
Increasing SpMV Energy Efficiency
Through Compression
A study of how format, input and platform

properties affect the energy efficiency of

Compressed Sparse eXtended

Lars-Ivar H Simonsen

Master of Science in Computer Science

Supervisor: Lasse Natvig, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Assignment

Energy-efficiency of CSX on Intel Ivy Bridge processors and the Vilje
Supercomputer

(Master thesis project text, proposal pr. 29/1-2013, LN.)

This is a continuation of the autumn project “Energy efficiency of CSX” by Lars-
Ivar Hesselberg Simonsen. The project contributes to NTNUs participation in the
PRACE project http://www.prace-project.eu/, and is also in cooperation with
GRNET in Athens. The University of Tokyo is another potential collaboration
partner for the project.

An overall goal of the master thesis project will be to study the energy efficiency
of CSX in more depth by developing appropriate measurement techniques and/or
tools that make it possible to examine the impact on energy-efficiency of

(a) structural properties of matrices (regularity, size)

(b) variable formats (functions of compression rate in CSX and at least one more
“traditional” format such as CSR)

(c) degree of clock frequency, parallelism and single vs. multiple socket execution
on a 2 x 8 core Sandy Bridge platform.

It is expected that the main execution platform is the CARD server using one or
two sockets. It is considered part of the project to do similar tests on one node of
the Vilje supercomputer and discuss differences - if there are any. These tests can
be restricted to performance only if appropriate energy measurement techniques is
not made available to the student during the first half of the master thesis project.

The master thesis should contain a short discussion presenting ideas on how CSX
can be modified or extended to be used in an application spanning multiple nodes
on Vilje and similar supercomputers.

If time permits, the project can be extended by augmenting the study with

(i) The effects of hyper-threading and Turbo Boost Technology.

(ii) Energy-efficiency studies on more execution platforms, such as a quad core Ivy
Bridge desktop (minvilje.idi.ntnu.no) and a quad core Sandy Bridge desktop
(festinalente.idi.tnu.no). This should then be accompanied by a discussion of
performance and energy-efficiency differences between the different platforms.

Main supervisor: Professor Lasse Natvig (CARD-group, IDI). Technical co-supervisor:
PhD Jan Christian Meyer (High Performance Computing Section, NTNU - IT
Dept.).

http://www.prace-project.eu/

Abstract

This work is a continuation and augmentation of previous energy studies of Com-
pressed Sparse eXtended (CSX), a framework for efficiently executing Sparse Matrix-
Vector Multiplication (SpMV).

CSX was developed by the CSLab at the National Technical University of Athens
(NTUA), and utilizes compression to overcome a significant memory bottleneck
inherent in SpMV, thus increasing performance and energy efficiency of its execu-
tion.

SpMV is notorious within scientific computing for its low performance. However,
the problem is unavoidable, as SpMV can be found within several scientific applica-
tions. In this work, CSX is tested as the SpMV kernel in a framework implementing
the Conjugate Gradient Method (CG), an iterative algorithm for solving specific
linear algebra problems. CSX is also evaluated against Compressed Sparse Row
(CSR), a storage scheme widely used when executing SpMV.

This work augments existing studies by evaluating properties in the formats them-
selves, in the matrices used as input and in the target platform to gain knowledge
on how to maximize the benefits of CSX, as well as for what cases CSX does not
prove beneficial. The work also compares the performance of SpMV-execution on
a stand-alone server known as the CARD-server to similar execution on the Vilje
supercomputer. This is done to evaluate how the differences between these two
machines affect the results.

Based on the results, it is shown that CSX should be used for matrices larger
than the Last Level Cache (LLC) of the target machine and for matrices with high
degrees of clustering in their values. The best energy efficiency trade-offs are found
at eight threads on dual socket configurations, and this is shown to be related to
the amount of physical cores per CPU. Similarly, frequency throttling is shown to
increase the energy efficiency of the execution only at high numbers of threads and
at the cost of performance.

Overall, CSX is shown to obtain higher energy efficiency than CSR for SpMV-
execution, given a suitable problem and run configuration. Thus, it is confirmed
that CSX can be used to decrease the energy consumption of SpMV applications.

Sammendrag

Dette arbeidet er en fortsettelse og utvidelse av tidligere studier av Compressed
Sparse eXtended (CSX), et rammeverk for effektiv utførelse av glissen matrise-
vektor multiplikasjon (Sparse Matrix-Vector Multiplication, SpMV).

CSX ble utviklet av computersystemlaboratoriet (CSLab) ved det Nasjonale Tekniske
Universitet i Aten (NTUA), og utnytter kompresjon av data for å motvirke en
vesentlig minneflaskehals i SpMV. Som s̊adan øker CSX ytelsen og energieffek-
tiviteten til SpMV-eksekveringen.

SpMV er beryktet innen vitenskapelig beregning grunnet sin lave ytelse, men er
uunng̊aelig grunnet sin plass i mange vitenskapelige applikasjoner. Dette arbeidet
tester CSX som SpMV-kjernen i et rammeverk som implementerer konjugerte gra-
dienters metode (Conjugate Gradient Method, CG), en iterativ løser av spesifikke
problemer innen lineær algebra. CSX blir ogs̊a testet opp mot Compressed Sparse
Row (CSR), et lagringsformat for matriser som ofte blir brukt for eksekvering av
SpMV.

Dette arbeidet utvider eksisterende studier ved å evaluere egenskaper i formatene,
i matrisene og i platformene brukt for eksperimentene for å f̊a innsikt i hvor-
dan maksimere ytelses- og energiforbedringene til CSX, samt n̊ar CSX ikke bør
benyttes. Arbeidet sammenligner i tillegg ytelsen til SpMV-eksekvering p̊a en
frittst̊aende tjener kjent som CARD-serveren mot tilsvarende eksekvering p̊a stor-
maskinen Vilje. Dette gjøres for å evaluere hvordan forskjeller mellom disse to
maskinene p̊avirker resultatene.

Det blir vist, basert p̊a resultatene, at CSX bør brukes for matriser som er større
en siste-niv̊a-cachen (Last Level Cache, LLC) til maskinen som gjør eksekveringen,
og for matriser med stor grad av gruppering blant verdiene. De beste energieffek-
tivetsresultatene finnes ved kjøringer med åtte tr̊ader p̊a to sokler, og dette blir vist
å være relatert til antall fysiske kjerner per CPU. Tilsvarende blir frekvensstruping
vist å øke energieffektiviteten kun ved eksekveringer med høyt antall tr̊ader, og da
p̊a bekostning av ytelse.

P̊a generell basis blir det vist at CSX gir høyere energieffektivitet enn CSR, gitt et
passende problem og eksekveringskonfigurasjon. Det blir dermed bekreftet at CSX
kan brukes til å senke energiforbruket til SpMV-applikasjoner.

Acknowledgements

I would like to thank the following people for their help and input during the
project:

• Lasse Natvig for supervising the project, providing feedback on the report
and results, and offering guidance throughout the course of this work.

• Jan Christian Meyer for co-supervising the project, offering guidance in
the technical aspects of the work and technical feedback on the results ob-
tained.

• Juan Cebrian for providing help and administration with the CARD-server
and the Yokogawa wall power meter.

• Egil Holvik for help with performing condition number estimation on the
Kongull cluster.

• Vasileios Karakasis for help and input regarding the statistical sampling
errors identified for CSX.

Contents

Contents i

List of Figures iii

List of Tables v

Glossary vii

1 Introduction 1
1.1 Project Purpose . 2
1.2 Motivation . 2
1.3 Structure of the Report . 3

2 Background 5
2.1 SpMV . 5
2.2 Conjugate Gradient Method . 6

2.2.1 Conjugate Vectors . 6
2.2.2 The Quadratic Form . 7
2.2.3 The Conjugate Gradient Method 8
2.2.4 Convergence . 11

2.3 CSR . 12
2.4 CSX . 12

2.4.1 Preprocessing . 14
Statistical sampling . 14

2.4.2 Parallelization . 14
2.5 Energy Measurement . 15

2.5.1 The RAPL interface in the MSR of Sandy Bridge 16
2.5.2 MSR Framework . 16

Continuous MSR data collection 17
2.5.3 Yokogawa WT210 . 17

3 Methodology 19
3.1 Hardware Setup . 19
3.2 Software Setup . 21

i

3.2.1 Software and versions . 21
3.2.2 Software configuration and input 22

3.3 Matrices . 25

4 Results 27
4.1 Format properties . 28

4.1.1 Energy profile . 28
CSR . 29
CSX . 30
CSX with statistical sampling 31

4.1.2 Comparison . 33
CG execution . 34
Full application energy . 34

4.2 Matrix properties . 37
4.2.1 Energy per nonzero . 37
4.2.2 Energy consumption optimizability through CSX 42

4.3 Platform properties . 46
4.3.1 Parallelization . 46
4.3.2 Dual sockets . 50
4.3.3 Clock frequency . 53

4.4 Comparison of Vilje and the CARD-server 56

5 Discussion 59

6 Conclusion and Further Work 75
6.1 Conclusion . 75
6.2 Further Work . 77

Bibliography 79

Appendices 84

A Matrix Structures 85

ii

List of Figures

2.1 Conjugate vectors [33] . 7
2.2 Quadratic form plots [33] . 8
2.3 An example of CSR for a sparse matrix [25] 12
2.4 An example of CSR-DU [25] . 13
2.5 Yokogawa WT210 setup (Source: Intel [5]) 18

3.1 Vilje node setup (Source: HPC NTNU [1]) 20

4.1 Power-time plot for four threaded af 5 k101 CSR 29
4.2 Power-time plot for four threaded af 5 k101 CSX 31
4.3 Power-time plot for four threaded af 5 k101 CSX w/SP 32
4.4 Comparison of CG execution . 35
4.5 Comparison of full application execution 36
4.6 Energy/nnz for all matrices . 39
4.7 Energy/nnz for middle matrices . 40
4.8 Energy/nnz for belt matrices . 41
4.9 EDR for all matrices . 43
4.10 Effect of parallelization on runtime 47
4.11 Effect of parallelization on energy . 48
4.12 Average EDR for matrix groups . 50
4.13 Energy difference between one and two sockets 51
4.14 Speedup of dual sockets . 52
4.15 Average runtime for all matrices on differing frequencies 54
4.16 Average energy consumption for all matrices on differing frequencies 54
4.17 Average EDP = E × T 2 for all matrices on differing frequencies . . . 56
4.18 Runtime of CARD and Vilje . 57

5.1 L3 misses per nnz . 64
5.2 L3 misses per second . 66
5.3 L3 miss rates . 67
5.4 Optimal configurations for the CG execution 69

A.1 Matrix Memory Structures (Source: UFlSMC [11]) 87

iii

iv

List of Tables

2.1 List of available RAPL sensors [22] 16

3.1 Vilje single node specification . 20
3.2 MT CONF core number configurations 22
3.3 XFORM CONF configurations for CG binary 23
3.4 Additional options for CG binary . 23
3.5 Environmental variables for statistical sampling 23
3.6 Variables for the test framework . 24
3.7 Matrices used in experiments . 26

4.1 Matrices that caused CSX with statistical sampling to terminate . . 33
4.2 low nnz group . 38
4.3 middle group . 40
4.4 belt group . 41
4.5 csx optimized group . 43
4.6 semi optimized group . 44
4.7 csr optimized group . 45

5.1 Required number of CG iterations 60
5.2 Average Pearson Product-Moment Correlation Coefficient 62
5.3 Pearson Product-Moment Correlation Coefficient for CARD and

Vilje comparison . 72

v

vi

Glossary

BCSR Blocked CSR. 13

CARD Computer Architecture and Design. 2, 19, 21, 22, 24, 27, 56–58, 72, 76,
78

CG Conjugate Gradient Method. 2, 5–12, 14, 17, 22–30, 32–34, 37, 40, 42, 46, 50,
51, 57, 59–63, 65, 68, 71, 77

CPU Central Processing Unit. 15, 16, 19, 20, 22, 24, 27, 28, 30, 31, 46, 49, 50,
52–54, 56, 61, 63, 65, 68, 70–72, 76, 77

CSC Compressed Sparse Column. 12

CSR Compressed Sparse Row. 2, 5, 12, 13, 15, 22, 27–34, 37, 38, 40–42, 45, 46,
49–51, 53, 57, 60, 63, 65, 68, 70, 71, 76, 77

CSR-DU Compressed Sparse Row with Delta Units. 12, 13

CSX Compressed Sparse eXtended. 1, 2, 5, 6, 12–16, 22–34, 37, 38, 40–46, 49–51,
53, 56, 57, 60–63, 65, 68, 70–73, 75–78

DLP Data level parallelism. 6, 14, 29, 46, 49

EDP Energy Delay Product. 55, 68

EDR Energy Decrease Ratio. 42, 44, 46, 49, 50

GCC GNU Compiler Collection. 22, 58

GPU Graphics Processing Unit. 6, 78

HPC High-Performance Computing. 1, 2, 55

LLC Last Level Cache. 20, 25, 26, 42–45, 62, 63, 65, 68, 70, 71, 75–77

MPI Message Passing Interface. 72

vii

MSR Model-specific register. 16, 17, 19, 21, 22, 28, 30, 31, 33, 34, 60, 61, 72, 78

nLSP non-homogeneous linear system problem. 6, 7, 12, 59

nnz non-zero. 12, 15, 24–26, 29, 32, 37, 38, 40–44, 49, 61–63, 72, 75

NTNU Norwegian University of Science and Technology. 2, 21

NTUA National Technical University of Athens. 1, 2, 77

PCC Pearson product-moment correlation coefficient. 61, 72

PRACE Partnership for Advanced Computing in Europe. 2

RAPL Running Average Power Limit. 15–17, 19, 21, 22, 28, 56

SMT Simultaneous multithreading. 22, 27, 34, 46

SpMV Sparse Matrix Vector Multiplication. 1, 2, 5, 6, 12–14, 28, 29, 46, 55, 63,
65, 71, 73, 75–77

viii

Chapter 1

Introduction

Over the past few years, power and energy consumption has become the main
limiting factor for computing in general. This can both be seen at the architec-
tural level [19], and at the application level, especially within High-Performance
Computing (HPC) and other compute heavy data center activities [30].

In order to overcome these problems, energy efficiency will have to be in focus
both when designing architectures, and when creating applications to be run on
them. This requires studies of existing and emerging technologies, in order to
identify areas of potential energy consumption decrease, as well as studies on how
to exploit them.

Within scientific HPC, one of the more frequent problems that that is still con-
sidered a bottleneck in many applications is Sparse Matrix Vector Multiplication
(SpMV). This problem exhibits a large memory bottleneck and is thus notorious for
limiting the performance of scientific applications. SpMV is found within several
HPC problems, most notably as a bi-product when solving large linear systems.

Compressed Sparse eXtended (CSX) is one of many optimizations aimed at over-
coming the memory bottleneck of SpMV. It does this by using compression to limit
the size of the in-memory working set, thus limiting the bottleneck at the cost of
additional processing. CSX was developed by the CSLab at National Technical
University of Athens (NTUA), and is the focus of this work.

Previous studies, such as the work of Karaksis et al. [23], Simonsen [21] and Meyer et
al. [28], have shown that the optimizations of CSX can increase the energy efficiency
of SpMV applications for certain configurations. This work aims at exploring these
configurations to gain knowledge on how, when and why CSX can save energy.

1

1.1 Project Purpose

The purpose of this project is to augment existing energy studies of CSX. This is
done by expanding upon existing measurement techniques in order to gain knowl-
edge on what cases make CSX save energy, and how to decide whether or not to
use CSX for solving SpMV in the context of energy efficiency.

The goal of the project is to obtain knowledge about how differing properties in
input and execution affect the energy consumption of CSX, as well as obtain viable
parameters for its energy efficiency. Findings, especially potential parameters, are
discussed to gain knowledge about how to maximize the energy efficiency, and
potential trade-offs are explored.

In order to make the results relevant and realistic, CSX is tested as the SpMV-
kernel in a framework implementing the Conjugate Gradient Method (CG). This is
an iterative method for solving specific Ax = b problems, often found within linear
algebra. As this problem is frequently solved in the context of scientific HPC, any
results are relevant to the energy consumption of HPC centers.

To evaluate the results of CSX, they are tested against a simpler, well tested
format for solving SpMV. The format chosen for this is called Compressed Sparse
Row (CSR), and has been used to solve SpMV for more than 15 years.

Lastly, the results obtained from executions on a dedicated server known as the
CARD-server are compared to similar results on the Vilje supercomputer. This is
done to evaluate the CARD-servers function as a testing platform for application
to be run on Vilje with regards to their performance and energy efficiency.

1.2 Motivation

The main motivation behind this work is the increased focus on energy efficient
computing seen within academic research over the past few years. This focus
is a product of the increasing energy demands of computing reaching physical
limitations.

This work is done in the hopes that the findings and potential parameters can be
used to evaluate the input and target architecture in order to maximize the energy
efficiency of SpMV applications. This, in turn, is done to help increase the energy
efficiency of scientific HPC, by addressing the efficiency of one of its most frequently
used kernels.

The work is a collaboration between the Computer Architecture and Design (CARD)-
group at the Norwegian University of Science and Technology (NTNU) and the
CSLab at the NTUA, the creators of the CSX library. Thus, it is a contribution
to NTNUs role in the Partnership for Advanced Computing in Europe (PRACE),
especially within the area of energy efficiency.

2

1.3 Structure of the Report

This Report is structured as follows:

Chapter 2 contains the necessary background information to understand further
discussion. The Chapter has five major Sections.

Chapter 3 describes the machine, software and input setup used for the experi-
ments. A description and discussion of the matrix set can also be found here. The
Chapter has three major Sections.

Chapter 4 presents the results from the executions. This Chapters is split into four
major Sections, each presenting different properties that are to be discussed.

Chapter 5 contains the discussions of the results in the previous Chapter. These
discussions are made to relate findings to the Project Purpose, as well as discussions
needed to interpret the results. This Chapter has one major Section.

Chapter 6 contains the conclusions that can be drawn based on the results and
discussions, as well as thoughts on things that should be explored in a continuation
of this work. This Chapter has two major Sections.

3

4

Chapter 2

Background

This Chapter contains background information needed to fully understand the
contents of this work. The Chapter is split into three major parts:

1. An introduction to SpMV and CG. These are the problem solved by CSX,
and a problem bound by SpMV used to evaluate the performance of CSX,
respectively.

2. An introduction to CSR and CSX, showing the conceptual idea behind them,
how they optimize the execution of SpMV and how they are different.

3. A description of the energy measurement techniques used in this work, as
well as a discussion of what techniques should be used and why.

2.1 SpMV

Sparse Matrix Vector Multiplication is the operation of multiplying a sparse matrix
A with a dense vector x (Ax). It is conceptually the same as as dense matrix-vector
multiplication, however, the sparsity of the matrix highly affects the performance
of the multiplication. As was pointed out by Williams et al.:

SpMV is a frequent bottleneck in scientific computing applications, and
is notorious for sustaining low fractions of peak performance. [36]

This is due to the memory access pattern of the matrix, which pushes SpMV
from the computationally bound realm of dense matrix-vector multiplication into
a memory bound realm. Because of this, SpMV has gained a lot of interest from
computer scientists, resulting in several methods of optimization. Some of these
optimizations include:

The CSR memory format, which is an optimization used as early as 1994 in the
work of Saad [31], OSKI, which is a collection of automatically tuned SpMV kernels

5

presented by Vuduc et al. in 2005 [35] and lately CSX, which is a compression based
optimization for SpMV presented by Kourtis et al. in 2011 [25].

Like dense matrix-vector multiplication, SpMV is highly parallelizable due to the
high degree of Data level parallelism (DLP). This makes the use of parallel com-
puting an easy and effective way of optimizing the SpMV runtime. This has been
shown in the work of Williams et al. [36], who compared the effect of several mul-
ticore optimizations to earlier SpMV optimizations, and later in the work of Bell
et al. [14], who implemented several SpMV kernels on a highly parallel Graphics
Processing Unit (GPU).

SpMV is commonly used in the problem of solving Ax = b for a non-zero vector
x, where A is a sparse n × n matrix and b is a known vector. This problem,
hereafter called the non-homogeneous linear system problem (nLSP), is a common
and important problem within linear algebra and scientific computing. For this
reason, it will be used to study CSX’s performance.

2.2 Conjugate Gradient Method

In order to gain insight into the performance and energy efficiency of CSX, a
benchmark is required. As was noted earlier, SpMV is commonly found in linear
algebra problems. Hence, a benchmark based on nLSP will provide a realistic
workload for SpMV.

The Conjugate Gradient Method is an iterative algorithm for solving symmetric,
positive-definite nLSP. As this implies iteratively applying SpMV to the target
matrix, its performance is bound by the performance of the SpMV solver. This
makes it well suited as a realistic performance benchmark for CSX and other SpMV
solvers.

This Section provides a conceptual explanation of the CG algorithm, and hence, the
background information required to discuss the performance of CG. The Section is
based on the work of Shewchuk [33], which provides an in-depth study of the topic.

First, two principles are required in order to explain CG: Conjugate Vectors and
the Quadratic Form.

2.2.1 Conjugate Vectors

Two vectors are said to be conjugate if they are orthogonal to each other with
respect to a matrix A (also known as A-orthogonal). For the two vectors v and u,
this is denoted as

vTAu = 0

An example of such vectors is shown in Figure 2.1. The vector-pairs in Figure 2.1(a)
are conjugate because the vector-pairs in Figure 2.1(b) are orthogonal.

6

Figure 2.1: Conjugate vectors [33]

Another property of conjugate vectors was presented in a Lemma in the work of
Chong et al. [18]:

Lemma 10.1 Let Q be a symmetric positive definite n×nmatrix. If the
directions d0, di, ..., dk ∈ Rn, k ≤ n − 1, are nonzero and Q-conjugate,
then they are linearly independent. [18]

This property of conjugate vectors can be related to solving nLSP in the following
manner: A set of n mutually conjugate vectors {di} will, because of Lemma 10.1,
form a basis for Rn. If we then look at nLSP

Ax = b (2.1)

and the fact that a vector (x) can be created from a basis of Rn

x =

n∑
i=1

αidi (2.2)

we see that nLSP can be presented as

b =

n∑
i=1

αiAdi (2.3)

This implies that the solution of Ax = b can be found by iteratively solving Equa-
tion 2.3 for the n mutually conjugate vectors of the set {di}. This is the general
principle behind CG.

2.2.2 The Quadratic Form

The quadratic form is defined as a scalar function given as

f(x) =
1

2
xTAx− bTx+ c (2.4)

7

It can be shown (consult Shewchuk [33] Section 3 for details), that this function
is minimized for the solution of Ax = b if A is a symmetric (A = AT), positive-
definite (vTAv > 0) matrix. This implies that the gradient of the function f(x) is
given by the following equation.

f ′(x) = Ax− b (2.5)

To illustrate this property, an example plot of f(x) is shown in Figure 2.2(a). In
this plot, the solution of Ax = b is found at x = [2,−2]T .

(a) Plot of the Quadratic form f(x) (b) Plot of the Quadratic form gradient f ’(x)

Figure 2.2: Quadratic form plots [33]

The gradient of the plot in Figure 2.2(a) is shown in Figure 2.2(b). As we see from
this plot, the gradient for each of the scalar values of f(x) points in the direction
of the steepest increase in f(x). Intuitively, this is approximately opposite of the
direction of x, and can be used in order to quickly converge to x, as will be shown
in the following Section.

2.2.3 The Conjugate Gradient Method

Having defined Conjugate Vectors and the Quadratic Form, the algorithm of CG
can be explained. This Section starts by introducing the basic steps of the CG
algorithm, followed by a more in depth explanation of each of the steps. The
reader is referred to Shewchuk [33] Section 8 for detailed explanations and proofs.

8

Listing 2.1 contains pseudo code for the CG algorithm.

1 S e l e c t a s t a r t i n g vec to r x at random .
2 S e l e c t a s t a r t i n g d i r e c t i o n f o r the a lgor i thm .
3 n t imes do :
4 Pick a step s i z e to move along the s e l e c t e d d i r e c t i o n .
5 Perform the step , updating x .
6 Ca l cu la te a new d i r e c t i o n to move , conjugate to a l l

p rev ious d i r e c t i o n s .

Listing 2.1: Pseudo code for CG

As can be readily seen from this pseudo code, the algorithm iterates n conju-
gate directions in order to converge on the solution. This was in Section 2.2.1
(Equation 2.3) shown to produce the solution vector as long as each step is of the
appropriate length. The problem, therefore, divides into two subproblems: finding
the appropriate step length and finding conjugate directions.

In order to solve these problems, the CG algorithm introduces a new vector r. This
vector, known as the residual vector, is calculated based on the quadratic form gra-
dient defined in Section 2.2.2 (Equation 2.5). As was shown, the quadratic form
gradient in each point of the quadratic form field points in the direction of the steep-
est increase. Thus, we know that the negation of this vector points approximately
towards the solution of the system. This gives us step 2 in Listing 2.1:

d0 = r0 = −f ′(x0) = b−Ax0 (2.6)

From this step, we set both the initial direction d and the initial residual vector
r to the negation of the quadratic form gradient. This is done to ensure quick
convergence on the solution.

To find the length of each step (step 4 in Listing 2.1), we need to calculate the αi
of Equation 2.3. This is done through the following Equation:

ai =
rTi ri
dTi Adi

(2.7)

The idea behind this Equation is to ensure that the remaining error is orthogonal
to the direction chosen, as this implies that the step in that direction moves the
temporary x vector to the point of the solution vector along the chosen direction.
This, in turn, means that the direction will not have to be traversed again when
calculating the solution vector. The derivation of Equation 2.7 can be found in
Shewchuk [33] Equations (30), (32), (42) and (46).

Once the direction and step length has been found, the actual step can be performed
(step 5 in Listing 2.1):

xi+1 = xi + αidi (2.8)

This leaves one problem: finding directions conjugate to all previous directions
traversed. We start by calculating a new residual vector. However, instead of

9

using the negated quadratic form gradient (ri = b−Axi), we perform the following
optimization:

xi+1 = xi + αidi

−Axi+1 = −Axi − αiAdi
b−Axi+1 = b−Axi − αiAdi

ri+1 = ri − αiAdi

(2.9)

This is done to avoid performing two costly matrix-vector products, as Adi is al-
ready performed by Equation 2.7. The results can hence be reused when calculating
the new residual vector.

This new residual vector is used to create a new search direction. In the discussion
of Equation 2.7, it was stated that the remaining error (i.e. the residual vector)
is orthogonal to the current search direction, and thus orthogonal to all previous
search directions. This fact, along with a process called the Gram-Schmidt conju-
gation is used to find a new conjugate search direction.

The Gram-Schmidt conjugation is used in order to generate a set of n conjugate
directions {di} based on n linearly independent vectors {ui}. Its formula is stated
in Equation 2.10 and 2.11.

d0 = u0

di = ui +

i−1∑
k=0

βikdk
(2.10)

where βik is defined as

βik = −u
T
i Adk
dTkAdk

(2.11)

This process constructs the new direction di by taking the new linearly independent
vector ui, and subtracting the non-conjugate components of the previous directions.
For the details of this, the reader is referred to Shewchuk [33] Section 7.2.

For CG, however, the process can be simplified. ri has been shown to be orthogonal
to all previous search directions {d0, ..., di−1}. However, when constructing new
search directions by performing Gram-Schmidt from residual vectors (ui = ri),
ri becomes orthogonal to all previous residual vectors as well {r0, ..., ri−1}. This,
along with the fact that Equation 2.9 states that each new residual vector is formed
from a linear combination of the previous residual and Adi−1, can be shown (see
Shewchuk [33] Section 8) to imply that ri+1 is conjugate to all previous search
directions, except di.

This means that Equation 2.10 can be simplified to the following:

di+1 = ri+1 + βi+1di (2.12)

where βi+1 is defined as:

βi+1 =
rTi+1ri+1

rTi ri
(2.13)

10

This solves the last of the subproblems, and hence, completes the last step (step 6
in Listing 2.1) of the algorithm.

For convenience, Listing 2.2 shows an implementation of the full algorithm, done
by Jan Christian Meyer.

1 #! / usr / b in / oc tave
2
3 # I n i t i a l i z e A, b , x
4 # Compute the f i r s t r e s i d u a l (and the f i r s t d i r e c t i o n)
5 d = r = b − A∗x
6
7 for i =1:n
8 rdot = r ’ ∗ r ; # Pick s t e p s i z e , based on r e s i d u a l
9 alpha = rdot / dot (A∗d , d) ;

10 x = x + alpha ∗ d ; # Step in t h a t d i r e c t i o n
11
12 r = r − alpha ∗ A ∗ d ; # Compute new r e s i d u a l
13 beta = r ’ ∗ r / rdot ; # Gram−Schmidt cons tant
14 d = r + beta ∗ d ; # New d i r e c t i o n
15 end

Listing 2.2: Implementation of CG

As we can see from this Listing, the steps roughly relate to Equations (2.6), (2.7),
(2.8), (2.9), (2.13) and (2.12).

2.2.4 Convergence

From the previous Subsections, we see that CG converges in n iterations, as this
means traversing all n mutually conjugate directions. However, all n iterations are
not always necessary.

It can be shown (Shewchuk [33] Section 9 and Saad [32] Section 6.11.3) that the
error at iteration m is given by the following equation

||x− xm||A ≤ 2
[√

κ−1√
κ+1

]m
||x− x0||A (2.14)

Where ||x||A denotes the norm as ||x||A = (Ax, x)
1
2 [32] and κ is known as the

condition number of the matrix.

What this formula shows is that based on the condition number of the matrix,

which is defined as κ(A) =
∣∣∣λmax(A)
λmin(A)

∣∣∣ where λ(A) denotes the Eigenvalues of a

matrix A, the algorithm will quickly converge on the answer. Because of this, one
might reach a suitable solution to the problem without having to do all n iterations.
However, this is dependent on the matrix in question, as its Eigenvalues decides

11

the condition number of the matrix. The greater the condition number, the slower
the algorithm will converge, and thus more iterations will have to be performed.

2.3 CSR

The definition of sparse matrices is that they consist mostly of zeros. Because of
this, it is inefficient to store entire sparse matrices in memory. This gives rise to
the obvious optimization of storing only the non-zero (nnz) values of the matrix,
as it eliminates most of the matrix without reducing the amount of information.

This is the reasoning behind CSR, which is a storage scheme for storing only the nnz
values of sparse matrices. Figure 2.3 shows an example of how this is accomplished.
In short, CSR stores the matrix as three arrays, consisting of row ptr and col ind,
which give the location of an element, as well as values, which contains the actual
nnz value. Another possible approach would be Compressed Sparse Column (CSC),
which is the same technique, only column-major [25].

Figure 2.3: An example of CSR for a sparse matrix [25]

As this shows, CSR is not an algorithm for solving SpMV, but rather a storage
optimization. As such, it is often used in conjunction with regular SpMV kernels
in CG in order to solve nLSP effectively. CSR provides a significant memory
and bus improvement, increasing the SpMV performance and thus increasing the
performance of CG.

2.4 CSX

CSX, as opposed to CSR, is an algorithm designed for optimizing SpMV for mul-
ticore environments. It is based on the Compressed Sparse Row with Delta Units
(CSR-DU) storing scheme for sparse matrices, but utilizes extended compression
as well as code generation in order to further optimize memory access patterns and
reduce the memory bottleneck.

12

In this Section an overview of how CSX operates will be presented. A more in
depth description can be found in the presentation of CSX by Kourtis et al. [25].

As we have seen, the CSR optimization decreases the memory requirements of
SpMV significantly, but there is still potential for improvement. There are several
methods to achieve this, including Blocked CSR (BCSR) and CSR-DU [25]. The
latter, presented by Kourtis et al. in 2008 [24], is a compression scheme based on
delta encoding for CSR. It works by searching the col ind array for groups (known
as units) of values and representing them as delta values to a number representing
the group. This substantially reduces the strain on the memory system, as the
compression can reduce the data size significantly, depending on the matrix. An
example can be seen in Figure 2.4.

Figure 2.4: An example of CSR-DU [25]

CSX is built on the same principles as CSR-DU. It uses the same delta compres-
sion, but can detect groups in not only horizontal patterns (like CSR-DU), but also
vertical, diagonal, anti-diagonal and 2D patterns. This is done by traversing the
matrix in the desired directions and detecting groups along the way. For 2D pat-
terns, a simple transformation from 2D to 1D space is used. This is implemented
by splitting the matrix into bands (multiple rows/columns) and then transforming
them to a linear access pattern. Once transformed, the simple 1D group detec-
tor can be used. When the detection is completed, the resulting 1D pattern is
transformed back to 2D with the reverse transform.

When the entire matrix has been traversed in the different directions and the
new matrix containing groups of delta values has been constructed, the algorithm
generates specialized code for the SpMV operation kernel. This gives optimized
access patterns based on the matrix, and hence further optimizing the memory use
and runtime of the application.

13

2.4.1 Preprocessing

While there is a significant runtime improvement from using CSX, it comes at the
cost of the preprocessing required to analyze the matrix. This can be viewed as
a trade-off, where one should only use CSX for applications where the execution
time is the dominating part of the runtime, e.g. problems that require several CG
iterations. The complexity of the preprocessing is found to be O(nnz) [25].

As was stated above, the preprocessing of CSX is designed to find linear, diagonal
and 2D patterns in the matrices. Because of this, the layout of the matrices will
greatly affect the performance of CSX, where matrices with patterns identifiable by
the preprocessing (e.g. diagonal matrices), will benefit significantly more from the
optimizations than matrices with more irregular patterns (e.g. curved matrices).

The preprocessing itself is split into three phases. In the first phase, the matrix
is searched for suitable patterns to encode using delta compression. The second
phase is the actual matrix encoding. In this phase, the matrix is encoded with the
patterns identified in the previous phase and stored in memory. The third phase
is the code generation, where the SpMV kernel is generated based on the patterns
used to encode the matrix.

Statistical sampling

In order to minimize the cost of the preprocessing, CSX offers a technique called
statistical sampling. This approach reduces the work of the unit identification
in the preprocessing significantly by reducing the amount of the matrix that is
searched. Normally, the entire matrix is searched for all patterns while keeping a
statistic for the best matching pattern in the different parts of the matrix. With
statistical sampling enabled, the pattern identification is limited to a subset of the
matrix based on a portion variable. This significantly limits the amount of work
required by the preprocessing, thus reducing its runtime.

On the other hand, the use of this statistical sampling limits number of patterns
identified in the matrix. This is because the pattern search space is severely limited,
resulting in suboptimal patterns possibly being chosen. As a result of this, the
use of statistical sampling will most likely result in reduced performance during
SpMV execution. Hence, one can consider the use of statistical sampling a trade-
off between reduced preprocessing cost and SpMV performance gain.

2.4.2 Parallelization

In order to achieve performance, CSX utilizes parallel execution on the parts of
execution with high DLP. This is primarily two parts of the execution, namely the
preprocessing and the SpMV execution. Both of these phases consist of matrix
evaluation and calculation, making them well suited for multithreaded execution.

14

The parallelization done by CSX consists of splitting the nnz s of the matrix into
groups based on the number of threads. This is done by iteratively dividing the
remaining nnz count by the number of threads not yet initialized in order to create
a limit value. Then, rows starting from the last processed row are iteratively added
to the current matrix subset as long as the limit value for nnz s is not exceeded. This
is done to ensure equal distribution of work for the threads, despite the variable
row length offered by the CSR format. Upon reaching the limit value, the matrix
subset is assigned to the current thread, the remaining nnz count is updated and
the iteration continues to the next thread.

Upon successfully splitting the matrix, the now multithreaded execution can com-
mence. Due to the equal distribution of nnz s, the execution of the threads is
ensured to be of equal length when assuming no contention.

2.5 Energy Measurement

The goal of this work is to analyze and evaluate the energy consumption of CSX.
This requires techniques for measuring energy at runtime, which can be done in
various ways. The following Section describes the techniques used to achieve this.

Energy measurement has been the goal of much academic work, and hence, many
different techniques have been used. Hähnel et al. evaluated the then relatively new
Running Average Power Limit (RAPL) interface, which is a performance counter
for energy made available through a register on the Central Processing Unit (CPU).
Their work showed accurate results for the interface when compared to an exter-
nal measurement tool [22]. Other measuring techniques include the use of wall
power meters. This approach is suggested by Feng et al. in their description of
Green500 [20], which is a energy efficiency top list for supercomputers. However,
as they point out in their work, there are many ways to connect the power meter
to the measured computer.

Finally, there has been a lot of research into power estimation using performance
counters. This approach has been used by, among others, Bircher et al., who
provided a simple 2-input model based on performance counters [16], Singh et al.,
who created a piece-wise function for power based on four performance counters [34]
and Bertran et al., who created a decomposable model for power for different parts
of the CPU [15]. What is common to all these works is that they utilize performance
counters that correlate well with the power consumption of the CPU to make a
model for the power consumption.

For this work, the first approach of using the RAPL interface will primarily be
utilized. This is done for three reasons:

1. The RAPL interface was shown by Hähnel et al. to provide sufficient accuracy
in its measurements [22].

15

2. A framework for measuring the energy consumption of a system was devel-
oped by Lien for his Master Thesis [27], making measurement of the energy
easier. This framework was also used in earlier research into the energy effi-
ciency of CSX [21].

3. In this earlier work [21], it was shown that the energy consumption measured
through the RAPL interface and energy consumption measured by a wall
meter largely correlated. The only difference found was that the wall power
meter more closely correlated with the runtime of the application. Hence,
results from the RAPL interface should provide sufficient insight into both
the CPU and full system energy consumption.

A wall power meter will also be used where appropriate to enhance the results from
the Model-specific register (MSR) framework.

The rest of this Section contains a description of the measurement equipment and
software used for the experiments. As this is the same equipment as was used in
earlier research [21], the coming Sections are based on equivalent Sections in that
report.

2.5.1 The RAPL interface in the MSR of Sandy Bridge

Intel was the first company to expose energy data from their processors [22]. This
was done by adding an interface called the RAPL interface to the MSR of the
Sandy Bridge microarchitecture processors. The interface consists of four registers,
shown in Table 2.1, which can be read at runtime.

RAPL PGK Whole CPU package
RAPL PP0 Processor cores only
RAPL PP1 ”A specific device in the uncore” 1

RAPL DRAM Memory controller

Table 2.1: List of available RAPL sensors [22]

Values from these registers can be read each time the MSR is updated. Hähnel et
al. found this to happen each 1 ms (or 2,500,000 cycle on a 2,5GHz), with jitter
of about +/- 50,000 cycles [22]. They also found the registers to be sufficiently
accurate when it comes to consumed energy, compared with a wall power meter.

2.5.2 MSR Framework

In order to measure energy consumed by the system while the experiments are
running, one has to collect data from the MSR continuously as well as store this
data. For this purpose, an energy measurement framework is used.

1GPU on Sandy Bridge and Ivy Bridge processors, not used in this document

16

The energy data collection framework used in this report was created by Hallgeir
Lien for his Master Thesis on energy consumption in Sandy Bridge processors [27].
This framework is composed of two main parts, an energy library written in C
that interacts with the RAPL interface, and a collection of Python scripts that
allows users to create input files in which several parameters and environmental
variables can be specified. Based on these input files, the framework sets up the
environment and runs the specified executables a specified number of times while
collecting data. At the end of each run, the total energy consumed is reported.

When all runs have been completed, the outputs are processed statistically based
on the number of runs (i.e. mean, median and standard deviation is calculated),
and all results are stored in an SQLite database.

The energy library also contains an interface written in C that allows for start
and stop markers to be placed in the measured application code. Based on these
markers, the library only measures energy for the code specified, such as the CG
execution, instead of the entire application.

Continuous MSR data collection

The energy library is able to collect the overall energy consumption between two
markers. However, in order to obtain continuous power readings from the MSR,
several readings based on a set interval is required.

This was achieved with a small framework written in C by Jan Christian Meyer,
that sends a recurring signal based on a configurable interval, and reads the MSR
using the energy library upon catching this signal. The data collected is written
to a buffer and written to file at the end of the application execution.

2.5.3 Yokogawa WT210

As was mentioned above, a wall power meter is used when appropriate to enhance
the results from the MSR. The power meter in question is the Yokogawa WT210,
which is used to measure the energy consumption of the entire system. This meter
is connected between the power outlet and the computer being measured, and logs
the power used by the system to a second computer, as illustrated in Figure 2.5.
The second computer (named ESRV System in the Figure) is used in order to
prevent instrumentation from affecting the energy consumption measurements of
the target computer.

The Yokogawa WT210 is connected via serial interface to the ESRV System. On
this system, a process called Intel Energy Server, part of the Intel Energy Checker
SDK [4], retrieves power and energy information from the power meter. The col-
lected data is written to a file specified in the process, and can be further aggregated
in order to derive a desired output.

17

Figure 2.5: Yokogawa WT210 setup (Source: Intel [5])

18

Chapter 3

Methodology

In this Chapter, the test setup and input is presented. The first Section contains
a description the hardware used for the experiments, both the CARD-server and
the Vilje supercomputer. The second Section contains a description of the software
used as well as its input parameters, and the last Section contains a presentation
of the matrix set used in the experiments.

3.1 Hardware Setup

For the experiments in this report, two machines have been used: the supercom-
puter Vilje, and a dedicated server named the CARD-server. The experiments have
primarily been run on the CARD-server, and thus, all results should be assumed
to be based on the CARD-server unless explicitly stated otherwise.

As the hardware of the two machines are similar, however, a presentation of a
single node on Vilje will be used to describe the overall hardware, followed by a
discussion of the differences between the two machines.

The Vilje supercomputer is a 1404 node machine purchased by the Norwegian
University of Science and Technology and met.no [7] in 2012. With its 22464 cores
and theoretical peak performance of 467 Teraflop/s, it was ranked #44 in the
Top500-list of June 2012 [13].

The specifications of a single Vilje node are presented in Table 3.1, and shown in
Figure 3.1.

The most important feature of the specification are the Xeon E5-2670 processors.
These processors are based on the Sandy Bridge microarchitecture, which is the first
architecture to include the RAPL interface in the MSR. This allows for applications
to read the energy consumption of the CPU and thus gain knowledge about the

19

CPU 2x Intel Xeon E5-2670 @ 2.6GHz
Cores 16 cores (8 per CPU) + 16 hyper-threads
L1 cache 32 kB data + 32 kB instruction per core, 8-way associative
L2 cache 256 kB per core, 8-way associative
L3 cache 20480 kB per physical CPU, 20-way associative
RAM 32GB

Table 3.1: Vilje single node specification

Figure 3.1: Vilje node setup (Source: HPC NTNU [1])

power consumption at runtime, which in turn allows for in depth studies of energy
consumption of applications.

Besides the CPU microarchitecture, one should note the large Last Level Cache
(LLC). Its size of 20MB allows for a large working data set near the processing cores,
thus limiting the memory accesses and removing latency. This could potentially
have a great impact on the performance of an application, depending on the input

20

size.

As was stated in the Assignment, access to power measurement on the Vilje su-
percomputer was not available at the start of this work. This access has not been
made available during the course of this work, and thus, no energy results will be
presented for Vilje. However, performance analysis and its impact on the energy
efficiency of the applications run will be discussed in Chapter 4.

Moving on to the CARD-server, its overall hardware closely resembles that of a
single compute node on Vilje. This server was built by the CARD group at NTNU
with the purpose of representing the performance of a single Vilje node. This was
done to allow for experimentation and performance estimation without having to
allocate time on Vilje. As was stated in the beginning of this Section, this server
was used for most of the experiments.

Specifications-wise, the CARD-server is computationally identical to a node on
Vilje, with one exception: the CARD-server has 64 GB of RAM, which is double
that of Vilje. However, this should not affect the performance or energy consump-
tion notably for problem sets with less than 32 GB inputs.

The machines themselves, on the other hand, are significantly different. A single
node on Vilje is a rack-mounted compute node with no hard disks or similar equip-
ment. This can be found in dedicated racks. The CARD-server, on the other hand,
is a single node server with all the equipment this requires. This could potentially
affect the power consumption measured by the wall power meter, but should not
affect the power consumption measured by the MSR.

For the CARD-server, access to the MSR was given at the start of the work,
and thus, energy results can be gathered from runs on this machine. In addition
to RAPL counter access, this machine was fitted with a wall power meter, as
described in Section 2.5.3. This allows for wall power to be measured, making
comparisons between the RAPL counters and the actual consumed energy of the
machine possible.

3.2 Software Setup

This Section describes the software used to run the experiments. The following
information is split into two parts: first the software used and their versions are
presented, followed by a description of the test setup and input.

3.2.1 Software and versions

Most of the tests in this work were run on the CARD-server, which is running Fe-
dora release 17 (Beefy Miracle) built on GNU/Linux kernel version 3.5.2-3.fc17.x86 64.
The Vilje supercomputer, on the other hand, is running SUSE Linux Enterprise
Server 11 built on GNU/Linux kernel version 2.6.32.59-0.3-default.

21

The CSX software was built from a checkout of the CSX GitHub repository [3]
done 2013-01-16. This is based on the 0.2 version of CSX, with a patch for NUMA
released 2012-09-14. The CSX software was compiled with LLVM version 2.9 using
the Clang frontend version 2.9.

All other compiled software, including LLVM, was compiled using the GNU Com-
piler Collection (GCC) version 4.6.3 for the CARD-server and 4.6.2 for Vilje.

For controlling the CPU frequency and setting power governor, which is the fre-
quency scaling strategy of the CPU, cpufrequtils version 008, and later cpupower
version 3.8.4-102 were used. The change in software was caused by security up-
grades on the CARD-server.

The RAPL interface was read using a framework developed by Hallgeir Lien, dis-
cussed earlier in Section 2.5.2. All other performance counters from the MSR were
read using PAPI version 5.1.0.

3.2.2 Software configuration and input

All the actual experiments have been run using an implementation of CG (see
Section 2.2), provided by the CSX framework. This application supports solving
CG for either CSX or CSR with configuration options for parallelization and degree
of CSX compression.

MT CONF core numbers
0-7 Physical cores on CPU0
8-15 Physical cores on CPU1
16-23 SMT cores on CPU0
24-31 SMT cores on CPU1

Table 3.2: MT CONF core number configurations

The MT CONF variable is an environmental variable read by the CG application on
startup. This variable dictates what cores (including Simultaneous multithreading
(SMT)-cores) should be used to run the application. Hence, this variable dictates
the parallelization of the application. The core numbers are given by the Linux
subsystem and can be displayed with the commands cpufreq-info or cpupower -c
all frequency-info.

Table 3.2 displays the core numbers set in the MT CONF variable to set up thread
configurations. Note that these core numbers are equal to the ones shown in Fig-
ure 3.1. In order to set specific configuration, the MT CONF variable is set to the
core number on which threads are to be run. For example, four threads running on
four physical cores on CPU0 would have an MT CONF of 0,1,2,3. Four threads
running on two physical cores with SMT on CPU0 would have an MT CONF of
0,1,16,17, while four threads running on four physical cores on both CPU0 and
CPU1 would have an MT CONF of 0,1,8,9.

22

XFORM CONF
0 For CSR
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 For CSX

Table 3.3: XFORM CONF configurations for CG binary

The XFORM CONF variable is another environmental variable read by the CG
application on startup. This variable configures which patterns the CSX prepro-
cessing searches for, and thus, which patterns can be detected and optimized by
CSX. This variable is set to a series of numbers, each representing a different pat-
tern for recognition. Refer to the CSX README on GitHub [3] for a detailed list
of possibilities.

Unless stated otherwise, the configurations shown in Table 3.3 are used in the
experiments. This means full compression for all configurations running CSX.

Additional CG options
-l 1024 Number of CG-iterations
-L 1 Number of repetitions done by the binary
-x (Enabled or disabled) Used with XFORM CONF to enable CSX

Table 3.4: Additional options for CG binary

In addition to the environmental variables, the CG application is configurable
through arguments passed to the application. The arguments set for the experi-
ments in this work can be found in Table 3.4. For a full list of available arguments,
refer to the README mentioned above.

The number of CG iterations is set to 1024 to ensure a sufficient runtime of the
application to minimize energy anomalies in the measurements, while still keeping
the runtime of the experiments at a manageable level. For real executions of CG,
however, the required number of iterations is closer to the rank of the matrix (as
discussed in Section 2.2). The number of repetitions is set to one, as repetition
functionality is already provided by the energy measurement framework.

Statistical sampling
SAMPLES 64/#threads
WINDOW SIZE N/A
SAMPLING PORTION 0.01

Table 3.5: Environmental variables for statistical sampling

The statistical sampling, discussed in Section 2.4.1, is controlled through three
environmental variables displayed in Table 3.5. The SAMPLES variable controls
how many sample windows each thread of the application should process. Hence,
in order to get equal statistical sampling regardless of the number of threads, it was

23

set based on the number of threads. The WINDOW SIZE variable determines the
size of each of the sample windows. This variable was not used in the experiments,
as its value is trumped by the last variable. The SAMPLING PORTION variable
decides the amount of nnz s that are sampled during the preprocessing. This value
then decides the sample window size based in Equation 3.1, rendering the value of
the WINDOW SIZE variable ignored.

SAMPLING PORTION × non zeros = SAMPLES × computed win size
(3.1)

The values of these variables were chosen to match the energy consumption study
of Karaksis et al. [23]. The only difference is in the SAMPLES variable, where this
value was set to 48/#threads due to the six-core architecture of their CPUs. The
value of this variable was therefore increased to 64/#threads to accommodate the
eight-core CPUs of Vilje and the CARD-server.

The last set of input variables are input for the test framework discussed in Sec-
tion 2.5.2. These variables and their values are shown in Table 3.6. Note that
the values shown in this Table are only the default values chosen. Unless stated
otherwise, these are the values used.

Test framework
reps Number of repetitions per run 5
cpufreq Frequency (MHz) at which to run test 2600 or N/A

Table 3.6: Variables for the test framework

As shown in the Table above, all the cores were clocked at 2,6GHz, i.e. maxi-
mum frequency, for the experiments. This was done by setting the power governor
to userspace with cpufrequtils or cpupower, which allows users to set the clock fre-
quency of the cores manually. The reason for this choice of frequency was to ensure
maximum performance while keeping the results comparable. However, this is only
applicable for the CARD-server.

For Vilje, on the other hand, no kernel cpufreq driver is loaded. This means that
cpufrequtils is not allowed to monitor or alter the frequency or power governor of
the cores, and thus, no specific frequency could be enforced from userspace. Calls
to the Linux kernel confirm that the nodes are running at 2,6GHz, matching the
default value for the experiments on the CARD-server.

When using PAPI with applications running POSIX threads, such as the CG ap-
plication provided by the CSX framework, the event counts are counted on a per
thread basis. As is described in the PAPI documentation [12], and made evident
by a discussion on the PAPI mailing lists [9], PAPI counters started in the main
thread do not include those of its children when using POSIX threads. As the in-
clusion of PAPI counters for each thread would require significant additions to the

24

CSX framework, it was not done for this work. However, the main thread of the
CG application executes the same amount of work as every other thread. Because
of this, an estimate of the total number of events can be made by multiplying the
results for the main thread by the number of threads.

Hence, all results for multithreaded performance counters in this work, such as
cache misses, are derived from this estimate.

3.3 Matrices

The matrices used in these experiments were downloaded from The University
of Florida Sparse Matrix Collection [11], and chosen in order to ensure a broad
selection of matrices, and hence, to ensure insight into what cases optimize the
benefits of CSX. However, as was discussed in Section 2.2, CG has some limitations
with regards to the problems that can be solved:

1. The matrix must be symmetrical.

2. The matrix must be positive definite.

3. The system must be solvable (i.e. the matrix must come with a b-vector).

Based on these constraints, 21 suitable matrices were found, which are presented
in Table 3.7. The Table also contains the following parameters for each matrix:

rank is the number of linearly independent equations in the linear algebra system.
As a matrix represents the completely specified linear system, this number is
equal to the number of rows and columns in the matrix.

nonzeroes is the number of non-zero values in each matrix.

sparsity is the number of nnz s per element in the matrix (nnzsrank2).

footprint is the size of the nnz s assuming double precision floats (64-bit). Dou-
ble precision floats are used in the CG application, and hence, this number
indicates how much memory is needed to store the raw data of the matrix.

condition is the condition number for the given matrix. This number indicates
how well each iteration of CG converge on the solution vector, and its def-
inition can be found in Section 2.2.4. The number was estimated for each
matrix with the MATLAB-function condest().

In addition to Table 3.7, Appendix A contains the structure of the matrices. These
plots are provided alongside the matrices from the Matrix Collection [11], and show
how the nnz s are distributed. This unveils structural properties for the matrices,
which can be used to enhance the studies of their performance and energy efficiency.

In general, we see that most of these matrices are relatively small (> 20MB).
This means that they will fit in the LLC (see Table 3.1) of the target machines,
reducing costly memory accesses. On one hand, this will most likely increase the

25

Name rank nonzeroes sparsity footprint condition
2cubes sphere 101492 874378 8.49× 10−5 6.67MB 2.9388e+09
af 5 k101 503625 9027150 3.56× 10−5 68.87MB 6.4275e+08
af shell3 504855 9046865 3.55× 10−5 69.02MB 1.4403e+06
bone010 986703 36326514 3.73× 10−5 277.15MB 1.2165e+09
boneS01 127224 3421188 2.11× 10−4 26.10MB 4.2170e+07
boneS10 914898 28191660 3.37× 10−5 215.09MB 2.9528e+08
gyro 17361 519260 1.72× 10−3 3.96MB 3.4851e+09
LF10000 19998 59990 1.50× 10−4 0.46MB 6.4743e+18
nasa2146 2146 37198 8.08× 10−3 0.28MB 4.1303e+03
nasa2910 2910 88603 1.05× 10−2 0.68MB 1.7650e+07
nasa4704 4704 54730 2.47× 10−3 0.42MB 1.6576e+08
nasasrb 54870 1366097 4.54× 10−4 10.42MB 1.4836e+09
olafu 16146 515651 1.98× 10−3 3.93MB 2.2532e+12
offshore 259789 2251231 3.34× 10−5 17.18MB 2.3284e+13
parabolic fem 525825 2100225 7.60× 10−6 16.02MB 2.1108e+05
Pres Poisson 14822 365313 1.66× 10−3 2.79MB 3.1983e+06
raefsky4 19779 674195 1.72× 10−3 5.14MB 1.5172e+14
smt 25710 1889447 2.86× 10−3 14.42MB 6.1260e+09
sts4098 4098 38227 2.28× 10−3 0.29MB 4.5095e+08
thermal1 82654 328556 4.81× 10−5 2.51MB 4.9625e+05
thermal2 1228045 4904179 3.25× 10−6 37.42MB 7.4806e+06

Table 3.7: Matrices used in experiments

performance of the CG execution. On the other, the matrices will most likely not
benefit significantly by the memory optimizations of CSX. There are also some
fairly large matrices (e.g. bone010), that will not fit in the LLC and thus have
quite different performance compared to the smaller ones.

The matrix set constitutes a wide set of ranks ([2146, 1228045]), nnz counts
([37198, 28191660]), sparsities ([1.05 × 10−2, 7.60 × 10−6]) and condition num-
bers ([4.1303e+03, 6.4743e+18]). This ensures that the set covers most matrix
properties that can affect performance.

26

Chapter 4

Results

In this Chapter, the results of the runs described in Chapter 3 are presented. The
Chapter is divided into Sections for each of the properties that are to be examined.

As was presented in Section 3.2.2, the applications executed in these experiments
can be run in several different configurations. In order to easily distinguish between
these CPU and thread configurations, a short description format has been chosen.
This format is inspired by the similar classification used by Karaksis et al. in their
evaluation of energy trade-offs for CSX [23].

This format is as follows: C cT tS sX, where C denotes how many physical CPUs
are used, T denotes how many threads are used, S denotes how many threads are
run as HyperThreads (SMT) and X indicates what algorithm has been used (R for
CSR, X for CSX and Xs for CSX with statistical sampling (see Section 2.4.1)).

As an example, the description 2c8t0sX indicates that the application has been
run on two physical CPUs (i.e. two sockets), it has been run with eight threads
divided between these two CPUs (four threads per CPU) and none of these threads
have been run as HyperThreads using SMT. The application has been run using
CSX.

Another example would be 2c32t16sXs, which indicates that two physical CPUs
was used, 32 threads were divided among these two CPUs, 16 of these threads
(eight per CPU) were run as HyperThreads using SMT and the application was
run using CSX with statistical sampling enabled.

This Chapter is structured into four Sections: Section 4.1 contains a description of
the different formats used and their effect on execution and energy consumption.
Section 4.2 contains a description of the matrix set and results on how the different
matrices affect the energy consumption of CSX. Similarly, Section 4.3 contains
the results of how different hardware configurations and properties affect CSX,
while Section 4.4 contains results on how the Vilje supercomputer compares to the
CARD-server for execution of CG.

27

4.1 Format properties

This Section presents the differences between the formats used in this work to per-
form SpMV. The formats in question are CSR, the simplest of them, CSX, the
compression optimization of CSR, and CSX with statistical sampling, a prepro-
cessing optimization for CSX.

First, the characteristics of each different format will be presented. For each of
them, the power-time plot will be examined and analyzed in order to gain insight
into how the execution behaves with regards to energy consumption. This is closely
related to preliminary studies of CSX’s energy efficiency [21], as well as the work
of Meyer et al. [28].

Thereafter follows a comparison of the energy efficiency of the different formats for
both the CG execution and the full application execution.

4.1.1 Energy profile

In this part, the power-time plots of each of the configurations are shown, different
phases of execution are analyzed and the overall power consumption discussed. The
Section is split into three parts: CSR, CSX and CSX with statistical sampling.

For the plots shown in this Section, a four threaded run of the matrix af 5 k101
will be displayed. This is done for four reasons:

1. The runtime of af 5 k101 is long enough for the phases of execution to clearly
be shown in the plots.

2. The power-time plots of af 5 k101 show an average profile with few anoma-
lies compared to the other matrices, making them well suited for general
discussion.

3. A run with four threads shows the effect of parallelism, and will for this
reason be better suited to show the different phases of execution than runs
with smaller numbers of threads.

4. af 5 k101 did function properly with the use of statistical sampling. Some of
the matrices did not, and hence are not usable for such a comparison. This
is elaborated further in the Subsection about CSX with statistical sampling.

The plots contain both results from the RAPL interface in the MSR, as well as
results from the Yokogawa wall power meter. This makes us able to investigate
how well the CPU power consumption and wall power consumption correlate, and
thus, how well we can extrapolate results from the MSR when discussing the overall
energy consumption of the machine.

28

CSR

CSR is the simplest of the formats, merely describing a way of storing only the nnz
values of a sparse matrix. As described in Section 2.3, it forms the basis for CSX.

In Figure 4.1, the power-time plot of a four threaded execution of CSR on the
matrix af 5 k101 is presented.

Figure 4.1: Power-time plot for four threaded af 5 k101 CSR

The execution of CG with CSR is, as we can see from the plot, split into two phases.
The first phase, lasting for about seven seconds at 55W/150W, was in earlier work
identified as the set-up and fetch phase, where the matrix is retrieved from disk and
stored to memory in the CSR scheme [21].

The second phase of execution, lasting for approximately 5 seconds at 85W/190W
was identified as the actual execution phase [21]. This is where the 1024 CG
iterations are executed.

Apparent from this plot is the fact that only the second phase is affected by the
parallelization offered by the four threads. This is to be expected, as the first phase
consists of serial access to memory, which cannot be parallelized. The second phase
utilizes the DLP found in SpMV to gain performance through parallelization. This
can be seen as the increase in power for this phase. As this has been thoroughly

29

analyzed, the reader is referred to earlier research [21] for more discussion on the
subject.

Looking at the comparison between the MSR and Yokogawa, we notice a distinct
correlation between the graphs. Once the CPU starts consuming additional power
during the CG execution, the power used by the entire system rises correspondingly.
However, a shift can be observed in the difference between the measurements. In
the first phase of execution, the power difference is approximately 95W, while in
the second phase, this difference increases to about 105W. This implies that not
only the additional power consumption of the CPU affects the full system power,
but causes other parts of the system to consume additional power as well. A likely
assumption is that the increased activity of the CPU causes an increase in the
power consumption of the memory system. However, this can not be confirmed
without measuring the power consumption of the memory system, which was not
available for this work.

CSX

CSX, as stated in Section 2.4, is built on the same principles as CSR, but uti-
lizes preprocessing and compression in order to increase performance. While the
performance gain can be significant, it comes at the cost of the preprocessing.

In Figure 4.2, the power-time plot of the execution of CSX on the matrix af 5 k101
is presented.

This plot is, when compared to the plot of CSR, significantly more convoluted. In
spite of this, several unique phases can be identified. In earlier work, these were
characterized as three phases: the set-up and fetch phase, the delta encoding phase
and the execution phase [21]. However, the more recent work for Meyer et al.
correctly characterized five distinct phases [28]:

1. Loading of the matrix from the disk (single-threaded)

2. Substructure detection (multithreaded)

3. Matrix encoding (multithreaded)

4. Code generation (single-threaded)

5. Sparse matrix-vector kernel (multithreaded)

Not all of these phases are easily distinguished in the plot. However, some results
of the different characteristics of these phases can be found. The first phase, which
is equal to the first phase of CSR, can be seen in the first seven seconds of the plot.
The second phase then follows with major fluctuations in the power. This phase
lasts from approximately the seven second mark to the 30 second mark, which is
majority of the plot. Phase three then ensues, with notably smaller fluctuations
and a notable decrease in power compared to phase two. This phase approximately
lasts from the 30 second mark to the 34 second mark. The fourth phase can be

30

Figure 4.2: Power-time plot for four threaded af 5 k101 CSX

seen in the narrow trough close to the 35 second mark. The final phase, which is
equal to the second phase of CSR, can be seen from the 35 second mark to the 40
second mark.

One major thing to notice is that the preprocessing consumes most of the runtime
and thus energy for this execution. As this has been discussed in earlier work, the
reader is referred to Simonsen [21] for a review of this topic and its implications.

Regarding the comparison between MSR and Yokogawa, this plot, as the plot in
Figure 4.1, shows a high degree of correlation. This is especially apparent in phase
two, where the fluctuations can be equally observed for both graphs. Minor discrep-
ancies can be found, but they are not large or frequent enough to be substantial.
The pattern of increase in CPU power consumption causing additional increase in
full system power can also be observed in this plot.

CSX with statistical sampling

In previous work [21], one of the shortcomings was the inability of using the sta-
tistical sampling for preprocessing offered by CSX. This issue, however, has since
partly been resolved by a patch for CSX. Due to statistical sampling now being

31

available, this Section contains a discussion of differences when using statistical
preprocessing compared to runs of regular CSX.

In Figure 4.3 the power-time plot equivalent to the previous plots for CSR and
CSX is shown.

Figure 4.3: Power-time plot for four threaded af 5 k101 CSX w/SP

Because the statistical sampling is but an optimization for the CSX preprocessing,
the same phases of execution can be found in this plot. However, when comparing
this to the plot of CSX, one important observation stands out: the time consumed
by the preprocessing is drastically reduced. While the preprocessing of CSX for
this matrix lasted for about 28 seconds, the equivalent preprocessing of CSX with
statistical sampling lasts for only two seconds. This improvement is due to only
one percent of the nnz s being searched when using statistical sampling (see Sec-
tion 3.2.2). However, this improvement might cause a decrease in performance for
the CG execution, as discussed in Section 2.4.1. This will be further investigated
in Section 4.1.2.

The three phases of the preprocessing mentioned in the discussion of CSX above
become somewhat more indistinguishable in this plot. The second phase can be
found between seven and eight seconds, the third phase can be found between
eight and nine seconds, while the fourth phase can be found at approximately nine
seconds. When compared to the same phases of regular CSX, we see that the

32

runtime phase two and three are heavily decreased. For the fourth phase, however,
the same can not be confirmed nor rejected from these plots.

Like in the previous plots, the MSR and Yokogawa graphs show high degrees of
correlation with the same properties as pointed out earlier.

Even though the statistical sampling is showing promising results for the overall
performance of CSX, there is one major issue that must be discussed. When using
CSX with statistical sampling on the matrix set presented in Section 3.3, it was
found to cause an assert error in the application, causing it to terminate. This
issue appeared for all matrices shown in Table 4.1.

Matrix
LF10000
nasa2146
nasa2910
nasa4704

olafu
Pres Poisson

raefsky4
sts4098

Table 4.1: Matrices that caused CSX with statistical sampling to terminate

Due to this issue severely limiting the matrix set, the statistical sampling will not be
taken into consideration for the rest of the results in this Chapter, with exception
of Section 4.1.2. This is done in order to ensure a broad set of matrices that cover
the most possible corner cases in the results.

4.1.2 Comparison

In this Section, the formats examined above will be compared. The comparison
will be done for both the CG execution phase and the full execution of the applica-
tion, looking at both runtime and energy consumption. As was pointed out in the
previous Sections, the correlation between the MSR and Yokogawa was found to be
high. Because of this, and the fact that some of the executions of the smaller ma-
trices were too short for the Yokogawa results to be accurate, MSR measurements
will be used for comparison between the formats.

As shown in Table 4.1, not all matrices are eligible for statistical sampling. Due
to this, the plots in this Section will contain the average runtime and energy con-
sumption of all matrices for CSR and regular CSX, as well as the average runtime
and energy consumption of the eligible matrices in all three formats.

33

CG execution

First, the CG execution will be examined. Figure 4.4 contains the average runtime
and energy consumption plots for the CG execution.

These plots show, as one would expect, that increased parallelization causes in-
creased performance. However, four significant observations can be made:

1. There is a close correlation between runtime and energy consumption. The
only notable difference is for CSR when moving from four to eight threads,
where the energy consumption increases while the runtime decreases. Note
also that the ordering of the formats is closely matched for all configurations.

2. CSX starts outperforming CSR in average energy consumption for four threads
and runtime for eight threads. This has two implications: one should use
a high number of threads when running CSX (further elaborated in Sec-
tion 4.3.1), and the memory optimization of CSX becomes profitable between
four and eight threads, showing that this is where the memory bottleneck
starts limiting the application.

3. CSR has its lowest energy consumption at four threads. When adding four
additional threads, the energy consumption increases, even though the run-
time continues to decrease. This is not the case for CSX with and without
statistical sampling, which shows a reduction in both runtime and energy
consumption. This behavior will be further examined in Section 4.3.1.

4. When increasing the thread number from eight to 16, there is a slight in-
crease in runtime and energy consumption for all configurations. However,
the 16 threaded executions are run on a single core with eight HyperThreads.
This can have a negative effect either because of the use of SMT, which in
earlier work has been shown to negatively affect both runtime and energy
consumption [21], or because the 16 threads running on a single core can
cause congestion and thus decreased performance. The latter will also be
further examined in Section 4.3.1.

Based on these results, we can conclude that CSX should be used with respect to
both performance and energy efficiency given four threads or more. We also see
that statistical sampling results in slightly higher runtime and energy consumption,
as expected. Note that these results are only for the actual CG execution phase,
and thus do not incorporate the preprocessing of CSX.

Full application energy

In this Section, the runtime and energy consumption of the full application execu-
tion will be examined. The plots in Figure 4.5 show the appropriate average graphs,
similar to the plots in the previous Section. As was noted in the introduction to
this Section, these results are based on MSR measurements.

34

(a) Runtime

(b) Energy

Figure 4.4: Comparison of CG execution

35

(a) Runtime

(b) Energy

Figure 4.5: Comparison of full application execution

36

From these plots we clearly see the cost of CSX’s preprocessing. For all thread
configurations, CSR shows significantly lower runtime and energy consumption
than CSX. This complies with previous research on the topic [21]. New to this
work is the inclusion of statistical sampling in the comparison.

As was shown in Section 4.1.1, the statistical sampling optimization drastically
reduces the runtime of the preprocessing. This is shown in the plots above, where
CSX with statistical sampling is close to the performance and energy consumption
of CSR, while CSX with full preprocessing shows significantly higher results.

From these plots, it also becomes clear that CSX, regardless of preprocessing tech-
nique, shows better parallelization properties than CSR. While the improvement
for CSR is marginal from one to four threads and insignificant for further increase
in threads, CSX in both preprocessing configurations shows great improvement in
both performance and energy efficiency, although the improvement is decreasing as
more threads are added.

For eight and 16 threads, CSX with statistical sampling shows only marginally
higher runtime and energy efficiency than CSR for the full execution of the appli-
cation, showing that CSX in this configuration almost overcomes its preprocessing
with the gain in CG execution.

All of the executions shown in this Section are based on 1024 CG iterations, which,
as discussed in Section 3.2.2, is fewer than would realistically be used to solve CG.
This, combined with the results for CG execution shown in the previous Section,
show that CSX might potentially save energy when compared to CSR, and that
CSX with statistical sampling will save energy.

4.2 Matrix properties

In this Section, the effect of matrix properties on performance and energy con-
sumption are examined. Based on the results, the matrices are categorized into
groups and analyzed to gain knowledge about what matrices CSX is suited for.

The Section will first look at energy consumption properties of the matrices through
discussion of energy consumption per nnz value. Then follows a discussion of energy
optimizability through CSX, based on a comparison between CSR and CSX.

4.2.1 Energy per nonzero

In order to determine how the properties of the matrices affect the energy consump-
tion of CG execution, the results of the energy measurements are normalized with
regards to the size of the matrices, producing a number for energy consumed per
nnz value. This number in then used to compare the performance of the matrices
in order to categorize them.

37

The results are presented in Figure 4.6. Figure 4.6(a) contain the results for CSR,
and Figure 4.6(b) for CSX.

From these plots, we can already identify three distinct groups of matrices. The
first group, consisting of the matrices shown in Table 4.2, share a pattern in which
they have a fairly flat progression until they reach eight threads, at which point the
energy/nnz begins to increase with the number of threads. These matrices are also
among the matrices that consume the most energy/nnz , regardless of configuration.

Name rank nonzeroes sparsity footprint condition
LF10000 19998 59990 1.50× 10−4 0.46MB 6.4743e+18
nasa2146 2146 37198 8.08× 10−3 0.28MB 4.1303e+03
nasa2910 2910 88603 1.05× 10−2 0.68MB 1.7650e+07
nasa4704 4704 54730 2.47× 10−3 0.42MB 1.6576e+08
sts4098 4098 38227 2.28× 10−3 0.29MB 4.5095e+08

Table 4.2: low nnz group

When looking at the matrix data for the matrices in this group, presented in
Section 3.3, we see that these matrices share one common denominator: they
have the smallest number of nnz s, with less than 100.000 values. Another notable
observation is that the order in which they are found for eight and 16 threaded
configuration. When looking at energy/nnz from highest to lowest, their ordering
is exactly equal to their order when looking at the number of nnz s from lowest to
highest.

This suggests that matrices with low numbers of nnz s perform worse than other
matrices for both CSR and CSX, regardless of their structure. Because of this,
the group consisting of the matrices listed above will henceforth be known as the
low nnz group.

Disregarding the low nnz group, we see that the rest of the matrices fall into either
of two groups: those that fall within the bottom belt of matrices and those that
perform worse.

The latter of these two groups, henceforth known as the middle group, consists of
the matrices shown in Table 4.3. These matrices, as noted above, showed suffi-
ciently poor performance when compared to the other matrices to be categorized
as a distinct group.

In Figure 4.7, the energy/nnz plot of the matrices that form the middle group is
shown.

The general, we see that the energy/nnz for matrices in this group favors CSR. It
is first at eight threads CSX outperforms CSR for this metric, and then only for the
matrices offshore and parabolic fem. This implies that the memory optimization
of CSX does not prove beneficial for these matrices in general.

When looking at the data of Table 4.3, we see that none of these matrices show any

38

(a) CSR

(b) CSX

Figure 4.6: Energy/nnz for all matrices

39

Name rank nonzeroes sparsity footprint condition
2cubes sphere 101492 874378 8.49× 10−5 6.67MB 2.9388e+09
offshore 259789 2251231 3.34× 10−5 17.18MB 2.3284e+13
parabolic fem 525825 2100225 7.60× 10−6 16.02MB 2.1108e+05
thermal1 82654 328556 4.81× 10−5 2.51MB 4.9625e+05
thermal2 1228045 4904179 3.25× 10−6 37.42MB 7.4806e+06

Table 4.3: middle group

(a) CSR (b) CSX

Figure 4.7: Energy/nnz for middle matrices

distinct similarities in properties that stand out when compared to other matrices.
They vary in rank, nnz s and condition number, but are found within the same
general area of sparsity. This property, however, does not explain their performance
as many of the other matrices also fall within the same area.

As no explanation for these results can be found in the matrix properties of Ta-
ble 3.7, they must be caused by other properties measured with other metrics.
From Figure A.1, we see that the matrices share one property: they all contain
quite a few corner values (i.e. values near the top right and bottom left corners of
the matrix). Besides this, we see that they also contain values spread throughout
the matrix. Some other matrices (namely Pres Poisson, raefsky4, smt and sts4098)
share this property, but they have considerably lower rank and sparsity than the
matrices of the middle group.

Based on this, we can argue that sparse values near the non-diagonal corners of the
matrices cause the energy efficiency of the CG execution to drop. This also causes
the effect of the CSX optimization to diminish, implying that CSR should be used
for these kinds of matrices.

40

The remaining matrices fall within the group henceforth known as the belt group.
These matrices perform similarly and well compared to the other groups, hence the
name. The matrices making up this group are shown in Table 4.4

Name rank nonzeroes sparsity footprint condition
af 5 k101 503625 9027150 3.56× 10−5 68.87MB 6.4275e+08
af shell3 504855 9046865 3.55× 10−5 69.02MB 1.4403e+06
bone010 986703 36326514 3.73× 10−5 277.15MB 1.2165e+09
boneS01 127224 3421188 2.11× 10−4 26.10MB 4.2170e+07
boneS10 914898 28191660 3.37× 10−5 215.09MB 2.9528e+08
gyro 17361 519260 1.72× 10−3 3.96MB 3.4851e+09
nasasrb 54870 1366097 4.54× 10−4 10.42MB 1.4836e+09
olafu 16146 515651 1.98× 10−3 3.93MB 2.2532e+12
Pres Poisson 14822 365313 1.66× 10−3 2.79MB 3.1983e+06
raefsky4 19779 674195 1.72× 10−3 5.14MB 1.5172e+14
smt 25710 1889447 2.86× 10−3 14.42MB 6.1260e+09

Table 4.4: belt group

Figure 4.8 shows the energy/nnz plot for the matrices in this group. For these ma-
trices, we see that there are some variations between CSR and CSX, most notably
for the matrices Pres Poisson and raefsky4. These two matrices perform notably
worse for CSX than CSR. For the other matrices, however, the variations are too
small to be conclusive.

(a) CSR (b) CSX

Figure 4.8: Energy/nnz for belt matrices

When looking for a common denominator for this group of matrices, Table 3.7
again shows that the matrices represent a broad range of properties. Hence, no
conclusions can be drawn.

41

When looking at Figure A.1, however, we see that most of the matrices are simple
in their structure, mostly consisting of values along the diagonal. There are some
exceptions to this, namely smt, Pres Poisson, raefsky4 and to some degree gyro.
This is interesting, as these four matrices share a low rank and sparsity. As was
discussed for three of these matrices during the categorization of the middle group,
their low rank and sparsity cause them to generally perform better than their
structure implies that they should. Hence, these four matrices would probably be
found in the middle group, had their rank and sparsity been greater.

Based on these results and categorizations, we can argue that matrices that are
sufficiently large and do not have a lot of spread, non-diagonal corner values, are
well suited for energy efficient solving of CG in general.

4.2.2 Energy consumption optimizability through CSX

While energy per nnz gives insight into how well matrices perform for CG, it does
not effectively show how well the matrices are optimized by CSX. To achieve this,
this Section presents plots of the ratio between energy consumption in CSX and
CSR. This ratio, henceforth known as the Energy Decrease Ratio (EDR), is created
by dividing the CSR energy consumption by the CSX energy consumption (Ecsr

Ecsx
).

This makes it possible to identify key properties in the matrices that affect the
energy efficiency of CSX.

Figure 4.9 contains the EDR plots for all matrices. The grid lines for this plot have
been removed in order to improve readability for the dotted lines.

The most apparent feature of this plot is that the EDR increases with the number
of threads (i.e. towards the right), again showing that CSX parallelizes better than
CSR.

When examining the matrices, we notice that a small group of matrices show energy
decrease (EDR of 1.0 or above) for all configurations, another group show decrease
for some configurations, while a large group show no improvement from using CSX
over CSR.

The first of these groups, consisting of the matrices shown in Table 4.5, bene-
fits greatly from the optimizations of CSX. This group will therefore henceforth
be called the csx optimized group. When looking for common denominators, two
observations become apparent. Table 3.7 shows that they are all among the top
matrices in nnz count, with footprints larger than the LLC of 20MB. Because of
this, none of them can be kept on chip during runtime, causing additional memory
accesses during execution.

These results can be readily explained by CSX providing a memory optimization,
and thus provide more optimization for larger matrices that have greater need of
the memory bus. An important note here, however, is that other large matrices,
such as thermal2 and parabolic fem, are not among these matrices. Hence, the
number of nnz s can not solely describe the effectiveness of CSX.

42

Figure 4.9: EDR for all matrices

Name rank nonzeroes sparsity footprint condition
af 5 k101 503625 9027150 3.56× 10−5 68.87MB 6.4275e+08
af shell3 504855 9046865 3.55× 10−5 69.02MB 1.4403e+06
bone010 986703 36326514 3.73× 10−5 277.15MB 1.2165e+09
boneS01 127224 3421188 2.11× 10−4 26.10MB 4.2170e+07
boneS10 914898 28191660 3.37× 10−5 215.09MB 2.9528e+08

Table 4.5: csx optimized group

The second denominator for this group is the structure of the matrices. From
Figure A.1, we see that all matrices in this group have values centered around their
diagonal. This makes the patterns of values easily identifiable by CSX, as discussed
in Section 2.4, and thus easily optimizable. Only one other matrix apart from this
group shares this property, namely LF10000, which performs notably worse than
the group. This, however, can be explained by the small number of nnz s in this
matrix, with the same discussion as in the previous paragraph.

These observations suggest that in order to decrease energy consumption by us-
ing CSX, one will have to ensure that the input matrices are sufficiently large,
preferably larger than the LLC size, with a diagonal matrix structure.

43

The second group of matrices, hereafter called the semi optimized group consists
of matrices that benefit from CSX with regards to energy consumption in some
configurations, but not all. The matrices that make up this group is shown in
Table 4.6.

Name rank nonzeroes sparsity footprint condition
gyro 17361 519260 1.72× 10−3 3.96MB 3.4851e+09
LF10000 19998 59990 1.50× 10−4 0.46MB 6.4743e+18
nasasrb 54870 1366097 4.54× 10−4 10.42MB 1.4836e+09
offshore 259789 2251231 3.34× 10−5 17.18MB 2.3284e+13
parabolic fem 525825 2100225 7.60× 10−6 16.02MB 2.1108e+05
smt 25710 1889447 2.86× 10−3 14.42MB 6.1260e+09
sts4098 4098 38227 2.28× 10−3 0.29MB 4.5095e+08

Table 4.6: semi optimized group

In general, these matrices perform better (in EDR) for CSX as the number of
threads increases. However, this does not apply to all the matrices. Looking at
gyro and LF10000, we see that they are maximized for four threads, while nasasrb
is optimized by eight threads. These are also the only matrices that have this
property.

When looking for denominators for this group, Table 4.6 shows us that they differ
in rank and nnz count. However, they are all smaller than the LLC size of the ma-
chine. Structurally, there are some similarities that can be found. From Figure A.1,
we see that most of these matrices have elaborate memory patterns with values
spread throughout the entire matrix. On the other hand, LF10000 and nasasrb
are seemingly diagonal, looking more like the matrices of the csx optimized group.

When compared to this group, however, these two matrices are much smaller,
both in rank and nnz count. Thus, the argumentation used about size versus the
memory optimization of CSX mentioned above can explain why these two matrices
are in this group instead of the csx optimized group. In short, they are too small
to sufficiently benefit from CSX, but large enough for the CSX optimizations to
outweigh their overhead in certain configurations.

Regarding the remaining matrices of this group, they contain several grouped or
linear/diagonal values well suited for CSX optimization. On the other hand, these
grouped values (units) are spread throughout the matrices instead of being packed
together, making for more units. This leads more accesses in order to read the
entire matrix, minimizing the effect of delta encoding the indexes as the number of
accesses closes in on the number needed to access all elements. This fact, combined
with the small size of the matrices making them fit in the LLC, explains why they
generally do not benefit from CSX.

The last group consists of matrices that show increased energy consumption for
all configurations when using CSX. Therefore, the group will henceforth be known

44

as the csr optimized group. An overview of the matrices in this can be found in
Table 4.7.

Name rank nonzeroes sparsity footprint condition
2cubes sphere 101492 874378 8.49× 10−5 6.67MB 2.9388e+09
nasa2146 2146 37198 8.08× 10−3 0.28MB 4.1303e+03
nasa2910 2910 88603 1.05× 10−2 0.68MB 1.7650e+07
nasa4704 4704 54730 2.47× 10−3 0.42MB 1.6576e+08
olafu 16146 515651 1.98× 10−3 3.93MB 2.2532e+12
Pres Poisson 14822 365313 1.66× 10−3 2.79MB 3.1983e+06
raefsky4 19779 674195 1.72× 10−3 5.14MB 1.5172e+14
thermal1 82654 328556 4.81× 10−5 2.51MB 4.9625e+05
thermal2 1228045 4904179 3.25× 10−6 37.42MB 7.4806e+06

Table 4.7: csr optimized group

When looking for denominators for this group, we note that nearly all of these
matrices, like the ones in the semi optimized group, are smaller than the cache size
of the machine. Hence, the overhead vs optimization trade-off of CSX discussed
earlier does not prove beneficial for these matrices. However, as this also holds for
the semi optimized group, other factors separate these groups. Note that this is not
the case thermal2, which is among the largest matrices of the set, well surpassing
the size of the LLC.

Structurally, this group consist of mainly two types of matrices: the tridiagonal-
based matrices of the nasa group and olafu, and the more elaborate structural
matrices. Immediately, we see that the tridiagonal-based matrices perform sig-
nificantly better than the others for high numbers of threads. For low numbers,
however, the results are more mixed. This indicates that the tridiagonal matrices
are better suited for the use of CSX as the resources on the chip become limited (i.e.
as the number of threads reach and surpass the number of cores on the chip). This
can be attributed to the same reasons as discussed above, with spread units limit-
ing the performance gain of delta encoding due to the additional accesses required
to fetch all the units.

This, however, requires the assumption that CSX scales better than CSR as the
resources on chip become limited. As it has already been shown in Section 4.1.2,
this is a safe assumption to make.

A more interesting discussion is why the matrices are distributed between this group
and the semi optimized group shown in Table 4.6. With the exception of the matri-
ces gyro, LF10000, sts4098 and thermal2, a distinct difference between the matrices
in the two groups can be observed: the matrices in the semi optimized group are
larger than the matrices of the csr optimized group. This complies with the discus-
sion above about CSX being more beneficial for larger matrices.

However, the issue of the four noncompliant matrices still needs to be resolved.

45

When looking at the matrix structure of these four matrices, several clues can be
found. LF10000 has a structure that matches the most CSX optimizable matrices
in the set. This makes it well suited for the delta encoding of CSX, increasing its
performance in spite of its small size. Similar argumentation can be used for gyro
and sts4098, which contain many straight or diagonal values clusters than can be
identified and optimized by CSX. Hence, their performance for CSX is higher than
what their size indicates. For thermal2, opposite observations can be found, with
value clusters that are neither diagonal nor straight. This, along with the many
small value clusters spread throughout the matrix, minimizes the effect of the CSX
optimizations, and hence, pushes the performance in favor of CSR.

4.3 Platform properties

This Section examines the platform specific properties that affect the performance
and energy consumption of CSX. This is done to identify what machine setups are
well suited for CSX executions.

It contains the following parts: The first Section examines the effect of paral-
lelization (i.e. how additional threads affect the energy consumption), the second
Section examines the overhead and potential gains of using dual sockets, while the
last Section explores the effect of clock frequency throttling.

4.3.1 Parallelization

Parallelization through additional threads is a cheap and effective way of utiliz-
ing data level parallelism. As was noted in Section 2.1, SpMV is well suited for
parallelization, and hence, we can expect both CSR and CSX to show perfor-
mance improvements and energy consumption reductions with increased numbers
of threads. This was also shown in previous work [21].

In this Section, the effect of parallelization on the general performance and energy
efficiency will be examined. In addition, the effect of parallelization on the EDR,
i.e. to what degree parallelization affects CSX compared to its effect on CSR, will
be explored.

The Figures 4.10 and 4.11 contain the runtime and energy plots for the CG execu-
tion, respectively. The thread configurations shown are chosen in order to examine
how additional threads affect the results. However, going beyond eight threads,
either HyperThreading (SMT), two physical CPUs, or both will have to be used
due to the eight cores on each CPU. As this potentially can affect the performance
and energy efficiency (HyperThreads have previously been shown have a negative
effect [21], while dual sockets will be explored in Section 4.3.2), both these config-
urations are shown in the plots for thread combinations that require either. This
allows for general discussion of parallelization without having the results affected
by one of these multithreading technologies.

46

(a) CSR

(b) CSX

Figure 4.10: Effect of parallelization on runtime

47

(a) CSR

(b) CSX

Figure 4.11: Effect of parallelization on energy

48

In general, we see that the use of multiple threads is beneficial for the configurations
shown, including the averages of all matrices. This has already been established
earlier and is due to the high degree of DLP, as discussed in Section 2.1. Beyond
this generalization, however, some important observations can be made:

1. For energy efficiency, there is little to no benefit from increasing the number
of threads beyond eight. Only the csx optimized group and marginally the
belt group shows continued decrease in energy consumption when moving be-
yond eight threads, but only for the 2c16t0sX configuration. All other matrix
groups and configurations, including the average for all matrices, show an in-
crease in energy consumption beyond eight threads. For CSR, four threaded
configurations provide the optimal energy efficiency for all groups except the
semi optimized group, which marginally benefits from eight threads.

For runtime, similar results are apparent, but several groups are optimized
for thread configurations beyond those that optimized their energy efficiency.
For CSR, this is generally found for eight threaded configurations, while for
CSX, it is generally found for 16 threaded configurations on two sockets.

As was noted earlier in this Section, configurations beyond eight threads use
either two physical CPUs, HyperThreading or both, the effect of which can
be negative. However, the use of such technologies is required in order to do
process more threads than number of cores on a single CPU. Because of this,
their overheads must be taken into account.

2. CSR is showing considerable increase in both runtime and energy consump-
tion with the use of two physical CPUs. This will be further elaborated in
Section 4.3.2.

3. Although most of the matrix groups shown benefit from the first four addi-
tional threads for both performance and energy efficiency, it is important to
note that the low nnz group does not benefit from these additional threads.
This group, consisting of comparably small matrices, exhibits little to no
change between one and four threads, while any additional threads beyond
this cause an increase in runtime and energy consumption. This is due to the
low number of nnz s causing a too short runtime to benefit from additional
threads, which, in turn, causes the overhead of thread spawning and -joining
to decrease the overall performance and energy consumption at higher thread
counts.

To further evaluate the comparison between CSR and CSX with regards to par-
allelization, Figure 4.12 contains the plot of average EDR for each of the matrix
groups, in addition to the average for all matrices.

From this plot, we see that for all groups of matrices, including the group containing
all matrices, the average EDR increases with the number of threads. This implies
that CSX scales better with the number of threads than CSR independent of input.
The only exception to the observation above is found when moving from one to
two threads for the middle group, consisting of matrices shown in Table 4.3. For

49

Figure 4.12: Average EDR for matrix groups

this group and these configurations, the energy consumption decrease in CSR is
greater than the decrease in CSX, resulting in a lower EDR.

Another thing to note is that the matrices in general (i.e. the average of all ma-
trices), first start to benefit from CSX at eight threads. From the discussion of
Figures 4.10 and 4.11, we know that this is where CSR starts consuming additional
energy compared to the optimal configurations of four cores, while this configura-
tion provided optimal energy efficiency for CSX. From this, we can argue that when
using CSX to solve CG, eight threads should be used to optimize the performance
and energy efficiency gain.

4.3.2 Dual sockets

In this Section, the effect of running CSX on multiple sockets will be explored. The
use of multiple sockets implies that additional physical CPUs have to be powered,
hence increasing power consumption, but allowing for additional cores for process-
ing. This increased processing capability can provide additional speedup and thus
reducing the overall energy consumption of the application. For the machine setup
described in Section 3.1, the effect of two sockets can be explored.

50

Figure 4.13 contains a plot of the average difference in CG execution energy con-
sumption between one and two sockets for the matrix groups discussed in Sec-
tion 4.2. This difference is computed by the formula E2c − E1c, resulting in posi-
tive values for configurations that show higher energy consumption for dual sockets
(i.e. favor a single socket), and negative values for configurations that show lower
energy consumption for dual sockets (i.e. favor dual sockets). Note the difference
in y-axis values for the two plots.

(a) CSR (b) CSX

Figure 4.13: Energy difference between one and two sockets

Apparent from these plots is the fact that CSR does not favor dual sockets for
any of the configurations shown. CSX, on the other hand, favors dual socket
configurations with high numbers of threads for matrix groups that have been
shown to benefit from CSX. Generally, we see that there is a trend towards increased
benefit from dual sockets for all configurations running CSX as the number of
threads increases.

From these observations, the following implication can be made: For some matrices,
CSX manages to gain enough execution performance (i.e. speedup) from the use of
dual sockets to diminish the effect of the additional energy consumption caused by
powering two sockets, and thus, one should be able to see significant speedup for
some CSX configurations. CSR, on the other hand, should show equal performance
or speeddown for all configurations.

For the most part, this is the case. Figure 4.14 shows the average group speedup
of two socket configurations (t1ct2c) for CSR and CSX. For CSR, the results are
as one would assume, with all matrix groups showing speeddown (i.e. less than
1.0 speedup). For CSX, the results are also mostly consistent, but some major
anomalies can be observed:

1. The csx optimized group shows speedup regardless of thread configurations,

51

(a) CSR (b) CSX

Figure 4.14: Speedup of dual sockets

but only energy consumption decrease for eight threaded execution. However,
as the eight threaded configuration is where the speedup is greatest, this can
be explained with the performance increase not becoming significant enough
to outweigh the energy cost of powering two CPUs until eight threads are
being used. On the other hand, this can be indicative of a shift in the energy
consumption comparison as the number of threads increases. This is shown
to be the case in 3.

2. The belt group, as well as the average for all matrices are showing slowdown
for all configurations, while they obtain a decrease in energy consumption for
eight threads. However, both of these matrix groups contain all the matrices
of the csx optimized group. Hence, the decrease in energy consumption can
be explained with the behavior of this group due to the size of its matrices
affecting the average.

3. For the remaining groups, we see that while there is little to no increase in
performance, they still obtain relative decrease in energy consumption as the
number of threads increase. Although they never benefit from the use of
dual sockets, the increase in energy consumption compared to single socket
execution is minimized by the increased number of threads. This has one
interesting implication: as the number of threads run by one CPU draws
near to the number of cores on the CPU, its energy efficiency drops. Hence,
given an execution with exactly 1.0 in speedup for all thread combinations,
one can assume that the use of dual sockets will be more energy efficient than
the use of a single socket for thread counts close to the limits of the single
CPU.

This is also confirmed by the results for the csx optimized group, especially

52

apparent with the move from two to four threads. Even though the speedup
stays linear, the energy difference tends towards favoring dual sockets.

For CSX, we see that large matrices (i.e. the csx optimized group) gain increased
performance with the use of two sockets, regardless of thread counts. As the number
of threads increase, dual socket configurations also become the most energy efficient
for these matrices. For smaller matrices, on the other hand, the use of dual sockets
does not prove beneficial for any configuration.

For CSR, the results show that the use of dual sockets increase both runtime and
energy consumption. Therefore, all CSR executions should be run on a single
socket.

4.3.3 Clock frequency

Much research has shown that the clock frequency of the CPU highly affects the
energy consumption, and that throttling of the frequency can save energy for an
application as a whole. Natvig et al. [29] described the effect of the clock frequency
with Expression 4.1:

Pdynamic ∼ aCV 2f (4.1)

where Pdynamic is the dynamic power consumption of the CPU, a is the Activity
Factor, C is the physical capacitance of the CPU, V is the supplied voltage to the
CPU and f is the clock frequency of the CPU. This equation shows that the dynamic
power consumption of the CPU is linearly correlated with the clock frequency.

The relation between the dynamic power consumption and the energy consumption
of the CPU is by Natvig et al. [29] shown in Equation 4.2 and 4.3.

Power = Pdynamic + Pstatic (4.2)

Energy = Power × T (4.3)

where Pstatic is the static power consumption of the CPU (i.e. the cost of having
the processor powered while idling), and T is the runtime of the application.

While showing the relation between Energy and Pdynamic, these two equations
also show another important property of the clock frequency in relation to the
energy consumption: the performance of the CPU, shown through the runtime
of the application (T), is directly related to the clock frequency. This makes the
frequency somewhat of a trade-off when looking at the energy consumption. On
one hand, reduced clock frequency reduces the power consumption of the CPU,
lowering the energy consumption. On the other hand, reduced clock frequency
increases the runtime of the application, increasing the energy consumption.

This Section will thus investigate how the energy consumption is affected by throt-
tling of the clock frequency. This is done with the applications cpufrequtils and
cpupower, discussed in Section 3.2. The range of frequencies explored depends on

53

(a) CSR (b) CSX

Figure 4.15: Average runtime for all matrices on differing frequencies

the hardware, and is for these experiments set to [1200, 2600]MHz with a step size
of 200MHz.

Figure 4.15 contains the average runtime of all matrices for the varying frequencies.
It shows, as one would expect, that higher frequencies produce lower runtimes for
all configurations. This is readily explained by the clock frequency setting the
speed at which the CPU can execute instructions, hence the speed at which the
CPU can execute an application.

(a) CSR (b) CSX

Figure 4.16: Average energy consumption for all matrices on differing frequencies

54

The energy consumption, on the other hand, shows more interesting results. As
Figure 4.16 displays, the lowest frequency is not the most energy efficient for any
configuration. This implies that the decrease in performance caused by the lower
frequency causes the application to run for so long that the decrease in power
caused by the low frequency does not result in lowered energy consumption.

When looking at the most energy efficient frequency, we see that 2600MHz (i.e. the
highest frequency) is most energy efficient for low numbers of threads. However,
a certain shift can be observed as the number of threads reaches eight and 16.
For these two thread counts, we notice that the highest frequency becomes the
least energy efficient. Generally, we notice that the frequencies in the range [2000,
2600]MHz swap their ordering and become less energy efficient for eight and 16
threads. The lower frequencies, however, retain their ordering, leaving 1800MHz
the most energy efficient.

As this shows differing properties in performance and energy efficiency, the trade-
off between the two is eligible for discussion. While energy can be the goal of an
application study, it is not always a suited metric. This is due to energy not weigh-
ing the performance of an application highly enough, thus favoring prolonged, low
power executions. Hence, more performance-weighted metrics have been proposed,
such as the Energy Delay Product (EDP).

EDP is defined by Laros III et al. [26] in Chapter 8 of their book with Equation 4.4:

EDP = E × Tw (4.4)

where E is the energy, T is the runtime and w = 1, 2 or 3. From Equation 4.4, we
see that EDP weighs the energy with the runtime of the application, thus favoring
configurations that are both relatively energy efficient and has high performance.

The w parameter decides how much the EDP should emphasize the performance
of the application, making the decision of this parameter vital to the results. Laros
III et al. argue that:

For HPC, the EDP cubed equation is most appropriate due to the focus
on performance. Possibly the performance factor of the metric should
be weighted even higher to better represent the performance priority of
HPC workloads. [26]

As the solving of SpMV is a problem found widely within scientific HPC, and that
the performance of such problem solving should be relatively high, w = 2 will be
used in this work.

Figure 4.17 shows the EDP = E × T 2 plots for the differing frequencies. Note the
logarithmic scale of the y-axis. For EDP, we see that higher frequencies outperform
lower for all configurations. The only exception is when moving from eight to 16
threads, where the four highest frequencies ([2000, 2600]MHz) close to coincide,
making them almost indistinguishable. 2200MHz does marginally outperform the
others, but the difference is insignificant.

55

(a) CSR (b) CSX

Figure 4.17: Average EDP = E × T 2 for all matrices on differing frequencies

These observations imply that, when taking performance into the consideration,
higher frequencies are favorable to lower, even though they are not as energy effi-
cient. Because of this, we can argue that throttling of the frequency should not be
done when executing CSX applications, unless energy efficiency should be obtained
at the cost of performance.

4.4 Comparison of Vilje and the CARD-server

In Section 3.1, it was stated that the CARD-server was built in order to emulate a
single node on the Vilje supercomputer. Hence, this Section contains discussion of
similarities and, more importantly, differences between performance between the
CARD-server and Vilje.

As was also stated in Section 3.1, access to the RAPL interface on Vilje was not
made available for this work. Therefore, the similarities or differences in energy
consumption can not be explored directly. This means that other metrics will have
to be explored in order to make up an idea about whether or not results from the
CARD server are representative for energy efficiency on Vilje.

The method of using other metrics in order to make up estimates for energy con-
sumption has been widely used within academic research prior to the inclusion of
the RAPL interface in the performance counters of the CPU. One approach is the
use of other performance counters to model the power and energy consumption
of an application. Another approach is to look at the performance of the execu-
tion and use these results to make assumptions about the energy consumption.
This approach, however, assumes correlation between the performance and energy

56

efficiency of an application.

For solving CG, previous work has shown that the performance and energy effi-
ciency of both CSR and CSX seem to correlate well:

We also see that the energy consumption and runtime for all configura-
tions correlate strongly, both in the MSR and Yokogawa measurements.
With few exceptions, we see that a reduction in runtime causes a reduc-
tion in consumed energy, and conversely, an increase in runtime causes
an increase in consumed energy. [21]

Hence, a decrease in performance should indicate an increase in energy consump-
tion, and vice versa. Therefore, the performance of the application will be used to
make assumptions about the energy efficiency of Vilje versus that of the CARD-
server.

(a) CSR (b) CSX

Figure 4.18: Runtime of CARD and Vilje

Figure 4.18 shows the plots of average runtime of the matrix groups defined in
Section 4.2. The solid lines represent results from the CARD-server, while the
dashed lines represent results for Vilje.

Immediately apparent is the fact that Vilje outperforms the CARD-server marginally
for all configurations, especially apparent for CSR executions. This can indicate
one or more of three things:

1. The hardware differences between the CARD-server and Vilje affect the per-
formance.

2. The software differences affect the execution of the application.

3. Load differences between the servers affect the results at runtime.

57

We can quickly disregard 1, as the hardware differences shown in Section 3.1 are
limited to the amount of available RAM. Since all matrices are well within the
32GB of RAM available for a node on Vilje, the additional 32GB of RAM on the
CARD-server can not make any notable difference in performance.

Option 2, on the other hand, can not be disregarded. As was shown in Section 3.2,
the Linux kernel versions are radically different, with the CARD-server running on
version 3.5.2-3, while Vilje is running on the older 2.6.32.59. This can highly affect
performance, as the kernel is responsible for mapping the running software to the
hardware. Hence, identical programs can perform differently on different kernels.

All other software, excluding GCC is identical and could therefore not affect the
performance. The GCC versions, 4.6.3 and 4.6.2 for the CARD-server an Vilje
respectively, could potentially alter the code slightly, but not in any major way
due to the upgrade being a set of bug fixes.

Regarding option 3, it could also be responsible for the results shown. The CARD-
server is a shared, single node server running a standard version of Fedora. Vilje,
on the other hand, is a supercomputer with dedicated login and compute nodes.
Hence, a dedicated compute node on Vilje does not have to run the same services
as a single node server, reducing the strain on the node. However, the effect of this
is minimal, as the activity on the CARD-server was limited during the execution
of the experiments.

Moving on, we see that the graphs of Figure 4.18 retain the same general pattern
for both Vilje and the CARD-server, with the slight offset discussed above. This is
an indication of similar execution on both servers, with no major anomalies. Hence,
we can argue, based on earlier research, that the energy profile of both servers will
be similar with a slight offset.

58

Chapter 5

Discussion

In this Chapter, the findings of Chapter 4 will be discussed. The focus will be
on unresolved issues and implications of the results presented. The Chapter is
split into parts pertaining to particular observations in the results. Some of these
discussions span multiple paragraphs.

The first issue to be discussed is the 1024 CG iterations used in the experiments.
As was pointed out in Section 3.2.2 and during the full run comparisons in Sec-
tion 4.1.2, this number of iterations does not reflect a realistic CG execution, which
generally would require additional iterations in order to converge. In Section 2.2.3,
it was argued that the number of iterations needed to solve CG is O(rank), while
Section 2.2.4 showed us that the number can be estimated from the condition
number of the matrix.

To get an overview of how many iterations are realistically required to use CG
to solve nLSP for the given matrix set, the condition number found in Table 3.7
can be used. From Equation 2.14, we can show that the amount of iterations (m)
needed to obtain an error smaller than a threshold (t) can be given as:

2
[√

κ−1√
κ+1

]m
= t[√

κ−1√
κ+1

]m
=
t

2

m lg(
[√

κ−1√
κ+1

]
) = lg(

t

2
)

m =
lg(t2)

lg(
[√

κ−1√
κ+1

]
)

(5.1)

Using this equation, we can construct Table 5.1, which shows us how many CG
iterations are needed in order to solve CG for two distinct error factor thresholds,
namely t1 = 1× 10−3 and t2 = 1× 10−6.

59

Name condition rank m1 m2

2cubes sphere 2.9388e+09 101492 206026 393263
af 5 k101 6.4275e+08 503625 96351 183916
af shell3 1.4403e+06 504855 4562 8707
bone010 1.2165e+09 986703 132554 253020
boneS01 4.2170e+07 127224 24680 47109
boneS10 2.9528e+08 914898 65306 124657
gyro 3.4851e+09 17361 224359 428258
LF10000 6.4743e+18 19998 9670112971 18458381769
nasa2146 4.1303e+03 2146 245 467
nasa2910 1.7650e+07 2910 15967 30477
nasa4704 1.6576e+08 4704 48930 93398
nasasrb 1.4836e+09 54870 146384 279419
olafu 2.2532e+12 16146 5704730 10889229
offshore 2.3284e+13 259789 18338507 35004674
parabolic fem 2.1108e+05 525825 1747 3333
Pres Poisson 3.1983e+06 14822 6797 12974
raefsky4 1.5172e+14 19779 46811934 89354959
smt 6.1260e+09 25710 297457 567788
sts4098 4.5095e+08 4098 80705 154050
thermal1 4.9625e+05 82654 2678 5111
thermal2 7.4806e+06 1228045 10395 19842

Table 5.1: Required number of CG iterations

In this Table, we see that some matrices have m1 and m2 smaller than their rank,
implying that they can be run with fewer iterations than their rank specifies, while
others have significantly larger convergence estimates than their rank, implying
that the number of necessary iterations is equal to their rank. In general, we see
that all matrices except nasa2146 will have to be run for more than 1024 iterations.
Seven matrices are within a factor of ten from the 1024 iterations used due to their
low rank or good convergence, however, most require well beyond this.

This implies that the runs done in this work do not emphasize the time consumed
by the CG execution realistically. Hence, for practically solving CG, any effect
shown for the CG execution would to a greater degree affect the entire run of the
application.

For the results in this work, this implies that any performance or energy efficiency
gains found for the CG execution will be further emphasized in real execution, and
hence, should be weighted heavier than the cost of preprocessing. This was briefly
suggested in Section 4.1.2, which showed that CSX outperformed CSR for CG
execution, but showed significantly worse results than CSR for the full application
execution due to the cost of preprocessing.

In Section 4.1.1, plots of both the power consumption reported by the MSR and

60

Yokogawa were shown. It was argued that these plots showed a huge degree of
correlation between the power consumption of the CPU and that of the entire
system.

To further investigate this observation, the power consumption results from the
MSR and Yokogawa will be correlated using the Pearson product-moment cor-
relation coefficient (PCC). This coefficient, often denoted r, is used to show the
relationship between two variables. It falls within the range[-1,1], with values close
to 1 showing a strong positive linear relationship between the variables, and con-
versely, values close to -1 showing a strong negative linear relationship [17]. Hence,
a strong correlation between the MSR and Yokogawa should show as values near
1. For further description of PCC, the reader is referred to Bluman [17] Chapter
11 or similar introductions to statistical correlation.

Table 5.2 shows the average PCC between the results of MSR and Yokogawa for
each of the matrices over all available configurations. Because the Yokogawa power
meter operates with an update rate of 10Hz and this causes short measurements
to become inaccurate as pointed out in Section 4.1.2, a minimum runtime limit of
one second was set for the PCC computation. As this makes some configurations
for smaller matrices unavailable, the number #results in the Table describes the
number of run configurations used to compute the average PCC.

The PCC was computed using SciPy’s pearsonr function [6].

From the results in this Table, we can confirm the high degree of correlation between
the MSR and Yokogawa power consumption results. Generally, the PCC falls
between 0.7 and 1, but there are two exceptions: nasa2146 and thermal1. In the
case of nasa2146, Table 3.7 shows that this matrix is the smallest in both rank and
nnz count, making it the most prone to measurement errors. As its PCC is based
on a single run and the PCC strays far from the other matrices, this result will be
interpreted as such. thermal1, on the other hand, can not be disregarded in the
same manner. This matrix generally shows a bit lower correlation than the other
matrices, but some positive correlation can still be found.

In Section 4.1.1, it was shown that an increase in power consumption for the
CPU caused an additional increase in the power consumption of the entire sys-
tem. Hence, it was confirmed that the energy consumption of the CPU largely
dictates the energy consumption of the entire system. On the other hand, the ad-
ditional increase found for the full system power indicates that other components
that are not measured by the MSR dynamically influence the power of the system.

In general, the results show a great correlation between the power measured by the
MSR and Yokogawa, making discussions of the MSR results relevant in the context
of the energy consumption of the entire system.

When examining the matrix properties in Section 4.2, multiple groups of matrices
were identified and categorized. These groups had varying properties and were
identified based on their general CG performance and how well they were optimized
by CSX.

61

Name Average PCC #results
2cubes sphere 0.788234 37
af 5 k101 0.946678 37
af shell3 0.921632 37
bone010 0.959675 37
boneS01 0.909333 37
boneS10 0.960064 37
gyro 0.805220 25
LF10000 0.998960 1
nasa2146 -0.142734 1
nasa2910 0.760364 5
nasa4704 0.791872 2
nasasrb 0.857245 37
olafu 0.856492 15
offshore 0.900177 37
parabolic fem 0.876333 37
Pres Poisson 0.754447 12
raefsky4 0.711928 17
smt 0.759281 37
sts4098 0.917723 2
thermal1 0.644362 28
thermal2 0.920648 37

Table 5.2: Average Pearson Product-Moment Correlation Coefficient

Two main parameters were found to determine the performance for the matrices:
size in number of nnz s and structure. It was found that very small matrices per-
formed poorly for CG execution in general and that matrices smaller than the LLC
were not optimized significantly by CSX. For structure, it was found that elaborate
matrix patterns with a lot of values far from the diagonal perform poorer than more
regular matrices for CG execution, and that clustered, diagonal centered matrices
optimized the performance benefit from CSX.

A low number of nnz s will, as one would expect, result in a reduced runtime of the
application. This causes the startup and overhead of the application to take up a
larger part of the overall energy consumption. Because of this, the high energy/nnz
for the small matrices is as one would expect. Larger matrices, on the other hand,
cause the application to spend more time in processing, limiting the effect of startup
and general overhead and causing an improvement in the energy/nnz ratio.

Regarding the effect of matrix size on the CSX performance, the results are as
expected and by design. Kourtis et al. writes this in their presentation of CSX:

Our previous work [...] has identified the memory subsystem as the main
performance bottleneck of the SpMV kernel. Obviously, this problem
becomes more severe in a multithreaded environment, where multiple

62

processing cores access the main memory. An approach for alleviating
this problem is the reduction of the data volume accessed during the
execution of the kernel (working set). [25]

Hence, as CSX optimizes by reducing data volume of the working set of the matrix
during execution, the optimization increases in performance gain as the size of the
matrix increases. This increase becomes even more significant when the size of the
matrix surpasses the cache size of the CPU. When this happens, the number of
memory accesses significantly increases, causing the CSX optimization to become
even more beneficial.

This is further emphasized in Figure 5.1, which shows the amount of L3 cache
misses normalized with the size of the matrix (i.e. nnz s). Apparent from this
Figure is that the matrices which size surpasses the LLC of the CPU (af 5 101,
af shell3, bone010, boneS01, boneS10 and thermal2), all generate relatively large
amounts of L3 misses. This makes them well suited for CSX optimization, and
they are therefore mostly found in the csx optimized group.

However, thermal2, which generates the most misses is not found in this group.
In addition, we see that several matrices smaller than the LLC cache size, namely
parabolic fem, offshore and to a lesser degree smt, also generate relatively large
amounts of L3 misses. This is attributed to their structure.

Structurally, it was observed that elaborate matrix patterns generally perform
poorly for CG in general, and are not well optimized by CSX. Hence the reason the
matrices mentioned above are not part of the csx optimized group. Their spread
values make them hard to efficiently access by the SpMV kernel, thus limiting the
performance of the CG solver. Their structure also limits the optimization ob-
tainable by the delta encoding done by CSX, which works by identifying clustered
values and compressing them into units. This makes matrices with a large number
of spread values generate a lot of small units, causing the overhead to decrease the
general performance of the optimization.

CSX should therefore be used on large matrices with a high amount of clustered
values. Specifically, CSX should be used on matrices that are larger than the size
of the LLC of the machine.

Regarding the parallelization properties presented in Section 4.3.1, we have already
established that the use of multiple threads significantly reduces the runtime and
energy consumption of the application up to a certain point. We have also estab-
lished that CSX parallelizes better than CSR, resulting in higher performance and
energy efficiency increase.

It also found that the optimal runtime configuration generally was located at a
higher thread number than the optimal energy efficiency configuration, and that
similarly, CSX was optimized for both these categories at a higher thread count
than CSR.

The reason for the latter observation can be found in the discussion of matrix group

63

(a) CSR

(b) CSX

Figure 5.1: L3 misses per nnz

64

categorization above. As was noted by Bell et al. [14] and Kourtis et al. [25], the
main bottleneck for solving SpMV is the memory subsystem. This bottleneck be-
comes even more significant as the number of threads increase, causing the rate of
data being streamed to the cores to increase due to the additional processing capa-
bility of the CPU. As the number of threads keep increasing, the rate of memory
accesses causes the memory bottleneck to limit the performance. This is shown in
Figure 5.2, which shows the number of L3 misses per second. As CSX is designed
to decrease the cost of each of these memory accesses, it can support more threads
than CSR without the memory bottleneck becoming significant.

Regarding the first observation of runtime decreasing even though energy consump-
tion is increasing for high numbers of threads, it was mentioned in Section 4.3.2
that the energy efficiency of a CPU seems to diminish as the number of threads
closes in on the number of cores on the CPU. Even though there is still perfor-
mance increase to be found, this decreased energy efficiency causes the application
to consume additional energy. Hence, to maximize the energy efficiency, one should
not necessarily maximize the number of threads.

When examining the effect of using two sockets (i.e. two physical CPUs) in Sec-
tion 4.3.2, it was found that CSR had increased runtime and energy consumption
when using dual sockets regardless of thread configuration, while CSX showed de-
creased runtime for large matrices for all thread configuration and decreased energy
consumption large matrices for high numbers of threads.

This observation implies that the use of dual sockets causes the memory bottleneck
to increase. This does not benefit matrices or configurations that are not optimized
by CSX, such as small matrices or low numbers of threads. Given a configuration
that is shown to generally benefit from the use of CSX, however, the use of dual
sockets causes additional increase in performance and energy efficiency.

As was mentioned, the reason for this is an increase in the memory bottleneck
caused by the use of dual sockets. As the matrix is split between the two CPUs,
they have to communicate through the main memory, causing additional accesses.
There is also some synchronization needed between the processors at each CG
iteration, adding additional overhead to the execution. On the other hand, each of
the processors only have to execute half the number of threads, causing increased
energy efficiency due to the CPUs low energy efficiency at high numbers of threads
discussed above. This also causes the amount of required LLC for each of the
CPUs to decrease, as each of them only have to process half the matrix. This
can be seen in Figure 5.3, which shows the L3 miss rate for single socket and dual
socket configurations.

For large matrices, the overhead of the dual sockets is marginalized by the runtime
of the CG execution, causing the increased CPU energy efficiency at high numbers
of threads and the reduced number of L3 cache misses to increase performance
and overall energy efficiency. The CSX optimization also minimizes the cost of the
memory accesses required to ensure synchronization and communication between
the CPUs.

65

(a) CSR

(b) CSX

Figure 5.2: L3 misses per second

66

(a) CSR

(b) CSX

Figure 5.3: L3 miss rates

67

For smaller matrices that fit in the LLC cache, the reduced working set of each
CPU does not benefit the execution. On the contrary, the memory accesses required
for synchronization and communication causes an overall increase in the number of
memory accesses, reducing the performance and energy efficiency of the application.
For CSR, which does not optimize the memory accesses, all increase in these cause
reduced performance and energy efficiency.

Therefore, dual sockets should only be used for CSX with matrices that are larger
than the LLC of the CPUs and for thread configurations near the limits of each
CPU.

Regarding throttling of the CPU frequency presented in Section 4.3.3, it was shown
that throttling had some effect with regards to energy consumption, but also in-
creased the runtime of the application accordingly. It was also shown that when
weighing the energy consumption with the runtime using the EDP formula of Laros
III et al. [26] with a weight exponent of two (w = 2), the optimal frequencies were
generally found near the maximum frequency of the CPU.

As these results show, the lowest frequency possible was never the most energy
efficient. The optimal configurations were found at 2600MHz (i.e. the maximum
frequency) for thread counts of four and lower, while 1800MHz became the optimal
frequency for eight threads or more. What this implies is that upon adding the four
additional threads, the extra performance increase does not outweigh the increase
in power caused by the additional cores. This can be explained by the increased
rate at which data has to be streamed to the cores increasing with the number
of threads, as shown in Figure 5.2. This causes strain on the cache hierarchy,
increasing the wait time per core, and thus increasing the amount of energy burned
while waiting for cache misses as the frequency increases.

For this reason, we can argue that throttling of the CPU frequency should be
considered only when running a high number of threads. It should, similarly, only
be considered when trying to minimize the energy consumption of the execution at
the cost of performance, as the weighted results show the best trade-offs near the
maximum frequency.

In order to confirm and sum up the discussion up to this point, Figure 5.4 contains
a plot of the optimal configurations for the CG execution phase for the matrices.
Hence, the cost of the preprocessing discussed earlier in this Chapter is not reflected
in this plot. The plot also shows how the matrix groups identified in Section 4.2
are distributed across these optimal configurations.

Starting with the energy efficiency plot of Figure 5.4(a), we see that the matrices
are distributed among several different configurations, with the bulk of the matrices
being optimized by between four and eight threads. The following observations can
be made from the plot:

1. The matrices optimized at lower thread counts than four are all part of the
low nnz group, showing that very small matrices should not be run with high
degrees of parallelization.

68

(a) Energy Efficiency

(b) Performance

Figure 5.4: Optimal configurations for the CG execution

69

2. The csr optimized group is optimized by CSR configurations, and similarly,
the csx optimized group is optimized by CSX configurations, confirming their
categorizations. The semi optimized group, on the other hand, are optimized
by both CSR and CSX.

3. All matrices optimized by 16 threaded configurations are optimized by CSX.
This is due to the higher tolerance for L3 cache miss rate provided by CSX
discussed above.

4. Interestingly, some matrices are optimized by runs of CSX with statistical
sampling, which one would think would perform worse than the full pre-
processing of CSX. Namely, these are the bone010 and boneS10 matrices,
which are optimized by the 2c8t0sXs configuration, and parabolic fem, which
is optimized by the 2c16t0sXs configuration.

This implies that the patterns identified by the statistical sampling for these
matrices are better than the patterns identified by the full preprocessing of the
matrix. It shows that the significantly reduced cost of preprocessing offered by
statistical sampling does not reduce the quality of execution significantly. On
the contrary, it does in some cases increase the performance of the execution.

5. Many of the matrices optimized by CSX are optimized for dual socket con-
figurations, confirming the observation that CSX manages to overcome the
additional memory accesses needed for inter-socket communication.

More interestingly, one matrix is optimized for dual socket configuration while
running CSR, contradictory to the observations done in Section 4.3.2. The
matrix in question is the smt matrix, which is optimized for the 2c8t0sR
configuration. As was noted, CSR generally did not benefit from the use of
dual sockets. However, Figure 4.13(a) shows that the semi optimized group,
of which smt is a member, on average almost benefits from the use of dual
sockets for CSR.

The semi optimized group was categorized by its matrices being smaller than
the LLC with elaborate structures. Hence, they do not significantly benefit
from the memory optimization of CSX due to their size, but also perform
poorly for CSR due to their structure. This is the reason why these matrices
perform pretty well with dual sockets for CSR. Their poor single core CSR
performance is worsened as the number of threads increase, due to the lowered
energy efficiency of a CPU as the number of threads reaches the limits for
the CPU. On the other hand, the overhead of CSX causes its performance
to drop due to the size of the matrix making it fit in the LLC. For these
reasons, the use of dual sockets in CSR becomes optimal, but only for one of
the matrices and only marginally better than its single core execution.

Moving on to the performance plot of Figure 5.4(b), we see that the distribution
of matrices are centered around two configurations, namely 1c8t0sR and 2c16t0sX.
This is again consistent with the results and discussion of parallelization, showing
that CSX parallelizes better than CSR and thus manages to gain performance at

70

higher thread counts.

As with the energy efficiency, the lowest thread count optimizations happen for
matrices of the low nnz group, due to their small size.

Interestingly, one of the matrices of the csr optimized group, namely thermal2, is
optimized by a CSX configuration at the highest possible number of threads. This
matrix is larger than the LLC cache, implying that it should benefit from CSX, but
its structure makes it perform better for CSR at lower thread counts. Because of
this, we can argue that the size of the matrix becomes even more significant than
the matrix structure as the number of threads increases beyond 16.

From these results, three major general implications can be drawn:

1. Matrices that are shown to benefit from CSX should be run with dual sockets
where available, However, one should not maximize the number of threads
available, as the energy efficiency of the CPU is shown to decrease as the
number of threads reach the maximum of the CPU. Hence, even though
the performance when running eight threads per core might be higher than
when running four, the consumed energy might increase in spite of the lower
runtime.

2. As CSR generally does not benefit from the use of dual sockets, one should
keep its executions on a single core. The above discussion of energy efficiency
of a CPU with the number of threads also holds here, so one should not
necessarily maximize the number of available threads when trying to minimize
energy consumption.

3. One should use statistical sampling if available when running CSX. It is shown
to have significantly decreased preprocessing cost when compared to full pre-
processing, without significant loss of SpMV execution performance. In some
cases, it is even shown to surpass the performance of full preprocessing.

However, as was stated in Section 4.1.1, statistical sampling could not be used for
the entire matrix set of this work. Hence, its full potential could not be explored
thoroughly. On the other hand, the preliminary results of the limited matrix set
that was able to run with statistical sampling is showing great potential for this
technique. The SpMV execution performance is shown to be close to or equally
good as full preprocessing, and its cost is significantly reduced in comparison.

Section 4.1.2 showed that when compared to CSR, the full application energy con-
sumption at 1024 CG iterations of the two techniques where almost indistinguish-
able at high numbers of threads, while the SpMV performance became significantly
higher than that of CSR with the high number of threads.

As has been shown in the beginning of this Chapter, 1024 iterations do not represent
a realistic CG execution, as the number of iterations needed generally is higher.
Hence, one can expect CSX with statistical sampling to outperform CSR for full
application energy consumption upon using it to solve CG problems.

71

In Section 4.4, it was found that the performance of a compute node at Vilje
was performing slightly better than the CARD-server. However, the graphs in
Figure 4.18 showed that the general performance profile of the different matrix
groups were similar on both servers. Upon applying the Pearson product-moment
correlation coefficient presented earlier in this Chapter to these graphs, the results
of Table 5.3 are found.

Group Name CSR PCC CSX PCC
all 0.999986 0.999999
low nnz group 0.999914 0.999492
middle group 0.999986 0.999989
belt group 0.999971 0.999995
csx optimized group 0.999975 0.999993
semi optimized group 0.999984 0.999976
csr optimized group 0.999983 0.999990

Table 5.3: Pearson Product-Moment Correlation Coefficient for CARD and Vilje
comparison

This Table shows significant correlation between the graphs, implying that exe-
cutions on the CARD-server are indicative of executions on a compute node of
Vilje.

However, these results were but performance results for the different machines,
caused by the unavailability of the MSR register on the Vilje super computer
nodes. Because of this, energy comparisons could not be made. On the other
hand, it has already been established that the runtime and energy consumption
of the application are correlated. Some discrepancies have been identified, such
as reduced energy efficiency at thread counts near the limits of the CPU, but the
overall correlation has been found to be significant. Based on this observation, and
the high correlation in runtime between a compute node on Vilje and the CARD-
server, similar results in energy consumption between the two machines can be
expected, making results on the CARD-server indicative of results that can be
expected on the Vilje supercomputer. One must note, however, that this can not
be confirmed until energy measurements are made available on Vilje.

One major thing to note is that all runs on the Vilje supercomputer are done at
a single compute node. This is due to one of the design limitations of the CSX
framework, being designed around shared memory access.

As was presented in Section 2.4.2, the framework obtains parallelization by splitting
the nnz s of the matrices among the running threads. This is done by letting each
thread fetch a limited part of the matrix from the main memory before starting
the execution.

In order to make CSX span multiple nodes, one would have to redesign the frame-
work to utilize other parallelization techniques, such as Message Passing Interface

72

(MPI) [8] or OmpSs [10]. This would make several compute nodes able do process-
ing rather than a single node, resulting in increased parallelization at the cost of
the inter-node communication overhead.

However, this is not necessarily beneficial. As we have established throughout this
work, SpMV is a memory intensive operation, causing the memory bottleneck to
limit the performance of execution. CSX is designed to remedy this, by decreasing
the memory data volume and thus limiting the effect of the bottleneck. While
adding additional compute nodes to the problem would multiply the computational
capacity of the machine, the cost of accessing the full data set would increase
drastically as its parts would be spread among the compute nodes.

Due to this property of SpMV and based on the results found in this work, it is not
likely that the use of multiple nodes would be beneficial to the performance of its
execution because of the additional cost of inter-node memory access. On the other
hand, the use of such techniques could be beneficial for sufficiently large matrices
(i.e. matrices that surpass the size of the main memory causing disk access to
become a factor), but as no such matrices have been examined in this context, any
discussion on this would be baseless and is thus omitted.

73

74

Chapter 6

Conclusion and Further
Work

This Chapter contains the conclusions made based on the results of Chapter 4 and
discussions of Chapter 5 in addition to suggestions regarding what should be looked
into in a continuation of this study.

6.1 Conclusion

As has been established throughout this work, CSX is showing great performance
and energy efficiency potential when compared to simpler, well tested methods for
solving SpMV. However, in order to fully benefit from the optimizations provided by
CSX, one must have a well suited problem and run it at a well suited configuration.

For the matrix set, two main parameters have been identified to influence the
performance and energy efficiency gain of CSX, namely the matrix size and the
structure.

The size of the matrices in amount of nnz s has been shown to correlate well with the
expected energy efficiency gain of CSX. Specifically, a threshold has been identified
at the size of the LLC, with matrices larger than this threshold generally benefiting
from CSX, and matrices smaller than this threshold becoming dependent on other
factors.

Hence, CSX should be used for matrices larger than the LLC of the targeted
architecture. The additional main memory accesses caused by the size of these
matrices greatly benefit from the data volume optimizations of CSX. For smaller
matrices which fit in the LLC of the targeted architecture, the reduced number of
main memory accesses minimizes the effect of the CSX optimizations, causing a
trade-off between memory access gain and execution overhead.

75

Structurally, it has been found that the degree of clustering in the matrix values
influence the performance of CSX. Matrices with a high amount of clustered val-
ues, such as diagonal-based matrices, are generally well optimized by CSX, while
matrices with more dispersed values, especially matrices with a high number of
values far from the diagonal, do not benefit significantly from these optimizations
and therefore favor less complicated storage schemes due to the overhead.

One should therefore consider the matrix set when using CSX, as it will not be
beneficial for performance or energy efficiency for certain configurations. For a well
suited matrix set, however, CSX will increase both the performance and energy
efficiency of the SpMV execution.

Regarding platform properties and amount of parallelization, it has been shown
that while some parallelization is required to benefit from CSX, one should not
necessarily run with as high degree of parallelization as possible. For the given
architecture in this work, it has been found that the best trade-offs are gener-
ally found at eight threads for energy efficiency and 16 threads for performance.
However, this is relative to the number of physical cores on each CPU.

The use of dual sockets has been shown to increase both the performance and
energy efficiency of CSX executions, contrary to similar executions for CSR. For
this reason, the use of multisocket platforms will be beneficial to the execution of
CSX, and should therefore be favored.

Throttling of the frequency has been shown to have some effect on the energy
efficiency of the execution, but it is not linearly correlated. Hence, due to the
decrease in performance, throttling should be used sparingly and only when trying
to achieve decrease in energy consumption at all costs. When trying to achieve a
balance between energy efficiency and performance, running at close to maximum
frequency is showing the best results.

With regards to the CARD-servers ability to emulate the execution and results, it
has been shown that the execution on the two machines is similar, with a compute
node on Vilje generally performing slightly better compared to the CARD-server
in performance. Based on this, and the correlation between runtime and energy
consumption shown throughout this work, one can expect similar energy efficiency
results for the two machines with energy efficiency slightly favoring Vilje. Hence,
the CARD-server is shown to well emulate the performance and energy efficiency
one can expect to find for a single node on the Vilje supercomputer.

To conclude, this work has identified properties both in the input matrices and in
the target platform that can be used to maximize the energy efficiency of CSX. It
has shown that large matrices with a diagonal structure are best suited for CSX
optimization, and that matrices with spread clusters of values and matrices that
are smaller than the LLC of the target architectures generally are not as beneficial.
It has also been shown that the optimal parallelization for CSX generally is found
at eight threads running on two physical CPUs, that this most likely is related to
the number of cores on each CPU, and that throttling of the frequency has a small,

76

but significant effect on the energy efficiency of the application.

CSX is showing great potential for increasing the energy efficiency of SpMV execu-
tion, but it is not well suited in all cases. Hence, the significant problem and plat-
form properties identified in this work should be evaluated when deciding whether
or not to use CSX for the given problem.

6.2 Further Work

In this Section, ideas on how to augment this work and proceed with further energy
studies of CSX are presented.

The results in Section 4.1.2 show that while CSX in many cases obtain significant
increases in the energy efficiency of the CG execution, the cost of preprocessing
keeps it from surpassing CSR in overall energy efficiency for 1024 CG iterations.
However, in Chapter 5, a method of estimating the required number of CG iter-
ations was presented. Based on this, a continuation of this work should include
a discussion of the trade-off between preprocessing cost and CG execution gain.
This especially holds for CSX running with statistical sampling, which is showing
a potential increase in this trade-off.

One of the major drawbacks of this work is the unavailability of statistical sampling
executions on several matrices. This issue has been reported to the CSlab at the
NTUA, the creators of CSX, and a fix could therefore possibly be available during a
continued study of CSX. This work has to some degree shown the potential benefits
of the statistical sampling, and this should therefore be further studied, if available.

From the results, we have seen that the energy efficiency of the CPUs drop as the
number of threads increases from four to eight. This, however, is correlated with
the number of cores on the CPUs, and hence, the study of this effect is very limited
due to the hardware used in the experiments. To thoroughly study this effect, one
should make sure to run executions on several different architectures with various
numbers of cores per CPU. With this, one should be able to find if this effect is
indeed correlated with the number of cores, or whether other factors not apparent
from the results in this work are contributing to the results.

The matrix set chosen for this work is generally evenly distributed among the
parameter set, but one drawback can be found: most of the matrices that are
larger than the LLC of the machine are simple in structure. The only matrix
this does not apply to is thermal2, which is both larger than the LLC and has an
elaborate structure. However, this limits the study of large, structurally elaborate
matrices, which could potentially provide additional insight into matrices and their
parameters influence on the energy efficiency of CSX.

This limit of the matrix set is caused by the limitations of CG and available matrices
of the University of Florida Sparse Matrix Collection [11], and thus, a continuation

77

of this work should strive to obtain additional sources of matrices in order to
improve the studied matrix set.

As was pointed out in Section 3.1, access to the MSR on the nodes of the Vilje
supercomputer was not made available in the course of this work. Therefore, all
discussions of the differences in execution between the CARD-server and Vilje
was based on the performance result of both machines and the correlation found
between runtime and energy consumption. To confirm these results, one will have
to perform energy studies on both machines, and thus, this should be prioritized
upon further evaluation of equalities and differences between the CARD-server and
Vilje.

In Chapter 5, methods of making CSX able to span multiple compute nodes were
briefly discussed. As was pointed out, this ability will possibly decrease the per-
formance of the execution for matrices of the size studied in this work, but could
potentially be beneficial for very large matrices (larger than the main memory of a
single node). Making the changes to CSX in order to support this would require a
major rewrite of the framework, but could potentially be done to study the effect
of multiple nodes or multiple devices (such as GPUs).

78

Bibliography

[1] About Vilje. https://www.hpc.ntnu.no/display/hpc/About+Vilje, Apr
2013.

[2] cspy, a MATLAB function in the CSparse package. http://www.cise.ufl.

edu/research/sparse/CSparse/CSparse/MATLAB/CSparse/cspy.m, Apr
2013.

[3] CSX GitHub. https://github.com/cslab-ntua/csx, Apr 2013.

[4] Intel R© Energy Checker SDK. http://software.intel.com/en-us/

articles/intel-energy-checker-sdk, Apr 2013.

[5] Intel R© Energy Checker SDK Device Driver Kit User Guide. http:

//software.intel.com/sites/default/files/m/d/4/1/d/8/Intel_28R_

29_Energy_Checker_SDK--Device_Kit_User_Guide--2010_12_15.pdf,
Apr 2013.

[6] Module SciPy.stats.stats. http://www.scipy.org/doc/api_docs/SciPy.

stats.stats.html#pearsonr, May 2013.

[7] Om Meteorologisk institutt - met.no. http://met.no/Om_oss/Om_

Meteorologisk_institutt/, May 2013.

[8] Open MPI: Open Source High Performance Computing. http://www.

open-mpi.org/, May 2013.

[9] [Ptools-perfapi] Using PAPI with PThreads. http://lists.eecs.utk.edu/

pipermail/ptools-perfapi/2011-January/001898.html, May 2013.

[10] The OmpSs Programming Model — Programming Models @ BS. https:

//pm.bsc.es/ompss, May 2013.

[11] The University of Florida Sparse Matrix Collection. http://www.cise.ufl.

edu/research/sparse/matrices/, Jan 2013.

[12] Threads - PAPIDocs. http://icl.cs.utk.edu/projects/papi/wiki/

Threads, May 2013.

79

https://www.hpc.ntnu.no/display/hpc/About+Vilje
http://www.cise.ufl.edu/research/sparse/CSparse/CSparse/MATLAB/CSparse/cspy.m
http://www.cise.ufl.edu/research/sparse/CSparse/CSparse/MATLAB/CSparse/cspy.m
https://github.com/cslab-ntua/csx
http://software.intel.com/en-us/articles/intel-energy-checker-sdk
http://software.intel.com/en-us/articles/intel-energy-checker-sdk
http://software.intel.com/sites/default/files/m/d/4/1/d/8/Intel_28R_29_Energy_Checker_SDK--Device_Kit_User_Guide--2010_12_15.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/Intel_28R_29_Energy_Checker_SDK--Device_Kit_User_Guide--2010_12_15.pdf
http://software.intel.com/sites/default/files/m/d/4/1/d/8/Intel_28R_29_Energy_Checker_SDK--Device_Kit_User_Guide--2010_12_15.pdf
http://www.scipy.org/doc/api_docs/SciPy.stats.stats.html#pearsonr
http://www.scipy.org/doc/api_docs/SciPy.stats.stats.html#pearsonr
http://met.no/Om_oss/Om_Meteorologisk_institutt/
http://met.no/Om_oss/Om_Meteorologisk_institutt/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://lists.eecs.utk.edu/pipermail/ptools-perfapi/2011-January/001898.html
http://lists.eecs.utk.edu/pipermail/ptools-perfapi/2011-January/001898.html
https://pm.bsc.es/ompss
https://pm.bsc.es/ompss
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
http://icl.cs.utk.edu/projects/papi/wiki/Threads
http://icl.cs.utk.edu/projects/papi/wiki/Threads

[13] Top500 List - June 2012. http://www.top500.org/list/2012/06/100/, Apr
2013.

[14] Nathan Bell and Michael Garland. Efficient Sparse Matrix-Vector Multiplica-
tion on CUDA. NVIDIA Corporation, 2008.

[15] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Ed-
uard Ayguade. Decomposable and Responsive Power Models for Multicore
Processors using Performance Counters. Proceedings of the 24th ACM Inter-
national Conference on Supercomputing, 2010.

[16] W. L. Bircher, M. Valluri, J. Law, and L. K. John. Runtime Identification of
Microprocessor Energy Saving Opportunities. Proceedings of the 2005 Inter-
national Symposium on Low Power Electronics and Design, 2005.

[17] Allan G. Bluman. Elementary Statistics: A Step by Step Approach. McGraw-
Hill, third edition, 1998.

[18] Edwin K. P. Chong and Stanislaw H. Zak. An Introduction to Optimization.
John Wiley & Sons Inc., second edition, 2001.

[19] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark Silicon and the End of Multicore Scaling.
IEEE, 2011.

[20] Wu-chun Feng and Kirk W. Cameron. The Green500 List: Encouraging Sus-
tainable Supercomputing. IEEE, 2007.

[21] Lars-Ivar Hesselberg Simonsen. Energy efficiency of CSX: A preliminary study
of the energy trade-offs when using compression to optimize Sparse Matrix
Vector Multiplication. 2012.

[22] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. Measuring
Energy Consumption for Short Code Paths Using RAPL. GREENMETRICS,
2012.

[23] Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris. Exploring the
Performance-Energy Tradeoffs in Sparse Matrix-Vector Multiplication. Na-
tional Technical University of Athens, 2011.

[24] Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. Optimizing Sparse
Matrix-Vector Multiplication Using Index and Value Compression. Proceed-
ings of the 2008 conference on Computing frontiers, 2008.

[25] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios
Koziris. CSX: An Extended Compression Format for SpMV on Shared Memory
Systems. Principles and Practice of Parallel Programming (PPoPP), 2011.

[26] James H. Laros III, Kevin Pedretti, Suzanne M. Kelly, Wei Shu, Kurt Ferreira,
John Van Dyke, and Courtenay Vaughan. Energy-Efficient High Performance
Computing: Measurement and Tuning. Springer, 2013.

80

http://www.top500.org/list/2012/06/100/

[27] Hallgeir Lien. Case Studies in Multi-core Energy Efficiency of Task Based
Programs. Norwegian University of Science and Technology, 2012.

[28] Jan Christian Meyer, Lasse Natvig, Vasileios Karakasis, Dimitris Siakavaras,
and Konstantinos Nikas. Energy-efficient Sparse Matrix Auto-tuning with
CSX. Proceedings of the 27th IEEE Intl. Parallel & Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), 2013.

[29] Lasse Natvig and Alexandru C. Iordan. Green Computing: Saving Energy by
Throttling, Simplicity and Parallelization. CEPIS UPGRADE, 2011.

[30] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, Christos
Kozyrakis, and Justin Meza. Models and Metrics to Enable Energy-Efficiency
Optimizations. IEEE, 2007.

[31] Youcef Saad. SPARSKIT: a basic tool kit for sparse matrix computations.
1994.

[32] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second with cor-
rections edition, 2000.

[33] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient
Method Without the Agonizing Pain. Carnegie Mellon University, 1994.

[34] Karan Singh, Major Bhadauria, and Sally A. McKee. Real Time Power Es-
timation and Thread Scheduling via Performance Counters. ACM SIGARCH
Computer Architecture News, 2009.

[35] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A Library
of Automatically Tuned Sparse Matrix Kernels. SciDAC 2005 Proceedings,
2005.

[36] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. Optimization of sparse matrix–vector multiplication on
emerging multicore platforms. Elsevier, 2008.

81

82

Appendices

83

84

Appendix A

Matrix Structures

In this Appendix, the structure of each of the matrices used in the experiments
are presented. The plots are provided alongside the matrices in the University of
Florida Sparse Matrix Collection [11].

The plots were generated using a script called cspy.m, which is part of the CSparse
MATLAB package [2]. The colors of the plots are given as follows:

Zero entries are white. Entries with tiny absolute value are light orange.
Entries with large magnitude are black. Entries in the midrange (the
median of the log10 of the nonzero values, +/- one standard deviation)
range from light green to deep blue. [2]

The plots are static in size and number of pixels, so they do not properly display
the rank of the matrices. Because of this, one should refer to the list of matrices
in Section 3.3 while examining these plots.

(a) 2cubes sphere (b) af 5 k101 (c) af shell3

85

(d) bone010 (e) boneS01 (f) boneS10

(g) gyro (h) LF10000 (i) nasa2146

(j) nasa2910 (k) nasa4704 (l) nasasrb

86

(m) offshore (n) olafu (o) parabolic fem

(p) Pres Poisson (q) raefsky4 (r) smt

(s) sts4098 (t) thermal1 (u) thermal2

Figure A.1: Matrix Memory Structures (Source: UFlSMC [11])

87

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Project Purpose
	Motivation
	Structure of the Report

	Background
	SpMV
	Conjugate Gradient Method
	Conjugate Vectors
	The Quadratic Form
	The Conjugate Gradient Method
	Convergence

	CSR
	CSX
	Preprocessing
	Statistical sampling

	Parallelization

	Energy Measurement
	The RAPL interface in the MSR of Sandy Bridge
	MSR Framework
	Continuous MSR data collection

	Yokogawa WT210

	Methodology
	Hardware Setup
	Software Setup
	Software and versions
	Software configuration and input

	Matrices

	Results
	Format properties
	Energy profile
	CSR
	CSX
	CSX with statistical sampling

	Comparison
	CG execution
	Full application energy

	Matrix properties
	Energy per nonzero
	Energy consumption optimizability through CSX

	Platform properties
	Parallelization
	Dual sockets
	Clock frequency

	Comparison of Vilje and the CARD-server

	Discussion
	Conclusion and Further Work
	Conclusion
	Further Work

	Bibliography
	Appendices
	Matrix Structures

