks in the same process.

64

CHAPTER 6. QUERY OPTIMIZATION 6.5. OPTIMIZATION STRATEGIES

σ(a > 10) σ(b == 'a string') σ(c != 42)

(a) Topology before merge

σ(a > 10,b =='a string',c != 42)

(b) Topology after merge

Figure 6.2: Select operators before and after merging.

6.5.4 Select order and merging of operators

We look at two different ways to optimize select operators. The first method is to merge
operators together into fewer bolts. Each bolt in Storm can perform several operations, for
instance several select operations. By merging operators, we reduce the amount of data
that is sent over the network. We limit merging to select operators and aggregators, as join
operators are defined as a heavy operation, and merging them together might result in a
performance decrease. Figure 6.2 shows an example topology with the operators before
and after optimization.

Another optimization we perform on select operators is to re-order the select operators,
such that select operators with low selectivity comes first. This is the same principle as we
use when optimizing the join order.

Algorithm 4 Sorted order of select operators
procedure OPTIMIZESELECTORDER(R) . R: List of select operators

return sort(R)
end procedure

Figure 6.3 shows the operators before and after optimization.

6.5.5 Distributed optimization

In distributed optimization we mainly look at two optimizations, running different operations
concurrent and paralleling single operators, that is, dedicate more workers to certain tasks.

Concurrent calculations

In more complex queries, running independent operations concurrently can yield in a
performance boosts. That is, searching the bushy tree for plans that are cheaper than the

65

6.5. OPTIMIZATION STRATEGIES CHAPTER 6. QUERY OPTIMIZATION

σ(a != 42) σ(b == 'a string') σ(c > 10)

(a) Select order 1

σ(a != 42)σ(b == 'a string')σ(c > 10)

(b) Select order 2

Figure 6.3: Select operators before and after sorting. a != 42 has a 95% selectivity, b != ’a string’
has 90% selectivity and c > 10 has 50% selectivity

equivalent in the left-deep tree. First, we look at the different operators we have:

• Select. The select operators are filters. Filters has to be run in a pipelined fashion to
make sure that the filters are applied on all tuples, to ensure the right result from the
query. We will not run different filters concurrently.

• Project. The project operation is a single operator that emits the result of the whole
topology, so it makes no sense to run it concurrently with other operations.

• Joins. The join operator can be run in concurrently. We reduce the set of possibilities
to join operations that does not share base relations(source).

So we can reduce the problem to finding join operators that does not share base relations.
When we have determined that two joins can be ran in parallel, we need to re-order the

relational algebra tree to achieve this. Algorithm 5 describes how to create a bushy join
order tree.
To illustrate the difference, we use the following query:

Select * from S,T,U,V WHERE S.a = T.a AND U.b = V.b AND V.a = T.a;

Its left-deep tree is shown in Figure 6.4a, and the bushy, parallelized tree is shown in Figure
6.4b.

Parallelism

Increasing the parallelism of a operator is done by changing its parallelismHint in the Storm
topology. Mainly, we want to parallelize operators that has the worst execution time. As we
have defined earlier, we do not optimize on resources used, so if there are idle workers,
and the topology is performing sub-optimal we are able to increase the parallelism of bolts

66

CHAPTER 6. QUERY OPTIMIZATION 6.5. OPTIMIZATION STRATEGIES

Algorithm 5 This algorithms creates a bushy RA-tree of join nodes. It outputs a bushy
RA-tree.

procedure OPTIMIZECONCURRENCY(x,y) . x,y: base join relations
j1← joinNode()
j1.addChild(x.A)

j1.addChild(x.B)
j2← joinNode()
j2.addChild(y.A)

j2.addChild(y.B)
j3← joinNode()
j3.addChild(j1)
j3.addChild(j2)

end procedure

S

⋈

T

U

⋈ V

⋈

(a) Left-deep tree

S

⋈

T U

⋈

V

⋈

(b) Bushy tree

Figure 6.4: Shows the difference between a pipelined join tree and a concurrent join tree

67

6.5. OPTIMIZATION STRATEGIES CHAPTER 6. QUERY OPTIMIZATION

that are CPU-heavy. As the project and select operators are lightweight operators, these
will not be taken into account. Only join operators and aggregators.

Figuring out the right amount of parallelism for heavy operators is a non-trivial task.
First, we want to identify the operators that needs to be parallelized. As a heuristic, we look
at the execution time vs the tick tuple interval. Remember that the tick rate is the interval at
which the user gets results from the query. If the execution time is larger than the tick rate,
the user will experience a delay from the system, which is unwanted behavior. Equation
6.9 shows the described heuristic.

Execution_time > Tick_rate (6.9)

The next step is to decide how much parallelism the operator needs to perform fast
enough. First, we calculate the percentage performance increase we need to perform the
operation within the required time, as shown in Equation 6.10.

ε =
Execution_time

Tick_rate
(6.10)

When we know the percentage performance increase needed, we need to figure out
how much we need to increase the parallelism to achieve that. Algorithm 6 is used to
change the parallelism of an operator.

Algorithm 6 Algorithm for changing the parallelism of a operator

procedure OPTIMIZEPARALLELISM(T, Et, P)
if T > Et then . T: tick rate, Et: Execution time

Return P . P: current parallelism
end if
ε← Et

T
Return findParallelism(ε, P)

end procedure

Choosing a algorithm for f indParallelism is non-trivial. The challenge lies in choosing
the right parallelism hint for the operator. We do not know beforehand how much perfor-
mance gain an increase in parallelism will give us. A naive implementation is to increase
the parallelism hint with a constant value every time, as shown in Algorithm 7.

Algorithm 7 Algorithm for estimating the needed parallelism, naive

procedure FINDPARALLELISM(ε, P)
if local_minimum then

Return P
end if
Return P + 2

end procedure

68

CHAPTER 6. QUERY OPTIMIZATION 6.6. ADAPTIVE OPTIMIZATION

Another way is to use runtime-statistics to determine the increase needed for the
operator to perform calculations fast enough. When we increase the parallelism, we log
the performance gained. The next time we detect that we need to optimize, we use the
history to determine the factor to increase with. It is worth to mention that this algorithm
assumes that a increase in parallelism will yield a constant performance boost, and does
not take into account any overhead that gets introduced.

Algorithm 8 Algorithm for estimating the needed parallelism, adaptive

procedure FINDPARALLELISM(ε, P, A, P_max) . A: average performance boost
if local_minimum then

Return P
end if
for i = 1→ P_max do

if i ∗ A > ε then
Return P + i

end if
i← i + 1

end for
Return P_max

end procedure

The average gain is calculated after every optimization, with Algorithm 9.

Algorithm 9 Average gain from parallelism increase

procedure CALCULATEAVERAGEGAIN(Etnew, Etold, a, ∆P)
gain← Etnew

Etold

average_gain← gain
∆P

a← a+average_gain
2

end procedure

The local_minimum variable will set to true if an increase in parallelism does not yield
performance gain. So both Algorithm 7 and 8 will stop their search at a local minimum
if the desired performance is not yet achieved. Algorithm 7 and 8 are only proposed
implementations. We evaluate the correctness of the algorithms in Chapter 7.

6.6 Adaptive optimization

After we have presented all the optimizations techniques, we tie them all together in an
adaptive algorithm. Algorithm 10 is run at a specified interval to detect whether we need
to optimize or not, and executes the optimization techniques presented in the previous
section.

69

6.6. ADAPTIVE OPTIMIZATION CHAPTER 6. QUERY OPTIMIZATION

Algorithm 10 Adaptive optimization of topology

if NeedsOptimalization(topology) then
OptimizeJoinOrder(raTree)
if not IsSelectMerged(raTree) then

MergeSelectNodes(raTree)
end if
OptimizeSelectOrder(raTree)
OptimizeConcurrency(raTree)
CalculateAverageGain(Etnew, Etold, a, ∆P)
if idleWorkers > 0 then

for Each join in topology do
OptimizeParallelism(join)

end for
end if

end if

There are some drawbacks to the algorithm. First of all, it never frees any resources.
There are two consequences following; the first is that it affects all topologies running
on the cluster, as they might need more workers to be able to handle the load, so they
might have to continue to run sub-optimal. The other consequence is that the resources
dedicated to the cluster can not be released to do other work. Addressing these issues is
postponed and added to further work.

70

Chapter 7

Performance evaluation

In this chapter we present the performance evaluation of Raincoat. We begin with present-
ing our test approach in Section 7.1. The test environment is described in Section 7.2. Our
problem and data model for the test are presented in Section 7.3 and the actual test plan is
presented in Section 7.4. The results of the test can be found in Section 7.5 and we round
up this chapter with some concluding remarks in Section 7.6.

7.1 Testing approach

In our tests we want to evaluate Raincoat’s scalability potential. We do so by testing the
different optimization techniques we presented, and apply them to a running query. Later
on we present a few test cases and the results collected from those tests for evaluating the
systems performance.

Originally, we wanted to use TPC-H for testing the different optimization techniques.
TPC stands for Transaction Processing Performance Council, and is a non-profit organiza-
tion. They define transaction processing and database benchmarks. TPC-H is a decision
support benchmark system. TPC-H can be divided in two parts, the data generator, which
populates 8 premade tables that is designed to be useful for a broad area of applications,
mainly traditional database systems. The other part is the query generator which can
generate queries based on the different input parameters. The main problem with TPC-H
was the way the tables were designed. The tables they provide were customer, nation,
region, supplier, part, orders, lineitem and partsupplier. Of those tables, only orders and
lineitem can logically be used as a datastream, whereas customer, nation, region, supplier,
part and partsupplier are tables with data that in a real life environment changes seldom.
We want our tests to run on a more suitable example, so we have created our own test
case, presented in Section 7.3.

71

7.2. TEST ENVIRONMENT CHAPTER 7. PERFORMANCE EVALUATION

7.2 Test environment

The test cluster consisted of 11 high performance commodity machines on a high perfor-
mance local area network. Each instances run inside a rack with the following specification;
PowerEdge R415 Rack Chassis for Up 4x 3.5" Hot Plug HDDs. 8 of 11 the machines had a
AMD Opteron 4130 CPU with four 2.6GHz cores, 4x512K L2/6M L3 Cache, 32GB Memory,
and had 2x2TB disks in RAID-1. The remaining 3 machines was slightly more powerful with
128GB Memory and 6-cores, instead of 32GB memory and 4 cores. Of the 11 machines,
one was running a ZooKeeper instance and a Nimbus instance and the remaining 10 ran
as supervisors. Each supervisor was running 8 workers.

7.3 Test problem description

Social networks such as Twitter, Instagram, Pintrest, LinkedIn and Facebook produces a
lot of streaming data. By simulating the data generated by such web pages we can create
an artificial test environment that resembles real streaming data. The data generated for
this test case is mostly posts from the aforementioned social networks.

Below is a we present the data models as an entity-relationship diagram. Tweet, Pintrest,
Facebook post, LinkedIn and Instagram are streams that can be queried. Username and
Geotag is a table shared among these streams. To limit the amount of code needed to be
written Pintrest and LinkedIn inherits their data model from Tweets and Facebook posts,
respectively.

Below is a generic description of the different post models.

Twitter “tweets”
Username
Geotag
Message
Hashtags
Mention

Facebook Wallposts
Username
Message
Mention
Geotag

Instagram posts
Username
Hashtags
Geotag
Picture
Mention

Geotag
Geotag
Lat
Lng

Pintrest
Username
Geotag
Message
Hashtags
Mention

LinkedIn
Username
Message
Mention
Geotag

Both username and hashtags is generated from a list of unique usernames and hash-
tags. Thus the cardinality of these are known. We have a total of 400 usernames and 40
hashtags. We assume that an user uses the same username on all social networks. This
assumption is made to simplify the querying model.

Using the data model presented above one can answer interesting question regarding
the relationship between users of the different social networks. Below we have listed a few

72

CHAPTER 7. PERFORMANCE EVALUATION 7.3. TEST PROBLEM DESCRIPTION

Figure 7.1: Enetity-relationship diagram for our data streams

of these questions.

1. Which tweet messages and pictures posts on instagram within the last 30 seconds
shares the same mentions (assuming they have the same username on instagram
and on twitter)

2. How many posts have been posted the last 30 seconds

3. Which users has posted on twitter, facebook, and instagram within the last 30
seconds,

4. How many posts one user have had in total on the different social networks within
the last 30 seconds

Now that we have illustrated a few questions that can be addressed for the data model at
hand. We can translate these question into queries returning the desired results. In the
queries presented below we assume that twitter, instagram, and facebook represents the
data model for tweet, instagram posts, and facebook posts, respectively.

1. SELECT twitter_message, instagram_picture

73

7.4. TEST PLAN CHAPTER 7. PERFORMANCE EVALUATION

FROM twitter, instagram
WHERE twitter_mention = instagram_mention
EVERY 10 SECONDS SIZE 30;

2. SELECT count(*)
FROM twitter
EVERY 10 SECONDS SIZE 30;

3. SELECT username
FROM twitter, facebook, instagram
WHERE twitter_username = facebook_username
AND facebook_username = instagram_username
EVERY 10 SECONDS SIZE 30;

4. SELECT count(twitter_username)
FROM twitter, facebook, instagram
WHERE twitter_username = facebook_username
AND twitter_username = instagram_username
AND twitter_username = “<Insert username>”
EVERY 10 SECONDS SIZE 30;

Observe that in the last query, all the usernames is the same. A smart optimizer would
take this into consideration filtering the sources of both facebook and instagram as well.
However, that optimization is not implemented at the current state of Raincoat. So by
adding “facebook_username = ‘<Insert username>’ and instagram_username = ‘<Insert
username>’” one can expect a gain in performance compared to the original query.

7.4 Test plan

In Section 6.5 we presented a set of optimization theories that could be applied to Raincoat
queries. With the performance tests we empirically check if the effectiveness of the
implemented optimization theories. We focused on the performance testing for parallelism
and query optimization. To keep test data clean and easier to reason with we ran each of
the tests separately.

For the parallelism tests we run a complex join query with varying input rate, number
of machines, parallelism hint, and window sizes. From these tests we want to show that
increasing parallelism hint will decrease the execution time for join nodes on average.
The test case is presented in detail in Table 7.2. We later we test the join order query
optimization, a detail description of the test case is presented in Table 7.3. In this case we
kept the parallelism hint constant at 1 while varying the input rate, number of machines,
window sizes, and optimizers. In test case 3 (Table 7.4) we test the optimization techniques
for select operators, such as merging select operators, and merging them. Finally, in test
case 4 (Table 7.5) we explore the parallelism potential for select operators.

74

CHAPTER 7. PERFORMANCE EVALUATION 7.4. TEST PLAN

7.4.1 Log records

Before we present the different test cases we need to present the statistics collected. For
each bolt we have implemented a statistics logger, it is used to log a row of statistical
data whenever a tick tuple arrives. Each log record presents data collected by the logger
between records.

timestamp # of incoming tuples avg min max tot window size acked emitted

Table 7.1: Log record

In this paragraph we explain the different fields in each log record presented in Table 7.1.
The timestamp is the timestamp for when the log was recorded. Number of incoming tuples
between the last record and now. Avg, min and max represent the average, maximum and
minimum execution time pr incoming tuple. Where tot are the total execution time caused
by all incoming tuples. Window size is the number of tuples contained in the window at
this point in time. Acked and emitted is the number of tuples acked and emitted since last
record, respectively.

Using the these logs records we can identify different properties of the test cases. E.g.
one can identify that an operation is lagging by checking if the total execution time is longer
than the tick rate specified by the queries. Or calculate the throughput of a tuple or topology
by looking at the number of fully processed tuples (acked) over time.

7.4.2 Test variables

In this section we present the different parameters and variables for the test cases described
below.

7.4.3 Test cases

Each query we test is run several time, with different variables. These variables and other
aspects with the test cases are described in the following tables. The test variables row
indicates which parameters that vary for each iteration of the tests.

Scalability of Join

This test evaluates the scalability of the join operator. The parallelism hint of the operator
varies from 1 to 64. The result of the test gives us data about the percentage increase the
operator gain by paralleling it.

75

7.4. TEST PLAN CHAPTER 7. PERFORMANCE EVALUATION

Name Short Description
Parallelism hint P The level of parallelism a job presented as either a spout

or bolt can achieve
Machines M The number of individual machines that is present in the

test environments Storm cluster
Query - The continuously running query used for the test
Window size W How long tuples are allowed to live inside an operator
Tick tuple rate - The rate of the arrival of a specialized tuple. That can

be used to either specify how often tuples should be
evicted, or how often one operation should be performed.
The hash joins uses the former case for evicting tuples
from its window. While the latter is used for performing
aggregation operations.

Tuple production rate R Represents how many tuples that are inputted from each
Spout in the system

Query optimizers - The different query optimizers that was applied to the
query tree before transforming it into a Storm topology

Test Case ID 1
Query SELECT f_username

FROM twitter, fb, insta, linkedin, pin
WHERE t_username = f_username
AND f_username = i_username
AND i_username = l_username
AND l_username = p_username
EVERY 4 seconds SIZE <window_size>

Tuple production rate 2, 4, 10, 20 tuples per seconds per source
Tick rate 4 Seconds
Window size 8, 16, 32 seconds
Test run time 60 seconds (+ 30 seconds of shutdown time)
Machines 1, 4, 10
Parallelism Hint 1, 2, 6, 12, 16, 20, 32, 64
Query optimizers None

Table 7.2: Table describing the details of test case 1

Join optimization evaluation

In this test we evaluate the performance gain of applying performance optimizations on a
query. In this test we keep the parallelism hint constant and vary variables such as window
size, tuple production rate, tuple tick rate, and number of cluster nodes (machines).

76

CHAPTER 7. PERFORMANCE EVALUATION 7.4. TEST PLAN

Test case ID 2
Query SELECT f_username

FROM twitter, fb, insta, linkedin, pin
WHERE t_username = f_username
AND f_username = i_username
AND i_username = l_username
AND l_username = p_username
EVERY 4 seconds SIZE <window_size>’

Tuple production rate 2, 4, 10 tuples per seconds per source
Tick rate 4 seconds
Window size 8, 16, 32 seconds
Test run time 60 seconds (+ 30 seconds of shutdown time)
Machines 1, 4, 10
Parallelism Hint 1
Query optimizers None, and join order

Table 7.3: Table describing the details of test case 2

Select optimization evaluation

In this test we wanted to look at the gain of ordering selection operations to see if tuples
were significantly pruned or not. Then, we perform a merging of selection operation too
see if the reduction of network traffic will increase system performance.

Test case ID 3
Query SELECT f_username

FROM fb
WHERE f_username = ’creepytesting’
AND f_mention = ’dummy’
AND f_geotag != ’empty’
EVERY 4 seconds 8 SIZE

Tuple production rate 10, 20, 40, 100, 200, 500 tuples per seconds per source
Tick rate 4 seconds
Window size 8 seconds, it does not matter since selection does not

carry a window
Test run time 60 seconds (+ 30 seconds of shutdown time)
Machines 1, 4, 10
Parallelism Hint 1
Query optimizers None, and select order and select merge

Table 7.4: Table describing the details of test case 3

77

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

Scalability of Selects

In this test case we explore the scalability of multiple select operators. The parallelism hint
varies from 1 to 64. Using the result of this test we want to explore the parallelism potential
of a select operator.

Test case ID 4
Query SELECT f_username

FROM fb
WHERE f_username = ’creepytesting’
AND f_mention = ’dummy’
AND f_geotag != ’empty’
EVERY 4 seconds 8 SIZE

Tuple production rate 10, 20, 40, 100, 200, 500 tuples per seconds per source
Tick rate 4 seconds
Window size 8 seconds, it does not matter since selection does not

carry a window
Test run time 60 seconds (+ 30 seconds of shutdown time)
Machines 1, 4, 10
Parallelism Hint 1, 2, 6, 12, 16, 20, 32, 64
Query optimizers None

Table 7.5: Table describing the details of test case 4

7.5 Results and analysis

In this section we present the interesting findings from the test cases given above. With each
of the results we present why these results are included and provide a short interpretation
and analysis of those data.

We have organized the rest of this section in the following way. In Section 7.5.1 we
present results of increasing the level of parallelism. In Section 7.5.3 we look at how the
different attributes of a join operator behaves over time, and provide an analysis of how
one can reduce the average execution time of individual operators. In Section 7.5.4 we
look at the concept of when to optimize presented in Section 6.4, and present the results
and an analysis of data at hand. Finally, In Section 7.6 we combine the results and give an
analysis of how this fits into Raincoat.

7.5.1 Results of parallel optimizations for joins

The following graphs shows the average execution time of all join nodes in the query
presented in Table 7.2. It shows the gain of adding parallelism hint to all the join nodes
with a pre-specified set of machines, input rate, and window size. Using the data collected

78

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

we want to explore the systems parallelism capabilities. If the execution time is reduced
on average for all join operators, without decreasing the systems throughput, when the
level of parallelism is increased. Then we can say that the system will gain throughput by
performing operations in parallel.

By superficially studying the different graphs we can observe that the system, in general,
will experience a gain in performance by increasing the parallelism hint. The amount of
gain achieved by introducing parallelism is any case limited by the window size, input rate
and the query complexity. For this particular case we can observe that the queries with
larger window sizes achieves higher performance gain by increasing the parallelism hint.
E.g. in Figure 7.3 we see that the graph with R = 250, M = 1 increases performance by
adding parallelism hint until it reaches its execution time minima at P ≈ 20. Also, observe
that if the rate is increased then the parallelism hint can, in general, be increased to reduce
the average execution time of the join operators.

Observe that there are some abnormalities in some of the plots below. These are the
graphs with plots that shows a decrease, increase, and then decrease again in execution
time. Other plots increases in execution time for initial introduction of parallelism then
decreases when the level of parallelism is further increased. Both these cases can be
explained as a combination of bad scheduling of tasks and skewed shuffling between
cloned join nodes ran in parallel. In such a case the distribution of tuples is skewed and
will cause a few join tasks to be under much more load than the others. Thus, the load is
not uniformly divided among the nodes. Causing the parallelized join operator to not fully
utilize the available CPU cycles. Hence, causing a decrease in overall performance.

Also notice the graphs that reaches a minima in average execution time after increasing
the level of parallelism to a certain value. Observe that the execution time stabilizes and
does neither improve or worsen when parallelism hint is increased. Thus, it does not seem
to introducing parallelism does not have any cost. However, observe from Figures 7.5,
7.6, and 7.7 that the total number of tuples acked decreases when the level of parallelism
gets too high. These results indicates that the level of parallelism has a cost which has an
effect on the throughput of an operator in Raincoat. This cost can be associated with the
overhead of scheduling the multiple excess Storm tasks within one worker, and the extra
network overhead caused by sending an additional packet of data for every worker used.

Also, remember that a Storm Cluster also has a pre-specified number of workers. Where
each task is assigned to each worker. Each cluster have multiple of queries assigned to it.
So if one query has a number of tasks equal or larger than the number of available workers
for that cluster. No other queries will be able to process data on the same cluster. Causing
the system to under perform since it cannot deliver the results as promised.

79

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60
Parallelism Hint

0

500

1000

1500

2000

2500

3000

3500

A
v
g
.
e
x
c

ti
m

e

M=1, R=500, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

5

10

15

20

25

30

A
v
g
.
e
x
c

ti
m

e

M=4, R=500, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

50

100

150

200

250

A
v
g
.
e
x
c

ti
m

e

M=10, R=500, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

500

1000

1500

2000

2500

3000

A
v
g
.
e
x
c

ti
m

e

M=1, R=250, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

500

1000

1500

2000

2500

A
v
g
.
e
x
c

ti
m

e

M=4, R=250, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

500

1000

1500

2000

2500

3000

3500

4000

A
v
g
.
e
x
c

ti
m

e

M=10, R=250, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

A
v
g
.
e
x
c

ti
m

e

M=1, R=100, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

A
v
g
.
e
x
c

ti
m

e

M=4, R=100, W=8

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

16000
A

v
g
.
e
x
c

ti
m

e

M=10, R=100, W=8

Figure 7.2: Increasing parallelism hint with W = 8 measuring average execution time

80

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60
Parallelism Hint

0

200

400

600

800

1000

1200

A
v
g
.
e
x
c

ti
m

e

M=1, R=500, W=16

0 10 20 30 40 50 60
Parallelism Hint

0

200

400

600

800

1000

A
v
g
.
e
x
c

ti
m

e

M=4, R=500, W=16

0 10 20 30 40 50 60
Parallelism Hint

0

100

200

300

400

500

600

700

800

A
v
g
.
e
x
c

ti
m

e

M=10, R=500, W=16

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

A
v
g
.
e
x
c

ti
m

e

M=1, R=250, W=16

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

A
v
g
.
e
x
c

ti
m

e

M=4, R=250, W=16

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

A
v
g
.
e
x
c

ti
m

e

M=10, R=250, W=16

0 10 20 30 40 50 60
Parallelism Hint

1000

2000

3000

4000

5000

6000

7000

8000

A
v
g
.
e
x
c

ti
m

e

M=1, R=100, W=16

0 10 20 30 40 50 60
Parallelism Hint

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
v
g
.
e
x
c

ti
m

e

M=4, R=100, W=16

0 10 20 30 40 50 60
Parallelism Hint

0

5000

10000

15000

20000

25000
A

v
g
.
e
x
c

ti
m

e

M=10, R=100, W=16

Figure 7.3: Increasing parallelism hint with W = 16 measuring average execution time

81

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60
Parallelism Hint

0

500

1000

1500

2000

2500

3000

3500

A
v
g
.
e
x
c

ti
m

e

M=1, R=500, W=32

0 10 20 30 40 50 60
Parallelism Hint

0

1000

2000

3000

4000

5000

6000

A
v
g
.
e
x
c

ti
m

e

M=4, R=500, W=32

0 10 20 30 40 50 60
Parallelism Hint

0

1000

2000

3000

4000

5000

6000

A
v
g
.
e
x
c

ti
m

e

M=10, R=500, W=32

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

A
v
g
.
e
x
c

ti
m

e

M=1, R=250, W=32

0 10 20 30 40 50 60
Parallelism Hint

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
v
g
.
e
x
c

ti
m

e

M=4, R=250, W=32

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

A
v
g
.
e
x
c

ti
m

e

M=10, R=250, W=32

0 10 20 30 40 50 60
Parallelism Hint

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
v
g
.
e
x
c

ti
m

e

M=1, R=100, W=32

0 10 20 30 40 50 60
Parallelism Hint

2000

3000

4000

5000

6000

7000

8000

9000

A
v
g
.
e
x
c

ti
m

e

M=4, R=100, W=32

0 10 20 30 40 50 60
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000
A

v
g
.
e
x
c

ti
m

e

M=10, R=100, W=32

Figure 7.4: Increasing parallelism hint with W = 32 measuring average execution time

82

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70
Parallelism Hint

1000

1500

2000

2500

3000

3500

4000

4500

5000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=8

0 10 20 30 40 50 60 70
Parallelism Hint

10000

15000

20000

25000

30000

35000

40000

45000

50000
N

u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=8

Figure 7.5: Increasing parallelism hint with W = 8 measuring the total acked tuples

83

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

10000

20000

30000

40000

50000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=16

0 10 20 30 40 50 60 70
Parallelism Hint

0

10000

20000

30000

40000

50000

60000
N

u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=16

Figure 7.6: Increasing parallelism with over W = 16 measuring the total acked tuples

84

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70
Parallelism Hint

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

2000

4000

6000

8000

10000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=500 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=250 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=32

0 10 20 30 40 50 60 70
Parallelism Hint

0

10000

20000

30000

40000

50000
N

u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Number of tuples acked for parallelism hint. R=100 W=32

Figure 7.7: Increasing parallelism hint with W = 32 measuring the total acked tuples

7.5.2 Results of parallel optimizations for selects

In this section we analyze the results from the test case presented in Section 7.4.3. We
analyze how an increase in parallelism affects selection operators of Raincoat. Recall that
selection operators does not contain any window, therefore there is no need for analyzing
the selection operations for different window sizes.

Observe from Figure 7.8 that increasing parallelism hint will decrease the average
execution time and converge towards 0. Also notice that the number of acked tuples in
Figure 7.9 does not experience a constant increase when parallelism hint is increased.
Meaning that introducing parallelism for selection operators does also have a cost, which is
the same cost as the one we found in Section 7.5.1.

Another observation worth mentioning is that the selection operation gains performance

85

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

when increasing the parallelism hint as machines are added. In Figure 7.9 we see
can observe that the graphs on the same horizontal line has approximately the same
performance. However, we observe that the selection operators can handle more load if
machines and parallelism hints are increased.

0 5 10 15 20 25 30
Parallelism Hint

1

2

3

4

5

6

7

8

A
v
g
.
e
x
c

ti
m

e

M=1, R=50, W=8

0 5 10 15 20 25 30
Parallelism Hint

0

2

4

6

8

10

12

A
v
g
.
e
x
c

ti
m

e

M=4, R=50, W=8

0 5 10 15 20 25 30
Parallelism Hint

1

2

3

4

5

6

7

A
v
g
.
e
x
c

ti
m

e

M=10, R=50, W=8

0 5 10 15 20 25 30
Parallelism Hint

1

2

3

4

5

6

7

8

9

10

A
v
g
.
e
x
c

ti
m

e

M=1, R=25, W=8

0 5 10 15 20 25 30
Parallelism Hint

0

5

10

15

20

25

30

A
v
g
.
e
x
c

ti
m

e

M=4, R=25, W=8

0 5 10 15 20 25 30
Parallelism Hint

0

5

10

15

20

25

A
v
g
.
e
x
c

ti
m

e

M=10, R=25, W=8

0 5 10 15 20 25 30
Parallelism Hint

0

5

10

15

20

A
v
g
.
e
x
c

ti
m

e

M=1, R=10, W=8

0 5 10 15 20 25 30
Parallelism Hint

0

5

10

15

20

25

30

35

40

A
v
g
.
e
x
c

ti
m

e

M=4, R=10, W=8

0 5 10 15 20 25 30
Parallelism Hint

0

5

10

15

20

25

30

A
v
g
.
e
x
c

ti
m

e

M=10, R=10, W=8

Figure 7.8: Increasing parallelism hint with W = 8 measuring average execution time

86

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 5 10 15 20 25 30
Parallelism Hint

2640

2650

2660

2670

2680

2690

2700

2710

2720

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=50 W=8 M=1

0 5 10 15 20 25 30
Parallelism Hint

2550

2600

2650

2700

2750

2800

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=50 W=8 M=4

0 5 10 15 20 25 30
Parallelism Hint

2660

2680

2700

2720

2740

2760

2780

2800

2820

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=50 W=8 M=10

0 5 10 15 20 25 30
Parallelism Hint

5250

5300

5350

5400

5450

5500

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=25 W=8 M=1

0 5 10 15 20 25 30
Parallelism Hint

5100

5150

5200

5250

5300

5350

5400

5450

5500

5550

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=25 W=8 M=4

0 5 10 15 20 25 30
Parallelism Hint

5200

5250

5300

5350

5400

5450

5500

5550

5600

5650

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=25 W=8 M=10

0 5 10 15 20 25 30
Parallelism Hint

13000

13100

13200

13300

13400

13500

13600

13700

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=10 W=8 M=1

0 5 10 15 20 25 30
Parallelism Hint

12500

12600

12700

12800

12900

13000

13100

13200

13300

13400

N
u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=10 W=8 M=4

0 5 10 15 20 25 30
Parallelism Hint

12900

13000

13100

13200

13300

13400

13500

13600

13700

13800
N

u
m

b
e
r

o
f

a
ck

e
d
 t

u
p
le

s

Increasing parallelism for Selects. R=10 W=8 M=10

Figure 7.9: Increasing parallelism hint with W = 8 measuring the total acked tuples

7.5.3 Analyzing operator behavior over time

Below we present several plots exploring different aspects of join operators over time.
The plots are extracted from data collected from running the tests presented in Section
7.4.3 using only the data where P = 16, M = 1 for all operators, varying the input rate and
window size.

First, we examine the graphs superficially before going into a deeper analysis. It is easy
to observe that the all the components measured increases significantly when the input
rate is increased. Also, observe that the average execution time do also increase with the
size of the sliding window. These observation is to be expected since increasing those
variables will also increase the total amount of work the system has to perform.

Remember the computational heavy part of a join operator is to find matching tuples

87

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

and merge them. Also, notice that the number of emitted tuples depends hit rate during
joins, i.e. if no joins are performed then the number of tuples emitted from an operator
would be 0. Therefore we should be able to find an correlation between average execution
time for an operator, incoming tuples, window size, and emitted tuples. In the following
paragraphs we will perform an analysis of the average execution times in the context of the
different window sizes.

First we will start looking at the the average execution time for W = 8. Observe that in
Figure 7.10a around 30 seconds into the life time of the query, we clearly see that that the
this query has a spike in average execution time. This seems to be mainly because of the
window size observed from Figure 7.11, as the average incoming tuples (Figure 7.12) and
emitted tuples, Figure 7.13, are low around the same point in time. However, after about
45 seconds one can observe that both the number of tuples contained in the window and
the execution time reaches another local maxima. These correlations are also present for
different rates using the same W.

For W = 16 notice that some of the local maximas of the window size presented in
Figure 7.15 are correlated with either maxima or local maximas of the execution time
presented in Figure 7.14. However, also observe that the execution maxima for R = 100
in is not correlated to the it corresponding window size maxima. This leads us to believe
that other factors than the size of the window can contribute to increase the execution time
of the join operator. Examining the number incoming and emitted tuples in Figure 7.16
and 7.17, respectively. We observe that for this particular case that both have a significant
increases about the same time as the spike in average execution time.

Finally, for W = 32 we still observe the phenomenon that window size and execution
time is correlated. Also, notice that the execution time maxima is not correlated with the
maxima of window size. This leads us to believe that the execution time of an operator is
strongly dependent upon the window size of the operator, and weakly dependent upon the
the number of incoming tuples.

Also observe that in the general case decreasing the window size can be beneficial in
terms of decreasing execution time of an operation. This is expected and shows that the
using the correct window size for heavy operators can be crucial for the system to perform.
The window size cannot be adaptive be set by a system, since changing the window size
will affect the accuracy of the results returned by a query.

Also studying the number of tuples inside a window, one can observe that the size
does not grow linearly with with the set tuples rate. This is probably due to that the number
of emitted tuples from one join to another is larger than the number of incoming tuple for
the former join. That also means that if the source of the input for the topology increases
the window size will increase super-linearly (possibly polynomial or exponential). Thus,
increasing the average execution time for the whole query.

88

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

5

10

15

20

25

30

35

40

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=500 W=8

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=250 W=8

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=100 W=8

(c)

Figure 7.10: Average execution time for W = 8 with varying rates

89

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

5

10

15

20

25

30

35

40

W
in

d
o
w

 s
iz

e

Window size over time. R=500 W=8

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

20

40

60

80

100

120

W
in

d
o
w

 s
iz

e

Window size over time. R=250 W=8

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

100

200

300

400

500

600

700

800

900

W
in

d
o
w

 s
iz

e

Window size over time. R=100 W=8

(c)

Figure 7.11: Number of tuples inside the window for W = 8 with varying rates

90

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

2

4

6

8

10

12

14

16

18

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=500 W=8

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

10

20

30

40

50

60

70

80

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=250 W=8

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

100

200

300

400

500

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=100 W=8

(c)

Figure 7.12: Incoming tuples for W = 8 with varying rates

91

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

2

4

6

8

10

12

14

16

18

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=500 W=8

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=250 W=8

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=100 W=8

(c)

Figure 7.13: Emitted tuples for W = 8 with varying rates

92

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

20

40

60

80

100

120

140

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=500 W=16

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

200

400

600

800

1000

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=250 W=16

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=100 W=16

(c)

Figure 7.14: Average execution time for W = 16 with varying rates

93

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

20

40

60

80

100

120

W
in

d
o
w

 s
iz

e

Window size over time. R=500 W=16

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

350

W
in

d
o
w

 s
iz

e

Window size over time. R=250 W=16

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

500

1000

1500

2000

2500

W
in

d
o
w

 s
iz

e

Window size over time. R=100 W=16

(c)

Figure 7.15: Number of tuples inside the window for W = 16 with varying rates

94

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

5

10

15

20

25

30

35

40

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=500 W=16

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

20

40

60

80

100

120

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=250 W=16

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

500

1000

1500

2000

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=100 W=16

(c)

Figure 7.16: Incoming tuples for W = 16 with varying rates

95

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

10

20

30

40

50

60

70

80

90

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=500 W=16

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

350

400

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=250 W=16

(b)

0 10 20 30 40 50 60 70 80
Time (s)

0

5000

10000

15000

20000

25000

30000

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=100 W=16

(c)

Figure 7.17: Emitted tuples for W = 16 with varying rates

96

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=500 W=32

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=250 W=32

(b)

0 5 10 15 20 25 30 35 40
Time (s)

0

2000

4000

6000

8000

10000

12000

A
v
g
 e

x
e
c

ti
m

e
 (

m
s)

Average exec time over time. R=100 W=32

(c)

Figure 7.18: Average execution time for W = 32 with varying rates

97

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

W
in

d
o
w

 s
iz

e

Window size over time. R=500 W=32

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

200

400

600

800

1000

1200

W
in

d
o
w

 s
iz

e

Window size over time. R=250 W=32

(b)

0 5 10 15 20 25 30 35 40
Time (s)

0

200

400

600

800

1000

1200

1400

1600

W
in

d
o
w

 s
iz

e

Window size over time. R=100 W=32

(c)

Figure 7.19: Number of tuples inside the window for W = 32 with varying rates

98

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

10

20

30

40

50

60

70

80

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=500 W=32

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=250 W=32

(b)

0 5 10 15 20 25 30 35 40
Time (s)

0

200

400

600

800

1000

1200

In
co

m
in

g
 t

u
p
le

s

of incoming tuples over time. R=100 W=32

(c)

Figure 7.20: Incoming tuples for W = 32 with varying rates

99

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

10

20

30

40

50

60

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=500 W=32

(a)

0 10 20 30 40 50 60 70 80
Time (s)

0

500

1000

1500

2000

2500

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=250 W=32

(b)

0 5 10 15 20 25 30 35 40
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

T
u
p
le

s
e
m

it
te

d

Number of emitted tuples over time. R=100 W=32

(c)

Figure 7.21: Emitted tuples for W = 32 with varying rates

100

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

7.5.4 Time of optimization analysis

Below we presented a set of graphs with two plots, where the total number of incoming
tuples is represented as the blue line, and the total number of acked tuples is presented as
the green one. In this analysis we view the number of acked tuples for one operator as the
total number of fully processed tuple by the same operator. Thus, if one is able to observe
a significant difference between the number of incoming and acked tuples over time. One
can tell if a query is lagging and therefore in need of an optimization.

Recall from Figure 7.18 presented in Section 7.5.3 that the query with
W = 32, R = {100, 250} was under-performing, and notice the corresponding graphs in
Figure 7.24. We can clearly see that the number of incoming tuples exceeds the number
of acked tuples by far. Using the graphs presented we can confirm that theory of when to
optimize presented in Section 6.4 works in practice.

101

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

200

400

600

800

1000

T
u
p
le

s

Incoming and acked tuples over time. R=500 W=8

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

T
u
p
le

s

Incoming and acked tuples over time. R=250 W=8

0 10 20 30 40 50 60 70 80
Time (s)

0

5000

10000

15000

20000

25000

30000

T
u
p
le

s

Incoming and acked tuples over time. R=100 W=8

Figure 7.22: Emitted tuples for W = 8 with varying rates

102

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

T
u
p
le

s

Incoming and acked tuples over time. R=500 W=16

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

T
u
p
le

s

Incoming and acked tuples over time. R=250 W=16

0 2 4 6 8 10 12 14 16
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

T
u
p
le

s

Incoming and acked tuples over time. R=100 W=16

Figure 7.23: Emitted tuples for W = 16 with varying rates

103

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

500

1000

1500

2000

2500

3000

3500

T
u
p
le

s

Incoming and acked tuples over time. R=500 W=32

0 10 20 30 40 50 60 70 80
Time (s)

0

2000

4000

6000

8000

10000

12000

T
u
p
le

s

Incoming and acked tuples over time. R=250 W=32

0 1 2 3 4 5 6 7 8
Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
u
p
le

s

Incoming and acked tuples over time. R=100 W=32

Figure 7.24: Emitted tuples for W = 32 with varying rates

104

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

7.5.5 Results of query tree optimization

To analyze the effect of the query tree optimization we have plotted graphs that show the
number of acked tuples before and after optimization. Figure 7.25 displays this for join
order optimization, where the blue line represent the topology before optimization and the
red one after. Figure 7.26 shows the execution time for the same cases as Figure 7.25.

What we try to achieve with the join order optimization is to order the operators in the
relational algebra tree from low to high selectivity such that the operators with low selectivity
gets executed first. When operators with high selectivity are executed before those with
lower selectivity, we will see a spike in the number of acked tuples early on in the execution.
We have achieved the desired result in the test cases where the number of acked tuples is
higher before optimization than after, early on in the execution.

We can see that in three of the cases, {R = 500, W = 16, M = 1}, {R = 250, W =

8, M = 1} and {R = 100, W = 8, M = 1} we get a clear indication of improvement when
join order optimization is applied. In one of the cases, {R = 500, W = 8, M = 1} we
observe the opposite effect, and in the rest of the cases the number of acked tuples are
approximately the same.

If we look at the execution time, Figure 7.26, for the same three cases, we can see
that we have a corresponding spike in execution time. Optimally, we would like to either
have the same execution time, or lower execution time for the optimized trees. We did
not achieve that for all the cases, but there are a couple of reasons that can explain that
behavior:

1. We are using a rather naive sampling method that simply takes the 400 first tuples
from each source. Sampling only the first tuples from the source is however feasible
in our testing environment, as the data is coming from random data generators,
and we do not expect any significant changes in the characteristics of the data.
In a production environment, random sampling should be applied to capture any
characteristic changes.

2. We are using a greedy algorithm for the select order. The greedy algorithm will not
explore the whole search space available. Applying another algorithm, for instance a
algorithm using dynamic programming can result in more stable results.

Nonetheless, the takeaway from that the order of join operators have a huge impact on
the performance of the topology, and the order needs to be re-validated continuously to
achieve the best optimization results.

105

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

0 10 20 30 40 50 60 70 80
Time (s)

0

2000

4000

6000

8000

10000

12000

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=500 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

6000

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=250 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

5000

10000

15000

20000

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=100 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

6000

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=500 W=16 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

200

400

600

800

1000

1200
A

ck
e
d
 T

u
p
le

s
Total number of tuples acked. R=250 W=16 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

100

200

300

400

500

600

700

800

900

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=100 W=16 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

500

1000

1500

2000

2500

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=500 W=32 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

100

200

300

400

500

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=250 W=32 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

100

200

300

400

500

600

700

800

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=100 W=32 M=1

Figure 7.25: Total acked tuples over time before and after optimization

106

CHAPTER 7. PERFORMANCE EVALUATION 7.5. RESULTS AND ANALYSIS

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

6000

7000

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=500 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

200

400

600

800

1000

1200

1400

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=250 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=100 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

500

1000

1500

2000

2500

3000

3500

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=500 W=16 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

350

400
A

v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=250 W=16 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

20

40

60

80

100

120

140

160

180

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=100 W=16 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

250

300

350

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=500 W=32 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

10

20

30

40

50

60

70

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=250 W=32 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

20

40

60

80

100

120

140

A
v
g
 e

x
e
c.

 t
im

e
 (

m
s)

Total number of tuples acked. R=100 W=32 M=1

Figure 7.26: Execution time in ms over time before (blue) and after (red) optimization

Figure 7.27 shows the optimization of select operators. The blue line represent no
optimization, red shows select order optimization, green shows when the select operators
are merged together, and black shows when they are merged and ordered internally. The
graphs on the left shows the execution time, and the right shows the number of acked
tuples.

First, we need to point out that select operators does not produce any new tuples. So
the only difference we can have in the number of acked tuples are when we reduce the
number of operators. We can see that the number of acked tuples is lower when we merge
the operators together, and it results in fewer ack-messages sent over the network which in
turn reduces the network traffic.

When we look at the execution time graphs, we can see that there are no visible
significant decrease in execution time between the unoptimized and the select order
optimized query. This is mainly because the select operator is a cheap operator with a
runtime complexity of O(1) relative to the input size.

107

7.5. RESULTS AND ANALYSIS CHAPTER 7. PERFORMANCE EVALUATION

Next, we can compare no optimization with the merged version. Here we see a
substantial decrease in execution time. Where the un-optimized version averages around
17ms with R = 50, 40ms with R = 25, and 60ms with R = 10, the merged version averages
around 7ms, 12ms and 25ms.

Finally, comparing the merged and select-merged optimizations, there are no substantial
difference. As we pointed out earlier, the running time of the select operator is too low to
give an impact.

The takeaway from this analysis is the overhead associated with each node in the
topology. By merging cheap operators together the total execution time goes down, and
should be applied. But changing the order of select nodes has low-to-none impact on the
execution time.

108

CHAPTER 7. PERFORMANCE EVALUATION 7.6. CONCLUDING REMARKS

0 10 20 30 40 50 60 70 80
Time (s)

0

10

20

30

40

50

60
A

v
e
ra

g
e
 e

x
e
u
ct

io
n
 t

im
e
 (

m
s)

Total number of tuples acked. R=50 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

20

40

60

80

100

A
v
e
ra

g
e
 e

x
e
u
ct

io
n
 t

im
e
 (

m
s)

Total number of tuples acked. R=25 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

50

100

150

200

A
v
e
ra

g
e
 e

x
e
u
ct

io
n
 t

im
e
 (

m
s)

Total number of tuples acked. R=10 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

500

1000

1500

2000

2500

3000

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=50 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

1000

2000

3000

4000

5000

6000

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=25 W=8 M=1

0 10 20 30 40 50 60 70 80
Time (s)

0

2000

4000

6000

8000

10000

12000

14000

A
ck

e
d
 T

u
p
le

s

Total number of tuples acked. R=10 W=8 M=1

Figure 7.27: Execution time over time before and after optimization.

7.6 Concluding Remarks

Parallel optimization The results from Section 7.5.1 shows us that increasing parallelism
can be used to achieve better system performance. More specifically, the results indicates
that by increasing the parallelism hint for an operator would result in a decrease of the
average execution time for that operator. We can use the analysis provided to propose a

109

7.6. CONCLUDING REMARKS CHAPTER 7. PERFORMANCE EVALUATION

proper way of choosing parallelism hints for an operator while optimizing for parallelism.
Notice that the most naive algorithm presented in Algorithm 7 for estimating the needed

level of parallelism will slowly converge to the ideal parallelism hint, if and only if it does not
get stuck in a non-optimal local minima. If a local minima is found and it does not satisfy
the T > Et condition, the algorithm will keep returning the same parallelism hint and never
progress towards a potentially better performance. If no local minima is found we can
observe that this algorithm will continue to increase the parallelism hint until it will find the
global minima. As we can see from the analysis of Chapter 7.5.1 this algorithm will get
stuck at a local minima undesirably often.

The next algorithm presented in Algorithm 10 has the same advantage as the naive
one presented earlier. The main difference between these algorithms is that the latter will
try to guess the ideal parallelism hint. Skipping the most naive increases in the level of
desired parallelism. However, since this algorithm cannot go backwards, and by trying to
guess a larger parallelism hint one might skip the a local minima that will satisfy the T > Et

condition, and even skipping a global minima, resulting in a sub-optimal level of parallelism.
As we clearly can observe from the graphs presented in Section 7.5.1 we see that the

system can have a global minima in average execution time at a parallelism hint less than
maximum level of parallelism. Thus, an algorithm that is able to determine a parallelism
hint that provide a good enough local, potentially global, minima in execution time is indeed
desirable. Such an algorithm must be able to store history of average execution time for
different parallelism hints tried and choose the one that results in the largest performance
gain, not for each operator individually but for the system as a whole.

Window size and tick rate In Section 7.5.4 we looked at how the window size, incoming
tuples, and emitted tuples affected the average execution time of an operator. We observed
that it was the window size that affected the average execution time the most. We also
propose that reducing the window size for queries under heavy load. Because of accuracy
it might not be appropriate to reduce the window size adaptively. Therefore, assuming
windows are time-based, an increase of parallelism for one or more operators under heavy
load will effectively reduce the number of tuples inside the window of an operator. However,
if this is not possible a user can either explicitly decrease the window size or increasing the
tick rate. By increasing the tick rate a user is sacrificing response time for accuracy. While
decreasing the window size one sacrifices accuracy for response time.

Time of optimization Section 7.5.4 gives us a clear indication that the theory behind
when to optimize presented in Section 6.4 works. This results shows that by having access
to the number of incoming and acked tuples for an operator over time one can successfully
determine if either an operator solely or the query is in need of an optimization. In the
former case one can determine if an operation is a candidate for parallelism optimization.
In the latter case one can determine if the query is a candidate for query optimizations.

110

CHAPTER 7. PERFORMANCE EVALUATION 7.6. CONCLUDING REMARKS

Join operator order The results of the join operator order optimization in Section 7.5.5
showed that the re-ordering had a huge impact on the execution time. However, using
a good sampling technique and algorithm for creating the join order are important. In
the tests we have used a naive sampling method, and a greedy select order algorithm.
They have worked well for our test cases, but for a production environment where the
characteristics of the data in the stream can change, an adaptive sampling method should
be applied.

Select order and merge The results of the select order optimization tests in Section
7.5.5 shows us that the order of selects have little to none impact on the execution time.
On the other hand, the merge optimization shows us that there are a lot of overhead
for each bolt in the topology. When we merged the select bolts the execution time got
reduced drastically. The overhead comes from the cost of scheduling tasks, spawning extra
processes and sending tuples over network. Note that the network cost is not included in
Figure 7.27, so the actual overhead is larger than the one presented in the graphs.

The takeaway is that cheap operations should be merged together to reduce the
overhead in the topology, and therefore reducing the execution time. Care must be taken if
you try to merge more expensive operations such as joins, and one must weight up the
cost versus the benefit from such a optimization. An analysis of merging more expensive
operators is out of the scope of this thesis.

111

7.6. CONCLUDING REMARKS CHAPTER 7. PERFORMANCE EVALUATION

112

Chapter 8

Conclusion and further work

8.1 Conclusion

In the fall of 2012 we created Raincoat, a high-level framework based upon Storm. Raincoat
had no optimization when the first prototype was developed. In this thesis we wanted
to look into the field of query optimization, and explore how existing query optimization
techniques could be applied to it, as well as exploring what optimizations could be done
within the Storm framework. This led us to the following research questions:

RQ1 How can we determine the cost of a Storm topology, and how can we use that data
to optimize the topology?

RQ2 Which methods exists in the field of query optimization, and can they be translated
into our domain?

RQ3 When should the system perform optimization on the topology?

RQ4 How should we dedicate and fully utilize the resources we have available to the
topology?

In order to answer these questions, we gained an overview of the query optimization
field. Based on the state of the art research, we decided to implement an adaptive query
optimizer in Raincoat. The optimizer checks at a fixed interval if the system is in need of an
optimization by comparing the ratio between incoming tuples and processed tuples. The
aim of the optimizer is to ensure that the system is able to process inputted queries in such
a way that the user does not experience any latency. The optimization is divided in two
phases. The first phase performs optimization on a relational algebra tree, where a cost
model is used as a basis. The second phase is to dedicate enough resources to each
operator of a topology.

By investigating the parallelism capabilities of our system we naturally observed that
heavy operators clearly gained more performance than lightweight operators such as selec-
tion when they were parallelized. Also, an interesting observation is that selection operators

113

8.2. FURTHER WORK CHAPTER 8. CONCLUSION AND FURTHER WORK

have a larger performance gain when adding machines while increasing parallelism hint.
This observation was not as present when trying to parallelize join operators.

We observe that incrementally increasing parallelism hint could cause operators to get
stuck in a local minima. The algorithms we have proposed in Section 6.5.5 will not be
able to get past a local minima to find a parallelism hint sufficiently high for the system to
perform optimally.

From testing the optimization on the relational algebra tree we found that changing the
select order have little to none impact on the execution time. However, merging the select
operators gave us a substantial performance boosts, so the overhead introduced by each
bolt in a Storm topology affect the overall execution time of the system, and an optimizer
should aim to minimize this overhead. The order of join operators did have a huge impact
the execution time of the system, and care must be taken to use a sampling method that
reflects the properties of the system.

In our analysis of the time of optimization we found that using the ratio between incoming
and fully processed tuples is a valid heuristic. As this heuristic is based on the cardinality
of tuples in the system, it can be applied to other data-stream management systems.

One aspect we have not focused on in our research is the impact the window size has
on a running topology. The query optimizer can only reduce the execution time to a certain
level, and the ratio between the window size and tuple input rate will determine the lower
bound of the execution time of a topology.

Even though we were not able to implement all the aspects of the system discussed
in Chapter 5 and 6, we were able to implement and evaluate key features of our system.
We believe our contribution lies within our following three main findings (1) the algorithm
for finding an ideal level of parallelism for a running operator, (2) our different approach
on query optimization techniques compared to other DSMS, and (3) when to perform
optimization.

8.2 Further work

Although a lot of aspects and issues of adaptive query optimization have been addressed
in this master thesis, there are still some issues that we didn’t have time to work on. This
final section presents our thoughts on what can be done to improve Raincoat.

8.2.1 Query optimization

We have designed the optimizer to apply optimization in a pipelined fashion. So it is
easy to add and replace optimization techniques. We have presented a way to do each
optimization, but there exists other known methods in the field of query optimization that
can be implemented in Raincoat, and there might be different situations where different
optimization techniques might be better. Also, we have not addressed operator optimization
at all. There has been a lot of research in this field, and existing techniques can be applied
to Raincoat.

114

CHAPTER 8. CONCLUSION AND FURTHER WORK 8.2. FURTHER WORK

8.2.2 Custom task scheduler

Storm is a very versatile framework, which allows the user of the framework to control how
the resources in the cluster is used. Exploring how to create a custom task scheduler and
the effects of creating such a task scheduler should be done.

Another optimization in the Storm framework, is to create a custom fields grouping
module. The fields grouping controls how tuples are routed inside the topology.

8.2.3 Resources

Resource usage is a issue that we have not focused on. In this thesis, we have assumed a
fix number of nodes in the cluster. The effects of automatically adding and removing nodes
in the cluster should be explored, as it can be of economic interest.

Another resource usage we have discussed but not handled is memory issues. A
technique for handling the memory usage in nodes, against the window sizes should
be implemented, so that Raincoat does not lose important data without the user being
informed.

As mentioned in Section 6.6, the adaptive algorithm is only able to increase the number
of workers, not decrease in situations where they are not needed anymore. An technique
to minimize the worker usage should be applied.

8.2.4 Expanding raincoat

In the current state of Raincoat, it only supports select-project-join queries. In order for
Raincoat to be useful in a production setting, it needs to support a larger subset of SQL,
including operators such as group by, top-k, nested queries, the like operator etc. By
expanding the language, Raincoat needs other optimization techniques to handle the new
features.

115

8.2. FURTHER WORK CHAPTER 8. CONCLUSION AND FURTHER WORK

116

Appendix A

Storm

Full code example of word count in Storm. The examples are taken from the storm-starter
project on Github 1

RandomSentenceSpout.java

1 package storm.starter.spout;
2

3 import backtype.storm.spout.SpoutOutputCollector;
4 import backtype.storm.task.TopologyContext;
5 import backtype.storm.topology.OutputFieldsDeclarer;
6 import backtype.storm.topology.base.BaseRichSpout;
7 import backtype.storm.tuple.Fields;
8 import backtype.storm.tuple.Values;
9 import backtype.storm.utils.Utils;

10 import java.util.Map;
11 import java.util.Random;
12

13 public class RandomSentenceSpout extends BaseRichSpout {
14 SpoutOutputCollector _collector;
15 Random _rand;
16

17

18 @Override
19 public void open(Map conf, TopologyContext context,
20 SpoutOutputCollector collector) {
21 _collector = collector;
22 _rand = new Random();
23 }
24

25 @Override
26 public void nextTuple() {
27 Utils.sleep(100);
28 String[] sentences = new String[] {
29 "the cow jumped over the moon",
30 "an apple a day keeps the doctor away",

1https://github.com/nathanmarz/storm-starter

117

APPENDIX A. STORM

31 "four score and seven years ago",
32 "snow white and the seven dwarfs",
33 "i am at two with nature"};
34 String sentence = sentences[_rand.nextInt(sentences.length)];
35 _collector.emit(new Values(sentence));
36 }
37

38 @Override
39 public void ack(Object id) {
40 }
41

42 @Override
43 public void fail(Object id) {
44 }
45

46 @Override
47 public void declareOutputFields(OutputFieldsDeclarer declarer) {
48 declarer.declare(new Fields("word"));
49 }
50

51 }

SplitSentence.py

1 import storm
2

3 class SplitSentenceBolt(storm.BasicBolt):
4 def process(self, tup):
5 words = tup.values[0].split(" ")
6 for word in words:
7 storm.emit([word])
8

9 SplitSentenceBolt().run()
10

WordCountToplogy.java

1 public class WordCountToplogy {
2 public static class SplitSentence extends ShellBolt implements IRichBolt {
3

4 public SplitSentence() {
5 super("python", "splitsentence.py");
6 }
7

8 @Override
9 public void declareOutputFields(OutputFieldsDeclarer declarer) {

10 declarer.declare(new Fields("word"));
11 }
12

13 @Override
14 public Map<String, Object> getComponentConfiguration() {
15 return null;

118

APPENDIX A. STORM

16 }
17 }
18

19 public static class WordCount extends BaseBasicBolt {
20 Map<String, Integer> counts = new HashMap<String, Integer>();
21

22 @Override
23 public void execute(Tuple tuple, BasicOutputCollector collector) {
24 String word = tuple.getString(0);
25 Integer count = counts.get(word);
26 if(count==null) count = 0;
27 count++;
28 counts.put(word, count);
29 collector.emit(new Values(word, count));
30 }
31

32 @Override
33 public void declareOutputFields(OutputFieldsDeclarer declarer) {
34 declarer.declare(new Fields("word", "count"));
35 }
36 }
37 public static void main(String[] args) throws Exception {
38 TopologyBuilder builder = new TopologyBuilder();
39 builder.setSpout("spout", new RandomSentenceSpout(), 5);
40 builder.setBolt("split", new SplitSentence(), 8)
41 .shuffleGrouping("spout");
42 builder.setBolt("count", new WordCount(), 12)
43 .fieldsGrouping("split", new Fields("word"));
44 Config conf = new Config();
45 conf.setDebug(true);
46 if(args!=null && args.length > 0) {
47 conf.setNumWorkers(3);
48 StormSubmitter.submitTopology(args[0], conf,
49 builder.createTopology());
50 } else {
51 conf.setMaxTaskParallelism(3);
52 LocalCluster cluster = new LocalCluster();
53 cluster.submitTopology("word-count", conf,
54 builder.createTopology());
55 Thread.sleep(10000);
56 cluster.shutdown();
57 }
58 }
59 }

119

APPENDIX A. STORM

120

Bibliography

[1] Daniel Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey,
C Erwin, Eduardo Galvez, M Hatoun, Anurag Maskey, Alex Rasin, et al. Aurora: a data
stream management system. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 666–666. ACM, 2003.

[2] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito,
Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. Stream: The stanford data
stream management system. Book chapter, 2004.

[3] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,
JN Gray, Patricia P. Griffiths, W Frank King, Raymond A. Lorie, Paul R. McJones,
James W. Mehl, et al. System r: relational approach to database management. ACM
Transactions on Database Systems (TODS), 1(2):97–137, 1976.

[4] R. Avnur and J.M. Hellerstein. Eddies: Continuously adaptive query processing. ACM
SIGMoD Record, 29(2):261–272, 2000.

[5] Brian Babcock and Surajit Chaudhuri. Towards a robust query optimizer: a principled
and practical approach. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 119–130. ACM, 2005.

[6] Brian Babcock, Mayur Datar, and Rajeev Motwani. Sampling from a moving window
over streaming data. In Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 633–634. Society for Industrial and Applied Mathemat-
ics, 2002.

[7] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom. Adaptive ordering
of pipelined stream filters. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 407–418. ACM, 2004.

[8] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. Horizontal data partitioning in
database design. In Proceedings of the 1982 ACM SIGMOD international conference
on Management of data, pages 128–136. ACM, 1982.

[9] U. Cetintemel, D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, M. Cherni-
ack, J. Hwang, W. Lindner, S. Madden, A. Maskey, et al. The Aurora and Borealis

121

BIBLIOGRAPHY BIBLIOGRAPHY

Stream Processing Engines. Data Stream Management: Processing High-Speed
Data Streams„ Springer-Verlag, 2006.

[10] S. Chandrasekaran and M.J. Franklin. PSoup: a system for streaming queries over
streaming data. The VLDB Journal, 12(2):140–156, 2003.

[11] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha Aragonda,
Vera Lychagina, Yonghee Kwon, and Michael Wong. Tenzing a sql implementation on
the mapreduce framework. PVLDB, 4(12):1318–1327, 2011.

[12] S. Chaudhuri. An overview of query optimization in relational systems. In Proceed-
ings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 34–43. ACM, 1998.

[13] Ming-Syan Chen, Philip S. Yu, and Kun-Lung Wu. Optimization of parallel execution
for multi-join queries. Knowledge and Data Engineering, IEEE Transactions on, 8(3):
416–428, 1996.

[14] Edgar Frank Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 26(1):64–69, 1983.

[15] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A stream
database for network applications. In Proceedings of the 2003 ACM SIGMOD inter-
national conference on Management of data, pages 647–651. ACM, 2003.

[16] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[17] E. Dumbill. Planning for Big Data. O’Reilly Media, 2012.

[18] Michael J Franklin, Björn Thór Jónsson, and Donald Kossmann. Performance tradeoffs
for client-server query processing. In ACM SIGMOD Record, volume 25, pages 149–
160. ACM, 1996.

[19] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel execution.
In ACM SIGMOD Record, volume 21, pages 9–18. ACM, 1992.

[20] L. Golab and M. T. Özsu. Data Stream Managment. Morgan & Claypool Publishers,
2010.

[21] Lukasz Golab and M Tamer Özsu. Issues in data stream management. ACM Sigmod
Record, 32(2):5–14, 2003.

[22] K. Gronnbeck and S. Stenersen. Raincoat: Framework for declarative storm.

[23] Jon Olav Hauglid and Kjetil Nørvåg. Proqid: partial restarts of queries in distributed
databases. In Proceedings of the 17th ACM conference on Information and knowl-
edge management, pages 1251–1260. ACM, 2008.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[24] Y.E. Ioannidis and V. Poosala. Balancing histogram optimality and practicality for
query result size estimation. ACM SIGMOD Record, 24(2):233–244, 1995.

[25] ISO ISO. Iec 9075: 1999: Information technology| database languages| sql. Interna-
tional Organization for Standardization, 1999.

[26] Z.G. Ives, A.Y. Halevy, and D.S. Weld. Adapting to source properties in processing
data integration queries. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 395–406. ACM, 2004.

[27] N. Kabra and D.J. DeWitt. Efficient mid-query re-optimization of sub-optimal query
execution plans. In ACM SIGMOD Record, volume 27, pages 106–117. ACM, 1998.

[28] Jaewoo Kang, Jeffrey F Naughton, and Stratis D Viglas. Evaluating window joins
over unbounded streams. In Data Engineering, 2003. Proceedings. 19th International
Conference on, pages 341–352. IEEE, 2003.

[29] W. Lam, L. Liu, STS Prasad, A. Rajaraman, Z. Vacheri, and A.H. Doan. Muppet:
MapReduce-style processing of fast data. Proceedings of the VLDB Endowment, 5
(12):1814–1825, 2012.

[30] Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yongqiang He, and Xiaodong Zhang.
Ysmart: Yet another sql-to-mapreduce translator. In Distributed Computing Systems
(ICDCS), 2011 31st International Conference on, pages 25–36. IEEE, 2011.

[31] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query
processing, resource management, and approximation in a data stream management
system. CIDR, 2003.

[32] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4: Distributed
stream computing platform. In Data Mining Workshops (ICDMW), 2010 IEEE Inter-
national Conference on, pages 170–177. IEEE, 2010.

[33] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data
algorithms for high-quality clustering. In Data Engineering, 2002. Proceedings. 18th
International Conference on, pages 685 –694, 2002. doi: 10.1109/ICDE.2002.994785.

[34] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-
foreign language for data processing. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1099–1110. ACM, 2008.

[35] Raghu Ramakrishnan and Johannes Gehrke. Database management systems.
Osborne/McGraw-Hill, 2000.

[36] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms
for multi query optimization. In ACM SIGMOD Record, volume 29, pages 249–260.
ACM, 2000.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[37] Sangeetha Seshadri, Vibhore Kumar, and Brian F Cooper. Optimizing multiple
queries in distributed data stream systems. In Data Engineering Workshops, 2006.
Proceedings. 22nd International Conference on, pages 25–25. IEEE, 2006.

[38] J.A. Stankovic et al. Real-time computing. Invited paper, BYTE, pp.(155-160), 1992.

[39] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Optimizing join orders.
Citeseer, 1993.

[40] Mark Sullivan. Tribeca: A stream database manager for network traffic analysis.
In Proceedings of the International Conference on Very Large Data Bases, pages
594–594. INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS (IEEE),
1996.

[41] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathemati-
cal Software (TOMS), 11(1):37–57, 1985.

[42] C.A. Waldspurger and W.E. Weihl. Lottery scheduling: Flexible proportional-share
resource management. In Proceedings of the 1st USENIX conference on Operating
Systems Design and Implementation, page 1. USENIX Association, 1994.

[43] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query optimization for
massively parallel data processing. In Proceedings of the 2nd ACM Symposium on
Cloud Computing, page 12. ACM, 2011.

[44] Y. Zhu, E.A. Rundensteiner, and G.T. Heineman. Dynamic plan migration for continu-
ous queries over data streams. In International Conference on Management of Data:
Proceedings of the 2004 ACM SIGMOD international conference on Management of
data, volume 13, pages 431–442, 2004.

124

	Contents
	Abbreviations
	Introduction
	Motivation
	Goals and research questions
	Outline

	Background
	Big data
	 Volume, velocity & variety
	Streaming data
	Batch vs real-time

	Database systems
	Relational database management system
	Data-stream management system
	Distributed query systems
	Distributed data-stream management system

	MapReduce
	Introduction
	Programming model
	Execution

	Windows

	State of the art
	Traditional query optimizing
	Adaptive query optimizing
	Adaptive query optimization on traditional queries
	Eddies
	Common sub-queries

	Distributed query optimization
	Parallel query execution
	Distributed queries
	Parallel distributed query execution

	Cardinality estimation
	Histograms
	Self-tuning histograms
	Sampling
	Reservoir sampling

	Query plan structure
	Join order plan generation

	Frameworks used
	Storm
	Concepts
	Architecture
	Life cycle of a topology
	Configuring Storm topologies

	Raincoat
	Architecture
	Query plan structure
	Adaptive query optimization
	Language syntax
	Similar work

	Design decisions
	Message semantics
	Operator algorithms
	Join algorithm
	Windows

	Network resources
	State transition
	Windows & memory
	Connecting topologies
	Merging sub-topologies
	Separate topologies

	Joining static data

	Query optimization
	Challenges and problem space
	Optimizer requirements
	Challenges
	Problem space

	Cost model
	Order of operation
	Distributed costs
	Parallelism
	Parameters
	Cost formula

	Cost of swapping topologies
	Moving state strategy

	When to optimize
	Query environment
	Optimization time

	Optimization strategies
	Pre-optimization
	Join order optimization
	Storm optimization
	Select order and merging of operators
	Distributed optimization

	Adaptive optimization

	Performance evaluation
	Testing approach
	Test environment
	Test problem description
	Test plan
	Log records
	Test variables
	Test cases

	Results and analysis
	Results of parallel optimizations for joins
	Results of parallel optimizations for selects
	Analyzing operator behavior over time
	Time of optimization analysis
	Results of query tree optimization

	Concluding Remarks

	Conclusion and further work
	Conclusion
	Further work
	Query optimization
	Custom task scheduler
	Resources
	Expanding raincoat

	Appendices
	Storm
	Bibliography

