
Peer-to-peer Game State Replication
A practical application of the Same platform

Kjetil Mehl

Master of Science in Computer Science

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer and Information Science

Submission date: June 2013

Norwegian University of Science and Technology



 



Abstract

Multiplayer mobile games using the local network is a tempting platform, how-
ever, several technical hurdles remain in order to create this technology. The Same
framework by Kjetil Ørbekk applies techniques from distributed systems in the pur-
suit of creating a platform for sharing objects among Android devices on a local
network

Throughout this thesis, a multiplayer game design was devised and implemented
using Same’s transmission protocol, and the master selection mechanism for im-
proved connection stability. The multiplayer game provides a working model for
analyzing Same’s features and limitations for practical application.

The game’s network architecture uses a flexible client-server methodology. The
acting master device maintains the server role. If the master device fails, a new
master device is selected, which resumes the simulation from the last known game
state. Snapshots and delta states are managed in a replication model in order to
reduce lag and improve reliability.

This thesis focuses on ways to adapt the Same framework to gaming platforms, in-
cluding its strengths and limitations. The major strength in Same is that its updates
are consistently distributed to all connected clients. This could also pose as one of
its major weaknesses for games that do not have to propagate state this strictly.
Several elements of the Same platform are further analyzed, whereby additional
research and development could transform Same into a strong distributed local
networking platform.





Samandrag

Mobilspel med støtte for fleire deltakarar samstundes over lokalnettet er ein attrak-
tiv plattform, men det gjenstår framleis mange problem i å utvikle slik teknologi.
Rammeverket Same utvikla av Kjetil Ørbekk brukar teknikkar frå distribuerte sys-
tem for å lage ein plattform med føremål å dele objekt mellom Android-einingar
på eit lokalt nettverk.

Gjennom denne avhandlinga har det blitt utforma og utvikla ein prototype som
brukar protokollen i Same for å formidle kontakt mellom klientar samt mekanis-
men for å automatisk oppretthalde kontakta mellom klientane. Spelet tilrettelegg
for ein modell som gjer det mogeleg å analysere Same sine eigenskapar og av-
grensingar.

Nettverkarkitekturen i spelet er bygd på ein fleksibel klient-tenar metodikk. Android-
eininga som opptrer som fungerande master vil og få rolla som tenar. Om denne
masteren feilar vil ei ny eining bli valt som master og simuleringa vil halde fram frå
den sist kjende tilstanden. Augneblinksbilete av tilstanden og deltatilstander blir
handtert i ein replikeringsmodell for å minske etterslep og for å auke pålitelegheita.

Denne avhandlinga fokuserer på måtar å tilpasse Same-rammeverket til bruk i spel
både med tanke på rammeverket sine styrkar og avgrensingar. Den største styrken
i Same er at oppdateringane konsistent vert distribuert til alle klientane. Dette kan
vise seg å verte ein veikskap ved systemet for spel som naudsynt ikkje har behov
for denne konsistensen. Ulike aspekt ved programvareplattforma er analysert og
vidare utvikling på rammeverket kan forbetre Same til ein endå sterkare kandidat
for distribuert tilstand over lokale nettverk.





Acknowledgements

I would like to thank the following people for their help and input during the
project:

• Svein Erik Bratsberg as my supervisor. Svein Erik has given valuable and
insightful feedback throughout the whole project. He has enthusiastically
answered my questions and helped me with implementation problems and
design choices.

• Jonas Eikli who provided me with an additional test device. Jonas also
helped me record and create the demonstration video.





Contents

Contents i

List of Figures v

List of Tables vii

Glossaries ix

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Project Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Real-time Multiplayer Games . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Networked Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 UDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Same . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The Network Model in Same . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related Work 11
3.1 Client-Server Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 KryoNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Peer to Peer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Peerdroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Hybrid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Google Play Game Service . . . . . . . . . . . . . . . . . . . . 13

4 Design 15
4.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Devising a Game Concept . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Interaction Matrix . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Architectural Requirements . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

i



ii CONTENTS

4.3.1 High Level Architecture . . . . . . . . . . . . . . . . . . . . . 19
4.4 Game Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4.1 Game Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 EntityManager . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.1 Passing Game State . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.2 Serializing and Synchronization . . . . . . . . . . . . . . . . . 25
4.5.3 Master Selection . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5.4 Failures and State Recovery . . . . . . . . . . . . . . . . . . . 30

5 Implementation 33
5.1 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Same . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 LibGDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.1.3 Box2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Entity Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Handling Updates and Synchronization . . . . . . . . . . . . . . . . . 39
5.4 Issues by using Same as a platform . . . . . . . . . . . . . . . . . . . 39

5.4.1 Client Differentiation . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.2 Jackson Serialization . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Delta Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Entity Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 One Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Handling New Players and Disconnects . . . . . . . . . . . . . . . . . 46

6 Evaluation 49
6.1 Test Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Tick-rate and Frames Per Second . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Test Case #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Test Case #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Transmission Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Prototype Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 CPU Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4.2 Dalvik Garbage Collector . . . . . . . . . . . . . . . . . . . . 57

6.5 Potential Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.6 Same Adaption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.7 Development and Test Environment . . . . . . . . . . . . . . . . . . . 58

6.7.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.7.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion and Further Work 61
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Improvements to Same . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3 Resulting Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



CONTENTS iii

Appendices 69

A Test Devices 69

B Tests Results 71

C Profiling Results 73



iv CONTENTS



List of Figures

2.1 The Same network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 The client-server model. . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 The peer to peer model. . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Game design sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 High Level View of the Architecture . . . . . . . . . . . . . . . . . . . 20
4.3 High Level View of the Rendered Simulation . . . . . . . . . . . . . . 21
4.4 Behaviour by Composition . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 High Level View of the Headless Simulation . . . . . . . . . . . . . . 24
4.6 Host Game Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 Connect to Game Sequence . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 New Master Selection Sequence . . . . . . . . . . . . . . . . . . . . . 30

5.1 Interpolation Relatively to Time . . . . . . . . . . . . . . . . . . . . . 44
5.2 A single Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Screen-shot from an in-game level . . . . . . . . . . . . . . . . . . . 50
6.2 Average frame rate and tick rate, test case #1 . . . . . . . . . . . . . 52
6.3 Average frame rate and tick rate, test case #2 . . . . . . . . . . . . . 53
6.4 Transmission rate of data through Same. . . . . . . . . . . . . . . . . 54

C.1 Profiling results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



vi LIST OF FIGURES



List of Tables

2.1 The 5-layer TCP/IP reference model . . . . . . . . . . . . . . . . . . 7

4.1 Interaction matrix for the game design. . . . . . . . . . . . . . . . . . 17

A.1 Nexus One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.2 Nexus S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.3 Nexus 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.4 Asus UX32VD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1 Master performance measured in-game . . . . . . . . . . . . . . . . . 71
B.2 Master performance measured in-game . . . . . . . . . . . . . . . . . 72

vii



viii LIST OF TABLES



Glossary

Android Android. 56

API Application Programming Interface. 11, 13

CPU Central Processing Unit. 51, 56

DDMS Dalvik Debug Monitor Server. 56, 57

DHCP Dynamic Host Configuration Protocol. 8

DNS Domain Name System. 8

FPS First Person Shooter. 6, 25, 50, 52, 56, 71, 72

GC Garbage Collector. 19, 57

GPU Graphic Processing Unit. 36, 56

GWT Google Web Toolkit. 35

HTTP Hypertext Transfer Protocol. 13

IP Internet Protocol. 7, 29, 34, 40, 57

IPX Internetwork Packet Exchange. 7

JSON Javascript Object Notation. 9, 12, 41–43, 63

JXTA Juxtapose. 12

LAN Local Area Network. 6, 7, 12

MVC Model View Controller. 18, 19, 35

NAT Network Address Traversal. 12, 13

ix



x Glossary

NTNU Norwegian University of Science and Technology. 8

OpenGL Open Graphics Library. 35, 39

RDV Rendezvous. 13

RTS Real Time Strategy. 6, 7, 24

SDK Software Development Kit. 56, 59

SPX Sequenced Packet Exchange. 7

TCP Transmission Control Protocol. 7–10, 12, 13

UDP User Datagram Protocol. 7, 8, 12, 13, 61, 62

UML Unified Modeling Language. 21

Wi-Fi Wireless. 1, 7

XML Extensible Markup Language. 12



Chapter 1

Introduction

Networked games have played an important part throughout gaming history. Be-
fore the widespread of always-on Internet it was not unusual for people to host Lo-
cal Area Network parties and computer gatherings. As more people got connected
to the Internet this tendency shifted over to online gaming enabling massive online
multiplayer games enabled by powerful server parks around the globe.

When smartphones were introduced to the market casual gaming developed as
a whole new market. These games are often small scale productions meant to
entertain the player over a short time span. Smartphones have risen to be powerful
devices capable of displaying advanced graphics and perform heavy computations.
By combining this technology with an always-on connection to the Internet a great
base for real-time multiplayer games on smartphones is created.

Same is a framework developed especially for intercommunication between An-
droid devices[10]. These devices are usually connected to Internet through unre-
liable channels such as cellular1 or Wireless (Wi-Fi)2 networks. Packet loss, con-
nection loss and unreachable hosts are occurring more frequent in these networks
compared to traditional cabled network. If the host in a game loses connection
all connected clients will suffer and the current game state will be lost. This is
the main problem that Same tries to solve. Its solution is based on letting all con-
nected clients select a new ’master’ if the prior fails. Once a consensus has been
established, the new master takes on the responsibility of distributing state to all
connected clients.

1Mobile network - http://en.wikipedia.org/wiki/Mobile_network
2Wi-Fi - http://en.wikipedia.org/wiki/Wi-Fi

1

http://en.wikipedia.org/wiki/Mobile_network
http://en.wikipedia.org/wiki/Wi-Fi


2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

When Same was developed the intended application was real-time multiplayer
games running on mobile devices. Same is capable of connecting clients and facil-
itating communication between those clients.

However, many challenges are faced when creating a real-time multiplayer game.
What kind of network architecture should be applied? What kind of data should
be shared between connected clients? What could be considered a reliable source
of this data, and how should this data be handled by a receiving client?

Several of these challenges are dependent on the performance of the underlying
network implementation. In a typical real-time game updates must be sent and
received at a high and steady rate in order to keep the state between all connected
clients synchronized. The amount of data to be sent, how many clients should
receive the update and the latency to these clients are all important factors that
could have a major impact on the overall performance of the system.

The main focus of this thesis is to see how well Same handles state propagation of
a typical real-time game. In networked multiplayer games it is crucial to minimize
the amount of state that needs to be propagated. Passing data through the network
is an expensive operation, and it is desired to minimize the amount of redundant
data. There will also be a focus on maintaining a smooth gameplay experience for
connected clients even if intermediate connection losses or delayed game updates
occur.

1.2 Project Goal

The goal of this thesis is to adapt the capabilities and the functionality in Same
to see how well it performs as a platform for real-time multiplayer games. To
achieve this goal a multiplayer game with real-time requirements will be devised
and implemented. Same will be used as the prototype state replicator, and the
game should exploit the fault detection and fault recovery provided in this frame-
work. The prototype should be modeled after typical real-time multiplayer games
in order to get a realistic test case and realistic results.

A part of this goal is to propose solutions to problems encountered throughout the
implementation phase both related to game network implementation generally,
and the adaption of Same specifically for this game prototype.



1.3. THESIS OUTLINE 3

1.3 Thesis Outline

Chapter 2 of this report aims to provide some background literature on real-time
multiplayer games and network gaming. This chapter will also give a short intro-
duction to Same. Chapter 3 describes several existing solutions, based on different
network models. Chapter 4 aims to describe the concept of the game to be imple-
mented and its architectural design. Chapter 5 covers the implementation phase
which includes libraries that was used and various challenges encountered. Chap-
ter 6 aims to evaluate the proposed solutions. Conclusions and further work are
presented in Chapter 7.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background

This chapter aims to describe the background behind the project. The main goal
is to create a prototype of a multiplayer game on top of a specialized network
model. This chapter will give some background on what a multiplayer game is and
how nodes in a typical networked game are connected. It will also give a quick
introduction to Same, the network model that is to be adapted.

2.1 Real-time Multiplayer Games

Multiplayer games are based on two or more participating players. This is opposed
to single-player games whereas a player is playing against the artificial intelligence
of the computer.

People are often more involved in games where the opponent is controlled by an-
other human being. A study on competitiveness in games[12] showed that players
battling other players fostered a social competition. The research argued that com-
petitive elements can be incorporated by such games because of their interactivity,
which allows for active engagement of the user in the playing process, and for feed-
back on user’s actions. Further they stated that the user’s feeling to play against an
opponent likely evokes a social-competitive situation, that is especially capable to
engage and involve the users.

However there are several drawbacks by designing and implementing a multiplayer
game. The game itself will in most cases be more complex than a single-player
game. Players must be able to interact with the game individually. The gameplay
must be balanced, and every participating player must feel that they have a chance
to win.

The grand slam of multiplayer games are networked games. These are often
games running over the Internet, an unreliable, unstable and limited communi-

5



6 CHAPTER 2. BACKGROUND

cation channel. The game state must be replicated over this channel, players must
synchronize their simulations and connections losses must be handled. Greater
problems arises when the server that simulates the game world crashes. How to
retrieve the game state? These are just a handful of the many problems that a
networked game must account for.

Two extremities are often mentioned when speaking about design of networked
games, namely real time and turn based design. The scope of this thesis is to focus
on real time games, and its informal definition from Wikipedia[14] is given below:

In real-time games, game time progresses continuously according to the
game clock. Players perform actions simultaneously as opposed to in se-
quential units or turns. Players must perform actions with the considera-
tion that their opponents are actively working against them in real time,
and may act at any moment. This introduces time management consid-
erations and additional challenges (such as physical coordination in the
case of video games).

One method to implement a networked game is to progress the game clock at each
client once the client receives a packet signed with the next tick from the server,
or the other clients. This is referred to as Lockstep progression[13]. Some games
have implemented this system (see Section 4.5.1), but it’s far to error prone for
wireless communication channels which most Android devices use. In addition to
this the game time would only progress as fast as the client with the highest latency
since its response time would dictate when the next game state could be achieved.

Many real-time networked games turn to a client-server approach. Instead of pro-
gressing the game clock in parallel, each client progresses its internal game clock
and updates its state based on an authoritative source. This source might be an-
other client or a dedicated server. Grand examples of real-time multiplayer games
that have adapted this model are:

• Quake (First Person Shooter (FPS))

• Counter Strike (FPS, Half Life modification)

• Starcraft 2 (Real Time Strategy (RTS))

Quake and Counter Strike are typical real time multiplayer games utilizing the
client-server model. These games are implemented such that every player that
creates a game, starts a new server and connects to itself as a client. This model
enabled people to create games on the Local Area Network (LAN), without being
dependent on a Internet connection. It also enabled people to host their own
servers on the Internet, creating a self driven game service.

Starcraft 2 also uses the client-server model, except that all players are restricted
to being clients only. The servers are controlled entirely by the game company.
Drawbacks with this model is that two players are unable to finish their game if
the centralized servers experience problems. People are also forced to play through
the Internet, even when they are located on the same LAN. Advantages with this



2.2. NETWORKED GAMES 7

model is that Blizzard are able to control every aspect of the simulation, greatly
reducing probability of cheaters and mischievous players. The company needs a
large, stable and secure infrastructure to support this kind of model.

2.2 Networked Games

There exists several methods of achieving a multiplayer enabled game. Methods
such as "split screen" and "hot swapping" was popular some years back, due to
the poor availability of "always connected" Internet. In the later years networked
games have gained popularity, due to the larger user base these games and the In-
ternet provide. This thesis will concentrate on networked games, so it is natural to
expand on what defines a networked game. The 5-layer TCP/IP model in Table 2.1
will be used to explain connectivity at different levels.

A networked game shares state between its players over a communication link.
This link can be everything between a network switch or router, a wireless access
point/hotspot or a mobile base station. Regular desktop computers are usually
connected through a cable to a switch or a router. Mobile devices on the other
hand are most often exclusively equipped with a Wi-Fi antenna and a mobile radio.
Laptops often have all three options. Each of these peripherals implement specific
network protocols (layer 2 in Table 2.1).

Application (layer 5)
Transport (layer 4)
Internet (layer 3)
Network Interface (layer 2)
Link (layer 1)

Table 2.1: The 5-layer TCP/IP reference model

The present de facto communication protocol over these unreliable channels are
the Internet Protocol (IP) (layer 3) and Transmission Control Protocol (TCP) (layer
4). During the 1980s through to the mid-1990s two other protocols were popular
on LAN. The Internetwork Packet Exchange (IPX) (layer 3) and Sequenced Packet
Exchange (SPX) (layer 4). The popular RTS game Warcraft 2 for instance only
supported this technology. IPX/SPX was proven to perform faster than TCP/IP
in smaller networks, but due to the latter performing far superior on Wide Area
Networks1, IPX/SPX gradually got phased out.

Nowadays most networked games rely on either TCP, User Datagram Protocol
(UDP) or both protocols. These are described in the following sub sections.

1Wide Area Networks - http://en.wikipedia.org/wiki/Wide_area_networks

http://en.wikipedia.org/wiki/Wide_area_networks


8 CHAPTER 2. BACKGROUND

2.2.1 TCP

TCP2 provides a reliable, ordered, error-checked delivery of a stream of octets
between clients connected in a network. TCP is used as the main protocol for data
transport for the World Wide Web, e-mail and file transfers.

Using TCP as the main transport protocol for games, simplifies the implementation
for the developers, but may create issues in regards to performance later on. There
is considerably overhead of transmitting a TCP packet in contrary to a UDP packet.
A chat system within a game would be a good candidate for a TCP based imple-
mentation. The chat messages would most likely be small in terms of size, and
they would not be sent that frequent. Players would also expect that a message
they sent actually got sent. This is something TCP helps to ensure.

2.2.2 UDP

UDP3, is a "hit or miss" protocol, meaning that it does not care whether or not
packets did arrive. The main use case for UDP over TCP is performance and speed.
It is a simple and stateless protocol very suitable for broadcasting information. It
is used as the transport protocol for Domain Name System (DNS), Dynamic Host
Configuration Protocol (DHCP) and often real time video and audio streaming.

Fast paced multiplayer games needs to exchange data at an rapid rate (maybe as
often as a 100 updates per second). In these cases using TCP will not be sufficient.
The desired update rate cannot be achieved due to latency in the network, and the
overhead by using that protocol can be too large. The drawback by using UDP is
that packets need to be verified at the end points (the clients), and this logic needs
to be implemented manually by the developer.

2.3 Same

Same is a framework that was developed as a master thesis by a MsC student at
the Norwegian University of Science and Technology (NTNU) during the spring
of 2012. The main goal in this thesis was to propose a general solution to net-
work failures in distributed systems for mobile phones. More specifically real-time
multiplayer games.

Same has several valuable properties which often are desired in networked multi-
player games. Communication between connected clients are facilitated through
a shared state. This means that every client can broadcast a change to the other
clients. In addition to this the system knows what clients are connected at any
time. This is usable for typical games where a player state needs to be maintained.

2TCP - http://en.wikipedia.org/wiki/Transmission_Control_Protocol
3UDP - http://en.wikipedia.org/wiki/User_Datagram_Protocol

http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol


2.4. THE NETWORK MODEL IN SAME 9

The author of Same performed several benchmarks to evaluate the platform. The
results discovered in this evaluation can be viewed in detail in his thesis but the
main points are summarized below.

• The framework has reasonably low latency. The author predicts that it may
be good enough for real time applications, as long as concurrent transferred
objects is kept to a minimum.

• Same appears to scale well. With more clients though more updates are
expected, which could lead to poor performance.

• The master selection routine is quickly able to select a new master once the
prior fails.

By looking at the conclusion in the master thesis it is fair to say that Same is a good
candidate as a framework for real-time network games.

2.4 The Network Model in Same

The model that Same proposes is different from both the traditional client-server
model and the peer-to-peer model. It is more fair to say that Same is a hybrid be-
tween those two models. If two or more clients are joined in a network, they share
state through a concept named Variables. When a client updates a Variable this
update is propagated through Same, and all other connected clients gets updated.
The propagation happens through the Master in this network.

A master is chosen by all participating clients. This selection routine is carried out
by an implementation of the Paxos protocol[7]. The chosen master is responsible
for facilitating contact between clients (notifying all clients when an update to a
Variable occurs). This is similar to the client-server model where a central server
is the communication channel for the clients. If the master becomes unavailable or
disconnects from the network, the remaining participants selects a new master, and
communication continues from the last known state. This model is comparable to
the peer-to-peer model where all peers are equally responsible for facilitating com-
munication. Clients must attach listeners for its variables in order to get notified
when they are updated. A high level description of the Same model is given in
Figure 2.1.

The underlying implementation of how state is propagated in Same is best ex-
plained by the use of Table 2.1. When a Same Variable gets set (on the Application
level) to a Java object, this object is serialized into a Javascript Object Notation
(JSON) string. The serializing is done by the JSON processor Jackson. Next the
state at a client (including the JSON String) is serialized by using Protocol Buffers
into a binary format. Then Same writes the encoded data to a Java Socket. When
Same gets initialized on an end point a network socket over TCP (on the Trans-
port level) gets initiated between the master and the client. When looking at the



10 CHAPTER 2. BACKGROUND

Figure 2.1: High level view of a Same network. A master gets elected by the participating clients,
and this master facilitates contact between all clients. All clients individually run a Paxos service
which triggers when the connection to the current master is lost.

premise for creating Same, using TCP makes a lot of sense. The main applica-
tions rely on the data being successfully transmitted which TCP handles (see Sec-
tion 2.2.1). Same ensures that the correct state is propagated to all the connected
clients.



Chapter 3

Related Work

In order to propose a successful game architecture existing solutions need to be
investigated and researched. This research focuses on open source network game
frameworks mainly intended for Android or Java in general. The main reason to
look into open source1 frameworks is that the code base is already freely available
on the Internet.

3.1 Client-Server Model

Client-server is a distributed network paradigm that defines a set of clients con-
nected to one centralized server. If this server fails or becomes unreachable, the
clients will lose their connection as well. This model is illustrated in Figure 3.1.

3.1.1 KryoNet

Figure 3.1: The client-server model.

KryoNet2 is a lightweight client-server
library built on top of Java Sockets.
This library provides a simple Applica-
tion Programming Interface (API) for
setting up a server in one node, and
for connecting to this server from other
nodes. In the default implementation
these nodes communicate by passing
Java Objects to each other.

1Open Source - http://en.wikipedia.org/wiki/Open_source
2KryoNet - http://code.google.com/p/kryonet/

11

http://en.wikipedia.org/wiki/Open_source
http://code.google.com/p/kryonet/


12 CHAPTER 3. RELATED WORK

By default KryoNet uses Kryo for serial-
ization. Kryo uses a binary format and
is very efficient, highly configurable,
and does automatic serialization for most object graphs. It is also possible to plug
in custom serialization (for example JSON). A prerequisite for using Kryo is that all
classes which at one point should be passed through KryoNet have to be registered
internally in the Server instance and the Client instance.

As with regular Java Sockets KryoNet provides communication over TCP, UDP or
both protocols concurrently. A small set of utilities is also included in KryoNet such
as server discovery on the LAN (broadcasts an UDP packet) and network latency
testing by sending ping packets to connected clients.

3.2 Peer to Peer Model

Peer-to-peer is a distributed computing paradigm that defines a network architec-
ture based on cooperating participants (peers). This model is illustrated in Fig-
ure 3.2.

3.2.1 Peerdroid

Figure 3.2: The peer to peer model.

Peerdroid3 is a port of the Juxtapose
(JXTA) protocol to the Android plat-
form. This protocol is an open source
peer-to-peer protocol specification in-
troduced by Sun MicroSystems. This
protocol is defined in terms of a set
of Extensible Markup Language (XML)
messages.

There are two main categories of peers
in this network. The edge peers and
the super-peers. The edge peers are
defined to be the peers which have
transient, low bandwidth network con-
nectivity. The reside on the border of
the Internet, behind Network Address
Traversal (NAT) or firewalls.

The super-peers are peers facilitating
communication and discovery in this
network. A rendezvous peer is in charge
of coordinating the peers, and provides the necessary message propagation. A relay

3Peerdroid - http://code.google.com/p/peerdroid/

http://code.google.com/p/peerdroid/


3.3. HYBRID SOLUTIONS 13

peer allows peers which are behind firewalls or NAT to take part in this network.
This is done by using a protocol which can traverse the firewall, like Hypertext
Transfer Protocol (HTTP).

This library creates a network based on an index of peers, called the Rendezvous
(RDV) list. Peers connect through pipes (an abstraction similar to Unix pipes)
which are built on top of Java sockets. These pipes can be direct communication
two peers, or routed trough a rendezvous peer.

3.3 Hybrid Solutions

This section will describe a solution that is partly server-client based and partly
peer-to-peer based. This is the type of solution which would be closest to Same
feature set wise.

3.3.1 Google Play Game Service

At the annual Google IO conference held in 2013, Google announced a game ser-
vice for Android and iOS (previously named iPhone OS). This platform includes a
multiplayer API specifically targeted for Android. The goal with this platform is to
make it easier for developers to create real-time multiplayer games.

This is a new type of service offered by Google and not much is known about
its internal design and architecture. Some time was invested in trying out this
service and it turns out that it is fairly similar to Same. The service is comprised
of a high level API for finding matches, creating quick games and to invite friends
to these games. One or several peers can be joined in a room and all peers are
able to pass messages to other peers, or broadcast messages to the whole room.
A room is similar to the network in Same and messages sent by these players is
similar to how Same distributes its state. All communication between peers is
authenticated by Google and conveyed through their servers. This is similar to
the traditional client-server architecture. Peers can communicate by sending each
other UnreliableRealtimeMessages or ReliableRealtimeMessages. The first would be
an abstraction on top of UDP and the latter an abstraction on top of TCP. It is also
possible to open direct sockets between the clients, which can be read and written
to as one would do with the traditional Java API.

The game implementation and network logic is implemented on top of this API and
how this implementation is realized is entirely up to the developer. The peer-to-
peer network model could be exploited, or the developer could device a method
to select one of the peers as an authoritative source of data much like the client-
server-architecture. It is important to emphasize that this is a service provided by
a third party. If the service gets shut down so will all games using this service as
their multiplayer platform.



14 CHAPTER 3. RELATED WORK



Chapter 4

Design

The aim of this chapter is to define and describe the design for this prototype.

4.1 Concept

This thesis is revolved around the capabilities of the Same framework, hence not
a lot of time will be spent working on the game concept itself. There are some
qualities by the game design required in order to properly test the framework.
These are:

1. The game must be playable concurrently by several players (multiplayer)

2. The game must be real time, meaning that the game simulation progresses
linearly with time.

3. There must be a shared state between all the players. This state could be the
level representation, with dynamic entities such as players.

4. The prototype should not be too complex in terms of implementation

5. When a player interacts with the game, this interaction should be reflected
as soon as possible

A short summary of how the concept for this prototype was devised is described in
the following sub sections.

15



16 CHAPTER 4. DESIGN

4.1.1 Devising a Game Concept

These requirements were used to brain storm around a simple game concept. I
started out with a plan to implement a distributed version of the game Snake1

(which later on became popular on mobile devices).

After experimenting for some time with this concept I realized it would not adhere
to some of the requirements in the way I wanted. The game would not be as
real time without breaking the classic Snake gameplay. Brainstorming with fellow
students led to another concept based on user controlled marbles. These marbles
should be able to move around in some sort of static level. One goal in this game
concept would be to push the other marbles of a platform, or to be the first marble
to reach a specific checkpoint. The game should be created top-down, meaning
that the players see their marbles from a bird perspective. The accelerometer in
the Android devices will be used as input. When a player tilts its device in one
direction, the marble should roll in that direction.

Figure 4.1: An initial game sketch. Two players
(the marbles) are colliding with each other. Two
walls and a trap are also present on the level.
The game is seen from a top-down perspective.

This concept adheres to the speci-
fied requirements. The player states
have to be synchronized real-time. All
clients must at all times be aware of
the other players. The level itself will
mostly be static and comprised of walls
and other obstacles. Physics will be
an important aspect in this game since
the players will use their momentum to
push other entities. The game should
allow for clients to connect and discon-
nect at arbitrary times. In the most
basic use case two players are battling
each other on a flat surface. In this case
a simulation needs to calculate the po-
sitions, velocities and momentum for
these marbles. This information must
be sent to both these clients, which will get reflected on their devices. A hand
drawn sketch of the game design is illustrated in Figure 4.1.

4.1.2 Interaction Matrix

A game matrix is a common method to describe relationships between entities in
a game design. In this design a game entity is an in-game object with one or
several different tasks. The marble would be one such entity and has a task of
moving around on the game level. Interactions between game entities are on a

1Snake - http://en.wikipedia.org/wiki/Snake_%28video_game%29

http://en.wikipedia.org/wiki/Snake_%28video_game%29


4.2. ARCHITECTURAL REQUIREMENTS 17

Entity
Marble 4

Wall 4

Pit 4

Trap 4

Marble Wall Pit Trap Entity

Table 4.1: Interaction matrix for the game design.

conceptual level and not restricted to physical collisions. Table 4.1 describes these
relationships.

As this matrix displays the player controlled marble should interact with several
other game entities. This table also describes something about the collisions and
how these should be handled. A marble colliding with a wall should be bounced
back with an equal but opposing force. A marble interacting with a pit on the
other hand, should result in a player losing his marble. Note that the other defined
entities should not interact with each other. This matrix will be used as a guideline
throughout the implementation.

To keep the implementation simple the collisions and movement should happen
in a two dimensional space. This makes sense since the game is designed to be
top-down. Only having two degrees of freedom will also keep down the amount of
data that have to be synchronized.

4.2 Architectural Requirements

This section will list the major architectural requirements for this system. The Ra-
tional Unified Process by IBM gives the following definition for any requirement[4]:

A requirement describes a condition or capability to which a system must
conform; either derived directly from user needs, or stated in a contract,
standard, specification, or other formally imposed document.

An architectural requirement is defined as any requirement that is architectural
significant. By using the concept devised in Section 4.1 a set of architectural re-
quirements are specified. Some of these requirements are directly targeted to test
Same, while others are specified to ensure a fluent game experience. The require-
ments are listed with an identifier, a name and a short description.

AR #1 Localized simulation
In this system disconnects and errors can and will occur. The game expe-
rience can greatly be affected if the game stops or gets delayed because of
intermediate errors. This should be solved by having every device in the
network run an independent simulation.



18 CHAPTER 4. DESIGN

AR #2 Authoritative master
As the aforementioned requirement states all clients run a local simulation.
These simulations should be updated accordingly to the simulation running
at the master. This ensures that the clients will be updated with the same
data set, and that they will synchronized.

AR #3 Transient fail over
If the master gets disconnected or crashes, one of the clients should get se-
lected as the new master and run the simulation. This should happen auto-
matically.

AR #4 Minimal network traffic
Mobile phones are often connected to the Internet through a mobile data
connection (such as 3G). These subscriptions are expensive compared to a
regular connection, and the pay model is tied to data usage. It is therefore
desired that the system minimizes network traffic.

AR #5 Gameplay based on physics
The gameplay is revolved on mechanical physics, forces and responses to
collisions. This needs to be replicated on all devices in order to give a proper
representation of the game world.

These requirements will be used as the basis when designing the architecture as
seen in the following section.

4.3 Architecture

This section will describe the proposed architecture for this project. To create a
clean and well designed architecture it is natural to expand on already existing
design patterns and solutions. Software architecture patterns is one such way of
defining general properties for the system in whole. By following a pattern all
involved developers should immediately understand what qualities are expected of
a module or component in this architecture.

The architectural pattern Model View Controller (MVC) first described by Trygve
Reenskaug makes a good foundation for a game architecture. Its main purpose is to
separate and provide a clean interface between user interface and data models[9].
As the name entails this is a three part architecture comprised by:

Model: stores object data and notify views when this data changes.

View: represents data stored in the models. The view is notified with changes
from the models, and updates accordingly.

Controller: sends commands to its associated view to make the view change the
view’s representation of the model.



4.3. ARCHITECTURE 19

In a typical game the player object is stored as a model, represented by some mean
of rendering (the view), and interacted with through the controller. MVC will
be the underlying architectural pattern for this prototype. In the implementation
this pattern will be adhered to by creating a GameScreen class as the view. This
class will render the game entities (which are models). The controller will be the
binding between the models and thew view. In this case the controller will pass
player input to the models. The view will in response to this draw the updated
models.

Another way to create a contract between the developer and the architecture is
to use design patterns. A design pattern is defined by Erich Gamma et al.[6] as a
"general reusable solution to a commonly occurring problem". The use of design
patterns simplifies code complexity and enhances mutual understanding of the ar-
chitecture between developers. For this kind of application there are several design
patterns that can be applied. Examples of relevant design patterns are described
below:

Singleton: Declaring a class as a singleton means that the class can’t be instanti-
ated multiple times during the program execution. Functionality can be pro-
tected behind the singleton in order to ensure that all calls to the its methods
are handled by the one and only instance of that class. Reading data from
files is an expensive operation and it is better to cache the data within the
singleton, to prevent any unnecessary read operations.

Object pool: Object pools are a mechanism to limit new instances of objects.
Instead of letting the program allocate new objects, it pulls objects from
a pool of pre-allocated objects. Once the object has finished its task (gets
de-referenced), it goes back into the pool. This design pattern is especially
useful in Java, where all memory allocations are handled dynamically by the
Garbage Collector (GC). On less powerful devices it could be noticeable when
the GC runs.

Builder: This pattern separates the construction of a complex object from its
representation allowing the same construction process to create various rep-
resentations. This pattern is already being used in the code base of Same.

4.3.1 High Level Architecture

This section will describe the high level architecture for this system. An illustration
of the initial design is given in Figure 4.2. Only one connected client is included
for readability reasons.

To consider Figure 4.2 in the context of the MVC architecture the headless simu-
lation will contain the correct state of all the models. These states are distributed
to all connected clients which renders these models in their local view. Each client
manipulates the headless simulation through an instance of the GameClient which
is the controller.



20 CHAPTER 4. DESIGN

Figure 4.2: The conceptual view of one device running as master and another device running
as client. The internal boxes describe class instances and the arrows between them describes the
data flow.

This design is rather common when creating multiplayer games based on the client-
server architecture (clients display the view, the server maintains and distributes
the game state). The goal is to let one of the nodes in the network (the headless
simulation) do actual computations and game state updates while the clients (the
rendered simulation) only shadow this state and presents it for the players.

The headless simulation simulates the logic in this system. This includes collision
detection, game entity updates, checking game rules and handling user input from
the clients. This simulation has no concept of how this logic should be represented.

The rendered simulation renders objects for the players. These objects get up-
dated from the headless simulation. The rendered simulation does not handle
input from the players, but indirectly reflects the input when entities are updated
in the headless simulation. This conforms with Architectural Requirement #2 (see
Section 4.2).

4.4 Game Architecture

This section will describe the designed architecture for the game itself. This would
be the architecture running at each client, independently on how those clients
communicate. A diagram displaying the game architecture is best shown in the
context of the rendered simulation in Figure 4.3. This figure is a detailed sub set
of the diagram displayed in Figure 4.2.

Noteworthy in this figure are the methods in the rendered simulation. The Game-
Client object polls player input from the simulation and updates its internal vari-
able. The game state from the master is received in the GameClient which reflects
this state by passing it to the rendered simulation. The simulation reflects this re-
ceived snapshot by updating its internal entities. These entities are then rendered



4.4. GAME ARCHITECTURE 21

Figure 4.3: A class diagram displaying the internal relationships in the rendered simulation.

on screen in the game loop. The structure of a game entity is described in the
following section.

4.4.1 Game Entities

According to the game design and the interaction matrix in Table 4.1 a set of game
entities are to be defined. As described in this matrix these entities need to have
different behaviour, functionality and should be rendered accordingly. A marble
for instance has different physical properties and moves differently than a static
wall.

A well known method for achieving modularized behaviour is the use of the com-
posite pattern2. This pattern is adhered to by creating a group of well defined
components. These components are interfaces that all sub components realize. By
creating interfaces we ensure that any given component realize specific behaviour.

The sub components are responsible for the implementation of the actual logic. A
sub component implementing the Renderer component knows that it should render
something. How this rendering is achieved is up to the sub component.

The composite (also referred to as an entity) is the glue that binds these compo-
nents together. The behaviour of a composite is entirely defined by its attached
components. An empty composite would simply be a skeleton object.

The reason this pattern is favorable over the more traditional "behaviour by inher-
itance" pattern is that a small set of components can create the basis for a wide
range of different entities. By using behaviour by inheritance instead a wide range
of classes and class hierarchies would be needed to achieve the same goal. Fig-
ure 4.4 illustrates the composition of an entity (a wall in this specific example).
The notation in this figure is Unified Modeling Language (UML) version 2.0 OMG
as described by Martin Fowler[5]. This notation will be used throughout the thesis.

2Composite Pattern - http://en.wikipedia.org/wiki/Composite_pattern

http://en.wikipedia.org/wiki/Composite_pattern


22 CHAPTER 4. DESIGN

The wall entity is comprised of three components. A renderer, physics and a contact
response. All components share a small set of base functionality, which is why
they extend the abstract class Component. Often two levels of inheritance will be
sufficient to define a component. Two components will in most cases be sufficient
to give an entity some meaningful behaviour.

Figure 4.4: A game entity comprised of three components. These components are realizing
behaviour from different abstract component.

The renderer describes how this entity should be displayed on screen. The attached
component draws a sprite. Other renderers could render particles, animations or
three dimensional models.

The physics component describes how this entity should be handled in the physical
simulation. A wall for instance should not be movable and must have the physical
properties of a rectangle. The marble should be movable, react to forces when
colliding with a wall and have the physical properties of a circle.

The last component in this example is contact. This component describes what
happens when some other entity touches this entity. A player controlled marble
would be reflected in the opposite direction. Other entities such as a trap would



4.5. NETWORK ARCHITECTURE 23

have another contact response, which could inflict damage to the marble.

This design is adapted by several game engines and games. Nilson et al.[8] an-
alyzed the game engine Torque3, and decomposed that engine into specific sub
modules. The identified components included:

• Input

• Physics

• Renderer

• Core

These components and components inheriting their behaviour is in many cases
enough to describe game specific implementations in real physics based games.
This will also be the case for the prototype where a simple yet representational
implementation will be emphasized.

4.4.2 EntityManager

The EntityManager should be the only interface to add, remove and retrieve enti-
ties. Each entity is constructed by one or several components. These components
have to be initialized and loaded with the appropriate data. Certain kinds of com-
ponents have to be loaded in the game loop. A new entity however may be re-
ceived from the headless simulation at random times. The manager should queue
new entities and upon the game loop load and properly initialize these entities. An
equivalent of this manager will run at the headless simulation. The difference is
that the headless simulation should not load the rendering components, but only
representations of these components. A rendering component could render some
specific texture, and the component needs to contain this information even though
it does not explicitly use it.

4.5 Network Architecture

This section will describe how the network architecture is to be implemented in
this prototype. This includes how to distribute the game state, how this state is
serialized and how errors in the network are handled.

Figure 4.5 illustrates the conceptual class diagram of the headless simulation.
This is in several ways different from the diagram displayed for a client (see Sec-
tion 4.4). The simulation should generate a list of connected players, and reflect
their input in its entities. It should run entities through a Physics module and

3Torque - http://en.wikipedia.org/wiki/Torque_Game_Engine

http://en.wikipedia.org/wiki/Torque_Game_Engine


24 CHAPTER 4. DESIGN

Figure 4.5: A class diagram displaying the internal relationships in the headless simulation.

check the game rules (if one player has won). The simulation should also gener-
ate a world snapshot and distribute this to the connected clients. This is further
discussed in the following sections.

4.5.1 Passing Game State

Passing data over the wire is an expensive operation, and is prone to delays, er-
rors and data loss. In multiplayer games a game state needs to be reflected at all
participating players. In large fast paced games this state is often too big to be
transmitted in its entirety every server tick. Bettner et al.[1] describes how they
were able to synchronize game states with more than 1500 entities in the RTS
game Age of Empires. This game had a communication turn of 200 milliseconds,
which is slow compared to modern real time games. They could achieve this kind
of synchronization by doing a few but important assumptions:

• All players are present at the start of the game

• All players are present throughout the game

By doing these assumptions the game could pass along the input from the players,
and simulate the game at each client, such that all clients were kept synchronized.
Once a player disconnected, the game got paused and saved. The game could not
continue until all players were present again. One large issue with this system
was that different implementations of floating point arithmetic in the processors,
would lead to different computation results. Over time this difference accumulated
and one client could have a very different perspective on the state than the other
clients. As for most modern real time multiplayer games these assumptions cannot
be made. Players can usually drop in/out at random times, and it’s expected of a



4.5. NETWORK ARCHITECTURE 25

game to continue even though one of the players have disconnected.

One of the pinnacles of real-time multiplayer games the past decade was the
Frames Per Second (FPS) game Counter-Strike4 (see Section 2.1). This was ini-
tially a user created modification for the popular game Half-Life. This modification
later on got acquired by Valve (the creators of Half-Life). The network architecture
in Counter-Strike was based of another Valve acquired game named Team Fortress.
This is a very successful client-server architecture where connected clients play
on a pre-loaded map. The server expects that the client has the same version of
the specific map stored locally. An important part in this architecture is to limit the
amount of data that is sent between the client and the server. Valve argues that only
objects that have changed should be transmitted and updated at the clients[11].
This methodology works great for games with a lot of static objects (which a level
is comprised of), and some movable entities (players for instance). This would be
the case for the game design as described in Section 4.1. Valve achieves this by cre-
ating delta snapshots. Instead of transmitting the full game state (a game snapshot)
every tick the server iterates its internal game objects and generates a list of all the
changed objects. These are transmitted, and updated at the clients. A prerequisite
to delta snapshots is that clients originally must have the full game state. It would
not give any meaning to update a lot of entities that does not exist.

A similar system will be implemented in the prototype. When a new client connects
to a network, the master generates a full snapshot and passes this to the client.
Once the client has generated his local version of the game world, the master starts
passing delta snapshots to this client as well. A benefit by being able to create both
"delta" and "full" snapshots is that the client does not necessarily need to have a
locally stored level file. The server can generate this upon request and pass it to
the client. The simulation must loop trough all entities in the game world, and
check whether they should be transmitted. Since all the entities are comprised
of components, it makes sense to let each component decide whether it needs to
be transmitted or not. A moving physical component should always transmit its
new coordinates, as opposed to a renderer component which only should transmit
its colour once if the colour changed. This is realized in the component system
by letting all components have a flag which indicates if that component has been
changed. Upon a synchronization, the master will loop through its internal entities,
and for each entity let that entity check whether it has changed components. If one
or more of its components are changed it will append the data into a component
snapshot. After the delta snapshot has been fully built it will be transmitted to all
connected clients.

4.5.2 Serializing and Synchronization

As mentioned in Section 2.3 Same provides the master selection routine, and a
protocol for sharing data between connected clients. This protocol is implemented

4Counter-Strike - http://en.wikipedia.org/wiki/Counter-Strike

http://en.wikipedia.org/wiki/Counter-Strike


26 CHAPTER 4. DESIGN

as a concept described as shared Variables. These variables is how the programmer
communicates with the back end. A shared Variable is denoted by a user-supplied
name (the identifier) and a data type. The data type tells the Variable what types
of objects it should expect to handle. When clients are to communicate through
Same they simply create one Variable each which has the same key and data type.
A Variable supports several operations for reading and writing values to it. These
operations are described below.

get(): returns the current value of the variable. This is set to the most recent
value the client has seen. This value will not be updated unless update()
explicitly have been called.

update(): updates the variable. When calling this method the user acknowledges
the new value before overwriting it.

set(): tries to set the value to a new object. This method will only succeed given
that the variable is updated to the newest state.

To get notified of events in a Variable the client must register a ChangeListener to
it. This listener will get notified once a variable gets updated with a new value.
These ChangeListeners will be used to sample both input data from clients and
update data from the master. When a variable is updated at a client, the protocol
serializes the object and puts it on a socket connected with the master. The master
receives the string representation of the object, checks that it is the most up-to-
date data and further distributes it to all its clients. Once a client gets notified of
an update to a variable it de-serializes the string and notifies its listeners with the
object representation.

In the prototype these variables will be used to distribute the game state to all
clients, and to notify the master of input. Hence two variables must be created.
These are named:

• WorldSnapshot

• PlayerInput

The WorldSnapshot variable contains the simulation state in the master. The mas-
ter runs through its entities and appends the changed entities to a list. Once this
process is finished it updates the variable with this data. The clients should regard
this as a read only variable. The value of this variable should only be set in the
headless simulation context. All clients should attach listeners for this variable in
their GameClient class. Pseudo code describing how the WorldSnapshot variable is
set is given in Example 4.1.

Example code 4.1: Setting the value of the WorldSnapshot variable

// Head l e s s s imu la t i on loop
while ( running ) {

// Update e n t i t i e s
world . update ( ) ;



4.5. NETWORK ARCHITECTURE 27

// Update v a r i a b l e to l a t e s t s t a t e
v a r i a b l e . update ( ) ;
// Se t new s t a t e
v a r i a b l e . s e t ( world . getSnapshot ( ) ) ;
// Do s l e e p
thread . s l eep ( ) ;

}

The rendered simulation in a client is updated when a change happens to the
variable, as described in example 4.2.

Example code 4.2: The client gets notified of a world change

Var iab le<WorldSnapshot> world ;
public void valueChanged ( Var iab le<WorldSnapshot> unused ) {

// Got n o t i f i e d o f change , update the v a r i a b l e
world . update ( ) ;
// R e f l e c t the new s t a t e
s imula t ion . updateWorld ( world . get ( ) ) ;

}

The clients interact with the world by passing their input to the headless simulation
at the master. All clients set the PlayerInput variable, and they regard this as write
only as shown in example 4.3.

Example code 4.3: The client transmits its input

Var iab le<Player Input> input ;
public void s e t Inpu t ( P layer Input newInput ) {

// Update v a r i a b l e to l a t e s t s t a t e
input . update ( ) ;
// Se t new s t a t e
input . s e t ( newInput ) ;

}

The headless simulation has registered a ChangeListener to the PlayerInput vari-
able and will get notified when any player sets this. Next the simulation should
handle this input on the behalf of the client which set it. Pseudo code illustrating
this is displayed in example 4.4.

Example code 4.4: The headless simulation gets notified of an input change

Var iab le<Player Input> input ;
public void valueChanged ( Var iab le<Player Input> unused ) {

// Got n o t i f i e d o f change , update the v a r i a b l e
input . update ( ) ;
// As s i gn input to a p l a y e r



28 CHAPTER 4. DESIGN

P layer Input rece ived = input . get ( ) ;
// Do a c t i o n based on input
updatePlayer ( rece ived ) ;

}

4.5.3 Master Selection

If the master gets interrupted or disconnected from the network, Same executes
the Paxos routine and chooses a new master. Same provides a clean interface for
listening on the state of the connection. This interface gets triggered when the
connection state changes to either:

• Stable

• Unstable

• Disconnected

All clients attach a listener to this interface and they will immediately get notified
of changes in the network. When a client hosts a new game Same will select the
new client as master and that client will instantiate the headless simulation. This
flow is displayed in the sequence diagram in Figure 4.6.

Figure 4.6: The sequence when a client hosts a new game. After the connection to "the network"
(itself) is stable, the client will start to run the server simulation.

This figure shows the sequence that happens when a player presses "host game" on
his device. The GameClient will create a new Same network, and setup the initial
variables. This will trigger the master selection routine in Same, and later on give a



4.5. NETWORK ARCHITECTURE 29

connection state callback to the GameClient. If this callback is STABLE, GameClient
checks whether it should create a server. This is checked by comparing the local IP
address to the master IP address. If the client was chosen as master it starts a new
HeadlessServer thread.

The use of the connection state callback from Same to create a server greatly sim-
plifies the implementation for when connections are lost or the master gets dis-
connected. The callbacks will tell what client to create a server. The equivalent
sequence diagram for a client connecting to an existing game is shown in Fig-
ure 4.7.

Figure 4.7: The sequence when a client connects to an existing game.

This sequence is different from hosting a game, since the client provides an existing
IP address to connect to. After triggering JoinNetwork in Same, the client must wait
for the connection state callback. If this callback returns STABLE the isServer()
check will fail (as expected). The RenderedSimulation will start and request a full
game state from the master.



30 CHAPTER 4. DESIGN

4.5.4 Failures and State Recovery

There are two main cases of failures that may happen within this system:

1. An arbitrary client may fail

2. The master may fail

The first case will get handled by the failing client itself. If it was an intermediate
failure, it will simply reconnect to the network and request an update. If it was
a longer outage the user may reconnect to the game at a later time, as shown in
Figure 4.7.

The second case is more cumbersome. Since the master is authoritative the clients
will not know what is the correct game state once the master fails. This problem is
partially solved by Same. Part of the master selection routine inspects what client
updated the variable last, and accepts this as the "newest data". This client is a
good candidate for becoming the new master. Since the data set at this time is in a
unknown state (every client got their own version), the system have to settle with
the latest state from one of the clients. The master failure and selection of a new
client is shown in Figure 4.8.

Figure 4.8: The sequence when a master disconnects, and this client is chosen as a new master.

It is crucial to pause the rendered simulation if connection to the master is lost. This
is done immediately after the clients receive the UNSTABLE connection callback.
The longer a client runs its own simulation, the more the game state between the
clients will differentiate.

Same runs the master selection routine in the background, selects a client as the
new master and eventually gives a STABLE connection state callback. Upon receiv-
ing this callback every client check whether they became the new master. If this is
the case for a client, it serializes its own rendered simulation data set, and passes



4.5. NETWORK ARCHITECTURE 31

this as an argument into the newly created headless simulation. The headless sim-
ulation picks up where that client last got paused, and starts updating the other
clients. All clients resume their local simulation and get updated according to the
state from the new master.



32 CHAPTER 4. DESIGN



Chapter 5

Implementation

The goal of this chapter is to describe the implementation phase. This includes
libraries extended and specifically why these libraries were chosen. This chapter
will also describe methods applied in order to achieve an effective state replica-
tion. Problems encountered and proposed solutions to these problems will also be
discussed.

5.1 Libraries

This section will describe libraries and frameworks used to develop the prototype
and emphasize why these frameworks were chosen. Common for these libraries
are that they are written in Java1 or have an equivalent Java port. They are also
open source software.

5.1.1 Same

What Same is and what it aims to achieve in this prototype has already been ex-
plained in Section 2.3 and Section 2.4. This section will give a description on how
Same was adapted and implemented in the prototype. The author of Same pro-
vided a thorough example application which helped a lot in the initial adaption of
Same.

1Java - http://java.com/en/

33

http://java.com/en/


34 CHAPTER 5. IMPLEMENTATION

Implementation:

Same was added to the prototype project in Eclipse as a Maven dependency2.
Maven is used to make it simpler to handle a large set of Java dependencies. These
dependencies can be added through an online repository or through a local repos-
itory. The Same framework was published as a Maven Artifact on Github which
simplified the process of adding this project as a dependency.

A GameClient class was created, which holds references to two of the core classes
in Same: SameController and Client.

SameController: This controller is the main interface to the Same back end. The
controller is used to create networks, instantiate the local client and to add
the ConnectionState-listener.

Client: This class is used to join specified networks and to create shared variables
in the context of those networks.

The GameClient class encapsulates the two aforementioned objects, and abstracts
their functionality into two concise methods as described below:

host(): Hosts a new game. If this method is triggered, the GameClient will use the
SameController to create a new Client and then create a new network. The
IP for this network will be one of the IPv4 addresses in the network interfaces
for this device.

connect(String IP): Triggered when the user wants to connect to an existing
game. This method uses the SameController to create a new Client and then
connects to the existing network through the Client. The IPv4 address of the
current master must be passed as an argument to this method.

These two methods share a lot of functionality (creating the SameController and
retrieving the Client) hence a general private method setupClient() was created.
This method does the initial setup of the SameController and the Client regardless
of this device hosting a new game or joining an existing one.

5.1.2 LibGDX

Creating a game from scratch could be an enduring task but there exists countless
game frameworks that try to simplify this process. The main goal of these frame-
works is to provide the tools for making games instead of having the developer
focus their time on making these tools. It is important to consider whether it is
worth spending time to learn the framework as opposed to tailor a game from
scratch. The developer on this project had some prior experience with a cross
platform library named LibGDX3 which was the main reason this framework was

2Maven - http://maven.apache.org/
3LibGDX - http://libgdx.com

http://maven.apache.org/
http://libgdx.com


5.1. LIBRARIES 35

chosen. This is a popular open source game library written in Java. LibGDX enables
and makes it simple to deploy to several platforms including Android, Desktop and
Google Web Toolkit (GWT) based on a shared code base.

This library provides a game loop, an Open Graphics Library (OpenGL)4 context,
a wide range of modules, ranging from a scene graph, math utilities and OpenGL
abstractions. Most of the modules in this library are optional meaning that the
overhead by using the library is small compared to complete game engines. Merely
the skeleton of a game engine is provided by LibGDX and it is entirely up to the
developer on how to implement the engine.

Advantages by using LibGDX:

• Quick prototyping. Abstractions for low level data handling such as file in-
put/output and rendering data on screen.

• A bare bone setup for creating the game loop (a class implementing the Ap-
plicationListener)

• Cross platform, meaning that it deploys to both Android and desktop. It is
more time efficient to do prototyping in a desktop environment, instead of
launching the project on a device or the Android emulator.

Disadvantages by using a LibGDX:

• Bugs in the library can indirectly affect the implementation of the prototype.

• Ties the architecture of the prototype to an already existing architecture in
the library (MVC based architecture).

One of the main concerns in this project was to create a prototype on top of Same
during a short period of time. The quick prototyping enabled by the use of this
framework combined with the developer having prior experience with it was the
main reason LibGDX was chosen.

Implementation:

The library was checked out from Github5 and imported into Eclipse as an existing
project. In Eclipse the library was referenced to by the prototype as a source library.
This made debugging and source look-up simple. The next step was to implement
the ApplicationListener from LibGDX. This is an interface providing methods for the
life cycle of a LibGDX application. The methods implemented are described below:

create(): Called once when the application is started. This method should be
used to create important application objects.

resize(int width, int height): Called every time the game screen is resized.

4OpenGL - http://en.wikipedia.org/wiki/OpenGL
5Libgdx (Github) - https://github.com/libgdx/libgdx

http://en.wikipedia.org/wiki/OpenGL
https://github.com/libgdx/libgdx


36 CHAPTER 5. IMPLEMENTATION

render(): Called by the game loop every time rendering should be performed.
This loop should also update the game logic.

pause(): On Android this method is called when the Home buttons is pressed, or
a phone call is incoming.

resume(): Called on Android when the application resumes from a paused state.

The create()-method instantiated GameClient and RenderedSimulation. This method
also loads assets (textures and fonts) which are used in the prototype.

The render()-method was used to update game logic, the simulation and to act on
data received from Same. The render()-method tries to update the screen at most
60 times per second. For graphics running on regular computers this is often the
case. The same assumption cannot be made in regards to Android devices. Modern
devices have rather powerful Graphic Processing Unit (GPU) chips but some of the
older devices tend to suffer when trying to render graphic intensive applications.
The vast amount of hardware configuration is one major issue when creating games
for the Android platform.

5.1.3 Box2D

Architectural requirement #5 (see Section 4.2) states that the simulation is to be
based on mechanical physics. Primitive physics was added in the early stages of the
implementation. This included movement, gravity and collision detection between
simple shapes (circles and rectangles). As the development progressed so did the
desire for more advanced physics. Physics including forces and responses to col-
lisions would make the gameplay more enjoyable. Box2D6 is a widely used and
mature physics engine for two dimensional games. Natively it was developed in
C++ but there exists ports for several other languages including Java. After look-
ing into the documentation, replacing the self made physics with Box2D seemed
feasible. However the use of Box2D entails more complexity in the architecture.
A World object has to be instantiated. The World simulates, performs collision
detection and collision responses between all bodies contained in it.

Implementation:

The Box2D World is the physics hub that manages memory, objects and simulation.
Therefore a World was instanced in the headless simulation to run the simulation
of physical entities. The clients should only reflect this simulation. As Section 4.4.1
describes each entity is comprised of one or several components. The generic com-
ponent Physics was extended to a special component Box2DPhysics. This compo-
nent references a Body. Only a few primitive shapes are available in this compo-
nent (rectangle and circle). The game loop of the headless simulation progresses

6Box2D - http://box2d.org/

http://box2d.org/


5.2. ENTITY REPLICATION 37

the physical world by triggering the worldUpdate()-method of the World with a
fixed time step.

Box2D provides collision detection in a two dimensional world space (X and Y).
After experimenting some with this library it became apparent that adding a third
component Z (depth) was possible. This was implemented as a proof of concept,
and allowed for three dimensional movement and collision detection. Essentially
this was achieved by letting Box2D do collisions in the X and Y space, and if a
collision was detected (two shapes overlaps in the two dimensional space), a depth
test was carried out to test whether they collide in the third dimension. Adding an
additional degree of freedom meant that more values have to be transmitted to the
clients, since entities can move and be positioned in a Z space as well.

5.2 Entity Replication

The entity replication was initially implemented by having two shared variables
for replication, namely the FullWorld and DeltaWorld variables. The FullWorld
variable was used for distributing a full state of the game world, whilst the Delta-
World only distributed delta state. The master would continuously write to the
DeltaWorld-variable, while the FullWorld-variable only was written to when new
client appeared or a new in game entity was created.

There were several problems with this solution. The most severe problem was that
when a new entity arrived, the client could receive a delta snapshot while creating
the new entity. This often resulted in a crash, since the delta snapshot tried to
update components that did not exist. This was avoided by using a mutex7 to only
allow delta updates if the game world at a client was fully constructed. However
this led to other issues and more complexity. The prototype had to check several
places if the world was currently rebuilding and the client could discard several
delta updates as a consequence of this.

As Section 4.4.1 describes, each game entity is given an internal identifier. When a
snapshot is created for an entity, the snapshot is signed with this entity identifier.
When this snapshot is received at a client the client updates its local version of that
entity based on the identifier set in the snapshot.

By adding a flag to the entity snapshot indicating whether it is a full or delta snap-
shot the issue with two variables and partially snapshots was avoided. When a new
entity was created at the master, the flag is set to true. Once the entity has been
fully transmitted to the clients the flag is set to false and subsequently only delta
snapshots of that entity is being transmitted.

When the client processes a world snapshot, it loops through the entity snapshots
and for each snapshot checks whether that identifier already is present in the sim-
ulation. If this is the case the client updates the entity, if not it checks whether

7Mutex(lock) - http://en.wikipedia.org/wiki/Lock_(computer_science)

http://en.wikipedia.org/wiki/Lock_(computer_science)


38 CHAPTER 5. IMPLEMENTATION

the full flag is set. If the flag is set the entity is created. If the flag is not set,
this is a delta snapshot for an entity that is to be created or has been removed.
Pseudo code for this approach is displayed in example 5.1. By using this approach
the FullWorld variable got discarded. Instead of letting what variable a snapshot
propagated through decide whether this was a new entity this was decided by the
flag in the entity snapshot.

Example code 5.1: Entity update at a client

// A s i n g l e En t i t ySnapsho t i s handled
private void updateEnt i ty ( Ent i tySnapshot snapshot ) {

// Check e x i s t i n g
GameEntity e x i s t i n g = manager . get ( snapshot . id ) ;
i f ( e x i s t i n g !=nul l ) {

// I d e n t i f i e r e x i s t s , update
e x i s t i n g . update ( snapshot ) ;

} else i f ( snapshot . f u l l ) {
// Append a new e n t i t y i n t o the eng ine
c r e a t e E n t i t y ( snapshot ) ;

}
}

One problem with this method was snapshots received out of order or not received
at all. This approach naively assumes that a received snapshot is the next one that
should be processed. If a full snapshot is missed by a client it will not be able to
create that entity, and will continuously discard any delta snapshots received for
that entity. If that client is selected as master, it will distribute its known entities
which could lead to a game world inconsistency.

Svein Erik suggested a method for having more control over the life cycle of en-
tities. Instead of having a boolean that indicates whether the snapshot is full or
not, the snapshot could have a state identifier. This identifier should continuously
be updated with the state received from the master. A new entity would have the
identifier 0. When a client receives this it locally creates the entity. This would also
make it possible to update entities in-order. When the master serializes its game
world it increments all state identifiers. A client could update its local world in
the correct order by comparing its local entity state identifier with the one in the
received snapshot.

This method would also enable a client to detect missing snapshots. If the client
receives a snapshot with an identifier offset larger than 1 it knows that the snapshot
was received out of order. The client could request a retransmit from the master.
All clients would see this retransmit, but only the clients who "are behind" would
update their worlds. This mechanism would also require the master to cache its
transmitted snapshot for a time. Implementing this feature is left to further work.



5.3. HANDLING UPDATES AND SYNCHRONIZATION 39

5.3 Handling Updates and Synchronization

In this prototype clients run their game loops asynchronously. The master tries to
output data at a steady rate, but due to delays in the network and the master itself,
this rate will often vary. The clients have no control over when they might receive
an update from the master.

This became a problem early on since the clients naively processed received world
updates directly after receiving them. Most of the time the update was processed
successfully but in some cases the application would crash due to instantiation of a
physical body while the physical simulation progressed or when loading a texture
without the OpenGL context being ready. This was traced down to concurrency
issues. Each Variable in Same is running in its own thread to avoid blocking the
parent application. Likewise the game loop runs in the main Java thread. If an
update was received when the main game thread was at a critical area of the game
iteration (calculating collisions in the physical world) the application would crash
with a concurrent modification (or similar) exception.

This issue has nothing to do with Same specifically, but rather how a multi threaded
application should be designed. The solution chosen for this prototype was to
append every world update to an atomic list at the client. When the client runs
its game loop it processes and removes every item in this list and then continues
to update its local world. The same approach was applied in the master when
it receives input from the clients. Each issued input command gets appended to
a list and when the master runs its game loop it pulls these commands from the
list and processes them accordingly. These lists were implemented by using the
AtomicQueue in Java. By using a normal list or queue, threading would still be
an issue since the main game loop might iterate the list when the variable gets
updated with a new element which would populate an exception.

5.4 Issues by using Same as a platform

This section will describe different issues encountered when applying Same as a
multiplayer game platform. The section will also propose solutions on how to
potentially fix these issues.

5.4.1 Client Differentiation

In a multiplayer game it is often necessary to know what client executed a given
action. In most client-server architectures this is achieved by having the server
keep an internal state of all connected clients and assign an identifier to the client
connection. When a client pass input to the server the internal player state is



40 CHAPTER 5. IMPLEMENTATION

retrieved for the connection identifier and the server executes input by using the
player state.

A challenge encountered early on in the implementation phase was to differentiate
between clients. Same has a notion of all clients that are connected to a network,
but no notion of which client triggered the update of a Variable. In early stages of
the game this was naively implemented by letting clients attach their location (IP
address) when setting the input Variable. When the master received this input it
parsed the location and updated the game state accordingly.

This was merely a workaround, and could lead to several problems:

• A mischievous client could set the IP address of another client, making it act
on the behalf of that player.

• If the IP address of a client changes, it is essentially registered as a new player
(unlikely case).

• Dependent on clients adding their IP address, could be prone to bugs in dif-
ferent software version.

• More data overhead for the input variable. Every client need to update the
input variable with their location.

A more robust solution would be to let the master in Same internally broadcast
where changes originated from. Same is conveniently distributed as an open source
project. This made it possible to decompose the framework and add the desired
feature. This was achieved by adding another optional field location to the Com-
ponent class in Same. The Variable classes in Same are abstraction layers on top
of Component (not to be confused with the components of an entity). The location
field denotes the location of whom updated the variable (the client set a new value
in the component). When the master receives an update, it attaches the client
location and broadcasts this to all listening clients.

How Same initially broadcast changes in variables to clients is displayed in exam-
ple 5.2.

Example code 5.2: The regular Same interface

// A v a r i a b l e was changed
public void valueChanged ( Var iab le<Type> v a r i a b l e ) {

// Do s t u f f
}

After implementing the changes as discussed above, one argument was added to
the interface as shown in example 5.3.



5.4. ISSUES BY USING SAME AS A PLATFORM 41

Example code 5.3: The interface with location

// A v a r i a b l e was changed
public void valueChanged ( Var iab le<Type> var i ab l e ,

S t r i ng l o c a t i o n ) {
// Do s t u f f based on l o c a t i o n

}

When a Variable change is notified to the listeners the location is also passed as an
argument. This enables the client acting as server to update a player according to
what client issued the update.

5.4.2 Jackson Serialization

As mentioned in Section 4.5.2 internally Same uses a library named Jackson for
JSON serializing. When a Variable is updated with a new object, this object gets
serialized into a JSON string and passed to the master. Once a client gets notified
of a change in the Variable the received data gets de-serialized and a Java object is
passed to the ChangeListener.

As described in Section 5.2 different data types are used to represent the properties
of an entity snapshot. One of the more complex data types is the Vector class, which
is part of a mathematics package in the game framework. This class is comprised
of three fields (X, Y and Z), and has a wide range of methods for doing vector
operations. The problem with this class is that it’s not Jackson compatible for
serialization.

In order for Jackson to properly serialize fields in a class, those fields must either:

• Be declared as Public

• Have getters and setters defined

• Be annotated with @JsonProperty("fieldName")

Since the vector class is part of another library implementing this change is non-
trivial. One solution would be to extend the vector class, and use the extended
class for serialization instead. Another solution would be to ask the maintainers of
the library to add that change. In most cases these solutions are not feasible. The
library could be closed source, or the maintainers could deny/not respond to the
request for some reason.

The solution chosen during the implementation phase was to do the object serial-
ization with another JSON library, before setting the Variable. When the Variable
gets set, Jackson detects that it already is a String and transmits the data. The
other JSON library was part of the game framework, and did not have the same
field requirements as Jackson. This workaround could be properly implemented by
creating a generic serialization interface as shown in example 5.4.



42 CHAPTER 5. IMPLEMENTATION

Example code 5.4: Generic JSON interface

public in ter face J son In te r f a ce <T> {
// Wr i t e s the o b j e c t as a S t r i n g
public S t r ing wr i teVa lueAsSt r ing (T value ) ;
// Reads the data i n t o an o b j e c t
public T readValue ( S t r i ng data ) ;

}

When a Variable gets created this interface could be supplied as an argument and
the Variable will be serialized using the interface. How the actual serialization is
carried out depends on how the developer has implemented the two methods. This
is not limited to JSON as long as the data gets serialized to a String and can be de-
serialized back to an object. The interface must also be set in the State object in
Same.

5.5 Delta Snapshots

As explained in Section 4.5.1 the game state should be propagated by using full
and delta snapshots. A pure data class Snapshot was created for this purpose. This
class was designed so that it has sufficient fields to suit all created components in
the prototype. A fill(Snapshot snapshot)-method and a getSnapshot()-method was
implemented on component level. Every class extending component had to realize
these methods. The fill()-method would be triggered at the client and update the
client state of that component. The getSnapshot()-method would be triggered at
the master and would fill and retrieve the snapshot for this particular component.
Attached in Example 5.5 is small excerpt of this generic snapshot class.

Example code 5.5: Generic snapshot class

public c lass Snapshot {
// Id o f t h i s component
public in t id ;
// F l o a t ( r o t a t i o n )
public Mutable . F loa t f_0 ;
// S t r i n g
public S t r ing s_0 ;
// P o s i t i o n , v e l o c i t y
public Vector3 v3_0 ;
// T in t f o r
public Color c_0 ;
// More data t y p e s . .
public Snapshot () {}

}



5.6. ENTITY INTERPOLATION 43

When a component is to retrieve a snapshot it fills out the corresponding fields
in the snapshot from its internal component fields. Likewise when a snapshot is
received the component updates its corresponding fields from the snapshot fields.
The identifier of the snapshot is directly mapped to the component so that the
client know what component to update. A snapshot does also have a method for
checking whether it contains any data (hence should be transmitted) and to create
a deep copy of itself. An example of a JSON encoded delta snapshot of a physical
component is shown in Example 5.6. The first vector object denotes the position
of the component and the second vector denotes the velocity of the component.
The float value is the rotation of this physical component. Note that only set values
gets serialized into JSON since fields equal to null or the numeric value 0 also will
de-serialize to null or 0. This is why most JSON processors omits fields with these
values when serializing.

Example code 5.6: JSON representation of a component snapshot

{
v3_0 : {

x : 7.995022 ,
y : 5.4424934 ,
z : −3.0071216

} ,
v3_1 : {

y : −3.7025578,
z : −0.84393203

} ,
f_0 : {

value : 39.120243
} ,
id : 6

}

5.6 Entity Interpolation

As discussed in Section 5.1.2 the prototype will at most render at 60 frames per
second. This is the best case scenario and in a perfect world all clients in the system
updates and renders at the same rate.

However this is not the case, and more often than not when dealing with mobile
devices. «Tick-rate» is a term coined by Valve and is defined as one "logical" step
at the server. This logical step includes processing received user commands, run
physical steps (if any), check game rules and send a snapshot to the clients. This
rate is tied to how fast the server can process one logical step. It can be assumed
that a snapshot update may be received at any time. It can also be assumed that
world updates will be received at most 60 times per second.



44 CHAPTER 5. IMPLEMENTATION

Figure 5.1: Snapshots are received at time 0.00, 0.05 and 0.10. This figure displays how a
client interpolates between two received snapshots (tick 1 and tick 2)

If a client updates its screen at 60 frames per second and the server runs at 20 ticks
per second, the client will experience jittery and unsteady gameplay. 2/3 of the
draw frame calls will render the entities at the same position. Jittering becomes
even more apparent if the updates are received at an unsteady rate.

To compensate for this Valve[11] suggest to interpolate entities between updates.
In short this means that a client will cache one or several snapshots and use the
interpolated values between two snapshots to represent a correct world image rel-
atively to time. This means that a client will render behind the current state of the
server. A conceptual illustration of this interpolation is given in Figure 5.1. The ex-
ample assumes that snapshots are received 20 times per second (every 1/20 = 0.05
second). And that the client simulates its local world 60 times per second (every
1/60 = 0.0166667 second).

Interpolation in the prototype was implemented on a component level, more specif-
ically the Box2DPhysics component. It is not necessary to interpolate components
that are limited to discrete values (a renderer changing the colour of an entity),
but it is desired to interpolate values that change between each received update
(such as position and velocity). A few noticeable changes had to be made in the
Box2DPhysics component. The two last received snapshots had to be cached. This
was done in the fill()-method which gets triggered upon each received snapshot.
The interpolation itself was implemented in the runClient()-method, which gets
triggered each frame draw in the client. A simplified example of interpolation over
position is shown in Example 5.7.

If the interpolate flag is set, the current progress between two snapshots will be
calculated. This is dependent on the tick rate of the server. The three position
components will get set to the current (latest) snapshot received. If this iteration is
in between two snapshots position will be interpolated between those values based
on how this far simulation locally have progressed. Next the local position will be
updated to reflect the interpolated position. Last the accumulated time in between
two snapshots will be appended.



5.7. ONE SIMULATION 45

Example code 5.7: Position interpolation

public void runC l i en t ( GameEntity en t i t y , f l o a t de l t a ) {
// F lag f o r i n t e r p o l a t i o n
i f ( i n t e r p o l a t e ) {

// Current p r o g r e s s between two snapsho t s
f l o a t progres s = accumulated / t i c kRa te ;

// As s i gn from l a s t snapshot
f l o a t x = cur ren t . x ;
f l o a t y = cur ren t . y ;
f l o a t z = cur ren t . z ;
i f ( progres s < 1 f ) {

// Do i n t e r p o l a t i o n
x = i n t e r p o l a t e ( prev ious . x , x , progres s ) ;
y = i n t e r p o l a t e ( prev ious . y , y , p rogres s ) ;
z = i n t e r p o l a t e ( prev ious . z , z , p rogres s ) ;

}
// Update body
updateTransform (x , y , z ) ;

accumulated += de l t a ;
}

}

5.7 One Simulation

As the initial design suggested (see Section 4.3), the master should run two concur-
rent simulations. The headless simulation being responsible for the game logic and
physics computations, and a rendered simulation rendering all entities on screen.
The clients on the other hand should only run the rendered simulation and draw
the game state state according to the master.

The prototype was initially implemented using this design. However the perfor-
mance of older devices (Nexus One) suffered when they ran as master. This was
due to several reasons:

1. Serialize the game world in the server thread only to de-serialize it again in
the renderer thread.

2. Propagating the serialized world to all clients (setting the WorldUpdate Vari-
able).

3. Having to simulate two physical worlds (one in the rendered simulation and
one in the headless simulation) added additional performance overhead.



46 CHAPTER 5. IMPLEMENTATION

Figure 5.2: A master and a client communicating after the architecture was simplified to one
simulation.

As a measure to make the prototype perform faster on older devices it was decided
to remove the headless simulation. One of the largest gains by having a headless
simulation is that the server software can be deployed on devices whose only task
is to simulate the game logic (a dedicated server). Since every client in the Same
network is supposed to render the game world this benefit does not outweigh the
performance issues.

Another disadvantage by having two simulations was the complexity of starting
and stopping the headless simulation. When a client was selected as a master (see
Figure 4.8) it had to serialize its game world and feed this as an argument to the
new thread. The thread had to be started and the game world had to be rebuilt.
The thread would also have to create and attach listeners to the shared Input and
World-variables.

After deciding to simplify the implementation to a single simulation a few notice-
able changes had to be made. All clients instantiate one simulation object which is
a hybrid between the headless and rendered simulation. This simulation contains
the game world and references to the variables created in the GameClient object.
A simple check in this simulation object dictates whether the client is acting as a
server or a client. When an arbitrary client gets selected as master, instead of firing
off a new thread it will start updating the game world and set the World-variable
with its state. The master will also start to listen for changes on the Input variable.
Clients will act as before listening for the world update and update their entities
accordingly. Figure 5.2 displays the updated architecture.

5.8 Handling New Players and Disconnects

To let a client control a specific game entity it is necessary to keep a mapping be-
tween a client and the game entity. This was achieved in the prototype by letting
the master maintain a list of connected players. Every time a client updated the



5.8. HANDLING NEW PLAYERS AND DISCONNECTS 47

input variable, the master would retrieve the correct player object (based on loca-
tion). If the retrieved object was null, no player object existed and in this case the
master would generate a new player object and put it in the player map hashed
on the client location. Consequentially the master would generate and pass a full
world state to all listening clients.

Next time the client sets the input Variable the master will retrieve the player object
and update that client’s game entity. A problem with this implementation occurred
once the master failed. A new client got selected as master and dynamically built
its player list when receiving client updates. This would generate a new entity for
each player, even though there already existed entities for those players in the game
world. The solution to this problem was to let the game entities have an "owner"
field. The field would be the location of the client that originally generated the
entity. Before a master creates a new player entity it will enumerate its entities and
retrieve the game entity that has an owner field equal to the location of the client.
If no such entity exists the master will create and append a new game entity to the
simulation.



48 CHAPTER 5. IMPLEMENTATION



Chapter 6

Evaluation

This chapter aims to evaluate the results of this master thesis. The evaluation is
based on the problem statement in Section 1.1. Since the framework is to be evalu-
ated based on a multiplayer real-time game it is natural to look at the performance
in Same and data throughput through the system. This rate is also coupled with the
performance of the device running the prototype. Bugs and problems encountered
when adapting Same will also be discussed.

6.1 Test Execution

The tests will be conducted on two different test cases. The difference in these
cases are the amount of data that will be transmitted. This is achieved by creating
two game levels with different amount of game entities to distribute. The two cases
are:

Test case #1: 5 static game entities. These entities will make up for a platform
that the marbles (players) land on. When all clients are connected this will
total to 9 game entities simultaneously.

Test case #2: 20 static game entities. These entities will make up for a more
advanced level, hence more state to distribute. This will be a total of 24
game objects.

Figure 6.1 is an in-game screen-shot from test case two. This level is comprised
by 20 static blocks. Two players are currently connected to this game. The square
platform to the left in the picture is the basic platform that is used in test case one.
Each block is constructed by using a renderer component (the color and texture
of the block) and a physical component (the size and position of the block). This
is also the case for the player marble which in addition has an input component

49



50 CHAPTER 6. EVALUATION

(dictates how input is handled) and a label component (the textual nickname rep-
resentation). When a new marble is added to the game this marble is assigned a
name (the nick of the player) and a random colour. Note that this level and its
game entities differs some from the initial design proposed in Section 4.1.1. In-
stead of having traps and pits, the walls act as platforms which the players can
jump to. If the marble rolls of this platform it will be destroyed and the player will
have to re-spawn.

The number of updates per second issued by the master (tick-rate) will in these test
cases be configured to 33 and 60. A higher tick-rate will demand more resources of
the master but also lead to a more responsive client experience. These tests will be
conducted for both delta snapshots enabled and disabled. The purpose of this is to
see how Same copes with transmitting a larger set of data. When delta snapshots
are disabled the full game state will be transmitted each tick.

Figure 6.1: An in-game screen-shot from the
prototype. This is the level that was used for
test case #2.

There are four devices available for
these tests, and both test cases will
be run having each device acting as
the master. The other devices will se-
quentially connect to the network. The
available devices are:

• Nexus One (see Table A.1)

• Nexus S (see Table A.2)

• Nexus 4 (see Table A.3)

• Asus Laptop (see Table A.4)

The hardware and software specifica-
tions of these test devices are listed in
Appendix A.

The desired result from these tests is to observe how Same handles the continuous
propagation of a larger game world to the clients and how several clients affect
this propagation. Hence a set of metrics will be observed:

FPS: This will be a metric on how powerful a device is. A powerful device will
render at 60 frames per second, a less powerful device on the other hand
could render its screen at a lower rate.

Tick-rate: How many updates does the master manage to propagate? This is in-
directly coupled with the FPS/performance of the master. This will be mea-
sured in ticks per second.

Data size: How much data is propagated through Same? This will be observed
by data is sent through the socket which Same creates.



6.2. TICK-RATE AND FRAMES PER SECOND 51

6.2 Tick-rate and Frames Per Second

It is assumed that there is a direct correlation between the tick-rate of the master
and the master performance. The implementation of the server simulation can at
most run one tick for each render call (the frame rate). This means there is an
upper bound of 60 ticks per second, given that the master runs at 60 frames per
second. A threshold has been implemented which makes it possible to limit the
tick-rate independently of the frame rate. Even if no virtual limitation on tick-rate
is implemented it is not given that updates issued to clients will run equivalently
with the frame rate of the master. This is dependent on the internal mechanisms
in Same, response times from the clients and delays in the network. The graphs
in the following sections are based on sampled data from the prototype. This data
is attached in Appendix B. The different test cases are described in Section 6.1.
The goal of these sub sections is to display the correlation between the master
performance and the rate at which it can propagate data through Same.

6.2.1 Test Case #1

Figure 6.2 shows the relationship between tick-rate and the frame rate of the mas-
ter. This test case was run with an unbound tick-rate and by the use of delta
snapshots. As assumed there is a clear correlation between the ticks issued by the
master and the master performance. The plots for each device is plotted when that
device is acting as the master.

This figure displays that there is a clear correlation between the master perfor-
mance and how many ticks it manages to process each second. The two weakest
devices in this comparison manages to keep a one to one ratio between render up-
dates and tick updates. It is interesting to see that the Nexus 4 on the other hand
has an upper limit for the tick-rate at 43 ticks per second, even though it renders
the screen at about roughly 55 times per second. It can be assumed that the state
propagation to some extent is Central Processing Unit (CPU) bound. The laptop
manages to propagate at roughly 60 times per second. This device has a superior
CPU compared to the other devices. It becomes clear that the tick-rate is directly
affected by the number of clients connected (as was implied in the documentation
for Same).

The same test was carried out when limiting the tick-rate of the master to 33 ticks
per second. The main goal for limiting tick-rate is to lessen the CPU load on the
device acting as server. These results rendered similar to Figure 6.2 except that
the tick-rate upper bound started at 30 ticks per second for the stronger devices.
There was not much gain in the frames per second for each device though. The
simulation runs fine at 33 ticks per second. The clients get an adequate amount of
updates and the local interpolation ensures that the gameplay is smooth enough.



52 CHAPTER 6. EVALUATION

Figure 6.2: Average frames per second and tick-rate for test case #1. The plot is dependent on
the number of connected clients. Each plot describes the performance of the device acting as
master.

6.2.2 Test Case #2

The goal of test case #2 is to measure the difference in performance for the de-
vices when propagating a significant larger game world. This test will also give an
indication on how well the size of the game world will scale.

Figure 6.3 shows the average performance for test case two. This graph is consid-
erably similar to Figure 6.2. One of the main differences is that the FPS generally
has a lower starting point for all the devices. This is due to the fact that more en-
tities are rendered on screen and more entities are part of the physics simulation.
When additional clients join the game a close to linear decrease in performance is
noticed. Common for the two cases is that the Nexus One device really struggles to
keep up. 30-25 FPS is considered the minimum for a playable realtime game. The
low performance is also noticeable in the connected clients which receive game
state updates at a low rate.

When the devices are acting as pure clients the decrease in performance is not
that apparent. The average FPS of the devices is also generally 15-25% higher
(than when the device acts as master). This supports the assumption that there is
a non-trivial impact on the performance of the device acting as master.



6.3. TRANSMISSION RATE 53

Figure 6.3: Average frames per second and tick-rate, dependent on the number of connected
clients. Each plot describes the performance of the device acting as master.

6.3 Transmission Rate

It is interesting to test how much data Same is able to propagate. During the initial
implementation it became obvious that there is a limit of how much data can be
sent at a time. This could be limited by the wireless interface in the device, distance
to the wireless access point and other external factors. Passing delta snapshots as
explained in Section 5.5 was one method to avoid congesting the transmission
channel. It is desired to measure the effect of delta snapshots. This data was
measured through the desktop application of the prototype.

There exists several open source tools for monitoring bandwidth usage on a Linux
system and iftop1 for its simplicity. This tool gives detailed information about run-
ning sockets on the system. The Android SDK does provide a network debugging
tool for application running on Android version 4.0.3 or later2. Only one of the test
devices run this version though, and it was easier to monitor the network directly
through the operating system.

To simplify testing this test was carried out by having the master run at 33 ticks per
second. Data transmitted was only measured between the master and one single

1iftop - http://en.wikipedia.org/wiki/Iftop
2DDMS Network - http://tools.android.com/recent/detailednetworkusageinddms

http://en.wikipedia.org/wiki/Iftop
http://tools.android.com/recent/detailednetworkusageinddms


54 CHAPTER 6. EVALUATION

Figure 6.4: These figures display the difference in transmission rate for both test cases. The blue
plot denotes delta snapshots and the green plot denotes full snapshots.

client. This was considered sufficient since the same amount of data would be
transmitted to all connected clients. It is assumed that passing the full game state
every tick will require considerable more network bandwidth than delta snapshots.
On the other hand it could be more efficient for the master to serialize all its data
directly into a String instead of enumerating all entities to check what entity has to
be transmitted.

Figure 6.4 illustrates the effects by issuing delta snapshots instead of the full game
state every tick. In test case #1 the propagation of the game world started at
roughly 2.5 kB/s. This rate was mostly caused by the initial propagation of the
full game world which has to be sent to all new clients. Since the master runs
the simulation at 33 ticks per second the size of a delta snapshot totals to 1

33 ∗
2.5kB/s = 0.0758kB = 75.8bytes. The amount of transmitted data increases when
additional dynamic game objects are added to the game since those are moving
objects and thus need to be transmitted frequently in order to sync all the clients.
Notice that this rate is not linear since at one or more points in time a game entity
has been synced and don’t need to be transmitted for one or several consecutive
ticks.

The rate of growth for the full snapshots on the other hand is linear. This is due
to the fact that each additional game entity is comprised of the same set of compo-
nents. When these components are serialized into a snapshot the size of these snap-



6.3. TRANSMISSION RATE 55

shots will be equal. The size of a full snapshot equals: 1
33 ∗ 56kB/s = 1.697kB =

1697bytes. This is about 22 times the amount of data passed when distributing
delta snapshots.

Similar observations was made for test case #2. A game level four times larger (in
terms of static game objects) than the previous case was distributed. The general
trend for both delta snapshot graphs is very similar regardless of the amount of
objects distributed. This was not the case for full snapshots. Actually the client in
the Same network started to time out when distributing the full game world at 33
ticks per second. The only measured data point was at about 200 kB/s before the
clients stopped to respond. The tick-rate in the master was adjusted down to 20
ticks per second in order to get measurable data. This is why the slope of the plot
is steeper in the first graph.

As these graphs display passing the full game state at each tick does not scale very
well. When the game world is increased by four dynamic entities the rate at which
data is transmitted grows by 30 kB/s, and this is in addition to the static entities
already being transmitted. The rate of data when passing delta snapshots grows
by 20 kB/s for dynamic game entities. This means that the prototype would scale
with static objects very well, since they are transmitted and synchronized only a
few times. Transmitting a lot of dynamic game objects would eventually suffer the
same fate as static game objects, but at a slower rate. Since each component de-
cides whether it should be transmitted or not, a dynamic game object would only
transmit its physical component, not its graphical representation or label compo-
nent (as would be the case for full snapshots).

Since the delta snapshot model is based on principles introduced by Valve, it is
interesting to compare these findings with an existing analysis on the Counter-
Strike network model[2]. This paper shows that in a three person game on a
Counter-Strike server the server approximately transmits data with an average
rate of 6.470 kB/s. Similarly the prototype would transmit data with a rate of
3 ∗ 2.5kB/s = 7.5kB/s, to three clients. This can be assumed since this model
transmits the exact same amount of data to all connected clients. While this cer-
tainly is an interesting comparison it is not a very fair comparison. In a typical
Counter-Strike match there are more player specific state shared in additional to
game state. Obvious state that is shared which exceeds the game state in the pro-
totype is:

• In what direction a player is faced. This is most likely represented by a nor-
malized vector relatively to the player position.

• If a player is firing his weapon

• When a grenade or flashbang is thrown, this entity has to transmit its position
and velocity as well

What kind of skin a player has selected when joining the server is also reflected.
However this similar to the random colour assigned to a player marble once a new
player joins an existing game. This information is only transmitted once.



56 CHAPTER 6. EVALUATION

6.4 Prototype Profiling

Bottlenecks and poor performance could very well be caused by a non-optimal
implementation. A lower frame rate for instance could be caused by an overly
complex implementation of graphical objects. This could give a false positive when
measuring the performance of Same by using the prototype.

To get a realistic view of how much CPU time is spent on overhead calculations in
the prototype itself compared to Same the application was profiled using the pro-
filing tools bundled with the Android (Android) Software Development Kit (SDK)3

6.4.1 CPU Time

CPU time spent was noticed on the tick rate, and the fps on the device. This was
more apparent on Nexus S than the Nexus 4. By comparing their hardware, it
was first assumed that this was caused by the slower GPU in the Nexus S. After
removing code that required draw calls however, the FPS was still an issue (which
also led to a lower tick rate). The issue was further investigated by using the
"method profiling" tools in the SDK.

Dalvik Debug Monitor Server (DDMS)4 is a tool included in the Android SDK. This
tool have several metrics to display how much CPU time is spent in a given method.
The profiling results in an inclusive and exclusive time. Exclusive time is the time
spent in the method and inclusive time is the time spent in the method plus the
time spent in any called functions. DDMS also measures the number of calls and
recursive calls issued on a method.

The results from profiling the application is attached in Appendix C. As seen from
this figure the application spends a fair amount of time in the RequestHandler.run()-
method in Same. This was further traced down to the UpdateStateRequest()-method
in the Master class. This is the method that distributes state updates to all clients.
Even further investigation lead to the State.getList()-method which parses a String
of all the connected clients into a Java Array. The String got parsed every time the
master would propagate the state. An optimization could be to only parse and up-
date this list given that there has been any changes to the number of clients added.
As a test this parse call a got removed and a noticeable boost in performance was
noticed on the Nexus One. As expected this broke the state propagation.

3Android DDMS - http://developer.android.com/tools/debugging/ddms.html
4DDMS - http://developer.android.com/tools/debugging/ddms.html

http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html


6.5. POTENTIAL BUGS 57

6.4.2 Dalvik Garbage Collector

The Dalvik Garbage Collector5 uses a "Mark and Sweep" approach for freeing up
memory[3]. One of the disadvantages by this approach is that normal program ex-
ecution is suspended when the garbage collection algorithm runs. In later versions
of Android (Gingerbread and beyond) the GC has been optimized to run on multi-
ple cores, but for single core devices running real-time applications the periodically
garbage collecting pause can be noticeable.

During the test executions it became apparent that the Garbage Collector periodi-
cally runs quite aggressively. The main reason for this would be object allocations
on the game loop. DDMS has a tool for checking object allocations at run time. Af-
ter running this tool for a while and polling active allocations several byte arrays of
length 4112 allocated by Protocol Buffers got pointed out as aggressive memory al-
locators. This was further investigated by looking for similar cases on the Internet.
One case suggested the allocation could be caused by the decoding and encoding
of String objects. It is assumable that these allocations are necessary. After all the
Protocol Buffers encodes and decodes a different String representation every tick,
and avoiding garbage collection completely is hard if not impossible when working
serializing and de-serializing complex data structures.

One method to generally mitigate issues with garbage collection would be to im-
plement object pooling as described in Section 4.3. However this would be most
beneficial for application specific object allocations and not something that should
be implemented in Protocol Buffers itself.

6.5 Potential Bugs

This section contains a small set of various bugs encountered when implement-
ing Same into the prototype. Keep in mind that these bugs could might as well
be caused by a faulty or ineffective adaption of Same and not necessarily by the
platform itself.

One major bug encountered was that clients did not manage to reconnect to the
Same network after being disconnected. If a master failed during run time the
Paxos routine would run, a client would be selected as the new master and simu-
lation would continue with the remaining clients. However the recently dropped
master would not be able to reconnect as a client. It is assumed that this was
caused by an internal state not being cleaned after the initial master got dropped.

Some issues were also encountered when testing the prototype using the Eduroam
network on campus. Occasionally when a master and a client got assigned an IP
address on the same subnet (78.91.48.0-255 for instance) they refused to connect
to each other. This issue was not encountered when the master and client were

5Dalvik - http://en.wikipedia.org/wiki/Dalvik_%28software%29

http://en.wikipedia.org/wiki/Dalvik_%28software%29


58 CHAPTER 6. EVALUATION

assigned addresses in different subnets. The weird thing is that this issue was
not experience when using a private local network for testing. This leads to the
conclusion that there might be an error specifically with the Eduroam network or
similar open networks.

Neither of these potential bugs did affect the implementation or test phase. How-
ever they should be further investigated and if possible improved if a game is to
use Same as its network platform.

6.6 Same Adaption

An aspect worthy to consider is how accessible Same was to be adapted into an
application from a developer perspective. Several examples were provided with the
library. These examples thoroughly explained usage of the Variables and how to set
up a basic distribution of state. The examples even included a simple example of
real-time state propagation. Implementing changes in the library itself on the other
hand was not as non-trivial. Only small portions of the code was documented,
though a lot of the code was self documenting by means of variable and method
names. Since implementing changes in the library never was a large part of the
problem statement in this thesis (neither was modifiability of the framework in
the original thesis on Same) this insignificant issue wont be emphasized. The fact
that Same is distributed as a Open Source library greatly simplified the process of
acquiring the code and plugging it into the application.

6.7 Development and Test Environment

This section will give a summary of development and profiling tools used through-
out the development of the prototype.

6.7.1 Software

The Eclipse Integrated Development Environment was the tool used for writing
code and running tests. The main reason for using Eclipse is the support for and
easy setup with the Android SDK. The Android SDK is the suite of tools which
enables developing, deployment and debugging for Android devices.

Git6 was used to version control the source files of this project. Git made it easy to
create milestone versions of the software, and to roll back to previous versions if
some undesirable feature was discovered. The dependencies this project relied on

6Git - http://en.wikipedia.org/wiki/Git_%28software%29

http://en.wikipedia.org/wiki/Git_%28software%29


6.8. EVALUATION 59

(such as Same and LibGDX) was shared on Github7, which is a web front-end for
Git repositories. Git was used to clone these repositories locally.

The Same code base was also shared as a Maven artifact. During the initial setup
of the prototype project and its dependencies several benefits were discovered by
using a Maven as the dependency management system. The process of deploying
to Android devices got highly automated and dependencies kept themselves up to
date. These benefits resulted in the prototype project being mavenized as well.

6.7.2 Testing

Sampling test data was achieved by creating a Java class purely for gathering statis-
tics. This class comprised of several counters for each metric to be measured. Tick-
rate was measured by attaching a world-update listener in the master. When the
master updated its variable this listener got notified and incremented the tick-rate
counter. The tick-rate was also validated at the clients, which similarly updated
their perspective of the tick-rate when an update was issued by the master. Frame
rate was measured at the master by incrementing a variable at each render call.
After the sampling interval finished the measured data was smoothed over accu-
mulated time. To get a realistic picture of how well Same performed, a virtual
warm-up interval was set to 30 seconds. After the warm-up interval the statistics
class would sample data for 60 seconds. This was assumed to be enough time to
get a realistic view of the performance. The warm-up period was added to mitigate
noise in the sampling process (caused by initializing classes and building the level).
Garbage collection and method profiling was monitored by using the internal tools
in the Dalvik Debug Monitor Service. These are tools bundled with the Android
SDK.

Testing was carried out in a study room at school campus. Distance to the wireless
access point which all devices was connected to was about 10 metres. This should
be more than sufficient in order to assume that testing conditions were normal.

6.8 Evaluation

The game was created based on the architectural requirements specified in Sec-
tion 4.2. This section aims to evaluate the game in regards of these requirements.

AR #1 Localized simulation
Every client is able to run its own simulation of the game world. If an update
is delayed from the master the client may extrapolate the game world and
simulate the expected positioning of game entities. This adheres nicely to
the architectural requirement.

7GitHub - http://github.com

http://github.com


60 CHAPTER 6. EVALUATION

AR #2 Authoritative master
The master is in charge of facilitating all game state propagation. Clients
attach listeners to the variable which contains the state update and the master
is the only device writing to this variable. This implementation adheres to the
concept of an authoritative server.

However there is no mechanism preventing a mischievous client to also write
to the world state variable. This is not directly tied to this architectural re-
quirement though but should be considered as a security flaw.

AR #3 Transient fail over
When a master failure is detected the simulation is temporarily suspended at
all the clients. After a client is chosen as the new master all the other clients
resume their simulation. The failure itself is not entirely transient since a
small pause occurs. However after a few seconds the game can continue
being simulated by a new master.

AR #4 Minimal network traffic
During the implementation phase there was a focus on minimizing network
usage. Passing delta updates was a result of this design. However there are
still other techniques that can be applied to further minimize network usage.
Some of these techniques are discussed in Section 7.4.

AR #5 Gameplay based on physics
A physics engine helped implement this requirement and that proved very
successful. Under normal operation and propagation the physical simulation
was reflected at all the clients.

The prototype has fulfilled most of its original requirements and should be consid-
ered a valid candidate for a real-time multiplayer game.



Chapter 7

Conclusion and Further Work

Initially this project started out with the goal of evaluating and testing a frame-
work for sharing state between Android devices. A simple physics based game was
developed on top of this framework to test its capabilities and to reveal potential
problems.

Throughout development it became apparent that the size of the state that got
distributed and at what rate it got distributed was important factors that had an
impact on the performance as whole in the Same network. As a result of this differ-
ent techniques for achieving smooth gameplay at every client were implemented
and tested.

This chapter summarizes the findings and results of this project, suggestions on
features that could be implemented in Same and potential further work.

7.1 Conclusion

The prototype was designed to be a real-time game which had several concurrent
moving entities that had to be reflected at all clients. Part of this project was to
evaluate Same and to verify that its model is useful as a multiplayer platform.

Same proved to be a decent candidate for this type of multiplayer games except
for a few quirks. One of the main features in Same is that the state is guaranteed
to be propagated to all connected clients. For real-time physics based games this is
not strictly necessary. The client can predict how entities should be simulated and
fix their positions when a snapshot arrives. In fast paced multiplayer games it is
common to distribute such "corrections" over UDP. The advantage of a higher rate
of packets exceeds the disadvantage of some packets getting lost or received out of
order.

61



62 CHAPTER 7. CONCLUSION AND FURTHER WORK

For a turn based game Same would be a very good candidate. In this type of
games the state is only distributed when changes occur, and not at the same rapid
interval as in real-time games. For this case potential performance issues would be
negligible.

7.2 Improvements to Same

As discussed in Section 5.4 several additions were made to Same in order to fully
be able to adapt the framework as the network architecture for the prototype. The
most important addition was the implementation of client differentiation. Since
the network model in the game was designed as client-server (where the master
was the equivalent to a server) this was necessary in order to handle input from
the clients properly.

A feature that would be useful, which also would make the framework more ap-
pealing for real-time games would be a ’best effort’ variable that could be imple-
mented on top of UDP instead. This variable would propagate a state update to the
master, and the master would blindly propagate the update to all its clients without
listening for a callback. This kind of variable would be very useful for propagating
delta snapshots and other kinds of intermediate data, and would not be as resource
demanding as the regular variables.

As seen in Chapter 6 the rate of state propagation is highly dependent on the per-
formance of the master. This was also emphasized in the original master thesis
on Same. One solution to mitigate this problem would be to select the best per-
forming master. This could be achieved by letting clients pass a metric upon state
updates. This metric could be the average number of frames per second smoothed
over some time or information from the operating system (a greater version num-
ber often entails a more powerful device). And then let Paxos choose a new master
weighted on that metric.

7.3 Resulting Artifacts

A video of the game was created and published at http://www.youtube.com/

watch?v=rfICJUr0JNw. This small video displays three clients connecting to the
initial master. It shows how a game level is distributed by the master and gen-
erated on the fly at each client. A master disconnect is also demonstrated which
shows the real power of the Same platform.

An open source library for handling entities and components was created through-
out this project. It is hosted on Github: https://github.com/aspic/libgdx-utils/
tree/master/src/no/mehl/component. The main advantage in this library as op-
posed to other entity libraries is the focus on distribution of entities. This includes

http://www.youtube.com/watch?v=rfICJUr0JNw
http://www.youtube.com/watch?v=rfICJUr0JNw
https://github.com/aspic/libgdx-utils/tree/master/src/no/mehl/component
https://github.com/aspic/libgdx-utils/tree/master/src/no/mehl/component


7.4. FURTHER WORK 63

the population of changed entities on component level. The library is currently in
a very early stage and is mainly focused towards the implementation of the proto-
type.

7.4 Further work

The goal of this project was to create a real-time multiplayer game which adapted
Same as its network model. Results show that Same is a decent candidate for such
applications, but the prototype could be further improved.

As shown in Chapter 6 the size of the data distributed through the variable has a
noticeable impact on performance in the system. One measure to minimize trans-
mitted data would be to compress the JSON before it gets encoded by Protocol
Buffers. Compression was not implemented due to the fact that most values passed
through the variables are delta snapshots. These snapshots are mainly comprised
of integers and floats, and would not benefit greatly by regular string compression.

Another measure to minimize size of transmitted data would be to lower the pre-
cision for these values. Positions and velocities in the simulation are represented
by floating point numbers. These numbers are serialized and transmitted in their
entirety. The numbers could be capped at a fixed set of decimal points to reduce
the size of total transmitted data. This would be at the expense of data quality. If a
client were to become the new master, its base data would be of lower granularity
than the original simulation.



64 CHAPTER 7. CONCLUSION AND FURTHER WORK



Bibliography

[1] Paul Bettner and Mark Terrano. 1500 archers on a 28.8: Network program-
ming in age of empires and beyond. Presented at GDC2001, 2:30p, 2001.

[2] Mark Claypool, David LaPoint, and Josh Winslow. Network analysis of
counter-strike and starcraft. In Performance, Computing, and Communica-
tions Conference, 2003. Conference Proceedings of the 2003 IEEE International,
pages 261–268. IEEE, 2003.

[3] David Ehringer. The dalvik virtual machine architecture. Techn. report (March
2010), 2010.

[4] Peter Eles. Capturing architectural requirements. 2005.

[5] Martin Fowler. UML distilled. Addison-Wesley Professional, 2004.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Abstraction and reuse of object-oriented design. Springer, 2001.

[7] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[8] Björn Nilson and Martin Söderberg. Game engine architecture. 2007.

[9] Reusable Object-Oriented. Model-view-controller. 2003.

[10] Kjetil Ørbekk. Distributed shared objects for mobile multiplayer games and
applications, 2012.

[11] Valve. Source multiplayer networking, 2012. [Online; accessed 03-March-
2013].

[12] Peter Vorderer, Tilo Hartmann, and Christoph Klimmt. Explaining the enjoy-
ment of playing video games: the role of competition. In Proceedings of the
second international conference on Entertainment computing, ICEC ’03, pages
1–9, Pittsburgh, PA, USA, 2003. Carnegie Mellon University.

[13] Wikipedia. Lockstep, 2013. [Online; accessed 29-May-2013].

[14] Wikipedia. Real-time games — Wikipedia, the free encyclopedia, 2013. [On-
line; accessed 10-April-2013].

65



66 BIBLIOGRAPHY



Appendices

67





Appendix A

Test Devices

This appendix lists the hardware and software specifications of the devices used in
througout the implementation and testing phase.

Device Nexus One
Display 800x480 px
Memory 512 MB
CPU 1 GHz Qualcomm Scorpion
GPU Qualcomm Adreno 200
OS Android 2.3.6

Table A.1: Nexus One

Device Nexus S
Display 800×480 px
Memory 512 MB
CPU 1 GHz single-core ARM Cortex-A8
GPU 200 MHz PowerVR SGX 540 GPU
OS Android 4.1.2 (CyanogenMod)

Table A.2: Nexus S

69



70 APPENDIX A. TEST DEVICES

Device Nexus 4
Display 1280×768 px
Memory 2 GB
CPU 1.5 GHz quad-core Krait
GPU Adreno 320
OS Android 4.2.2

Table A.3: Nexus 4

Device Asus UX32VD
Display 1980x1200 px
Memory 4 GB
CPU Intel Core i7-3517U 1,9 GHz
GPU Intel HD 4000
OS Ubuntu 13.04

Table A.4: Asus UX32VD



Appendix B

Tests Results

This appendix contains test data sampled when benchmarking the application.

Master device Clients avg. FPS avg. tick-rate Entities

Nexus One

1 24.51 23.43 6
2 20.73 19.33 7
3 17.90 17.11 8
4 14.40 13.88 9

Nexus S

1 38.45 38.38 6
2 29.43 29.26 7
3 24.40 24.30 8
4 20.11 20.01 9

Nexus 4

1 54.35 43.26 6
2 50.08 40.08 7
3 45.98 37.05 8
4 42.38 32.73 9

Asus Laptop

1 60.00 60.00 6
2 60.00 59.96 7
3 59.96 59.88 8
4 59.45 58.81 9

Table B.1: Master performance measured in-game

71



72 APPENDIX B. TESTS RESULTS

Master device Clients avg. FPS avg. tick-rate Entities

Nexus One

1 20.55 20.43 21
2 17.56 16.54 22
3 15.91 13.26 23
4 14.40 13.88 24

Nexus S

1 28.03 26.95 21
2 23.23 22.80 22
3 20.65 18.72 23
4 17.51 16.24 24

Nexus 4

1 50.2 42.26 21
2 47.69 39.57 22
3 44.12 38.29 23
4 42.38 37.12 24

Asus Laptop

1 60.00 60.00 21
2 60.00 60.00 22
3 59.50 59.12 23
4 59.52 59.10 24

Table B.2: Master performance measured in-game



Appendix C

Profiling Results

This appendix contains the profiling results from the Dalvik Debug Monitor Server.

Figure C.1: Profiling results.

73


	Contents
	List of Figures
	List of Tables
	Glossaries
	Introduction
	Problem Statement
	Project Goal
	Thesis Outline

	Background
	Real-time Multiplayer Games
	Networked Games
	TCP
	UDP

	Same
	The Network Model in Same

	Related Work
	Client-Server Model
	KryoNet

	Peer to Peer Model
	Peerdroid

	Hybrid Solutions
	Google Play Game Service


	Design
	Concept
	Devising a Game Concept
	Interaction Matrix

	Architectural Requirements
	Architecture
	High Level Architecture

	Game Architecture
	Game Entities
	EntityManager

	Network Architecture
	Passing Game State
	Serializing and Synchronization
	Master Selection
	Failures and State Recovery


	Implementation
	Libraries
	Same
	LibGDX
	Box2D

	Entity Replication
	Handling Updates and Synchronization
	Issues by using Same as a platform
	Client Differentiation
	Jackson Serialization

	Delta Snapshots
	Entity Interpolation
	One Simulation
	Handling New Players and Disconnects

	Evaluation
	Test Execution
	Tick-rate and Frames Per Second
	Test Case #1
	Test Case #2

	Transmission Rate
	Prototype Profiling
	CPU Time
	Dalvik Garbage Collector

	Potential Bugs
	Same Adaption
	Development and Test Environment
	Software
	Testing

	Evaluation

	Conclusion and Further Work
	Conclusion
	Improvements to Same
	Resulting Artifacts
	Further work

	Appendices
	Test Devices
	Tests Results
	Profiling Results

