
Energy Efficiency Studies of Mont Blanc
Applications

Mads Holden

Master of Science in Computer Science

Supervisor: Lasse Natvig, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Problem Statement

Energy Efficiency Studies of Mont Blanc
Applications

The main goal of this master thesis project is performance and energy-
efficiency studies of one or more Mont Blanc application kernels. Mont
Blanc is an ongoing EU - 7FP research project aiming at developing pro-
totypes of future exascale supercomputers. The Mont Blanc (MB) project
will use the OmpSs programming system developed in Barcelona, and plans
to use Mali GPUs as accellerators programmed in OpenCL.

Since it is unclear when will we get access to OpenCL for the Mali GPU,
and also when OpenCL is well integrated with OmpSs, the CARD group
will seek alternative execution platforms providing OpenCL. Likewise, the
student should evaluate some MB kernels on some relevant software that is
available, and having the main goal of the master thesis project in mind.

It is of particular interest to the CARD group to study how different
cores can be used in parallel solutions to save energy or how other imple-
mentation choices will affect both execution time and energy consumption.

i

Acknowledgements

I would like to thank my supervisor Lasse Natvig for giving me excellent
supervision and motivation during the writing of this thesis.

I would also like to thank my two co-supervisors, Asbjørn Djupdal and
Juan Cebrian, for both technical and non-technical help.

The figures in this thesis were made with the python library matplotlib
[1], and the tables with the python library Jinja2 [2]. The report was
written in LATEX.

iii

Abstract

In this thesis, the performance and energy efficiency of four different im-
plementations of matrix multiplication, written in OmpSs and OpenCL, is
tested and evaluated. The benchmarking is done using an Intel Ivy Bridge
Core i7 3770K. The results are evaluated and discussed with regards to dif-
ferent optimization configurations, like vectorization and multi-threading.
Energy measurements are taken using PAPI, which in turn uses the Run-
ning Average Power Limit interface in the Intel processor to take energy
readings. Performance is presented using MFLOPS, while energy efficiency
is compared using MFLOPS/W, watts used, and the energy delay product
and energy delay squared.

The OpenCL versions are compared with and without vectorization.
One of the applications using OmpSs is also measured with regards to
vectorization, and also number of threads. The last OmpSs version uses
the BLAS implementation ATLAS, which is already vectorized. Therefore
it is only compared using number of threads.

SSE and AVX vectorization is shown to significantly improve perfor-
mance while using little to no extra energy per second for all implemen-
tations. Multi-threading also gives higher performance, however this con-
sumes more energy. Running with eight threads was shown to spend more
energy while performing worse when using ATLAS. The OmpSs version us-
ing ATLAS was both the fastest and most energy efficient, peaking at 125
GFLOPS and 2.7 GLOPS/W while running with four threads and using
AVX.

v

Abstract (Norwegian)

I denne oppgaven blir ytelsen og energi-effektiviteten av fire forskjellige
implementasjoner av matrisemultiplikasjon, skrevet i OmpSs og OpenCL,
testet og evaluert. Målingene blir gjort p̊a en Intel Ivy Bridge Core i7
3770K. Resultatene blir evaluert og diskutert med tanke p̊a forskjellige
optimaliseringskonfigurasjoner, som vektoriserting og multitr̊ading. En-
ergim̊alingene ble tatt ved hjelp av PAPI, som igjen bruker Running Av-
erage Power Limit grensesnittet i Intel prosessoren for å lese energibruken.
Ytelsen blir presentert i MFLOPS, og energieffektiviteten blir sammenlignet
med MFLOPS/W, watt, og energy delay product og energy delay squared.

OpenCL-versjonene blir sammenlignet med og uten vektorisering. En
av programmene som bruker OmpSs blir ogs̊a m̊alt med tanke p̊a vektoris-
ering, i tillegg til antall tr̊ader. Den siste OmpSs-versjonen bruker BLAS-
implementasjonen ATLAS, som allerede er vektorisert. Derfor blir den kun
sammenlignet med tanke p̊a antall tr̊ader.

SSE- og AVX-vektorisering viste seg å øke ytelsen betydelig samtidig
som det bruker lite til ingen ekstra energi per sekund for alle implemen-
tasjoner. Multitr̊ading gir ogs̊a høyere ytelse, men bruker i tillegg mer
energi. Å kjøre med åtte tr̊ader viste seg å bruker mer energi å yte værre
n̊ar ATLAS ble brukt. OmpSs-versjonen som brukte ATLAS var b̊ade rask-
est og mest energieffektiv, og kom opp i 125 GFLOPS og 2.7 GFLOPS/W,
kjørende med fire tr̊ader og AVX.

vii

Contents

Acknowledgements iii

Abstract v

Abstract (Norwegian) vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Thesis Scope . 1

1.2 Terminology . 1

1.3 Thesis Outline . 2

2 Background 3

2.1 Exascale computing and the Mont Blanc Project 3

2.1.1 Exascale computing 3

2.1.2 The Mont Blanc Project 4

2.2 OpenCL . 5

2.2.1 Usage . 5

2.2.2 Vectorization . 5

ix

x CONTENTS

2.3 OmpSs . 7

2.3.1 Task-based programming 8

2.3.2 Heterogeneous extensions 9

2.3.3 OmpSs - OpenCL interoperability 10

2.3.4 Task scheduling . 11

2.4 Dense Matrix Multiplication 11

2.5 Energy Measurement . 12

2.5.1 Running Average Power Limit 12

2.5.2 Performance Application Programming Interface . . 13

2.6 Energy Efficiency Metrics 14

2.6.1 GFLOPS/W . 14

2.6.2 Energy-delay products 15

2.7 Related Work . 15

2.7.1 Case Studies in Multi-core Energy Efficiency of Task
Based Programs . 15

3 Implementation 17

3.1 Performance measurement 17

3.2 OpenCL Matrix Multiplication 19

3.3 OmpSs Matrix Multiplication 21

3.3.1 OmpSs . 21

3.3.2 OmpSs with ATLAS 22

4 Experiment Setup and Methodology 25

4.1 Test Bench . 25

4.1.1 Hardware . 25

4.1.2 Software . 25

4.1.3 Compilation . 26

4.1.4 Test framework . 27

4.2 Experiment methodology 28

4.2.1 Performance counters 28

4.2.2 Experiments . 29

4.2.3 Problem sizes . 29

4.2.4 Defining flop counts 30

CONTENTS xi

4.2.5 Measurement metrics 30

5 Results and Discussion 33

5.1 Simple OpenCL implementation 33

5.1.1 Performance . 33

5.1.2 Energy efficiency . 35

5.1.3 Energy-delay products 35

5.1.4 Cache miss rates . 36

5.2 Transposed OpenCL implementation 36

5.2.1 OpenCL versions . 37

5.2.2 Performance . 38

5.2.3 Energy efficiency . 38

5.2.4 Energy-delay products 39

5.2.5 Cache miss rates . 39

5.3 OmpSs . 41

5.3.1 Performance . 41

5.3.2 Energy dfficiency . 41

5.3.3 Energy delay products 42

5.3.4 Cache miss rate . 43

5.4 OmpSs from BSC . 45

5.4.1 Performance . 45

5.4.2 Energy dfficiency . 46

5.4.3 Energy delay products 47

5.4.4 Cache miss rate . 47

6 Conclusion 51

6.1 OpenCL . 51

6.1.1 Transposition . 51

6.1.2 Vectorization . 52

6.2 OmpSs . 52

6.2.1 ATLAS . 52

6.2.2 Vectorization . 52

6.2.3 Multi-threading . 53

6.3 Further work . 53

xii CONTENTS

6.3.1 OpenCL kernels in OmpSs 53
6.3.2 Arndale OpenCL . 54
6.3.3 GPU testing . 54
6.3.4 Complete system energy measurements 54
6.3.5 Additional applications 54

6.4 Concluding remarks . 54

Appendices 55

A Tabulated Data 57

B OpenCL kernels 73

C OmpSs kernels 81

References 85

List of Figures

3.1 Matrix data layouts . 22

4.1 Ivy Bridge CPU with caches 27

5.1 Performance for simple OpenCL matrix multiplication 34
5.2 Power dissipation and energy efficiency 35
5.3 Energy delay products . 36
5.4 Cache miss rates . 37
5.5 Transposed OpenCL performance, different versions 38
5.6 Performance for transposed OpenCL matrix multiplication . . 39
5.7 Power dissipation and energy efficiency, transposed OpenCL . . 40
5.8 Energy delay products . 40
5.9 Cache miss rates . 41
5.10 Performance for OmpSs matrix multiplication 42
5.11 Power dissipation and energy efficiency, OmpSs 43
5.12 Energy delay products . 43
5.13 Cache miss rates . 44
5.14 Level 2 cache usage, OmpSs . 45
5.15 Performance for OmpSs BSC matrix multiplication 46
5.16 Power dissipation and energy efficiency, OmpSs BSC 47
5.17 Energy delay products . 48
5.18 Cache miss rates . 48
5.19 Level 2 cache usage, OmpSs BSC 49

xiii

List of Tables

4.1 Hardware specifications for minvilje 26

4.2 Cache specifications for minvilje 26

4.3 Third-party software used . 27

4.4 Compiler flags used . 28

4.5 Problem sizes and memory footprints 29

A.1 MFLOPS, Simple OpenCL . 57

A.2 Watt, Simple OpenCL . 58

A.3 MFLOPS/W, Simple OpenCL 58

A.4 Normalized EDP, Simple OpenCL 58

A.5 Normalized EDD, Simple OpenCL 59

A.6 L2 Cache miss rate, Simple OpenCL 59

A.7 L3 Cache miss rate, Simple OpenCL 59

A.8 MFLOPS, Transposed OpenCL 60

A.9 Watt, Transposed OpenCL . 60

A.10 MFLOPS/W, Transposed OpenCL 61

A.11 Normalized EDP, Transposed OpenCL 61

A.12 Normalized EDD, Transposed OpenCL 62

A.13 L2 Cache miss rate, Transposed OpenCL 62

A.14 L3 Cache miss rate, Transposed OpenCL 63

A.15 MFLOPS, OmpSs . 63

A.16 Watt, OmpSs . 64

A.17 MFLOPS/W, OmpSs . 64

xv

xvi List of Tables

A.18 Normalized EDP, OmpSs . 65
A.19 Normalized EDD, OmpSs . 65
A.20 L2 Cache miss rate, OmpSs . 66
A.21 L3 Cache miss rate, OmpSs . 66
A.22 L2 Cache usage, OmpSs . 67
A.23 MFLOPS, OmpSs-ATLAS . 67
A.24 Watt, OmpSs-ATLAS . 68
A.25 MFLOPS/W, OmpSs-ATLAS 68
A.26 Normalized EDP, OmpSs-ATLAS 69
A.27 Normalized EDD, OmpSs-ATLAS 69
A.28 L2 Cache miss rate, OmpSs-ATLAS 70
A.29 L3 Cache miss rate, OmpSs-ATLAS 70
A.30 L2 Cache usage, OmpSs-ATLAS 71

Chapter 1

Introduction

This chapter will present the scope and outline of the thesis. Some termi-
nology will also be explained.

1.1 Thesis Scope

The goal of this thesis is to evaluate the performance and energy usage of
different implementations of matrix multiplication. The applications are
developed using OpenCL and OmpSs, which will be compared both theo-
retically and in the results of the tests. The different applications will be
tested and measured using different optimizations, including vectorization
and multithreading. Because there were at the time of writing no OpenCL
drivers available for the Mali GPU, another computer capable of running
OpenCL was chosen. The computer used in benchmarking is the Intel Ivy
Bridge Core i7 3770k. Again because there are no OpenCL drivers released
for the on-board GPU of the Ivy Bridge, only the CPU will be tested.

1.2 Terminology

Hyper-threading is Intel’s proprietary simultaneous multithreading imple-
mentation. For each processor core that is physically present, the operating

1

2 CHAPTER 1. INTRODUCTION

system addresses two logical cores, that share the workload whenever pos-
sible. In this thesis hyper-threaded applications will refer to applications
that run using eight threads, as there are four physical cores on the target
hardware.

FLOPS written with capital letters will in this thesis refer to floating
point operations per second, while a flop (and its plural flops), written in
lower case, will refer to a floating point operation, e.g. one addition or
multiplication. Simply put, FLOPS = flops/s.

1.3 Thesis Outline

The thesis is divided into six chapters and three appendices. This is chap-
ter one, which introduces the work. Chapter two covers the background of
topics important to the thesis, presenting the Mont Blanc project, OpenCL,
OmpSs, matrix multiplication, energy measurement and metrics, and re-
lated work. Chapter three presents the implementation of the different
applications tested, and the energy measurement. Chapter four shows the
exeriment setup and methodology, going through both the hardware and
software used to benchmark the applications. Chapter five covers the re-
sults of the tests run, while discussing and comparing performance and
energy of the different applications. Chapter six concludes the report.

Chapter 2

Background

2.1 Exascale computing and the Mont Blanc
Project

A major milestone for supercomputers is to reach one exaFLOPS. The most
powerful supercomputer as of November 2012 is the Titan [3], from the Oak
Ridge National Laboratory in the United States. It has been measured at
17.59 petaFLOPS, which means a big improvement is necessary to reach
the milestone. The Mont Blanc project is an EU project located at the
Barcelona Supercomputing Center, which intends to address some of the
challenges [4].

2.1.1 Exascale computing

Supercomputers have shown an exponential performance increase over time.
A tenfold improvement in performance is observed every 3.6 years, which
means that exascale performance should be attainable by 2018 [5]. How-
ever, the power requirements, assuming they increase by the same factor,
would be over 400 MW. A more realistic power budget would be 20 MW
[6, p. 8], which would require an energy efficiency of 50 GFLOPS/W. The
Green500 list [7] ranks supercomputers based on their energy efficiency.

3

4 CHAPTER 2. BACKGROUND

As of November 2012, the top ranking supercomputer is just shy of 2.5
GFLOPS/W, so a substantial increase in efficiency is required.

Another big issue is the increased complexity of writing software for the
increasingly complex supercomputer systems.

2.1.2 The Mont Blanc Project

The Mont Blanc project takes a new approach to the issues arising from
power efficiency in exascale computing. The project defines 3 main objec-
tives [4]:

• To deploy a prototype HPC system based on currently available energy-
efficient embedded technology, scalable to 50 petaFLOPS using 7
MW. This system should be competitive with Green 500 leaders in
2014.

• To design a next-generation HPC system and new embedded technolo-
gies targeting HPC systems that would overcome most of the limita-
tions encountered in the prototype system, scalable to 200 petaFLOPS
using 10 MW. This system should be competitive with Top 500 lead-
ers in 2017.

• To port and optimise a small number of representative exascale ap-
plications capable of exploiting this new generation of HPC systems.

The prototype system listed in these goals would achieve 7 GFLOPS/W,
nearly tripling the effiency of the current leader of the Green 500 list. The
second goal is even more ambitious, hoping the reach 20 GFLOPS/W. They
plan to achieve these goals by utilizing heterogeneous computing, using a
combination of CPUs and GPUs. Embedded power-efficient technology,
usually used in mobile devices like cell phones and tablets, will be used in
the new systems to reduce costs and increase efficiency. Mobile processors
are today 100 times cheaper than a typical server processor, but only 9
times slower [5]. The main compute platform chosen to be used in the
Mont Blanc supercomputers is the Samsung Exynos 5 Dual chip [8]. The

2.2. OPENCL 5

Exynos 5 Dual contains a 1.7 GHz dual-core ARM Cortex-A15, and a 533
MHz quad-core ARM Mali-T604 GPU [9]. It has been shown that systems
consisting of a combination of CPUs and GPUs are more power-efficient
than pure CPU systems [10].

2.2 OpenCL

OpenCL (Open Computing Language) [11] is a widely used framework
for writing programs across heterogeneous platforms consisting of CPUs,
GPUs, and other processing units. It includes a language for writing ker-
nels, and an API for the C programming language used to define and con-
trol the platforms and devices. Initially developed at Apple Computer, it
is now maintained as an open standard by the Khronos Group, a non-profit
technology consortium. The OpenCL project enjoys support from much of
the hardware industry, with drivers and SDKs available from AMD, Apple,
ARM, Intel, and others [12].

2.2.1 Usage

An application leveraging OpenCL is written in C or C++ using a series of
API calls, used for setting up the environment, work units, and execution
queues. The code to be executed on the device is written in a separate file
and compiled at runtime. The kernel files are written in a programming
language based on a subset of C99 with extensions for parallelism. The
kernel langauge omits the use of function pointers, recursion, bit fields,
variable-length arrays, and standard C99 header files. The extensions it
provides are easy-to-use vector types and operations, synchronization, and
many built-in functions [11].

2.2.2 Vectorization

OpenCL was created to make vecorization very easy for the developers.
The language extensions mentioned above easily creates SIMD instructions
without writing intrinsics or assembly. For instance, let us look at the

6 CHAPTER 2. BACKGROUND

SAXPY (Single-precision real Alpha X Plus Y) operation. This operation
is a combination of scalar multiplication and vector addition, and is shown
in equation 2.1, where α is a scalar, and ~x and ~y are vectors.

~y = α~x+ ~y (2.1)

A simple version might look like the code in listing 2.1. This would of
course be quite slow, only operating on a single vector index at a time.

Listing 2.1 Simple SAXPY implementation

1 void saxpy_simple(float a, float *x, float *y, int n) {

2 for (int i = 0; i < n; i++) {

3 y[i] += a*x[i];

4 }

5 }

Instead we could use intrinsics, like in listing 2.2, which uses Intel AVX
intrinsics. This is in theory eight times faster than the simple implementa-
tion, but is difficult to read and write, and it only works on Intel hardware.

Listing 2.2 SAXPY implementation using AVX intrinsics

1 void saxpy_intrinsics(float a, float *x, float *y, int n) {

2 __m256 _a = _mm256_set1_ps(a);

3 for (int i = 0; i < n; i+=8) {

4 __m256 _x = _mm256_loadu_ps(&x[i]);

5 __m256 _y = _mm256_loadu_ps(&y[i]);

6 _y = _mm256_add_ps(_y, _mm256_mul_ps(_a, _x));

7 _mm256_storeu_ps(&y[i], _y);

8 }

9 }

The OpenCL version shown in listing 2.3 is strikingly similar to the
simple version. However, because it operates on the float8 vector type, it
is theoretically as fast as the code using intrinsics. The OpenCL compiler
will generate the proper SIMD operations depending on the hardware. Note

2.3. OMPSS 7

that only the OpenCL kernel code is shown, not the host code, which is
significally longer and more verbose. Another option yet is to write an
OpenCL kernel using regular floats, and let the compiler automatically
vectorize the code.

Listing 2.3 SAXPY implementation using OpenCL

1 __kernel void saxpy_opencl(float a, __global float8 *x, __global float8 *y, int n)

{

2 for (int i = 0; i < n/8; i++) {

3 y[i] += a * x[i];

4 }

5 }

2.3 OmpSs

OmpSs (Open Multi-Processing Super Scalar) is a set of extensions to
OpenMP. OpenMP is a popular framework for multithreaded applications
in shared memory computers. Compared to other parallel processing frame-
works like pthreads or MPI, OpenMP is fairly easy to use, requiring far less
code to add multithreading to an application. It is used for the most part
by using preprocessor directives in the form of pragmas. There is also a
C API with functions used for setting up the number of threads, getting
thread ids, et cetera. Despite its ease of use, it has some limitations. It can
not be used for GPUs or other accelerators, and it can not be used across
a cluster of computers.

GPUs are today usually programmed using OpenCL or CUDA. These
programming frameworks are quite complicated to use, requiring the de-
veloper to manually manage data movement, memory management, and
error handling. CUDA is also proprietary, and only works for GPUs from
Nvidia [13]. For cluster programming, MPI has been the de facto stan-
dard for many years, however it also requires a lot of manual work for the
developer.

8 CHAPTER 2. BACKGROUND

OmpSs is a programming model based on OpenMP which is developed
at the Barcelona Supercomputing Center [14]. It aims to provide a parallel
programming framework that will be able to exploit heterogeneous com-
puting systems and computing clusters. Being an extension to OpenMP, it
keeps the simplicity of its predecessor, keeping the high developer produc-
tivity, while providing powerful innovations.

The execution model differs slightly from OpenMP. While OpenMP has
a fork-join model, OmpSs uses a thread-pool model where all the threads
exist from the beginning of the execution. Only one of those threads, the
master thread, executes user code while the other threads remain ready
to execute work when available [15]. As a team of threads exists from
the beginning, there is no need for an explicit parallel directive, which is
deprecated in OmpSs.

OmpSs consists of two parts. Mercurium is a C/C++ source-to-source
compiler, transforming high-level directives into a parallelized version of the
application. Nanos++ is a runtime library providing the parallel services
to manage task creation, synchronization, and data movement [16].

2.3.1 Task-based programming

OpenMP was initially focused on loop parallelism, but was extended with
task based parallelism in version 3.0 [17]. Loop-based parallelism means
that the loop iterations are simply split between the threads. In task-based
parallelism the programmer can specify tasks, and later ensure that all
tasks defined up to some point have finished. When called, each task is
assigned to a thread from a thread pool by a task scheduler.

The main advantage of using tasks is that the parallelization becomes
more dynamic. Work in a merge-sort implementation is for example gen-
erated recursively. This makes it very hard to parallelize using loops, but
is quite easily expressed by defining each recursive call as a task, as shown
in listing 2.4 (merge code omitted for brevity).

OmpSs expands the task abstraction found in OpenMP by introducting
data-based dependencies between tasks [15]. Three new clauses are added
to the task directive: input, output nad inout. All three accept an expression

2.3. OMPSS 9

Listing 2.4 Merge sort using OmpSs

1 #pragma omp task inout(array[low:high])

2 void merge(int *array, int low, int mid, int high);

3

4 #pragma omp task inout(array[low:high])

5 void _merge_sort(int *array, int low, int high) {

6 if (low < high) {

7 int mid = (low + high) / 2;

8

9 _merge_sort(array, low, mid);

10 _merge_sort(array, mid+1, high);

11

12 merge(array, low, mid, high);

13 }

14 }

15

16 void merge_sort(int *array, int length) {

17 _merge_sort(array, 0, length);

18 #pragma omp taskwait

19 }

that must evaluate to a set of lvalues. Tasks with an input clause will not
be eligible to run as long as a previously created task with an output clause
with the same lvalue has not finished its execution. The inout clauses count
as both an input and an output clause.

2.3.2 Heterogeneous extensions

By default OmpSs generates code for traditional symmetric multiproces-
sors, like OpenMP does. However, a new directive is introduced in OmpSs
which enables execution on heterogeneous systems. The target directive
specifies that a given element can be run on a specific set of devices. The
currently supported devices are SMP, CUDA, Cell, and OpenCL. The de-
veloper has to write the device-specific code, but data movement is reduced
to simple clauses in the target directive, as shown in listing 2.5.

Additionally, OmpSs has a clause to ease splitting up the problem be-
tween devices. Listing 2.6 (may need to be split into different files) shows

10 CHAPTER 2. BACKGROUND

Listing 2.5 OpenCL kernel called with OmpSs

1 #pragma omp target device(opencl) ndrange(1, global_size, local_size) copy_deps

2 #pragma omp task in(a[block_size], b[block_size]) out(c[block_size])

3 __kernel void add(float *a, float *b, float *c, int block_size) {

4 for (int i = 0; i < block_size; i++) {

5 c[i] = a[i] + b[i];

6 }

7 }

the implements clause, which specifies that the code is an alternate implemen-
tation of a function. This means that the runtime environment will handle
the complexities of using multiple devices, while the developer just has to
write the device-specific code.

Listing 2.6 Different implementations of functions in OmpSs

1 #pragma omp task in(a[block_size], b[block_size]) out(c[block_size])

2 void add_block(float *a, float *b, float *c, int block_size)

3 {

4 // plain C kernel code

5 }

6 #pragma omp target device(opencl) copy_deps implements(add_block)

7 __kernel void add_block_cl(float *a, float *b, float *c, int block_size)

8 {

9 // OpenCL kernel code

10 }

11 #pragma omp target device(cuda) copy_deps implements(add_block)

12 __global__ void add_block_cuda(float *a, float *b, float *c, int block_size)

13 {

14 // CUDA kernel code

15 }

2.3.3 OmpSs - OpenCL interoperability

As explained in the previous section, OmpSs supports the OpenCL target.
However, using this directive is quite a bit harder than seen in listing 2.5.

2.4. DENSE MATRIX MULTIPLICATION 11

The master’s thesis of Guillén Allés, Moisés [18] (in spanish) explains how to
install and use a version of Mercurium and Nanos++ that is able to compile
and run OmpSs applications using OpenCL kernels. Following the advice
of my supervisor, I tried translating and following the instructions. After
following them the OmpSs applications compiled fine (using the compiler
flag --opencl-code-file=FILE), but running them only produced segmentation
faults.

Near the end of the timeframe of this thesis, a precompiled version
of Mercurium and Nanos++ were provided by BSC, along with example
code using OpenCL kernels. However, these examples failed to compile
using the provided compiler (with error message parameter ’--opencl-code-file

=matmul_kernel.cl’ ignored).

2.3.4 Task scheduling

Using OmpSs, all threads are started when the application starts. The
distribution of tasks to threads, including the order of execution, is up to
the task schedule policy. One of the threads, called the main thread, starts
running the application serially. When it encounters a task directive, the
task is put into a shared task pool, which is used by the scheduler to divide
work between the rest of the threads.

The default scheduler in Nanos++ uses a depth-first algorithm, however
many schedulers are available through a run-time flag [19].

2.4 Dense Matrix Multiplication

Matrix multiplication is a fundamental operation in linear algebra, used
widely in scientific and other applications. It is also very popular in bench-
marking, because of its high floating point operation to memory access
ratio. This thesis considers the problem of computing the product

C = AB (2.2)

12 CHAPTER 2. BACKGROUND

of two large, dense, N × N matrices, without losing generality. The
naive way to compute the product, represented by the code in listing 2.7,
is simply

Cij =
N∑
k=1

AikBkj (2.3)

Listing 2.7 Naive Matrix Multiplication

1 for(i = 0; i < N; i++) {

2 for(j = 0; j < N; j++) {

3 C[i][j] = 0;

4 for(k = 0; k < N; k++) {

5 C[i][j] += A[i][k] * B[k][j];

6 }

7 }

8 }

While simple, this code suffers from poor memory locality, resulting in
low reuse of data for large matrices. While each iteration in j reuses row
i of A, that row may have been evicted from the cache by the time the
inner-most loop completes. In addition, the elements of matrix B are ac-
cessed columnwise, while the data is stored in row-major order. To remedy
the former, one can divide the matrices into smaller blocks that fit into
the processor cache, thus utilizing the data fully once it is fetched from
main memory. The latter issue can be circumvented by storing matrix B
transposed to offer a more cache-friendly representation.

2.5 Energy Measurement

2.5.1 Running Average Power Limit

Running Average Power Limit, or RAPL, is a set of interfaces developed
by Intel designed to provide mechanisms to enforce power consumption
limits [20]. The RAPL interfaces are available on the Sandy Bridge or

2.5. ENERGY MEASUREMENT 13

newer microarchitectures, and consist of several non-architectural MSRs,
or model-specific registers. An MSR is a control register present in the
x86 instruction set. The MSRs in a linux system are, when the msr kernel
module is loaded, represented by pseudo-files located in /dev/cpu/x/msr, where
x is unique for each processor core. Reading and writing is handled by the
rdmsr and wrmsr instructions, provided by the msrtools package [21].

The RAPL interfaces are also very well suited for measuring power
consumption of short code paths [22]. The registers describe the units and
granularity of the measurements, while also containing the actual values.
The granularity is defined as 2−ESU , where ESU is the Energy Status Unit
part of the MSR_RAPL_POWER_UNIT register. The default value is 0b10000 = 16,
giving a granularity of 15.3µJ [20]. The actual value is stored in the register
as an unsigned 32-bit integer. This means that when the counter reaches
232 it will wrap around to zero, giving incorrect energy readings.

The Intel Architectures Software Developer’s Manual [20] gives an esti-
mated wrap-around time of the energy status register of 60 seconds when
the load is high. Examining it closer shows us that it might be far greater
than 60 seconds. This is also observed during testing later on. Using the
default granularity of 15.3µJ , the values represented may be between 0J
and 1

216
∗(232−1) ≈ 65536J . Even running at the maximum thermal design

power of 77W, the wrap-around time should be 65536J
77W ≈ 851s.

2.5.2 Performance Application Programming Interface

The Performance Application Programming Interface project, or PAPI,
specifies a standard application programming interface (API) for accessing
hardware performance counters available on most modern microprocessors
[23]. It is a high-level library which reads counters associated with certain
events. A set of predefined events is provided, e.g. PAPI_TOT_INS measures
the total number of completed instructions.

As of version 5.0, PAPI supports measuring and reporting energy val-
ues [24]. On Intel platforms, it does this by reading the RAPL registers
described in section 2.5.1. The energy readings available on Intel include
the energy usage for the total processor package (PACKAGE_ENERGY), the en-

14 CHAPTER 2. BACKGROUND

ergy usage for all cores including their caches (referred to as power-plane
0 (PP0_ENERGY)), and the usage by the on-board GPU (referred to as power-
plane 1 (PP1_ENERGY)) [20]. The on-board GPU will not be used in this the-
sis. The difference between PP0_ENERGY and PACKAGE_ENERGY is any on-chip con-
trollers, like for instance memory controllers. The whole processor package
is of interest to this thesis, therefore we will be using the PACKAGE_ENERGY event.

PAPI will also be used for measuring cache events. The events measured
in this thesis are the level 2 accesses, level 2 misses, level 3 accesses, and
level 3 misses. The counters measuring level 2 misses and level 3 accesses
will always be equal, as a miss in the level 2 cache will always result in an
access in the next level. Similarly, one can measure the level 1 misses by
looking at the level 2 accesses.

2.6 Energy Efficiency Metrics

Several metrics exist for measuring energy effieciency. The Green 500 list
argues for, and uses, GFLOPS per watt as the metric in their comparison
[25]. In this thesis, other metrics will also be looked at and used.

2.6.1 GFLOPS/W

FLOPS, or floating point operations per second, is a widely used measure of
computer performance. It is especially often used in scientific calculations
that heavily use floating point operations. It is for example used by the
Top 500 list.

FLOPS/W is used for measuring the energy efficiency of a system, mea-
suring the rate of computation delivered by a computer for every watt of
power consumed. Interestingly, the metric FLOPS/W is equivalent to flop-
s/J:

FLOPS

W
=
flops/s

J/s
=
flops

J
(2.4)

This means that when the problem size, and therefore also the number
of flops, is fixed, FLOPS/W is simply a measurement of the total energy

2.7. RELATED WORK 15

spent scaled by a constant.

2.6.2 Energy-delay products

Horowitz, Indermaur, and Gonzalez [26] compare different energy efficiency
metrics, and propose the energy-delay-product, usually written as EDP.
The two obvious choices for low-power metrics, power and energy, are shown
to have serious flaws. Power is easy to reduce by reducing the operating
frequency. The energy an operation requires can also easily be made smaller
by reducing the supply voltage. Both of these reductions will dramatically
increase the delay of the operation. The article then proposes the energy-
delay-product, defined as EDP = Energy × Time, which is used in this
thesis.

A later paper by Martin, Nyström, and Pénzes [27] introduces the
energy-delay-squared metric, abbreviated to EDD. They show that when
volage scaling is used, the traditional EDP metric is insufficient to compare
implementations, while the EDD metric is. Energy delay squared is defined
as EDD = Energy×Time2. This metric is also used and compared in this
thesis.

2.7 Related Work

2.7.1 Case Studies in Multi-core Energy Efficiency of Task
Based Programs

In his master’s thesis, Lien evaluates the performance and energy effi-
ciency of two hardware platforms, the Intel Sandy Bridge Core i7 and ARM
Cortex-A9 MPCore test chip [28]. The thesis covers techniques like vector-
ization and multi-threading, using three task-based programs for its eval-
uation of the platforms. The kernels, Black-Scholes, FFTW, and matrix
multiplication, are written using OmpSs, and are compared with different
configurations on both platforms.

Chapter 3

Implementation

This chapter will present the code measuring performance counters, along
with the different implementations of the matrix multiplication kernel.

3.1 Performance measurement

As explained in section 2.5.2, PAPI was used for measuring performance and
energy metrics during the benchmarking. To ease the use of the low-level
API described in [29], three functions were implemented; void start_listening

(void), void stop_listening(void), and void print_counters(void), all using a static
struct defined in the same file. The struct holds all the measurement infor-
mation, and the information needed by PAPI, and is shown in listing 3.2.
The initialization code in shown in listing 3.1. Error checking and cache
counters are omitted for brevity.

While implementing the energy measurement code, the wrap-around
time of the RAPL counters was tested. As discussed in section 2.5.1, Intel
Architectures Software Developer’s Manual gives an estimated wrap-around
time of 60 seconds, while calculating it here gave a wrap-around time of
approximately 851 seconds. Testing showed that neither were correct, with
seemingly random wrap-around times for different runs. Testing was done
at approximately 40 watts, which should give 1638 seconds. However, the

17

18 CHAPTER 3. IMPLEMENTATION

Listing 3.1 PAPI initialization

1 void start_listening() {

2 counters.event_set = PAPI_NULL;

3 int event_code = PAPI_NATIVE_MASK;

4 const PAPI_component_info_t *comp_info = NULL;

5 PAPI_event_info_t event_info;

6

7 PAPI_library_init(PAPI_VER_CURRENT);

8 int num_comps = PAPI_num_components();

9

10 int rapl_comp_id;

11 for (rapl_comp_id = 0; rapl_comp_id < num_comps; rapl_comp_id++) {

12 comp_info = PAPI_get_component_info(rapl_comp_id);

13 if (strcmp(comp_info->name, "rapl") == 0) {

14 break;

15 }

16 }

17 PAPI_create_eventset(&counters.event_set);

18

19 PAPI_enum_cmp_event(&event_code, PAPI_ENUM_FIRST, rapl_comp_id);

20 for (counters.num_events = 0; ret == PAPI_OK; counters.num_events++) {

21 PAPI_event_code_to_name(event_code, counters.event_names[counters.

num_events]);

22 PAPI_get_event_info(event_code, &event_info);

23

24 strncpy(counters.units[counters.num_events], event_info.units,

PAPI_MIN_STR_LEN);

25 PAPI_add_event(counters.event_set, event_code);

26

27 PAPI_enum_cmp_event(&event_code, PAPI_ENUM_EVENTS, rapl_comp_id);

28 }

29

30 counters.values = calloc(counters.num_events, sizeof(*counters.values));

31

32 counters.start_time = PAPI_get_real_nsec();

33 PAPI_start(counters.event_set);

34 }

3.2. OPENCL MATRIX MULTIPLICATION 19

Listing 3.2 Performance information

1 struct counters

2 {

3 int event_set;

4 long long *values;

5 long long start_time;

6 double elapsed_time;

7 char event_names[MAX_RAPL_EVENTS][PAPI_MAX_STR_LEN];

8 char units[MAX_RAPL_EVENTS][PAPI_MIN_STR_LEN];

9 int num_events;

10 };

11 static struct counters counters;

values wrapped anywhere between 40 and 400 seconds. One test tried to
read the counters every 5 seconds, which should be well inside both Intel’s
claims and the calculations performed in this thesis. However, this did
not produce any difference in results; the counters still wrapped around
seemingly randomly.

3.2 OpenCL Matrix Multiplication

Two versions of the matrix multiplication kernel were developed using
OpenCL.

The first is quite simple, using one work-item for each element in the
resulting matrix. This work item will compute a single element, i.e. the
dot product of one whole row in matrix A with one whole column in matrix
B.

The other implementation transposes the second matrix before comput-
ing the result. This allows for better cache reuse, and better vectorization
of the code, as discussed in section 2.4. In general, any transposition of the
matrices that will increase the performance of the multiplication should
be worth it. Any reordering or transposition of the matrices will have an
asymptotic cost of O(n2), whereas the multiplication has a cost of O(n3).
Like the simple implementation, it delegates one element of the resulting

20 CHAPTER 3. IMPLEMENTATION

matrix to one work-item.
Four versions of each implementation is run:

1. No vectorization

2. Using OpenCL automatic vectorization

3. Using explicit float4 vectorization

4. Using explicit float8 vectorization

The float4 and float8 vectorizations use OpenCL functions which, on
the Intel CPU, map directly to respectively SSE and AVX instructions, as
explained in section 2.2.2. It would be quite interesting to know how the
compiler optimizes the code when using automatic vectorization. However,
I could not find any way to view the generated assembly. There is a hint at
a Linux version of the Intel Offline Compiler Standalone Tool in the online
Intel OpenCL user guide [30]. However, the website seems to be outdated,
as I could not find any other references to it. Following the link given in
the user guide only shows information regarding the Windows version.

One interesting thing to note is the use of the dot product. OpenCL
includes a built-in function for efficiently calculating the dot product of
two vector types [11, p. 264]. However, this is only supplied for the float

types float, float2, float3, and float4. This means that the main operation
of the matrix multiplication will not be fully utilizing AVX. A suboptimal
dot product implementation for float8 is shown in listing 3.3. All kernels
are available in appendix B.

Listing 3.3 OpenCL implementation of AVX dot product

1 float avx_dot(float8 a, float8 b) {

2 return dot(a.hi, b.hi) + dot(a.lo, b.lo);

3 }

3.3. OMPSS MATRIX MULTIPLICATION 21

3.3 OmpSs Matrix Multiplication

Two different OmpSs implementations were tested. One was developed
by me during the writing of this thesis. The other was provided by BSC,
edited slightly to be usable with the test framework used for the OpenCL
versions. Both kernels are available in appendix C.

3.3.1 OmpSs

The first implementation uses a technique shown by Matsumoto, Nakasato,
and Sedukhin [31]. They arrange the matrices into sub-blocks, using the
row-block-row-major layout shown in figure 3.1a. The data for each sub-
block of BS × BS is aligned in row-major order, and the sub-blocks are
also aligned in row-major order. This creates NB = N/BS blocks. The
implementation used in this thesis uses this arrangement for matrix A (us-
ing the notation from equation 2.3). Matrix B is arranged in a column-
block-column-major layout, as shown in figure 3.1b. This ensures that all
memory lookups are from contiguous memory. The matrices are arranged
into blocks to get better cache usage, trying to reuse as much as possible
from the two matrices.

The resulting matrix C is divided into blocks, where one OmpSs task
calculates one block. Each task then has NB smaller matrix multiplica-
tions to calculate, adding the results on the way. This makes a total of
NB ∗ NB tasks. One could divide the tasks further, defining each of the
smaller matrix multiplications as one task. However, this was shown during
experiments do give slightly worse performance.

The application can be compiled to use AVX, SSE, or no vectorization.
The code is altered using preprocessor directives, as only small changes were
necessary. The vecorization is implemented using Intel intrinsics. When
using AVX or SSE, the memory used had to allocated with the POSIX
function posix_memalign to ensure that the memory is properly aligned. The
fastest AVX instructions require memory to be 32-byte aligned, while SSE
instructions require the memory to be 16-byte aligned.

The optimal block sizes were first calculated with regards to cache sizes.

22 CHAPTER 3. IMPLEMENTATION

(a) Row-block-row-major layout (b) Column-block-column-major layout

Figure 3.1: Matrix data layouts

The application was tested with these block sizes for all optimizations, then
adjusted accordingly, and tested again. The block sizes which performed
the best for each parameter option were selected.

3.3.2 OmpSs with ATLAS

The BSC version uses the Automatically Tuned Linear Algebra Software
(ATLAS) [32] for computing the result. ATLAS is a research project aimed
at developing a portably efficient BLAS implementation. It automatically
selects the best performing kernels for each BLAS routine. It selects the
kernel parameters, like block sizes, using the physical properties of the
machine. This is done at compile-time. Because of this, ATLAS has high
performance on many different architectures. ATLAS is AVX vectorized
on hardware that supports it.

ATLAS is distributed as source code from the webpage [33]. It is also
distributed as a package in Ubuntu, installable with the built-in package

3.3. OMPSS MATRIX MULTIPLICATION 23

manager. For this thesis both were tried, with the source installation being
the better choice by far.

This implementation also divides the matrices into blocks for each task
to calculate, changing the layout to row-column-row-major, shown in figure
3.1a. One task is here defined as any two blocks in matrices A and B,
creating NB ∗NB ∗BS = NB ∗N tasks. Any two blocks that do not share
a block in C can be multiplied in parallel. The tasks are then fed into the
cblas_sgemm function to be calculated by the ATLAS library. ATLAS may in
turn sub-divide each block to make them fit into the CPU caches.

Chapter 4

Experiment Setup and
Methodology

4.1 Test Bench

The experiments were run on minvilje, a desktop computer with an Intel
Ivy Bridge Core i7 quad-core processor.

4.1.1 Hardware

minvilje has an Intel Core i7-3770K CPU with four cores, and a clock speed
of 3.50GHz. The general hardware specifications for minvilje can be seen
in table 4.1, and the cache specifications are listed in table 4.2. CPU
information was collected from /proc/cpuinfo, memory information from the
tool dmidecode, and cache information from /sys/devices/system/cpu/cpu0/cache/

indexX. A diagram of the Ivy Bridge CPU with caches is shown in figure
4.1

4.1.2 Software

For minvilje Ubuntu 12.04.2 LTS was used, running Linux kernel 3.6.0. The
third-party software and libraries used for the benchmarking is listed in

25

26 CHAPTER 4. EXPERIMENT SETUP AND METHODOLOGY

Property Value

CPU model Intel Core i7-3770K
Model 58
Stepping 9
Clock frequency 3.50GHz
Number of physical cores 4
Number of logical cores 8

Main memory size 16GB
Type DDR3
Clock speed 1333MHz
Arrangement 4 × 4GB

Table 4.1: Hardware specifications for minvilje

Cache level Size Line size

Level 1 32K (Data) 32K (Instruction) 64B
Level 2 256K 64B
Level 3 8MB 64B

Table 4.2: Cache specifications for minvilje

table 4.3.

4.1.3 Compilation

The OpenCL applications were compiled using GCC, while the OmpSs
applications used Mercurium (mcc). The compiler flags are given in table
4.4.

4.1. TEST BENCH 27

Machine (16GB)

Socket P#0

L3 (8192KB)

L2 (256KB)

L1 (32KB)

Core P#0

PU P#0

PU P#4

L2 (256KB)

L1 (32KB)

Core P#1

PU P#1

PU P#5

L2 (256KB)

L1 (32KB)

Core P#2

PU P#2

PU P#6

L2 (256KB)

L1 (32KB)

Core P#3

PU P#3

PU P#7

Figure 4.1: Ivy Bridge CPU with caches

Developer Name Version

The GNU Project gcc 4.6.3
ICL, University of Tennessee PAPI 5.1.0.2
Intel Corporation Intel OpenCL SDK 3.0.67279
PM, BSC, UPC Nanos++ 0.7a (2013-04-22)
PM, BSC, UPC Mercurium 1.99.0 (2013-05-07)
Open Source ATLAS 3.10.1

Table 4.3: Third-party software used

4.1.4 Test framework

The tests were run using a python script, which in turn ran the individual
compiled applications, providing appropriate runtime flags and environ-
ment variables. The results were presented on screen, and were in addition
inserted into a database for further use. Sqlite was chosen as the database

28 CHAPTER 4. EXPERIMENT SETUP AND METHODOLOGY

Compiler Optimization Flags

gcc Any -std=gnu99 -Wall -pedantic -O3 -m64
-lOpenCL -lpapi

mcc None -std=gnu99 -Wall –ompss -O3 -m64 -lpapi
mcc SSE -std=gnu99 -Wall –ompss -O3 -m64 -lpapi

-march=corei7 -flax-vector-conversions
mcc AVX -std=gnu99 -Wall –ompss -O3 -m64 -lpapi

-march=corei7-avx -flax-vector-conversions

Table 4.4: Compiler flags used

engine for the results. The results were then extracted from the database,
and output to figures using the python library matplotlib [1], and to tables
using Jinja2 [2].

4.2 Experiment methodology

4.2.1 Performance counters

Before each experiment was run, the PAPI library was initialized using the
code presented in section 3.1. As explained there, the wrap-around time of
the RAPL counters proved somewhat unreliable. Therefore, the few times
the counters wrapped around during benchmarking, the relevant test was
simply run again. After running, the measurements are stopped, and the
counters printed to stdout.

To ensure a fair benchmarking, each implementation is timed and mea-
sured from the same point in the application. This means that any time
spent setting up the environment, (e.g. OpenCL context) or copying data
is also included in the measurements.

4.2. EXPERIMENT METHODOLOGY 29

4.2.2 Experiments

Each application is run 10 times for each configuration of problem size and
optimizations. The median of the measurements was used in the results.

The Ivy Bridge processors come with dynamic frequency scaling, or
CPU throttling. To ensure stable benchmarking results, the CPU clock
speed was fixed to the maximum setting of 3.5 GHz.

4.2.3 Problem sizes

The problem sizes for the matrix multiplication are given as dimensions
to each of the matrices. As described in section 2.4, all matrices in these
experiments have the same dimensions.

The memory required for computing the result of two square matrices
with single precision (4 byte) values is:

4bytes ∗ 3 ∗N2 = 12 ∗N2bytes (4.1)

The problem sizes chosen for the experiments, along with their respec-
tive memory footprints are given in table 4.5. Not that for the simple
OpenCL application, N = 4096 and N = 8196 were not run because they
took too long.

N Memory footprint

256 786 kB
512 3.1 MB
1024 12.6 MB
2048 50.3 MB
4096 201.3 MB
8192 805.3 MB

Table 4.5: Problem sizes and memory footprints

30 CHAPTER 4. EXPERIMENT SETUP AND METHODOLOGY

4.2.4 Defining flop counts

To calculate the performance of a system in FLOPS, it must be defined
how many floating point operations is used for computing the correct re-
sult of a given input. It is possible to simply count the number of opera-
tions performed by the application using performance counters of the CPU.
However, this would also count unnecessary operations due to a suboptimal
algorithm, and therefore not be suitable for comparisons between different
implementations.

Another definition of the flop count would be the number of “useful”
floating point operations the algorithm performs, or put differently, how
many operations are actually needed to produce a correct answer to the
given problem. The formula for computing a matrix multiplication is seen in
equation 2.3 on page 12. From this we can deduce the number of necessary
floating point operations:

flops = 2 ∗N3 (4.2)

This is the flop count which will be used for performance measurements
in this thesis. Integer operations and comparisons are ignored.

4.2.5 Measurement metrics

The recorded metrics are as follows:

1. t = Time spent (measured in seconds).

2. e = Energy used (measured in joules).

From these we calculate and compare the following:
MFLOPS, million floating point operations per second:

MFLOPS =
flops

second
=

2 ∗N3

t ∗ 106
(4.3)

MFLOPS/W, million floating point operations per second per watt.
This is simplified, as described in equation 2.4:

4.2. EXPERIMENT METHODOLOGY 31

MFLOPS/W =
flops

joule
=

2 ∗N3

e ∗ 106
(4.4)

Power dissipation, the rate of which energy is used, measured in watts.

Power =
joules

second
=
e

t
(4.5)

Normalized energy delay product. The energy delay product is described
in section 2.6.2. To be able to show the products for the different imple-
mentations in one graph, it is normalized against the non-optimized (not
vectorized or single-threaded) version of the code.

EDPnormalized =
e ∗ t

EDPnon−optimized
(4.6)

Normalized energy delay squared. This is also explained in section 2.6.2,
and as the previous metric, normalized.

EDDnormalized =
e ∗ t2

EDDnon−optimized
(4.7)

Cache miss rate

Miss rate =
Cache misses

Cache accesses
(4.8)

Chapter 5

Results and Discussion

In this chapter we will look at the performance results for the matrix multi-
plication kernel. The following sections present the results of the OpenCL
versions and the OmpSs versions. The results are shown with different
implementations, problem sizes, and optimization options.

5.1 Simple OpenCL implementation

This section will present the results for performance, energy, energy effi-
ciency and cache miss rate for the simple (not transposed) OpenCL version
of the kernel. The different optimizations shown for the OpenCL versions
are different vecorization settings.

5.1.1 Performance

The performance, measured in MFLOPS, is presented in figure 5.1. As
expected, the performance of the small problem sizes are quite low. This
is mainly because the majority of the time spent is used on setting up the
OpenCL context and environment. The time spent with setup and tear-
down become smaller compared to the computation time spent when the
problem size increases, when we see the performance tapers off. Interest-

33

34 CHAPTER 5. RESULTS AND DISCUSSION

ingly, there is negligible difference between the different vectorization op-
tions, except the one using automatic vectorization. This might be because
of low cache reuse of the second matrix, leading to the processor waiting
for more data most of the time. As discussed in section 2.4, the matrices
are stored in row-major order, but the second matrix in the multiplication
is accessed in column-major order.

256x256 512x512 1024x1024 2048x2048
Problem size

0

500

1000

1500

2000

2500

3000

3500

M
FL

O
P
S

Simple OpenCL

None

Automatic

SSE

AVX

Figure 5.1: Performance for simple OpenCL matrix multiplication

The relatively high performance of the automatically vectorized version
is hard to explain, as I do now know what the compiler has done to achieve
this. As talked about in section 3.2, I do not have access to the generated
assembly code. The performance decreases after N = 1024, most likely
because the problem no longer fits in the level 3 processor cache (also seen
in figure 5.4b).

5.1. SIMPLE OPENCL IMPLEMENTATION 35

5.1.2 Energy efficiency

Figure 5.2a shows the power dissipation during execution of the various
tests. With the exception of the automatically vectorized version, they use
energy at approximately the same rate. This shows that a vector operation
and a scalar operation use about the same energy on this processor.

256x256 512x512 1024x1024 2048x2048
Problem size

15

20

25

30

35

W
a
tt

Simple OpenCL

None

Automatic

SSE

AVX

(a) Power dissipation

256x256 512x512 1024x1024 2048x2048
Problem size

0

20

40

60

80

100

120

M
FL

O
P
S
/W

Simple OpenCL

None

Automatic

SSE

AVX

(b) Energy efficiency

Figure 5.2: Power dissipation and energy efficiency

The energy efficiency in figure 5.2b again shows that the automatically
vectorized version performs the best. The other vectorization options per-
form equally well, peaking at the problem size 512 × 512.

5.1.3 Energy-delay products

Figure 5.3 shows the normalized energy delay products. It is normalized
against the non-vectorized version, so as to be able to show them all in the
same graphs. It is clear in both graphs that the automatically vectorized
version is a lot more energy efficient. The other options are almost equal
regarding the energy delay products. Not pictured is the non-optimized
version, which the others are normalized against.

36 CHAPTER 5. RESULTS AND DISCUSSION

256x256 512x512 1024x1024 2048x2048
Problem size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 E

D
P

Simple OpenCL

Automatic

SSE

AVX

(a) Energy delay product

256x256 512x512 1024x1024 2048x2048
Problem size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 E

D
D

Simple OpenCL

Automatic

SSE

AVX

(b) Energy delay squared

Figure 5.3: Energy delay products

5.1.4 Cache miss rates

The cache miss rate for the level 2 cache is shown in figure 5.4a. Considering
the size of the problems in matrix multiplication, we see that the level 2
cache quickly becomes almost useless. This is also probably in large part
due to the poor cache reuse aspect of the algorithm in use.

Figure 5.4b shows the miss rate for the level 3 cache. As shown in
equation 4.1, the memory required is 12 ∗N3. This means that the level 3
cache, which is as described in table 4.2, 8MB, will hold the entire problem
at sizes below N = 816. We can however, see from the miss rate that even
N = 1024 works quite well in the level 3 cache.

5.2 Transposed OpenCL implementation

This section will present the results for performance, energy, energy effi-
ciency and cache miss rate for the transposed OpenCL version of the kernel.
The different optimizations are here, as with the simple version, different
vecorization settings.

5.2. TRANSPOSED OPENCL IMPLEMENTATION 37

256x256 512x512 1024x1024 2048x2048
Problem size

0.0

0.2

0.4

0.6

0.8

1.0

L2
 C

a
ch

e
 m

is
s

ra
te

Simple OpenCL

None

Automatic

SSE

AVX

(a) L2 cache miss rate

256x256 512x512 1024x1024 2048x2048
Problem size

0.0

0.2

0.4

0.6

0.8

1.0

L3
 C

a
ch

e
 m

is
s

ra
te

Simple OpenCL

None

Automatic

SSE

AVX

(b) L3 cache miss rate

Figure 5.4: Cache miss rates

5.2.1 OpenCL versions

During the writing of this thesis, a new version of the OpenCL libraries
was released by Intel. The first version used, 3.0.56860, was replaced by
3.0.67279 after the initial benchmarking was done. The differences in results
are briefly presented here.

The old version from figure 5.5a shows that the SSE kernel outperforms
the AVX kernel by 10%. As seen in section 3.2, there is no AVX version
of the dot product, which is heavily used in this matrix multiplication
implementation. Instead the function shown in listing 3.3 is used, which
is simply two SSE instructions serially executed. This would explain the
situation if they were almost equal, but it is strange that the AVX version
performs worse.

Figure 5.5b shows the performance of the new version. We can see
that the non-vectorized, automatic, and SSE versions perform similarly,
but the kernel employing AVX is much improved. There still is no float8

dot product in the new version of the OpenCL implementation, but it is
assumed that the compiler combines the two float4 dot products to an AVX
instruction.

38 CHAPTER 5. RESULTS AND DISCUSSION

256x256 512x512 1024x1024 2048x2048 4096x4096
Problem size

0

5000

10000

15000

20000

25000

30000

M
FL

O
P
S

Transposed OpenCL

None

Automatic

SSE

AVX

(a) Old version

256x256 512x512 1024x1024 2048x2048 4096x4096
Problem size

0

5000

10000

15000

20000

25000

30000

M
FL

O
P
S

Transposed OpenCL

None

Automatic

SSE

AVX

(b) New version

Figure 5.5: Transposed OpenCL performance, different versions

5.2.2 Performance

Here we see from figure 5.6 a lot better performance than the simple ver-
sion. This time the automatic vectorization could not do much for the
performance, which might be because of the complexity of the algorithm
compared to the simple version. Both SSE and AVX improve the perfor-
mance by a lot, but far from the theoritical speedup of 4 and 8, respectively.

5.2.3 Energy efficiency

From figure 5.7a we see that all the vecorization options use energy at about
the same rate. As discussed in the previous section, this shows that vector
operations and scalar operations use approximately the same amount of
energy. As with the simple version, the automatically vectorized option is
the outlier, this time using slightly more energy per second.

The measured energy efficiency in MFLOPS/W is shown in figure 5.7b.
As expected, the efficiency of the smaller problem sizes is quite low, due to
the relatively large part of the measure time is spent setting up the OpenCL
environment. After reaching 2048 × 2048, the efficiency almost completely

5.2. TRANSPOSED OPENCL IMPLEMENTATION 39

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

5000

10000

15000

20000

25000

30000

M
FL

O
P
S

Transposed OpenCL

None

Automatic

SSE

AVX

Figure 5.6: Performance for transposed OpenCL matrix multiplication

flattens, which is again most likely because of now negligible time spent
setting up OpenCL. The AVX version is again the winner, being most
efficient for all problem sizes.

5.2.4 Energy-delay products

Figure 5.8 shows the energy delay products. Here we also see that the AVX
version is most efficient for all problem sizes. The automatically vectorized
version is slightly worse than the plain version for all sizes. The numbers
are normalized against the non-optimized version, which is not shown.

5.2.5 Cache miss rates

Here we see from figure 5.9 part of the reason this implementation is so
much stronger than the simple version. The miss rate for both the level
2 and the level 3 caches are much lower than in section 5.1. They are
approximately equal for the smaller sizes on both levels, diverging slightly

40 CHAPTER 5. RESULTS AND DISCUSSION

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

15

20

25

30

35

40

45

50

W
a
tt

Transposed OpenCL

None

Automatic

SSE

AVX

(a) Power dissipation

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

100

200

300

400

500

600

700

M
FL

O
P
S
/W

Transposed OpenCL

None

Automatic

SSE

AVX

(b) Energy efficiency

Figure 5.7: Power dissipation and energy efficiency, transposed OpenCL

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 E

D
P

Transposed OpenCL

Automatic

SSE

AVX

(a) Energy delay product

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 E

D
D

Transposed OpenCL

Automatic

SSE

AVX

(b) Energy delay squared

Figure 5.8: Energy delay products

as the size increases. There are only small differences between the various
optimizations.

5.3. OMPSS 41

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.2

0.4

0.6

0.8

1.0

L2
 C

a
ch

e
 m

is
s

ra
te

Transposed OpenCL

None

Automatic

SSE

AVX

(a) L2 cache miss rate

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.2

0.4

0.6

0.8

1.0

L3
 C

a
ch

e
 m

is
s

ra
te

Transposed OpenCL

None

Automatic

SSE

AVX

(b) L3 cache miss rate

Figure 5.9: Cache miss rates

5.3 OmpSs

This section will present and discuss the performance and energy results for
the OmpSs implementation of the matrix multiplication developed by me.
The optimizations available to this version are vectorization and number of
threads. One, four, and eight threads were tested.

5.3.1 Performance

From figure 5.10 we see the performance of the application. The effects
of both multi-threading and vectorization are as expected, with the eight-
threaded AVX version being the fastest. We also see that hyper-threading
is quite effective, increasing the performance for all vectorization options.

Vectorization is also shown to affect the performance positively. Regard-
less of the number of threads, it increases the performance significantly.

5.3.2 Energy dfficiency

Figure 5.11a shows the effect of multi-threading on power spent. Four
threads is shown to use on average 107% more energy per second than

42 CHAPTER 5. RESULTS AND DISCUSSION

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

10000

20000

30000

40000

50000

60000
M

FL
O

P
S

OmpSs

None Single thread

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

Figure 5.10: Performance for OmpSs matrix multiplication

the single-threaded application, while eight threads use 127% more. The
vectorized code also seems to spend energy somewhat faster, contradicting
what we saw in section 5.1 and 5.2.

Even though both multi-threading and vectorization consume energy
faster, we see from figure 5.11b that it is worth it with regards to efficiency.
Both optimizations produce greater MFLOPS/W than the corresponding
non-optimized applications.

5.3.3 Energy delay products

Looking at both energy delay products in figure 5.12 it looks like the single-
threaded SSE application stands out. On closer inspection we see that it
is actually all the single-threaded versions standing out. The other combi-
nations are all quite stable and low, with the eight-threaded AVX version
again being the winner. Note that the numbers are normalized against the
non-optimized version, which is not shown.

5.3. OMPSS 43

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

20

30

40

50

60

70

W
a
tt

OmpSs

None Single thread

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

(a) Power dissipation

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

200

400

600

800

1000

1200

M
FL

O
P
S
/W

OmpSs

None Single thread

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

(b) Energy efficiency

Figure 5.11: Power dissipation and energy efficiency, OmpSs

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
rm

a
liz

e
d
 E

D
P

OmpSs

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

(a) Energy delay product

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

N
o
rm

a
liz

e
d
 E

D
D

OmpSs

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

(b) Energy delay squared

Figure 5.12: Energy delay products

5.3.4 Cache miss rate

Figure 5.13a shows that the miss rate for the level 2 cache is, for all problem
sizes above N = 256, very low. This is due to the fact that one sub-block
multiplication always fits inside the level 2 cache.

44 CHAPTER 5. RESULTS AND DISCUSSION

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.1

0.2

0.3

0.4

0.5

L2
 C

a
ch

e
 m

is
s

ra
te

OmpSs

None Single thread

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

(a) L2 cache miss rate

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.1

0.2

0.3

0.4

0.5

L3
 C

a
ch

e
 m

is
s

ra
te

OmpSs

None Single thread

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

(b) L3 cache miss rate

Figure 5.13: Cache miss rates

From figure 5.13b there are more interesting results. We see that the
number of threads is the factor determining the level 3 cache miss rate, with
the single-threaded, four-threaded, and eight-threaded runs being quite
similar, with the four-threaded being the worst. There is not much dif-
ference regarding the vectorization. There is a big spike in the miss rate at
N = 4096 for four and eight threads. This is probably because of the block
size chosen for this problem size being too big for the L3 cache. However,
even with the poor level 3 miss rate, this block size performed the best (see
section 3.3.1).

Figure 5.14 shows the number of accesses at the level 2 cache steadily
rising for all optimizations. This metric also represents the number of
misses at the level 1 cache, as any miss there would necessarily also mean
an access at the next level. We cannot see the level one miss rate, as there
are no counters for the accesses at that level, but this metric gives us an
idea of how well the level one cache is used. Note the logarithmic scale. We
clearly see from the figure three groups, formed from the single-threaded,
four-threaded, and eight-threaded applications. As expected, vectorization
has no impact on the number of level 2 cache accesses.

5.4. OMPSS FROM BSC 45

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

104

105

106

107

108

109

1010

1011

L2
 C

a
ch

e
 u

sa
g
e

OmpSs

None Single thread

SSE Single thread

AVX Single thread

None Four threads

SSE Four threads

AVX Four threads

None Eight threads

SSE Eight threads

AVX Eight threads

Figure 5.14: Level 2 cache usage, OmpSs

5.4 OmpSs from BSC

This section will present the results from the OmpSs implementation pro-
vided by BSC, which uses ATLAS for the actual computation. As ATLAS
is already AVX vectorized, the only optimization available is the number
of threads. Again, one, four, and eight threads were tested.

5.4.1 Performance

We can see from figure 5.15 a huge improvement from the previous applica-
tions. We also see that hyper-threading has a small but constant negative
impact on performance. The effect of multi-threading is quite big, with
four threads having 84% higher performance than the single-threaded ap-
plication. The negative impact of hyper-threading is most likely due to
pairs of threads sharing a cache. This means that we get lower cache reuse,
and lower performance. Additionally, because parallelization is introduced
outside the ATLAS library, it will wrongly assume each thread has access

46 CHAPTER 5. RESULTS AND DISCUSSION

to the full 32kB of level 1 cache.

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

20000

40000

60000

80000

100000

120000

140000

M
FL

O
P
S

OmpSs-ATLAS

Single thread

Four threads

Eight threads

Figure 5.15: Performance for OmpSs BSC matrix multiplication

5.4.2 Energy dfficiency

Figure 5.16a shows that using eight threads spends energy faster than four
threads. Interestingly, the single-threaded power usage is almost unaffected
by problem size, whereas the four-threaded power usage increases steadily.
At the biggest problem size the four-threaded power spent is 96% higher
than the single-threaded.

After seeing both the performance and the power usage of four threads
versus eight threads, the result of figure 5.16b is not surprising. It shows
that the energy efficiency of four threads is quite a bit better than eight
threads. The single-threaded version performs remarkably well, being passed
by the four-threaded at N = 1024, and the eight-threaded at N = 8192.

5.4. OMPSS FROM BSC 47

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

20

25

30

35

40

45

50

W
a
tt

OmpSs-ATLAS

Single thread

Four threads

Eight threads

(a) Power dissipation

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0

500

1000

1500

2000

2500

3000

M
FL

O
P
S
/W

OmpSs-ATLAS

Single thread

Four threads

Eight threads

(b) Energy efficiency

Figure 5.16: Power dissipation and energy efficiency, OmpSs BSC

5.4.3 Energy delay products

The energy delay products in figure 5.17 also show that four threads are
more efficient than eight, with the difference decreasing as the problem
size increases. When looking at the EDP, they are both better than the
single-threaded application after 1024×1024. Using the EDD, which favors
performance, they cross the single-threaded somewhat earlier, with both
being more efficient after 512 × 512. The numbers are normalized against
the single-threaded version, which is not shown.

5.4.4 Cache miss rate

Figure 5.18a shows the miss rate for the level 2 cache. It is generally quite
low, with not much difference between the number of threads. The ATLAS
library should, and apparantly does, divide the work into smaller tasks
which fit nicely into the level 2 cache.

The miss rate for the level 3 cache is shown in figure 5.18b. The single-
threaded application increases sharply at N = 1024, which is the first
problem size which does not fit into the level 3 cache. The four-threaded

48 CHAPTER 5. RESULTS AND DISCUSSION

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
liz

e
d
 E

D
P

OmpSs-ATLAS

Four threads

Eight threads

(a) Energy delay product

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 E

D
D

OmpSs-ATLAS

Four threads

Eight threads

(b) Energy delay squared

Figure 5.17: Energy delay products

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.1

0.2

0.3

0.4

0.5

L2
 C

a
ch

e
 m

is
s

ra
te

OmpSs-ATLAS

Single thread

Four threads

Eight threads

(a) L2 cache miss rate

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

0.0

0.1

0.2

0.3

0.4

0.5

L3
 C

a
ch

e
 m

is
s

ra
te

OmpSs-ATLAS

Single thread

Four threads

Eight threads

(b) L3 cache miss rate

Figure 5.18: Cache miss rates

version however, increases similarly only at N = 2048. The eight-threaded
version steadily increases with the problem size.

Figure 5.19 shows the number of level 2 cache accesses. Note the log-
arithmic scale, and the fact that this number also represents the level 1

5.4. OMPSS FROM BSC 49

256x256 512x512 1024x1024 2048x2048 4096x4096 8192x8192
Problem size

104

105

106

107

108

109

1010

1011

L2
 C

a
ch

e
 u

sa
g
e

OmpSs-ATLAS

Single thread

Four threads

Eight threads

Figure 5.19: Level 2 cache usage, OmpSs BSC

cache misses, as explained in section 5.3.4. All optimizations are steadily
increasing, as expected. The single-threaded version misses the most, fol-
lowed by the eight-threaded, with the four-threaded performing the best.
This correlates with the performance and energy results we saw earlier.

Chapter 6

Conclusion

Four different implementations of matrix multiplication have been run,
measured, and analyzed. The performance and energy efficiency of the
different versions have been compared and discussed. This section will
conclude the report.

6.1 OpenCL

Two OpenCL implementations were tested. Here we look at the differences
between them, and on the effect of vectorization.

6.1.1 Transposition

The effects of transposing the second matrix were quite big. For the prob-
lem size N = 2048, the increase in MFLOPS was 1354%, with the largest
increase in the AVX version. The increase was also evident in the energy
efficiency. With almost no increase in power, the increase in MFLOPS/W
were nearly equal to the increase in MFLOPS (1328% for N = 2048). Some
of the reason for the increase in performance is shown in the cache miss
rates, with both the L2 and the L3 cache being much better utilized in the
transposed version.

51

52 CHAPTER 6. CONCLUSION

6.1.2 Vectorization

Vectorization also had a big impact on performance. Looking at the trans-
posed implementation, the increase in performance between the non-vectorized
and the SSE version was 58% for the big problem sizes. AVX was quite a bit
faster than SSE, being 118% faster than the non-vectorized code. The AVX
version was also the most energy efficient. It used only 5% more power,
meaning that it gave 107% more MFLOPS/W than the non-vectorized ver-
sion. There was almost no difference in the cache miss rate, which is to be
expected.

6.2 OmpSs

Two OmpSs implementions were tested. Here we look at the difference
between between them, and on the effect of vectorization, scheduling, and
multi-threading.

6.2.1 ATLAS

The OmpSs application provided by BSC generally performed much better
than the application developed during this thesis. At the biggest problem
size tested, the performance was 282% better. It was only beat at the
smallest problem sizes of N = 256 and N = 512. The difference in energy
efficiency (MFLOPS/W) was even bigger, peaking at 294%.

This difference probably comes from many reasons, the one seen in this
thesis was a big improvement in cache usage. The ATLAS application uses
the level 1 cache much better, with almost an order of magnitude less level
2 accesses. They were similar in the level 2 miss rate, with level 3 varying
widely.

6.2.2 Vectorization

The OmpSs implementation from BSC was already vectorized in ATLAS.
From the results of the application developed during this thesis, we see that

6.3. FURTHER WORK 53

vectorization helps quite a bit, although far from the theoretical maximum
of 4 and 8 times speedup for SSE and AVX respectively. AVX performed
on average 152% better than the non-vectorized, while SSE performed 40%
better.

The vectorized code used somewhat more power, but the performance
gain outweighed it, making the energy efficiency (MFLOPS/W) 130% bet-
ter for the AVX optimized code than the non-optimized.

6.2.3 Multi-threading

The multi-threaded runs performed as expected much better than the
single-threaded. Also here it was far from the theoretical gain, with the
four-threaded being 84% faster than the single-threaded for the BSC ver-
sion, and hyper-threading being 393% faster for my version. When using
ATLAS, hyper-threading produced worse results than four threads.

While spending significanly more energy than a single-threaded appli-
cation, the performance gains were again worth it. The BSC version was
11% more efficient running four threads, while my version was 117% more
efficient running eight measured in MFLOPS/W.

6.3 Further work

In this section, possible further work is presented.

6.3.1 OpenCL kernels in OmpSs

Being able to run OpenCL kernels from OmpSs is essential if one wishes
to utilize a GPU not from NVIDIA. The embedded GPU on the Intel Ivy
Bridge is running idle during all the benchmarking in this thesis, utilizing
it would likely increase performance quite a bit.

54 CHAPTER 6. CONCLUSION

6.3.2 Arndale OpenCL

Running the tests on the Arndale development board with its Exynos 5
chip would be quite interesting, especially because it has been chosen to be
used in the Mont Blanc project. There were no OpenCL drivers released
for the GPU or the CPU at the time of writing.

6.3.3 GPU testing

The Intel Ivy Bridge has an embedded GPU, the Intel HD Graphics 4000,
which would be very interesting to run the tests on. One could also try to
split the problems between the CPU and GPU, and compare the perfor-
mance and energy results. At the time of writing, there was no OpenCL
driver for the GPU released for Linux.

6.3.4 Complete system energy measurements

This thesis only measured the energy usage of the CPU. The CPU is one
of the biggest energy users in the system, but many other factors play a
role. Measuring the entire system would give a more complete view of the
energy usage of a solution.

6.3.5 Additional applications

Only the matrix multiplication kernel was tested in this thesis. More kernels
should be tested to find out more about performance versus energy usage.

6.4 Concluding remarks

In this thesis we have seen the big difference a tuned implementation of an
algorithm can have, both on performance and energy efficiency. The two
OmpSs applications scored better than both the OpenCL implementations
in both regards. Both vectorization and multi-threading have very posi-
tive results especially on performance, but also energy efficiency. Hyper-
threading has shown mixed results.

Appendices

55

Appendix A

Tabulated Data

This appendix contains the complete data set from the experiments whose
results are shown in section 5.

Simple OpenCL - MFLOPS

N None Automatic SSE AVX

256 160 157 165 159
512 1084 1106 1031 1031

1024 1047 3152 1040 1034
2048 851 2134 858 876

Table A.1: MFLOPS, Simple OpenCL

57

58 APPENDIX A. TABULATED DATA

Simple OpenCL - Watt

N None Automatic SSE AVX

256 19 18 18 18
512 22 20 23 23

1024 32 28 32 32
2048 34 33 35 35

Table A.2: Watt, Simple OpenCL

Simple OpenCL - MFLOPS/W

N None Automatic SSE AVX

256 9 9 9 9
512 49 55 45 46

1024 33 112 33 33
2048 25 66 25 25

Table A.3: MFLOPS/W, Simple OpenCL

Simple OpenCL - Normalized EDP

N None Automatic SSE AVX

256 1.0 0.998 0.911 0.977
512 1.0 0.869 1.144 1.129

1024 1.0 0.098 1.022 1.032
2048 1.0 0.152 0.996 0.956

Table A.4: Normalized EDP, Simple OpenCL

59

Simple OpenCL - Normalized EDD

N None Automatic SSE AVX

256 1.0 1.016 0.883 0.982
512 1.0 0.851 1.203 1.186

1024 1.0 0.033 1.029 1.045
2048 1.0 0.061 0.987 0.928

Table A.5: Normalized EDD, Simple OpenCL

Simple OpenCL - L2 Cache miss rate

N None Automatic SSE AVX

256 0.288 0.271 0.255 0.307
512 0.695 0.473 0.738 0.705

1024 0.942 0.799 0.941 0.944
2048 0.891 0.84 0.884 0.897

Table A.6: L2 Cache miss rate, Simple OpenCL

Simple OpenCL - L3 Cache miss rate

N None Automatic SSE AVX

256 0.212 0.226 0.237 0.188
512 0.039 0.1 0.038 0.039

1024 0.012 0.046 0.009 0.009
2048 0.573 0.593 0.565 0.579

Table A.7: L3 Cache miss rate, Simple OpenCL

60 APPENDIX A. TABULATED DATA

Transposed OpenCL - MFLOPS

N None Automatic SSE AVX

256 163 150 163 143
512 1166 1113 1156 1117

1024 5579 5199 6589 7032
2048 10525 10103 15274 20359
4096 11887 11458 18777 25724
8192 12046 11458 19143 26396

Table A.8: MFLOPS, Transposed OpenCL

Transposed OpenCL - Watt

N None Automatic SSE AVX

256 18 18 17 18
512 20 20 19 18

1024 26 29 25 22
2048 35 40 36 34
4096 38 45 42 40
8192 40 45 44 42

Table A.9: Watt, Transposed OpenCL

61

Transposed OpenCL - MFLOPS/W

N None Automatic SSE AVX

256 9 8 10 8
512 60 57 61 61

1024 215 180 266 316
2048 304 250 426 603
4096 311 256 450 641
8192 305 254 440 634

Table A.10: MFLOPS/W, Transposed OpenCL

Transposed OpenCL - Normalized EDP

N None Automatic SSE AVX

256 1.0 1.174 0.953 1.285
512 1.0 1.098 0.991 1.012

1024 1.0 1.281 0.687 0.542
2048 1.0 1.266 0.492 0.26
4096 1.0 1.263 0.437 0.224
8192 1.0 1.262 0.436 0.219

Table A.11: Normalized EDP, Transposed OpenCL

62 APPENDIX A. TABULATED DATA

Transposed OpenCL - Normalized EDD

N None Automatic SSE AVX

256 1.0 1.269 0.952 1.459
512 1.0 1.15 0.999 1.057

1024 1.0 1.374 0.581 0.43
2048 1.0 1.319 0.339 0.135
4096 1.0 1.311 0.277 0.104
8192 1.0 1.327 0.274 0.1

Table A.12: Normalized EDD, Transposed OpenCL

Transposed OpenCL - L2 Cache miss rate

N None Automatic SSE AVX

256 0.256 0.26 0.238 0.249
512 0.248 0.244 0.236 0.239

1024 0.182 0.15 0.175 0.191
2048 0.098 0.092 0.166 0.262
4096 0.031 0.146 0.081 0.099
8192 0.047 0.223 0.11 0.12

Table A.13: L2 Cache miss rate, Transposed OpenCL

63

Transposed OpenCL - L3 Cache miss rate

N None Automatic SSE AVX

256 0.271 0.26 0.282 0.271
512 0.255 0.256 0.267 0.269

1024 0.277 0.261 0.283 0.27
2048 0.323 0.243 0.227 0.187
4096 0.399 0.19 0.228 0.155
8192 0.291 0.17 0.224 0.185

Table A.14: L3 Cache miss rate, Transposed OpenCL

OmpSs - MFLOPS Eight threads

N None SSE AVX

256 10290 13981 22090
512 11444 16208 28421

1024 12443 17141 31360
2048 14060 17897 33306
4096 12180 19832 32584
8192 12618 19932 32640

Table A.15: MFLOPS, OmpSs

64 APPENDIX A. TABULATED DATA

OmpSs - Watt Eight threads

N None SSE AVX

256 39 35 27
512 44 43 47

1024 43 45 51
2048 44 47 54
4096 38 41 46
8192 38 42 48

Table A.16: Watt, OmpSs

OmpSs - MFLOPS/W Eight threads

N None SSE AVX

256 264 398 816
512 262 377 605

1024 289 379 611
2048 323 381 613
4096 320 484 706
8192 331 475 678

Table A.17: MFLOPS/W, OmpSs

65

OmpSs - Normalized EDP Eight threads

N None SSE AVX

256 0.108 0.053 0.016
512 0.106 0.052 0.019

1024 0.093 0.052 0.017
2048 0.074 0.049 0.016
4096 0.085 0.035 0.014
8192 0.079 0.035 0.015

Table A.18: Normalized EDP, OmpSs

OmpSs - Normalized EDD Eight threads

N None SSE AVX

256 0.025 0.009 0.002
512 0.023 0.008 0.002

1024 0.019 0.008 0.001
2048 0.013 0.007 0.001
4096 0.016 0.004 0.001
8192 0.014 0.004 0.001

Table A.19: Normalized EDD, OmpSs

66 APPENDIX A. TABULATED DATA

OmpSs - L2 Cache miss rate Eight threads

N None SSE AVX

256 0.127 0.131 0.137
512 0.091 0.094 0.078

1024 0.017 0.018 0.013
2048 0.084 0.027 0.036
4096 0.002 0.003 0.007
8192 0.022 0.021 0.03

Table A.20: L2 Cache miss rate, OmpSs

OmpSs - L3 Cache miss rate Eight threads

N None SSE AVX

256 0.048 0.044 0.049
512 0.037 0.034 0.052

1024 0.025 0.027 0.049
2048 0.057 0.018 0.029
4096 0.192 0.272 0.252
8192 0.048 0.051 0.031

Table A.21: L3 Cache miss rate, OmpSs

67

OmpSs - L2 Cache usage Eight threads

N None SSE AVX

256 6.88 ∗ 104 6.67 ∗ 104 6.61 ∗ 104

512 4.93 ∗ 105 4.77 ∗ 105 4.66 ∗ 105

1024 8.55 ∗ 106 8.57 ∗ 106 8.57 ∗ 106

2048 7.18 ∗ 107 6.78 ∗ 107 6.79 ∗ 107

4096 5.41 ∗ 108 5.37 ∗ 108 5.51 ∗ 108

8192 4.34 ∗ 109 4.33 ∗ 109 4.4 ∗ 109

Table A.22: L2 Cache usage, OmpSs

OmpSs-ATLAS - MFLOPS

N Single thread Four threads Eight threads

256 9267 9433 7659
512 16949 19840 16085

1024 24660 38633 31046
2048 32900 64254 53314
4096 39098 95348 75959
8192 42845 124656 95315

Table A.23: MFLOPS, OmpSs-ATLAS

68 APPENDIX A. TABULATED DATA

OmpSs-ATLAS - Watt

N Single thread Four threads Eight threads

256 23 27 40
512 21 32 37

1024 22 33 38
2048 22 37 41
4096 23 42 46
8192 24 47 50

Table A.24: Watt, OmpSs-ATLAS

OmpSs-ATLAS - MFLOPS/W

N Single thread Four threads Eight threads

256 411 345 192
512 800 629 440

1024 1132 1173 818
2048 1463 1742 1291
4096 1688 2280 1659
8192 1806 2669 1911

Table A.25: MFLOPS/W, OmpSs-ATLAS

69

OmpSs-ATLAS - Normalized EDP

N Single thread Four threads Eight threads

256 1.0 1.172 2.594
512 1.0 1.087 1.918

1024 1.0 0.616 1.099
2048 1.0 0.43 0.699
4096 1.0 0.304 0.524
8192 1.0 0.233 0.425

Table A.26: Normalized EDP, OmpSs-ATLAS

OmpSs-ATLAS - Normalized EDD

N Single thread Four threads Eight threads

256 1.0 1.151 3.139
512 1.0 0.929 2.021

1024 1.0 0.393 0.873
2048 1.0 0.22 0.431
4096 1.0 0.124 0.269
8192 1.0 0.08 0.191

Table A.27: Normalized EDD, OmpSs-ATLAS

70 APPENDIX A. TABULATED DATA

OmpSs-ATLAS - L2 Cache miss rate

N Single thread Four threads Eight threads

256 0.084 0.203 0.215
512 0.078 0.102 0.133

1024 0.042 0.12 0.086
2048 0.026 0.052 0.054
4096 0.034 0.032 0.026
8192 0.02 0.039 0.018

Table A.28: L2 Cache miss rate, OmpSs-ATLAS

OmpSs-ATLAS - L3 Cache miss rate

N Single thread Four threads Eight threads

256 0.055 0.045 0.026
512 0.068 0.096 0.067

1024 0.365 0.122 0.12
2048 0.402 0.319 0.109
4096 0.261 0.376 0.209
8192 0.413 0.338 0.228

Table A.29: L3 Cache miss rate, OmpSs-ATLAS

71

OmpSs-ATLAS - L2 Cache usage

N Single thread Four threads Eight threads

256 1.75 ∗ 105 6.06 ∗ 104 1.13 ∗ 105

512 1.37 ∗ 106 3.75 ∗ 105 4.7 ∗ 105

1024 9.55 ∗ 106 2.86 ∗ 106 3.81 ∗ 106

2048 7.4 ∗ 107 1.95 ∗ 107 3.85 ∗ 107

4096 5.52 ∗ 108 1.49 ∗ 108 3.01 ∗ 108

8192 4.32 ∗ 109 1.11 ∗ 109 2.41 ∗ 109

Table A.30: L2 Cache usage, OmpSs-ATLAS

Appendix B

OpenCL kernels

This appendix contains the kernels in use in the applications presented in
section 3.2.

Listing B.1 Simple OpenCL

1 __kernel void matmul(__global float *a, __global float *b, __global float *c) {

2 int n = get_global_size(0);

3

4 int row = get_global_id(0);

5 int col = get_global_id(1);

6

7 float sum = 0.0f;

8 for(int k = 0; k < n; k++) {

9 sum += a[n*row + k] * b[n*k + col];

10 }

11 c[n*row + col] = sum;

12 }

73

74 APPENDIX B. OPENCL KERNELS

Listing B.2 Simple OpenCL with SSE

1 __kernel __attribute__((vec_type_hint(float4)))

2 void matmul(__global float4 *a, __global float *b, __global float *c) {

3 int n = get_global_size(0);

4 int row = get_global_id(0);

5 int col = get_global_id(1);

6

7 float sum = 0.0f;

8 for(int k = 0; k < n; k += 4) {

9 float4 bvec = (float4) (b[n*k + col],

10 b[n*(k+1) + col],

11 b[n*(k+2) + col],

12 b[n*(k+3) + col]);

13 sum += dot(a[(n*row + k)/4], bvec);

14 }

15 c[n*row + col] = sum;

16 }

Listing B.3 Simple OpenCL with AVX

1 __kernel __attribute__((vec_type_hint(float8)))

2 void matmul(__global float8 *a, __global float *b, __global float *c) {

3 int n = get_global_size(0);

4 int row = get_global_id(0);

5 int col = get_global_id(1);

6

7 float sum = 0.0f;

8 for(int k = 0; k < n; k += 8) {

9 float8 bvec = (float8) (b[n*(k+0) + col],

10 b[n*(k+1) + col],

11 b[n*(k+2) + col],

12 b[n*(k+3) + col],

13 b[n*(k+4) + col],

14 b[n*(k+5) + col],

15 b[n*(k+6) + col],

16 b[n*(k+7) + col]);

17 sum += dot(a[(n*row+k)/8].lo, bvec.lo) + dot(a[(n*row+k)/8].hi, bvec.hi);

18 }

19 c[n*row + col] = sum;

20 }

75

Listing B.4 Transposed OpenCL, transposition

1 __kernel void transpose(__global float *g_mat) {

2 uint size = SIZE;

3 float loc;

4 int col = get_global_id(0);

5 int row = 0;

6 while (col >= size) {

7 col -= size--;

8 row++;

9 }

10 col += row;

11 size += row;

12

13 if (row != col) {

14 loc = g_mat[row * size + col];

15 g_mat[row * size + col] = g_mat[col * size + row];

16 g_mat[col * size + row] = loc;

17 }

18 }

Listing B.5 Transposed OpenCL, multiplication

1 __kernel void mult(__global float *a, __global float *b, __global float *c) {

2 int a_row = get_global_id(0);

3 int b_row = get_global_id(1);

4 int num_rows = get_global_size(0);

5 int vectors_per_row = num_rows;

6

7 a += a_row * vectors_per_row;

8 b += b_row * vectors_per_row;

9

10 float sum = 0.0f;

11 for (int i = 0; i < vectors_per_row; i++) {

12 sum += a[i] * b[i];

13 }

14 c[a_row * num_rows + b_row] = sum;

15 }

76 APPENDIX B. OPENCL KERNELS

Listing B.6 Transposed OpenCL with SSE, transposition

1 __kernel __attribute__((vec_type_hint(float4)))

2 void transpose(__global float4 *g_mat) {

3 uint size = SIZE;

4 __global float4 *src, *dst;

5 float4 l_mat[4];

6

7 int col = get_global_id(0);

8 int row = 0;

9 while (col >= size) {

10 col -= size--;

11 row++;

12 }

13 col += row;

14 size += row;

15

16 src = g_mat + row * size * 4 + col;

17 for (int i = 0; i < 4; i++)

18 l_mat[i] = src[i*size];

19

20 if (row == col) {

21 src[0] = (float4)(l_mat[0].x, l_mat[1].x, l_mat[2].x, l_mat[3].x);

22 src[size] = (float4)(l_mat[0].y, l_mat[1].y, l_mat[2].y, l_mat[3].y);

23 src[2*size] = (float4)(l_mat[0].z, l_mat[1].z, l_mat[2].z, l_mat[3].z);

24 src[3*size] = (float4)(l_mat[0].w, l_mat[1].w, l_mat[2].w, l_mat[3].w);

25 } else {

26 dst = g_mat + col * size * 4 + row;

27

28 src[0] = (float4)(dst[0].x, dst[size].x, dst[2*size].x, dst[3*size].x)

;

29 src[size] = (float4)(dst[0].y, dst[size].y, dst[2*size].y, dst[3*size].y)

;

30 src[2*size] = (float4)(dst[0].z, dst[size].z, dst[2*size].z, dst[3*size].z)

;

31 src[3*size] = (float4)(dst[0].w, dst[size].w, dst[2*size].w, dst[3*size].w)

;

32

33 dst[0] = (float4)(l_mat[0].x, l_mat[1].x, l_mat[2].x, l_mat[3].x);

34 dst[size] = (float4)(l_mat[0].y, l_mat[1].y, l_mat[2].y, l_mat[3].y);

35 dst[2*size] = (float4)(l_mat[0].z, l_mat[1].z, l_mat[2].z, l_mat[3].z);

36 dst[3*size] = (float4)(l_mat[0].w, l_mat[1].w, l_mat[2].w, l_mat[3].w);

37 }

38 }

77

Listing B.7 Transposed OpenCL with SSE, multiplication

1 __kernel __attribute__((vec_type_hint(float4)))

2 void mult(__global float4 *a, __global float4 *b, __global float *c) {

3 int a_row = get_global_id(0);

4 int b_row = get_global_id(1);

5 int num_rows = get_global_size(0);

6 int vectors_per_row = num_rows / 4;

7

8 a += a_row * vectors_per_row;

9 b += b_row * vectors_per_row;

10

11 float sum = 0.0f;

12 for (int i = 0; i < vectors_per_row; i++) {

13 sum += dot(a[i], b[i]);

14 }

15 c[a_row * num_rows + b_row] = sum;

16 }

78 APPENDIX B. OPENCL KERNELS

Listing B.8 Transposed OpenCL with AVX, transposition

1 __kernel __attribute__((vec_type_hint(float8)))

2 void transpose(__global float8 *g_mat) {

3 uint size = SIZE;

4 __global float8 *src, *dst;

5 float8 l_mat[8];

6

7 uint col = get_global_id(0);

8 uint row = 0;

9 while (col >= size) {

10 col -= size--;

11 row++;

12 }

13 col += row;

14 size += row;

15

16 src = g_mat + row * size * 8 + col;

17 for (int i = 0; i < 8; i++)

18 l_mat[i] = src[i * size];

19

20 if (row == col) {

21 src[0] = (float8) (l_mat[0].s0, l_mat[1].s0, l_mat[2].s0, l_mat[3].s0,

l_mat[4].s0, l_mat[5].s0, l_mat[6].s0, l_mat[7].s0);

22 src[size] = (float8) (l_mat[0].s1, l_mat[1].s1, l_mat[2].s1, l_mat[3].s1,

l_mat[4].s1, l_mat[5].s1, l_mat[6].s1, l_mat[7].s1);

23 src[2*size] = (float8) (l_mat[0].s2, l_mat[1].s2, l_mat[2].s2, l_mat[3].s2,

l_mat[4].s2, l_mat[5].s2, l_mat[6].s2, l_mat[7].s2);

24 src[3*size] = (float8) (l_mat[0].s3, l_mat[1].s3, l_mat[2].s3, l_mat[3].s3,

l_mat[4].s3, l_mat[5].s3, l_mat[6].s3, l_mat[7].s3);

25 src[4*size] = (float8) (l_mat[0].s4, l_mat[1].s4, l_mat[2].s4, l_mat[3].s4,

l_mat[4].s4, l_mat[5].s4, l_mat[6].s4, l_mat[7].s4);

26 src[5*size] = (float8) (l_mat[0].s5, l_mat[1].s5, l_mat[2].s5, l_mat[3].s5,

l_mat[4].s5, l_mat[5].s5, l_mat[6].s5, l_mat[7].s5);

27 src[6*size] = (float8) (l_mat[0].s6, l_mat[1].s6, l_mat[2].s6, l_mat[3].s6,

l_mat[4].s6, l_mat[5].s6, l_mat[6].s6, l_mat[7].s6);

28 src[7*size] = (float8) (l_mat[0].s7, l_mat[1].s7, l_mat[2].s7, l_mat[3].s7,

l_mat[4].s7, l_mat[5].s7, l_mat[6].s7, l_mat[7].s7);

29 } else {

30 dst = g_mat + col * size * 8 + row;

31

32 src[0] = (float8) (dst[0].s0, dst[size].s0, dst[2*size].s0, dst[3*size

].s0, dst[4*size].s0, dst[5*size].s0, dst[6*size].s0, dst[7*size].s0);

33 src[size] = (float8) (dst[0].s1, dst[size].s1, dst[2*size].s1, dst[3*size

].s1, dst[4*size].s1, dst[5*size].s1, dst[6*size].s1, dst[7*size].s1);

79

Listing B.9 Transposed OpenCL with AVX, transposition, continued

34 src[2*size] = (float8) (dst[0].s2, dst[size].s2, dst[2*size].s2, dst[3*size

].s2, dst[4*size].s2, dst[5*size].s2, dst[6*size].s2, dst[7*size].s2);

35 src[3*size] = (float8) (dst[0].s3, dst[size].s3, dst[2*size].s3, dst[3*size

].s3, dst[4*size].s3, dst[5*size].s3, dst[6*size].s3, dst[7*size].s3);

36 src[4*size] = (float8) (dst[0].s4, dst[size].s4, dst[2*size].s4, dst[3*size

].s4, dst[4*size].s4, dst[5*size].s4, dst[6*size].s4, dst[7*size].s4);

37 src[5*size] = (float8) (dst[0].s5, dst[size].s5, dst[2*size].s5, dst[3*size

].s5, dst[4*size].s5, dst[5*size].s5, dst[6*size].s5, dst[7*size].s5);

38 src[6*size] = (float8) (dst[0].s6, dst[size].s6, dst[2*size].s6, dst[3*size

].s6, dst[4*size].s6, dst[5*size].s6, dst[6*size].s6, dst[7*size].s6);

39 src[7*size] = (float8) (dst[0].s7, dst[size].s7, dst[2*size].s7, dst[3*size

].s7, dst[4*size].s7, dst[5*size].s7, dst[6*size].s7, dst[7*size].s7);

40

41 dst[0] = (float8) (l_mat[0].s0, l_mat[1].s0, l_mat[2].s0, l_mat[3].s0,

l_mat[4].s0, l_mat[5].s0, l_mat[6].s0, l_mat[7].s0);

42 dst[size] = (float8) (l_mat[0].s1, l_mat[1].s1, l_mat[2].s1, l_mat[3].s1,

l_mat[4].s1, l_mat[5].s1, l_mat[6].s1, l_mat[7].s1);

43 dst[2*size] = (float8) (l_mat[0].s2, l_mat[1].s2, l_mat[2].s2, l_mat[3].s2,

l_mat[4].s2, l_mat[5].s2, l_mat[6].s2, l_mat[7].s2);

44 dst[3*size] = (float8) (l_mat[0].s3, l_mat[1].s3, l_mat[2].s3, l_mat[3].s3,

l_mat[4].s3, l_mat[5].s3, l_mat[6].s3, l_mat[7].s3);

45 dst[4*size] = (float8) (l_mat[0].s4, l_mat[1].s4, l_mat[2].s4, l_mat[3].s4,

l_mat[4].s4, l_mat[5].s4, l_mat[6].s4, l_mat[7].s4);

46 dst[5*size] = (float8) (l_mat[0].s5, l_mat[1].s5, l_mat[2].s5, l_mat[3].s5,

l_mat[4].s5, l_mat[5].s5, l_mat[6].s5, l_mat[7].s5);

47 dst[6*size] = (float8) (l_mat[0].s6, l_mat[1].s6, l_mat[2].s6, l_mat[3].s6,

l_mat[4].s6, l_mat[5].s6, l_mat[6].s6, l_mat[7].s6);

48 dst[7*size] = (float8) (l_mat[0].s7, l_mat[1].s7, l_mat[2].s7, l_mat[3].s7,

l_mat[4].s7, l_mat[5].s7, l_mat[6].s7, l_mat[7].s7);

49 }

50 }

80 APPENDIX B. OPENCL KERNELS

Listing B.10 Transposed OpenCL with AVX, multiplication

1 __kernel __attribute__((vec_type_hint(float8)))

2 void mult(__global float8 *a, __global float8 *b, __global float *c) {

3 int a_row = get_global_id(0);

4 int b_row = get_global_id(1);

5 int num_rows = get_global_size(0);

6 int vectors_per_row = num_rows / 8;

7

8 a += a_row * vectors_per_row;

9 b += b_row * vectors_per_row;

10

11 float sum = 0.0f;

12 for (int i = 0; i < vectors_per_row; i++) {

13 sum += dot(a[i].lo, b[i].lo) + dot(a[i].hi, b[i].hi);

14 }

15 c[a_row * num_rows + b_row] = sum;

16 }

Appendix C

OmpSs kernels

This appendix contains the kernels in use in the applications presented in
section 3.3.

81

82 APPENDIX C. OMPSS KERNELS

Listing C.1 OmpSs kernel

1 #pragma omp task

2 void matmul_rbr_cbc_blocks(const float *a, const float *b, float *c, int row, int

col, int n, int block_size, int number_of_blocks) {

3 int bb = block_size * block_size;

4 float *sums = calloc(bb, sizeof(*sums));

5 #if defined (SSE) || defined(AVX)

6 float dots[8];

7 int dot_mask = 0xff;

8 #endif

9 for (int block = 0; block < number_of_blocks; block++) {

10 int a_block_index = bb * (number_of_blocks * row + block);

11 int b_block_index = bb * (number_of_blocks * col + block);

12 for (int i = 0; i < block_size; i++) {

13 for (int j = 0; j < block_size; j++) {

14 #ifdef SSE

15 for (int k = 0; k < block_size; k += 4) {

16 #endif

17 #ifdef AVX

18 for (int k = 0; k < block_size; k += 8) {

19 #endif

20 #ifdef NONE

21 for (int k = 0; k < block_size; k++) {

22 #endif

23 int a_index = a_block_index + i * block_size + k;

24 int b_index = b_block_index + j * block_size + k;

25 #ifdef SSE

26 const __m128 _a = _mm_load_ps(&a[a_index]);

27 const __m128 _b = _mm_load_ps(&b[b_index]);

28 const __m128 _d = _mm_dp_ps(_a, _b, dot_mask);

29 _mm_store_ps(dots, _d);

30 sums[i*block_size+j] += dots[0];

31 #endif

32 #ifdef AVX

33 const __m256 _a = _mm256_load_ps(&a[a_index]);

34 const __m256 _b = _mm256_load_ps(&b[b_index]);

35 const __m256 _d = _mm256_dp_ps(_a, _b, dot_mask);

36 _mm256_store_ps(dots, _d);

37 sums[i*block_size+j] += dots[0] + dots[4];

38 #endif

39 #ifdef NONE

40 sums[i*block_size+j] += a[a_index] * b[b_index];

41 #endif

83

Listing C.2 OmpSs kernel, continued

42 }

43 }

44 }

45 }

46 for (int i = 0; i < block_size; ++i) {

47 for (int j = 0; j < block_size; ++j) {

48 c[block_size * (row * n + col) + i*n + j] = sums[i*block_size + j];

49 }

50 }

51 free(sums);

52 }

Listing C.3 OmpSs kernel provided by BSC

1 #pragma omp task in([block_size][block_size] a, [block_size][block_size] b) inout([

block_size][block_size] c)

2 void matmul_task(float *a, float *b, float *c, unsigned long block_size)

3 {

4 cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, block_size, block_size,

block_size, 1.0, a, block_size, b, block_size, 1.0, c, block_size);

5 }

References

[1] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing
In Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[2] Armin Ronacher, “Jinja2 (The Python Template Engine).”
http://jinja.pocoo.org.

[3] “Top500 Supercomputer Sites.” http://www.top500.org.

[4] A. Ramirez, “European scalable and power efficient HPC platform
based on low-power embedded technology.”
https://www.eesi-project.eu/media/BarcelonaConference/

Day2/13-Mont-Blanc_Overview.pdf, oct 2011.

[5] N. Rajovic, N. Puzovic, L. Vilanova, C. Villavieja, and A. Ramirez,
“The low-power architecture approach towards exascale computing,”
in Proceedings of the second workshop on Scalable algorithms for large-
scale systems, pp. 1–2, ACM, 2011.

[6] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, K. Hill, J. Hiller, et al., “Exascale com-
puting study: Technology challenges in achieving exascale systems,”
Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, 2008.

[7] “The Green500.” http://green500.org.

85

http://jinja.pocoo.org
http://www.top500.org
https://www.eesi-project.eu/media/BarcelonaConference/Day2/13-Mont-Blanc_Overview.pdf
https://www.eesi-project.eu/media/BarcelonaConference/Day2/13-Mont-Blanc_Overview.pdf
http://green500.org

86 REFERENCES

[8] R. Giménez-Binder, “Mont-Blanc project selects Samsung Exynos 5
Processor.” http://www.montblanc-project.eu/sites/default/

files/sites/default/files/press-releases/press_release_

montblanc_final.pdf, nov 2012.

[9] W. Kim, H. Chung, H. Cho, and Y. Kim, “Enjoy the Ulti-
mate WQXGA Solution with Exynos 5 Dual (white paper).”
http://www.samsung.com/global/business/semiconductor/

minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_

with_Exynos_5_Dual_WP.pdf, jul 2012.

[10] S. Huang, S. Xiao, and W. Feng, “On the energy efficiency of graphics
processing units for scientific computing,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on,
pp. 1–8, IEEE, 2009.

[11] A. Munshi, “The OpenCL Specification.”
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf,
nov 2012.

[12] “Khronos Adopters.” http://www.khronos.org/conformance/

adopters/adopter-companies.

[13] Nvidia, CUDA, “Programming guide.” http://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html, 2008.

[14] R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell,
R. Badia, E. Ayguade, and J. Labarta, “Optimizing the exploitation
of multicore processors and gpus with openmp and opencl,” Languages
and Compilers for Parallel Computing, pp. 215–229, 2011.

[15] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: a proposal for programming heteroge-
neous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[16] “Programming Models @ BSC.” http://pm.bsc.es.

http://www.montblanc-project.eu/sites/default/files/sites/default/files/press-releases/press_release_montblanc_final.pdf
http://www.montblanc-project.eu/sites/default/files/sites/default/files/press-releases/press_release_montblanc_final.pdf
http://www.montblanc-project.eu/sites/default/files/sites/default/files/press-releases/press_release_montblanc_final.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/data/Enjoy_the_Ultimate_WQXGA_Solution_with_Exynos_5_Dual_WP.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/conformance/adopters/adopter-companies
http://www.khronos.org/conformance/adopters/adopter-companies
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://pm.bsc.es

REFERENCES 87

[17] OpenMP Architecture Review Board, “OpenMP Application Program
Interface.”
http://www.openmp.org/mp-documents/OpenMP3.1.pdf, jul 2011.

[18] M. Guillén Allés, “Openmp to opencl: Aprovechamiento de los recursos
heterogéneos del sistema,” Master’s thesis, Universitat Politécnica de
Catalunya, jun 2011.

[19] “UserManual/Schedule - NANOS++.”
https://pm.bsc.es/projects/nanox/wiki/UserManual/Schedule.

[20] “Intel 64 and IA-32 Architectures Software Developer’s Man-
ual.” http://download.intel.com/products/processor/manual/

325462.pdf, mar 2013.

[21] “msr-tools.”
http://www.kernel.org/pub/linux/utils/cpu/msr-tools/, jul
2004.

[22] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy
consumption for short code paths using rapl,” ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 3, pp. 13–17, 2012.

[23] ICL, University of Tennessee, “PAPI.”
http://icl.cs.utk.edu/papi/index.html.

[24] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek,
D. Terpstra, and S. Moore, “Measuring energy and power with papi,”
in Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on, pp. 262–268, IEEE, 2012.

[25] S. Sharma, C.-H. Hsu, and W.-c. Feng, “Making a case for a green500
list,” in Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pp. 8–pp, IEEE, 2006.

[26] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital de-
sign,” in Low Power Electronics, 1994. Digest of Technical Papers.,
IEEE Symposium, pp. 8–11, IEEE, 1994.

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
https://pm.bsc.es/projects/nanox/wiki/UserManual/Schedule
http://download.intel.com/products/processor/manual/325462.pdf
http://download.intel.com/products/processor/manual/325462.pdf
http://www.kernel.org/pub/linux/utils/cpu/msr-tools/
http://icl.cs.utk.edu/papi/index.html

88 REFERENCES

[27] A. J. Martin, M. Nyström, and P. Penzes, “Et2: A metric for time and
energy efficiency of computation,” Power-Aware Computing, 2001.

[28] H. Lien, L. Natvig, A. Al Hasib, and J. Meyer, “Case studies of multi-
core energy efficiency in task based programs,” ICT as Key Technology
against Global Warming, pp. 44–54, 2012.

[29] ICL, University of Tennessee, “PAPI: The Low Level API.”
http://icl.cs.utk.edu/papi/docs/dd/dbc/group__low__api.

html.

[30] Intel Corporation, “Using the Intel(R) SDK for OpenCL* - Offline
Compiler Standalone Tool.” http://software.intel.com/sites/

landingpage/opencl/user-guide/Using_the_Intel_SDK_for_

OpenCL_Offline_Compiler_Standalone_Tool.htm.

[31] K. Matsumoto, N. Nakasato, and S. G. Sedukhin, “Performance tuning
of matrix multiplication in opencl on different gpus and cpus,” in High
Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pp. 396–405, IEEE, 2012.

[32] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empiri-
cal optimization of software and the ATLAS project,” Parallel Com-
puting, vol. 27, no. 1–2, pp. 3–35, 2001. Also available as Univer-
sity of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000
(http://www.netlib.org/lapack/lawns/lawn147.ps).

[33] “Automatically Tuned Linear Algebra Software.”
http://math-atlas.sourceforge.net.

http://icl.cs.utk.edu/papi/docs/dd/dbc/group__low__api.html
http://icl.cs.utk.edu/papi/docs/dd/dbc/group__low__api.html
http://software.intel.com/sites/landingpage/opencl/user-guide/Using_the_Intel_SDK_for_OpenCL_Offline_Compiler_Standalone_Tool.htm
http://software.intel.com/sites/landingpage/opencl/user-guide/Using_the_Intel_SDK_for_OpenCL_Offline_Compiler_Standalone_Tool.htm
http://software.intel.com/sites/landingpage/opencl/user-guide/Using_the_Intel_SDK_for_OpenCL_Offline_Compiler_Standalone_Tool.htm
http://www.netlib.org/lapack/lawns/lawn147.ps
http://math-atlas.sourceforge.net

	Acknowledgements
	Abstract
	Abstract (Norwegian)
	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Scope
	Terminology
	Thesis Outline

	Background
	Exascale computing and the Mont Blanc Project
	Exascale computing
	The Mont Blanc Project

	OpenCL
	Usage
	Vectorization

	OmpSs
	Task-based programming
	Heterogeneous extensions
	OmpSs - OpenCL interoperability
	Task scheduling

	Dense Matrix Multiplication
	Energy Measurement
	Running Average Power Limit
	Performance Application Programming Interface

	Energy Efficiency Metrics
	GFLOPS/W
	Energy-delay products

	Related Work
	Case Studies in Multi-core Energy Efficiency of Task Based Programs

	Implementation
	Performance measurement
	OpenCL Matrix Multiplication
	OmpSs Matrix Multiplication
	OmpSs
	OmpSs with ATLAS

	Experiment Setup and Methodology
	Test Bench
	Hardware
	Software
	Compilation
	Test framework

	Experiment methodology
	Performance counters
	Experiments
	Problem sizes
	Defining flop counts
	Measurement metrics

	Results and Discussion
	Simple OpenCL implementation
	Performance
	Energy efficiency
	Energy-delay products
	Cache miss rates

	Transposed OpenCL implementation
	OpenCL versions
	Performance
	Energy efficiency
	Energy-delay products
	Cache miss rates

	OmpSs
	Performance
	Energy dfficiency
	Energy delay products
	Cache miss rate

	OmpSs from BSC
	Performance
	Energy dfficiency
	Energy delay products
	Cache miss rate

	Conclusion
	OpenCL
	Transposition
	Vectorization

	OmpSs
	ATLAS
	Vectorization
	Multi-threading

	Further work
	OpenCL kernels in OmpSs
	Arndale OpenCL
	GPU testing
	Complete system energy measurements
	Additional applications

	Concluding remarks

	Appendices
	Tabulated Data
	OpenCL kernels
	OmpSs kernels
	References

