
Evaluation of a Private Cloud for Higher
Education

Trygve Andre Tønnesland

Master of Science in Informatics

Supervisor: Trond Aalberg, IDI
Co-supervisor: Anders Christensen, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Abstract

In modern day research and education there is a constant need for dedicated server
installations, both for permanent and for temporary use by the research staff and by
students. Typically there is need for access to computational power, network connec-
tivity and specialized software.

The classical solution for this problem is to delegate physical hardware for all of these
needs. This is unpractical and results in an inefficient use of hardware, electricity and
administrative resources.

A self-service virtualization system could benefit these institutions by making com-
puting resources more easily available to its students and researchers, and by improv-
ing the utilization of hardware resources.

In this project we identify the requirements for such a system, by installing and con-
figuring a prototype private cloud solution for students at the Department of Com-
puter and Information Science. The solution we’ve chosen is based on OpenStack, an
open source cloud operating system. The implementation is evaluated through mon-
itoring over a four month period and through surveys. We suggest an approach for
implementing a permanent solution, and highlight challenges that need to be con-
sidered.

Our experimentation has shown that OpenStack is a suitable system for implement-
ing a private cloud solution, even though the project is still under heavy development.
Through our surveys and user feedback we can determine that a user demand for vir-
tualization service exists.

Sammendrag

I dagens forskning- og undervisningshverdag er det et konstant behov for dedikerte
tjenerinstallasjoner, både for permanent og midlertidig bruk av forskere og av studen-
ter. Behovet består av tilgang til beregningskraft, nettverkstilkobling og spesialisert
programvare.

Den klassiske løsningen på dette problemet er å dele ut fysisk maskinvare for å dekke
disse behovene. Dette er upraktisk og fører til en ineffektiv bruk av maskinvare, elek-
trisitet og administrative ressurser.

En selvbetjent virtualiseringsløsning kan være nyttig for disse institusjonene, ved å
gjøre maskinressurser lettere tilgjengelig for studenter og forskere, og ved å forbedre
utnyttelsen av maskinvare.

I dette prosjektet identifiserer vi kravene til en slik løsning, samt installerer og kon-
figurerer en prototype av en privat skyløsning for studenter og ansatte ved Institutt
for datateknikk og informasjonsvitenskap. Vår løsning er basert på OpenStack, et
skysystem med åpen kildekode. Implementasjonen er evaluert gjennom spørreun-
dersøkelser og gjennom overvåkning gjennom en fire måneder lang periode. Vi an-
befaler en fremgangsmåte for en permanent løsning, og bemerker utfordringer som
må vurderes.

Vårt eksperiment har vist at OpenStack er et passende system for implementasjon av
en privat skytjeneste, selv om prosjektet fremdeles er under kraftig utvikling. Gjen-
nom våre spørreundersøkelser og tilbakemeldinger fra brukere kan vi fastslå at det
finnes et behov for en slik virtualiseringstjeneste.

Foreword

This Master’s thesis is the final part of a Master of Science degree from the Depart-
ment of Computer and Information Science (IDI) at the Norwegian University of Sci-
ence and Technology (NTNU).

I would like to thank my supervisors Trond Aalberg and Anders Christensen for their
support and guidance, and thanks for giving me the opportunity to shape my own
project. I would also like to thank Arne Dag Fidjestøl at the technical group for giv-
ing me helpful advice, and for providing necessary equipment to perform my experi-
ments.

Finally I would like to express my appreciation to my fellow students for trying the
solution, which has given me necessary data and feedback to perform my analysis.

June 1, 2013
Trygve André Tønnesland

i

Contents

1 Introduction 1
1.1 Problem description . 1
1.2 Project goal . 2
1.3 Approach . 2
1.4 Report outline . 3

2 Virtualization and cloud computing 4
2.1 Virtualization . 4
2.2 Cloud computing . 7
2.3 Related work . 9

3 Project planning 12
3.1 Current situation at IDI . 12
3.2 Requirements . 14
3.3 Available technology . 21
3.4 OpenStack . 21
3.5 Alternative open source virtualization systems 25
3.6 Summary . 26

4 Implementation 28
4.1 Setup . 28
4.2 Monitoring . 32
4.3 Routines . 34
4.4 Evaluation . 37

5 Private cloud in practice 39
5.1 Methodology . 39
5.2 The operational period . 40
5.3 System usage . 40
5.4 Evaluation . 49

iii

6 Surveys and user feedback 50
6.1 Registration survey . 50
6.2 Evaluation survey . 54
6.3 User feedback . 60
6.4 Analysis . 61

7 Conclusion 64
7.1 Data quality . 64
7.2 Objectives . 64
7.3 Conclusion . 66
7.4 Future work . 67

Bibliography 68

A Configuration 73
A.1 Puppet manifest . 73

B Code 76
B.1 Custom authentication driver . 76
B.2 User management . 78

C Documentation 81
C.1 Getting started . 81

D Survey data 84
D.1 Registration survey . 84
D.2 Evaluation survey . 84

List of Figures

3.1 Project process . 12
3.2 Use case diagram of the system . 17
3.3 Timeline of OpenStack releases . 22
3.4 OpenStack conceptual architecture . 23

4.1 Logical architecture . 33

5.1 Timeline . 39
5.2 Active virtual machines . 41
5.3 Web interface: Unique visitors per day . 42
5.4 Load average for node vtest01 . 43
5.5 Load average for node vtest02 . 43
5.6 CPU usage for node vtest01 . 44
5.7 CPU usage for node vtest02 . 44
5.8 Memory usage for node vtest01 . 45
5.9 Memory usage for node vtest02 . 46
5.10 Network traffic for node vtest01 . 46
5.11 Network traffic for node vtest02 . 47
5.12 iSCSI traffic . 47

6.1 Registration survey (Q5): Expected usage frequency 52
6.2 Registration survey (Q1): Primary use of the system 52
6.3 Registration survey (Q2): Performance versus stability 53
6.4 Registration survey (Q3): Requested operating systems 54
6.5 Registration survey (Q4): Experience with virtualization software 56
6.6 Evaluation survey (Q2): Actual usage frequency 57
6.7 Evaluation survey (Q3): Actual use of the system 57
6.8 Evaluation survey (Q4): Alternative providers 57
6.9 Evaluation survey (Q5): Easier to acquire resources 58
6.10 Evaluation survey (Q6): Usage limited by quota? 59

v

6.11 Evaluation survey (Q7): Upgraded VM after installation? 59
6.12 Evaluation survey (Q8): User friendliness 60

List of Tables

3.7 Summary of alternative virtualization systems 27

4.1 Definitions . 28
4.2 Hardware specifications . 29
4.3 Project quota . 32
4.4 Running services . 34
4.5 Fulfillment of primary requirements . 37
4.6 Fulfillment of secondary requirements 38
4.7 Summary of requirements . 38

5.1 Operations log . 41

6.1 Registration questions - Translated from Norwegian 51
6.2 Survey questions - Translated from Norwegian 55

D.1 Registration questions . 85
D.2 Registration answers . 86
D.3 Survey questions . 87
D.4 Survey answers . 88

vi

Acronyms

AWS Amazon Web Services. 7, 9, 22

EBS Elastic Block Storage. 7, 23

EC2 Elastic Cloud Computing. 7

IaaS Infrastructure as a Service. 9, 10, 21, 22, 64

KVM Kernel-based Virtual Machine. 30, 36, 37

LDAP Lightweight Directory Access Protocol. 24, 35

LVM Logical Volume Manager. 30

NFS Network File System. 30

PaaS Platform as a Service. 8

S3 Simple Storage Service. 7

SaaS Software as a Service. 8

SAN Storage Area Network. 30, 45

vii

1

Chapter 1

Introduction

During the last few years open source virtualization systems have evolved quickly.
Many of these projects are sponsored by large companies, contributing with both fi-
nancial support and developers. This results in an active development and as these
systems become more mature, it is interesting to see how they will perform in a real-
world installation.

1.1 Problem description

In modern day research and education there is a constant need for dedicated server
installations, both for permanent and for temporary use by the research staff and by
students. Typical needs are access to computational power, network connectivity and
specialized software.

The classical solution for this problem is to delegate physical hardware for all of these
needs. This is unpractical and results in inefficient use of hardware, electricity and
administrative resources.

A self-service virtualization system could benefit these institutions by making com-
puting resources more easily available to its students and researchers, and by improv-
ing the utilization of hardware resources.

2 CHAPTER 1. INTRODUCTION

1.2 Project goal

The goal of this project is to evaluate and implement a prototype private cloud solu-
tion based on open source software with regards to the needs of the staff and students
at the Department of Computer and Information Science (IDI), at Norwegian Univer-
sity of Technology and Science (NTNU).

The focus of this project is the situation at IDI, but our methods and results are appli-
cable for other higher education institutions.

We will suggest an approach for implementing a permanent private cloud solution
in an educational context, in addition to methods for evaluating the success of such
systems.

The objectives of our analysis are:

1. What characterizes the requirements for a virtualization platform with regards
to an educational institution and its users?

2. How can you evaluate the success of a private cloud solution deployed in an
educational context?

3. What are the challenges that need to be considered when deploying a widely
available virtualization platform?

4. Can a virtualization platform improve the availability of computing resources
to students and researchers?

5. How can a virtualization platform improve the utilization of available re-
sources?

1.3 Approach

The approach for this project is to consider requirements and use cases for an open
source virtualization system in an educational context, to install and configure an
OpenStack environment, and to maintain and monitor a prototype installation with
a number of users over a period of time. The goal of this approach is to get necessary
feedback from users and experience with the solution. The final goal is to provide
recommendations for future work and a permanent deployment.

1.4. REPORT OUTLINE 3

1.4 Report outline

This chapter describes the task, and defines the scope of the project. Chapter 2 dwells
into the background of virtualization history and cloud computing, and also presents
related work on this topic. Chapter 3 describes the requirements to the system to be
implemented, and we present the technology implemented in our project. The im-
plementation and configuration of the system are described in Chapter 4, and Chap-
ter 5 presents the operational period and our experience from operating the system.
Chapter 6 presents the surveys conducted while preparing for the operation period,
and later while evaluating the project. Conclusions and future work are presented in
Chapter 7.

4 CHAPTER 2. VIRTUALIZATION AND CLOUD COMPUTING

Chapter 2

Virtualization and cloud
computing

In this chapter we will introduce the concept of virtualization and cloud computing,
and go through the history of virtualization. We will also present related work on use
of cloud computing in higher education.

2.1 Virtualization

Different computer resources can be virtualized. When using the term virtualization
in this report, we refer to hardware virtualization. Other examples of virtualization
are network virtualization with virtual LAN segments (VLAN) and VPN, and appli-
cation virtualization where applications run on a remote server and only the screen
image is transferred over the network to the client.

Hardware virtualization (or platform virtualization) is the virtualization of computers
or operating systems. This is performed by software components, a hypervisor or vir-
tual machine monitor, creating a virtual machine running in a confined environment.
This can be achieved using different approaches:

Full virtualization. With full virtualization the virtual machine simulates the full
hardware of a physical machine, allowing an unmodified guest operating system to

2.1. VIRTUALIZATION 5

be run without modification. This is done by utilizing binary translation [1] to rewrite
non-virtualizable instructions.

Paravirtualization. Paravirtualization is a technique where instead of translating
non-virtualizable instructions, the hypervisor provides an interface to the virtual ma-
chine allowing execution of hypercalls replacing privileged instructions [2]. This will
in many cases give a performance benefit compared to translation of instructions, but
the drawback is that it requires modification of the guest operating system.

Hardware assisted virtualization. Hardware assisted virtualization utilize special-
ized CPU extensions to reduce the amount instructions that needs to be translated.
This introduces a significant performance increase compared to traditional full virtu-
alization [3].

Operating system-level virtualization. Operating system level-virtualization utilizes
a kernel allowing multiple isolated instances of the user-land, instead of just one.
These instances are often referred to as containers or jails. This removes the overhead
of emulating a complete hardware platform. The limitation of this method is that the
virtual machines are restricted to running the same kernel as the host computer.

2.1.1 History

The concept of virtualization has its roots from the 1960s, with the introduction of the
mainframe system IBM 7044, also known as ”the M44”. The M44 became the basis for
IBM M44/44X, an experimental computer system. The system was a purely research
system, simulating multiple M44 virtual machines. This system gave each user a run-
ning virtual machine with an image of the 44X operating system. The purpose of this
was among others to evaluate the concepts of virtualization and time sharing sys-
tems [4].

The idea was to allow the resources to be time-shared between multiple users, so that
the mainframe computers could be used more efficiently. This was accomplished by
suspending programs that were waiting for peripheral resources, and allowing other
programs that utilize different resources to run in the meantime.

Virtualization was for a long time a concept only available with mainframe solutions,
partly because of the huge amount of resources in the mainframes, but also because
most server applications were developed for mainframes, and therefore no real rea-
son to pursue this technology outside the mainframe sphere.

The mainframes were big and expensive, and often required custom operating sys-

6 CHAPTER 2. VIRTUALIZATION AND CLOUD COMPUTING

tems and specially compiled programs. This, combined with the increasing use of
computing in everyday business activities resulted in a demand for smaller and less
expensive alternative to the old mainframes.

As the demand for less expensive server got higher, server manufacturers started to
produce servers based on the Intel x86 architecture. This was an architecture already
used for desktop computers, and a familiar technology to the developer community.
When the need for computing resources increased in the 1990s, the x86 architecture
became the most popular one because of its lower cost. The combined power of
multiple low-cost servers and distributed client-server applications provided perfor-
mance comparable to the old mainframe systems. With the shift towards x86 based
servers, the idea of virtualization was nearly abandoned.

Gordon Moore once stated that the number of transistors on integrated circuits dou-
bles every year. This was later revised to every two years [5] and is commonly known
as Moore’s law. Moore’s law is now cited as ”computing performance doubling every
18 months”, a quote made famous by Intel employee Dave House [6]. This prediction
has turned out to be true for the most part of the history of modern computing.

The ever increasing computing performance leaves us with a large amount of unused
resources, as hardware development tends to surpass software development. The sit-
uation with resource utilization is the same as the early mainframes, where most of
the resources are left unused for most of the time.

The first efforts for x86 virtualization was driven by the need for running software de-
veloped for different operating systems concurrently on the same machine. In 1999,
Kevin P. Lawton published a paper about x86 virtualization [7]. In the paper Lawton
outlined three different strategies for achieving this: Pure emulation, OS/API emula-
tion and virtualization. In his paper he discussed some of the challenges related to
virtualizing the x86 architecture, which include but are not limited to incompatible
instructions. The same year VMware released their first product, the VMware Virtual
Platform, making it possible to run multiple operating systems on a single physical
desktop machine.

Modern day x86-server virtualization started in 2001 when VMware released their first
server virtualization products. The main goal for this, was the same as the old main-
frame systems, namely to improve the utilization of the available hardware resources.

Seeing VMware’s success with their products and the high demand for such solutions,
processor manufactures started to develop virtualization support built into the CPUs.
In 2005 Intel released their first CPUs with dedicated virtualization extensions (VT-x),
and in 2006 AMD followed up with the release of AMD-V. The goal of these hard-

2.2. CLOUD COMPUTING 7

ware extensions was to reduce the number of instructions to be emulated in soft-
ware, allowing a more lightweight hypervisor and increasing the performance of the
virtualized machine. In 2008 the second generation of hardware supported virtual-
ization was unveiled with Intel Extended Page Tables (EPT) and AMD Nested Page
Tables (NPT), a technology reducing the overhead with virtualization by offloading
the memory management from the hypervisor to the CPU [8]. Other improvements
include technologies as Intel Virtualization for Connectivity (VT-c), which integrates
virtualization support in the network adapter and improves data throughput by of-
floading this task from the CPU [9].

With the added hardware support for virtualization, the technology has developed
quickly the last decade. Further increase in computing power per CPU socket, de-
creased memory price and overall improved point to point network connectivity, have
made it more feasible to move traditionally locally hosted services to the ”Cloud”.

2.2 Cloud computing

Cloud computing is a relatively new term used to describe shared hardware and soft-
ware resources delivered to the end-users as a service over a network.

The cloud technology emerged from major internet companies like Amazon who
wanted to capitalize on renting out capacity in their infrastructure. Amazon launched
their cloud services in 2006 when announcing Simple Storage Service (S3) providing
a high availability and scalable storage system accessible through web services. The
same year Elastic Cloud Computing (EC2) launched, allowing users to rent virtual ma-
chines. Later more products were added, e.g. Elastic Block Storage (EBS) providing
persistent storage to machines running in EC2. These products are all parts of Ama-
zon Web Services (AWS)1, a stack of services available as a public cloud. The common
denominator for these services is that they all can be controlled through the AWS API.
Through Amazons success with AWS, the AWS API has become the de-facto standard
for cloud solutions.

The most commonly used definition of the term cloud computing is the one provided
by National Institute of Standards and Technology (NIST) [10] which is quoted in the
following:

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing re-

1http://aws.amazon.com

http://aws.amazon.com

8 CHAPTER 2. VIRTUALIZATION AND CLOUD COMPUTING

sources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management ef-
fort or service provider interaction.

The definition also denotes the following characteristics of a cloud computing sys-
tem:

On-demand self-service. A consumer may adjust the provisioned resources without
requiring human interaction with the service provider.

Broad network access. The provided resources are accessed over the network using
standard mechanisms.

Resource pooling. The computing resources (e.g. processing, memory, storage, and
network bandwidth) of the provider are shared between numerous consumers, and
are dynamically assigned and reassign according to consumer demand.

Rapid elasticity. The amount of resources provided to a consumer can rapidly be
scaled (in or out), often automatically, according to consumer demand. To the con-
sumer, the available resources may appear to be unlimited and can be allocated at
any time.

Measured service. The utilization of computing resources can be monitored, con-
trolled and reported, allowing the provider to charge their consumers on a per-use
basis.

2.2.1 Service models

The NIST definition [10] divides cloud computing into three different service mod-
els. The service models characterizes the different levels a cloud platform can oper-
ate, from providing an application to a complete infrastructure where the consumer
maintains most parts of the stack, from the network configuration to the hosted ap-
plication.

Software as a Service (SaaS). The capability provided is an application running on a
cloud infrastructure. The consumer typically accesses this application trough a web
browser, and does not manage or control the underlying infrastructure. Examples:
Google Drive and Office 365.

Platform as a Service (PaaS). The capability provided to the consumer is the ability to
deploy self-made or acquired applications on a cloud infrastructure. The application
must be created using programming languages, libraries and tools supported by the

2.3. RELATED WORK 9

provider. The consumer controls the deployed application, but not any part of the
underlying infrastructure. Examples: Cloud Foundry, Google App Engine, Heroku
and Microsoft Azure.

Infrastructure as a Service (IaaS). The capability provided is the ability to provi-
sion computing resources (e.g. processing, memory, storage and networking) used
to deploy and run arbitrary applications. The consumer controls the operating sys-
tem, storage, deployed applications, and often selected network components (e.g.
host firewalls and private networks). Examples: Amazon EC2 and Rackspace Cloud
Servers.

2.2.2 Deployment models

Clouds can be deployed internally in an organization, or be provided as a service by
a third party. NIST [10] divides the deployment models into four different combina-
tions of public and private solutions.

Private cloud. A cloud infrastructure utilized by a single organization. The infrastruc-
ture may be managed by the organization itself, or by a third-party provider. Exam-
ples: Eucalyptus, OpenStack and VMware vCloud.

Community cloud. A cloud infrastructure shared by several organizations in a com-
munity with shared interests and concerns.

Public cloud. A cloud infrastructure available to the general public through a third
party service provider. Examples: AWS, Google App Engine, Heroku, Rackspace Cloud
Servers, etc.

Hybrid cloud. A cloud infrastructure which consists of two or more cloud infras-
tructures (private, community, or public). The infrastructures are connected by stan-
dardized or proprietary technology enabling data and application portability allowing
load balancing or migration between clouds.

2.3 Related work

In the recent years there have been many publications on different applications of
virtualization and cloud computing, both in general and in research and educational
contexts.

10 CHAPTER 2. VIRTUALIZATION AND CLOUD COMPUTING

One research direction is about analyzing the performance of virtual computers. In
the paper ”VM consolidation: A real case based on OpenStack cloud” Corradi et al.
research the performance degradation when applying load to multiple virtual com-
puters running on the same physical host [11]. Another research direction with re-
gards to performance is benchmarking different private IaaS solutions, like in the pa-
per ”Cloud computing performance benchmarking and virtual machine launch time”
where Steinmetz et al. analyze the provisioning time of OpenStack and Eucalyp-
tus [12]. Similar research has also been done by von Laszwski et al. described in the
paper ”Comparison of Multiple Cloud Frameworks”. In their study they do scalabil-
ity experiments on different IaaS frameworks in the FutureGrid2 infrastructure. They
find that the different solutions fit different requirements.

A research direction closer to the scope of this thesis is the different applications of
private cloud technology in academia. During the last years there have been many
publications on this topic.

In the paper ”Practical Cloud Evaluation from a Nordic eScience User Perspective” Åke
Edlund describes the findings of the NEON3 project [13]. The project experimented in
offloading non-HPC jobs (low memory and few CPU cores) from the traditional HPC
systems to both public and private clouds. In their findings it shows that about 20%
of the jobs currently running could be suitable for such offloading.

In Germany, Hochschule Furtwangen University (HFU) have deployed a private
Cloud Infrastructure called CloudIA, allowing employees and students to provision
virtual computers, and on demand collaboration software [14]. Their experience
shows that such solutions can improve the management of computers used for pro-
gramming exercises.

In a project closer to home, a group of students at Gjøvik University College imple-
mented an OpenStack solution for use as a framework for virtual computer labs [15].
Their focus was to customize the web interface for batch operations. In their conclu-
sion they find OpenStack suitable for implementing a private cloud, but emphasize
that it is a complicated system, requiring thoroughly planning before implementa-
tion.

Earlier there have been two separate specialization projects at IDI looking into how
the use of virtualization could benefit the department.

In 2008 Frode Sandholtbråten did a study on virtualization of terminal rooms [16]. In
his project he did a study on replacing the traditional terminal rooms with personal

2https://portal.futuregrid.org/
3http://www.necloud.org/

https://portal.futuregrid.org/
http://www.necloud.org/

2.3. RELATED WORK 11

virtual machines. His proposal was to use VMware ESX(i) to provide this service.

In 2009 Andreas Eriksen wrote about and implemented a self-service virtualization
system based on XenServer and a custom web interface to administer the virtual ma-
chines [17]. During his project, Andreas did a survey showing that there was a user
demand for a virtualization service.

12 CHAPTER 3. PROJECT PLANNING

Chapter 3

Project planning

This chapter covers the planning of this project. We will define requirements for a
private cloud solution for an educational institution. We will also go through the cur-
rent situation regarding virtualization and personal servers at IDI, and also present
previous projects on this topic. Figure 3.1 shows the different stages of the project.

We will also present the architecture and design of OpenStack and its different com-
ponents, and alternative products.

The chosen platform for this project is OpenStack. OpenStack was chosen early on
due to it being the open source system with the most active community while receiv-
ing heavy commercial backing.

Prestudy Planning Implementation Operation Evaluation

Figure 3.1 – Project process

3.1 Current situation at IDI

As an educational and research institution, the Department of Computer and Infor-
mation Science often differ from most other organizations when considering require-

3.1. CURRENT SITUATION AT IDI 13

ments to technical solutions.

The most significant differences from other organizations are:

• Large number of temporary users (students)

• High degree of diversity of the individual ongoing projects

• Small IT-organization compared to total number of users

Currently IDI at NTNU has about 800 students, divided on the five year integrated
master’s program in computer engineering, the three year bachelor’s program in com-
puter science and the two year master’s programs. About 300 of these students are in
their two last years of their education. A number of these students need a computer
to host their projects and run their applications related to their work. This need is
also applicable for the PhD candidates and researchers at the department. The com-
mon solution to this problem is either to use personal computers, or to get assigned
a workstation or a personal server from the technical group.

As most of the students have a laptop as their primary computer, many of them need
a personal workstation or a server to run applications or calculations that require cer-
tain running time.

The last year the technical group has handed out 30 physical workstations and about
20 virtual computers in the existing VMware installation to students at IDI. This cov-
ers about half of the current fifth year master students. There is no advertising for the
current VMware service, so the user demand is likely to be higher.

The existing solution for virtualization provides no interface where the end user can
provision their own virtual machines or control their machines remotely, other than
what provided by the operating system running on the virtual machine. This requires
involvement from an administrator for both provisioning of machines, and when ac-
cess to the local console is needed.

Earlier projects at IDI have studied implementation of a self-service virtualization
system for the department. In 2009 Andreas Eriksen implemented a solution based on
XenServer and a custom web interface allowing users to provision and control their
own virtual machines [17]. His study showed that there was a user demand for such a
service.

Since 2009 more products for providing virtualization solutions have become avail-
able. This project follows up the previous work, by studying how such a solution can
be implemented using modern technology.

14 CHAPTER 3. PROJECT PLANNING

3.2 Requirements

In this section we will specify the requirements most important for a virtualization
system used in an educational environment. The requirements are designed in col-
laboration with the technical staff at IDI. In the process of identifying the require-
ments we have designed use cases describing the central tasks for the system.

The following definitions are used this context:

• System: Software components providing virtualization services

• Administrator: The person or IT-department responsible for maintaining the
system

• User: Students, staff and faculty members with a need for server and applica-
tion hosting.

• Virtual machine: A machine hosted in a confined environment at the system.

3.2.1 Use cases

This section provides a description of the most central tasks for a virtualization sys-
tem using textual use cases.

In Figure 3.2 we show a diagram of the user and an administrator performing com-
mon tasks, including provisioning and controlling virtual machines, quota manage-
ment and system maintenance.

Use Case 1 Provisioning of virtual machines

Actor: End-User

Stakeholders: • System administrator: The process
should involve a minimum of ad-
ministrative overhead

Preconditions: The end-user must be logged into the
system

3.2. REQUIREMENTS 15

Postconditions: The virtual machine should either be in-
stalled or sent for approval by the system
administrator

Main Success Scenario:

1. The end-user selects ”create new virtual machine” in the interface
2. Fills out required hardware specification and operating system
3. The virtual machine gets provisioned and login information gets delivered to

the end-user

Extensions:
3.a Insufficient hardware quota

1. System returns a message informing the user that the virtual machine has
been sent for approval by the system administrator

2. Process ends
3.b Invalid specifications

1. System shows failure message
2. User returns to step 2 and corrects the errors

Use Case 2 Control provisioned machine

Actor: End-User

Stakeholders: • System administrator: The process
should involve a minimum of ad-
ministrative overhead

Preconditions: • The end-user must be logged into
the system

• The virtual machine must be provi-
sioned

Postconditions:

Main Success Scenario:

16 CHAPTER 3. PROJECT PLANNING

1. The end-user selects an existing virtual machine in the interface
2. The end-user choose to open a console
3. The end-user logs on to the virtual machine and perform his or hers tasks

Extensions:
3.a The virtual machine is not responding as expected

1. Choose to reboot the virtual machine in the interface
2. User returns to step 2
3. If the problem persists, file a service call or reprovision the virtual machine

3.b Invalid credentials for the virtual machine
1. File a service call to get a password reset, or reprovision the virtual ma-

chine
2. User returns to step 2

Use Case 3 Approve provision of virtual machines

Actor: System administrator

Stakeholders: • End-User: Wants the virtual ma-
chine to be provisioned without
unnecessary delay

Preconditions: • The system administrator must be
logged onto the system

• An end-user must have submitted
a request to provision a virtual ma-
chine

Postconditions: The virtual machine should be
provisioned

Main Success Scenario:

1. The system administrator approves the request to provision a virtual machine
2. The virtual machine gets provisioned, according to the specifications given by

the end-user
3. The end-user gets notified that the virtual machine is ready for use

3.2. REQUIREMENTS 17

Figure 3.2 – Use case diagram of the system

Use Case 4 Perform routine maintenance of the vir-
tualization system

Actor: System administrator

Stakeholders: • End-User: The maintenance
should have a minimum of impact
on the services provided to the
users

Preconditions:

18 CHAPTER 3. PROJECT PLANNING

Postconditions: The system should be updated

Main Success Scenario:

1. The system administrator sets a node in the system in maintenance mode
2. The virtual machines hosted at that node gets migrated to other nodes
3. The system administrator performs maintenance at the node

Use Case 5 Manual patching of virtual machines

Actor: End-user

Stakeholders: • System administrator: All virtual
machines hosted by the system
should have the latest security
patches installed.

Preconditions: The end-user should be logged into the
virtual machine with his or hers admin-
istrator account

Postconditions: The virtual machine should be updated

Main Success Scenario:

1. The end-user choose to install all pending updates
2. The end-user restarts the virtual machine, if required

Use Case 6 Removal of virtual machines

Actor: System administrator

Preconditions: The system administrator should be
logged onto the system

3.2. REQUIREMENTS 19

Postconditions: The virtual machine should be removed
from the system, and archived if needed

Main Success Scenario:

1. The system administrator chooses to remove the virtual machine

Extensions:
1.a The virtual machine should be archived before removal

1. Choose to archive the virtual hard drive
2. Returns to step 1.

3.2.2 Primary requirements

These are the primary requirements to the system:

PRQ1 Users must be able to provision and control their own virtual machines, with
a minimum involvement from the administrator. This is to ensure that the
users get the resources they need when they need it, and to reduce the admin-
istrative overhead.

PRQ2 The system must be free to use and open source. There should not be any
licensing costs related to the system, and it should be possible to modify the
system if necessary.

PRQ3 The system must be able to run on standard x86 hardware. The system
should not require any specialized hardware. This is to allow the department
to re purpose existing hardware.

PRQ4 If the system requires a separately installed operating system, the software
components must be available through the distributions software reposi-
tory. This to ensure maintainability, and that security updates will be easily
available.

PRQ5 The system must have a level of maturity, with regards to stability, available
documentation, user base and online community. This to ensure that sup-
port is available.

PRQ6 The system must be actively maintained by the developers. This to ensure
that the system will be provided with necessary updates for the foreseeable
future.

20 CHAPTER 3. PROJECT PLANNING

PRQ7 The system must have support for common guest operating system, includ-
ing Linux, FreeBSD and Windows guests. These are the primary operating
systems maintained by the technical group at IDI.

3.2.3 Secondary requirements

These are the secondary requirements to the system:

SRQ1 The system should either provide its own operating system (bare-bone) or
run on an operating system already maintained by the technical department
at the institute for computer science. This to ensure that we don’t introduce a
system unfamiliar to the department.

SRQ2 The system should use existing services for authenticating and authorizing
its users. This to avoid the administrative overhead of distributing login cre-
dentials to new users.

SRQ3 The system should be designed to allow routine maintenance of its compo-
nents with a minimum of down time on the virtual machines hosted at the
system. This is to reduce downtime, and improve the flexibility of performing
maintenance.

SRQ4 The system should have a web interface that allows provisioning and control
of virtual machines. A web interface will allow the users to interact with the
system without installing custom software on their computers.

SRQ5 The system should have routines, automatic or manual, to ensure that active
virtual machines are maintained automatically or by the users. Virtual ma-
chines without proper security updates should be disabled. This is to avoid
that the virtual machines running on the system present a security risk for the
organizations infrastructure.

SRQ6 The system should have routines, automatic or manual, to ensure that vir-
tual machines owned by students and staff without active affiliation to the
organization are disabled in an orderly fashion. This to avoid that the sys-
tems resources are being used by third parties.

SRQ7 The system should have routines, automatic or manual, to ensure that dis-
abled virtual machines can be preserved for future use. The purpose of pre-
serving machines is to allow others to follow up projects.

3.3. AVAILABLE TECHNOLOGY 21

SRQ8 Commercial support for the system should be available. Commercial support
can in many cases be a good supplement to community resources.

SRQ9 The system should have the ability to restrict a virtual machine to a single IP
address. Address restriction is important to avoid IP-conflicts or hijacking due
to misconfiguration or malicious use.

SRQ10 The system should have the ability to generate reports showing provisioned
virtual machines and their owners. Reports showing the system usage can be
an important tool for capacity planning.

SRQ11 Users without a quota should be able to register the need for a virtual ma-
chine. This should generate a notification to the system administrators. In
cases where users need resources that extend from the assigned quota, the user
should easily be able to request increased quota.

3.3 Available technology

There are a number of different open source virtualization projects in active develop-
ment. Some of these projects have commercial backing, and are widely available in
leading Linux distributions.

In the following sections we will present OpenStack and some of the alternative solu-
tions for private IaaS clouds.

3.4 OpenStack

OpenStack1 is a cloud computing project founded by Rackspace, NASA and others in
June 2010 [18]. Currently the project is supported by major companies like AT&T, IBM,
and Canonical [19], and the software components are available in both the Ubuntu
and Red Hat Linux distributions.

The project initially started with combining code from the Nebula platform devel-
oped by NASA and Rackspace’s Cloud Files Platform. The first official release was
made four months after the project started. Since then there have been regular re-
leases every few months, and new major releases twice a year. Figure 3.3 shows a
timeline of major releases.

1http://www.openstack.org

http://www.openstack.org

22 CHAPTER 3. PROJECT PLANNING

Austin
2010-10-21

Bexar
2011-02-03

Cactus
2011-04-15

Diablo
2011-09-22

Essex
2012-04-05

Folsom
2012-09-27

Grizzly
2013-04-04

Figure 3.3 – Timeline of OpenStack releases [20]

In 2011 OpenStack took Eucalyptus’ place as the default cloud service in the Ubuntu
Enterprise Cloud-project [21], giving the project a head position among the open
source cloud systems.

3.4.1 Components

OpenStack consists of several independent components written in Python, that each
perform different roles in a virtualization environment. The goal is to provide a full
set of services from management interfaces, through networking and storage, to com-
puting. Most of the components in OpenStack are API-compliant with AWS, allowing
users to choose between a large variety of tools for administering their cloud. Fig-
ure 3.4 shows the conceptual architecture of the Folsom release of OpenStack.

3.4.1.1 Compute (Nova)

Compute provides the main component of an IaaS system, namely the cloud com-
puting fabric controller [22]. As a fabric controller Compute facilitates the hypervi-
sor and manages the available resources. The Nova project originated out of NASA
Ames Research Laboratory [23], and took its natural place in OpenStack when NASA
and RackSpace joined forces in 2010. The service provided by Nova is comparable to
Amazon’s EC2.

Modern operating systems are designed for, and expect its own dedicated hardware.
To be able to virtualize you need some sort of virtual hardware to run this on. This
is done by the hypervisor, either with full hardware virtualization, or a middle, par-
avirtualization. What Compute does is to provide a flexible interface for controlling
the virtualization hypervisor. An important idea behind Compute, is that it should be
both hardware and hypervisor agnostic. Currently Nova supports KVM, LXC, QEMU,
UML, VMware ESX(i), Xen, PowerVM, Hyper-V and bare metal servers [24].

3.4. OPENSTACK 23

Figure 3.4 – OpenStack conceptual architecture. Source: http://ken.pepple.info under
CC-license

In addition to the bare virtualization, Compute also provides basic networking con-
figurations and volatile2 block level storage for the virtual hard drives through image
files.

3.4.1.2 Storage

OpenStack provides two different solutions for persistent storage, each for different
type of applications.

Block Storage (Cinder). Cinder provides persistent block storage devices to the vir-
tual machines. Essentially the same service as Amazon’s EBS. The project was origi-
nally a part of Nova (nova-volume), but was separated as a separate project leading
up to the Folsom release. The block device can be moved between virtual machines,
with the ability to take snapshots and backups. Cinder supports a number of different
storage solutions in the back end, ranging from directly attached disks to enterprise
solutions from NetApp. The typical application for cinder is database storage vol-
umes, or other disk critical services.

2The virtual hard drives are removed when the virtual machine is terminated

http://ken.pepple.info

24 CHAPTER 3. PROJECT PLANNING

Object Storage (Swift). Swift is a ”high availability, distributed, eventually consis-
tent object store” [25]. Swift provides an AWS S3 compatible REST API for uploading
and retrieving objects into the storage cluster. This API can either be used directly, or
through one of the many language-specific libraries that were provided by Rackspace.
The typical applications for Swift are document storage and image storage in combi-
nation with Glance.

3.4.1.3 Networking

nova-network. Compute provides basic networking configurations through the ser-
vice nova-network. The default network mode is VLAN Network, where a separate
network segment is created for every project. The other configurations are Flat Mode
and Flat DHCP Mode where all instances are placed on the same network [26].

Quantum. Quantum provides network connectivity as a service [27] and is a plug-
gable and API-driven system for managing networks and IP-addresses. Quantum
was introduced as a supported core component in the Folsom release, and offers the
configuration advanced networking services like Layer 3 routing, QoS and VLANs.
Switches and other networking equipment can be managed by Quantum through
provided plug-ins.

3.4.1.4 Other services

Dashboard (Horizon). Horizon provides a web-based user interface for the Open-
Stack services. The interface gives both administrators and end-users easy access to
provisioning and controlling virtual machines and storage volumes, and basic user
management.

Identity (Keystone). Keystone provides authentication and authorization for the
OpenStack services, in addition to a catalog of the services within a particular Open-
Stack cloud. Both end-users and the other services authenticate against Keystone,
and are authorized for different access levels in different projects. Keystone sup-
ports a pluggable back-end, including SQL and Lightweight Directory Access Protocol
(LDAP), for storing the authentication and authorization data.

Image Service (Glance). Glance provides ”discovery, registration, and delivery ser-
vices for virtual disk images” [28]. The Image Service are most commonly used to
store template disk images used to provision virtual machines, but can also be used
to store snapshots of running machines. These snapshots can be used for backup

3.5. ALTERNATIVE OPEN SOURCE VIRTUALIZATION SYSTEMS 25

and archiving purposes. Glance can store the images in different back-end storage
solutions, including Swift.

3.5 Alternative open source virtualization systems

In this section we will go through two of the alternative open source virtualization
systems that are available.

3.5.1 Eucalyptus

Eucalyptus3 is a widely deployed cloud computing platform providing IaaS. Euca-
lyptus was founded as a research project at University of California, Santa Barbra in
2007 [29], and was from 2009 until 2011 the main part of Canonicals Ubuntu Enter-
prise Cloud-project.

Eucalyptus is written in Java and C, and consists of different components that can
be deployed on separate machines offering a wide range of services. The different
components include: [30]

Cloud Controller (CC). Providing an AWS compatible API for administering the cloud
and a web based user interface.

Cluster Controller (CLC). Operating as a gateway between the CC and NC, deciding
which node a VM should be deployed on

Node Controller (NC). Controlling the life cycle of the virtual machines and is de-
ployed on all physical machines designated to host VMs. Supports Xen and KVM and
VMware.

Walrus. Providing a object store compatible with the AWS S3 API, and can be used to
store disk images used for provisioning and snapshots of virtual machines.

Storage Controller (SC). Providing persistent block storage to the virtual machines.
Comparable to Amazon’s EBS.

3http://www.eucalyptus.com/

http://www.eucalyptus.com/

26 CHAPTER 3. PROJECT PLANNING

3.5.2 OpenNebula

OpenNebula4 started as a research project in 2005, and had its first public release in
2008 [31]. Since 2008 the project has had several releases. In 2009 the project got
included in the Ubuntu distribution, and later also included in CentOS, Debian and
openSuse. The project has a number of contributors from a number of different com-
panies and research institutions, and has an active user community. OpenNebula is
written in a wide range of programming languages, naming C, Java and Ruby.

The main feature that differentiates OpenNebula from other projects is that it only
requires software on the controller node, as it communicates directly with the hyper-
visor running on the physical machines used for virtualization. OpenNebula provides
support for Xen, KVM and VMware.

OpenNebula consists of the following services: [32]

OpenNebula Daemon. Management daemon controlling virtual machines, users and
images.

Match-making Scheduler. Scheduler keeping track of resources, and selecting the
most suitable physical machine to deploy a VM.

Monitoring and accounting daemon. Providing statistics and accounting informa-
tion.

API services. EC2 Service for providing an AWS EC2 compatible API and the OCCI
service for providing compatibility with Open Cloud Computing Interface5.

Sunstone. Providing a web-based user interface.

As OpenNebula don’t provide its own storage solution, it relies on a shared file system
for live migrations of virtual machines.

3.6 Summary

In this chapter we have identified requirements for a private cloud deployment in an
educational context. This is the fundamental part for the further work in this thesis.

4http://www.opennebula.org/
5http://occi-wg.org/

http://www.opennebula.org/
http://occi-wg.org/

3.6. SUMMARY 27

Table 3.7 – Summary of alternative virtualization systems

OpenStack Eucalyptus OpenNebula
Year started 2010 2007 2005
Latest release 2013-04 2013-04 2013-05
Release frequency ~6 months ~4 months ~4 months
Language Python Java, C Java, C, Ruby + others
Hypervisors Xen, KVM, VMware,

Hyper-V, LXC, UML
Xen, KVM, VMware Xen, KVM, VMware

Deployment Software installed on
all nodes

Software installed on
all nodes

Only on front-end
nodes

Main storage Cinder Storage Controller Unix filesystem
Object store Swift Walrus N/A
AWS compatible Yes Yes Yes
Licencing Apache 2.0 GNU GPLv3 Apache 2.0

We have also presented OpenStack, the system to system to be implemented, in ad-
dition to briefly presenting alternative solutions. See Table 3.7 for a summary of the
different virtualization systems.

28 CHAPTER 4. IMPLEMENTATION

Chapter 4

Implementation

This chapter describes the configuration and the choices made when installing and
configuring OpenStack, the virtualization system we will be using.

The description provided is on a general level, and not intended as a detailed step by
step guide to reproduce the configuration.

Table 4.1 lists the definitions used in this chapter.

4.1 Setup

The setup of OpenStack was done by configuring two physical servers (Table 4.2), one
acting as both the controller, and a computing node and the other as a computing
node. The two servers were interconnected by gigabit Ethernet.

Table 4.1 – Definitions

Term Description
VM A virtual machine
Project A project, with one or more virtual machines
User End user, with access to one or more Projects

4.1. SETUP 29

Table 4.2 – Hardware specifications

Feature Value
Model HP ProLiant DL380 G5
CPU 2 x Intel Xeon E5420 2.50GHz Quad Core
Memory 16GB
HDD 2 x 72GB 15kRPM SAS (RAID-1)

The servers were installed with Ubuntu 12.04.11 with OpenStack 12.2 (Folsom) pack-
ages from the Ubuntu Cloud repository2. OpenStack was configured using Puppet3,
an open source configuration management tool, in combination with the official
OpenStack-modules4. The Puppet manifest used is provided in Appendix A.1.

4.1.1 Networking

OpenStack supports a number of different network layouts. In big scale deployments,
hosting different projects or customers, one might want to keep different projects in
separated network segments, to avoid potential security breaches and bypassing of
firewalls.

In this prototype implementation, with the expected use case of a single student or
a group of students needing a single virtual machine, the increased security of using
separate networks doesn’t weigh up for the added overhead, as this requires changes
to the existing network infrastructure.

For this project the network model named Flat Manager is used (See Section 3.4.1.3).
This model simply creates a bridge between the physical network and the virtual ma-
chines, and automatically assigning them fixed IPs from a range allocated to Open-
Stack. This model is very similar to the current deployments of other virtualization
solutions at IDI.

This configuration places the physical nodes and the virtual machine on the same
network. This is not optimal, as the recommended deployment method for Open-
Stack is to have a separated network for communication between the nodes – system
security greatly relies on this separation. See Section 4.1.4 for how we countered these
challenges.

1Later upgraded to Ubuntu 12.04.2
2https://wiki.ubuntu.com/ServerTeam/CloudArchive
3https://www.puppetlabs.com/
4https://github.com/stackforge/puppet-openstack at commit 02fc41294e

https://wiki.ubuntu.com/ServerTeam/CloudArchive
https://www.puppetlabs.com/
https://github.com/stackforge/puppet-openstack

30 CHAPTER 4. IMPLEMENTATION

As public IPv4 addresses are a limited resource, the solution with fixed public IPs for
the virtual machines also introduces a limitation to the number of VMs. Public IPv6
and NATed IPv4, with floating IPv4 addresses, might be a more suitable solution for a
permanent installation.

4.1.2 Hypervisor

OpenStack supports a number of different hypervisors. This is described in Sec-
tion 3.4.1.1. For this configuration Kernel-based Virtual Machine (KVM)5 was used,
as this is the default on OpenStack installations on Ubuntu, and is thoroughly docu-
mented.

KVM is a full virtualization solution for Linux, which benefits from hardware virtu-
alization extensions in the CPUs (Intel VT or AMD-V). The CPUs used in our setup
supports 1st generation hardware assisted virtualization from Intel. Being a full virtu-
alization solution, the hypervisor supports virtualizing x86 operating systems without
modification. KVM also allows the virtual machines to use paravirtualized I/O de-
vice drivers (Virtio), increasing I/O performance [33]. Virtio is supported natively by
the Linux kernel, and open source drivers are available for installation on Windows.
OpenStack in combination with KVM use Virtio by default for Linux guests.

In addition to virtualizing different operating systems, we can run different versions of
the operating systems, allowing us to restore snapshots of archived virtual machines.
These are both requirements identified in Chapter 3.

4.1.3 Storage

The initial testing was done using local server storage for the virtual disks and thereby
was fairly limited by the 72GB storage capacity on each server.

In the final design of the solution, an iSCSI export from the departments Storage Area
Network (SAN) was added. This export was used for storing virtual images. This iSCSI
export was mounted on the primary node, and Network File System (NFS) was used
to export the file system to the secondary node. This provided a fairly large amount
of storage, which could easily be expanded. Logical Volume Manager (LVM) was ap-
plied on top of the iSCSI export, to provide additional flexibility for partitioning and
expansion of the volume.

5http://www.linux-kvm.org

http://www.linux-kvm.org

4.1. SETUP 31

The shared file system was used for storing virtual disk images and did not provide
persistent storage, as the disk image would be removed when a virtual machine is
terminated.

This configuration is not optimal, as all storage traffic to the secondary node will pass
through the primary node. This results in additional delay and introduce a single
point of failure. Optimally there would be dedicated storage node(s) using Cinder,
and separate networking for storage traffic.

4.1.4 Hardening

The recommended solution for deploying OpenStack includes a dedicated network
segment for communication between the control node and the compute nodes. In
this configuration both OpenStack nodes are on a publicly available network, to-
gether with the virtual instances.

One example of an obvious security issue is that the compute nodes will make the
VNC-interface for connecting to the instances console available on its public IP.

To counter this we have added firewall rules to the compute node to only allow in-
coming traffic from the control node. The firewall rules are included in Listing 4.1.

Listing 4.1 – Hardening of compute node

iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
iptables -A INPUT -p tcp -m tcp --dport 22 -j ACCEPT
iptables -A INPUT -p icmp -j ACCEPT
iptables -A INPUT -s $MASTERIP/32 -j ACCEPT
iptables -A INPUT -i lo -j ACCEPT
iptables -A INPUT -j REJECT --reject-with icmp-port-unreachable

4.1.5 Virtual machines

Through the imaging service (Glance) the system administrator can provide the users
with preconfigured images of virtual machines. For this purpose a default Ubuntu
12.04 image from Ubuntu Cloud Images6 was provided.

The OpenStack documentation includes a good description on creating and upload-
ing custom images [34]. For a permanent installation one should provide and main-

6http://cloud-images.ubuntu.com/

http://cloud-images.ubuntu.com/

32 CHAPTER 4. IMPLEMENTATION

tain a set of different guest operating systems. It is also possible for the users to gen-
erate and upload their own images.

The dashboard (Horizon) described in Section 3.4.1.4 provides a web-based user in-
terface, allowing the users to provision and control their virtual machines.

4.1.6 Project quotas

As the system has limited resources, the default quota assigned to the projects were
fairly restricted compared to the specifications of a modern physical machine. The
quota is shown in Table 4.3.

Table 4.3 – Project quota

Feature Value
VMs 1
CPU Single core
Memory 512MB
Disk 10GB
IP 1 (public IP)

4.1.7 Summary

Table 4.4 shows the services running on the two nodes, vtest01 and vtest02. Figure 4.1
shows the logical architecture of the system.

4.2 Monitoring

During the evaluation period the performance metrics of the physical hosts were
monitored using Munin7 and collectd8, two common resource monitoring tools. The
combination of the two were used because collectd provides higher resolution on the
data collection (every 10s vs. 5m), while Munin has better support for aggregated
graphs.

7http://www.munin-monitoring.org/
8http://www.collectd.org/

http://www.munin-monitoring.org/
http://www.collectd.org/

4.2. MONITORING 33

vtest01

vtest02

NFS

MySQL

Campus network

SAN

iSCSI

VMs

Figure 4.1 – Logical architecture

34 CHAPTER 4. IMPLEMENTATION

Table 4.4 – Running services

Node
Type vtest01 vtest02
OpenStack services nova-api nova-compute

nova-network
nova-compute
glance-api
glance-registry
horizon
keystone

Additional services MySQL NFS client
RabbitMQ
NFS server
iSCSI client

Additionally the usage of Horizon was monitored through the web server’s access logs.
OpenStack keeps a detailed log of all resource provisioning in its database, making it
possible to generate reports of allocated resources.

To ensure that any unscheduled downtime was handled as quickly as possible dur-
ing the operational period, the service monitor Nagios9 was configured to do simple
service checks. This service monitoring was deployed on an external server, and the
description of this is outside the scope of this project. There are multiple Nagios plu-
gins available for monitoring the different components of an OpenStack installation.

4.3 Routines

4.3.1 Managing users

The default model for storing users in OpenStack’s identity provider Keystone, is by
keeping a user database in SQL. A consequence of this is that you, as an administra-
tor, will have to distribute separate login credentials. This is not very efficient when
serving a large user base.

As all of the users of this installation are affiliated with the university, and therefore

9http://www.nagios.org/

http://www.nagios.org/

4.3. ROUTINES 35

have a user account on the central IT system, we can use LDAP to validate pass-
words, removing the need for separate credentials. Keystone provides support for
LDAP through one of the included authentication drivers. The built-in support re-
quires modification of LDAP schemas, as it also stores information about projects
and services. This is not viable, as we do not control the LDAP service.

To counter this we have written a small authentication driver that replacing the pass-
word validation against the database with a simple LDAP query. Everything other
than the actual passwords will be stored in the SQL back-end. This technique can
also be used with Active Directory and other commonly used user databases. The
modified authentication driver is attached in Appendix B.1.

4.3.1.1 Adding users

Adding users to the system is done by invoking the adduser script attached in Ap-
pendix B.2.

The script is fairly simple, and works by using the NTNU username of the user as an
argument. It creates a dedicated project for the user, adds the user and applies the
default quota to the project.

4.3.1.2 Removing old users

To avoid that unused machines keep running indefinitely, there should be routines
for disabling machines. This can be done by manually disabling all machines after
each semester.

In addition you want to avoid using resources on machines owned by students that
no longer have active user accounts. This can be done by implementing a script that
checks if the account still exists in the central LDAP.

4.3.2 Backup

In every production system, it is important to be able to restore the system to a work-
ing state after an incident resulting in loss of data.

In an OpenStack-environment like this, the most significant components are:

• Databases (in MySQL)

36 CHAPTER 4. IMPLEMENTATION

• Configuration (in Puppet)

• Virtual machine images

The database contains all metadata about users, projects and virtual machines, and
should be backed up on a regular interval. For this installation automysqlbackup10

was used, in combination with regular system backup.

Virtual machines can be backed up using the snapshot feature in OpenStack. The
snapshot feature can also be used to archive virtual machines used for projects that
might need follow up at a later time.

4.3.3 Disaster recovery

Like any production system, this system should have routines for disaster recovery.
The routines should follow the current practice in the organization.

The most likely risks that must be considered are unplanned power outages and hard-
ware failures, like disk crash or corruption.

The OpenStack Operations Guide [35] contains a number of tips for troubleshooting
and recovery from failures, and can be a useful tool for developing such routines.

4.3.4 Maintenance of the system

OpenStack is under heavy development, and even for the stable releases security up-
dates and other fixes are released frequently. All of the components can be updated
and restarted without interrupting the running KVM instances. This makes it fairly
safe to keep the system up-to-date without scheduling downtime for the users.

In a larger production environment the preferred way to perform maintenance would
be to migrate the instances off one node, and upgrade them one by one.

Upgrading to new major releases should be tested in a separate environment, and
preferably be performed outside the semester, when the usage is likely to be low.

10http://sourceforge.net/projects/automysqlbackup/

4.4. EVALUATION 37

Table 4.5 – Fulfillment of primary requirements

Requirement Fulfilled Comments
PRQ1 X Self service provided by Horizon and API
PRQ2 X Apache 2.0 license [36]
PRQ3 X No specific hardware requirements
PRQ4 X Packages available in Ubuntu
PRQ5 X Active community with many support

channels [37]
PRQ6 X Active development. Over 200 monthly

contributors [38]
PRQ7 X All x86 operating systems supported

through the KVM hypervisor

4.3.5 Maintenance of virtual machines

The virtual machines running on the system should be updated regularly with the
latest security patches. This could be achieved by enabling automatic updates in the
provided guest images.

4.4 Evaluation

Table 4.5 show that all primary requirements (Section 3.2.2) are fulfilled by the system.
Out of the secondary requirements (Section 3.2.3) nine out of eleven requirements are
fulfilled (Table 4.6). The requirements are summarized in Table 4.7.

38 CHAPTER 4. IMPLEMENTATION

Table 4.6 – Fulfillment of secondary requirements

Requirement Fulfilled Comments
SRQ1 X System based on Ubuntu, which is al-

ready maintained by the department
SRQ2 X Implemented through customized au-

thentication module
SRQ3 X Possible through live migration of virtual

machines
SRQ4 X Provided by Horizon
SRQ5 - Not possible to ensure that the software is

updated
SRQ6 X Possible through manual routines
SRQ7 X Possible through snapshots
SRQ8 X Commercial support available from

Canonical [39] and others
SRQ9 X Nova limits the virtual machines to the

assigned IP-address
SRQ10 X Horizon provides reports of used re-

sources
SRQ11 - Requires customizing of Horizon

Table 4.7 – Summary of requirements

Type Fulfilled Unfulfilled
Primary 7 0
Secondary 9 2
Sum 16 2

39

Chapter 5

Private cloud in practice

5.1 Methodology

Invitation and
initial survey
2013-01-28

Launch and
activation of first

batch of users
2013-01-29

13 active virtual
machines and 20
registered users

2013-02-12

Evaluation survey
2013-04-03

Planned
maintenance

2013-04-18

17 active virtual
machines

2013-04-26

Figure 5.1 – Timeline

In this chapter we will present the experimental phase of this project. The goal for
this phase is to see how this system performs in practice, with a real-world workload,
and to gain experience about potential problems and weaknesses of the system. An-
other important goal is to retrieve feedback from users, which can be used for further
improvement of the system.

In preparation for the launch, the system was configured as described in Chapter 4.
Additionally a Getting Started guide (Appendix C) describing the most common tasks
including provisioning and accessing virtual computers was prepared.

40 CHAPTER 5. PRIVATE CLOUD IN PRACTICE

5.2 The operational period

The user testing launched January 28, and began with inviting students from IDI to
apply for access to the system. The invitation was done by emailing the student lists
for the fourth and fifth year Master’s students. The testing was limited to this group of
students, as the test implementation of the system had limited resources.

During the first day 11 users applied for an account, and an additional 9 users ap-
plied during the first week. By the end of the operational period the system had 23
registered users.

In the registration form the users were presented with a survey asking them about
their previous experience with virtualization systems, preferred operating systems,
and about their expectations to the system. The survey is presented in detail in Chap-
ter 6.

On January 29 the first batch of users were enabled, and an informational email was
sent out to the users.

During the period all communication with the users was done using dedicated email
lists provided by the technical group. The motivation for doing this was to make a
future transition of responsibility for the system to the technical group easier, both by
having a fixed contact point for the end users, and by having an archive of all corre-
spondence for future references.

Table 5.1 summarizes the events through the operational period.

5.3 System usage

In this section we will analyze some of the activity data collected through the statis-
tics tools used to monitor the system. The tools used are described in Section 4.2.
The timespan for all graphs in this section are from January 29 to May 15 during the
operational period.

At most there were 20 active virtual machines running on the system. Figure 5.2 shows
a plot of running virtual machines during the period. The maximum of 20 VMs were
reached on May 13, this was also the maximum number supported by the system,
limited by the number of IP addresses assigned. At the same time there was 13GB of
memory and 23 CPU cores allocated to the virtual machines.

5.3. SYSTEM USAGE 41

Table 5.1 – Operations log

Date Event
2013-01-28 Invited users
2013-01-29 Added the first batch of users
2013-02-30 Expanded quota for a user that needed additional CPUs
2013-02-02 Added additional users
2013-02-27 Added user
2013-03-08 Created a shared project for two users
2013-04-01 Expanded quota for user with a need for multiple VMs
2013-04-09 Received notification about planned power outage
2013-04-11 Notified the users about planned downtime
2013-04-18 Controlled shut down of the service before planned

outage. Used the opportunity to upgrade software on
physical hosts

2013-05-02 Added users

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

29/01 12/02 26/02 12/03 26/03 09/04 23/04 07/05

C
o

u
n

t

Date

Number of VMs

Figure 5.2 – Active virtual machines

The system is primarily managed by the users through the web interface Horizon.
Figure 5.3 shows the number of unique visitors per day. These numbers are extracted
from the web server access logs, and show an average of about 3.5 visitors per day.

42 CHAPTER 5. PRIVATE CLOUD IN PRACTICE

 0

 2

 4

 6

 8

 10

 12

 14

29/01 12/02 26/02 12/03 26/03 09/04 23/04 07/05

V
is

it
o

rs

Date

Unique visitors per day

Figure 5.3 – Web interface: Unique visitors per day

Figure 5.4 and 5.5 show the load average [40] for the two physical servers throughout
the operational period. The average load on both servers is low, but with fairly high
spikes. The peaks are related to high I/O activity when provisioning virtual machines,
resulting in high load.

The CPU usage for the nodes is shown in Figure 5.6 and 5.7. The maximum available
usage is 800%, as both servers have eight CPU cores. We can see that both servers
are mostly idle. However vtest02 has long periods of usage between 100% and 150%,
caused by a virtual machine provisioned on this server which was used for a CPU
bound workload in relation to a fellow students master project.

As the host machine needs to keep a copy of all running VMs in memory, the most
common limitation when consolidating multiple VMs on a single physical machine
is the amount of memory available. The memory usage for our nodes is shown in
Figure 5.8 and 5.9. From these graphs we can see that the two servers were far from
depleted of available memory during the time span of the operational period. The
visible notch in both graphs in Week 16 is from shutting down the VMs in connection
to the planned power outage described in Section 5.3.1.3.

We can see that the ”Last” values for used memory (6.6GB and 5.7GB) totals on a
value lower than the 13GB of memory allocated to the virtual machines, and that is

5.3. SYSTEM USAGE 43

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
 0

 5

 10

 15

 20

 25

S
y
s
t
e
m

l
o
a
d

load

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 1m average 0.09 Min, 0.53 Avg, 28.48 Max, 0.66 Last
 5m average 0.21 Min, 0.53 Avg, 7.98 Max, 0.66 Last
 15m average 0.28 Min, 0.53 Avg, 3.92 Max, 0.66 Last

Figure 5.4 – Load average for node vtest01

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
 0

 5

 10

 15

 20

 25

S
y
s
t
e
m

l
o
a
d

load

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 1m average 0.07 Min, 0.81 Avg, 25.28 Max, 0.58 Last
 5m average 0.16 Min, 0.81 Avg, 7.41 Max, 0.59 Last
 15m average 0.21 Min, 0.81 Avg, 5.16 Max, 0.59 Last

Figure 5.5 – Load average for node vtest02

44 CHAPTER 5. PRIVATE CLOUD IN PRACTICE

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
 0

 100

 200

 300

 400

 500

 600

 700

 800

%

CPU usage - from Tue Jan 29 00:00:00 2013 to Wed May 15 00:00:00 2013
R

R
D

T
O

O
L / T

O
B

I O
E

T
IK

E
R

 Cur: Min: Avg: Max:
 system 5.71 1.92 5.35 139.98
 user 8.23 3.69 7.49 106.19
 nice 3.26 1.44 3.34 17.02
 idle 779.50 550.81 780.93 790.90
 iowait 0.59 0.01 0.52 173.85
 irq 0.00 0.00 0.00 0.01
 softirq 0.10 0.01 0.11 40.38
 steal 0.00 0.00 0.00 0.00

Figure 5.6 – CPU usage for node vtest01

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
 0

 100

 200

 300

 400

 500

 600

 700

 800

%

CPU usage - from Tue Jan 29 00:00:00 2013 to Wed May 15 00:00:00 2013

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 Cur: Min: Avg: Max:
 system 6.19 1.27 7.73 71.64
 user 8.79 1.78 40.67 175.49
 nice 0.00 0.00 0.01 13.39
 idle 781.89 519.22 746.89 796.49
 iowait 0.01 0.00 0.04 88.88
 irq 0.00 0.00 0.00 0.15
 softirq 0.08 0.00 0.08 17.83
 steal 0.00 0.00 0.00 0.00

Figure 5.7 – CPU usage for node vtest02

5.3. SYSTEM USAGE 45

before including the memory used by the software running on the physical servers
themselves.

This is mainly because of the memory de-duplication done by KSM [41] for the KVM
processes we can see a significant memory saving:

root@vtest01:~# cat /sys/kernel/mm/ksm/pages_sharing
719975

root@vtest02:~# cat /sys/kernel/mm/ksm/pages_sharing
536318

The page size for a standard Linux system is 4096 bytes, giving us a combined saving
of 4.8GB RAM. We see this effect because all 20 virtual machines are running the same
operating system, resulting in a very similar memory footprint for all VMs.

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
 0

 2 G

 4 G

 6 G

 8 G

 10 G

 12 G

 14 G

B
y
t
e
s

vtest01.idi.ntnu.no/memory/memory

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 free 148.2M Min, 1.7G Avg, 11.1G Max, 731.6M Last
 cached 328.8M Min, 8.6G Avg, 12.7G Max, 7.9G Last
 buffered 91.8M Min, 402.6M Avg, 566.1M Max, 438.6M Last
 used 2.5G Min, 5.0G Avg, 7.3G Max, 6.6G Last

Figure 5.8 – Memory usage for node vtest01

Figure 5.10 and 5.11 show the Ethernet traffic on both physical servers during the pro-
duction period. The traffic includes both storage traffic (iSCSI traffic between vtest01
and the SAN, and NFS traffic between the servers). The peaks in network traffic also
correlate with the Load graphs, supporting the theory of high load when performing
high I/O activity. This can also be seen in Figure 5.12 which shows the traffic to the
iSCSI storage.

46 CHAPTER 5. PRIVATE CLOUD IN PRACTICE

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
 0

 2 G

 4 G

 6 G

 8 G

 10 G

 12 G

 14 G

B
y
t
e
s

vtest02.idi.ntnu.no/memory/memory

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 free 150.1M Min, 4.3G Avg, 11.2G Max, 8.7G Last
 cached 91.3M Min, 7.0G Avg, 14.1G Max, 1004.0M Last
 buffered 27.2M Min, 198.3M Avg, 232.4M Max, 217.7M Last
 used 1002.2M Min, 4.1G Avg, 6.4G Max, 5.7G Last

Figure 5.9 – Memory usage for node vtest02

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18

 0

 10 M

 20 M

 30 M

 40 M

b
it
s
 i
n
 (

-)
 /

 o
u
t

(+
)

p
e
r

s
e
co

n
d

eth0 traffic - from Tue Jan 29 00:00:00 2013 to Wed May 15 00:00:00 2013

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

Cur (-/+) Min (-/+) Avg (-/+) Max (-/+)
 bps 363.84k/ 896.33k 4.72k/ 3.25k 589.81k/ 1.53M 409.31M/ 664.42M

Figure 5.10 – Network traffic for node vtest01

5.3. SYSTEM USAGE 47

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
-40.0 M

-30.0 M

-20.0 M

-10.0 M

 0.0

b
it
s
 i
n
 (

-)
 /

 o
u
t

(+
)

p
e
r

s
e
co

n
d

eth0 traffic - from Tue Jan 29 00:00:00 2013 to Wed May 15 00:00:00 2013

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

Cur (-/+) Min (-/+) Avg (-/+) Max (-/+)
 bps 155.83k/ 269.31k 11.70k/ 8.10k 817.51k/ 403.06k 665.79M/ 290.86M

Figure 5.11 – Network traffic for node vtest02

Week 06 Week 08 Week 10 Week 12 Week 14 Week 16 Week 18
 0.0

 0.2 M

 0.4 M

 0.6 M

 0.8 M

 1.0 M

 1.2 M

 1.4 M

B
y
t
e
s
/
s

sda/disk_octets

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 Written 77.5k Avg, 103.9M Max, 52.7k Last (ca. 702.0GB Total)
 Read 20.0k Avg, 75.0M Max, 100.0 Last (ca. 180.9GB Total)

Figure 5.12 – iSCSI traffic

48 CHAPTER 5. PRIVATE CLOUD IN PRACTICE

5.3.1 Challenges

5.3.1.1 IPv6 on virtual machines

As the campus network at NTNU is dual stacked, with both native IPv4 and IPv6 sup-
port one would want all new machines and services on the network to support IPv6.

Soon after starting testing we noticed a problem with auto assigning IPv6 addresses
to the virtual machines:

eth0: IPv6 duplicate address 2001:700:300:2101:f816:3eff:fe41:a76
detected!

This error is caused due to one of the nwfilter firewall rules in OpenStack. The pur-
pose of this filter is to limit the virtual machines from using IPv4-addresses not as-
signed to them, but gets an unwanted effect for IPv6.

This is considered as a bug in OpenStack, and a fix is released in the next version. [42]

As a workaround in OpenStack 2012.2 you can disable the duplicate address detection
on the virtual machines using the following command:

root@ubuntu:~# echo 0 > /proc/sys/net/ipv6/conf/eth0/dad_transmits

5.3.1.2 Incorrect quota handling

When the admin user ”Terminate” machines owned by a users Project, the Project will
not get the updated quota. To resolve this you need to manually correct the quota in
the database.

This is also considered as a bug, and a fix is released in the next version. [43]

5.3.1.3 Planned power outage

On April 9 we received a notification about a planned power outage for the building
where the physical servers were located. Shortly after an email was sent to the users,
informing them about the scheduled down time.

The day of the outage the servers were manually shut down shortly before the an-
nounced time. Before shutting down the servers, all running virtual machines were
suspended. Additionally the physical servers were upgraded with the latest software
from the Ubuntu package repositories.

5.4. EVALUATION 49

When the power was back online the servers were powered back on, and the sus-
pended virtual machines were resumed.

5.4 Evaluation

During the production period, the system performed well, and we did not experience
any unscheduled down time. During the experiments we identified two bugs, none
which were ”show stoppers”, but this clearly shows that OpenStack is still under devel-
opment, and emphasizes the importance of keeping the installation up to date. This
should be taken into consideration when looking into the possibility for a permanent
deployment.

At the most, we had 20 virtual machines running. The usage statistics shows that the
system at no time were saturated, and that we could either have increased the default
quota, or increased the number of allocated IP addresses and expanded the testing to
more students.

From the usage statistics gathered through monitoring the system, we can see that
the virtual machines were not used very heavily. However, if we had more active use
of the virtual machines, we could easily have ended up with decreased performance.
Like shown in the studies performed by Corradi et al. [11].

50 CHAPTER 6. SURVEYS AND USER FEEDBACK

Chapter 6

Surveys and user feedback

In this chapter we will present the surveys given to the users, and their results. Upon
registration, the users were asked to answer a few questions about their expectations
to the system, and their expected usage. Later in the semester an evaluation survey
was given, asking about the actual use and about the users experience with the sys-
tem.

These results are not considered representative for the whole student population. For
the first survey only 23 answered, and out of these only 16 answered on the follow-up
survey. However, the answers and the presentation of data can be a helpful tool for
evaluating the success of this and future projects.

The questions were originally given in Norwegian, as this is the native language for
most students at NTNU. In this chapter the questions and answers are presented in a
translated version. The original Norwegian versions can be found in Appendix D.

Both surveys were conducted using Google Forms, an application in the Google Drive
suite.

6.1 Registration survey

In addition to stating their user name, contact information and affiliation, the users
were asked to answer some questions about their expected use and expectations
when signing up for an account.

6.1. REGISTRATION SURVEY 51

The following questions were given upon registration:

• Primary use

• Performance vs. stability

• Requested operating systems

• Previous experience with virtualization

• Expected usage frequency

The goal with these questions was to identify the expectations from the users, and to
get input on the expected use.

The different alternatives presented in the survey are listed in Table 6.1. All answers
are summarized in Appendix D.1.

Table 6.1 – Registration questions - Translated from Norwegian

ID Question Type Alternatives
Q1 Primary use Choose one A1: Master’s project

A2: Project
A3: Other academic purposes
A4: Private purposes / try the solu-
tion
A5: Other

Q2 What is most important of per-
formance and stability on the ser-
vices you are planning to run on
your virtual machine?

Scale (1-5) 1=Performance
3=Equally important
5=Stability

Q3 Which operating systems/Linux-
distributions would you like to use
through this service?

Multiple choice A1: Ubuntu
A2: Debian
A3: CentOS
A4: FreeBSD
A5: OpenBSD
A6: Windows
A7: Other

Q4 Do you have previous experience
with use or configuration of virtu-
alization software?

Yes / No -

Q5 What is the expected usage fre-
quency of your virtual machine,
and/or the services running on it?

Choose one A1: Daily
A2: Weekly
A3: Less than weekly

52 CHAPTER 6. SURVEYS AND USER FEEDBACK

6

15 2

Daily

Weekly

Less than weekly

Figure 6.1 – Registration survey (Q5): Expected usage frequency

3

14

13 2

Master’s project

Project

Other academic purposes

Private purposes - try the solution

Other

Figure 6.2 – Registration survey (Q1): Primary use of the system

6.1.1 Results

6.1.1.1 Expected usage

In Q2 and Q5, we ask about the users expectations to how much, and in what context
they will use this service.

The expected amount of use is fairly high. 21 out of 23 users state that they will use
the service weekly, or more. These results are visualized in Figure 6.1.

As shown in Figure 6.2, 13 of the 23 users state that they will use the service for private
purposes. The rest of them are divided over ”Other” and various academic usage.
Both users answering ”Other” have stated different academic purposes in a comment.

6.1. REGISTRATION SURVEY 53

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1−Performance 2 3 4 5−Stability

C
o
u
n
t

Figure 6.3 – Registration survey (Q2): Performance versus stability

6.1.1.2 Performance or stability

Q2 asks the participant to choose between performance and stability on a range from
1 to 5, where 1 is a high performing (less stable) system and 5 is a stable system with
less performance. Most of the answers lean towards stability (Figure 6.3). These re-
sults clearly convey what most of the users want from a virtualization system – a stable
environment where they can host their application, not necessarily a place to crunch
numbers. This is an interesting point to take into consideration when it comes to
capacity planning for a larger scale deployment of a virtualization system.

6.1.1.3 Requested guest operating systems

In Q3 the users were asked to name which operating systems they would want the
system to provide support for. The most popular variants were the Linux distribu-
tions Ubuntu and Debian, closely followed by Windows. The answers are visualized
in Figure 6.4.

54 CHAPTER 6. SURVEYS AND USER FEEDBACK

19Ubuntu

13

Debian

1

CentOS

1
FreeBSD

1

OpenBSD

7
Windows

2

Other

Figure 6.4 – Registration survey (Q3): Requested operating systems

6.1.1.4 Previous experience

In Q4 we ask about previous experience with virtualization software, both with run-
ning your own software, or by using public providers.

As shown in Figure 6.5, 15 out of 8 users state that they have previous experience with
virtualization software. This is interesting, as it shows that not all of the signed up
users are ”enthusiasts” that are early adopters of new technology, and that we have
reached out to different types of students.

6.2 Evaluation survey

On April 3 a survey asking about the actual use of the system was sent out to the
registered users. The questions are summarized in Table 6.2 and the answers in Ap-
pendix D.2. One of the reasons for conducting this survey asking about actual use, is
that due to the nature off platform virtualization, we can not assess what’s running
on inside the virtual computer without advanced analysis outside the scope of this
thesis. There are also be privacy issues related to this form of inspection.

6.2. EVALUATION SURVEY 55

Table 6.2 – Survey questions - Translated from Norwegian

ID Question Type Alternatives
Q1 Have you provisioned a virtual

machine?
Yes / No -

Q2 How much did you use your vir-
tual machine?

Choose one A1: Daily
A2: Weekly
A3: Less than weekly
A4: Once

Q3 What have you used your virtual
machine for?

Choose one A1: Master’s project
A2: Project
A3: Other academic
A4: Private purposes / try the solution new-
line
A5: Other

Q4 What alternative would you have
used, if this service didn’t exist?

Choose one A1: Existing computer at IDI e.g. worksta-
tion at workplace
A2: Requested for a new computer at IDI
A3: Existing service at NTNU e.g. the com-
mon web hotel or Linux login servers
A4: External service
A5: Private computer
A6: Would not have run the application
A7: Other

Q5 Has this service made it easier
to acquire necessary resources for
your work?

Choose one A1: Yes, it has become easier
A2: No, it has become harder
A3: No effect

Q6 Has the quota led to any disadvan-
tages or limitations for your usage
pattern?

Yes / No -

Q7 Have you upgraded the software
on your virtual machine after in-
stallation?

Yes / No -

Q8 How do you think it was to get
started with the service?

Scale (1-5) 1=Hard, 5=Easy

Q9 I have not used this service be-
cause ...

Choose one A1: The user interface was too complicated
A2: Did not have the time to try it
A3: Did not need a virtual computer

Q10 Is this a service you think IDI
should provide on a permanent
basis?

Yes / No -

56 CHAPTER 6. SURVEYS AND USER FEEDBACK

15

8

Yes

No

Figure 6.5 – Registration survey (Q4): Experience with virtualization software

6.2.1 Results

Out of the 16 answers, only one replied that he or she had not provisioned a virtual
machine. The reason given (in Q9) was that he or she had not found time to try the
solution. The users answering ”No” in Q1 were sent directly to Q9, and are the cause
of apparent inconsistent sum of answers in this survey.

6.2.1.1 Actual use

To follow up the questions about usage in the registration survey, the users were asked
about their actual use of the system. Figure 6.6 shows the results of the actual amount
of use (Q2). Most of the users state that they used the system weekly or less.

Figure 6.7 shows the answers for what the users used the system for (Q3). The majority
of answers state that they used the system for non-academic purposes.

6.2.1.2 Alternative providers

In Q4 the users were asked where they would have deployed their application if this
service didn’t exist. Only one of the users replied that he or she would have requested
a new computer at IDI. About half of the users replied that they would have used a
private computer instead. These answers are shown in Figure 6.8.

6.2. EVALUATION SURVEY 57

1

4

9 1

Daily

Weekly

Less than weekly

Once

Figure 6.6 – Evaluation survey (Q2): Actual usage frequency

1

1
2

9
2

Master’s project

Project

Other academic purposes

Private purposes - try the solution

Other

Figure 6.7 – Evaluation survey (Q3): Actual use of the system

1

2

8

4

Requested a new computer at IDI

External service
Private computer

Would not have run the application

Figure 6.8 – Evaluation survey (Q4): Alternative providers

58 CHAPTER 6. SURVEYS AND USER FEEDBACK

10

5

It has become easier

No effect

Figure 6.9 – Evaluation survey (Q5): Easier to acquire resources

6.2.1.3 Easier to acquire resources

One of the goals with a private cloud solution is to make computing resources more
available to the end users. In Q5 we ask if this solution has made any difference to
the way students can acquire necessary resources for their academic work. A major-
ity of the users answered that this has become easier. None of the users answered
that that this solution makes it harder to acquire resources. These answers are shown
in Figure 6.9. The answers should be seen in the relation of what the users actually
used their virtual machines for. As shown in Appendix D.2, three out of the five users
answering that this solution had no effect for them also states that they used this ser-
vice for private purposes. If the solution had more actual academic usage, it is likely
that we would have seen an even higher rate of users answering that this solution
improves the availability of resources.

6.2.1.4 Quota limitations

The system provides the users with a very limited quota for their virtual machines.
In Q6 we ask if this limitation has had any disadvantages for their usage pattern. A
majority of the users did not feel that the limited quota had any effect on their use.
These answers are shown in Figure 6.10. The results of this question correlate good
with what we’ve seen during the operational period, as a few of the users requested
an extended quota for their projects.

6.2. EVALUATION SURVEY 59

5

10

Yes

No

Figure 6.10 – Evaluation survey (Q6): Usage limited by quota?

7

8

Yes

No

Figure 6.11 – Evaluation survey (Q7): Upgraded VM after installation?

6.2.1.5 Software maintenance

A large number of computers on a network directly connected to the internet might
cause a security risk, especially if they are not maintained with the latest security fixes
etc. In Q7 we ask if the user has upgraded their virtual machine during the operational
period. About half of the users answered ”Yes” to this question. These answers are
shown in Figure 6.11.

6.2.1.6 User friendliness

One of the most important success factors of any computer system is that it easy to
use. In Q8 we ask the users how it was to get started with the system (Log in, gener-
ate keys, configure security groups and provision a virtual machine). The users were

60 CHAPTER 6. SURVEYS AND USER FEEDBACK

 0

 1

 2

 3

 4

 5

 6

 7

1−Hard 2 3 4 5−Easy

C
o
u
n
t

Figure 6.12 – Evaluation survey (Q8): User friendliness

asked to rate the user friendliness from 1 (Hard) to 5 (Easy). The average score at 4.2
shows an overall satisfaction with regards to the user friendliness. The answers are
shown in Figure 6.12.

6.2.1.7 Permanent solution

All of the 16 users answered that IDI should develop and provide this service on a
permanent basis.

6.3 User feedback

In the evaluation survey, the users were given the opportunity to provide comments
and feedback to the system, and further work on the solution. The feedback received
is quoted here in a translated version. Original Norwegian quotes are included in
Appendix D.2.1.

6.4. ANALYSIS 61

The feedback shows a general interest in IDI providing a virtualization service to its
students.

S1 Nice service for students without available computer / operating system.

S2 The possibility to easily get a number of computers with administrative access to
test purposes is a great advantage when developing some types of software. I think
this service can be of great help, especially when working with master- or bachelor
theses, and I think IDI should consider offering it on a permanent basis in some
scale.

S3 This is a service that will be very useful during many courses.

S4 Great service, I could wish better persistence of the virtual computers for the possi-
bility to run server services etc.

S5 This is a fantastic service from IDI. This will make a great difference for those with
a need for a server for different purposes. This has been a great help and of great use
to me.

S6 I think this is a very interesting concept, and I know that many students (including
myself) host their own server at home. To have a machine with static IP and with
good bandwidth can be very useful for e.g. version control or build servers. Whether
IDI should pursue this, I will personally answer yes, but I don’t think it should be
prioritized, as people usually can find alternative solutions without much trouble.

6.4 Analysis

6.4.1 Requirements

Through the registration survey we see that the most frequently requested operating
systems to be provided by the system are the Linux distributions Ubuntu and Debian,
closely followed by Windows.

We also see that most of the users emphasize the importance of stability rather than
performance in their virtual machines.

62 CHAPTER 6. SURVEYS AND USER FEEDBACK

6.4.2 Usage

There is a significant difference in the amount of expected usage and the actual usage
of the system. This may sum down to users thinking that they need more resources
than they actually do, or that users signed up just to try the solution.

When looking at the area of use, the distribution of academic vs. non academic use is
fairly similar in both the expected and the actual usage.

We also see that only half of the users answer that they have upgraded their virtual
machine after installation, indicating the need for an automated solution for keeping
the VMs upgraded with the latest software / security fixes.

6.4.3 User satisfaction

The users responding to the evaluation survey indicate a high degree of satisfaction
with the system. Most of the users think that the system has made it easier to ac-
quire necessary computing resources, and that the default quota provided did not
limit their usage. The feedback received as user statements also supports this.

We also see that most of the users are satisfied with the Horizon web interface for
controlling the virtual machine.

6.4.4 Demand

From both the survey answers and the user feedback we see a heavy user demand for
this type of solution.

However most of the users answers that they have access to alternative solutions for
computing resources. These results must be seen in the context of what the service
was used for, mostly private purposes.

Even though the students might not need this service, we can see from the feedback
that all of the responders would like to have the possibility for easy access to comput-
ing resources.

6.4. ANALYSIS 63

6.4.5 Reflection

The evaluation survey was sent to the users on April 3. As shown in Chapter 5 the use
of the system increase towards the end of the semester. The answers might have been
different if the survey was held at a later time, as some of the users didn’t start using
the service until after this survey was held.

These results might also be influenced by the fact that only students that were in-
terested in trying the solution have answered. However, we see that only 15 of the
23 students answering on the registration survey have previous experience with vir-
tualization software, which may indicate that we have reached out to a broad set of
students.

Although the results we present might not be representative, and the response rate
was low, we have chosen to include the diagrams as an illustration to how a future
survey can be evaluated.

The evaluation survey was conducted completely anonymously. In retrospect we see
that it would have been beneficial if we could track the responses between the sur-
veys, giving us the possibility for a more in depth evaluation of who actually used the
service and how it was used.

An alternative method for evaluating the actual need for computing resources could
be to read through previous master’s theses and project reports at IDI to assess their
need for resources based on the nature of their work.

64 CHAPTER 7. CONCLUSION

Chapter 7

Conclusion

This chapter gives a summary of each of the objectives described in Chapter 1, and
provides a conclusion of the thesis. Finally we give suggestions for future work.

7.1 Data quality

The data collected through our surveys are not to representative, due to a low re-
sponse rate, and the fact that only students already interested in trying the solution
replied. For the evaluation survey the timing was not optimal, as some of the users
didn’t start using the service until late in the semester. The performance metrics col-
lected through monitoring the system, showing a varying utilization of resources, are
likely to be representative for a larger scale implementation.

7.2 Objectives

7.2.1 Identified requirements

As a part of the pre-study to this project we identified key requirements and use cases
related to IaaS private cloud implementations in an educational context. During the
experimentation we performed user surveys, showing that there is some demand for
a solution like this. We also collected important data about what the typical student

7.2. OBJECTIVES 65

user wants from a private cloud solution, namely a stable environment to host their
Linux based virtual machine.

7.2.2 Framework for evaluation IaaS deployments

The methodology used when evaluating the system, both through surveys and
through monitoring performance metrics can be used as a framework for evaluating
systems like the one presented in this report.

All necessary data for reproducing the surveys and system monitoring are included in
this report.

7.2.3 Challenges to consider

One of the main complaints against introducing virtualization is the introduction
of a single point of failure, unless you use complex high availability techniques and
over-provision your resources allowing the system to stay alive with missing compute
nodes. These issues are not addressed in this thesis, as the main scope is student
projects, and not critical production systems.

As briefly discussed in Chapter 5, high activity in one virtual machine may cause per-
formance degradation for all machines running on the same node. Potential solutions
for this are discussed in Section 7.4.

During the operational period of this project we encounter some challenges with the
system. Both of these flaws are fixed in the OpenStack project.

7.2.4 Increased availability of resources

The fact that a self-service cloud solution increases the availability of resources to the
end user is indisputable. Never before in the history of computing has it been easier
to acquire access to computing resources. Our experiment had a focus on students,
but the same requirements and principals are also applicable to researchers and other
employees at the department.

The benefits from providing a private cloud are two sided. First of all you can provide
easy access to resources required by students and researchers to do their academic
work. Both for individual work, and as a tool for collaboration in group projects. The

66 CHAPTER 7. CONCLUSION

solution can also be used as a platform for conducting practical assignments in many
courses.

Secondly, the solution can work as a play ground for students experimenting with
private projects. This may facilitate innovation, and will increase the experienced
quality of the education.

7.2.5 Potential savings

In this experiment we have successfully consolidated 20 virtual machines on two
physical servers. If we consider a consolidation factor of 1:10, this gives us a signifi-
cant saving in both purchase cost, and in energy consumption.

As shown in this Chapter 5 the consolidation factor could have been even higher, giv-
ing even higher savings. Compute nodes with higher performance would also allow a
higher density of virtual machines, without increasing the power consumption.

7.3 Conclusion

In this project we have implemented a working prototype installation of OpenStack,
and had the system in operation for a period of four months. Even though the re-
sources were limited and the user response was fairly low, we have seen that the sys-
tem provides a much demanded service among our selection of users, and that fur-
ther work towards a permanent solution is worth pursuing. Before investing time and
equipment in a permanent solution, the department should conduct a larger scale
survey to assess the scale of a potential permanent private cloud implementation.

Our experimentation has shown that OpenStack is a suitable system for implement-
ing a private cloud solution, running stable for the whole operational period. Even
though we can conclude that OpenStack is suitable for a production environment,
we need to emphasize that the project is still under heavy development. You will find
bugs, and features may change between the major releases. Some of the bugs can be
solved temporally by working around the problem, and most of these will eventually
be resolved by the large team of active developers.

Our contribution is a suggested approach for further work towards a permanent pri-
vate cloud solution at the Department of Computer Science, and in higher education
in general. We provide a description of how such a solution can be implemented and
evaluated, and highlight challenges that need to be considered.

7.4. FUTURE WORK 67

7.4 Future work

In this section we will present recommendation for further work on this subject.

There are parts of OpenStack outside the scope of this thesis that can be worth re-
searching. Namely the different storage solutions introduced in Section 3.4.1.2 (per-
sistent block storage and the object store) and the possibilities related to using the
API for controlling virtual machines.

For user authentication, a Keystone driver integrating with Feide1 should be imple-
mented. This would benefit both NTNU and other Norwegian educational institu-
tions looking into implementing a private cloud based on OpenStack.

Another approach is to study how OpenStack can be integrated with public clouds,
creating a hybrid cloud. This combination is interesting, as this would give the possi-
bility to scale out when needing additional computing resources.

7.4.1 Ideal solution

The ideal deployment of OpenStack should have separate nodes for controllers, stor-
age and compute. Preferably with multiple, high performance compute nodes. The
system should provide persistent storage, with the ability to move volumes and ac-
cess data from multiple virtual machines in the same project. This is possible through
Cinder and Swift.

The system should have a delegated subnet of public IPs, and the possibility to config-
ure private VLANs to each project. This can be realized using Quantum, and possibly
integrating with Open vSwitch2.

A set of guest images providing different operating systems and Linux distributions
should be maintained by the staff, or by ”enthusiast” users. The images could be pre-
configured as a generic web server, build server etc. This can also be used by profes-
sors or teaching assistants for preparing an environment used in practical exercises.

To avoid high throughput computational tasks interfering with low latency applica-
tions, the system should provide different availability zones, allowing users to classify
their workload. This can partly be enforced by having different quotas in the different
zones.

1Centralized identity management solution for the educational sector of Norway, http://www.feide.
no

2Virtual Switch, supporting VLAN isolation, traffic shaping and more. http://openvswitch.org/

http://www.feide.no
http://www.feide.no
http://openvswitch.org/

As seen in the evaluation survey, most users were satisfied with the default quota pro-
vided in this prototype implementation. However, an ideal implementation should
have a system where the users can apply for an increased quota. This system should
also have a minimum of administrative overhead, allowing a ”single click” for both
approval and implementation of the updated quota.

BIBLIOGRAPHY 69

Bibliography

[1] Keith Adams and Ole Agesen. A comparison of software and hardware tech-
niques for x86 virtualization. In ACM SIGOPS Operating Systems Review, vol-
ume 40, pages 2–13. ACM, 2006.

[2] Zach Amsden et al. Vmi: An interface for paravirtualization. In Proc. of the Linux
Symposium, pages 363–378, 2006.

[3] Rich Uhlig et al. Intel virtualization technology. Computer, 38(5):48–56, 2005.

[4] Peter J Denning. Performance Modeling: Experimental Computer Science at its
Best. Communications of the ACM, 24(11):725–727, 1981.

[5] Gordon E Moore. Progress in digital integrated electronics. In Electron Devices
Meeting, 1975 International, volume 21, pages 11–13. IEEE, 1975.

[6] Gordon E Moore. Excerpts from a conversation with Gordon Moore: Moore’s
Law, 2005. Available from: ftp://download.intel.com/museum/Moores_

Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_

Moore.pdf [cited 13/05/13].

[7] Kevin Lawton. Running multiple operating systems concurrently on an
IA32 PC using virtualization techniques. 1999. Available from: http:
//web.archive.org/web/20041211213935/http://www.floobydust.
com/virtualization/lawton_1999.txt [cited 13/05/13].

[8] Gil Neiger et al. Intel virtualization technology: Hardware support for efficient
processor virtualization. Intel Technology Journal, 10(3):167–177, 2006.

[9] David Ott. Understanding VT-c: Virtualization Technol-
ogy for Connectivity. 2009. Available from: http:
//software.intel.com/en-us/blogs/2009/09/30/

ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
ftp://download.intel.com/museum/Moores_Law/Video-Transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
http://web.archive.org/web/20041211213935/http://www.floobydust.com/virtualization/lawton_1999.txt
http://web.archive.org/web/20041211213935/http://www.floobydust.com/virtualization/lawton_1999.txt
http://web.archive.org/web/20041211213935/http://www.floobydust.com/virtualization/lawton_1999.txt
http://software.intel.com/en-us/blogs/2009/09/30/understanding-vt-c-virtualization-technology-for-connectivity/
http://software.intel.com/en-us/blogs/2009/09/30/understanding-vt-c-virtualization-technology-for-connectivity/
http://software.intel.com/en-us/blogs/2009/09/30/understanding-vt-c-virtualization-technology-for-connectivity/

70 BIBLIOGRAPHY

understanding-vt-c-virtualization-technology-for-connectivity/
[cited 30/05/13].

[10] Peter Mell et al. The NIST definition of cloud computing. NIST special publica-
tion, 800:145, 2011.

[11] Antonio Corradi et al. VM consolidation: A real case based on openstack cloud.
Future Generation Computer Systems, 2012.

[12] Dylan Steinmetz et al. Cloud computing performance benchmarking and virtual
machine launch time. In Proceedings of the 13th annual conference on Informa-
tion technology education, pages 89–90. ACM, 2012.

[13] Åke Edlund et al. Practical cloud evaluation from a nordic eScience user perspec-
tive. In Proceedings of the 5th international workshop on Virtualization technolo-
gies in distributed computing, pages 29–38. ACM, 2011.

[14] Frank Doelitzscher et al. Private cloud for collaboration and e-Learning services:
from IaaS to SaaS. Computing, 91(1):23–42, 2011.

[15] Lars Erik Pedersen et al. SkyHiGh ADM. 2012. Graduate project. HiG.

[16] Frode Sandholtbråten. Virtualizing terminal rooms. 2008. Specialization project.
IDI, NTNU.

[17] Andreas Eriksen. Building a cloud for students at IDI. 2009. Specialization
project. IDI, NTNU.

[18] OpenStack Foundation - The OpenStack Blog, 2011. Available from:
http://www.openstack.org/blog/2011/10/openstack-foundation/
[cited 30/05/13].

[19] Companies Supporting The OpenStack Foundation, 2013. Available from:
https://www.openstack.org/foundation/companies/ [cited 30/05/13].

[20] Releases - OpenStack, 2013. Available from: https://wiki.openstack.org/
wiki/Releases [cited 21/05/13].

[21] Stephen J. Vaughan-Nichols. Canonical switches to OpenStack for Ubuntu Linux
cloud, 2011. Available from: http://www.zdnet.com/blog/open-source/
canonical-switches-to-openstack-for-ubuntu-linux-cloud/8875
[cited 30/05/13].

[22] Welcome to Nova’s developer documentation!, 2013. Available from: http://
docs.openstack.org/developer/nova/ [cited 21/05/13].

http://software.intel.com/en-us/blogs/2009/09/30/understanding-vt-c-virtualization-technology-for-connectivity/
http://software.intel.com/en-us/blogs/2009/09/30/understanding-vt-c-virtualization-technology-for-connectivity/
http://www.openstack.org/blog/2011/10/openstack-foundation/
https://www.openstack.org/foundation/companies/
https://wiki.openstack.org/wiki/Releases
https://wiki.openstack.org/wiki/Releases
http://www.zdnet.com/blog/open-source/canonical-switches-to-openstack-for-ubuntu-linux-cloud/8875
http://www.zdnet.com/blog/open-source/canonical-switches-to-openstack-for-ubuntu-linux-cloud/8875
http://docs.openstack.org/developer/nova/
http://docs.openstack.org/developer/nova/

BIBLIOGRAPHY 71

[23] NASA and OpenStack 2012, 2012. Available from: http://nebula.nasa.gov/
blog/2012/05/29/nasa-and-openstack-2012/ [cited 21/05/13].

[24] Selecting a Hypervisor - OpenStack Compute Administration Manual - Fol-
som 2012.2, 2012. Available from: http://docs.openstack.org/folsom/
openstack-compute/admin/content/selecting-a-hypervisor.html
[cited 21/05/13].

[25] Welcome to Swift’s developer documentation!, 2013. Available from: http://
docs.openstack.org/developer/swift/ [cited 21/05/13].

[26] Networking Options - OpenStack Compute Administration Manual - Fol-
som 2012.2, 2012. Available from: http://docs.openstack.org/folsom/
openstack-compute/admin/content/networking-options.html [cited
30/05/13].

[27] Welcome to Quantum’s developer documentation!, 2013. Available from: http:
//docs.openstack.org/developer/quantum/ [cited 21/05/13].

[28] Welcome to Glance’s developer documentation!, 2013. Available from: http:
//docs.openstack.org/developer/glance/ [cited 21/05/13].

[29] The Eucalyptus Story, 2013. Available from: http://www.eucalyptus.com/
about/story [cited 30/05/13].

[30] Eucalyptus Cloud Components, 2013. Available from: http://www.
eucalyptus.com/eucalyptus-cloud/iaas/components [cited 30/05/13].

[31] About the OpenNebula.org Project, 2013. Available from: http://
opennebula.org/about:about [cited 30/05/13].

[32] An Overview of OpenNebula 4.0, 2013. Available from: http://opennebula.
org/documentation:rel4.0:intro [cited 30/05/13].

[33] Rusty Russell. virtio: towards a de-facto standard for virtual i/o devices. ACM
SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[34] Creating custom images - OpenStack Compute Administration Manual - Fol-
som 2012.2, 2012. Available from: http://docs.openstack.org/folsom/
openstack-compute/admin/content/creating-custom-images.html
[cited 23/05/13].

[35] OpenStack Operations Guide, 2013. Available from:
http://docs.openstack.org/folsom/openstack-ops/
openstack-ops-manual-folsom.pdf [cited 21/05/13].

http://nebula.nasa.gov/blog/2012/05/29/nasa-and-openstack-2012/
http://nebula.nasa.gov/blog/2012/05/29/nasa-and-openstack-2012/
http://docs.openstack.org/folsom/openstack-compute/admin/content/selecting-a-hypervisor.html
http://docs.openstack.org/folsom/openstack-compute/admin/content/selecting-a-hypervisor.html
http://docs.openstack.org/developer/swift/
http://docs.openstack.org/developer/swift/
http://docs.openstack.org/folsom/openstack-compute/admin/content/networking-options.html
http://docs.openstack.org/folsom/openstack-compute/admin/content/networking-options.html
http://docs.openstack.org/developer/quantum/
http://docs.openstack.org/developer/quantum/
http://docs.openstack.org/developer/glance/
http://docs.openstack.org/developer/glance/
http://www.eucalyptus.com/about/story
http://www.eucalyptus.com/about/story
http://www.eucalyptus.com/eucalyptus-cloud/iaas/components
http://www.eucalyptus.com/eucalyptus-cloud/iaas/components
http://opennebula.org/about:about
http://opennebula.org/about:about
http://opennebula.org/documentation:rel4.0:intro
http://opennebula.org/documentation:rel4.0:intro
http://docs.openstack.org/folsom/openstack-compute/admin/content/creating-custom-images.html
http://docs.openstack.org/folsom/openstack-compute/admin/content/creating-custom-images.html
http://docs.openstack.org/folsom/openstack-ops/openstack-ops-manual-folsom.pdf
http://docs.openstack.org/folsom/openstack-ops/openstack-ops-manual-folsom.pdf

72 BIBLIOGRAPHY

[36] OpenStack Open Source Cloud Computing Software, 2013. Available from:
http://www.openstack.org [cited 26/05/13].

[37] Ken Pepple. Deploying OpenStack. O’Reilly Media, 2011.

[38] The OpenStack Open Source Project on Ohloh, 2013. Available from: http://
www.ohloh.net/p/openstack [cited 26/05/13].

[39] OpenStack with Ubuntu, 2013. Available from: http://www.ubuntu.com/
cloud/private-cloud/openstack [cited 26/05/13].

[40] Ray Walker. Examining load average. Linux Journal, 2006(152):5, 2006.

[41] How to use the Kernel Samepage Merging feature, 2009. Available from: https:
//www.kernel.org/doc/Documentation/vm/ksm.txt [cited 27/05/13].

[42] Bug #1011134 ”hairpin mode on vnet bridge ports causes false positives on IPv6
duplicate address detection”. Available from: https://bugs.launchpad.
net/nova/+bug/1011134 [cited 06/05/13].

[43] Bug #1078668 ”wrong quota_usages updated when admin deletes instance
of common user”. Available from: https://bugs.launchpad.net/nova/
+bug/1011134 [cited 27/05/13].

http://www.openstack.org
http://www.ohloh.net/p/openstack
http://www.ohloh.net/p/openstack
http://www.ubuntu.com/cloud/private-cloud/openstack
http://www.ubuntu.com/cloud/private-cloud/openstack
https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://bugs.launchpad.net/nova/+bug/1011134
https://bugs.launchpad.net/nova/+bug/1011134
https://bugs.launchpad.net/nova/+bug/1011134
https://bugs.launchpad.net/nova/+bug/1011134

73

Appendix A

Configuration

A.1 Puppet manifest

Listing A.1 – ../config/openstack.pp

####################
Node definitions
####################

node vtest01 inherits openstack_all {
}

node vtest02 inherits openstack_compute {
}

####################
Common variables
####################

$public_interface = ’br100’
$private_interface = ’br100’
credentials
$admin_email = ’<email>’
$admin_password = ’<password>’
$keystone_db_password = ’<password>’
$keystone_admin_token = ’<admintoken>’
$nova_db_password = ’<password>’
$nova_user_password = ’<password>’
$glance_db_password = ’<password>’

74 APPENDIX A. CONFIGURATION

$glance_user_password = ’<password’
$rabbit_password = ’<password>’
$rabbit_user = ’nova’
$secret_key = ’<key>’
$mysql_root_password = ’<password>’
$cinder_user_password = ’<password>’
$cinder_db_password = ’<password>’
$fixed_network_range = ’<network>/<netmask>’
$floating_network_range = false
$verbose = false
$auto_assign_floating_ip = false

$controller_node_address = ’<controller_ip>’
$controller_node_public = $controller_node_address
$controller_node_internal = $controller_node_address
$sql_connection = "mysql://nova:${nova_db_password}@${

controller_node_internal}/nova"

##
Node providing both controller and compute service
##

node openstack_all {

class { ’nova::volume’: enabled => false }

include ’apache’
class { ’openstack::all’:
cinder => true,
quantum => false,
public_address => $ipaddress_br100,
public_interface => $public_interface,
private_interface => $private_interface,
admin_email => $admin_email,
admin_password => $admin_password,
keystone_db_password => $keystone_db_password,
keystone_admin_token => $keystone_admin_token,
nova_db_password => $nova_db_password,
nova_user_password => $nova_user_password,
glance_db_password => $glance_db_password,
glance_user_password => $glance_user_password,
rabbit_password => $rabbit_password,
rabbit_user => $rabbit_user,
cinder_db_password => $cinder_db_password,
cinder_user_password => $cinder_user_password,
libvirt_type => ’kvm’,
floating_range => $floating_network_range,
fixed_range => $fixed_network_range,
verbose => $verbose,

A.1. PUPPET MANIFEST 75

auto_assign_floating_ip => $auto_assign_floating_ip,
network_manager => ’nova.network.manager.FlatManager’,
allowed_hosts => [’<node1>’, ’<node2>’],
mysql_root_password => $mysql_root_password,
secret_key => $secret_key,
nova_volume => ’nova’,

}

class { ’openstack::auth_file’:
admin_password => $admin_password,
keystone_admin_token => $keystone_admin_token,
controller_node => ’127.0.0.1’,

}

}

################
Compute node
################

node openstack_compute {

class { ’nova::volume’: enabled => false }

class { ’openstack::compute’:
cinder => false,
public_interface => $public_interface,
private_interface => $private_interface,
internal_address => $ipaddress_br100,
libvirt_type => ’kvm’,
fixed_range => $fixed_network_range,
network_manager => ’nova.network.manager.FlatManager’,
multi_host => false,
sql_connection => $sql_connection,
nova_user_password => $nova_user_password,
rabbit_host => $controller_node_internal,
rabbit_password => $rabbit_password,
rabbit_user => $rabbit_user,
glance_api_servers => "${controller_node_internal}:9292",
vncproxy_host => $controller_node_public,
vnc_enabled => true,
verbose => $verbose,
manage_volumes => true,

}
}

76 APPENDIX B. CODE

Appendix B

Code

B.1 Custom authentication driver

This is the Keystone authentication driver used for combining a user database in SQL
with external LDAP authentication.

An example of how to use this module with Keystone is included in Listing B.1.

Listing B.1 – Example configuration

/etc/keystone.conf

[identity]
driver = keystone.identity.backends.sqldap.Identity

[ldap]
url = ldaps://at.ntnu.no
user_tree_dn = ou=stud,ou=system,dc=ntnu,dc=no
user_id_attribute = uid

Listing B.2 – ../code/sqldap.py

vim: tabstop=4 shiftwidth=4 softtabstop=4

Copyright 2012 OpenStack LLC
#
Licensed under the Apache License, Version 2.0 (the "License"); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at

B.1. CUSTOM AUTHENTICATION DRIVER 77

#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

"""Identity back-end for Keystone for combining LDAP autentication with
SQL back-end"""

from __future__ import absolute_import

import ldap
from keystone import config
from keystone import exception
from keystone.common import sql
from keystone.common import utils
from keystone.identity.backends.sql import Tenant
from keystone.identity.backends.sql import Role
from keystone.identity.backends.sql import Metadata
from keystone.identity.backends.sql import UserTenantMembership
from keystone.identity.backends.sql import User
from keystone.identity.backends.sql import Identity as SQLIdentity

def _filter_user(user_ref):
if user_ref:

user_ref.pop(’password’, None)
return user_ref

"""Method that verifies the password using simple_bind to a LDAP server"""
def check_ldappw(user, pw):

success = True
user_id_attribute = config.CONF.ldap.user_id_attribute
user_tree_dn = config.CONF.ldap.user_tree_dn
try:

l = ldap.initialize(config.CONF.ldap.url)
dn = user_id_attribute + ’=’ + user + ’,’ + user_tree_dn
l.simple_bind(dn, pw)
l.result()

except ldap.LDAPError, e:
success = False

return success

class Identity(SQLIdentity):
def authenticate(self, user_id=None, tenant_id=None, password=None):

78 APPENDIX B. CODE

"""Authenticate based on a user, tenant and password.

Expects the user object to have a password field and the tenant to be
in the list of tenants on the user.

"""
user_ref = None
tenant_ref = None
metadata_ref = {}

try:
user_ref = self._get_user(user_id)

except exception.UserNotFound:
raise AssertionError(’Invalid user / password’)

"""Hardcoded exception for service users"""
if user_ref.get(’name’) in [’admin’, ’glance’, ’nova’, ’cinder’]:

if not utils.check_password(password, user_ref.get(’password’)):
raise AssertionError(’Invalid user / password’)

else:
if not check_ldappw(user_ref.get(’name’), password):

raise AssertionError(’Invalid user / password’)

if tenant_id is not None:
if tenant_id not in self.get_tenants_for_user(user_id):

raise AssertionError(’Invalid tenant’)

try:
tenant_ref = self.get_tenant(tenant_id)
metadata_ref = self.get_metadata(user_id, tenant_id)

except exception.TenantNotFound:
tenant_ref = None
metadata_ref = {}

except exception.MetadataNotFound:
metadata_ref = {}

return (_filter_user(user_ref), tenant_ref, metadata_ref)

B.2 User management

In this section the script used to create users is included.

Listing B.3 – ../code/adduser.sh

#!/bin/bash

B.2. USER MANAGEMENT 79

This script adds a user, creates a project and sets the default quota.
As the SQL backend requires that we set a password when creating user
accounts, we generate a random password. This password will never be used,
when combined with the sqldap Horzion driver.

function usage {
echo "$0 - Create tenants and users via keystone client"
echo "Requires SERVICE_TOKEN to be set in environment"
echo ""
echo "Usage: $0 username <email>"
echo ""
exit 1

}

function get_id () {
echo $($@ | grep -i " id " | awk ’{print $4}’)

}

function get_id_list() {
match=$1; shift
echo $($@ | grep -i " $match " | awk ’{print $2}’)

}

if [["$1" = "-h" || ! "$#" -ge "1"]]; then
usage

fi

USERNAME=$1
EMAIL=$2
PASSWORD=$(pwgen 32 1)

if [[-z "$SERVICE_TOKEN"]]; then
echo "SERVICE_TOKEN not found"
usage
exit 1

fi

if [[-z "$EMAIL"]]; then
EMAIL=$USERNAME@stud.ntnu.no
echo "Using $EMAIL as email"

fi

TENANT_ID=$(get_id keystone tenant-create --name=$USERNAME)
USER_ID=$(get_id keystone user-create \

--name=$USERNAME \
--pass=$PASSWORD \
--email=$EMAIL)

MEMBER_ROLE=$(get_id_list Member keystone role-list)

80 APPENDIX B. CODE

keystone user-role-add --user-id $USER_ID \
--role-id $MEMBER_ROLE \
--tenant-id $TENANT_ID

for quota in volumes:0 \
gigabytes:10 \
ram:512 \
floating_ips:0 \
instances:1 \
cores:1; do

nova-manage project quota $TENANT_ID \
‘echo $quota | cut -f1,2 -d: --output-delimiter=’ ’‘ > /dev/null

done

81

Appendix C

Documentation

This appendix show the documentation provided to the end users of the system.

C.1 Getting started

C.1.1 Sign in

After obtaining a user account, sign in at http://openstack.idi.ntnu.no/
horizon using your NTNU credentials. The system will validate your password using
an encrypted LDAP-connection to at.ntnu.no.

C.1.2 Create keypair

To be able to log in to your virtual machines, you need to create (or import) a SSH
keypair.

1. Navigate to Access & Security

2. Select either Create or Import Keypair

3. If you choose to create a new keypair, give it a name (e.g. your username) and
store the private key in a safe place

http://openstack.idi.ntnu.no/horizon
http://openstack.idi.ntnu.no/horizon

82 APPENDIX C. DOCUMENTATION

4. Make sure that your private key has permission 600 before you use it. Run
chmod 600 filename.pem in a terminal.

See http://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter8.
html#puttygen-conversions for information about importing your SSH key in
putty.

C.1.3 Managing security groups / firewall

By default all incoming connections to the virtual machines are blocked. To open
additional ports, you need to add these as rules to your project’s security group.

1. Navigate to Access & Security

2. Select to create a new security group, or edit the rules in an existing one.

Example: Allow incoming ICMP and ssh traffic from all hosts

IP protocol From port To port Source Group CIDR
TCP 22 22 CIDR 0.0.0.0/0
ICMP -1 -1 CIDR 0.0.0.0/0

Example: Allow incoming http traffic from all hosts

IP protocol From port To port Source Group CIDR
TCP 80 80 CIDR 0.0.0.0/0

The updated rule set will be applied on the fly for running virtual machines in that
group.

C.1.4 Launch a Ubuntu 12.04 virtual machine

1. Navigate to Images & Snapshots

2. Locate the image named Ubuntu 12.04 and press Launch

3. Give your instance a name

4. Navigate to the Access & Security-tab and select a keypair and security group

Important: If you fail to select a keypair, you will not be able to log into your virtual
machine

http://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter8.html#puttygen-conversions
http://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter8.html#puttygen-conversions

C.1. GETTING STARTED 83

C.1.5 Using your Ubuntu 12.04 virtual machine

1. Navigate to Instances

2. Locate your virtual machine and find the IP

3. Log into the machine using ssh as user ubuntu with the key previously imported
or generated

4. Use sudo to obtain root access

Example:

ssh -i path/to/privatekey.pem ubuntu@<ip>
ubuntu@virtual:~$ sudo -i

84 APPENDIX D. SURVEY DATA

Appendix D

Survey data

In this appendix the raw data from the surveys are included. The questions were orig-
inally given in Norwegian.

D.1 Registration survey

In this section the original Norwegian questions (Table D.1), and all answers (Ta-
ble D.2) from the registration survey are included.

D.2 Evaluation survey

In this section the original Norwegian questions (Table D.3), and all answers (Ta-
ble D.4) from the evaluation survey are included.

D.2.1 Statements

In the mid term survey, the users were asked to give feedback in the comments field.
The original Norwegian statements are included here:

S1 Fint tilbud til studenter som ikke har tilgjengelig maskin/operativsystem.

D.2. EVALUATION SURVEY 85

Table D.1 – Registration questions

ID Question Type Alternatives
Q1 Primært bruksområde Choose one A1: Masteroppgave

A2: Prosjektoppgave
A3: Annet faglig
A4: Private formål / prøve ut tjen-
esten
A5: Other

Q2 Hva er viktigst for deg av ytelse og
stabilitet på tjenestene du planleg-
ger å kjøre på din virtuelle maskin?

Scale (1-5) 1=Ytelse
3=Like viktig
5=Stabilitet

Q3 Hvilke operativsystemer / Linux-
distribusjoner kunne du tenke deg
å benytte gjennom tjenesten?

Multiple choice A1: Ubuntu
A2: Debian
A3: CentOS
A4: FreeBSD
A5: OpenBSD
A6: Windows
A7: Other

Q4 Har du tidligere erfaring med bruk
eller oppsett av virtualiseringsløs-
ninger? KVM, VMWare, Amazon
EC2 o.l.

Ja / Nei -

Q5 Hvor ofte antar du at du kommer
til å benytte deg av din virtuelle
maskin, og/eller tjenesten som
kjører på den?

Choose one A1: Daglig
A2: Ukentlig
A3: Mindre enn én gang i uken

S2 Muligheten til å enkelt få et antall maskiner med administratortilgang til testfor-
mål er en stor fordel ved utvikling av en del typer programvare. Jeg tror denne
tjenesten kan være til stor hjelp spesielt under arbeid med master- og bachelor-
oppgaver, og mener derfor at IDI bør vurdere å tilby den permanent i en eller annen
skala.

S3 Dette er en tjeneste som vil være nyttig i svært mange fag.

S4 Super tjeneste, kunne ønske meg bedre persistens av de virtuelle maskinene for mu-
ligheter til å kjøre servertjenester ol.

S5 Dette er en fantastisk tjeneste fra IDI. Dette kommer til å gjøre en stor forskjell for
de som har behov for server til diverse formål. Det har vært til stor hjelp og nytte for
meg.

S6 Jeg synes dette er et veldig spennende konsept, og vet selv at flere studenter (ink.
meg selv) setter opp egen server hjemme. Å ha en maskin på fast IP med god bånd-
bredde kan være veldig nyttig for f.eks versjonskontroll og byggeserver. Hvorvidt IDI

86 APPENDIX D. SURVEY DATA

Table D.2 – Registration answers

Timestamp Q1 Q2 Q3 Q4 Q5
28/01/2013 15:44:56 A1 5 A1 No A1
28/01/2013 15:45:02 A4 3 A1, A2 Yes A2
28/01/2013 15:46:11 A4 4 A2 Yes A2
28/01/2013 15:48:59 A4 4 A1 Yes A2
28/01/2013 16:27:46 A4 4 A1, A2, A6 Yes A2
28/01/2013 16:28:03 A4 4 A1, A6, A7 Yes A1
28/01/2013 17:29:54 A4 5 A1, A2 No A1
28/01/2013 17:48:22 A3 4 A1, A2 Yes A2
28/01/2013 18:01:18 A3 5 A1 Yes A1
28/01/2013 18:09:16 A2 4 A1, A2 Yes A2
28/01/2013 22:59:25 A3 5 A1, A2, A3, A4, A6 Yes A2
28/01/2013 23:14:36 A5 4 A1, A2, A6 No A2
29/01/2013 02:00:09 A4 4 A1 Yes A2
29/01/2013 12:40:50 A4 5 A2 Yes A3
29/01/2013 15:18:27 A3 5 A2 No A2
30/01/2013 15:15:34 A4 3 A1 Yes A2
30/01/2013 21:50:25 A4 4 A1, A2 Yes A2
31/01/2013 04:14:56 A1 2 A1, A2, A6 No A2
31/01/2013 11:22:50 A4 3 A1 No A2
02/02/2013 22:55:26 A4 3 A1, A5 Yes A2
27/02/2013 11:34:12 A1 5 A6 No A1
02/05/2013 23:17:08 A5 3 A1 Yes A1
05/05/2013 11:44:06 A4 3 A1, A2, A6 No A3

bør videreutvikle dette vil jeg personlig svare ja for, men jeg synes det ikke burde
prioriteres veldig høyt, da folk stort sett kan finne alternative løsninger uten store
problemer.

D.2. EVALUATION SURVEY 87

Table D.3 – Survey questions

ID Question Type Alternatives
Q1 Har du opprettet en virtuell

maskin?
Ja / Nei -

Q2 Hvor ofte har du benyttet deg av
din virtuelle maskin?

Choose one A1: Daglig
A2: Ukentlig
A3: Mindre enn én gang i uken
A4: Én gang

Q3 Hva har du brukt maskinen til? Choose one A1: Masteroppgave
A2: Prosjektoppgave
A3: Annet faglig
A4: Private formål / prøve ut tjenesten
A5: Other

Q4 Om dette tilbudet ikke eksisterte,
hvor ville du da ha kjørt app-
likasjonen din?

Choose one A1: Eksisterende maskin hos IDI (f.eks.
arbeidsstasjon på lesesal)
A2: Bedt om ny maskin hos IDI
A3: Eksisterende tjenester hos
NTNU (f.eks. folk.ntnu.no eller lo-
gin.stud.ntnu.no)
A4: Ekstern tjeneste
A5: Privat maskin
A6: Ville ikke kjørt applikasjonen
A7: Other

Q5 Har tjenesten gjort det enklere å
skaffe nødvendige ressurser til ar-
beidet ditt?

Choose one A1: Ja, det har blitt enklere
A2: Nei, det har blitt vanskeligere
A3: Ingen betydning

Q6 Har maskinvarekvoten medført
noen ulemper eller begrensinger
for ditt bruksmønster?

Ja / Nei -

Q7 Har du oppdatert programvaren
på din virtuelle maskin etter in-
stallasjon?

Ja / Nei -

Q8 Hvordan syntes du det var å
komme i gang med tjenesten?

Scale (1-5) 1=Vanskelig
5=Enkelt

Q9 Jeg har ikke tatt i bruk tjenesten
fordi ...

Choose one A1: Brukergrensesnittet var for komplisert
A2: Har ikke hatt tid til å prøve den ut
A3: Har ikke hatt behov for en virtuell
maskin

Q10 Er dette en tjeneste du mener IDI
bør videreutvikle og tilby på per-
manent basis?

Yes / No -

88 APPENDIX D. SURVEY DATA

Table D.4 – Survey answers

Timestamp Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
03/04/2013 12:00:35 Yes A2 A1 A5 A3 No Yes 4 Yes
03/04/2013 12:02:38 Yes A2 A3 A6 A1 No Yes 5 Yes
03/04/2013 12:07:32 Yes A2 A4 A4 A1 No No 5 Yes
03/04/2013 12:09:01 Yes A3 A5 A5 A3 No No 5 Yes
03/04/2013 12:11:49 Yes A3 A4 A6 A3 No Yes 4 Yes
03/04/2013 12:12:20 Yes A4 A4 A5 A1 No No 1 Yes
03/04/2013 12:23:23 Yes A3 A3 A5 A1 Yes No 4 Yes
03/04/2013 13:14:50 No A2 Yes
03/04/2013 14:35:17 Yes A3 A4 A4 A1 No No 5 Yes
03/04/2013 15:26:30 Yes A3 A4 A5 A1 Yes Yes 5 Yes
03/04/2013 17:44:52 Yes A1 A5 A6 A1 Yes Yes 4 Yes
03/04/2013 19:00:05 Yes A2 A2 A5 A1 No Yes 5 Yes
03/04/2013 19:08:22 Yes A3 A4 A5 A3 No No 3 Yes
03/04/2013 19:42:24 Yes A3 A4 A5 A1 No No 4 Yes
03/04/2013 21:04:42 Yes A3 A4 A6 A3 No No 5 Yes
03/04/2013 23:43:57 Yes A3 A4 A2 A1 Yes Yes 4 Yes

	Introduction
	Problem description
	Project goal
	Approach
	Report outline

	Virtualization and cloud computing
	Virtualization
	Cloud computing
	Related work

	Project planning
	Current situation at IDI
	Requirements
	Available technology
	OpenStack
	Alternative open source virtualization systems
	Summary

	Implementation
	Setup
	Monitoring
	Routines
	Evaluation

	Private cloud in practice
	Methodology
	The operational period
	System usage
	Evaluation

	Surveys and user feedback
	Registration survey
	Evaluation survey
	User feedback
	Analysis

	Conclusion
	Data quality
	Objectives
	Conclusion
	Future work

	Bibliography
	Configuration
	Puppet manifest

	Code
	Custom authentication driver
	User management

	Documentation
	Getting started

	Survey data
	Registration survey
	Evaluation survey

