
Evaluation of Telecom Operator Enabled
Internet Telephony by Creating a
Proof-of-Concept Web Application

Thomas Bruun

Master of Science in Computer Science

Supervisor: John Krogstie, IDI
Co-supervisor: Svein Yngvar Willassen, Telenor Comoyo AS

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Preface

The task in this thesis is to evaluate the entry of traditional telecommunication

operator services on the internet. This will be done by creating a proof-of-concept

web telephony application, allowing users to place phone calls using an application

programming interface provided by the Norwegian operator Telenor. The task

shall be completed according to the design science research method.

I wish to thank my supervisor John Krogstie at the Department of Computer

and Information Science, Norwegian University of Science and Technology for his

guidance throughout the work of this thesis. I would also like to thank my company

supervisor Svein Willassen at Telenor Comoyo AS, for his help in shaping the scope

of this thesis. Finally, I owe an enormous amount of gratitude to Sergey Zyrianov

at Comoyo, for implementing the missing features on the server side of Talk+, and

for guiding me through the world of voice and networking.

Abstract

Since the beginning of the 21st century, telecommunication operators have wit-

nessed the arrival of internet services that are increasingly taking over traditional

voice and messaging markets. Some operators are realizing that they need to bring

their traditional services to the internet, in order to keep up with the modern con-

sumer. In this thesis, I create an application allowing phone calls to be placed from

an internet browser using a customer’s existing phone number. The application ex-

tends the existing service Talk+, currently developed as native phone applications

by Telenor Comoyo AS. The planning and implementation is conducted by exam-

ining modern technologies available to web developers, and by utilizing these in a

JavaScript application. The application is evaluated using a set of requirements

derived from the existing implementation of Talk+ for iPhone.

The result is a working browser telephony application for outgoing calls, with

the same quality of voice and delay as on a cellular phone. The thesis therefore

concludes that it is possible to create such an application with the technology

available, but underlines that the technology is at an early stage, and that it lacks

the support from several large browser vendors.

Oppsummering

Siden starten p̊a det 21. århundre har telefonoperatører vært vitne til at et økende

antall internettjenester tar over for tradisjonelle tale- og meldingstjenester. Enkelte

operatører innser at de er nødt til å tilby sine tradisjonelle tjenester p̊a internett

for å kunne tilfredstille den moderne forbrukeren. I denne hovedoppgaven lager

jeg en applikasjon som muliggjør telefoni fra en nettleser, med en kundes eksis-

terende telefonnummer. Applikasjonen bygger p̊a den den eksisterende tjenesten

Talk+, som for tiden utvikles som en mobilapplikasjon av Telenor Comoyo AS.

Planleggingen og implementasjonen blir utført ved å undersøke moderne webte-

knologier som er tilgjengelige, og ved å bruke disse i en JavaScript-applikasjon.

Applikasjonen blir utviklet ut fra et sett med krav som er basert p̊a den eksis-

terende implementasjonen av Talk+ til iPhone.

Resultatet er en fungerende telefoniapplikasjon for utg̊aende samtaler, med den

samme kvaliteten p̊a stemme og forsinkelser som mellom to mobiltelefoner. Denne

avhandlingen konkluderer derfor med at det er mulig å lage en slik applikasjon

med den tilgjengelig teknologien, men understreker at teknologien er p̊a et tidlig

stadium, og at den mangler støtte fra flere store nettleserprodusenter.

Contents

Preface i

Abstract ii

Oppsummering iii

List of Figures ix

Abbreviations xi

1 Introduction 1

1.1 Three research questions . 1

1.2 Motivation . 2

1.3 Thesis outline . 3

2 Background 5

2.1 Web standards . 5

2.1.1 Who defines the web? . 6

2.1.2 WebRTC . 6

2.1.3 WebSockets . 12

2.1.4 WebStorage . 12

2.2 The telecommunications industry 13

2.2.1 Evolution of telephony . 13

2.2.2 Combining old and new technology 14

3 Research Method 17

3.1 Design science . 17

3.2 Artifact & evaluation . 18

4 Requirements 19

4.1 Determining the requirements . 19

4.2 Functional requirements . 20

4.2.1 Requirements list . 20

4.2.2 Requirements details . 20

v

Contents vi

4.3 Non-functional requirements . 23

4.3.1 Requirements list . 23

4.3.2 Requirements details . 24

5 Architecture & Technology 27

5.1 Existing architecture . 27

5.1.1 Servers . 27

5.1.2 Native clients . 30

5.2 Talk+ web application . 31

5.2.1 Languages . 32

5.2.2 Authentication . 33

5.2.3 Signaling . 33

5.2.4 Storage . 33

5.2.5 Media transfer . 34

6 Implementation 35

6.1 Code . 35

6.1.1 AppController . 37

6.1.2 StorageHandler . 37

6.1.3 AppView . 37

6.1.4 ServerConnection & CommandHandler 38

6.1.5 MediaEngine . 39

7 Evaluation 45

7.1 Functional requirements . 45

7.2 Non-functional requirements . 49

8 Discussion & Conclusion 53

8.1 Discussion . 53

8.2 Conclusion . 54

8.3 Further work . 56

A Source Code 57

A.1 index.html . 57

A.2 app.css . 58

A.3 app.js . 59

A.4 storageHandler.js . 60

A.5 appView.js . 60

A.6 serverConnection.js . 62

A.7 commandHandler.js . 64

A.8 mediaEngine.js . 67

B Tests 71

Contents vii

Bibliography 73

List of Figures

2.1 Example workflow of WebRTC . 7

2.2 Example of two servers behind a router employing NAT 9

2.3 WebRTC implementation architecture 11

5.1 A simple overview of the Talk+ architecture 28

5.2 Signaling and media flow in the Talk+ service 30

5.3 The WebRTC core module . 31

6.1 Talk+ JavaScript classes, and how they interact with the browser
components . 36

6.2 Talk+ web application . 36

6.3 Talk+ authentication flow . 42

6.4 Talk+ call flow . 43

B.1 Tests results . 71

ix

Abbreviations

OTT Over-the-top

SMS Short Message Service

API Application Programming Interface

IP Internet Protocol

TCP Transmission Control Protocol

NAT Network Address Translation

STUN Session Traversal Utilities for NAT

TURN Traversal Using Relays around NAT

GTURN Google Traversal Using Relays around NAT

ICE Intercative Connectivity Establishment

SDP Session Description Protocol

SIP Session Initiation Protocol

HTTP HyperText Transfer Protocol

VoIP Voice over Internet Protocol

PSTN Public Switched Telephone Network

PLMN Public Land Mobile Network

WebRTC Web Real-Time Communication

W3C World Wide Web Consortium

IETF Internet Engineering Task Force

ITU International Telecommunication Union

DOM Document Object Model

HTML HyperText Markup Language

CSS Cascading Style Sheets

CU-RTC-Web Customizable, Ubiquitous

xi

Abbreviations xii

Real Time Communication over the Web

JSEP Javascript Session Establishment Protocol

ROAP RTCWeb Offer/Answer Protocol

Chapter 1

Introduction

Telecommunication operators have in the past few years witnessed the rise of third-

party over-the-top (OTT) applications, such as Skype and Whatsapp, who are

increasingly taking over the market for traditional telephony and Short Message

Service (SMS) messaging[1]. For a long time, the operators have been following

this trend passively. Some have now begun to explore the opportunities that lie in

the use of internet for communication, and have started offering services connecting

their traditional telecommunication infrastructure to the web.

1.1 Three research questions

The overall goal in this thesis is to evaluate the entry of traditional telecommu-

nication operator services on the internet. This is conducted by creating a proof-

of-concept internet telephony client for the use in desktop internet browsers. The

service is built on the existing service Talk+, which is developed by the Norwegian

operator Telenor.

1

Chapter 1. Introduction 2

Three research questions have been derived from the overall goal.

1. Is it technically possible to create the application?

2. Is the quality of the application good enough, compared to tradi-

tional telephony?

3. Is this a product that customers will use?

The main focus in this thesis are the technical aspects of the solution, such as

functionality and performance. A greater amount of attention will therefore be

given to the first two research questions, than to the user acceptance aspect in the

last question.

1.2 Motivation

The primary motivation for this thesis is to help bridge the gap between tradi-

tional telephony and internet communication. Telecommunication operators have

for too long distanced themselves from new, internet based, technologies, while

the younger generation of consumers have switched to cheaper, easier, and more

available means of communication[2]. The internet has come to stay, and unlike

the phone networks, it is borderless in most parts of the world.

A secondary motivation is interest in the open web platform. The web is not de-

fined by one company and its commercial interest, but by the technology commu-

nity working together towards open and free standards. The open web standards

allow a developer to create one application which will work on all major platforms,

without depending on the approval of a large cooperation with absolute control

over distribution.

Chapter 1. Introduction 3

1.3 Thesis outline

Chapter 2 presents some background on how the internet is evolving, and what

technologies are available to allow browser-based telephony. The same chapter

provides an introduction to the telecommunications industry, as well as examples

of some of the companies wanting to integrate their traditional telephony services

with the internet.

Chapter 3 presents the research method used in this thesis, identifies the artifact

to improve, and formalizes how that artifact will be evaluated. In Chapter 4, all

the requirements, both functional and non-functional, are developed and explained

in detail.

Chapter 5 first gives a detailed overview of the existing Talk+ architecture and

clients, and then presents the technology choices made for the web client. In

Chapter 6, the system implementation and design is detailed.

In Chapter 7, the implemented solution is evaluated, using a requirement ful-

fillment analysis. Lastly, in Chapter 8, a discussion is held, and a conclusion is

drawn by revisiting the research questions listed in Section 1.1. A brief discussion

on further work is also presented in the last chapter.

Chapter 2

Background

This chapter starts by presenting how the internet is evolving with the help of

cooperative standardization. Next, a closer look is taken at some modern web

standards, including Web Real-Time Communication (WebRTC), the technology

that some open web supporters are hoping will define the future of video and

audio communication[3]. Next, the chapter moves on to describe the past and

present situation in telecommunications, and how traditional services are start-

ing to merge with modern technology, using examples from telecommunication

operators around the world.

2.1 Web standards

Before starting on the architecture for the Talk+ web application, we need to

know, and understand, the environment in which it will be built. This section

starts by explaining how web standards are developed, and then moves on to look

at three web standards relevant for this thesis.

5

Chapter 2. Background 6

2.1.1 Who defines the web?

If a person downloads the latest version of the four most popular internet browsers,

chances are high that an arbitrary website will look and behave almost identical

in each of the browsers. All browser vendors, i.e. the companies who develop the

browsers, aim to implement the web standards designed by the World Wide Web

Consortium (W3C)[4]. These standards recommend what Application Program-

ming Interfaces (APIs) should be available, and their expected behavior, but they

do not dictate the implementation.

The vendors are not required to implement the standardized APIs. The goal of the

W3C is rather to develop standards using a consensus-based decision process, al-

lowing all vendors to participate in the debate. The process is long and thorough,

and will not be deeply detailed in this thesis. In short, standards, or recommen-

dations, are composed by working groups, which often include members from the

major browser vendors. The groups discuss and compose several official working

drafts. In between the working drafts, editor’s drafts are released with content

that reflects the latest development and discussions. In the end, if a consensus is

reached, a final recommendation is approved and published[5].

While the W3C define standardized APIs for browsers, the Internet Engineering

Task Force (IETF) define standards for lower-level protocols[6]. The combined

work done by the IETF and W3C is significant in the area of WebRTC, which will

be detailed in Section 2.1.2.

2.1.2 WebRTC

WebRTC is a project consisting of three main parts. The first two parts are

the browser API and protocol standardization processes, managed by the W3C

and the IETF. The third part is the implementation process, which is currently a

cooperation between Google, Mozilla and Opera[7]. This section starts by detailing

the overall architecture of the WebRTC technology, before briefly describing the

implementation process.

Chapter 2. Background 7

W3C standard

WebRTC is one of the newer W3C API proposals, and was originally introduced

by Google[8]. The purpose behind the WebRTC technology is to enable real-

time flow of media between two or more users, without the need for third-party

software. At the time of writing, the latest WebRTC API standards working draft

is from August 21st 2012[9], while the latest editor’s draft is from March 22nd

2013[3]. In the time between these two drafts there have been six other editor’s

drafts, indicating that there is still a large amount of activity in the work on this

standard.

Figure 2.1: Example workflow of WebRTC

Source: http://www.html5rocks.com/en/tutorials/webrtc/basics/

A use case often presented when presenting the technology, is audio or video

transfer between two users in each their own browser. Figure 2.1 is an example

of this workflow. The peer on the left, hereby referred to as the caller, wants to

initiate a conversation with the peer on the right, the callee. The process starts

with a procedure called signaling.

Chapter 2. Background 8

Signaling

Signaling is used for exchange of information between the peers, such as the user’s

wish to initiate or end a call, IP addresses, information about media capabilities,

and all other information the peers may need to exchange. How the signaling

messages are transferred is entirely up to the application. One of the available

methods for signaling transportation, is the WebSockets protocol. The protocol

is one of the more recent web standards, and will be further detailed in Section

2.1.3.

Although signaling is executed in the manner that the application wishes, there are

some steps that needs to be performed in order for media to start flowing between

the peers. The steps are described in IETF’s Javascript Session Establishment

Protocol (JSEP) document[10]. As previously mentioned, a conversation consists

of a caller and a callee. The first step involves the caller creating an offer for the

callee. The offer needs to contain a Session Description Protocol (SDP), which

includes all necessary information about the caller. Examples of information that

could be included in the SDP are IP addresses, media codec capabilities, and

encryption information. The offer is processed by the callee, matching it to its

own capabilities, and creates an answer, which is sent back to the caller. If the

information in the answer’s SDP is successfully processed by the caller, media

may begin transferring. This process is further detailed and depicted in Chapter

6, Implementation.

Networking

Signaling must be initiated using an intermediate server. However, one of the

principles of WebRTC is that the media shall be able to flow between the caller

and callee directly. Establishing a connection between two peers require some

knowledge of how the internet works. A frequent issue in networking, is discovering

a client’s public Internet Protocol (IP) address. IPv4, which is set to be replaced

by IPv6, is the old standard most frequently used on the internet today[11]. To

tackle the problem with IPv4 address scarcity, most office and home networks

employ the network address translation (NAT) process[12]. This process maps a

Chapter 2. Background 9

unique internal IP address for all devices on the same network, while only using

one public IP address, as depicted in Figure 2.2.

There are several different types of NAT, and this thesis does not go into detail

on how each works. For some NATs, the client may use a method called Session

Traversal Utilities for NAT (STUN) in order to discover the computer’s publicly

reachable IP address. STUN requires the client to send a request to a dedicated

STUN server, which returns the client’s public IP as seen from the outside. This

process requires very little traffic and load on the server. However, some type of

NATs do not support the use of STUN for IP discovery, because the external IP

will vary from each external observer. The IP discovered by STUN will therefore

not be valid. One solution to this problem is to use Traversal Using Relays around

NAT (TURN)[13]. TURN also uses a third party server, but in stead of using

the server for IP discovery, all data is relayed through it. In a setting where two

clients are exchanging media, this means a substantial load on the TURN server.

Figure 2.2: Example of two servers behind a router employing NAT

Source: http://wiki.mikrotik.com/wiki/Hairpin NAT

WebRTC uses a method called Interactive Connectivity Establishment (ICE) to

handle the issues of discoverability[14]. The purpose of ICE is to gather several

candidates, which is a set of transport addresses consisting of IP addresses and

ports. All candidates have been determined as possible connection points for

reaching the client. Examples of candidates are the public IP of the client’s router,

Chapter 2. Background 10

a combination of the public IP and a port mapped by the NAT to the client, and

an IP allocated from a TURN server. After the ICE candidate gathering process

is over, ICE will order the candidates according to an internal priority algorithm.

The goal of this ordering is to place the most direct route to the client first, and

routes through one or more relay servers last. After the ordering, the candidates

may be sent to the other peer through a signaling offer, and that peer will try each

candidate in the received order until it can establish a working connection.

Implementation

Implementation of WebRTC is divided into several areas, as depicted in Figure

2.3. The core component handling complexities such as video and audio encoding,

and media transfer, is developed jointly by a group of developers from, among

others, Google and Mozilla[7]. The component is open-source and may be used

by any browser vendor. This eases the implementation for the individual browser

vendors, since they will only need to implement the W3C WebRTC API, and not

the whole underlaying stack. The browser vendors work on the API implementa-

tion in a varying tempo. Depending on the browser a user has installed, and its

version number, a WebRTC application may not work as intended. Evaluations

of the browser implementation status, and the overall support for WebRTC, will

be performed in Chapter 7 and 8, respectively.

Chapter 2. Background 11

Figure 2.3: WebRTC implementation architecture

Source: http://www.webrtc.org/reference/architecture

Chapter 2. Background 12

2.1.3 WebSockets

The HyperText Transfer Protocol (HTTP) request-response technique[15] is the

standard method for a browser to send and retrieve data from a website. For

every request sent to the server, a corresponding response is expected. The server

can not send data to the browser whenever it wishes to do so. Applications

developed for other platforms than the browser often solve this limitation using

a Transmission Control Protocol (TCP) socket, which allows for both ends of

the connection to send data at any time. TCP is a widely accepted protocol

for transporting information over the internet, but is not implemented as a web

standard, as is therefore not available to developers of web applications. This

limitation is challenged by WebSockets.

The WebSockets API allow browsers to establish an always-on connection to a

server. The WebSockets protocol is built on top of TCP, hiding its complexities

from the web developers by allowing them to send whole messages, in stead of

packets[16][17]. Having an open socket to a server allows for two-way communi-

cation with minimum delay, which may in turn increase performance in real-time

communication applications. The WebSockets standard was releases as a candi-

date recommendation in September 2012[17].

2.1.4 WebStorage

Websites have been able to store information on the client’s computer for a long

time by using cookies [18]. Cookies are small key-value files which may store any

textual information that the website wishes. When the user visits the same site at

a later time, the content of the cookie is sent to the website with each request. If

the information stored is primarily needed for client-side use, the use of a cookie

will send unnecessary amounts of data to the server. Browsers limit cookie access

to the website that created the cookie. This limit exists for security reasons, as

the cookie may contain sensitive information about the user on that website.

Chapter 2. Background 13

Modern browser standards have introduced other means of storing data on the

client. The web standard Web Storage details a key-value storage method, simi-

larly to cookies, in which the content is stored locally[19]. One of the Web Storage

APIs implemented in most modern browsers, is localStorage. One way in which

localStorage differs from cookies, is that its content is not passed on to the web

server with every request. In a situation where the whole contact list of a user is

stored locally in order to quickly retrieve it at a later time, storing it in a cookie

would potentially mean a lot of data transferred to the web server with every

request.

2.2 The telecommunications industry

2.2.1 Evolution of telephony

Telecommunication is a large field in engineering, and has changed tremendously

since its birth in the 19th century[20]. This section concentrates on the state of

voice communication in the current century.

Traditional telephony

Up until the 2003 launch of the voice communication software Skype[21], to call

someone usually referred to the use of a phone over the public switched telephone

network (PSTN) or public land mobile network (PLMN), commonly known as the

landline and cellular networks. In 2003, internet chat and e-mail had existed for

several years, but household internet connections had not the capacity to transfer

audio back and forth with good enough quality and latency.

Internet telephony

As internet access became faster and more available, Voice over Internet Protocol

(VoIP) solutions emerged. First out was the internet providers themselves, who

offered household phones connected to the internet, rather than to the analogue

Chapter 2. Background 14

PSTN[22]. This meant that the phone traffic could be sent as IP packets as far

as possible, before it eventually was switched over to the PSTN and the receiving

party. This eased the load on the operators’ phone networks, as they only needed

to use the PSTN on the last transport leg.

VoIP services continued to expand with the entry of closed-network protocols,

such as Skype, which was one of the first successful proprietary VoIP softwares[21].

These protocols are closed-source, allowing only applications approved by the net-

work’s owner to access it. In recent years, effort has been made to create open-

network protocols, allowing multiple proprietary clients to communicate. The

standardization of WebRTC is one such effort.

2.2.2 Combining old and new technology

Telecommunication operators are noticing the increasing customer migration from

traditional telephony to internet-based audio and text communication[1]. Now,

rather than just having to compete within the same industry, the operators have to

think differently in order to hold on to the market. One of the areas some of these

operators are now investing money and engineering resources into, is combining

their traditional voice systems with modern internet services. This section lists

some of the operators who are actively pursuing this new direction.

Telenor

Telenor is a Norwegian telecommunication operator with a long history in telecom-

munication. Established in 1855 by the Norwegian government under the name

Telegrafverket, it is now a worldwide operator with over 170 million mobile sub-

scriptions, and 34.000 employees[23][24].

Telenor Comoyo AS, hereby referred to as Comoyo, is an independent subsidiary

of Telenor[1]. The company was founded in January 2011, and its purpose is

to develop internet services for the consumer market in Telenor. Telenor has

tasked Comoyo with creating a internet-oriented telephony service, which they

Chapter 2. Background 15

have named Talk+. The service is aimed at Telenor customers who want to use the

internet to call from their personal telephone number to any other phone number.

Development on Talk+ is divided into work on server and client components. On

the server side, Comoyo receives traffic from all clients, and translates it into the

standardized Session Initiation Protocol (SIP) protocol for communicating with

the Telenor telephony infrastructure[25]. In order to make communication between

client and server as consistent as possible, all clients must use WebRTC for media

transfer.

Telefonica

Telefonica is a Spanish operator with customers in Europe and South America,

and operates under the brand names O2 and Movistar. In February 2013, under

the O2 flag, they released a service called TU Go in the United Kingdom[26]. It

allows the customer to make phone calls and send SMS from their own number,

using their existing Telefonica price plan. The service is currently launched as

applications for the mobile operating systems iPhone and Android, as well as the

Windows desktop platform.

AT&T

The American telecommunication operator AT&T has existed since the monopoly

on telephony in the United States in the 19th century. Serving just over 100 million

customers in the United States in 2012, it is the second largest operator in the

country[27][28].

AT&T has chosen a somewhat different direction than Telefonica and Telenor. In

February 2013, the American operator released the alpha version of a developer

library allowing developers to develop web applications with built-in call func-

tionality. The users logs in with an access key unique to every AT&T customer,

and proceeds to call using his or her subscription. Their solution also uses the

previously mentioned WebRTC technology[29].

Chapter 3

Research Method

This chapter starts by describing the research method chosen for this thesis. It

then moves on to identify what the research shall produce, and how it will be

evaluated.

3.1 Design science

The research method applied in this thesis is design science research. The main

idea in this research paradigm is to take an existing kernel theory, find a related

organizational problem, and try solve the problem using an innovative informa-

tion technology artifact. The artifact may range from a concrete product, to an

informal description[30].

In Design Science in Information Systems Research[30], the authors provide a set

of seven guidelines for design science research. The guidelines are intended to help

understand, execute, and evaluate the research performed. Guideline 1 and 2 were

mentioned above, stating that the research must produce an artifact to a known

problem. Guideline 3 states that the evaluation of the resulting artifact must

thoroughly prove its utility, quality, and efficacy. This is achieved by using well-

executed evaluation methods, supported by well-defined metrics. The evaluation

methods used in this thesis are detailed later in the chapter.

17

Chapter 3. Research Method 18

Guideline 4 states that there must be a clear research contribution. In this the-

sis, the design artifact itself can be considered a research contribution, as it adds

experience to the knowledge base. In guideline 5, it is required that both the con-

struction and evaluation of the artifact is performed rigorously, while still keeping

it relevant to the research. Guideline 6 establishes that design is a search process,

aimed at finding an effective solution to a problem. It describes the search process

as iterative, in which the researcher generate a proposed solution, tests it, and

uses the results to generate a new solution. Finally, guideline 7 states that the

research must be presentable to both technology aware and management-oriented

audiences. For both audiences, the research must show how they may apply the

described artifact.

3.2 Artifact & evaluation

Following the design science guidelines, the goal of this thesis is to start with an

existing product, and extend its capabilities with help of new technologies. In the

context of this thesis, the organization is the telecommunication operator Telenor.

The problem Telenor is facing, is that internet services are increasingly expanding

into their traditional market with cheaper, more available products.

The proposed solution, or artifact, is identified as an internet hosted Talk+ web

application, offering the same functionality as the native clients, built entirely on

open web technologies. In Chapter 4, the specific requirements for the application

will be detailed. The artifact is to be built as a proof-of-concept application, not

a commercially ready product.

The evaluation of the artifact will be performed by first using a requirement fulfill-

ment analysis in Chapter 7. In the analysis, each requirement from Chapter 4 will

be compared to the finished product. An overall conclusion on the completeness

of the artifact will be drawn in Chapter 8.

Chapter 4

Requirements

This chapter outlays the requirements to the Talk+ web application. The first

section details how the requirements have been developed. The following two

sections lists and details both the functional and non-functional requirements.

4.1 Determining the requirements

The only formally stated requirements from Comoyo have been that the system

should be enable to perform a call from the browser to an arbitrary Norwegian

phone number, and that it should use the WebRTC technology.

In addition to these two requirements, the beta version of the Talk+ iPhone ap-

plication has been examined, resulting in a list of features relevant for the web

application. These features have been chosen using a black box observation ap-

proach, meaning that they were chosen without looking at the application’s code.

It is important to note that the requirements for the Talk+ web application in

this thesis, are developed for a prototype application, and not for commercial use.

In the event of a commercialization of the application, new requirements should

be developed.

19

Chapter 4. Requirements 20

4.2 Functional requirements

A functional requirement describes what a system is required to do. Relating

the requirements to the research questions asked in Chapter 1, the functional

requirements shall provide an answer to the first question: Is it technically

possible to create the application?

4.2.1 Requirements list

ID Requirement

R1 The user shall be able to log in using Comoyo credentials

R2 The system shall be able to capture input from the user’s microphone

R3 The system shall be able to transfer audio from the user to the server

R4 The system shall be able to receive an audio stream from the server

R5 The system shall be able to play back a received audio stream to the user

R6 The user shall be able to perform an outgoing call to a Norwegian phone number

R7 The system shall inform the user when the server rejects a phone number

R8 The user shall be able to perform an outgoing call to a Comoyo user

R9 The system shall inform the user when the server rejects a username

R10 The system shall inform the user if an invalid phone number or username is entered

R11 The user shall be able to place a call to a test number

R12 The user shall be able to view the call log

R13 The application shall inform the user of how much the call is costing

R14 The user shall be able to end the call

4.2.2 Requirements details

R1 - The user shall be able to log in using Comoyo credentials

One of the services Comoyo is creating for Telenor is an global authentication

service. This service aims to give one set of credentials to Telenor customers in all

of its operating countries, for use with all Telenor services. A customer’s account

is directly tied to its phone subscription. Comoyo Talk+ is one of the first services

integrating with the authentication service, and it is vital for the web application

Chapter 4. Requirements 21

to support it as well. Without it, the user will not be allowed to perform phone

calls.

R2-R5 Audio capture, transfer, and playback

Requirements R2 to R5 address the issues of sending and receiving audio between

the client and the Comoyo backend. For a viable calling experience to take place,

it is not satisfactory if any of these requirements are unfulfilled.

R6 - The user shall be able to perform an outgoing call to a Norwegian

phone number

Requirement R6 states that the user should be able to call to a Norwegian number.

The server backend of Talk+ will stop any conversation trying to call a foreign

number, or a number connected to a service with special calling rates. Requirement

R10 addresses the issue of blocking such numbers in the client.

R7 - The system shall inform the user when the server rejects a phone

number

Requirement R7 requires the system to provide the user with feedback if the server

rejects a phone number. At this time in the design of the system, it is unknown if

the server will provide such specific feedback.

R8 - The user shall be able to perform an outgoing call to a Comoyo

user

Similar to requirement R6, this requirement expects the user to be able to call

another Comoyo user’s username. If the user has a phone subscription connected

to the account, the call will be forwarded to the corresponding phone number.

The Comoyo username is required to be in the form of an e-mail address.

R9 - The system shall inform the user when the server rejects a user-

name

Chapter 4. Requirements 22

Requirement R9 requires the system to provide the user with feedback if the server

rejects a username. At this time in the design of the system, it is unknown if the

server will provide such specific feedback.

R10 - The system shall inform the user if an invalid phone number or

username is entered

The server is expected to contain logic for handling invalid input. However, in

order to ease the load on the server, and decrease the response time for the user,

the client should perform some simple validation of the user’s input. A Norwegian

phone number is known to be a 8-digit number, optionally prefixed by the country

code, +47. The Comoyo username is expected to be a valid e-mail address, and

is therefore possible to validate.

R11 - The user shall be able to place a call to a test number

The Talk+ iPhone application gives the user the opportunity to place a test call

in order to verify that the service is working. The web application should also

allow the user to do the same.

R12 - The user shall be able to view the call log

Users of mobile phones have come to expect that all outgoing and incoming calls

are placed in a call log. The call log shall note when the call took place, who the

call was with, and how long it lasted. The call log should be persistent, allowing

the user to access the log on different computers, and in different browsers on the

same computer.

R13 - The application shall inform the user of how much the call is

costing

In the current state of implementation, the Talk+ service does not subtract from

the calling minutes included in the user’s subscription. This is currently a technical

restriction, which requires all users to pre-purchase credit used for calling. It is

therefore a requirement that the application informs the user on how much the

Chapter 4. Requirements 23

current call is costing per minute, and how much the call has currently cost. After

the call is over, the user must also be informed of how much the total cost of the

conversation was.

R14 - The user shall be able to end the call

After having initiated a call, the user shall be able to end the call both before and

after the call has been answered. When the user ends the call, the remote party

shall no longer hear audio from the user’s microphone.

4.3 Non-functional requirements

Functional requirements formalize the expected functionality in a system, but not

how the system is expected to operate. To fill this gap one may use a set of non-

functional requirements. A non-functional requirement describes how a system is

required to behave or perform. The following non-functional requirements shall be

used to answer the second research question asked in Chapter 1: Is the quality

of the application good enough?

In telecommunications, the clients have little or no control over the transmission

delay, connection to the server, and audio quality. Many of the following non-

functional requirements address such areas. Those requirements should be viewed

as a measure of how the Talk+ service is performing as a whole, not solely in the

web application.

4.3.1 Requirements list

ID Requirement

F1 The user shall be able to call using the three most popular internet browsers

F2 The user shall be able to hold a five minute call without losing connection

F3 The participants shall not experience noticeable voice transmission delays

F4 The time from a call is started to media flow has begun, must not exceed 11 seconds

F5 The system shall establish calls with a success rate of 90%

Chapter 4. Requirements 24

4.3.2 Requirements details

F1 - The user shall be able to call using the three most popular internet

browsers

When creating a web application, a developer will normally test whether the web-

site looks and behaves the same across all the major browsers. A user should not

have to use a specific browser when visiting a web site, which should also apply to

the Talk+ web application. In the scope of this thesis, only the three most used

browsers will be considered. According to StatCounter, those browsers are Google

Chrome, Microsoft Internet Explorer, and Mozilla Firefox[31].

F2 - The user shall be able to hold a five minute call without losing

connection

As a measure of stability and quality of the service, the user shall be able to hold

a five minute conversation without losing the phone connection, given that the

underlaying network connection is stable.

F3 - The participants shall not experience noticeable voice transmission

delays

An important topic in voice communication is voice delay. According to a Interna-

tional Telecommunication Union (ITU) recommendation document, 400 millisec-

onds is regarded as an upper threshold for voice delay. The ITU is the United

Nations specialized agency for information and communication technologies. The

recommendation states:

“While delays above 400 ms are unacceptable for general network planning pur-

poses, it is recognized that in some exceptional cases this limit will be exceeded.”[32]

An upper limit of what voice delay is acceptable in the application should therefore

be set at 400 ms. A problem arises with measuring this delay. 400 milliseconds

is a short time, and should be measured automatically. This would require the

ability to measure on both the phone and in the web application, which requires

Chapter 4. Requirements 25

equipment too sophisticated given the scope of this thesis. In order to have voice

delay included as a requirement, a subjective metric was chosen. The test will

be performed by comparing the delay in Talk+, to the delay between two mobile

phones.

F4 - The time from a call is started to media flow has begun, must not

exceed 11 seconds

Unlike voice transmission delay, the delay described in this requirement is mea-

surable in the web client. In the context of this thesis, the user is said to initiate

a call when the user submits the phone number or username in the client. Media

flow is said to begin when the browser initiates playback of the remote audio. The

timestamp of both events can be recorded, and the time difference automatically

calculated.

There is no readily available statistics or requirements from the ITU on the delay

described above. In order to arrive at a justifiable requirement, a series of calls

where placed from one cellular phone to another. Half the calls were performed

from the first phone, and the other half from the second phone. Both phones

were using the same operator, and the calls were performed in the same area.

The delay was manually measured using stopwatch software on a computer. After

eight phone calls, the average delay was measured to 11 seconds.

F5 - The system shall establish calls with a success rate of 90%

A successful call is defined as a call that is established by the user, accepted by

the callee, and provides remote audio in both ends of the call.

Chapter 5

Architecture & Technology

This chapter consist of two parts. The first part details the existing architecture

of the Talk+ service on the server side, how the web application will have to

interact with the servers in order to function, as well as a brief introduction to the

architecture of the existing clients. The second part of this chapter is dedicated to

planning the Talk+ web application. Server interaction and technology choices are

addressed, before the next chapter details the implementation of the application.

5.1 Existing architecture

5.1.1 Servers

In order for a call to be placed from a Talk+ client to a phone, several backend

components must be used. Some are required by the WebRTC standard, others are

specific to the requirements of Talk+. This section examines the components used,

without exposing sensitive information about the components’ inner functionality.

Figure 5.1 provides a simplified overview of the components, and how they interact.

27

Chapter 5. Architecture & Technology 28

Figure 5.1: A simple overview of the Talk+ architecture

As detailed in Chapter 2, WebRTC requires a signaling mechanism in order to

set up a connection between two peers. Comoyo uses one endpoint for signaling

in all of its communications products. Although the service is used for several

other purposes, such as authentication, SMS sending, and contacts retrieval, this

thesis refers to it as the signaling server, for simplicity. The signaling server may

communicate with native desktop and mobile applications, browser applications,

and other platforms which supports communication over the supported protocols.

The server supports communication through both a TCP socket, and using Web-

Sockets, as presented in Section 2.1.3.

Chapter 2 briefly described how WebRTC is built for allowing direct media com-

munication between clients. In Talk+, the callee is a node on the PSTN, which

does not use the WebRTC protocol. Therefore, there must exists a way for media

to be gathered by Comoyo, and relayed to the phone. For this purpose, Comoyo

Chapter 5. Architecture & Technology 29

uses a relay server, for which they issue a username and password per user session.

The existing Talk+ clients, which will be detailed in Section 5.1.2, are sending

media to this server.

The relay server has a direct connection to the Telenor SIP Trunk, in which all

digital voice signals are forwarded to the Telenor PSTN. From the SIP Trunk,

the signal is handled by Telenor, leaving the relay server as the endpoint for the

Talk+ server infrastructure. The flow of events from the browser to the phone is

depicted in Figure 5.2.

According to the WebRTC specification, connecting to a relay using credentials

should be performed using the TURN mechanism, as described in Section 2.1.2.

However, when the Talk+ project began, TURN was not a part of the specification,

so the clients used a similar mechanism, called Google TURN (GTURN), which

is not available in the web API. Therefore, TURN support had to be added in

the Comoyo relay server before the implementation of the Talk+ web application

could begin.

Chapter 5. Architecture & Technology 30

Figure 5.2: Signaling and media flow in the Talk+ service

5.1.2 Native clients

At the time of writing, there are two Talk+ clients in a closed testing phase. One

is an application for Google’s Android operating system, and the other is devel-

oped for Apple’s iOS platform. Clients for desktop operating systems are currently

under development. The clients are all developed in the native programming lan-

guage of their respective operating system, while they share one core component.

This component contains the WebRTC core module from the open-source project

presented in Section 2.1.2, and implements its own, non-standard, API on top of

this core. The API may used by the various clients, the same way a web application

would interact with the W3C standardized API.

The version of WebRTC core used in the Talk+ clients is a forked version from

2012. A forked version means that the code is copied into a separate project, and

Chapter 5. Architecture & Technology 31

maintained separately. Later changes in the original code will not automatically

be transferred to the forked code. Figure 5.3 shows how the Talk+ clients are using

a detached version of WebRTC. This workflow is well suited for Comoyo, as they

do not need to worry about clients using different WebRTC versions. This control

is lost when implementing a web browser version of the application. Although the

browser vendors use the same core, their individual API implementations available

to the web developers may not be consistent, as explained in Section 2.1.1.

Figure 5.3: The WebRTC core module

5.2 Talk+ web application

This section discusses the technology choices for the browser-based implementation

of Talk+. Chapter 6 details how these technologies are used and organized in the

code.

Chapter 5. Architecture & Technology 32

5.2.1 Languages

Hyper-Text Markup Language

Hyper-Text Markup Language (HTML) is a formal markup language used to de-

scribe the content and structure of a website. It is defined by the W3C, and is

accepted by all internet browsers[33]. All modern browsers support version 4 of

HTML, but since 2007, W3C has been working on the next version, often referred

to as HTML5. The HTML5 standard was completed in 2012, and several browsers

have implemented most of the specification[34].

Cascading Style Sheets

Cascading Style Sheets (CSS) is used for styling of the various elements in the

HTML[35]. This includes colors, positioning, hiding elements, to mention just a

few of the uses of CSS. Chapter 4 specifies no requirements to the layout or visual

style of the application. Therefore, only a small amount of CSS will be used in

order for the application to have a visual expression.

JavaScript

When writing applications for use in browsers, the common approach is to use

the JavaScript programming language. JavaScript is the native programming lan-

guage across all modern browsers, and implements the EcmaScript standard[36].

The language has direct access to the browser’s Web APIs, such as WebSockets

and WebRTC, as well as the website’s Document Object Model (DOM) for manip-

ulating its content[37]. Due to its tight integration with the browser, JavaScript

will be used in the implementation of this thesis’ artifact.

Alternative methods of writing applications for browsers are to rely on third-

party software in the browser, often referred to as plugins. Java Applets, Adobe

Flash, and Microsoft Silverlight are examples of plugins which may work in the

browser. The advantage of applications written for such software, is that they are,

unlike browsers, developed by one vendor, and will therefore perform the same

regardless of the browser. The software may also have access to deeper levels of

Chapter 5. Architecture & Technology 33

the user’s operating system, such as hardware and external storage[38]. A largely

debilitating factor of third-party plugins, is that they are not necessarily supported

by the browser or operating system that the user is using. For example, Apple

does not support the Flash or Silverlight plugins on their phones and tablets[39].

5.2.2 Authentication

Requirement R1 requires the application to allow authentication using Comoyo

credentials, as the user will not be able to perform calls until authentication has

taken place. The authentication process requires communication with the Comoyo

signaling server. In order for the user not being required to log in each time he

opens the application, there will also need to exist a way for the application to

store credentials. Sections 5.2.3 and 5.2.4 will plan the signaling and storage

components in the implementation.

5.2.3 Signaling

Section 5.1.1 establishes that the signaling server at Comoyo may communicate

either through a TCP socket, or a WebSockets connection. Since TCP is not

available as a web API (see Section 2.1.3), the Talk+ web application must rely on

WebSockets as the transportation protocol for communicating with the signaling

server. The WebSockets API is available in the latest version of the five most

popular desktop browsers[40], and is therefore not expected to cause significant

compatibility issues.

5.2.4 Storage

In the Talk+ web application requirements, detailed in Chapter 4, requirement R8

states that The user shall be able to view the call log. The call log of the user may,

with extensive use of the application, grow to be very large. It would not make

sense to pass this information on to the server at every request, while it still would

Chapter 5. Architecture & Technology 34

be preferable to have the information stored on the client in order to reduce load

time when accessing the application. With this requirement in mind, and the fact

that the browser compatibility for localStorage is very high[41], the conclusion is

that localStorage should be used for all persistence in the Talk+ web application.

5.2.5 Media transfer

In Chapter 2 it became clear that the architecture of Talk+ on the web would

need to use WebRTC for media transfer. In order for the application to exchange

media with the existing Talk+ backend, there are no alternatives. One of the

key differences between the use of WebRTC in the native clients and the web

application, is that the native clients all share the same implementation of the

API, while the web application will need to work on the most popular browsers,

in which the API implementations are unique.

Chapter 6

Implementation

This chapter details the final implementation of the Talk+ web application. Sec-

tion 6.1 starts by detailing the overall design of the system, and moves on to

explain the different classes in detail.

6.1 Code

All client side code is available in Appendix A. Figure 6.1 shows all the classes in

the project, how they are connected, as well as where the application interfaces

with the different browser components. The arrows indicate where the instance of

the class resides. The dotted lines from a class to a browser component specifies

that the class is the owner of the component. The figure presents the goal that

every browser component in use shall be directly handled by one responsible class.

For example, if a class wants to send a message over WebSockets to the signaling

server, the message must be passed to the ServerConnection class.

35

Chapter 6. Implementation 36

Figure 6.1: Talk+ JavaScript classes, and how they interact with the browser
components

The implemented solution is a single-page HTML5-dependent web application.

This means that the application only has one HTML file, and that all changes

to the content or structure on the web page are achieved through the use of

JavaScript. A single-page solution is beneficial for an application which relies

heavily on JavaScript, since there are no page refreshes that will reset the state of

variables. The HTML and CSS used in the application may be viewed in Appendix

A.1 and A.2, respectively. Figure 6.2 shows the user interface for the implemented

application.

Figure 6.2: Talk+ web application

Chapter 6. Implementation 37

The classes described in this section work together in providing a working service

to the user. In order to visualize how the classes are connected, two common use

cases have been depicted as sequence diagrams. Figure 6.3 (page 42) shows the

flow of data between classes during authentication. In order to simplify the figure,

the storage class has been left out. Similarly, Figure 6.4 depicts the flow of events

and data when a user initiates a phone call from the application.

6.1.1 AppController

The AppController class, listed in Appendix A.3, is the base class of the applica-

tion. Its sole responsibility is to host the controllers for storage, server communi-

cation, and media transfer, as well as the application’s view. The AppController

is instantiated at the root level of the application. Most browsers treat the win-

dow object as the root object. Thus, when the AppController is instantiated, it is

automatically attached to the window object.

6.1.2 StorageHandler

In Chapter 5, the decision was made to use localStorage for persistence. The

StorageHandler class, listed in Appendix A.4, wraps around the localStorage API,

while exposing the same functions for setting and retrieving data. The class ex-

tends localStorage with the ability to store some values in memory, in addition

to on disk, for faster retrieval. In order to accomplish in-memory storage, the

StorageHandler class adds the value to a local variable. When retrieving a value,

the class first check if the value is already stored in a variable, and falls back to

querying the localStorage.

6.1.3 AppView

The AppView is the only component of the application that is allowed to read or

write to the DOM (see Appendix A.5). All other classes should call the appropriate

Chapter 6. Implementation 38

AppView function if they wish to access a DOM element, or if they wish to alter

either the layout, structure, or content of the web page. The most important

function of the class is to react to the user’s actions. When the user logs in,

submits a number, ends a call, or presses any other button, the AppView captures

the event, and forwards the action to the appropriate class.

6.1.4 ServerConnection & CommandHandler

The ServerConnection class, shown in Appendix A.6, has several responsibilities.

Its main responsibility is to maintain the WebSockets connection to the signaling

server. This includes opening the connection, and sending regular empty messages

to the server in order to keep the connection open. The class is also responsible for

parsing incoming, and formating outgoing, messages. When another class wants

to send a message on the socket, it must call the ServerConnection sendMessage

function with a command name, and an object containing the message body. The

function formats the command, and its content, in the structure required by the

server, and emits the message on the socket.

When a message arrives on the socket from the server, the class’ onmessage func-

tion will parse the message, and retrieve its command name and attached data. If

a command name is successfully parsed, the function will try to invoke a function

with the same name in the CommandHandler class. For example, if the command

com.telenor.sw.footee.common.th.ClientRegistrationResponse is received, the on-

message function extracts the command name ClientRegistrationResponse, and

checks if CommandHandler has the function handleClientRegistrationResponse. If

the function exists, it is called with the data received from the server as a param-

eter.

In addition to handling the different incoming commands that are received on the

socket connection to the server, the CommandHandler class (see Appendix A.7) is

also responsible for building all outgoing commands, and forwarding them to the

ServerConnection class.

Chapter 6. Implementation 39

6.1.5 MediaEngine

The MediaEngine class, shown in Appendix A.8, is responsible for all aspects of

the WebRTC technology, making it a fairly large and complex class. The following

section summarizes the code, and does so based on the class functions.

Create RTCPeerConnection

The W3C standard defines the interface RTCPeerConnection[3], which the Me-

diaEngine instantiates to the variable peerConnection. As soon as the user is

authenticated, and the client has received the TURN server IP and credentials,

peerConnection instance is constructed. The RTCPeerConnection interface spec-

ifies several EventHandlers, which are functions developers may override. These

functions are later called by the browser, if a corresponding event occurs.

One of the events specified in the W3C standard, onicecandidate, is invoked when

a new ICE candidate is found. ICE candidates are, as defined in Section 2.1.2, sets

of IPs and ports that are possible routes to the local client from a remote client.

The onicecandidate EventHandler will also notify when the search for new ICE

candidates is complete. The implementation of the Talk+ web application will not

allow a call to be placed before all ICE candidates have been found. Therefore, if

a call is placed before the ICE gathering is complete, the call information may be

saved and automatically start when the application detects the last candidate.

Another important event handler that the implementation overrides, onaddstream,

is called when a remote stream is added to the peerConnection. The implementa-

tion forwards this stream to the AppView, which initiates playback of the stream

in the DOM.

Request microphone

After the peerConnection instance is created, the application will ask the user

permission to capture audio from the computer’s microphone. If the user grants

Chapter 6. Implementation 40

the application this permission, is continues by calling the MediaEngine class

function createOffer.

Create offer

The createOffer function encapsulates the corresponding function on the peerCon-

nection object. It starts by adding the microphone audio stream to the peerCon-

nection object, which is responsible for maintaining both the local and remote

streams. It then calls peerConnection’s createOffer function, and submits a suc-

cess function as a parameter, which is fired if the offer is successfully created. The

process of creating the offer is performed entirely the browser. The success func-

tion takes a RTCSessionDescription object as a parameter. This object contains

information on whether this is an offer or an answer, as well as the SDP (see

Section 2.1.1). The RTCSessionDescription object is added to peerConnection by

passing it to its setLocalDescription function.

Initiating call

The process of initiating a call starts with the creation and sending of a signaling

message. If the ICE gathering is complete, the startCall function creates a offer

signaling message, and includes the SDP of the local session description. There

are two other important attributes in an offer. The first attribute is named offer-

erSessionId, and is a unique call identifier. The attribute is therefore incremented

by the application if a new call is created. The second attribute is named sequence,

and starts with a value of 1 for every new offererSessionId. If a new offer or answer

is sent by the application during the same call session, the attribute is incremented

by 1.

The format of the signaling message is described by the RTCWeb Offer/Answer

Protocol (ROAP) protocol, which is the protocol recognized by the Comoyo sig-

naling server[42]. ROAP used to be the standard signaling protocol in WebRTC,

but has later been replaced by the JSEP (see Section 2.1.2), which allows for a

more free formating of signaling messages[43].

Chapter 6. Implementation 41

Ending call

Ending a call is simpler than the initiation, but the signaling message depends

on the state of the call. If the call has been initiated by an offer message, and

the client has received a signaling message indicating that the recipient’s phone is

ringing, then the previously mentioned offererSessionId must be included in the

message. If the call is initiated, and the recipient has answered, the call must be

shut down using a sessionToken. This token is received by the application together

with the signaling message stating that the call is answered.

Handle signaling message

All incoming messages from the Comoyo signaling server is decoded in the Com-

mandHandler class, as passed to MediaEngine’s handleSignalingInstantMessage

function. In a Talk+ call flow, the Comoyo server will emit one of the following

three message types: RINGING, ANSWER, or SHUTDOWN. The ringing mes-

sage does not contain any other useful information, and is simply used by the

MediaEngine to alert the AppView of a changed state. The same applies to the

shutdown message. When a message of this type is received, the AppView class

is signaled to stop the playback of remote audio. When an answer message is re-

ceived, it contains the remote party’s session description. This is submitted to the

peerConnection instance. If the SDP is correctly parsed, the browser will auto-

matically set up the media connection to the Comoyo server, and start transferring

media.

Chapter 6. Implementation 42

Figure 6.3: Talk+ authentication flow

Chapter 6. Implementation 43

Figure 6.4: Talk+ call flow

Chapter 7

Evaluation

This chapter presents the evaluation of the implemented artifact. The evaluation is

performed by determining which of the requirements stated in Chapter 4 that are

fulfilled. The requirements are tested using automatic measuring where possible,

and by using manual methods in the remaining cases. The results of tests involving

measurements are documented in Appendix B.

The requirements are specified in Chapter 4, and are split into functional and

non-functional requirements. This chapter addresses the requirements in the same

manner, starting with the functional requirements.

After the evaluation of each requirement type, a table summarizes the results by

using a color scheme. Green indicates that the requirements is fulfilled, while red

indicates that it is unfulfilled. Yellow is used to indicate partial fulfillment of the

requirement, or that some external factor impeded the implementation.

7.1 Functional requirements

R1 - The user shall be able to log in using Comoyo credentials

If the user is not logged in, the application displays a form in which the user may

enter his or her credentials. The credentials are sent to the Comoyo servers for

45

Chapter 7. Evaluation 46

verification. If the authentication is successful, the credentials form is hidden from

the user.

R2 - The system shall be able to capture input from the user’s micro-

phone

By using the standardized web API getUserMedia, the application requests access

to the user’s microphone. The feature was tested, and found to be working in

both Firefox and Chrome. An issue arose on systems where multiple input audio

devices were available, and the wrong device was selected in the browser settings.

After the setting was corrected, the issue was no longer observed.

R3 - The system shall be able to transfer audio from the user to the

server

By using a series of manual tests, in which calls were placed to a cellular phone,

it was verified that the client’s microphone audio was transfered to the phone, via

the Comoyo relay server.

R4 - The system shall be able to receive an audio stream from the server

By using the same test approach as R3, it was verified that the system received a

remote audio stream from the Comoyo relay server.

R5 - The system shall be able to play back a received audio stream to

the user

Requirement R5 is satisfied by the use of the HTML5 audio element. The browser

is not aware of audio output capabilities, nor the system volume. Audio play-

back may therefore appear not to work on some systems. Correcting this issue is

considered to be the user’s responsibility, and the requirement is therefore fulfilled.

R6 - The user shall be able to perform an outgoing call to a Norwegian

phone number

Chapter 7. Evaluation 47

At the time of writing, the Talk+ is in a closed testing phase, disabling access

to the service for normal Telenor subscribers. Given that the authenticated user

possesses the correct calling rights in the Comoyo backend, this requirement is

fulfilled. The first successful call from the web application was placed on March

20th, in the experimental version of Google Chrome. As of May 6th, two-way

dialog also works in the stable version of Chrome.

R7 - The system shall inform the user when the server rejects a phone

number

Whenever the server rejects the phone number, it returns a shutdown signaling

message. However, the message does not contain any information about why

the call was rejected. Various circumstances could cause a rejected call, such as

insufficient credit balance, an improperly formatted number, a blacklisted number,

or an internal server error. As a result, the web application only informs the user

that the call ended, without specifying the reason. The application therefore only

partially fulfills this requirement.

R8 - The user shall be able to perform an outgoing call to a Comoyo

user

The server accepts Comoyo usernames in the same way that it does with phone

numbers. Requirement R8 was therefore fulfilled by expanding the solution for

R6, allowing users to supply text in the recipient input field.

R9 - The system shall inform the user when the server rejects a user-

name

The server does not respond to non-existing usernames, leaving the application in

a waiting state. This behavior is considered to be a fault in the server backend.

One solution to the absence of response from the server, is to have an internal

timeout in the system, notifying the user to verify the supplied username, and to

try again. This alternative solution has not been implemented.

Chapter 7. Evaluation 48

R10 - The system shall inform the user if an invalid phone number or

username is entered

The user is only allowed to type in an 8-digit Norwegian phone number, or a

Comoyo username. The phone number is validated by removing any non-digits,

and subsequently testing if the length is eight digits. The test allows the number

to be prefixed by the Norwegian country code.

The Comoyo username is required to be in the form of an email address. The

format of an email address is defined by IETF[44], and the application verifies

that the submitted username conforms to this standard. If the submitted callee

is neither a valid phone number, nor an email, the application informs the user of

the invalid input.

R11 - The user shall be able to place a call to a test number

The application contains a button labeled Test call that, when pressed, places a

call to a predefined number. The purpose of the test number is to verify that a

connection is successfully established, and that remote media is received.

R12 - The user shall be able to view the call log

As of May 2013, the Comoyo signaling service does not offer a command for

retrieving the call log of a user account. It is up to the individual clients to save

the log locally, as is practiced by both the Android and iPhone native clients.

This presents an issue for the web application. One of the main advantages of

a web application, is that it is available globally, on any device, as long as the

browser supports the technologies used. However, locally persisted data will not

be available between the browsers. Until the Talk+ service provides a centralized

call log, the value of a call log in the Talk+ web application is very limited, and

has thus been left out of the current implementation.

R13 - The application shall inform the user of how much the call is

costing

Chapter 7. Evaluation 49

The Comoyo user account used to test the service during development is exempt

from call costs, and the server therefore does not announce any information about

cost to the client. It has therefore not been possible to examine the cost informa-

tion format normally sent by the server, and this has been left out of the current

implementation.

R14 - The user shall be able to end the call

There are two states in which a call can be ended by the client. The first state

occurs during the ringing phase, before the callee has answered. The second state

occurs during an active conversation. Ending calls in both states are supported

by the client.

Functional requirements overview

ID Requirement

R1 The user shall be able to log in using Comoyo credentials

R2 The system shall be able to capture input from the user’s microphone

R3 The system shall be able to transfer audio from the user to the server

R4 The system shall be able to receive an audio stream from the server

R5 The system shall be able to play back a received audio stream to the user

R6 The user shall be able to perform an outgoing call to a Norwegian phone number

R7 The system shall inform the user when the server rejects a phone number

R8 The user shall be able to perform an outgoing call to a Comoyo user

R9 The system shall inform the user when the server rejects a username

R10 The system shall inform the user if an invalid phone number or username is entered

R11 The user shall be able to place a call to a test number

R12 The user shall be able to view the call log

R13 The application shall inform the user of how much the call is costing

R14 The user shall be able to end the call

7.2 Non-functional requirements

F1 - The user shall be able to call using the three most popular internet

browsers

Chapter 7. Evaluation 50

As established in Section 4.3.2, the three most popular browsers today are Firefox,

Chrome, and Internet Explorer. Each browser is individually evaluated below.

Microsoft has, at the time of writing, not implemented WebRTC in their browser,

Internet Explorer. Critical to the W3C WebRTC standard, Microsoft is working

on an alternative proposal, named Customizable, Ubiquitous Real Time Commu-

nication over the Web (CU-RTC-Web)[45]. In March 2013, Microsoft released a

prototype implementation of CU-RTC-Web, as a plugin for Internet Explorer 10

in Windows, and Chrome on Mac OSX[46]. However, as CU-RTC-Web is an unof-

ficial standard, support for Internet Explorer was not considered while developing

the Talk+ web application.

When the implementation of the application began, the browser with the most

complete implementation of the WebRTC API was Google Chrome. At the time,

the most important difference between Chrome and Firefox, was that Chrome had

support for the TURN protocol (see Section 2.1.2). Chrome was therefore the first

browser to allow calling, and does so also in the latest stable release (Chrome 27).

Although Mozilla Firefox did not have support for TURN when the implementa-

tion started, it did have support for several of the APIs in the WebRTC standard,

although they were turned off by default. With this in mind, supporting Firefox

in the Talk+ web application was put on hold. After monitoring the activity in

Mozilla’s WebRTC team on a regular basis in the following months, TURN sup-

port in Firefox was added to their experimental nightly release in the last week of

April 2013. At that time, the development phase of the thesis was considered to

be concluded. Therefore, only minor attempts were made to adapt the application

for Firefox. These attempts proved unsuccessful.

F2 - The user shall be able to hold a five minute call without losing

connection

Several long conversations have been performed during the length of this project.

In the first working implementation of two-way calling, there was a limit of two

minute long calls imposed by the server. As soon as this limit was removed, several

Chapter 7. Evaluation 51

five minute conversations with a cellular phone have been performed, without the

loss of connection.

F3 - The participants shall not experience noticeable voice transmission

delays

As detailed in Section 4.3.2, measuring the voice transmission delay requires more

advanced equipment than deemed necessary for this thesis. A manual test, in

which several phone calls were placed from Talk+ to a mobile phone, were com-

pared to a series of calls made between two cellular phones. Talk+ was running

in the browser on a broadband connection. No noticeable difference in delay was

experienced. This delay is expected to increase if the internet connection is pro-

vided through a cellular network, or if the traffic on the broadband connection

from other applications or computers is high.

F4 - The time from a call is started to media flow has begun, must not

exceed 11 seconds

Three cases were considered: Calling the test number, an automated customer

service number, and a cellular phone.

The test number proved to be the most responsive, with an average delay of

0,33 seconds. The technical details of the test number is unknown to the author,

but an assumption can be made that the test call is optimized for fast response.

The second test was conducted by calling the call centers of five large Norwegian

businesses, all with automatic answering machines. All five answered within 3-5

seconds, with an average of 3,7.

The cellular phone proved to be the least responsive, with an average response time

of 10.87 seconds. This test included the need for a human to manually accept the

incoming call, which naturally added to the delay, although the call was accepted

as soon as the phone was ringing. It is reasonable to assume that the cellular

phone delay is caused by the increased complexity of call routing.

Chapter 7. Evaluation 52

The requirement of 11 seconds was manually measured using phone calls over the

cellular network. It is therefore reasonable to compare this delay, to the delay

measured from the web client to a cellular phone. Both tests averaged at the

same delay, and it is therefore concluded that the Talk+ web application performs

within the required delay limit.

F5 - The system shall establish calls with a success rate of 90%

This requirement was tested by performing ten phone calls from the application

to a cellular phone. In order to ensure thorough testing, all calls were placed

without reloading the application, and the calls alternated between being ended

on the phone and in the application. The test uncovered a flaw in the system, in

which the user could not place a new call if the previous call was terminated on

the phone. The issue was fixed, and further testing resulted in purely successful

calls.

Non-functional requirements overview

ID Requirement

F1 The user shall be able to call using the three most popular internet browsers

F2 The user shall be able to hold a five minute call without losing connection

F3 The participants shall not experience noticeable voice transmission delays

F4 The time from a call is started to media flow has begun, must not exceed 11 seconds

F5 The system shall establish calls with a success rate of 90%

Chapter 8

Discussion & Conclusion

This chapter begins by discussing the current support of the WebRTC standard,

and attempts to predict the future of this technology. Next, the research questions

from Chapter 1 are revisited, and then used to draw a conclusion to this thesis.

The chapter concludes by detailing how Comoyo expects to proceed with the work

performed in this thesis.

8.1 Discussion

According to usage statistics recorded by StatCounter, the top four browser ven-

dors, Microsoft, Apple, Mozilla, and Google, claim 97 per cent of the browser

market[31]. Out of these four, only the two latter are supporting the official

WebRTC standard proposal. Microsoft, who possesses about 28 per cent of the

market, believes the direction of the current standard is fundamentally wrong, and

have therefore proposed, and partially implemented, their own standard. In the

almost two years that the W3C has worked on the standard, Apple has not made

an official comment on it.

Mozilla and Google, with their 60 per cent of the market, of which 80 per cent are

using the latest browser version, are both working intensely on implementing the

latest WebRTC draft in their browsers. Both vendors are very open about their

53

Chapter 8. Discussion & Conclusion 54

implementation progress, and have managed to generate some media attention

during the Spring of 2013. In February, the companies co-authored a press release,

announcing that their independent implementations of the WebRTC API were

now able to communicate across their browsers. The news generated publicity

for both companies, which they used to encouraged developers to start building

applications that use the technology.

Microsoft is the owner of the VoIP service Skype, and therefore have an economic

incentive in proposing a standard allowing them to bring their existing service to

the browser. If that is the reason behind their counter-proposal, then it is not

likely that they will retract it in the near future.

In my view, Microsoft is a key missing partner needed in order for WebRTC to

become the de facto standard in browser media exchange. In order for Microsoft

to shift its support, it is likely that one of two scenarios should occur. In the

first scenario, Microsoft decides to retract their proposal, and start implementing

the current proposed API, without any external factors forcing the decision. It is

difficult to estimate the likeliness of this scenario, but from reading the discussions

in the W3C Working Group, it does not seem imminent.

In the second scenario, in which Microsoft refuses to retract its proposal, Mozilla

and Google must trust web developers to develop popular WebRTC services, while

disregarding that their product will only be supported in about half of the potential

customers’ browsers. If one or more highly successful services are created with the

WebRTC technology, the users of Microsoft and Apple’s browsers are likely to put

pressure on them to implement the same support. If they fail to listen to their

users, they may see many of them migrating away from their browsers.

8.2 Conclusion

Chapter 1 establishes three research questions for evaluating the entry of tradi-

tional telecommunication operator services on the internet. The questions were to

Chapter 8. Discussion & Conclusion 55

be answered by creating a proof-of-concept telephony client for the use in desktop

internet browsers. In this section, these research questions are addressed.

Is it technically possible to create the application?

In order to determine if the application was technically possible to create, a set of

functional requirements were developed. Ten out of the fourteen requirements are

considered fulfilled, one is not fulfilled, and the remaining three are either partially

fulfilled, or their fulfillment is impeded by an external factor. Although not all the

functional requirements have been satisfied, the application is able to establish a

call from a browser to a phone on the PSTN, which has been the overall technical

goal of this thesis.

Is the quality of the application good enough, compared to traditional

telephony?

In Section 4.3, a set of non-functional requirements were developed to provide

a qualitative evaluation of the application. Four out of the five requirements

are addressing factors such as the call delay, voice quality, and stability of the

application. These requirements are found to be fulfilled, and may therefore be

considered equal to, or better than, the quality of a traditional phone call.

The remaining requirement addresses the user’s freedom to perform calls from the

three most common browsers. Out of the three, only two browsers are supporting

the technology required to use the application. In the current state of implementa-

tion, the application will only work in one of these two browsers. This reduces the

availability for a substantial number of users, and must be viewed as a considerable

drawback for the quality of the application.

Is this a product that customers will use?

In its current state, Talk+ is not a service aimed at replacing the customer’s phone.

One of Telenor’s strategies is to promote the iPhone and Android applications as

services providing low calling rates when abroad. With the addition of a web

Chapter 8. Discussion & Conclusion 56

browser version of the product, traditional telephony is extended by allowing calls

to be placed from a desktop computer. The implemented solution is to be regarded

as a proof-of-concept application, and has therefore not been subject to any user

acceptance tests. However, without the freedom to call from an arbitrary browser,

it is difficult to expect a widespread use of the service.

8.3 Further work

Telenor Comoyo is investing considerable resources in the Talk+ service. After

being presented with the results in this thesis, some thoughts were given on possible

further work on a Talk+ browser application. In the long term, Comoyo’s vision is

to create a web-centric telephone that is able to receive incoming calls, browse the

user’s contact list, and eventually replace the traditional telephony application on

cellular phones.

In the short term, the application should be reimplemented with the intent of

creating a commercial product. The first step in achieving this is to create a set

of user requirements, which will be used, together with a set of user acceptance

tests, to determine if the product is ready for a commercial launch. Second, the

application must be reimplemented with a focus on writing maintainable, as well

as testable, code. The application should be browser agnostic, meaning that the

development is not be targeted towards one specific browser. Lastly, visual and

interaction designers should create a user interface design for the application, in

order to provide an optimal user experience.

Appendix A

Source Code

A.1 index.html

<!DOCTYPE html>

<html>

<head>

<link href="assets/css/app.css" type="text/css" rel="stylesheet">

<title>Talk+</title>

</head>

<body>

<header>

<h1>Talk+</h1>

<h3>Powered by Comoyo</h3>

</header>

<section id="content">

<h1 id="call_indicator">Call a number or user</h1>

<input type="text" name="callee"

placeholder="Enter phone number or username"></input>

<button id="testCall">Call test number</button>

<button id="endCall" hidden>Hang up</button>

<form id="login">

Email: <input name="username" type="email"></input>

Password: <input name="password" type="password"></input>

<input type="submit" value="Log in"/>

</form>

</section>

<!-- The audio element will eventually contain

57

Appendix A. Source Code 58

the remote user’s audio stream -->

<audio id="phone" src="null"></audio>

</body>

<!-- Load scripts last for loading performance -->

<script src="assets/js/lib/jquery-1.9.1.min.js"></script>

<script src="assets/js/storageHandler.js"></script>

<script src="assets/js/commandHandler.js"></script>

<script src="assets/js/serverConnection.js"></script>

<script src="assets/js/mediaEngine.js"></script>

<script src="assets/js/appView.js"></script>

<script src="assets/js/app.js"></script>

</html>

A.2 app.css

@font-face {

font-family: ComoyoRegular;

src: url(../fonts/ComoyoQuickRegular.ttf?);

}

body {

padding: 0;

margin: 0;

background: repeating-linear-gradient(45deg, black 4px, #303030 10px);

font-family: ComoyoRegular;

color: white;

}

header {

position: relative;

border-bottom: 30px green;

width: 100%;

margin: 0;

padding: 50px 0;

}

h1, h3 {

display: block;

text-align: center;

}

body > section {

background: linear-gradient(90deg, rgba(94, 94, 94, 0.9),

rgba(128, 128, 128, 0.9));

padding: 20px;

margin: 0 10%;

border-radius: 20px;

}

body > section > form {

text-align: center;

}

Appendix A. Source Code 59

body > section > ol {

display: block;

list-style: none;

}

body > section > ol > li {

font-size: 24pt;

padding: 10px;

}

body > section > ol > li > label {

float: left;

width: 350px;

height: 100%;

}

body > section > ol > li > input {

box-sizing: border-box;

border-radius: 10px;

border: none;

text-align: center;

font-size: 18pt;

width: 100%;

height: 50px;

}

body > section > ol > li > button {

font-size: 18pt;

text-align: center;

margin-left: 400px;

border-radius: 10px;

width: auto;

height: 50px;

}

A.3 app.js

(function() {

function AppController() {

this.serverConnection = new ServerConnection();

this.storage = new StorageHandler();

this.mediaEngine = new MediaEngine();

this.serverConnection.connect();

this.appView = new AppView();

this.callee = ’’;

}

app = new AppController();

})();

Appendix A. Source Code 60

A.4 storageHandler.js

function StorageHandler() {

this.sessionKey = null;

this.clientId = null;

this.userId = null;

this.store = window.localStorage;

}

StorageHandler.prototype.setItem = function(key, value, callback) {

this[key] = value;

this.store.setItem(key, value);

if (callback !== undefined) {

callback();

}

};

StorageHandler.prototype.getItem = function(key) {

var item;

// If we have already set this item, we use that one

if (this[key] !== null && this[key] !== undefined) {

return this[key];

}

// If the item is not set, we try to fetch it from storage

item = this.store.getItem(key);

if (item !== null && item !== ’’) {

this[key] = item;

return item;

}

// If the item is not set anywhere, we return null

return null;

}

A.5 appView.js

function AppView() {

var that=this;

$(’input[name="callee"]’).keypress(function(e){

if (e.which === 13) {

app.callee = e.currentTarget.value;

if (that.isValidInput(app.callee)) {

e.preventDefault();

console.log("Callee set to " + app.callee);

app.mediaEngine.startCall();

}

else {

that.stateChange(’INVALID’);

}

}

});

Appendix A. Source Code 61

$(’#login’).submit(function(e){

e.preventDefault();

app.storage.setItem(’username’,

e.currentTarget.elements.namedItem(’username’).value);

app.serverConnection.login(

e.currentTarget.elements.namedItem(’password’).value);

});

$(’#testCall’).click(function(e){

app.callee = ’+470047004700’;

app.mediaEngine.startCall();

$(’#testCall’).hide();

})

$(’#endCall’).click(function(e){

app.mediaEngine.endCall();

that.stateChange(’SHUTDOWN’);

})

}

AppView.prototype.isValidInput = function(callee) {

// First, check if the input is a valid phone number

var stripped_number = callee.replace(/[^0-9]+/g,’’);

// RFC 2822 email regex credit:

// http://www.hacksparrow.com/javascript-email-validation.html

var email_regex = RegExp([’^(([^<>()[\\]\\\\.,;:\\s@\\"]’,

’+(\\.[^<>()[\\]\\\\.,;:\\s@\\"]+)*)|’,

’(\\".+\\"))@((\\[[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]’,

’{1,3}\\])|(([a-zA-Z\\-0-9]+\\.)+[a-zA-Z]{2,}))$’].join(’’),’i’);

if ((stripped_number.length === 10 &&

stripped_number.split(47).reverse()[0].length === 8) ||

(stripped_number.length === 8)) {

return true;

}

// Continue to check if the input is an RFC 2822 standardized email

else if (email_regex.test(callee)) {

return true;

}

return false;

}

AppView.prototype.hideLoginForm = function() {

$(’#login’).hide();

}

AppView.prototype.stateChange = function(state) {

switch (state) {

case ’RINGING’:

$(’input[name="callee"]’).prop(’disabled’, true);

$(’#endCall’).show();

$(’#call_indicator’).text(’Ringing...’);

break;

case ’ANSWER’:

Appendix A. Source Code 62

$(’input[name="callee"]’).prop(’disabled’, true);

$(’#endCall’).show();

$(’#call_indicator’).text(’Answered!’);

break;

case ’PROCESSING’:

$(’input[name="callee"]’).prop(’disabled’, true);

$(’#endCall’).show();

$(’#call_indicator’).text(’Connecting...’);

break;

case ’INVALID’:

$(’#call_indicator’).text(’Invalid number or username’);

break;

case ’SHUTDOWN’:

$(’#call_indicator’).text(’Call a number or user’);

$(’input[name="callee"]’).prop(’disabled’, false);

$(’#endCall’).hide();

$(’#testCall’).show();

break;

}

}

AppView.prototype.playStream = function(stream) {

var phone;

phone = document.getElementById(’phone’);

phone.src = window.webkitURL.createObjectURL(stream);

phone.play();

}

AppView.prototype.stopStream = function(stream) {

var phone;

phone = document.getElementById(’phone’);

phone.pause();

}

A.6 serverConnection.js

function ServerConnection() {

var that = this;

this.authenticated = false;

this.ws = null;

this.commandHandler = new CommandHandler(this);

this.ping = function() {

setTimeout(function() {

that.ws.send("\0");

that.ping();

}, 30*1000);

}

};

Appendix A. Source Code 63

ServerConnection.prototype.connect = function() {

var that = this;

this.ws = new WebSocket(’wss://edgee-ws-api-staging.comoyo.com:443’);

this.ws.onclose = function() {

console.log("Server connection closed");

};

this.ws.onopen = function() {

var timeout;

console.log("Server connection opened.");

that.commandHandler.sendClientRegistrationCommand(that.sendMessage);

that.ping();

};

this.ws.onmessage = function(message) {

console.log("Server message received");

// Handle incoming commands and relay the data

var command, data, commandSuffix;

if (message.data === "") {

console.log("Received ping");

return;

}

data = JSON.parse(message.data.substring(0, message.data.length - 1));

commandSuffix = Object.keys(data)[0].split(’.’).reverse()[0];

command = "handle" + commandSuffix;

// Call the handle function for the incoming command, if it exists

if (typeof(that.commandHandler[command]) !== "undefined" ||

that.commandHandler.hasOwnProperty(command)) {

that.commandHandler[command](data);

}

}

};

ServerConnection.prototype.close = function() {

console.log("Closing edgee connection");

if (typeof(this.ws) !== "undefined" || ws.hasOwnProperty(’close’)) {

this.ws.close();

}

};

ServerConnection.prototype.sendMessage = function(command, message) {

var fullCommand, data;

fullCommand = "com.telenor.sw.adaptee.th." + command;

data = {}

data[fullCommand] = message;

this.ws.send(JSON.stringify(data));

};

ServerConnection.prototype.readyState = function() {

return this.ws.readyState;

};

Appendix A. Source Code 64

ServerConnection.prototype.login = function(password) {

this.commandHandler.sendAccountLoginCommand(null, password);

};

ServerConnection.prototype.sendSignalingMessage = function(message) {

this.commandHandler.sendInstantMessageCommand(null, message);

};

ServerConnection.prototype.setAuthenticated = function(authenticated) {

if (authenticated === true) {

this.commandHandler.sendSubscriptionCommand();

this.commandHandler.sendMideeAccessRequestCommand();

app.appView.hideLoginForm();

}

};

function SignalingMessage() {

this.contentBody = null;

this.recipientUserName = app.callee;

this.originatingUserName = app.storage.getItem(’username’);

this.contentType = "application/sdp";

}

A.7 commandHandler.js

function CommandHandler(serverConnection) {

this.serverConnection = serverConnection;

}

CommandHandler.prototype.sendSubscriptionCommand = function(callback) {

var message = {

subscriptionInformation: {

subscribeToInstantMessagesOfType: ’application/sdp’

}

}

this.serverConnection.sendMessage(’SubscriptionCommand’, message);

}

CommandHandler.prototype.sendServiceRequestCommand = function(callback) {

var message = {

serviceId: ’talkplus’

}

this.serverConnection.sendMessage(’ServiceRequestCommand’, message);

}

CommandHandler.prototype.sendClientRegistrationCommand = function(callback) {

var message;

if (app.storage.getItem(’clientId’) !== null) {

this.sendAccountLoginCommand();

return;

}

message = {

Appendix A. Source Code 65

clientInformation: {

imsi:"talkplusweb",

imei:"talkplusweb"

}

};

this.serverConnection.sendMessage(’ClientRegistrationCommand’, message);

}

CommandHandler.prototype.handleClientRegistrationResponse = function(data) {

var clientId =

data[’com.telenor.sw.footee.common.th.ClientRegistrationResponse’].clientId

app.storage.setItem(’clientId’, clientId);

this.sendAccountLoginCommand();

}

CommandHandler.prototype.sendAuthenticateSessionCommand =

function(callback, message) {

var message = {

authenticateSessionInformation: {

userId: app.storage.getItem(’userId’),

clientId: app.storage.getItem(’clientId’),

sessionKey: app.storage.getItem(’sessionKey’)

}

}

this.serverConnection.sendMessage(

’AuthenticateSessionCommand’, message);

}

CommandHandler.prototype.handleAuthenticateSessionResponse =

function(data) {

var response =

data[’com.telenor.sw.footee.common.th.AuthenticateSessionResponse’];

this.serverConnection.setAuthenticated(response.authenticated);

if (response.authenticated) {

console.log("Logged in!");

}

else {

console.log("Could not authenticate with token, resetting");

app.storage.setItem(’userId’, ’’),

app.storage.setItem(’clientId’, ’’),

app.storage.setItem(’sessionKey’, ’’)

}

}

CommandHandler.prototype.sendAccountLoginCommand =

function(callback, password) {

var message;

if (app.storage.getItem(’sessionKey’)) {

this.sendAuthenticateSessionCommand()

return;

}

message = {

accountLoginInformation: {

Appendix A. Source Code 66

userName: app.storage.getItem(’username’),

password: password,

clientId: app.storage.getItem(’clientId’)

}

}

this.serverConnection.sendMessage(’AccountLoginCommand’, message);

}

CommandHandler.prototype.handleAccountLoginResponse = function(data) {

var response = data[’com.telenor.sw.footee.common.th.AccountLoginResponse’];

this.serverConnection.setAuthenticated(response.loggedIn);

app.storage.setItem(’sessionKey’, response.sessionKey);

app.storage.setItem(’userId’, response.userId);

}

CommandHandler.prototype.sendInstantMessageCommand =

function(callback, message) {

var message = {

instantMessage: {

contentBody: message.contentBody,

recipientUserName: message.recipientUserName,

contentType: message.contentType,

originatingUserName: message.originatingUserName

}

}

this.serverConnection.sendMessage(’SendInstantMessageCommand’, message);

}

CommandHandler.prototype.handleNewInstantMessage = function(data) {

var instantMessage;

instantMessage =

data[’com.telenor.sw.footee.common.th.NewInstantMessage’]

[’instantMessage’];

app.mediaEngine.handleSignalingInstantMessage(instantMessage);

}

CommandHandler.prototype.sendMideeAccessRequestCommand =

function(callback) {

var message = {

request: {

token: ’abc’

}

}

this.serverConnection.sendMessage(’MideeAccessRequestCommand’, message);

}

CommandHandler.prototype.handleMideeAccessResponse = function(data) {

var rtc, data;

data = data[’com.telenor.sw.footee.common.th.MideeAccessResponse’];

app.mediaEngine.createPeerConnection(data.rtp)

}

Appendix A. Source Code 67

A.8 mediaEngine.js

// Find the browser specific API

RTCPeerConnection = window.webkitRTCPeerConnection ||

window.mozRTCPeerConnection || window.RTCPeerConnection;

navigator.getUserMedia = navigator.webkitGetUserMedia ||

navigator.mozGetUserMedia || navigator.getUserMedia;

RTCSessionDescription = window.mozRTCSessionDescription ||

window.RTCSessionDescription

function MediaEngine() {

this.peerConnection = null;

this.localMediaStream = null;

this.callWaitingForIce = false;

this.sessionId = 1460;

this.sequence = 1;

this.sessionToken = null;

this.turnInfo = null;

};

MediaEngine.prototype.createPeerConnection = function(turnInfo) {

var that=this, config;

if (turnInfo !== undefined) {

this.turnInfo = turnInfo;

}

config = {

iceServers:

[

{

url:’turn:’+that.turnInfo.server+’:6768’,

credential: that.turnInfo.password,

username: that.turnInfo.user

}]

}

console.log(config);

try {

// As of May 11th, Chrome Stable does not support the username field

// To leverage this, we fall back to the old format if the new fails

that.peerConnection = new RTCPeerConnection(config);

}

catch (e) {

config.iceServers[0] = {

url:’turn:’+that.turnInfo.user+’@’+that.turnInfo.server+’:6768’,

credential: that.turnInfo.password

}

that.peerConnection = new RTCPeerConnection(config);

}

that.peerConnection.onicecandidate = function(e) {

// If the last candidate is null,

// we know the ICE gathering has finished

if (e.candidate === null) {

console.log("ICE gathering complete")

Appendix A. Source Code 68

if (that.callWaitingForIce) {

that.startCall();

}

return

}

console.log("icecandidate: " + e.candidate.candidate);

}

that.peerConnection.oniceconnectionstatechange = function(e) {

if (that.peerConnection.iceConnectionState === "connected") {

console.log("Connected to Talk+ relay!");

}

}

that.peerConnection.onaddstream = function(e) {

console.log("Remote stream added")

app.appView.playStream(e.stream);

}

if (that.localMediaStream === null) {

that.requestMicrophone();

}

else {

that.createOffer();

}

}

MediaEngine.prototype.startCall = function() {

var that = this, contentBody, message;

app.appView.stateChange(’PROCESSING’);

// Got all ICE candidates, let’s send the offer

if (that.peerConnection.iceGatheringState === "complete") {

this.callWaitingForIce = false;

console.log("Sending offer");

message = new SignalingMessage();

contentBody = {

messageType: "OFFER",

sdp: that.peerConnection.localDescription.sdp,

offererSessionId: ++that.sessionId,

answererSessionId: ’’,

seq: that.sequence

}

message.contentBody = window.btoa(JSON.stringify(contentBody));

app.serverConnection.sendSignalingMessage(message);

// console.log(contentBody);

}

else {

console.log("Waiting for more ICE candidates")

this.callWaitingForIce = true;

}

};

MediaEngine.prototype.endCall = function() {

var message, contentBody;

console.log("Ending call");

Appendix A. Source Code 69

app.appView.stopStream();

this.peerConnection.close();

this.createPeerConnection();

message = new SignalingMessage();

contentBody = {

messageType: "SHUTDOWN",

}

// If the call has started, supply the call session token

if (this.sessionToken !== null) {

contentBody.sessionToken = this.sessionToken;

}

// If the call has not started, supply the offerer session ID

else {

contentBody.offererSessionId = this.sessionId;

}

message.contentBody = window.btoa(JSON.stringify(contentBody));

app.serverConnection.sendSignalingMessage(message);

this.sessionToken = null;

}

MediaEngine.prototype.createOffer = function() {

var that=this;

console.log("Creating offer");

this.peerConnection.addStream(this.localMediaStream);

this.peerConnection.createOffer(function(sessionDescription) {

console.log(sessionDescription);

that.peerConnection.setLocalDescription(sessionDescription);

}, function(e){}

);

}

MediaEngine.prototype.handleSignalingInstantMessage = function(message) {

var contentBody, sessionDescription;

var that = this;

contentBody = JSON.parse(window.atob(message.contentBody));

console.log("Got " + contentBody.messageType)

// Update the UI to reflect the current state

app.appView.stateChange(contentBody.messageType);

switch (contentBody.messageType) {

case ’RINGING’: {

break;

}

case "ANSWER": {

console.log(contentBody);

sessionDescription = new RTCSessionDescription({

type: ’answer’,

sdp: contentBody.sdp

});

that.peerConnection.setRemoteDescription(sessionDescription,

function(){

console.log("Remote description set!");

Appendix A. Source Code 70

that.sessionToken = contentBody.setSessionToken;

}, function(e){

console.log("Remote description could not be set: " + e)

}

);

break;

}

case "SHUTDOWN": {

app.appView.stopStream();

this.peerConnection.close();

this.createPeerConnection();

break;

}

default: {

console.log("Unrecognized command: " + contentBody.messageType);

}

}

};

MediaEngine.prototype.requestMicrophone = function() {

var that = this;

// Request access to the microphone

navigator.getUserMedia({audio: true}, function(localMediaStream) {

that.localMediaStream = localMediaStream;

that.createOffer();

}, function(error){console.log(error);});

}

Appendix B

Tests

Figure B.1: Tests results

71

Bibliography

[1] Telenor. The Comoyo difference, May 2011. URL http://www.telenor.

com/news-and-media/articles/2011/the-comoyo-difference/. [Last ac-

cessed May 29, 2013].

[2] Herald Sun. Internet messaging outnumbers SMS mes-

sages for the first time, May 2013. URL http:

//www.heraldsun.com.au/technology/smartphones/

internet-messaging-outnumbers-sms-messages-for-the-first-time/

story-fni0c1du-1226650844946. [Last accessed May 29, 2013].

[3] W3C. WebRTC 1.0: Real-time Communication Between Browsers, March

2013. URL http://dev.w3.org/2011/webrtc/editor/webrtc.html. [Last

accessed May 29, 2013].

[4] W3C. W3C MISSION, 2012. URL http://www.w3.org/Consortium/

mission. [Last accessed May 29, 2013].

[5] W3C. W3C Process Document, 10 2005. URL http://www.w3.org/2005/

10/Process-20051014/tr. [Last accessed May 29, 2013].

[6] Internet Engineering Task Force. About the IETF. URL http://www.ietf.

org/about/. [Last accessed May 29, 2013].

[7] WebRTC Initiative. WebRTC, 2012. URL www.webrtc.org. [Last accessed

May 29, 2013].

73

http://www.telenor.com/news-and-media/articles/2011/the-comoyo-difference/
http://www.telenor.com/news-and-media/articles/2011/the-comoyo-difference/
http://www.heraldsun.com.au/technology/smartphones/internet-messaging-outnumbers-sms-messages-for-the-first-time/story-fni0c1du-1226650844946
http://www.heraldsun.com.au/technology/smartphones/internet-messaging-outnumbers-sms-messages-for-the-first-time/story-fni0c1du-1226650844946
http://www.heraldsun.com.au/technology/smartphones/internet-messaging-outnumbers-sms-messages-for-the-first-time/story-fni0c1du-1226650844946
http://www.heraldsun.com.au/technology/smartphones/internet-messaging-outnumbers-sms-messages-for-the-first-time/story-fni0c1du-1226650844946
http://dev.w3.org/2011/webrtc/editor/webrtc.html
http://www.w3.org/Consortium/mission
http://www.w3.org/Consortium/mission
http://www.w3.org/2005/10/Process-20051014/tr
http://www.w3.org/2005/10/Process-20051014/tr
http://www.ietf.org/about/
http://www.ietf.org/about/
www.webrtc.org

Bibliography 74

[8] Harald Alvestrand. Google release of WebRTC source code, June 2011.

URL http://lists.w3.org/Archives/Public/public-webrtc/2011May/

0022.html. [Last accessed May 29, 2013].

[9] W3C. WebRTC 1.0: Real-time Communication Between Browsers, August

2012. URL http://www.w3.org/TR/webrtc/. [Last accessed May 29, 2013].

[10] IETF. Javascript Session Establishment Protocol, February 2013. URL

http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-03. [Last ac-

cessed May 29, 2013].

[11] Mike Leber. Global IPv6 Deployment Progress Report, May 2013. URL

http://bgp.he.net/ipv6-progress-report.cgi. [Last accessed May 29,

2013].

[12] IETF. IP Network Address Translator (NAT) Terminology and Considera-

tions, August 1999. URL http://tools.ietf.org/html/rfc2663.

[13] IETF. Traversal Using Relays around NAT (TURN), April 2010. URL http:

//tools.ietf.org/html/rfc5766. [Last accessed May 29, 2013].

[14] Internet Engineering Task Force. Interactive Connectivity Establishment

(ICE): A Protocol for Network Address Translator (NAT) Traversal for Of-

fer/Answer Protocols, April 2010. URL http://tools.ietf.org/html/

rfc5245. [Last accessed May 29, 2013].

[15] W3C. Hypertext Transfer Protocol – HTTP/1.1, June 1999. URL http:

//www.w3.org/Protocols/rfc2616/rfc2616.html.

[16] IETF. The WebSockets Protocol, December 2011. URL http://tools.ietf.

org/html/rfc6455. [Last accessed May 29, 2013].

[17] W3C. The WebSockets API, September 2012. URL http://www.w3.org/

TR/websockets/. [Last accessed May 29, 2013].

[18] IETF. HTTP State Management Mechanism, April 2011. URL http://

tools.ietf.org/html/rfc6265. [Last accessed May 29, 2013].

http://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html
http://lists.w3.org/Archives/Public/public-webrtc/2011May/0022.html
http://www.w3.org/TR/webrtc/
http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-03
http://bgp.he.net/ipv6-progress-report.cgi
http://tools.ietf.org/html/rfc2663
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5766
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265

Bibliography 75

[19] W3C. Web Storage, April 2013. URL http://dev.w3.org/html5/

webstorage/. [Last accessed May 29, 2013].

[20] International Telcommunication Union. 50 YEARS OF EXCELLENCE,

2006. URL http://www.itu.int/itudoc/gs/promo/tsb/88192.pdf. [Last

accessed June 3, 2013].

[21] Skype. About Skype, 2013. URL http://about.skype.com. [Last accessed

May 29, 2013].

[22] Joe Hallock. A Brief History of VoIP, November 2004. URL http://www.

joehallock.com/edu/pdfs/Hallock_J_VoIP_Past.pdf. [Last accessed May

29, 2013].

[23] Nærings- og handelsdepartementet. Aktivt eierskap, April 2011.

URL http://www.regjeringen.no/nb/dep/nhd/dok/regpubl/stmeld/

2010-2011/meld-st-13-2010-2011/6/2/7.html?id=637192. [Last ac-

cessed May 29, 2013].

[24] Telenor. Norsk historie, 2013. URL http://www.telenor.com/no/om-oss/

var-historie/norsk-historie/. [Last accessed May 29, 2013].

[25] IETF. SIP: Session Initiation Protocol, June 2002. URL http://www.ietf.

org/rfc/rfc3261.

[26] Telefonica Digital. Telefónica launches TU Go in the UK, March

2013. URL http://blog.digital.telefonica.com/?press-release=

telefonica-o2-tu-go. [Last accessed May 29, 2013].

[27] FierceWireless. Grading the top 10 U.S. carriers in the fourth quarter of 2012,

March 2013. URL http://www.fiercewireless.com/special-reports/

grading-top-10-us-carriers-fourth-quarter-2012? [Last accessed May

29, 2013].

[28] AT&T. The History of AT&T. URL http://www.corp.att.com/history/.

[Last accessed May 29, 2013].

http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/
http://www.itu.int/itudoc/gs/promo/tsb/88192.pdf
http://about.skype.com
http://www.joehallock.com/edu/pdfs/Hallock_J_VoIP_Past.pdf
http://www.joehallock.com/edu/pdfs/Hallock_J_VoIP_Past.pdf
http://www.regjeringen.no/nb/dep/nhd/dok/regpubl/stmeld/2010-2011/meld-st-13-2010-2011/6/2/7.html?id=637192
http://www.regjeringen.no/nb/dep/nhd/dok/regpubl/stmeld/2010-2011/meld-st-13-2010-2011/6/2/7.html?id=637192
http://www.telenor.com/no/om-oss/var-historie/norsk-historie/
http://www.telenor.com/no/om-oss/var-historie/norsk-historie/
http://www.ietf.org/rfc/rfc3261
http://www.ietf.org/rfc/rfc3261
http://blog.digital.telefonica.com/?press-release=telefonica-o2-tu-go
http://blog.digital.telefonica.com/?press-release=telefonica-o2-tu-go
http://www.fiercewireless.com/special-reports/grading-top-10-us-carriers-fourth-quarter-2012?
http://www.fiercewireless.com/special-reports/grading-top-10-us-carriers-fourth-quarter-2012?
http://www.corp.att.com/history/

Bibliography 76

[29] Kevin Daly. WebRTC: The Power of AT&T Calling - In Your App,

2013. URL http://developer.att.com/home/community/conference/

ThePowerOfATTCalling-InYourApp.pdf. [Last accessed May 29, 2013].

[30] Jinsoo Park Sudha Ram Alan R. Hevner, Salvatore T. March. Design Science

in Information System Research. MIS Quarterly, 28(1):75–105, March 2004.

[31] StatCounter.com. Top 5 Browsers on May 2013. URL http://gs.

statcounter.com/#browser-ww-monthly-201305-201305-bar. [Last ac-

cessed May 26, 2013].

[32] Jinsoo Park Sudha Ram Alan R. Hevner, Salvatore T. March. Transmis-

sion Systems and Media, Digital Systems and Networks, May 2003. URL

http://www.itu.int/rec/T-REC-G.114-200305-I/en. [Last accessed May

29, 2013].

[33] W3C. HTML 4.01 Specification, December 1999. URL http://www.w3.org/

TR/html4/.

[34] W3C. HTML5, December 2012. URL http://www.w3.org/TR/html5/. [Last

accessed May 29, 2013].

[35] W3C. Cascading Style Sheets (CSS), May 2011. URL http://www.w3.org/

TR/css-2010/. [Last accessed May 29, 2013].

[36] W3C. JAVASCRIPT WEB APIS. URL http://www.w3.org/standards/

webdesign/script. [Last accessed May 29, 2013].

[37] W3C. Document Object Model (DOM), January 2009. URL http://www.

w3.org/DOM/. [Last accessed May 29, 2013].

[38] Dan S. Wallach Chris Grier, Samuel T. King. How I Learned to Stop Worrying

and Love Plugins, 2009. URL http://w2spconf.com/2009/papers/s1p1.

pdf. [Last accessed May 29, 2013].

[39] Steve Jobs. Thoughts on Flash, April 2010. URL http://www.apple.com/

hotnews/thoughts-on-flash/. [Last accessed May 29, 2013].

http://developer.att.com/home/community/conference/ThePowerOfATTCalling-InYourApp.pdf
http://developer.att.com/home/community/conference/ThePowerOfATTCalling-InYourApp.pdf
http://gs.statcounter.com/#browser-ww-monthly-201305-201305-bar
http://gs.statcounter.com/#browser-ww-monthly-201305-201305-bar
http://www.itu.int/rec/T-REC-G.114-200305-I/en
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/css-2010/
http://www.w3.org/standards/webdesign/script
http://www.w3.org/standards/webdesign/script
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://w2spconf.com/2009/papers/s1p1.pdf
http://w2spconf.com/2009/papers/s1p1.pdf
http://www.apple.com/hotnews/thoughts-on-flash/
http://www.apple.com/hotnews/thoughts-on-flash/

Bibliography 77

[40] Can I use... Can I use Web Sockets?, April 2013. URL http://caniuse.

com/websockets. [Last accessed May 30, 2013].

[41] Mozilla Developer Network. DOM Storage guide, May 2013. URL https://

developer.mozilla.org/en-US/docs/Web/Guide/DOM/Storage. [Last ac-

cessed May 29, note =.

[42] IETF. RTCWeb Offer/Answer Protocol (ROAP), October 2011. URL http:

//tools.ietf.org/html/draft-jennings-rtcweb-signaling-01. [Last

accessed May 29, 2013].

[43] IETF. [rtcweb] Draft minutes for 82.5 meeting, February 2012. URL http://

www.ietf.org/mail-archive/web/rtcweb/current/msg03435.html. [Last

accessed May 29, 2013].

[44] Internet Engineering Task Force. Internet Message Format, April 2011. URL

http://tools.ietf.org/html/rfc2822. [Last accessed May 29, 2013].

[45] Microsoft. Customizable, Ubiquitous Real Time Communication over

the Web (CU-RTC-Web), August 2012. URL http://html5labs.

interoperabilitybridges.com/cu-rtc-web/cu-rtc-web.htm. [Last ac-

cessed May 29, 2013].

[46] Microsoft. CU-RTC-Web Roaming, 2013. URL http://html5labs.

interoperabilitybridges.com/prototypes/cu-rtc-web-roaming/

cu-rtc-web-roaming/info. [Last accessed May 29, 2013].

http://caniuse.com/websockets
http://caniuse.com/websockets
https://developer.mozilla.org/en-US/docs/Web/Guide/DOM/Storage
https://developer.mozilla.org/en-US/docs/Web/Guide/DOM/Storage
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-01
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-01
http://www.ietf.org/mail-archive/web/rtcweb/current/msg03435.html
http://www.ietf.org/mail-archive/web/rtcweb/current/msg03435.html
http://tools.ietf.org/html/rfc2822
http://html5labs.interoperabilitybridges.com/cu-rtc-web/cu-rtc-web.htm
http://html5labs.interoperabilitybridges.com/cu-rtc-web/cu-rtc-web.htm
http://html5labs.interoperabilitybridges.com/prototypes/cu-rtc-web-roaming/cu-rtc-web-roaming/info
http://html5labs.interoperabilitybridges.com/prototypes/cu-rtc-web-roaming/cu-rtc-web-roaming/info
http://html5labs.interoperabilitybridges.com/prototypes/cu-rtc-web-roaming/cu-rtc-web-roaming/info

	Preface
	Abstract
	Oppsummering
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Three research questions
	1.2 Motivation
	1.3 Thesis outline

	2 Background
	2.1 Web standards
	2.1.1 Who defines the web?
	2.1.2 WebRTC
	2.1.3 WebSockets
	2.1.4 WebStorage

	2.2 The telecommunications industry
	2.2.1 Evolution of telephony
	2.2.2 Combining old and new technology

	3 Research Method
	3.1 Design science
	3.2 Artifact & evaluation

	4 Requirements
	4.1 Determining the requirements
	4.2 Functional requirements
	4.2.1 Requirements list
	4.2.2 Requirements details

	4.3 Non-functional requirements
	4.3.1 Requirements list
	4.3.2 Requirements details

	5 Architecture & Technology
	5.1 Existing architecture
	5.1.1 Servers
	5.1.2 Native clients

	5.2 Talk+ web application
	5.2.1 Languages
	5.2.2 Authentication
	5.2.3 Signaling
	5.2.4 Storage
	5.2.5 Media transfer

	6 Implementation
	6.1 Code
	6.1.1 AppController
	6.1.2 StorageHandler
	6.1.3 AppView
	6.1.4 ServerConnection & CommandHandler
	6.1.5 MediaEngine

	7 Evaluation
	7.1 Functional requirements
	7.2 Non-functional requirements

	8 Discussion & Conclusion
	8.1 Discussion
	8.2 Conclusion
	8.3 Further work

	A Source Code
	A.1 index.html
	A.2 app.css
	A.3 app.js
	A.4 storageHandler.js
	A.5 appView.js
	A.6 serverConnection.js
	A.7 commandHandler.js
	A.8 mediaEngine.js

	B Tests
	Bibliography

