
Tribal Knowledge War
A Location-based Pervasive Knowledge War

Game

Adrian Christoffer Norås

Master of Science in Informatics

Supervisor: Alf Inge Wang, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology

Abstract
In this thesis, we aim to examine the relationship between a game's pervasiveness and its
entertainment value, and try to use this relationship to create a game that is both educational and fun
to play. It is our hope that a game that is both fun and educational will motivate players actively
learn and try to find new knowledge on their own in order to become better at the game.

To examine this relationship, we will develop a prototype of a game that aims to be both fun and
educational. This game is called Tribal Knowledge War.

We will first conduct a prestudy, where we will find and present information about the Android
platform and pervasive games. We will look at what possibilities the Android platform offers for
making a pervasive game, and possible ways to implement these. During the prestudy, we will also
find and discuss ways to create a good educational game by pursuing some core aesthetics in the
game: providing a decent challenge, presenting a compelling fantasy, and appealing to the player's
curiosity.

After the prestudy we will design and develop a prototype of a game, where the focus will be on
competitiveness and winning quiz-duels against close players. A user experiment will then be
conducted, where players are invited to play the game against other players, and afterwords fill out
a survey where they will explain their feelings and opinions of the game.

In the end of this thesis, the result of the survey will be used to examine to what degree the game
was successful as a fun and educational game. These results will show that the game scores high in
general usability and is relatively easy to learn how to play. It will also show that the participants
found it fun to play, and enjoyed the format of the game. However, while players enjoyed the game,
the results suggest that the game does not do enough to stimulate curiosity and motivate further
learning. We will use the results and the opinions expressed by players to suggest improvements to
the game to fix shortcomings.

i

ii

Sammendrag
I denne masteroppgaven ønsker vi å undersøke sammenhengen mellom et spills pervasiveness og
dets underholdningsverdi, og vi skal prøve å bruke denne sammenhengen til å lage et spill som både
er lærerikt og morsomt å spille. Målet er å lage et spill som er morsomt og som vil motivere
spillerne til å aktivt ville lære og tilegne seg ny kunnskap på egenhånd for å bli bedre.

For å undersøke denne sammenhengen vil vi utvikle en prototyp av et spill som skal prøve å være
både morsomt og lærerikt. Dette spillet vil hete Tribal Knowledge War.

Først skal vi gjennomføre forhåndsundersøkelser hvor vi vil finne og presentere informasjon om
Android-plattformen og pervasive spill. Vi vil se på hvilke muligheter Android-plattformen tilbyr
for å kunne lage et pervasive spill, og mulige måter å implementere disse på. Vi vil også finne og
diskutere måter å lage et bra og lærerikt spill ved å sikte på å implementere viktige estetiske trekk i
spillet: tilby en ordentlig utfordring, presentere spilleren med en engasjerende fantasi, og å appellere
til spillerens nysgjerrighet.

Etter forhåndsundersøkelsene vil vi designe og utvikle en prototyp av et spill, hvor fokuset vil være
på å konkurrere og å vinne quiz-dueller mot andre spillere som befinner seg i nærheten. Etter
utviklingen vil det bli arrangert en brukertest hvor deltagere vil bli invitert til å spille spillet mot
hverandre, og etterpå fylle ut et skjema hvor de kan gi tilbakemelding om hva de syntes om spillet.

I slutten av denne oppgaven vil resultatet av brukertesten bli brukt til å undersøke i hvilken grad
spillet lyktes i å kombinere å være underholdende med å være lærerik. Resultatene vil vise at spillet
fikk god tilbakemeldinger om underholdningsverdi og generell brukervennlighet, og at spillere likte
spillets format og utførelse. Derimot vil det også vise at spillet ikke lyktes i stor grad å stimulere
nysgjerrighet og oppmuntre til videre læring. Resultatene av testen, kombinert med direkte
tilbakemeldinger fra testerne, vil bli brukt til å foreslå forbedringer for å fikse svakhetene til spillet.

iii

iv

Preface
This document is the master thesis of Adrian C. Norås, and concludes my master's degree in
Informatics.

In this thesis, I created a prototype of a pervasive duel-based quiz-game for the Android platform, to
create a game that is both entertaining to play and can be an effective learning tool.

I would like to thank Alf Inge Wang who was my supervisor for his help on this thesis, and I would
also like to thank all the participants in the user experiment, who provided invaluable feedback on
the prototype.

Special thanks also go to my family and friends who provided moral support during the entire
project, and patiently listened to my frustrated complaining during difficult times.

Trondheim, June 11th, 2013

Adrian Christoffer Norås

v

vi

Problem description
The project will focus on developing and testing a new type of educational game on mobile phones.
The game is a light-weight RPG where players can challenge other players in the same physical
location to knowledge-duels. The game can be expanded to utilize other properties of mobile
phones, as well as elements from similar games. The game consists of one game server and clients
where the game is played. The target platform is Android.

The first phase of the project will be to develop a prototype of the game, including a server and
game clients. The second phase is to test the game on players and evaluate the user experience.

vii

viii

Table of Contents

Part I Introduction and research
Chapter 1 Project Background...2

1.1 Motivation...2
1.2 Project Goal..2
1.3 Reader's Guide..3

Chapter 2 Research..4
2.1 Research Questions...4

2.1.1 Combine fun with educational..4
2.1.2 Pervasiveness and knowledge...4
2.1.3 Research questions summarized...5

2.2 Research Method..5
2.3 Development Tools...6

2.3.1 Eclipse...6
2.3.2 ADT Plugin for Eclipse...6
2.3.3 AndEngine...6
2.3.4 Visio 2013...7

2.4 Research process...7
2.4.1 Use of code snippets and open source software..7

Part II Prestudy
Chapter 3 What makes games fun...9

3.1 Mechanics, dynamics, aesthetics..9
3.2 What makes things fun to learn..10
3.3 Competition...11

Chapter 4 Similar games and concepts..12
4.1 Pervasive Games...12
4.2 Knowledge Games..13
4.3 Duel-based games...17
4.4 A special case: an earlier version of Tribal Knowledge War..19

Chapter 5 Android platform...20
Chapter 6 Possible technical solutions..21

6.1 Web applications...21
6.2 Native applications...22

Chapter 7 Possible implementations...24
7.1 Peer-to-peer...24
7.2 Server..24
7.3 GPS and Location...25
7.4 Google Cloud Messaging..25

Chapter 8 Summary of prestudy..27

Part III Own Contribution
Chapter 9 Description of the final game..29

9.1 Core gameplay..29
9.2 Players and their “tribe”..29
9.3 Challenges and the contested area..31
9.4 Duels and weapons...32
9.5 Game flow...33

ix

9.5.1 Game states...33
9.5.2 Game Screens..36

Chapter 10 Game design...42
10.1 Evolution of game concepts ..42
10.2 Discussion on the game's final design...44

10.2.1 Mechanics, dynamics and aesthetics..44
10.2.2 What makes learning fun?..45

Chapter 11 Requirements..47
11.1 Functional requirements...47
11.2 Non-functional requirements...48

Chapter 12 Architecture...50
12.1 Choice of architecture..50

12.1.1 Server...51
12.1.2 Storage...51
12.1.3 Client..52

12.2 Interaction between client and server..52
12.3 Storage...54
12.4 Client..56
12.5 Handling GPS and finding suitable user locations..56
12.6 Textual representation of player status and battle risk...57
12.7 Model View Controller..58

Chapter 13 Implementation...60
13.1 Server...60

13.1.1 Receiving a request from a client...62
13.1.2 Receiving a location update and heartbeat...64

13.2 Client..65
13.2.1 Communicating with the server...67
13.2.2 Receiving Push Notifications...70
13.2.3 Use of interfaces...71
13.2.4 Local Storage...72
13.2.5 The duels..72
13.2.6 Game Data stored in XML...76

Part IV Evaluation
Chapter 14 User Experiment...81

14.1 Purpose of experiment...81
14.2 Description of experiment...81
14.3 Task List..82
14.4 Questionnaire...82
14.5 Questionnaire results...84
14.6 Observations made during experiment..85

Chapter 15 Evaluation...87
15.1 Evaluation of architecture..87
15.2 Evaluation and use of AndEngine ..88
15.3 Evaluation of usability...88
15.4 Evaluation of entertainment and educational value...88
15.5 Feedback from testers after debriefing..89
15.6 Evaluation of observations made during experiment..90

x

Part V Conclusion
Chapter 16 Conclusion..92
Chapter 17 Further work...94

17.1 Further development..94
17.2 More extensive usability tests..95

Part VI Appendix
Appendix A: User experiment raw data...100

xi

Figure Index
Figure 1: Trivial Pursuit's board...15
Figure 2: An example card from Trivial Pursuit...15
Figure 3: A Buzz! controller...16
Figure 4: A question during a round of Buzz!..16
Figure 5: A question during a round of Lecture Quiz...17
Figure 6: The game board in Quiz Battle...17
Figure 7: Tetris multiplayer..19
Figure 8: Battle in progress in Super Puzzle Fighter 2 Turbo..19
Figure 9: A Pokémon battle..20
Figure 10: How a player manages their tribe...32
Figure 11: How to challenge someone...33
Figure 12 Sequence diagram displaying handling of weapons..35
Figure 13 State diagram of Tribal Knowledge War..36
Figure 14: Login Screen...38
Figure 15: Registration Screen...38
Figure 16: Main Menu..39
Figure 17: Chat Overlay...39
Figure 18: Manage Own Tribe...40
Figure 19: Received Challenges...40
Figure 20: Map Screen...41
Figure 21: Set up challenge ...41
Figure 22: Default question..42
Figure 23: Choose weapon...42
Figure 24: Battle result...43
Figure 25: Physical view of system..54
Figure 26: Logical View...56
Figure 27: EER diagram for Tribal Knowledge War database...57
Figure 28: Package diagram for Tribal Knowledge War server...63
Figure 29: Relationship between single servlet and other important classes.....................................63
Figure 30: Java servlets..64
Figure 31: Sequence diagram showing two players finishing a duel...65
Figure 32: Sequence diagram showing a player challenging another..66
Figure 33: Class diagram of client..68
Figure 34: Overview of Server-class..69
Figure 35: Activities with their private classes...71
Figure 36: Sequence diagram showing a player sending a challenge..72
Figure 37: Overview of classes involved with push notifications..73
Figure 38: Sequence diagram showing a player answering a question..75
Figure 39: BaseDisplayQuestionScene and two of its subclasses..76
Figure 40: Player answering a question and receiving a negative effect..78
Figure 41: Overview of two factory-classes...80

xii

Index of Tables
Table 1: Research questions...5
Table 2: Taxonomy of aesthetics..11
Table 3: Advantages and disadvantages of web applications...24
Table 4: Advantages and disadvantages of native applications..25
Table 5: Gold profit for all combinations of questions and squares...34
Table 6: Functional requirements...49
Table 7: Non-functional requirements..50
Table 8: Contents of JSON objects...55
Table 9: User experiment task list..84
Table 10: SUS statements...85
Table 11: Non-SUS statements...86
Table 12: Results of SUS questionnaire...87
Table 13: Result of non-SUS statements..87

xiii

1

Part I

Introduction and research

Chapter 1
Project Background

1.1 Motivation

Video games and mobile phones are a big part of today's society. Smartphones have become a very
capable gaming consoles, and many users actively use their phones to play games. With so many
people carrying around a gaming consoles at almost all times, there are great possibilities to provide
a large part of the population with useful applications, such as educational games. Educational
games have much potential as a tool to make learning fun, and to motivate its users to seek out
knowledge on their own.

Smartphones also create new and exciting possibilities for such educational games, as these devices
make it possible for users to bring games with them wherever they go. Most modern devices have
many different sensors that can find information about the position of the device and state of the
world around it. Sensors such as accelerometer and GPS are easily accessible for applications on the
device, and games can let this information influence gameplay in various ways.

Motivated by these new possibilities, we want to create a fun and educational games that utilize
some of the sensors of an Android phone to create a pervasive game, that will hopefully make the
experience more engaging and valuable.

1.2 Project Goal

The goal of this project is to develop a prototype for an educational and pervasive game, where
players that are close to each other can challenge each other to quiz-duels. The prototype should try
to incorporate elements and strategies from popular design theories in today's game industry in
order to make the game both entertaining and educational. After development of the prototype, it
should be evaluated in a user experiment, where participants get the opportunity to play the game
against other players, and then give feedback on the overall quality of the game and its educational
value. The results of this experiment can be used to see whether a game like this can be relevant to
use for educational purposes, whether it would be an enjoyable way for for example students to
learn about a subject, and to motivate further learning.

The name of this game will be Tribal Knowledge War.

2

1.3 Reader's Guide

This thesis consists of six parts.

Part I is an introduction to the thesis, where the motivation and goal of this project will be
explained, as well as the research questions and method.

Part II is the prestudy where relevant information will be researched and presented, such as related
works, information about the Android OS, and various possible solutions for the implementation of
the prototype. It will also discuss important terms such as pervasive game, and present various
publications concerning game design.

Part III will explain the developer's own contribution in this project. It will explain how the finished
game works, what the purpose behind design decisions were, as well as present the implementation
of the prototype.

Part IV contains the description and evaluation of the user experiment.

Part V is the conclusion of the thesis, where the answers to the thesis' research questions will be
discussed. This part also contains a discussion of possible improvements to the game, and future
work.

Part VI contains the appendix where the raw data from the user experiment can be found.

3

Chapter 2
Research

2.1 Research Questions

The research questions in this thesis all concern how one can make a game that is both enjoyable to
play and educational.

2.1.1 Combine fun with educational

The goal of almost every game developer is to make a game that is fun, scary, sad or otherwise
engaging in order to give players the desire to play the game for extended amounts of time. A game
that is so uninteresting that every player stops playing it after a couple of minutes must be
considered a failure. Knowing this, what is the best ways to create a game that players find
engaging?

When trying to develop an educational game, the main goal is to teach the player something. What
are good ways to make sure that players learn something by playing the game? A game can be
educational without being entertaining, but it's hard to imagine players dedicating much time to an
uninteresting game unless they are being forced to play it by a teacher or similar.

It's reasonable to assume that the best way to create an educational game, is to combine the two
main goals, and try to make a game that is both fun and educational, so that players themselves are
motivated to play and learn. But what is the best way to do this? What are the most important
aspects that makes a game fun, and how can one combine that with making the game educational?

2.1.2 Pervasiveness and knowledge

In today's society, many people have a smartphone of some sort. This means that if a person is close
to a group of people, there's a good chance that someone in that group has a device that allows them
to communicate with them.

This creates new and exciting possibilities. One can create games that are educational, and that

4

makes it possible to compare knowledge against other people in the area, both friends and strangers.
Would these possibilities make the game more enjoyable? Are people interested in playing against
strangers, and would the prospect of winning over others motivate the player to become better at the
game?

2.1.3 Research questions summarized

The questions presented in Chapter 2.1.1 and 2.1.2 are the basis for the research questions in this
thesis, and these questions are summarized in Table 1.

Table 1: Research questions

RQ1 What makes a game an effective learning tool?

RQ2 What makes a game fun?

RQ3
Can one combine classic concepts from game design with an educational game to
create a fun and valuable experience?

RQ4 Does competition make a game more fun?

RQ5 How can one use pervasiveness to increase motivation to learn?

RQ6 Is it more fun to only challenge players in the vicinity in the physical world?

2.2 Research Method

The main research method in this thesis will be the Engineering Method described my Zerlkowitz
and Wallace [1]. This method consists of developing and testing a prototype, and based on the
results of the tests, go back and improve and refine the prototype until no further improvements are
needed.

Development of this prototype will consist of several steps. First, a literature study will be
conducted, where the main goal will be to find important and relevant publications on theories of
game design in order to find popular and effective strategies on how to make games fun and how to
make games educational. The information found during this study will be used to answer many of
the research questions, and the strategies will be used in the development of the prototype. Another
important goal is to find information about Android OS, server software and various solutions for
implementing the prototype.

After research and development, an experiment will be arranged where participants will play the
game with other participants and then give feedback on the overall quality and educational value of
the prototype. This feedback will be collected through a survey that all participants will receive and
fill out after playing the game. The survey will consist of 20 statements, and the participants will
give each statement a “score” between 0 and 4, where 0 means that they strongly disagree and 4

5

means that they strongly agree with the given statement. By analyzing this data, we will get an
indication of the general usability of the game, and how much players enjoyed playing it.

In addition to the survey, the developer will also observe the participants while they're playing, and
look for anything noteworthy that might be of use in the final evaluation of the prototype, such as
behavior while playing or whether they struggle with the GUI.

This feedback will be discussed, and used to suggest changes and improvements to the prototype.

2.3 Development Tools

2.3.1 Eclipse

Both the server and the client was written in Java, and Eclipse was therefore a natural choice of IDE
for this project. Eclipse is entirely free and open-source, and it is a very flexible IDE because of its
support of plug-ins. Plug-ins can be installed to add practically any functionality to Eclipse, and
there are several plug-ins that were used in this project that made development easier.

2.3.2 ADT Plugin for Eclipse

Google has developed a plug-in for Eclipse called ADT (Android development tools). This plug-in
makes it easy to develop applications for the Android platform by giving easy access to many of the
Android SDK tools, such as providing access to an mobile device through a ADB. This makes it
easy to compile and launch an Android application on an external device, and also makes it possible
to view logcat-output from the device. ADT also includes customized XML-editors suited to create
and edit Android manifest-files and layout-files.

2.3.3 AndEngine

AndEngine is a game engine that is created to make it easy for developers to create 2D games on
the Android platform. It is an open-source project started and maintained by Nicolas Gramlich.

The engine is simple to use, and handles the difficult details of creating a game, such as handling
user input, creating textures, implementing physics and collision detection, etc.

Use of the engine alters the structure of the application compared to a standard Android application
by using its own SimpleGameActivity-class instead of the regular Android Activity. Developers then
create their own Scenes that are displayed on screen. A Scene is similar to a canvas, in that sprites
and graphics are placed in the Scene at specific coordinates, and are then displayed on screen for the
user.

Usually, a developer for the Android platform would have to worry about all the different screen
sizes on different Android devices, but AndEngine handles this automatically by detecting the
screen size and scaling the graphics appropriately. This should make it much easier to make the

6

game appear pretty on different devices.

2.3.4 Visio 2013

Microsoft Visio is a flowchart software that makes it easy to draw diagrams that are pretty and easy
to understand, and also follows standard UML notation.

2.4 Research process

The process of developing the game will be divided into four main parts: research, design,
implementation and evaluation.

During the research-part, time will be spent becoming familiar with possible ways to implement the
server and client, as well as looking for similar games and concepts to use as inspiration.

The design phase will consist of making a general design of the system, such as deciding on
functional requirements and how the client and server will interact.

In implementation, the client and server will be developed in parallel using an iterative development
strategy. The focus will be on implementing limited amounts of functionality at a time, and
continuously building on what has been previously implemented, using the general design of the
system as a guide.

In the evaluation phase, a user experiment will be conducted, in order to find if the goal of making a
game that is both fun and educational was reached. In this experiment, participants will be invited to
play the game against each other, and afterwords fill out a survey about their feelings on the game.
The survey will ask about general usability of the game, and specific questions regarding
educational value and enjoyability. In addition to the survey, the developer will observe the players
while they are playing the game, and try to look for anything noteworthy in their behaviour that
might reveal additional information useful for evaluating the game. The result of this experiment
and observation will be used to evaluate the current prototype and suggest changes and
improvements.

2.4.1 Use of code snippets and open source software

During development, certain problems will probably be encountered with solutions that are not
easily developed alone. If such problems are encountered, discussion boards and forums on the
Internet will be used to find common solutions, such as open source software, or simply snippets of
code suggested by experienced developers.

7

8

Part II

Prestudy

Chapter 3
What makes games fun

One of the goals of the project is to develop a game that is both educational and fun. This chapter
will explain some research done on how to accomplish this. This report will return to these concepts
later, where they are used to evaluate the different aspects of Tribal Knowledge War.

3.1 Mechanics, dynamics, aesthetics

Hunicke, LeBlanc, Zubeck [2] describes a way to examine what they refer to as a game's
Mechanics, Dynamics and Aesthetics, and how to use these observations to examine the different
aspects of a game, and how the different aspect interact. It suggests looking at a game's Aesthetics
of play first, to see what experiences the game hopes to give, and then see how the game's dynamics
and mechanics should support these aesthetics. Note that the word aesthetics is used in a somewhat
figurative way in the article, and is meant to describe the desirable emotional response evoked in
the player when they interact with the game system.

Table 2 lists the taxonomy of aesthetics suggested in the article.

Table 2: Taxonomy of aesthetics

Aesthetic Description

Sensation Game as sense-pleasure

Fantasy Game as make-believe

Narrative Game as drama

Challenge Game as obstacle course

Fellowship Game as social framework

Discovery Game as uncharted territory

Expression Game as self-discovery

Submission Game as pastime

Sensation refers to a game being pleasurable to experience, for example through having beautiful

9

music or graphics.

The aesthetic Fantasy is about the game presenting the player with an immersive world or setting,
one that stimulates the player's imagination.

Narrative refers to the game including an interesting story, where the player cares about the
outcome and what happens to the characters.

Challenge is when the game presents the player with obstacles to overcome, where either practice
or thorough evaluation of the situation is needed to progress.

Fellowship as an aesthetic is about making the game encourage social interaction, for example
through overcoming obstacles as a team.

The aesthetic Discovery refers to presenting the player with a game where there is much to discover,
for example by having a huge and mysterious world where the player can travel. It can be similar to
Fantasy, but focuses more on presenting the player with the unknown.

Expression is about providing the player with a way to express themselves in the game, for example
by having ways for the player to permanently change the game world through their decisions.

Submission is about a game being simple to play, and not demanding very much attention. A game
that has this aesthetic is the kind of game a player plays just to relax and wind down.

Hunnicke, LeBlanc and Zubeck suggests that this taxonomy helps to describe games, and by
looking at what aesthetic goals a game pursues, it is easier to examine how the game must function
in order to create these experiences for the player.

3.2 What makes things fun to learn

Thomas W. Malone [3] discusses the main characteristics of a good educational computer game,
and he organizes these characteristics into three main categories: challenge, fantasy, and curiosity.

Challenge is explained as “In order for a computer game to be challenging, it must provide a goal
whose attainment is uncertain.” This means that a game must neither be too easy or too hard. If a
player is certain that they will always reach the goal with minimum effort, the game will quickly
become boring. It is equally bad if a player is convinced that they will never reach the goal no
matter how hard they try. There has to be a balance where the player must put in effort to reach the
goal, and where their effort will be rewarded.

Games that include Fantasy show or evoke images of physical objects or social situations not
actually present. This could mean many different things, such as setting up a story in the game,
where the player has to progress and overcome obstacles to find out what happens. A game that
seeks to teach children how to use a map could involve a story about a child being lost in a forest
and where they have to use a map to get home. Fantasy can also mean to hide game mechanics
behind a setting that disguises their purpose, such as solving puzzles to defuse a bomb that is about
to blow up a city.

Curiosity is the motivation to learn, independent of any goalseeking or fantasy-fulfillment. If a
game appeals to the player's curiosity, the player would be motivated to play it because they want to

10

unravel its mysteries. A game where every action causes a simple and predictable reaction would
lose its appeal after a while, especially compared to a game where every action can occasionally
cause unforeseen consequences. These consequences should not be entirely unpredictable, but
rather be the consequences of a system that is deeper and more complex than it originally appeared,
so that the player always feels that there is more to discover.

3.3 Competition

Competition can motivate players to learn and perform better as a consequence of introducing a
variable difficulty level to the game, but it can also motivate players to improve because they want
to be better than everyone else thus introducing a goal for players [3]. Competition is considered to
be an effective way to motivate players to learn [4], but one has to be careful because if the game
becomes excessively competitive it can have negative effects [5], and make losers lose interest.

Evaluations of other prototypes of competitive quiz games has shown that players seem to enjoy the
competitive nature of the game, and that it motivated them to learn [6].

11

Chapter 4
Similar games and concepts.

In this chapter we will introduce several games that are similar to Tribal Knowledge War in some
way, and we will also explain what is meant by a pervasive game.

4.1 Pervasive Games

Pervasive games are not easily defined, but a working definition is given by Montola [7]:

A pervasive game is a game that has one or more salient
features that expand the contractual magic circle of play spatially,
temporally or socially.

Spatial expansion means that the socially constructed location of the game is unclear or unlimited.
In contrast to for example traditional board games that are played at the location of the board and
players, pervasive games can be played anywhere.

Temporal expansion ties in with spatial expansion, and means that the socially constructed game
session is interlaced and mixed with regular life. Just as they can be played anywhere, pervasive
games can also potentially be played anytime. Games might lie dormant and then suddenly alert the
player into playing them again.

Social expansion means that the boundary of playership is obfuscated. People who are not active
players might make a difference to the outcome of the game, either becoming unwillingly involved,
or by being made aware of the game being played and deciding to join.

A survey on attitude towards pervasive gaming [8] suggests that such games are an attractive
concept to people in general, and that the majority felt that pervasive features would add value to a
game. The study also found that simpler game concepts were more attractive than more advanced
concepts like augmented reality.

Although player vs player mode was less popular than single player mode, the survey also
suggested that people want pervasive games to facilitate competition and communication.

12

Pervasive games do not have to be video games, and an example of a pervasive game that is not a
video game is The Amazing Race, a TV game show where several teams compete for a big money
prize. The game consists of several “rounds,” where in each round the teams travel from location to
location, finding and decrypting clues in order to find where to go next, and the goal is to be the
first team to arrive at the round's “pit stop.” The last team to arrive is eliminated from the game, and
the winning team is the one that arrives first at the final pit stop. The locations in the game can be in
many different countries, and the clues can be very cryptic and involve the surrounding area, which
makes the game fit the definition of a pervasive game.

A good example of a pervasive video game was inspired by The Amazing Race, and was developed
as part of a master thesis in 2011. This game was called The Amazing City Game [9], and was a
game for Android OS. In the game, a person (or team) starts the game on their phone, and they have
to go to certain locations in Trondheim to solve puzzles, or to answers riddles and questions. The
game takes advantage of many of the sensors in an Android phone, and utilize GPS position and
camera etc.

4.2 Knowledge Games

Knowledge games are a popular genre of games, where the goal of the game is to know more than
your opponent about a certain topic, mostly general trivia spread across several categories such as
geography or literature.

Most knowledge games take inspiration from classic board games such as Trivial Pursuit. In Trivial
Pursuit players throw dice to to move around on the game board, and they have to answer a
questions from the category corresponding to the color of the tile they land on. The goal of the
game is to reach certain special tiles, where answering the question correctly is rewarded with a
piece of cake that symbolizes that the player has “completed” that category. When a player has
completed all categories, they win they game if they manage to move to the middle of the board.
Figure 1 shows the game board in Trivial Pursuit, and Figure 2 shows an example of a card with
questions the players have to answer.

13

Buzz! is a series of quiz-games developed by the company Relentless Software for the Playstation 2
and Playstation 3 [10]. It supports up to four players at a time, and every player gets a custom
Playstation-controller shaped similar to the devices participants on game shows on TV use. It has
four distinctly colored buttons, and a huge red button at the top. The game has several different
game modes, and players use the controller in different ways depending on the current mode. Often,
players use the colored buttons to select a certain alternative in answer to a question, and other
times the players have to be the first player to press the big red button on top when a correct answer
appears.

14

Figure 1: Trivial Pursuit's board

Figure 2: An example card from Trivial Pursuit

Figure 3 shows the standard Buzz! controller. Figure 4 below shows how an example of how a
question is presented to the players. Each alternative corresponds to one of the colored buttons on
the controller, and players answer by pressing one of the buttons.

Lecture Quiz is a game concept developed by Alf Inge Wang at NTNU in 2006 [11]. It is a quiz-
game designed to be used during lectures in schools and universities, where everyone present can
partake in a competitive quiz battle. Players can use a laptop or a smartphone to participate and they
only have to register a username on the server running the quiz, and they are ready. Questions are
displayed to the entire class, and each player use their device to answer.

15

Figure 4: A question during a round of Buzz!

Figure 3: A Buzz! controller

Figure 5 shows an example of how a question is presented to an entire class during a lecture.
Similar to how Buzz! functions, each player has the colored buttons on their personal device, and
answer the question by pressing the appropriate color.

Quiz battle is a game application for Android where players can challenge friends to knowledge-
battles. Each battle has a board that consists of a grid of squares, where one square is the start
positions, and another is the goal position. Players navigate around by dragging a question-category
from the side of the screen to the square they want to move to. They then have to answer a question
from that category, and if they answer correctly, they move to that square. Players take turns
answering questions, where each turn consists of five questions, and each correctly answered
questions grants points. The battle ends when a player places a question on the end-position and
answers the questions correctly, and the player with the most points wins the battle.

Figure 6 shows the game board in Quiz Battle, with the various available categories of questions on

16

Figure 5: A question during a round of Lecture Quiz

Figure 6: The game board in Quiz Battle

the right side of the screen.

4.3 Duel-based games

Duel-based games are games where a large part of the gameplay is centered around one player
challenging another to direct competition, and where the result is that one player wins and the other
loses (or it ends in a draw). This is relevant because it's similar to how Tribal Knowledge War will
work, and inspiration can be taken from these games to make Tribal Knowledge War entertaining.

Tetris [12] is a classic video game where a player is given a playfield where blocks are
continuously falling. The player can control the blocks, and if they manage to stack blocks in such a
way that they fill an entire row in the playfield, the row is removed and the player is awarded
points. The goal of the game is to get an as high a score as possible, and it becomes more and more
difficult because the blocks fall faster the more points the player has. A player loses if the stack of
blocks become so tall that it reaches the top of the playefield.

The game was originally made for the Commodore 64 and IBM PC, but it was the Nintendo Game
Boy-version of the game that was released in 1989 that really made the game popular. Since then,
many different versions of the game has been made, and several versions have a multiplayer mode.
In multiplayer, two (or more) players play at the same time, and whenever a player removes blocks
from their own playfield, blocks are added to the opponent's playfield. This makes the duel a
constant struggle to stay ahead of the other player, and the goal can be either to reach a certain
amount of points, or simply be the last surviving player.

Figure 7 shows a screenshot from a modern version of Tetris that supports 4 simultaneous players in
multiplayer. While this is not strictly a duel that fits the definition given earlier since more than two
players are involved, it follows many of the philosophies and can still be used as inspiration for
Tribal Knowledge War.

Super Puzzle Fighter II Turbo is a one- or two-player puzzle-game developed by Capcom [13]. In

17

Figure 7: Tetris multiplayer

the game, the two players are given their own playfield and control blocks of “gems” that drop into
it. The object of the game is to remove gems as they fall down, but the only way to remove them is
to place color-matching gems next to a “crash block” of the same color. This will remove all
adjacent gems of the same color and can trigger huge chain reactions. Every time a player removes
gems from their playfield, “garbage blocks” are dropped into the opponent's playfield. The garbage
blocks can not be removed immediately and can make the game difficult for the opponent. As a
consequence, each player tries to be faster than other player and ruin their progress by creating as
many garbage blocks as fast as they can.

Figure 8 shows a battle in progress. The two blocks on the right-player side with the number 3
inside them are garbage blocks. The number inside indicates that they can not be destroyed before 3
seconds have passed.

Pokémon is a massively popular game series by Nintendo [14], with a strong multiplayer aspect.
The player takes the role as a Pokemon-trainer, and the object of the game is to capture and train
mystical creatures, and use these creatures to defeat other Pokemon-trainers in duels. This series
mostly exists on Nintendo's handheld devices such as the DS and Gameboy, and in the older games,
players that were close to each other could challenge each other to duels by standing close to each
other and having their devices communicate through a cable or infra-red. This makes those game
pervasive in much the same way as Tribal Knowledge War. The newer games, however, allow
players to challenge each other through the Internet, which makes the location of the players
irrelevant.

18

Figure 8: Battle in progress in Super Puzzle Fighter 2 Turbo

Figure 9 shows a battle between two Pokémon trainers in the game Pokemón Fire Red for the
Nintendo Game Boy Advance. Fire Red is one of the older games, and two players who wanted to
play against each other had to use a cable to physically connect their GBA's toghether.

4.4 A special case: an earlier version of Tribal Knowledge War

Designing an developing a duel-based quiz-game has been an available assignment for a master
thesis for many years at the Department of Computer and Information Science at NTNU. A specific
earlier version called KnowledgeWar [15], made by Sveinung Kval Bakken in 2010 was based on a
very similar to concept to Tribal Knowledge War.

KnowledgeWar was an application for face-to-face quiz battles, where players were able to
challenge other people who was close to them, and both players would be presented with several
multiple-choice questions, one at a time. Answering a question correctly would award points, and
the player who received the most points would be the winner of that battle.

This game was pervasive because the physical location of the player influenced who they could
challenge. That version did not however try to bring much gameplay beside the actual quizzes into
the game, focusing instead on just implementing a functional quiz-application.

In this project, inspiration was taken from the previous version, but trying to add more game-like
elements has been a priority.

19

Figure 9: A Pokémon battle

Chapter 5
Android platform

Android is an open-source, Linux-based operating system software designed for smartphones and
tablets. Android is a very flexible operating system for the user, and a lot of the flexibility comes
from the option to install “apps” on the device. “Apps” are applications that extend the functionality
of the device, and can be for example an application that lets the user quickly write down notes, or
it can be a game meant for entertainment. Apps have access to almost all the features of the phone
that the core applications have, so users are free to install custom camera-apps, and phone-apps.
Even the onscreen keyboard used for user input can be replaced by installing an app.

Android applications are most often written in a customized version of the Java programming
language. It runs on a custom virtual machine called Dalvik Java Virtual Machine (DJVM) instead
of the regular Java Virtual Machine (JVM).

Android is the most popular operating system in the mobile market, with a market share of almost
75% in the first quarter of 2013 [16] .

20

Chapter 6
Possible technical solutions

On modern mobile devices, applications can often be divided into two groups: web applications and
native applications. The line between these groups are somewhat blurred, but they can be described
like this: a web application is an application that is accessed by users through a network, usually the
Internet, and the client is often a standard web browser. A native application is a locally installed
application that is designed to run in the computer OS, in this context Android OS.

These two kinds of applications have different advantages and disadvantages, and choosing which
one to make is therefore an important decision to make in the development of an application.

Studies made on the opinions of various developers show that the development cost and time-to-
market are lower for the development of web apps, but native apps most often offer a better
experience for users [17].

6.1 Web applications

A web application was defined earlier as an application that is accessed through a network, often
using a browser. One big advantage of this, is that the application can be accessed by just about any
modern phone, or even a desktop computer. This would make the application almost inherently
multiplatform, and would remove the need to write separate applications for for example Android
and iOS. The application would as a result be both easier and quicker to develop.

Another big advantage is that such an application would be very easy to distribute and update,
because there is no need to distribute a file that must be installed by the user. The user would simply
need an URL and they would immediately be able to use the application. And since updating the
application would be entirely on the server side, it could be done at any time, and without requiring
the user to download any data.

Web applications do however have some drawbacks. While they are platform independent, they are
not entirely browser independent. Some browser have small things that make them different from
others, and this could potentially make it difficult to make the application appear as desired for
every user.

Limited access to phone features is also a drawback. For a long time, web apps could not use any of

21

the phone's features such as GPS or gyroscope, but this is quickly changing. Today, most functions
are accessible by a web application, but not all.

One drawback is the lack of possibility for push-notifications. A web application must be open to be
active. If the user closes the web browser, they also close the application. If the application needs to
tell the user that something has happened and the user should take action, it has to wait for the user
to open the application and check.

Table 3 shows a summary of the main advantages and disadvantages of developing a web
application.

Table 3: Advantages and disadvantages of web applications

Web application

Advantages Disadvantages

Automatically multiplatform Limited access to phone features

Easier to distribute and update Limited possibility for push-notifications

Not browser independent

When developing complex applications, it is often a good idea to use a framework. A framework is
an abstraction that provides the user with certain generic functionality, that can be changed or
extended by user written code. A developer that uses a framework to develop software can usually
not have to worry about low-level details of the implementation, but can concentrate fully on
making the system meet their requirements. In the case of game development, it would be desirable
to use a framework that makes the handling of graphics easy, and also that automatically handles
the game-loop and similar generic game concepts. There are several such frameworks available for
the development of web applications.

PaperJS is one such framework. It is an vector graphics scripting framework, and it runs on the
HTML5 Canvas [18]. While not strictly meant for game development, it would be a powerful tool
for creating nice graphics that would be accessible for every device with a modern browser.

Another possible framework is LimeJS. It is a HTML5 framework, and is good for building fast and
native-experience games for basically any modern device [19]. It is open-source, has a decently
sized community, and there are several games available on the Apple App Store that are developed
using this framework.

A final alternative for framework is CraftyJS. It is an open-source, Javascript-based HTML5 game
engine, designed to make simple games with 2D graphics [20].

6.2 Native applications

A native application was defined earlier as a locally installed application that is designed to run on
the computer OS, for example Android OS in the case of mobile applications. One immediate
advantage of this is that the application has full access to all phone features, like GPS, gyroscope
and the ability to run background threads that can initiate actions without user input. This means

22

that the application can tell the user when some action is required, even if the user does not have the
application open.

In contrast to web applications, native applications are automatically single platform, and the
developer must make entirely separate applications for every OS they wish to support. This adds to
both development cost and time.

Table 4 summarizes the advantages and disadvantages of native applications.

Table 4: Advantages and disadvantages of native applications

Native application

Advantages Disadvantages

Full access to phone features Not multiplatform

Push-notifications Must be installed on each device

Developer experience Have to distribute updates to every user

As with development of web applications, there are many frameworks available for developing
native game-applications.

One such framework is Unity 3D. It consists of a powerful rendering engine fully integrated with a
complete set of intuitive tools to create 3D games [21]. It is a commercial product of very high
quality, and developers have to pay for a license to use it.

Another framework is AndEngine [22]. It is an open-source game engine designed to make it easy
for developers to create 2D games on the Android platform. It is actively developed, has a decently
sized community, and offers lot of flexibility in development.

23

Chapter 7
Possible implementations

As a multiplayer game, one of the basic requirements of the game is that players have to be able to
interact with each other, either through chatting or dueling.

There are some very different ways to implement this interaction between players, and it depends
on the architecture of the system. With a client-server architecture, it would be natural that players
communicate through the server, but with a peer-to-peer architecture, players could communicate
directly with each other.

7.1 Peer-to-peer

A peer-to-peer architecture immediately introduces the problem of how players should find each
other. Using GPS to find each user's location and then have other users find them based on that
position is very difficult using this architecture. In fact, during this pre-study, no way was found to
accomplish this. A more technically feasible solution would be to use Bluetooth. Bluetooth is a
wireless technology standard for exchanging data over short distances, and practically all modern
mobile devices supports it.

Bluetooth usually has range of around 100 meters, and devices with Bluetooth that are within range
can find and connect to each other without having to use any external server. It is however, very
battery intensive, and without a server, it would not make it possible to make a web application.

7.2 Server

A client-server architecture would require a server for the clients to communicate with, and there
are several possible ways to set up this server.

One possibility would be to use Google App Engine [23]. The App Engine is a service offered by
Google that lets any developer run web applications on Google's infrastructure. The App Engine is
free, and because it uses Google's infrastructure, extremely reliable. It would require no
maintenance and it would automatically scale according to its needs. It does however have the big

24

disadvantage that any sort of server-based permanent storage costs money.

Another possibility would be to set up a web server to run on a local machine for use during
development, or rent a server from one of the many websites that offer such services.

One alternative for setting up a private web server is to use server software like Apache Tomcat [24]
or Jetty [25]. Apache Tomcat is a open source web server and servlet container, and it provides a
HTTP web server environment for Java code to run. One could then use Java Servlets with user-
written code to handle requests from clients. These requests could be regular HTTP requests. Jetty
is basically identical to Apache Tomcat in function and would therefore be a very viable alternative.

There are alternatives to using Java servlets, and one of these alternatives is Node.js [26]. Node.js is
a platform made for easily building fast and scalable network applications. Applications developed
for Node.js are written on the server side in Javascript, and can run on an Apache web server
because it contains a built-in HTTP server library.

Renting a server from a service on the web would be extremely similar to using a local server,
except that it would possibly easier to access for outside users.

7.3 GPS and Location

Continuously keeping track of a user's location is a tricky problem, without a single solution that
works best for every case [27]. Android offers two ways to find the location of a device, GPS and
Android's Network Location Provider.

GPS is the most accurate, but it does not work well indoors, uses a lot of battery, and it does not
return the location of the device as quickly as most users want.

Android's Network Location Provider uses cell tower and Wi-Fi signals to determine the location.
This works well both indoors and outdoors, responds faster than GPS, and uses less battery power.
However, it is less accurate than GPS and requires that the device is in range of a cell tower or Wi-
Fi signals.

7.4 Google Cloud Messaging

Google Cloud Messaging (GCM) is a service offered by Google that makes it possible for
developers to send data from their server to a user's Android-powered device [28]. Messages sent
this way can only contain a limited amount of data, and they are meant as a way to alert the client
that there is new data to be fetched from the server. The maximum payload is 4kb of data, so simple
messages like strings of text meant for instant messaging services can be sent directly.

The GCM service handles all aspects of queuing of messages and delivery to the target device, so
it's easy to implement into any application. The developer must simply register an account with
Google, and create a project in the Google API Console. The service then generates an API Key that
the developer must use later. Then, the GCM helper libraries must be installed on the server, and
whenever the server needs to send a message, it simply uses these libraries along with the API Key
to send messages.

25

In order for the GCM service to be able to send a message to the target device, the device needs to
find its GCM ID, and register this ID on the server. The ID is found by using standard Android
libraries in the application on the target device.

26

Chapter 8
Summary of prestudy

In the prestudy, we have found some important and useful articles about how to make a game fun
[3], and how to analyze game elements to examine if the game pursues the correct aesthetics [2].
These articles will be used later to design the gameplay of Tribal Knowledge War, and also to
discuss the final design.

We have also found that there are several important decisions to make, that will influence the
architecture of the system, and one of the most important decisions is whether the game should be a
web application or a native application. Both have advantages and disadvantages, but both will be
well suited for this project. The decision will have to come down to preference, and availability and
ease-of-use of frameworks for the chosen solution.

The final decision is to develop the game as a native Android application. This is done because it
fits the best with the developer's previous experience, and because this means that the very powerful
and flexible framework AndEngine can be used. This will make the development easier, and means
that more time can be dedicated to designing the game instead of struggling to learn new
technology.

We found some possible ways to implement the server-side of the application, and the final decision
on this will be presented and discussed in Chapter 12.1.

27

28

Part III

Own
Contribution

Chapter 9
Description of the final game

In this chapter, the final design and gameplay of the game will be described. This is done to easier
be able to explain the choices and changes made during development to the game's design and
function.

9.1 Core gameplay

The main gameplay of Tribal Knowledge War consists of playing duels against other players where
both players have to answer multiple-choice questions, with a time limit on each question. Each
duel can have minimum two questions, but maximum five questions. For every correctly answered
question, the player receives an amount of points determined by the time left when they answered;
more time left means more points received. When both players have answered all questions, the
player with the highest amount of points wins the duel.

However, there is also a somewhat strategic game surrounding the duels.

9.2 Players and their “tribe”

In Tribal Knowledge War each player plays as the leader of their own tribe of desert nomads. The
different tribes are at war with each other, and they fight these wars by having duels where the
winner is the tribe with the most trivia-knowledge. In addition to winning simply by having the
most knowledge, they also push the odds in their favour by using several silly weapons during duels
to make it harder for their opponent to play.

The game has a main resource, gold, which is used to buy weapons and buildings. Gold is earned by
winning duels, and there are several ways to increase the amount of gold earned.

Each tribe has their own area, which in-game is a 5x5 grid where the players can place buildings or
wagons. These wagons can be placed at each of the four corners of the player's area, and they grant
different bonuses during duels, such as more gold awarded for winning, or increased damage.
Damage is important because buildings have a limited amount of health, and can be destroyed if the

29

player loses a duel. Buildings that are placed can also be upgraded by spending gold. Upgraded
buildings give stronger bonuses.

Figure 10 shows the screen in which a player manages their tribe. The placement of buildings
within the player's area matters because when challenging another player to a duel, the attacker
decides where to attack the other tribe. The two players' areas will overlap and this overlapping area
is the “contested area” in the duel.

30

Figure 10: How a player manages their tribe

9.3 Challenges and the contested area

Figure 11 shows the screen where a player challenges another to a duel. The red area in the center of
the bottom half is the opponent, and the blue area is the player who is about to send the challenge.
The blue player can place the center of their area on any of the blank squares surrounding the red
area, and this results in an overlapping are varying in size from 4 squares to 10 squares. Any
buildings in the contested area grant bonuses to the duel, and each player's bonuses can be seen in
the top left.

Buildings in the contested area can be destroyed if the player owning them loses the duel. A
building has a set amount of health and if it receives damage higher than its health it is destroyed.
The damage a building receives is determined by two factors: the amount of questions in the duel
and the total damage-bonus from the buildings involved in the duel. Each question means one
damage, so a duel with five questions will result in five damage to the loser's buildings in addition
to the damage from the winner's buildings.

Gold is earned by winning duels, and the amount of gold is decided by several factors. First, each

31

Figure 11: How to challenge someone

square of the contested area is worth 100 gold. So the base gold profit for a duel where the
contested area is 4 squares is 400 gold, while the base gold profit of 10 squares is 1000 gold. This
base gold profit is modified by the amount of questions in the duel. Every question increases the
base gold profit by 10%, so a duel with 5 questions and 10 squares in the contested area will have a
gold profit of 1500 gold. Table 5 shows the entire relationship between number of questions,
number of squares, and gold profit.

Table 5: Gold profit for all combinations of questions and squares

Questions / squares 4
squares

6
squares

8
squares

10
squares

2 questions 480 gold 720 gold 960 gold 1200 gold

3 questions 520 gold 780 gold 1040 gold 1300 gold

4 questions 560 gold 840 gold 1120 gold 1400 gold

5 questions 600 gold 900 gold 1200 gold 1500 gold

9.4 Duels and weapons

Duels in Tribal Knowledge War start at the same time, and they consist of the same questions for
both players. Every question is a multiple-choice question, and players have a limited amount of
time to answer. After answering a question correctly, a player gets the opportunity to use a weapon
against their opponent. A weapon costs gold, and it makes the next question harder for the opponent
in one way or another. It can reduce the amount of time available to answer, or display the text of
the question mirrored. A player gets access to weapons through owning specific buildings. Some
buildings give access to weapons, and upgraded buildings give access to more powerful weapons.

Although the duels start at the same time for players, the duels themselves are asynchronous, in that
players can finish at different times. Weapon-use are also asynchronous, and every time a player
uses a weapon, it is placed in a queue in the server. When it's time for the opponent to answer their
next question, the game contacts the server and gets the negative effect that's at the front of the
queue. Figure 12 shows this process.

32

Answering questions quickly is doubly rewarded, because the player gets to place lots of weapons
in the queue for the opponent while at the same time keeping weapons used against them to a
minimum, and in addition, quick questions grant the most points.

9.5 Game flow

This chapter describes the flow of the game, how the game is played, and what the user sees during
gameplay.

9.5.1 Game states

Figure 13 shows a state diagram that shows the different states of the game, and what states the

33

Figure 12 Sequence diagram displaying handling of weapons

game can transition to from a given state.

The Login Screen is the screen where the player types in username and password to log in to the
game. This screen also has a secondary part where a player can register a username, in case they
don't already have one.

The main menu screen is the central hub of the game, and consists of three buttons that take you to
other parts of the game. There is also a chat available on the main menu screen and all of its
subscreens, where players can send messages to everyone playing the game in their vicinity.

Pending challenges is a screen containing a list of all active challenges a player has received. Every
challenge creates a notification in the phone's status, but for players' convenience, they can also
access them in game.

34

Figure 13 State diagram of Tribal Knowledge
War

Manage Own Tribe is where a player reviews their area, places new buildings and upgrades their
existing buildings.

The Map screen is where a player can view a “map” of the area and the active players close to them.
This is not a map displaying the player's physical location, but merely a game-abstraction. It shows
a desert landscape, with every close player displayed as their own tribe. A player can challenge
other players by clicking on their tribe.

Players that click on another tribe on the map screen is taken to the Send challenge screen. In this
screen, a player decides the stakes of a duel, what category of questions the duel should have, and
how many questions.

After sending a challenge, the Duel start screen is displayed until the challenge is either accepted or
declined. The player receiving a challenge is shown a screen similar to the send challenge screen,
but with buttons to either accept or decline, and without any possibility to change stakes or size.

Once the duel starts, both players are shown similar screens. First a screen where the question is
displayed on the top part, and with 4 alternatives on the bottom half. Players then click on the
alternative they think is the right answer, and the next screen depends on whether or not the answer
was correct.

If the player answered correctly, they are shown a screen where they can choose what weapon to
use, or not to use a weapon at all. After they have decided, they press a button that takes them to the
next question.

If the answer was wrong, the player is shown a screen that informs them of this, and they can click a
button to advance to the next question.

When a player has answered all questions, and used their final weapon if the answer to the last
question was correct, they are taken to the battle result screen. On this screen a player can see
whether or not they won the duel, which questions they answered correctly, and which ones they did
not answer correctly. The answer to the questions are not displayed here, but a player can press a
button next to each question to be taken to a relevant website where they can learn more, and
hopefully find the answer. Finally, at the bottom of the battle result screen is a button that takes the
player back to the main menu.

35

9.5.2 Game Screens

Figure 14 and Figure 15 show the Login screen and the Register account screen respectively.

The Login screen is the first screen a user sees when they start the application. If the user has
registered an account previously, they can type in the name registered and the corresponding
password and then press the button marked “Log In”

If the user has not previously registered an account, they must press the button marked “Create New
Account,” which will make the screen shown in Figure 4 appear. There, the user can type in the
desired Account Name, and the password they wish to use. After filling out the form, pressing
“Create new account” will create the account, and the user will be logged in.

36

Figure 15: Registration ScreenFigure 14: Login Screen

Figure 16 and Figure 17 show the Main Menu of the game and the chat overlay.

The Main Menu is the central hub of the game, where the player can access most of the game's
functions. Pressing any of the buttons will take the player to the relevant screen.

At the bottom of the Main Menu, there is a tab marked “Chat.” Pressing this brings up the chat-
overlay, where the player can chat with other players in the area. Any message written there will
appear in the chat for every other player in the player's vicinity.

The chat can be accessed from almost anywhere in the game by pressing the tab at the bottom of the
screen. The only time the chat is not accessible is during a duel.

37

Figure 16: Main Menu Figure 17: Chat Overlay

Figure 18 and Figure 19 show the screen named “Manage own tribe” and also the screen showing
received challenges that are waiting to be accepted or declined.

In the Manage your tribe-screen, the player can view their existing buildings, upgrade them, and
build new ones. New buildings are placed by dragging them from the top to where the player wants
to place it. Players can see information about a building by clicking on it.

Figure 16 shows a challenge that has been received by a player named “B”, but the challenge has
not been accepted or declined yet. Accepting or declining challenges can be done in two ways. In
addition to creating an item on that screen, a notification is also created in the Android notification
bar at the top of the screen when a player receives a challenge. The notification is easiest to use if
the game is running in the background when a challenge is received, and the “Received
Challenges”-list may be easier to use if the player is actively using the game when a challenge is
received.

38

Figure 18: Manage Own Tribe Figure 19: Received Challenges

Figure 20 and Figure 21 show the map where players can see other players in the area, and the
screen where the player sets up and sends a challenge.

The map-screen is a game abstraction, and meant to be a more entertaining way of displaying
players that are ready to be challenged than a simple list. Other players are placed around the map,
and the player can scroll the map around in search of other players. When they find a player they
want to challenge, they can press on them and be taken to the screen where they can send a
challenge.

Figure 18 shows how a player sets up a challenge. The red square at the bottom of the screen is the
area of the opponent, while the blue square is the player's own area. The player decides where to
attack from by clicking in the empty part of the grid surrounding the opponent's area. Both the
player's and the opponent's bonuses are displayed in the top left part of the screen. On the top right
part, the player can choose what category of questions to have in the duel, and how many questions
the duel should consist of.

39

Figure 20: Map Screen Figure 21: Set up challenge

Figure 22 and Figure 23 shows the standard way a question is displayed, and also how the player
chooses a weapon after answering a question correctly.

The question itself is displayed on the top part of the screen, and the alternatives on the bottom. The
green bar in the middle is a visual display of the timer. It ticks down, and when it runs out, the
player fails the question automatically.

Figure 11 shows the screen where the weapons available to the player are displayed. Clicking on
one of the icons highlights it, and pressing the big button at the bottom will then use the weapon and
proceed to the next question.

40

Figure 22: Default question Figure 23: Choose weapon

Figure 24 shows the screen that is displayed when a battle is over. On the top part of the screen, the
player can see whether they won or lost, and how many points they got and how much money they
earned.

The rest of the screen is a list of the question that appeared during the battle, and the green check
mark shows that the player answered that question correctly. If a player wants to learn more about a
certain topic, they can press the button with a question mark on the right part of the screen, and a
browser will open and display a page with background information about the relevant question.

Pressing the button at the bottom takes the player back to the main menu.

41

Figure 24: Battle result

Chapter 10
Game design

This chapter consists of two parts. The first one is mostly descriptive explanation of how the game
evolved from initial ideas to the finished game, and the second part will be a discussion of why
certain choices were made and what the developer hoped to achieve.

10.1 Evolution of game concepts

Competition can be a strong motivating factor for players to improve [6], and by stimulating the
sense of competition, the game can hopefully be made more engaging and more fun. Any game that
focuses on duels between two players will inherently have competitive aspects, but by adding
additional gameplay-mechanics to the quiz-duels the competition will feel more direct.

While just quiz-duels can be entertaining in themselves, it is desirable to give players more reason
to play a game. By creating additional gameplay that surrounds the quizzes, players will be
motivated to play the game for other reasons than just the desire to answers questions correctly, and
that will hopefully make the game more effective as a learning tool.

In Tribal Knowledge War, one of the first ideas for making the game more interactive, was to give
players the possibility to influence each other during duels. Quiz-duels are inherently single-player
activities, and simply answering several questions and then get told that you either won or lost does
not necessarily feel rewarding or motivating. The inspiration for players to influence each other was
taken from puzzle-games that have versus-modes, more specifically Super Puzzle Fighter [13], and
Tetris [12]. When a player does something correctly, they are rewarded by being able to give the
opposing player penalties, which in the case of Super Puzzle Fighter means adding more blocks to
the opponents “board”. This idea was adapted to Tribal Knowledge War, and resulted in the
introduction of “weapons” to the quiz-duels. The idea is that answering questions correctly gives
the player an advantage, and allows them to make the next question more difficult for their
opponent. Possible weapons could be: giving the opponent less time to answer the next question,
thereby giving them less time to think; manipulating the way question is displayed in some way, for
example displaying the text mirrored, and thereby making it very difficult for the opponent to read
the question; or giving the opponent some kind of point-penalty, to force them to answer the next
several questions more quickly in order to make up the deficit.

As mentioned at the start of this chapter, it is desirable to create an additional layer of game around

42

the quiz-duels, and the first draft for such a “meta-game” was heavily based on strategy-games like
Risk [29] and Civilization [30]. A player would have a territory to defend, resources to control, and
buildings to maintain. Since Tribal Knowledge War was going to be a pervasive game, the resources
would be placed in the world, and players would have to be near these to have control over them.
The size of a player's territory would decide how many resources they would be able to control, and
winning and losing duels would influence the size of the territory. To more effectively protect a
resource, a player would place buildings in his territory, and these buildings would grant additional
positional bonuses and give access to the “weapons” mentioned earlier. Buildings would have an
“area of effect” so that their bonuses were only granted if it was close to the area of the territory
being attacked. Players would physically position themselves in the world in such a way that they
could attack other players from specific angles, thereby creating a need for players to strategically
place their buildings in their territory to avoid having weak spots that opponents could exploit.

After considering and discussing the implications these ideas would have for the game, several
problems were found. Problems with this idea include, but were not limited to:

• Too much complexity for a game without a “win-condition”. Players would probably not
feel motivated to put up with the need for micro-managing without any reward outside of in-
game currency that can only be used to create more buildings and therefore results in more
micro-managing.

• Could be technically difficult to have GPS position be reliable enough to have the attack-
angle make sense. GPS can take some time to get an accurate fix on position, especially
indoors.

• No natural limit on the size of a player's territory. The size would have to range from
ridiculously small to ridiculously large in order to give the system any depth, but that would
create problems because the physical world often puts limits on the area in which a player
has ability to move around.

• A study looking at people's attitude towards pervasive games [8] suggests that players do not
want to play a game that puts restrictions on where they have to be in the physical world in
order to play. Having to guard resources in certain locations could be unpopular.

• If the resources were randomly placed or generated in some way by the server, it is possible
to imagine a situation where it would be worthwhile for a player to sit at home with the
game open, guarding a resource that no one else knows exists. The game should not reward
passive play. Alternatively, if the resources were hand-placed by the developer, it would
severely limit the amount of places the game could be played.

The general idea of having strategic elements was not entirely abandoned, but many parts were
changed.

Instead of having a player's territory increase or decrease, it would be fixed to a 5x5 grid, wherein
the player's buildings could be placed. And instead of having the possibility to place the buildings
freely inside the area, it would only be possible to place buildings in four different locations,
namely the four corners. In order to make sure that the game still involved some kind of strategic
choice, there are several kinds of buildings available that grant different bonuses, but a player does
not have enough space for all of them. So the player must choose what buildings they think gives

43

them the biggest advantage.

Part of the reason for the expanding territory that was originally planned, was to give the player a
feeling of progression. They would become more powerful by winning more duels, because they
would have room for more buildings and therefore have the upper hand against weaker players.
When the expanding territory was removed, there was need for another mechanic to give a sense of
progression. This mechanic was that players would be able to use gold to upgrade buildings.
Upgraded buildings would be more powerful, and give a significant advantage over other players
with weaker buildings.

The concept of players attacking others from certain angles were kept, but using the physical
location of the player as part of it was removed. Instead, the game uses physical location only to
find other players in the vicinity, and a player can challenge any one of those other players to a duel.
When challenging another player to a duel, they get to see the opponent's 5x5 grid and what
bonuses are granted by the different buildings. The player can then choose to attack from any angle
they want, and any buildings involved in the battle risk being destroyed.

The idea of resources, and having them placed in the world was entirely abandoned.

10.2 Discussion on the game's final design

In this section we will try to discuss Tribal Knowledge War's design, to look at how it uses elements
from game design theory and whether or not these elements are implemented correctly. We will also
look at how the game's design supports the guidelines for making educational games fun, and if the
attempt to be educational meshes well with the desire to also be entertaining and engaging in its
own right.

10.2.1 Mechanics, dynamics and aesthetics

Hunicke, LeBlanc, Zubeck [2] describes a way to examine what they refer to as a game's
Mechanics, Dynamics and Aesthetics, and how to use these observations to examine the different
aspects of a game, and how the different aspect interact. It suggests looking at a game's “Aesthetics
of play” first, to see what experiences the game hopes to give, and then see how the game's
dynamics and mechanics should support these aesthetics. Note that the word aesthetics is used in a
somewhat figurative way in the article.

Following Hunicke, LeBlanc, Zubecks taxonomy of aesthetics, Tribal Knowledge War aims to
pursue these aesthetics: Challenge, Discovery and Fellowship.

Challenge means “game as obstacle course” and can refer to dynamics such as competitive play, the
desire to win over other players, and to overcoming obstacles the game throws at the player. Tribal
Knowledge War tries to implements these dynamics to make the game fun. Competitive play should
be obvious, since the entire game is based around winning quiz-duels against other players, but it
also tries to be competitive through giving a way to compare oneself against other players. The
ability to upgrade buildings gives a player the ability to feel superior compared to others, for
example when looking for opponents to challenge. Weaker players are colored green, while stronger
players are colored red. Seeing many red players will hopefully motivate someone to become

44

stronger.

The other dynamic, overcoming obstacles, is implemented as the different weapons that can be used
by players during battles. Answering questions quickly, reading text backwards, panning the camera
in search for the question, are all obstacles that players must overcome in order to win.

Discovery as an aesthetic is not a main focus, and is therefore not as prominent in the design of
Tribal Knowledge War, but it is represented by the possibility for players to experiment with
different combinations of buildings in order to find an optimal one. Some of the available buildings
give access to weapons, while others only grant powerful passive bonuses. This hopefully creates an
interesting choice for the player, in that they have to choose between bonuses that are not directly
comparable to each other.

Fellowship is a part of the Tribal Knowledge War's nature, in that you can only challenge players
that are close by. In much the same way as competitive board games are as much about winning as
just watching your opponents become annoyed when you pull ahead, Tribal Knowledge War aims to
create situations where players can laugh with and at each other as they win, lose, or use
particularly frustrating weapons at suitable moments. The mechanics that support this, are the
nature of the weapons available. They aim to be an annoyance, but not to force a loss on a player.

10.2.2 What makes learning fun?

Having discussed the reasoning for the major design decisions in Tribal Knowledge War, it would be
wise to also look at educational games, and at what could make these games fun and educational.
Thomas W Malone [3] discusses the main characteristics of a good educational computer game, and
he organizes these characteristics into three main categories: challenge, fantasy, and curiosity.

Challenge is defined in this way in Malone's article: “In order for a game to be challenging, it must
prove a goal whose attainment is uncertain.” Tribal Knowledge War has goals on two different
levels, both of which are uncertain: the first is the short-term goal of winning a duel, and the second
is the more long-term goal of upgrading buildings and becoming more powerful. Both of these
goals are uncertain because they depend on the skill of a player's opponents. The long-term goal
does not have a clearly defined state of being attained, and it is also possible and likely for a player
to lose progress towards this goal by losing duels and thereby losing buildings. Therefore, Tribal
Knowledge War has two of the characteristics named by Malone, namely variable difficulty level
and multiple level goals.

Fantasy is a part of game if the game “shows or evokes images of physical objects or situations that
are not actually present,” according to Malone. He also distinguishes between what he calls
extrinsic and intrinsic fantasies. The difference between them is to what degree they integrate
themselves into the game's gameplay. An intrinsic fantasy is one where “not only does the skill
depend on the fantasy, but the fantasy depends on the skill.” This means that the gameplay is a part
of, and makes sense, in the game's fantasy. Tribal Knowledge War attempts to have an intrinsic
fantasy by being about warring nomad tribes that use quiz-duels to determine power, and who
sabotage each other by using dirty tricks. This fantasy is a silly one, but it's an attempt to give
player's a sense of why they are answering questions as part of the gameplay.

Curiosity is “the motivation to learn, independent of any goalseeking or fantasy-fulfillment.” The
goal of the game-developer should be to evoke the player's curiosity, and a way to do this is to make

45

sure that the game is neither too complicated nor too simple in regards to the player's existing
information. Tribal Knowledge War tries to implement this by encouraging players to search for an
optimal tactical solution concerning choice and placement of buildings. By making the players ask
themselves whether it's better to have many buildings that grant gold bonus or many buildings that
do damage, it hopefully motivates players to play the game to experiment and try to find what is the
best setup.

46

Chapter 11
Requirements

11.1 Functional requirements

In this chapter, the functional requirements of the game is presented. Table 6 shows all these
requirements.

Table 6: Functional requirements

FR1 The player should be able to register a username/password on the server.

FR2 The player should be able to log in using the username/password.

FR3
The player should be able to see an in-game representation of all players in the
physical proximity.

FR4
The player should be able to choose a player in the proximity and send a challenge to
a duel.

FR5
The player should be able to decide how many questions are in a duel when creating
the challenge.

FR6
The player should be able to set the terms of battle, by selecting “angle of attack” to
decide their own bonuses.

FR7 The player should be able to receive a challenge from another player.

FR8
The game should a display a screen showing information about an incoming
challenge, and allow the player to accept or decline.

FR9
The game should be able to synchronize duels and start it at the same time for both
players.

F10
The game should be able to automatically find the device's GPS position and send
latitude and longitude to the server.

FR11 The game should be able to get a list of questions from the server to use in a battle.

47

Table 6 (cont): Functional requirements

FR12
The game should display a question with four alternatives, and allow the player to
select one of them.

FR13
The game should keep track of a timer so that a player only has a certain amount of
time to answer a question.

FR14 The game should be able to calculate a score after each question based on time left.

FR15
The player should be able to use a weapon after a correctly answered question to
disrupt the opponent.

FR16
The player should be automatically logged out of the game if they have not
communicated with the server for a certain amount of time.

FR17
The game should automatically decline a challenge if the player does not accept or
decline it within a certain amount of time.

FR18
The game should make it impossible for a player to be challenged to duel while they
are already busy playing one.

The functional requirements were decided upon based on an analysis of the design of the gameplay,
and therefore most of them are requirements to implement important functions, such as making a
working timer so that players only have a limited time to answer questions.

It was decided that the server should keep track of a username/password-combination (FR1 and
FR2) in order to give players something to work towards. The game could function without
persistent storage of the player's progress, but it was thought that this would not feel as fulfilling to
the player.

FR16, FR17 and FR18 are important because there needs to be a protection in place to avoid that
players lose money and duels while they are busy or not available in some other way. For example
if a player is busy playing a duel against someone, another player should not be able to exploit this
by challenging the player to a duel because the challenge will be automatically declined if the
player does not finish the current duel quickly enough. This is bad because declined duels counts as
a loss for the one that declined.

11.2 Non-functional requirements

Table 7 shows the non-functional requirements of the game.

Table 7: Non-functional requirements

NFR1
The game should be easy enough to learn that it's possible to learn and play
within ten minutes.

NFR2 The game should run on Android OS, version 2.2 or later.

NFR3
The device the game is running on must have the ability to find its position
through the Android Network Locator.

NFR1 sets a specific requirement for the time needed to learn the game because of the user

48

experiment that is to be conducted later. Players need to learn the game before they can properly test
it, and if the game is too complex, it would be difficult to have players give accurate feedback in a
limited amount of time.

49

Chapter 12
Architecture

12.1 Choice of architecture

Early in the design phase, the it was reasoned that the most relevant architectures would be
client/server or peer-to-peer. Because the game was going to be a multiplayer game, it was clear that
players would need to communicate with each other, either through a central server or directly with
each other. At first, peer-to-peer seemed the most suitable, because it would not make the players
dependent on a server that may experience down-time or heavy load. Having players find each other
using Bluetooth, for example, would build the pervasiveness of the game directly into its
functionality, in that you would only be able to play with someone that was within Bluetooth-range.
Using peer-to-peer would also mean that time would not have to be spent designing a server, which
could possibly result in more time to develop the gameplay.

However, peer-to-peer does have disadvantages. As mentioned, communication would probably
have to be through bluetooth, and using bluetooth on modern smartphones is a very battery-draining
activity. It would also be much harder to make sure the available set of questions and answers
remained up to date, since they would have to be stored locally on the phone. Therefore, to update
the list of questions, every player would need to download an update of the game and install it. One
could imagine having issues where two players wanted to play together, but did not have the same
version of the game installed and therefore did not have access to the same set of questions.

A client/server architecture was then considered, and that has some advantages over peer-to-peer.
The problem of synchronizing the questions is easily solved by storing the questions on the server,
and having it deliver them to the client at the start of every duel. Communicating with a server is
not as battery-intensive as using bluetooth, because communication with the server can be done
over WiFi or through the mobile network. Also, by doing all game-logic on the server, it would be
harder for any player to cheat.

There are several disadvantages with a server/client-architecture, however. First and foremost, the
server must also be developed and that might take a lot of time away from developing the game
itself. The architecture would also create a problem with implementing the pervasiveness of the
game, because the server would have to store the location of all the clients and the clients would
have to update their position often to have it be relevant. This is a problem because GPS location
can be both slow and inaccurate, especially indoors.

50

After some evaluation, it was decided that the game would use a client/server-architecture. The
disadvantages of this architecture was considered to not be as serious as the disadvantages of peer-
to-peer, and a client/server-architecture would allow greater control over the game, for example by
having the ability to add or remove questions at any moment.

12.1.1 Server

When deciding on server solution, one thing in particular was considered very important, namely
that the system had to handle disconnects well. Because the game is played on a mobile phone,
disconnects are almost inevitable, for example because of unstable WiFi in public places, or that the
phone has to change from a mobile network connection to a WiFi connection. There were two
natural options to solve this problem, either make the server stateless, so that a disconnect is
unimportant because the client gives enough information every time for the server to do the right
thing; or use an already developed protocol like WebSockets, which have built-in protection against
disconnects so that it does not have to be taken into account while making the game.

A stateless server would be easier to implement, because it is similar to what the developer already
has experience in developing. The server could use Java servlets to handle requests from clients,
and the requests could be HTTP requests with a payload containing JSON objects, which are easy to
handle both conceptually and technically. A relational database could be used to store all
information needed to facilitate communication between clients.

The best solution for using Websockets seemed to using Nodejs as web server. Nodejs allows one to
develop a web service by running Javascript code serverside, and it is very popular and with great
performance. The main problem with this solution is that the developer in this project has no
previous experience using either Javascript or Websockets-technology, so it might take a lot of time
to learn how to do even basic things before the development could begin.

Both solutions seemed to be adequate for this prototype, and the choice fell on developing a
stateless server with Java servlets and Java code, because this would mean that the development
could start earlier. The server software chosen for the web service to run on, was Apache Tomcat.
Apache Tomcat was chosen over the alternatives because of the availability of tutorials and other
documentation compared to for example Jetty.

12.1.2 Storage

Using a relational database for permanent storage was the most obvious choice, and there are
several free and effective database management systems available, for example MySQL. It's easy to
set up, offers lot of flexibility, and also handles transactions automatically so there's little need to
worry about data integrity. It's also easy to set up a connection between a MySQL database and an
Apache Tomcat server. For these reasons, the use of a MySQL database was chosen.

51

12.1.3 Client

Two main options were considered on how to make the client. The client could either be a native
Android application, or a web application. The two options are discussed in Chapter 6.

The choice eventually fell on developing the game as a native Android application. This was
considered to be the best option, because it would utilize the experience of the developer best, and it
would therefore be reasonable to expect it to lead to the best product.

12.2 Interaction between client and server

Below is a figure showing the physical view of the system.

Figure 25 shows how the client and server communicate with each other. The communication
happens either through the web service calls, or through GCM (Google Cloud Messaging). The web
service is hosted on an Apache Tomcat web server, and clients requests information from the server
using HTTP requests. When the server needs to inform the clients of something, the server sends the
message and the client's unique ID to the GMC service, and the message gets “pushed” to the
correct device.

All HTTP requests sent by the client are HTTP POST requests. These requests contain a JSON
Object in its body, describing what action should be performed by the server. The server is stateless,
meaning that it does not keep track of the state of the clients in between each request received. For
that reason, every request to the server needs to contain all necessary information about the state of

52

Figure 25: Physical view of system

the client for the server to be able to perform the correct action.

Table 8 shows examples of JSON objects being sent from the client.

Table 8: Contents of JSON objects

Scenario JSON object Servlet

Register
account

{
 “command” : ”register”,
 “accountname” : ”Player1”,
 “password” : “1234”
}

LoginServlet

Send challenge

{
 “command” : “challenge”,
 “challengee” : “Player2”,
 “risk” : “5,2;0-1,0-4;3-4;0-4”,
 “size” : “3”,
 “category” : “0”,
 “accountname” : “Player1”,
 “password” : “1234”
}

ChallengeServlet

In the first scenario, the request is sent to the servlet named LoginServlet. The servlet reads the body
of the HTTP request, and finds that the command is “register” which means that it creates a new
entry in the database and inserts the username and password that are included with the request into
that entry. In the second scenario, the request contains the command “challenge”, along with the
necessary information about the battle and who should receive it. The request also contains the
name and password of the player who sent the challenge, so that the web service can check the
database and be reasonably certain that the request is sent by a valid player. The server then checks
the database to find the rest of the information necessary to notify the other player that they are
being challenged.

Figure 26 attempts to show a Logical View of the entire system, with the most important parts of
the client and server and how they interact with each other.

53

The client is inside the frame on the bottom, and the server is inside the frame at the top.

The Activities inside the GameActivities-package uses the various scenes contained in the package
Scenes to display information on the screen.

The various Activities in the client handle all communication with the Tribal Knowledge War server
through the class called Server. The Server-class sends an HTTP request to one of the servlets on the
server, and the servlet that received the request handles it by using the GameLogic-class or the
DatabaseConnection-class.

If the server needs to alert a player of something, for example if the player is being challenged, the
server uses the class GCMMessenger to push messages to clients. On the client side, the class
PushMessageHandler receives and handles the pushed messages.

12.3 Storage

For permanent storage, the system uses a MySQL database. Figure 27 shows the EER-diagram for
the database.

54

Figure 26: Logical View

The table Player stores information about any player that has registered an account. It contains
information needed for the game, such as their coordinates and also the player's area. The area is
the in-game state of a player, and contains information about what buildings the player owns, what
rank those buildings are, and where they are placed. The area is stored as a string following a
specific format so that it can be easily parsed by the game and server.

The table Battle contains information about a specific duel, such as how many questions there are in
the duel, and whether it has finished or started. It also contains information about the risk of battle.
This risk is a string-represantation of what are at stake for the players, what part of their area is
involved and what buildings are at risk of being destroyed if they lose the battle.

Question contains all the questions with its alternatives. Each question also has a URL associated
with it, where a player can find more information about a specific question if the player wants to
learn more.

Question_categories is the table containing the different categories in which questions can be.

55

Figure 27: EER diagram for Tribal Knowledge War database

The table battles_in stores information about a player's role in a specific battle. Score and amount of
gold spent on weapons are stored here, and also whether or not a player has finished. The column
debuffs contains information about what weapons are used against a player during a duel.

Question_category and battle_question are simple tables that associates questions and battles with
categories and questions respectively.

12.4 Client

The client is a native Android application, written in Java. The game was developed using a
framework called AndEngine (see Chapter 2.3.3). Because of the use of AndEngine, the client has a
somewhat different structure than regular Android applications. Instead of using regular Activities, a
subclass called SimpleBaseGameActivity is used. This subclass abstracts away the handling of the
game loop and makes the creation and use of textures easy. To display items on the screen, it is
necessary to create instances of the class Scene (or of a subclass). A scene can be compared to a
window or a screen in a game. The main menu, for example, can be one Scene and when the player
presses on a button to go to another screen, the game changes to another Scene. A
SimpleBaseGameActivity can create several scenes, and switch between them based on user input.

12.5 Handling GPS and finding suitable user locations

Asking for location through use of GPS or Android's Network Location Provider on mobile devices
is a tricky subject, because the developer need to find a very delicate balance between accuracy and
use of power.

The model suggested by Google for getting best performance is built around maintaining a “Current
best estimate” and asking for new location updates when the user initiates an action that would
benefit from it [27]. Tribal Knowledge War's functionality and dependence on maintaining a good
estimate that is stored on a remote server, makes Google's model not ideal. The user seldom initiates
any action that would benefit from an updated position, apart from looking for players in the area,
but on the other hand, it would be a very common occurrence that other users would benefit from a
single user maintaining a good location-estimate on the Tribal Knowledge War-server.

The fact that players often use the location of other players introduce some specific problems. If the
server treats the location as a set of coordinates, latitude and longitude, and responds to requests for
“close” players by returning a list of players that are within a specific deviance from the given
coordinates, this is very sensitive to inaccurate results. In order for “close players” to be a term that
makes sense, the deviance from the user's location can't be too big, but if it's too small, there's a
chance that the result is so inaccurate that the server can not find any other players that are close to
the player.

Testing and evaluation of the game resulted in the decision that it would be best to focus on using
Android's Network Location Provider instead of GPS. The reasons for this is that is most likely that
the game will be played indoors, and GPS is not well suited for indoor use. Using the Network
Location Provider creates other problems, however, as it is not suited to “track” users. That is, it can
not update the location whenever the device moves a certain distance. Using a combination of GPS
and the Network Location Provider was deemed unnecessary, because a user's location would

56

probably considered too inaccurate the moment they stepped into a big building, so it would be
meaningless and wasted battery power to accurately track them while outside.

Several implementations were tested during development, and it became necessary to simply find a
suitable compromise between accuracy and fast determination of location. It ended up as a
relatively naïve implementation, but one that works well for its use.

Every five minutes the client asks the Android Network Location provider for its location, and the
result is the device's latitude and longitude given in decimal degrees. The coordinates are uploaded
to the server and stored in the database. When the server needs to find a list of players that are
“close” to a given player, it uses the latitude and longitude of the player directly.

The server has a defined constant named CLOSE_PLAYER, and the server looks for players whose
latitude and longitude fall in the interval of the player's coordinates plus-minus this number.

The method has worked well during development and testing, but occasionally created some
problems where the location was so inaccurate that it was placed outside the interval created by
players right next to the player. It took some amount of testing to find a good balance between size
of CLOSE_PLAYER, and frequency of updates. Increasing the frequency of location-updates
lessened the problem, but unless the location is updated every couple of seconds there will still be a
possibility for an extended amount of time where the positions is wrong, and updating very often is
not good for battery-life.

Increasing the size of the area of what counts as “close” works well, but it's not a satisfying solution
from a developer's perspective.

12.6 Textual representation of player status and battle risk

There are two important concepts in Tribal Knowledge War that needs to be stored in the database
on the server, namely the player's area and a battle's risk. Recall that the area is the territory a
player controls, and it consists of a 5x5 grid with buildings of a certain rank placed in certain
locations. A battle's risk is the representation of what is involved in a battle, that is, how big the
overlapping area is and precisely which squares from the two players' grid are involved.

Both these concepts are converted to relatively simple String-representations and are stored as text
strings in the database. By being consistent in the use of separators, it's easy for the client to parse
the string extract the information.

The player's area are converted to a string that follows this standard:

<area-size> : <building> ; <building> ; … ; <building>

Area-size is the same for all players, “5x5”, and never changes. The reason it exists is because
originally, the size of the area was supposed to change as the player earned more money. When that
idea was abandoned it was decided that it was best to keep it since it wouldn't have any negative
consequences, and it would keep possibilities open.

The building-elements in the string follow this pattern:

<type> : <rank> : <x-coordinate> , <y-coordinate>

57

Type is a single letter that is different for every type of building. What building is represented by
what letter is stored in the game itself. Rank is a number that tells what rank the building is, and is a
number from 1 and 5. X- and y-coordinate says where the building is placed in the player's grid.
Both of these are numbers from 0 to 4.

An example of a player's area with two buildings would look like this:

5x5;D:1:4,0;A:2:2,2

Here, the player has a building of type D and rank 1 in the top-right corner, and a building of type A
and rank 2 in the middle of the grid.

The risk of a battle is more complex, but it follows the same concept of converting it from game
concepts to a textstring with different parts separated by semicolons and commas. The risk-string
follows this pattern:

<placement of attacker in relation to defender>;
<attacker's involved squares>;
<defender's involved squares>

In order to explain how the risk is created, one needs to recall what it is trying to represent in-game.
The battle consists of two player, the attacker and the defender. The attacker sends the challenge,
while the defender receives it. It is the attacker that sets up the battle, and they do so by being
presented with the defender's area and then placing their own area next to it (see Figure 9). The
defender's area is a 5x5 grid that is placed in the center of a 7x7 grid, which means there is an extra
line of squares surrounding the defender's area. The center of the attacker's area is placed in one of
these surrounding squares. This way, one can give coordinates of the attacker's placement in relation
to the defender's area, and this is used for various computations. The defender's top-left square has
coordinates (0,0) while the bottom-right has (4,4), so if the attacker places their area in the very top
left, they will be placed at the coordinates (-1,-1). If they attack from the very bottom right, they
will be placed at at (5,5).

In addition to the placement of the attacker in relation to the defender, the risk also contains
information about which squares are involved. The representation of the involved squares follow
this pattern:

<x1> - <x2> , <y1> - <y2>

Because the involved squares always is a rectangle, one can represent it simply by saying which
coordinate it starts at and what coordinate it ends at.

Below is an example of the attacker attacking from the very bottom right.

5,5;0-1,0-1;3-4,3-4

12.7 Model View Controller

The entire system follows a design that's similar to the Model View Controller architecture pattern,
where the server is the model, the web service is the controller, and the clients the view. The clients

58

have very little ability to influence anything regarding calculations of battle result and similar
things, they only send messages to the web service about what they want to do, and the web service
uses the information found on the server to determine whether or not that action is allowed, and
then carry out the action.

If a player wants to build a new building, for example, the client sends a request to the web service
describing what building they want to place where. The web service then fetches information about
the player from the database, makes sure the player has enough gold, and then places the building,
and updates the database. This general procedure is used for almost every action done by the player.

The only place where the MVC-model is not followed, is when it comes to calculating points
earned during a battle. The clients calculate the amount of points earned by using information about
how much time the player took to answer a question, they include the amount of points in the
request sent to the web service when a battle is finished, and the server trusts completely that the
amount of points it given is correct.

This is both a break from the MVC-model and a potential security risk. The view itself directly
influences the model, and because a client should never be trusted it opens up possibilities for
players to cheat by modifying the program to give a false score. However, this was considered to be
the best for the game, because it would give the best experience for most players. Giving the server
the responsibility for timing each question would be technically difficult because of the stateless
nature of the server, and it would also mean that any delay between information being sent from the
client to when it arrives on the server would negatively impact a player's score. It would be
frustrating for a player to lose battles just because of network issues.

59

Chapter 13
Implementation

This chapter will describe the architecture of the system and the implementation of the server and
client in detail.

13.1 Server

The server consists of four packages. Package adrian.master.knowledgewar.server is the root
package, and contains several Java servlets that handle interaction with the clients. The other
packages are subpackages of the root.

Package adrian.master.knowledgewar.server.logic consists of the main classes that do functions that
are important for the functionality of the server, such as calculating the result of a duel, or
communicating with the database.

Package adrian.master.knowledgewar.server.gameconcepts contains the classes that represent
different objects in the game, such as a Player, a Building or a Battle.

Package adrian.master.knowledgewar.server.constants contains classes that consists of constant
values that are necessary for the other classes, such as names of tables and columns in the database,
and SQL statements used when accessing the database.

Figure 28 shows the package diagram for the server.

60

Figure 29 shows the relationship between a single servlet and other important classes. The other

61

Figure 29: Relationship between single servlet and other important classes

Figure 28: Package diagram for Tribal Knowledge War server

servlets' relationships are very similar, but may use the logic-classes in a different manner. As
illustrated in the figure above, BattleServlet uses the classes GameLogic and DatabaseConnection
to handle requests from clients. Below is a figure showing an example of such a request. It is a
sequence-diagram showing the interactions between the classes when two players finish a duel.

13.1.1 Receiving a request from a client

As mentioned, the server consists of several Java-servlets, and any request from a client is sent to
one of these servlets.

Figure 30 shows the root package, and all the servlets. Each of the servlets handle requests that are
related to each other in logical sense. As an example, BattleServlet handles all the requests sent
during a duel, such as when a question is answered, and when a player finishes.

62

Figure 30: Java servlets

Figure 31 shows how the BattleServlet receives a message from both players and how it handles
these messages. After marking a player as finished in the database, the servlet checks to see if the
other player is finished in the same battle. If they are, the battle is over, and the result can be
calculated. If the other player is not finished, the servlet does nothing and waits for the other player
to finish. The GCMMessenger class uses GCM to push messages from the server to the clients, so
the clients do not have to continually poll the server while waiting for the result of the battle.

The result of a battle is calculated on the server, and a winner is declared based on the amount of
points the clients report to have earned. Players earn points by answering questions correctly in a
timely manner, and the player with the most points is the winner.

63

Figure 31: Sequence diagram showing two players finishing a duel

To demonstrate in what way other servlets use the Logic-classes, Figure 32 shows a sequence-
diagram describing the sequence of events when a player challenges another player to a duel.

The ChallengeServlet receives a request from Player 1 to challenge Player 2 to a duel.
ChallengeServlet checks to see if Player 2 is marked as busy in the database before sending the
challenge. A player is busy if they are currently dueling someone else. It is important to make sure
that a player is not busy before sending a challenge, because challenges are declined automatically
if a player does not accept or decline it within a certain amount of time, and a declined challenge is
an automatic loss for the person being challenged. After making sure that Player 2 is available, the
class GameLogic uses DatabaseConnection to create a new battle in the database, and return the
unique identifier for the battle. This identifier is used by both server and the clients to refer to a
specific battle in requests.

13.1.2 Receiving a location update and heartbeat

The fact that the server is stateless creates one big problem, namely that it has no way to directly
notice that a player is no longer available and mark them as offline in the database. If, for example,
a player turns off Wi-Fi on their phone without having mobile data enabled, they would suddenly be
impossible to contact for the server, yet they would still appear accessible in game for other players.
Since challenges that are not explicitly accepted or declined counts as a loss, it would be
problematic if it was possible for other players to send many challenges to a player that is not really
present, and cause the unavailable player to lose all gold.

64

Figure 32: Sequence diagram showing a player challenging another

To avoid this scenario, each location update sent by a client, also acts as a heartbeat. As can be seen
in Figure 14, the Player-table in the database has a field named heartbeat_count. The server runs a
background process that increments this field by 1 whenever a certain time passes, but every time
the server receives a location update from a player, that player's field is reset to zero. Every time the
server increments the field, it also checks its value after the incrementation, and if the value is
greater than 3, the field is set to 0 and the player immediately marked as logged out.

13.2 Client

The client consists of 10 packages, 9 of which are subpackages of the root
adrian.master.knowledgewar. The root package only contains two classes, the IntentService that
receives messages pushed from the server through GCM, and a LocationReceiver that finds the
GPS-location of the device.

The package adrian.master.knowledgewar.activites contains the regular Android-activities in the
game, that is Activities that are not subclasses of AndEngine's SimpleBaseGameActivity. Not every
Activity needed to use the possibilities of AndEngine.

All the classes that subclass SimpleBaseGameActivity are in the package named
adrian.master.knowledgewar.gameactivities. These are most the activities in the game, and all of
them use the various game-related functions of AndEngine.

Similar to the structure of the server, all classes that represents objects in the game, such as a Player,
a Battle or a Building are in the package named adrian.master.knowledgewar.gameconcepts.

The package named adrian.master.knowledgewar.helpscenes contains subclasses of Scene, and all
of them are scenes containing information meant to help explain the game to players. In-game they
are accessed by pressing a button marked “Help” on the screen.

Adrian.master.knowledgewar.interfaces is a package that contains interfaces used by various other
classes.

The package named adrian.master.knowledgewar.logic is similar to the logic-package on the server.
It contains several classes containing methods that does different calculations or handles other
functions of the game.

The two packages adrian.master.knowledgewar.scenes and adrian.master.knowledgewar.subscenes
both contain the different scenes in the game, from the scene showing the main menu, to the scene
displaying a confirmation dialogue when the player wants to remove a building.

65

66

Figure 33: Class diagram of client

Figure 33 shows a Package Diagram of the client, including the most important classes, subclasses
and use of Interfaces.

13.2.1 Communicating with the server

Tribal Knowledge War always communicates with the web service by using the class named Server.
This class contains methods that handles all the different scenarios in which the client needs to send
a HTTP-request to the server.

Figure 34 shows an overview of the Server-class and its methods.

In order for any of the Activities in Tribal Knowledge War to communicate with the server, it is not
sufficient to simply call one of the Server-class' methods. An Android application is not allowed to
do “slow” operations in the UI thread, and “slow” operations include network communication,
something that is very important for Tribal Knowledge War. In order to communicate with the
server, the Activity needs to start a background thread that does not block the UI, otherwise the UI
would freeze while waiting for a response from the server, something that would be frustrating for

67

Figure 34: Overview of Server-class

the user. In Android, the easiest way to do this is to extend the Android class called AsyncTask,
which is a class that makes it easy to do work in a background thread. AsyncTasks usually interacts
with the UI when it has finished its background work, which usually makes the implementation of
such a subclass very specialized. For that reason, it is most practical to make separate private
subclasses for each possible task. Each of the main Activities in Tribal Knowledge War has several
private AsyncTasks.

Figure 35 shows the two biggest Activities, and their private AsyncTasks.

68

Note that each of private classes has several methods, and one of these methods is called
doInBackground(). Everything inside that method is performed in a background thread.
BattleActivity is the Activity that is active while playing a duel, and its AsyncTasks communicate

69

Figure 35: Activities with their private classes

with the server to get the questions before a duel starts, to find information about a given battle, and
to send an answer to the server and tell the server what weapon the player wants to use. The
AsyncTask called BackButtonTimer is simply a timer that automatically forfeits the battle if the
player presses the Back-button on his phone twice within 3 seconds.

Many of the different Scenes also have their own private AsyncTasks depending on what the scene
needs to do.

Figure 36 shows the interaction between the classes when a player challenges another to a duel. To
send a challenge, a player must be in specific scene in-game, called ChallengeScene. After they
have decided on the size of the battle and where to attack from, they click the “Send Challenge”
button in the UI. The MainActivity then creates an AsyncTask-object (the ChallengeSender-actor in
the diagram) that does work in the background.

The risk-string that is returned from the UserFunctions-class is a textual representation of what area
is involved in the battle. This text is stored in the database on the server, and used to determine the
result of the battle.

13.2.2 Receiving Push Notifications

When the server needs to alert a player about an event, for example that the player is being

70

Figure 36: Sequence diagram showing a player sending a challenge

challenged to a duel, the message is “pushed” from the server using GCM, as indicated in the
physical view of the system. In order for an Android application to receive messages through GCM,
several permissions need to be declared in the application's manifest. In addition, the application
must implement a subclass of the Android class GCMBaseIntentService.

Figure 37 shows the two classes involved with handling pushed messages, with their methods.
When the device receives a message sent by the Tribal Knowledge War server, the OS passes the
message to the application, and calls the onMessage(...)-method in GCMIntentService. The message
is not in JSON-format, but much like JSON objects, it can contain several key-value-pairs, and it is
used by the applicattion in the same way as the JSON objects shown in table 4 (chapter about
Design). The IntentService reads the “command” and based on that it calls the appropriate method
in the class PushMessageHandler in the Logic-package. If the message contained information about
a challenge, the PushMessageHandler creates a notification that is displayed in the Android status
bar along with playing a sound, to alert the player that the game requires an action.

13.2.3 Use of interfaces

In Figure 33 one can see that there are several interfaces used by various classes in the client. These
interfaces are very simple, and only have between 1 and 3 methods.

MainActivityInterface are implemented by all scenes that are used by MainActivity, and this offers
methods that make it easy for the activity to correctly handle the situation if the player presses the
back-button on their Android-device. The activity can simply pass the button press along to the
current scene, and have that scene handle it. This is important because the default action of the
back-button would be to return to the Main Menu , but the currently active scene could have a
submenu of some sort visible, and the back-button should remove this submenu instead.

The other interfaces serve the same purpose, and are extremely similar in both form and function.

71

Figure 37: Overview of classes involved with push notifications

13.2.4 Local Storage

The client side application does not need to store large amounts of data, because all information
about a player such as gold and owned buildings is stored on the server and sent to the client on
request. However, some values are stored on the client, mostly to make the user experience better,
and these values are stored using Android's built in storage for applications called
SharedPreferences.

SharedPreferences can store simple key-value-pairs, and these values are private for each
application, meaning it can not be accessed by other apps. This means that it can be used to store
relatively sensitive information without any security-issues.

When a user logs in to the game, the application stores both username and password in the
SharedPreferences. This makes it possible to automatically log a player back into the game in case
the OS has decided to kill the application while it was in the background. It also makes it possible to
automatically send the username and password along with any request to the server, and that way
have some basic authentication for every action done by a user.

SharedPreferences is also used to store the IP-address of the server that was connected to last, so
that if the player always connects to the same server, they do not have to manually input the address
every time.

13.2.5 The duels

Duels are handled by the Activity called BattleActivity, and as can be seen in Figure 13 in Chapter
9.5.1, it functions as a loop. It displays a question, then a screen saying whether the answer to the
question was correct or wrong, then displays the next question, and so on until all the questions
have been answered and the result of the battle is displayed.

Between each question, the client needs to contact the server to give information about what
weapon the player wants to use against their opponent, and what weapon is being used against the
player.

72

Figure 38 shows the process of a player answering a question correctly and using a weapon against
their opponent.

The way a question is displayed to the player varies greatly depending on what weapon is being
used against them. If no weapon is being used, the client displays the standard way to display a
question. However, some weapons need an entirely different way to display the question. As an
example, the weapon called High Precision Fan causes the question to be somewhere else than
where the camera starts, so the player has to use their finger to move around on the map in-game
and look for the question before they can answer it. Another weapon causes the question to be
displayed in the standard way, but simply reduces the amount of time available to answer.

Clearly, the differences between these various ways to display a question are big, yet they still have
to accomplish similar things. In order to make the code as simple as possible, and to minimize the
amount of identical code, the standard way of displaying a question is done by the class called
BaseDisplayQuestionScene, and the other specialized scenes are subclasses of this scene.

73

Figure 38: Sequence diagram showing a player answering a question

Figure 39 shows the methods of BaseDisplayQuestionScene as well as some of its subclasses. As
the figure shows, BaseDisplayQuestionScene implements all methods necessary to display a
question and its alternatives, as well as having a private class that keeps track of the player's time
remaining on the question. Most of the methods are called in the constructor of the object, and sets
up the scene the way that is needed:

74

Figure 39: BaseDisplayQuestionScene and two of its subclasses

Listing 1 shows the constructor in BaseDisplayQuestionScene. The constructor first sets up two
important fields, the Activity and the current Question. It then calls a method that sets up other
fields, such as the different textures, before it sets up the scene itself in setupScene().

The subclasses of BaseDisplayQuestionScene all calls the setupScene(), but they override the
methods necessary to accomplish what it needs to accomplish. One weapon causes the player to
receive a lower score if they answer correctly. The scene that is displayed when this weapon is used
only needs to override the calculateScore()-method, as can be seen in the figure. However, the
weapon mentioned earlier that causes the question to be hidden, must override many of the methods
in order to set up for example a scrollable map.

BaseDisplayQuestionScene and its subclasses all extend the class Scene, so it is not necessary for
the Activity to care about what scene is being displayed. Therefore, the Factory Pattern is used to
administer the creation of scenes.

75

public BaseDisplayQuestionScene(BattleActivity parent, Question question){

this.mParent = parent;
this.mQuestion = question;
initializeFields();
setupScene();

}

protected void setupScene(){
createBackgrounds();
createTimerSprite();
createTexts();
setUpQuestionSprite();
placeQuestionSprite();
setUpAlternativeSprites();
createAlternativePlacements();
placeAlternativeSprites();
createStrings();
displayQuestions();
displayAlternatives();

}

Listing 1: BaseDisplayQuestionScene constructor

Figure 40 shows an extended version of Figure 38, that includes how the Activity handles the
response from the server. The response from the server when using a weapon against the opponent,
is a short String that contains information about what weapon is being used. The Activity then asks
the QuestionSceneFactory for the next scene, and the factory returns the appropriate one. The scene
is then displayed to the player.

13.2.6 Game Data stored in XML

The are certain aspects of the content in the game that needs to be stored in a permanent manner,
and only needs to be read, never altered, to be used by the game. This content includes the names of
the various buildings, what they cost to build, what bonuses they give, etc. Similar information
needs to be stored for all the weapons. This information could potentially be hardcoded into the
game, and stored in a Constants-like class where everything is stored as public Strings and accessed
that way by the other classes. However, that is not a very elegant solution, and it would make the
code bothersome to read and hard to update and expand.

76

Figure 40: Player answering a question and receiving a negative effect

Instead, all game data is stored in two xml-files, buildings.xml and weapons.xml, that are read when
the game starts and these are used to create easily accessed Building-objects and Weapon-objects.

Displayed in Listing 2 and Listing 3 are two examples of how information about a building and a
weapon is stored in this file.

When the game is started, these two xml-files are parsed, and a list containing Building-objects, and
a list containing Weapon-objects are created. These lists are stored in two factory-classes,
BuildingFactory and WeaponFactory, and these classes are used when the game needs an instance
of a building or a weapon.

77

<Building>
<Type>B</Type>
<Name>Ninja Wagon</Name>
<Description>Training school for ninjas. Gives
attack-bonuses and the ability to send ninjas on
missions to distract and confuse
enemies.</Description>
<Rank>
<Number>1</Number>
<Value>2000</Value>
<Health>4</Health>
<Global>false</Global>
<GoldBonus>0</GoldBonus>
<DamageBonus>1</DamageBonus>
<HealthBonus>0</HealthBonus>
<GoldPenalty>0</GoldPenalty>
<UpgradeCost>3000</UpgradeCost>
</Rank>
<Rank>
<Number>2</Number>
<Value>5000</Value>
<Health>5</Health>
<Global>false</Global>
<GoldBonus>0</GoldBonus>
<DamageBonus>2</DamageBonus>
<HealthBonus>0</HealthBonus>
<GoldPenalty>0</GoldPenalty>
<UpgradeCost>3000</UpgradeCost>
</Rank>
<Rank>
<Number>3</Number>
<Value>10000</Value>
<Health>6</Health>
<Global>false</Global>
<GoldBonus>0</GoldBonus>
<DamageBonus>4</DamageBonus>
<HealthBonus>0</HealthBonus>
<GoldPenalty>0</GoldPenalty>
<UpgradeCost>-1</UpgradeCost>
</Rank>
</Building>

Listing 2 Example from buildings.xml

<weapon>
<name>Chicken stampede</name>
<description>
Start a chicken stampede! The opponent has less
time to answer his next question because he has
to get out of the way.
</description>
<attackdescription>
Your opponent has started a chicken stampede!
You have less time to answer the question
because you must get to safety.
</attackdescription>
<class>F</class>
<rank>1</rank>
<cost>100</cost>
</weapon>

Listing 3 Example from weapons.xml

78
Figure 41: Overview of two factory-classes

Figure 41 shows an overview of the two factory-classes. The two classes keep an ArrayList
containing templates of all the buildings and weapons respectively. When the game needs an
instance of a building, for example when the player is placing new buildings while playing, the
game calls the method BuildingFactory.constructBuilding(String type), and the BuildingFactory
creates a copy of the Building template-object, and returns this to the game.

79

80

Part IV

Evaluation

Chapter 14
User Experiment

In order to evaluate the quality and entertainment value of Tribal Knowledge War, a user experiment
was run.

14.1 Purpose of experiment

The purpose of the usability experiment is to determine the overall quality and usability of Tribal
Knowledge War, and also to determine whether or not the plan to create a fun, valuable and
educational experience succeeded.

The first part of the questionnaire will be used to determine the general usability of Tribal
Knowledge War. Having as high usability as possible is important for all applications and systems,
because users will prefer to use applications that are easy to learn and use over applications that
offer the same functionality, but are more difficult to use. In the case of Tribal Knowledge War, a
high usability would hopefully mean that users quickly understand how to play the game, and this
would hopefully also mean that they would like to play it often.

The second part of the questionnaire will be used to find answers to the research questions in table
1. Having found theoretical solutions to how to make a game both fun and educational, are the
attempts at implementing these solutions been successful?

14.2 Description of experiment

A series of smaller experiments were held in the period of May 1st to May 14th, 2013 where the
game was made available for small groups of participants that either installed the game on their
personal Android device, or borrowed a device with the game already installed, and then played the
game against each other.

In total, 7 people participated in groups of 2 or 3 at a time. The participants had very varied
backgrounds. Three were graduates in computer science while the other four did not have a
technology background. Their previous experience with Android devices were also very varied.

81

Some had owned devices for a long time, while others did not have one at all, or did just recently
get one.

The questions available were mostly IT-related questions, but there were also some questions from
other categories, concerning video games, TV shows or other types of popular culture.

14.3Task List

At the beginning of the experiment, the participants were given a list of tasks they had to complete
during the end of the experiment. This was done to make sure that they used all of the most basic
functions in the game.

Some of the tasks are a little vague on purpose, to encourage players to experiment with the game,
and try to figure out things on their own.

Table 9: User experiment task list

1 Start the application.
Register a new account.

2 Enter the “Manage Own Tribe” screen.
Build at least one building.

3 Upgrade at least one building.

4 Open the “Map” screen.
Challenge another player to a duel.

5 During a duel, use a weapon on the other player.

6 After a duel, check the answer to at least one question.

7 Use the chat to talk to other players.

Table 9 shows the list of tasks the participants were given. The tasks did not have to be completed
in order, and the participants were free to do every task more than once. The list only set the
minimum amount of things they had to do.

14.4 Questionnaire

After the participants had completed the task list, and felt they had played the game enough, they
were given a survey to fill out. The results of the survey will be used to evaluate the usability of the
system in accordance with James Brooke's system usability scale (SUS) [31]. SUS is a quick and
dirty way to evaluate the usability of a system, and it consists of 10 statements where the respondent
marks how strongly they agree or disagree with each statement by using a scale of 1 to 5, where 1
means Strongly Disagree and 5 means Strongly Agree. The results of these questions will be used to
calculate an overall usability score for the system.

82

In addition to the the 10 standard questions of the SUS questionnaire, 10 more questions were
added that focused on the specific research questions of this report. These questions are meant to
evaluate to what degree the game succeeded in implementing various techniques for making games
both educational and fun.

Table 10 and Table 11 show the questions in the questionnaire.

Table 10: SUS statements

Strongly
disagree

1 2 3 4

Strongly
agree

5

I think I would like to use this system frequently.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical
person to be able to use the system.

I found the various functions in this system were
well integrated.

I thought there was too much inconsistency in this
system.

I would imagine that most people would learn to use
this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I need to learn a lot of things before I could get going
with this system.

83

Table 11: Non-SUS statements

Strongly
disagree

1 2 3 4

Strongly
agree

5

I found this game fun to play.

I learned something from playing this game.

I want to learn more about the things I learned.

I liked the competitive nature of the game.

I liked playing against other people who are in the
same room.

I liked using “weapons” against my opponent.

I liked it when my opponent used “weapons” against
me.

I liked the game's setting (desert nomads)

I found this game engaging.

I found this game rewarding to play.

14.5Questionnaire results

When presenting the results of the 10 first statements in the questionnaire, it is important to note
one thing: the results of individual statements are not meaningful on their own [31]. There is a
specific way to calculate the result of this questionnaire. First, note that every answer is numbered
1-5. For every odd-numbered statement, subtract 1 from the user response. For every even-
numbered statement, subtract the user response from 5. This way, you will end up with a number 0-
4 on every statement. Add them together, multiply by 2,5, and you get a single number ranging from
0 to 100. Tribal Knowledge War got a SUS-score of 73,9, and that is the only number that is useful
in this context. However, he results for individual statements are displayed in Table 12 to give a
better view over how the final score was calculated.

84

Table 12: Results of SUS questionnaire

SUS contribution

I think I would like to use this system frequently. 6,8

I found the system unnecessarily complex. 5,7

I thought the system was easy to use. 7,1

I think that I would need the support of a technical person to be able to
use the system.

7,9

I found the various functions in this system were well integrated. 7,1

I thought there was too much inconsistency in this system. 6,4

I would imagine that most people would learn to use this system very
quickly.

8,6

I found the system very cumbersome to use. 7,9

I felt very confident using the system. 8,6

I need to learn a lot of things before I could get going with this system. 7,9

73,9

Table 13 shows the results of the non-SUS statements of the survey. It shows how many of the
participants either disagreed, felt neutral, or agreed with a given statement.

Table 13: Result of non-SUS statements

Disagree Neutral Agree

I found this game fun to play. 14% 0% 86%

I learned something from playing this game. 0% 43% 57%

I want to learn more about the things I learned. 29% 43% 29%

I liked the competitive nature of the game. 0% 0% 100%

I liked playing against other people who are in the same
room.

0% 14% 86%

I liked using “weapons” against my opponent. 0% 0% 100%

I liked it when my opponent used “weapons” against me. 71% 0% 29%

I liked the game's setting (desert nomads) 0% 71% 29%

I found this game engaging. 0% 29% 71%

I found this game rewarding to play. 0% 29% 71%

A discussion on this data will follow in chapter 15.4, but one can see here that most players seemed
to enjoy the game and found it fun to play. However, many participants did not feel they learned
something, and they do not agree that they want to learn more.

14.6 Observations made during experiment

Players seemed to enjoy playing the game, and many participants took actively part in the kind of

85

friendly competition that Tribal Knowledge War tries to encourage: gloating and trash-talking when
winning, and whining and complaining when losing. The weapons available to the player
contributed to a large part of this, as players who used them often laughed and their opponents often
sighed deeply when being used a weapon against.

Some players struggled with some parts of the GUI and finding how to accomplish a certain task.
Most of the time they figured it out on their own, but there were some cases where a participant had
to ask how to do something.

None of the players bothered spending any time on the Battle Result-screen after they had checked
an answer to a question once. They mostly just looked at the result of the battle, and then
immediately returned to the main menu to play again.

86

Chapter 15
Evaluation

This chapter will discuss the various choices made during development, such as architecture and
choice of framework, and whether these choices negatively impacted the process. It will also
discuss and evaluate the result of the user experiment.

15.1 Evaluation of architecture

The decision to make the server stateless so that the clients would have to include all information
with every request turned out to have both positive and negative aspects, but the positive
outweighed the negative.

The biggest problem with this design was the amount of responsibility it placed on the client, and
the amount of extra work required to make sure that the client was taking advantage of the server's
stateless nature. The fact that disconnects was a meaningless term in this context because there was
no permanent connection, was originally thought to be easy to have work to the developer's
advantage, but it was difficult to design both the functionality and the user interface of the client in
such a way that it felt intuitive and easy to understand for the user.

As an example, during a duel, if the device lost connection to the WiFi for a couple of seconds, it
would not be able to tell the server that it had answered a question. In theory, this is not a problem
at all, because the client still has all the necessary information available, it just needs to try to send
the message again when WiFi-connection is reestablished. However, how should this be indicated to
the user? The client could just try again in the background without telling the user there is a
problem, but what if the WiFi cut out completely, and it is therefore impossible to reestablish
connection? The client could try in the background for a certain amount of time, and only telling the
user if the problem persisted.

In the end, it was decided that the game should assume that loss of WiFi is only temporary, and it
tries again and again in the background until it succeeds, and displaying a message on screen that
there was a problem contacting the server.

All in all, the decision to make the server stateless was the best and most practical for this particular
project, but the game would need additional work to solve some issues before it could be made into
a commercial product or similar.

87

15.2 Evaluation and use of AndEngine

AndEngine was used a the framework for developing the Android application, and this was very
good for the project. AndEngine was extremely flexible, and handled all the difficult parts of game-
making, such as handling the game loop and making textures, so it was possible to focus on the
design and function of the game instead.

However, there were several problems encountered during the development, caused by the rather
fast-changing nature of AndEngine, and its lack of proper documentation. The biggest one, and
hardest one to find, was one that caused the application to crash at seemingly random times and for
random reasons. Quite some time was spent searching different forums to find the reason and how
to fix it, and it turned out to be because of the way it handled removing elements from the screen.
The details are unclear, but it seems that a race-condition can cause the game to crash unless
elements are removed “safely.” Code was changed, and the problem disappeared.

Overall, there were very few similar problems, and none of these problems were insurmountable, so
using AndEngine was a good decision.

15.3 Evaluation of usability

It is difficult to judge the overall usability of a system with just its SUS-score without any context
or systems to compare it with. Bangor, Kortum, Miller [32] has done studies on the effectiveness of
SUS as a tool for rating usability, and by evaluating nearly 3500 ratings in 273 studies they have
found that the overall mean score for SUS ratings is around 70. Tribal Knowledge War got a SUS-
score of 73,93, which is slightly above average score.

Bangor, Kortum, Miller also suggests a way to map SUS scores to descriptive adjectives, and Tribal
Knowledge War's score places it at the lower end of the interval between “good” and “excellent” as
description of the overall usability.

15.4 Evaluation of entertainment and educational value

By looking at the second part of the questionnaire one can try to answer the research questions in
this thesis. The first three research questions were about how one could combine theories from
game design with the concept of an educational game to create an experience that is both fun and
educational. During the prestudy, several articles and texts on the subject was found, and the
methods suggested in these articles were used in development of Tribal Knowledge War. The results
of the experiment are somewhat divided.

Most participants felt that the game was fun, with around 85% of the participants either agreeing or
agreeing strongly to the statement that the game was fun to play. This is a good result, and suggests
that it is a game that many people would enjoy playing. The two main ways that the game tries to
encourage players to play the game is emphasizing the competitiveness and making “weapons” fun.
Every participant agreed that these aspects of the game were enjoyable, which is a very good result.

88

However, even if every participant felt that the game was fun, it did not directly translate to any
educational value or motivation to learn more. Only 57% of the participants agreed that they learned
something by playing the game, and only 28% wanted to learn more after they had finished playing.
This is a disappointing result, and it might be a combination of the design of the game and the
categories of the available questions. The majority of questions available during the usability test
were about general information technology, and that was perhaps not the most suitable set of
questions for the participants. Three of the participants have graduated with degrees in Computer
Science, and as such probably found the questions very basic. The other four participants had no
knowledge of the subject before they started playing, and would perhaps not be interested to learn
more because they do not care about the subject at all. Even so, part of the goal of the game was to
encourage players to learn, regardless of subject, so the result is not entirely satisfactory.

The purpose of the last three research questions was to find if there was something to gain by
making a game pervasive in order to increase players' motivation and desire to play the game.
Results from the study shows that participants generally enjoyed the competitiveness of the game
and playing against people in the same physical location. This suggests that the pervasiveness
increased the enjoyability of the game, but when one looks at these results combined with the
game's low score for educational value, it did not sufficiently motivate players to actively learn in
order to win against their opponents.

One very interesting result from the second part of the questionnaire is the participants' feelings on
using weapons against each other during duels. Every single participant strongly agreed that they
liked using weapons against their opponent, but almost everyone also disliked that their opponent
used weapons against them. This would mean that the weapons both increased and decreased the
players' enjoyment of the game, but considering that most participants agreed that the game was fun
overall it probably increased enjoyment much more than it decreased it.

15.5 Feedback from testers after debriefing

Several of the participants had comments during debriefing about their feelings towards the game,
and this provided some useful feedback.

Most notably, 3 of the participants were surprised when being told about how the bonuses when
attacking were determined, and how one could manipulate the bonuses by choosing where to attack
from. This was something they had not realized, and not cared about while playing. This aspect of
the game is rather important, so it would be natural for the participants to feel that the game was
unnecessarily complex if they felt that this was too difficult to understand. However, this didn't
bother them, as they were still enjoying the weapons and the format of the duels. It's hard to directly
answer if this impacted how they felt about the game's overall usability, but since Tribal Knowledge
War got a good SUS-score, it's perhaps possible to explain this by considering the “angle of attack”
to be a game-mechanic rather than just functionality. Players often accept that some mechanics are
not easy to understand, and perhaps the fact that there was more for them to discover gave the game
more depth rather than make it feel overly complex. It would be interesting to arrange more
usability tests in order to see if these feelings are common.

For at least one participant, the pervasive nature of the game was a negative thing. They explained
that they enjoyed the mechanics of the game, but they would have preferred to be able to play
against anyone at any time, and not have to rely on other players being in the same room. They used
the game Quiz Battle as an example of a game they enjoy, where the locations of players are

89

irrelevant.

15.6 Evaluation of observations made during experiment

Many participants had slight problems navigating the menus in the game. The text on buttons were
sometimes unclear as to what their function were, and various touch-gestures, for example scrolling
the camera when viewing the map, were not very intuitive.

These small problems did not seem to negatively impact the players' enjoyment of the game, and in
almost all cases, the players figured out what to do on their own by experimenting. However, this
suggests that the GUI would greatly benefit from refinement in order to make it more clear and
intuitive.

Another observation made was that most players did not bother to spend any amount of time on the
screen that displayed the result of the battle, preferring instead to go immediately back to the main
menu and wait for a new challenge or to challenge another player. This almost certainly negatively
impacted the educational value of the game, because it is only on the result-screen that players have
the ability to check answers to question so they can learn how to answer it correctly next time.

The reason for this could be that the players were not sufficiently motivated to learn more on their
own, but it could also be a problem with the way the experiment was conducted. Every group that
played against each other consisted of only 2 or 3 people, and perhaps the players felt that they did
not want to keep the other players waiting for them to finish checking answers. If the group was big
enough that everyone felt certain that everyone else could easily find someone to play with, maybe
it would be easier for them to spend some time on the result-screen to check answers and catch their
breath.

90

91

Part V

Conclusion

Chapter 16
Conclusion

In this thesis, we have studied literature focused on making games educational and fun, and we have
used the knowledge from this literature to develop a prototype of a game that should hopefully be
both entertaining to play, and educational for its players. After the development of the prototype, a
user experiment was conducted to evaluate the quality of the game, and if the goal of making a fun
educational game was reached. We are now ready to answer the research questions posed in Chapter
2.1.

In research question 2 and 3 we asked what makes a game fun, and what makes a game an effective
learning tool. During the prestudy, good strategies for achieving both these goals were found, and
were used during development of Tribal Knowledge War. We found that the game had to be
challenging, in order for the player to not get bored, and that it should appeal to the player's
curiosity and use an intrinsic fantasy.

Research question 1 asked how we can use the knowledge of how to make a game both fun and an
effective learning tool to create an enjoyable and educational game. To achieve this, we found a
formalism called MDA that made it easy to examine the various aesthetics that Tribal Knowledge
War should aim to achieve. This formalism was used together with the answer to research question
2 and 3 to evaluate the final design of Tribal Knowledge War to see if it was a design that achieved
what it was meant to do.

In research question 4, we asked: “Does competition make a game more fun?” To answer this
question, we found studies that indicated that competition at least motivates a player to play a game,
and can also increase a player's motivation to learn from the game. The results from the user
experiment on Tribal Knowledge War suggests that players did find the competitive aspect of the
game to be fun and enjoyable, but that this did not directly lead to them being more interested in
learning.

In research question 5 we asked how we could use pervasiveness to increase motivation to learn.
Encouraged by studies and literature that suggested that competition increases motivation to learn,
we thought to actively use the competitiveness in the pervasiveness of the game. By only being able
to challenge other players that are physically close to the player, the competition would hopefully
feel more direct and a more important part of the gameplay. This would in turn hopefully result in a
stronger motivation to become better at the game than simply challenging strangers over the
Internet without ever seeing them or knowing how they are.

92

Research question 6 asked: “Is it more fun to only challenge players in the vicinity in the physical
world?” The answer to this question was meant to provide an answer to whether the attempt at
using pervasiveness to motivate learning was successful. Results from the user experiment suggests
that it was. A majority of players answered that they enjoyed challenging players in the same room.
However, many participants did not agree that they learned something from playing the game, so
even if participants enjoyed the pervasiveness, it did not increase their motivation to learn.

Having discussed answers to the research questions, we are ready to discuss whether or not Tribal
Knowledge War ended up being a both fun and educational game. The feedback received from
testers on Tribal Knowledge War was very positive, with the majority of players enjoying all aspects
of the game, both the gameplay itself and its pervasive nature. However, comments from the
participants of the experiments suggests that the game would benefit from a more thorough
introduction that explains the in-game mechanics, such as how to manipulate the player's bonuses,
better. The game would also benefit from some refinement of the GUI to make it more intuitive.

While players enjoyed the game, results also suggests that the game did not live up to expectations
regarding imparting knowledge and motivating further learning. The game in its current state is
adequate for entertainment, but would perhaps need additional work to properly facilitate learning.

93

Chapter 17
Further work

This chapter will discuss in what way it would be natural to continue development of Tribal
Knowledge War, both from the viewpoint of continuing the current design vision, and making
changes in order to enhance the educational value.

17.1 Further development

There are several possibilities for further development of Tribal Knowledge War, to make it better
suited for use as a learning tool, and more fun and engaging.

The strategic part of the gameplay that consists of constructing different buildings and placing them
in the player's tribe can be greatly extended by introducing more penalties, bonuses and weapons
granted by buildings. It would require some restructure of code, but creating buildings that give the
player a longer time to answer questions would be possibly be a viable idea. New weapons that
introduce mini-games similar to the weapons that force the player to navigate around the map
looking for the question would also perhaps make the game more fun by introducing more variation
to the gameplay.

In order to make the game feel better for the user, creating original artwork to use as sprites and
backgrounds should be a high priority before the game is made available to general users. The
images used in the prototype is taken from free sources in various places on the Internet, and
because of that, the game does not have a very unified artistic direction. Custom artwork would be
better able to express the setting of the game, and that would improve the intrinsic fantasy for the
player.

Although the game got a pretty high SUS-score, the general design of the GUI could use more
refining in order to make the flow of the game more intuitive for players. Observing the participants
during the test revealed that there were times where they were not sure of what to do and where to
click. This did not seem to be a big problem for their enjoyment of the game, but minimizing such
problems should always be a priority.

Changes will need to be made in order to make the game better suited to motivate learning. A
change that could help this would be to introduce a mechanic that gives rewards in-game every time
a player looks for the answer to a question they answered wrong. It would also be beneficial to
create a bigger database of questions, with more varied subjects, so that players who do not care
about computers could get questions more relevant to their interests.

94

17.2 More extensive usability tests

In this thesis, we have described a usability test and the result of this test. Although this showed
some interesting results, and perhaps gave a small hint of whether the implementation of different
design theories was correct, it was a still a very small test with a small number of participants.
Making the game available to a bigger audience and gauge their feelings on the game would give a
much stronger basis on which to draw conclusions about the game's quality and ability to motivate
players to learn.

95

Bibliography
[1] Zerlkowitz, Dolores. Experimental Models for Validating Technology, IEEE Computer,

31(5):23-31. 1998
[2] Robin Hunicke, Marc LeBlanc, Robert Zubek. MDA: A Formal Approach to Game Design and

Game Research, Proceedings of the AAAI Workshop on Challenges in Game AI. 2004
[3] Malone, Thomas W.. What Makes Things Fun to Learn? Heuristics for Designing Instructional

Computer Games. Proceedings of the 3rd ACM SIGSMALL symposium and the first SIGPC
symposium on Small systems, 162-169. 1980

[4] Yu, F. Y. Promoting student learning and development in computer-based cooperative learning,
Proceedings of the International Conference on Computers in Education/International
Conference on Computer-Assisted Instruction (ICCE/ICCAI). 2000

[5] Kohn, A., No Contest: the case against competition, Mariner Books. 1992
[6] Lie-Jie Chang, Jie-Chi Yang, Fu-Yun Yu, Tak-Wai Chan. Development and Evaluation of

Multiple Competitive Activities in a Synchronous Quiz Game System. Innovations in
Education and Teaching International 40.1, 16-26. 2003

[7] Markus Montola. Exploring the Edge of the Magic Circle: Defining Pervasive Games, DAC
2005 Conference. 2005

[8] Alf Inge Wang, Hong Guo, Meng Zhu, Are Sæterbø Akselsen, Kenneth Kristiansen. Survey on
Attitude Towards Pervasive Games, Games Innovations Conference (ICE-GIC), 2010
International IEEE Consumer Electronics Society's. 2010

[9] Sondre Wigmostad Bjerkhaug, Runar Os Mathisen, Lawrence Alexander Valtola. The Amazing
City Game, Master Thesis, NTNU. 2011

[10] Relentless Software. http://www.relentless.co.uk/home/
[11] Alf Inge Wang, Terje Øfsdahl, Ole Kristian Mørch-Storstein. Lecture Quiz - A Mobile Game

Concept for Lectures, Proceedings of the 11th IASTED International Conference on Software
Engineering and Application (SEA’07). 2007

[12] Tetris. http://en.wikipedia.org/wiki/Tetris
[13] Super Puzzle Fighter 2 Turbo. http://en.wikipedia.org/wiki/Super_Puzzle_Fighter_II_Turbo
[14] Pokemon official website. http://www.pokemon.com/us
[15] Sveinung Kval Bakken. KnowledgeWar - Implementation and Evaluation of a Face-to-Face

Mobile Knowledge War Game, Master Thesis, NTNU. 2010
[16] Gartner Says Asia/Pacific Led Worldwide Mobile Phone Sales to Growth in First Quarter of

2013. http://www.gartner.com/newsroom/id/2482816
[17] Lie Luo. Native or Web Application? How best to deliver content and services to your

audiences over the mobile phone, GIA Industry White Paper 2. 2010
[18] Paper.js — The Swiss Army Knife of Vector Graphics Scripting. http://paperjs.org
[19] LimeJS: A HTML5 game framework for building fast, native-experience games for all modern

touchscreens and desktop browsers.. http://www.limejs.com
[20] Crafty. http://craftyjs.com
[21] Unity 3D - a high quality framework for 3D games. http://unity3d.com/
[22] AndEngine. http://www.andengine.org
[23] Google App Engine. https://developers.google.com/appengine/
[24] The Apache Software Foundation. http://tomcat.apache.org/
[25] Jetty - Web server and java servlet container. http://www.eclipse.org/jetty/
[26] NodeJS. http://nodejs.org
[27] Android Developers: Location Strategies.

http://developer.android.com/guide/topics/location/strategies.html
[28] Android Developers: Google Cloud Messaging for Android.

http://developer.android.com/google/gcm/index.html
[29] Risk board game. http://en.wikipedia.org/wiki/Risk_(game)

96

[30] Sid Meier's Civilization. http://www.civilization.com/
[31] John Brooke. SUS - A quick and dirty usability scale, Usability evaluation in industry 189.

1996
[32] Bangor, Kortum, Miller. Determining what individual SUS scores mean: Adding an adjective

rating scale. Journal of Usability studies, 114-123. 2009

97

98

Part VI

Appendix

Appendix A:

User Experiment Raw Data

99

Knowledge War user experiment raw data

Participant A Participant B Participant C Participant D Participant E Participant F Participant G

SUS1 3 3 1 3 3 3 3

SUS2 2 3 3 2 2 3 1

SUS3 3 3 4 3 2 3 2

SUS4 4 3 3 3 3 4 2

SUS5 3 3 3 3 3 3 2

SUS6 1 3 3 3 3 1 4

SUS7 3 3 4 3 4 3 4

SUS8 2 4 4 2 3 4 3

SUS9 3 4 3 3 4 4 3

SUS10 2 4 4 2 4 4 2

NonSUS1 4 4 1 4 4 4 3

NonSUS2 2 4 4 4 3 2 2

NonSUS3 2 3 1 2 2 3 1

NonSUS4 3 4 4 3 4 4 4

NonSUS5 4 4 2 4 3 4 4

NonSUS6 4 4 4 4 4 4 4

NonSUS7 1 0 1 0 4 1 4

NonSUS8 2 2 4 2 4 2 2

NonSUS9 3 3 2 3 3 3 2

NonSUS10 3 4 2 4 4 3 2

	Chapter 1 Project Background
	1.1 Motivation
	1.2 Project Goal
	1.3 Reader's Guide

	Chapter 2 Research
	2.1 Research Questions
	2.1.1 Combine fun with educational
	2.1.2 Pervasiveness and knowledge
	2.1.3 Research questions summarized

	2.2 Research Method
	2.3 Development Tools
	2.3.1 Eclipse
	2.3.2 ADT Plugin for Eclipse
	2.3.3 AndEngine
	2.3.4 Visio 2013

	2.4 Research process
	2.4.1 Use of code snippets and open source software

	Chapter 3 What makes games fun
	3.1 Mechanics, dynamics, aesthetics
	3.2 What makes things fun to learn
	3.3 Competition

	Chapter 4 Similar games and concepts.
	4.1 Pervasive Games
	4.2 Knowledge Games
	4.3 Duel-based games
	4.4 A special case: an earlier version of Tribal Knowledge War

	Chapter 5 Android platform
	Chapter 6 Possible technical solutions
	6.1 Web applications
	6.2 Native applications

	Chapter 7 Possible implementations
	7.1 Peer-to-peer
	7.2 Server
	7.3 GPS and Location
	7.4 Google Cloud Messaging

	Chapter 8 Summary of prestudy
	Chapter 9 Description of the final game
	9.1 Core gameplay
	9.2 Players and their “tribe”
	9.3 Challenges and the contested area
	9.4 Duels and weapons
	9.5 Game flow
	9.5.1 Game states
	9.5.2 Game Screens

	Chapter 10 Game design
	10.1 Evolution of game concepts
	10.2 Discussion on the game's final design
	10.2.1 Mechanics, dynamics and aesthetics
	10.2.2 What makes learning fun?

	Chapter 11 Requirements
	11.1 Functional requirements
	11.2 Non-functional requirements

	Chapter 12 Architecture
	12.1 Choice of architecture
	12.1.1 Server
	12.1.2 Storage
	12.1.3 Client

	12.2 Interaction between client and server
	12.3 Storage
	12.4 Client
	12.5 Handling GPS and finding suitable user locations
	12.6 Textual representation of player status and battle risk
	12.7 Model View Controller

	Chapter 13 Implementation
	13.1 Server
	13.1.1 Receiving a request from a client
	13.1.2 Receiving a location update and heartbeat

	13.2 Client
	13.2.1 Communicating with the server
	13.2.2 Receiving Push Notifications
	13.2.3 Use of interfaces
	13.2.4 Local Storage
	13.2.5 The duels
	13.2.6 Game Data stored in XML

	Chapter 14 User Experiment
	14.1 Purpose of experiment
	14.2 Description of experiment
	14.3 Task List
	14.4 Questionnaire
	14.5 Questionnaire results
	14.6 Observations made during experiment

	Chapter 15 Evaluation
	15.1 Evaluation of architecture
	15.2 Evaluation and use of AndEngine
	15.3 Evaluation of usability
	15.4 Evaluation of entertainment and educational value
	15.5 Feedback from testers after debriefing
	15.6 Evaluation of observations made during experiment

	Chapter 16 Conclusion
	Chapter 17 Further work
	17.1 Further development
	17.2 More extensive usability tests

