
Cross platform Mobile Applications
Development
Mobile Apps Mobility

Yonathan Aklilu Redda

Master in Information Systems

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Abstract

In recent years, the mobile computing sector has been having quite a revolution.
Mobile computing devices have shed loads of weight, gone slim, achieved mass popu-
larity and a great market penetration. But one of the challenges that has been part of
mobile computing is technology and device fragmentation leaving application devel-
opers for mobile phones bewildered. Platform developers, device manufacturers come
with so many features and functionalities that it has been difficult to provide devel-
opers with an easier means of developing applications and running the application on
every mobile device.

To solve that, cross platform tools have been investigated and was found to solve
device functionality features, platform and device coverage problems. It was also
noted that cross platform development was found to be cheaper and takes less time.

Even though tool selection in cross platform development was difficult, it was
suggested that Appcelerator Titanium and Xamarin were picked as a preliminary
starting point.

1

.

2

Preface

This master’s thesis was part of a mandatory course work at the department of
computer and information science at the Norwegian University of Science and
Technology. The aim of the project was to evaluate cross platform mobile
applications development using scientific methods and coming up with a solution
on how to select comparatively the best cross platform development tool.

I would like to express my gratitude to my supervisors, to Hallvard Trætteberg
from NTNU and Erik Berg from Telenor for their consistent feedback, support
and academic guidance.

Trondheim, June 2012

Yonathan Redda

.

4

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objective . 3
1.3 Research Method . 3

2 Mobile Applications Development 5
2.1 Mobile Device Evolution . 5

2.1.1 Smartphones . 6
2.1.2 Tablet PCs . 7

2.2 Classic MAD Challenges . 8
2.3 Mobile Platform . 9

2.3.1 Types of mobile platforms (Mobile OS) 9
2.4 Mobile Applications . 18

2.4.1 Types of mobile applications 21
2.4.2 Telco-enriched apps . 23
2.4.3 Mobile Enterprise Applications tools 24
2.4.4 Mobile Applications Development tools licensing 24
2.4.5 Common native features of a mobile platform 25

3 Cross platform Mobile Apps Development 27
3.1 Mobile application Development . 27

3.1.1 Native mobile applications development 28
3.1.2 Cross platform development . 29

3.2 The benefits of cross platform MAD 29
3.3 Cross platform system architecture . 31

3.3.1 Mobile Web Apps . 31
3.3.2 Abstraction based cross platform system 31
3.3.3 Native compiling cross platform system 34

3.4 cross platform MAD tools . 34
3.4.1 Appcelerator Titanium . 34
3.4.2 PhoneGap . 35
3.4.3 Xamarin . 37
3.4.4 Rhombile . 39
3.4.5 MoSync . 40
3.4.6 IBM Worklight . 41
3.4.7 Corona . 42
3.4.8 Marmalade . 43
3.4.9 Adobe Air . 43

3.5 Tools comparison framework . 46
3.5.1 Example: How to use the framework 48

3.6 Sample Applications . 51

4 Discussion and Evaluation 60
4.1 Main findings . 60
4.2 Validity of result . 64

5 Conclusion 65

5

List of Figures

1 Motorola DynaTAC 8000X [32] . 5
2 Easily carried mobile phone device [92] 6
3 Android [136], Windows phone 7 [117] and iPhone [73] smartphones . 7
4 ASUS’s latest Quad-core Keyboard dockable tablet PC [43] 7
5 Android System Architecture [16] . 9
6 Android Market share percentage for Q3 2011. [107] 10
7 iOS system architecture [80] . 11
8 Telco’s wish of mobile apps arrangement [2] 12
9 Illustration of WAC platform and its business model for telcos [133] . 12
10 A reconstructed inner structure of WAC Framework [38] 13
11 Windows Device Specification for OEMs [3] 14
12 Windows Phone iconic UI on a Nokia Lumia 800 [159] 15
13 Windows phone architecture [3] . 16
14 Symbian system architecture [57] . 17
15 BlackBerry Service Architecture . 18
16 Bada System Architecture [47] . 19
17 Mobile apps distribution and development life cycle overview [70] . . . 19
18 Windows phone market model . 20
19 Android and iOS performance in the US [48] 21
20 SMS System [110] . 23
21 Cellular network based positioning [85] 24
22 Native App Development [153] . 28
23 J2ME [69] . 29
24 Native vs. Cross platform development [12] 30
25 Abstraction based cross platform overview 31
26 Appcelerator Titanium architecture [139] 34
27 PhoneGap architecture [75] . 37
28 Xamarin architecture for MonoTouch and Mono for Android [155] . . 37
29 Rhodes application architecture [75] 39
30 Rhoconnect architecture [120] . 40
31 Worklight Architecture [154] . 42
32 Pizza bread selection window . 51
33 Toppings selection window . 52
34 Address filling window . 52
35 Order submission window . 53
36 Appcelerator Titanium Code sample 1 57
37 Appcelerator Titanium Code sample 2 58
38 XAML sample code . 58
39 Xamarin sample code . 59

List of Tables

1 Cross-platform mobile apps development tools [150] 2
2 Android device as a minimum requirement [51] 10
3 Android Vs Bada OS comparison [19] 18
4 Overview of platform providers [71] . 20

6

5 General Mobile apps category [122] . 22
6 App development comparison [154] . 32
7 Mobile web apps vs Mobile apps [6] . 33
8 Appcelerator Titanium native support [139] 35
9 PhoneGap native support [114] . 36
10 Xamarin native support [156] . 38
11 MoSync native support [145] . 41
12 Cross platform tools market penetration [13, 97, 98, 114–116, 116, 120,

138,145,146,153,154,156] . 44
13 Cross-platfrom tool summarization [13, 97, 98, 114–116, 116, 120, 138,

145,146,153,154,156] . 45
14 Mobile platform support [95,97,102,106,114,120,134,138,154] 46
15 Tool comparison framework . 47
16 License cost and developer effort . 48
17 API and Platform coverage . 49
18 Technology and cost rating . 50
19 Pizza ordering app development tool comparison 56

7

1 Introduction

In the past a telephone was a chunky device sitting in offices and people’s home.
Its function was solely for making and receiving calls. The thought of a telephone
device storing contacts, displaying caller numbers, forwarding calls, SMS-ing, taking
pictures, capturing videos, recording audios was remotely alien to traditional tele-
phone hardware let alone providing connection to the internet and coming off the
desk into full mobility. Then Motorola came up with a revolutionary device known
as Hefty—or the Brick weighing about 785g with a height of 13 inches [?], by todays
standard, a primitive device.

In the 1980s and early 1990s, the concept of mobile phone and actual implemen-
tations of mobile services started to gain ground in terms of standards definition and
setting up successful commercial services using mobile devices [65, 68]. During this
time, the main application of mobile devices was mainly for voice based services.
Mobile services began to develop using generations as a means of communicating the
changes on successful improvements or functionality extensions [8].

By 2002, mobile phones became completely unrecognizable from their predeces-
sors. They became pocket sized little devices. They evolved into Pagers, PDAs,
Palmtops and mobile devices with voice, data and text applications. Mobile phone
subscribers number grew astronomically, standing at an astonishing 1.2 billion sub-
scribers across the world [127].

Apart from the usually fancy common mobile apparatus features—including con-
tact details, SMS/Text, multimedia, infrared, Bluetooth modules—mobile devices
started to sport a more serious and intelligent applications fueled by service providers
desire to make money and unstoppable desire of end users for more of their ser-
vices [69,127].

Mobile applications scenarios became as varied as any field could get. The field
of mobile computing saw applications from full mobility to full connectivity while on
the move to invisible and wearable computing to crystal clear audio streaming to HD
video to payment services to location based services to navigational services to mass
gaming services to location and context aware to telco-enriched applications of any
sort. Little is left one can do on stationary computer but not on mobiles.

Today mobile applications are in a lot of sense quite—with the right and cleverly
designed applications—capable of pulling above their weight to compete with tradi-
tional stationary computers. A whole raft of applications are springing up everywhere
specifically designed for mobile devices. Applications can be developed using a wide
variety of tools, methodology and using the traditional applications development life
cycle. The number of tools that promise a trouble free, squeaky clean UI, lightning
speed development period, and maximum interoperable software product can only be
described as staggering. The mobile applications development scene has split into at
least two categories—native and cross platform development. In this master’s thesis,
the focus is going to be on exploring the cross platform mobile applications develop-
ment field of mobile computing.

1

1.1 Motivation

The most straight forward method of developing an application will be to target
native applications with native thinking, native target and deliberately native tech-
nology [25]. Besides it runs faster, most of its ailments are probably fully groped
through, well documented idiosyncrasies and often a relatively reliable but expensive
professional support.

One of the major roadblocks to native development is the number and variety of
platforms and mobile devices in the market—making mobile applications development
end up with fragmented development arrangements and costly software development
strategies [12].

Cross platform mobile applications is widely believed to provide mobile apps de-
velopers with a means for writing once and deploying everywhere. Currently, the
market is filled with dizzying array of cross-platform development tools. Though
hunting down each one of them is hardly the aim of this master’s thesis. Below is
a sampler list from the English version Wikipedia that will hopefully indicate the
growing need to find a way to comprehend this development pattern.

Table 1: Cross-platform mobile apps development tools [150]
Adobe Air BlackBerry Gideros Mobile NS Basic
Marmalad Bluepring IwGame Engine OpenPlug
alcheMo BREW Jmango Particle SDK
AppFurnace Canappi July Systems PhoneGap
Application Craft CellSDK Kony Rhomobile
Appcelerator Celsius Lazarus Tiggzi Mobile
Appception CloudPact Meme IDE Total Cross
appMobi CoStore MobiFlex Unity
Aqua Corona SDK MobileNationHQ WebORB IS
Basic4Android DragonRAD Moscrif WinDev Mobile
BatteryTech FeedHenry MoSync IBM worklight
Bedrock GeneXus NeoMAD Fivespark

Presumably, Telenor, as one of the stakeholders in this report and Norway’s
biggest telecoms operator, saw the problem and initiated a research in Mobile apps
mobility in collaboration with Norwegian University of Science and Technology (NTNU).
Apps developed for mobile devices are often restricted to one platform such as An-
droid, iOS, Blackberry’s RIM, Samsung’s Bada, Microsoft’s Windows Phone 7 and
others, the hope is to overcome this limitation through a device-platform independent
portable mobile applications.

The potential benefits of writing-once-running-everywhere comes from the cost
reduction—in having only one code to write and maintain, and the time reduction—
being able to write one code and target multiple devices and platforms, making
researching cross-platform mobile applications development worth one’s effort and

2

findings.

1.2 Objective

The main objectives—research questions—of this masters thesis in Mobile apps mo-
bility or cross platform mobile applications development are:

• What is the benefit of using cross platform SDKs to develop cross platform and
telco-enriched mobile apps?

• Formulate a method to evaluate and select the best cross-platform development
tools for a developer

• Evaluate cross platform tools using time, technology, maturity, and cost aspects
of mobile apps development.

• What tool best supports cross-platform development?

1.3 Research Method

Approach

While the benefit of developing mobile applications that can run on multiple mobile
operating systems is clearly visible in that one needs to maintain a single code base
to fix, maintain or later evolve into something newer and better, adopting one cross-
platform development tool, to that effect, is not as straight forward as the benefits
it might bring [9, 44, 60]. Some of the reason for that has been a growing number of
tools’ entry into the market in a relatively short period of time and the absence of
a reliable comparing mechanism of each one of them. The information about each
tool is usually found on websites, tool vendors’ webpages, academic literatures and
industry whitepapers. The mobile development technology is fairly recent and that
it is claimed that the majority of players in the industry are experimenting with
different ideas to be able to establish a mature technology [31]. Thus, what this
masters thesis does is to employ literature study and experiment. The literature
study will be applied to:—

• Gather information from different sources about the development tools

• Using the information

– Document and present cross-platform mobile applications development

– Explore the advantages and disadvantages of cross platform mobile appli-
cations development

– Formulate a general purpose framework which developers or any stakehold-
ers can use to make a decision when selecting a tool based on technology,
programming language, no of native APIs support, no of platforms support,
cost and availability of support for the platforms

– And applying the defined framework to select a cross platform tool and
make a sample application.

Since there are several cross-platform mobile application development tools, doc-
umenting each one of them by going to each one’s source of information might prove
difficult. One way of narrowing down what is going to be investigated and minimizing
the number of candidates will be to look into tools that:

3

• At least support Android and iPhone platforms

• Are currently active and being maintained

• Support native feature of the phones such as camera, GPS, and others instead
of only running in the web browser of the phone and achieve platform indepen-
dence.

To guarantee the integrity of the information gathered about each tool, personal
webpages, personal blogs and discussion forums will be avoided. The literature study
for the task will depend on information that will be collected from each vendors web-
page, vendor’s technical specifications, published academic literatures and industry
whitepapers.

The nature of information that will be collected about each tool will be on:—

• Number of platforms supported

• Number of native features supported

• Programming language used

• Architecture for achieving platform independence

• Whether they are proprietary—incur cost—or open source

• Developer effort and time to develop an application using the novelty of the
technology they employ

• Pricing model of the tools (some are free but require fees for support, some have
no fee and no support, some are entirely commercial, some are in between)

The evaluation will be done in a tabular framework by integrating developer or
stakeholder requirement and later give a score each tool based on the technology,
architecture, cost, platform and API support.

A company, for instance, which has an experience developing applications using
the technology of Java, obviously, will find it easier to get its developers up and run-
ning in cross-platform MAD tools that use Java, in less cost and effort.

Using the experiment method, it will be possible to explore two best candidate
cross platforms MAD tools in how each implement the same functionality, user in-
terface, speed of the applications in each tools version, application size they end up
with and the perceived running and compilation speed.

Structure of the report

Chapter 2 will discuss on mobile applications development, device evolution and the
current status of mobile computing. While Chapter 3 discusses cross platform de-
velopment tools, how cross platform is achieved, and the benefits of cross platform
development and a framework for evaluating tools will be presented in this chap-
ter. Chapter 4 will comprise the discussion and evaluation of this work followed by
conclusion.

4

2 Mobile Applications Development

To help drive mobile applications concepts home, a summarization of key devices,
mobile platforms and general challenges of mobile applications development will be
quite useful. This section includes a discussion to that effect.

Background

2.1 Mobile Device Evolution

A mobile phone is a telephone hardware that is capable of connecting to a telephone
system infrastructure using radio frequencies rather than wired connection [109]. At
the beginning, mobile devices were characteristically very prohibitively expensive,
big in size, extremely constrained in computational resources and with short battery
life [125,149]

The Motorola DyanTAC 8000X had a price tag of $3,995, 8 hours of standby, 35
minutes of talk, 13 inches tall body, and weighting nearly a kilogram with no display
and blind—no camera, but considered a cutting edge technology in 1983. Obviously,
this was not designed for a pocket and it was meant to be used in cars.

However, this pioneering device set a revolution that will completely change the
mobile device scenario from a terribly inefficient cumbersome object to a must-
have device which gave people freedom, continuous presence and ability to work
anywhere—the birth of a completely new reality [58,84].

Figure 1: Motorola DynaTAC 8000X [32]

After the millennium, devices started to get smarter and slimmer with decent
displays, connectivity options—Bluetooth and infrared sometimes Wi-Fi, and a mul-
titude of fancy features enabling them to be personal devices being carried around
24/7. Currently, mobile subscribers number is estimated to stand at 5.3 billion world-
wide [81] on top of having been able to earn being one of the top 10 greatest inventions
in the telecommunications industry [41].

5

Figure 2: Easily carried mobile phone device [92]

2.1.1 Smartphones

A smartphone is a new breed of mobile computing device with advanced computing
resources and equipped with technologies that facilitate access to the internet, run
web applications, email sync, run and install applications [29].

A typical smartphone will have a touchscreen, access to the internet and an oper-
ating system to run apps on [100]. A smartphone packs a whole raft of features such
as a still and video camera, a calculator, an alarm, a watch, an mp3 player, a SatNav,
and a gaming facility—features that are driving to extinction specialized devices that
used to run these features alone [35].

Despite their inconvenient input system and unreliable battery, smartphones are
redefining the computer industry and have already sent some field of computing—
the rather lackluster, yet-to-shine field of wearable computing—into decline or forced
them to realign and rearrange themselves making smartphones as their command
center [14].

Multicore processing has now been the dominant pattern of processing architec-
ture for quite a number of years on stationary computers, but in the first quarter
of 2011, a number of smartphone manufactures brought to the market an extremely
miniaturized smartphone that boast dual-core processor on board, a 1GB memory, a
spacious storage capacity up to 32GB, and the ability to play and capture HD Video,
connecting to HD monitors, which could make these devices easily pass as a veritable
replacement for stationary system units for the majority of consumers—the majority
assumption being text processing, browsing, gaming people. After the first dual-core
processor smartphone LG Optimus 2X [90], Motorola came once again with a brand
new smartphone that had 1GHz dual-core processor, an Adobe Flash support, qHD
and a phone that will change into fully functioning PC when connected to a bigger
screen via an HDMI port [103]—a clear sign that mobile computing is evolving into
much more than smartphone as we know it today.

6

Figure 3: Android [136], Windows phone 7 [117] and iPhone [73] smartphones

2.1.2 Tablet PCs

What started as a block of stand-alone, bigger screen, stylus dependent electronic
e-book reading device evolved into one of the most popular mobile computing device
that would later provide wireless internet connections and navigational services just
like smartphones [62, 123]. Since their debut to the computing world in 1989 [144],
tablet PCs have come a long way thanks to technological breakthroughs especially
in better touch based writing to achieve that mystique blurring between paper and
digital ink brush.

Figure 4: ASUS’s latest Quad-core Keyboard dockable tablet PC [43]

The nature and feel of tablet pcs with human working manner—holding every-
thing in hand and scratching with the other one—has helped them win the hearts
and minds of consumers to be one of the most successful products of the past few

7

years. The possibility of free handwriting, imitating actual brush painting, drawing
has made them a source of wonder for higher education professionals hoping to in-
troduce them in their class rooms [59,83].

To become the best mobile computing device, mobile devices have to beat the
challenges of small screen, portability, sufficient processing power and seamless con-
nectivity, and tablet pcs seem to have come close to beating these challenges [4].

2.2 Classic MAD Challenges

Inherently, Mobile applications development came with its own challenges that took
a decade of effort to eliminate these technological hurdles. The technological break-
through in mobile devices lead to the proliferation of infinitely variant devices with
varying architectures, device capacity and features [69] plus there were, and are still
three classic mobile applications development challenges that must be taken into
account when conceiving mobile applications either native or cross platform applica-
tions. Those are [55,66,124]:—

Mobile Device Portability

If an application is to hit it with end users on a mobile device, the mobile device
has to be small, and convenient to handle—not one which will be worn around the
waist, on arms and head or carried in the bag. Small and convenient devices come
with low power due to smaller battery size, constricted display and user interface
necessitating alternative input mechanisms such as speech recognition, and smaller
storage capacity which might render the device useless when it comes to business and
corporate data intensive applications or multimedia content. Another key problem
to consider is risk to data due to loss, theft or damage to mobile devices.

Mobility challenges

As mobile devices achieve full mobility, achieving smooth connectivity becomes a
major problem. Mobile devices have to search for a connection spot and establish
connection as they move dynamically—an operation which could drain the battery
fast and a stressful feature for traditional connection model. Address migration,
location dependent configuration such as IP address, and service locality starts to get
in the way of smooth operations of a connected mobile application.

Wireless communications

Greater bandwidth variation—from high to low network bandwidth, susceptibility
to security problems, signal corruption, signal blocking buildings, and natural ter-
rains together bring about an extra overhead in wireless communications. Wireless
networks range from Wi-Fi to GPRS to 3G hotspots. A robust mobile applications
development process must take into account the above challenges when developing
mobile applications.

8

2.3 Mobile Platform

The definition of mobile platform is better defined from the stand point of tradi-
tional operating systems. An operating system is the lower level middle software
between the bare hardware and the higher level applications program [131]. Oper-
ating systems provide hardware abstraction, driver and networking model, security
architecture, process and memory management facilities for optimum utilization of
hardware resource [135]. A Mobile platform is the equivalent of traditional operating
system for mobile devices—including tablets and smartphones.

The English version Wikipedia defines mobile phone operating systems as “A
mobile operating system (Mobile OS) is the operating system that controls a smart-
phone, tablet, PDA, or other mobile devices. Modern mobile operating systems
combine the features of a personal computer operating system with touch screen,
cellular, Bluetooth, Wi-Fi, GPS mobile navigation, camera, video camera, speech
recognition, voice recorder, music player, near field communication (NFC), personal
digital assistant (PDA) and other features” [151]

2.3.1 Types of mobile platforms (Mobile OS)

Android mobile operating system

Android is an open source mobile platform that depends on Linux kernel to provide
common operating system services to mobile devices. Android operating system stack
provides memory management, process management, network model, driver model,
security and an abstraction between mobile hardware and the higher level mobile
device applications [16,67]

Figure 5: Android System Architecture [16]

Android is not only an operating system but also a mobile software toolkit con-

9

ceived by telcos and handset manufacturers alliance—Open Handset Alliance and
further developed by Google—to specifically target mobile devices with open stan-
dards and free distribution [11,28]. In Android, all applications are considered equal
with relatively equal access to most of the core applications and hardware for maxi-
mum exploitation of the Android-handset combination [42].

Table 2: Android device as a minimum requirement [51]

Feature Minimum Requirement
Chipset ARM-based
Memory 128 MB RAM
Storage Mini or MicroSD
Primary Display QVGA TFT LCD or larger, 16bit color
Navigation Keys 5-way navigation/ power, camera and volume controls
Camera 2MP CMOS
USB standard mini-B USB interface
Bluetooth 1.2 or 2.0

At its core, Android is designed for resource poor devices with limited processor
power, limited memory, no swap space, battery powered and sandboxed mutually
exclusive—each running in their own confined virtual working space—applications
using the Dalvik virtual machine architecture (DVM). Each application that runs on
Android will be assigned its own DVM which in return provides all the operating
system services to each application [26,33,51].

Now Android is the most dominant smartphone operating system with a whopping
52.2 percent market share in the 3rd quarter of 2011 [107]. See below Android:52.5,
Symbian: 16.9, iOS: 15, RIM: 11, Bada: 2.2, Microsoft: 2.7, Others: 2.5.

Figure 6: Android Market share percentage for Q3 2011. [107]

10

Apple iOS mobile operating system

The Apple iPhone hit the market in January 2007 and brought with it the iOS operat-
ing system—an operating system filled with goodies that seemed to tickle everyone’s
fancy. iOS is a heavily guarded proprietary operating system whose fate is tied to a
romanticized device in the name of iPhone and other iFamily devices such as iPod
touch, and iPad devices. Before the advent of Android, the iPhone proved to be a
formidable weapon in the war of smartphone dominance and successfully positioned
iOS itself in the top rank in just a short time since its debut, now just trailing behind
Symbian and in 2007, it was considered as the invention of the year in five categories
among which were being beautiful and defining the future [88,91,157].

The iOS with its layered system architecture has since evolved to include advanced
features of Voice over IP, multitasking, threading, folders, a unified mailbox and other
features [80,94].

Figure 7: iOS system architecture [80]

iOS provides services that any operating system provides for iFamily devices. In
addition to its pioneering technology and innovative design, iOS was considered to be
a status symbol making it a market leader in a short period of time. Consequently,
other operating systems in the market had to make way for it and die. One of the
obstacles to developing applications on iOS is that it necessarily required a license
for developers and that the system is closed and that the apps are Apple approved
products on the iGlue online store of iTunes app store [61, 160], and not to mention
the that fact that the devices come at a premium.

Apple’s iOS currently stand third in terms of market share in the third quarter
of 2011. See Fig 6

Wholesale Applications Community (WAC)

WAC is a non-profit relatively new endeavor by giant telecom operators such as Te-
lenor among others. Over the past years—with the explosive growth of smartphone
use and mobile platforms entry into the market, mobile apps have started to erode
the usually lucrative business model of providing mobile services to subscribers for
a fee. Today the mobile computing environment is constantly changing and it has

11

turned the table on telecom operators, making them more and more irrelevant into
what many call as a dumb pipe. While their mobile network serves as a high way
for mobile data traffic, they see no dime in the process. To respond to this growing
threat, they got together and concocted WAC—a brand new mobile platform [2,63].
Note WAC is not a platform rather it is a mobile applications development framework.

Apart from serving as a counteract response, WAC promises to unify the frag-
mented scenario of mobile services into an open for everyone—everyone being mem-
bers or adopters of WAC—mobile development platform to offer application develop-
ers, device manufacturers, network operators and end users with network as a service
(NaaS) mobile cloud computing services [64,133].

Figure 8: Telco’s wish of mobile apps arrangement [2]

WAC is widely believed to furnish new and mature mobile network service APIs
which until recently were only used by telecom operators. Call control, messaging,
location, payment and profile services are some of the best ones that will be made
open to third party developers [1, 133].

The recent WAC 2.x standard has APIs for accelerometer, calendar, camera,
contacts, device interaction, device status, file system, geolocation, messaging, ori-
entation, tasks, WebView and address. WAC evolved from Joint Innovation Lab
(JIL)—a project conceived by two of the biggest mobile operators in the world which
are China Mobil and Vodafone together Verizon Wireless in the US. The WAC not
only tries to standardize APIs for accessing native device features from a web app
but also confirms to W3C standards. WAC together with its own app store is set to
make telecom operators take up arms with market dominant Google [18,39].

Figure 9: Illustration of WAC platform and its business model for telcos [133]

12

WAC is a cross platform development framework that comes in three flavors—
Aplix, Borqs and Obigo which also provide runtime environments to interpret the
mobile app—of eclipse based SDK plugins. And using these W3C standard enforc-
ing plugins, a developer can author a native platform agnostic mobile apps in the
web technologies of HTML, CSS and JavaScript. WAC has three major system
components—the runtime which provides security, privacy and application interpre-
tation, WAC mobile app is a mobile application which is an written using CSS, HTML
and JavaScript and device accessing APIs [38, 50]. The key to WACs cross platform
deployment is its ability to float on top of a runtime environment, leaving a clean
gap from the underlying operating system. Below is a an architecture reconstructed
from the WAC developer wiki.

Figure 10: A reconstructed inner structure of WAC Framework [38]

WAC 2.0, supporting HTML5 and multimedia, went commercially live in February
2011 with eight operators and 12000 WAC compliant widgets. In-app billing, user
profiling, authentication and being able to change a device without losing apps are
considered three of the most valuable additives telecom operators could integrate
into WAC 3.0 specification, which itself was expected to be released since September
2011 [36,37,78,79,158].

Windows Phone 7.5/ Mango

Microsoft, having learnt from its past failures and inefficient mobile computing strate-
gies based on the .NET compact framework, reengineered its approach from the
ground up and released a brand new mobile platform—Windows Phone 7, which has
since been upgraded to Windows Phone 7.5/ Mango [30].

13

This time Microsoft seems to have more than prepared for the battle ahead in
the smartphone war. Not only has it planned to stave off device fragmentation early
on by requiring a strict device specification and design guideline but also packed
about 1500 unique APIs as part of its arsenal—which it claims move the stage from
OEMs to end user experience. See Fig 11 below. The figure shows how Microsoft
wants devices to look like to run its latest Windows Phone platform. Windows Phone
also opted for methodical avoidance of multicore processors, kept rapid applications
development strategies from the .NET, its apps come with a revocable license, an IE9
based HTML5/ JavaScript support and it seems it has given security some thought
by confining each running app in an isolated least privilege host processes [3,30,113].
Strangely enough, Microsoft took the trouble of emphasizing how the start button is
to be placed on a device.

Figure 11: Windows Device Specification for OEMs [3]

With its highly acclaimed tile based simplistic user interface, Windows Phone mar-
ket share is expected to surpass iOS and Blackberry’s RIM between 2013 and 2015,
if speculations are anything to heed in this fast shifting technological scenario [77,152].

Breaking a long tradition of being tight-lipped about its technological architecture,
Microsoft demonstrated the Windows Phone Platform architecture on a presentation
slide labeled Microsoft confidential, in it it depicts that Mango—as it is known by
its code name—has two major interests for application developers—the Silverlight
framework which is the same as the old windows desktop rapid applications authoring
tools using Expression Blend and the XNA framework for game and entertainment
developers in addition to the common base class libraries which are the foundations
of any windows application. The framework’s main development language is C# and
anyone with previous .NET development experience can get up and running in no
time [3, 87,105].

14

Figure 12: Windows Phone iconic UI on a Nokia Lumia 800 [159]

Symbian

Symbian OS, v6.0, was first seen in the market in early 2001 on Ericsson R380 and
Nokia 9210 Communicator mobile devices. Initially, Symbian was conceived as a
force for uniting customers, mobile operators and device manufacturers into an open
and standardized approach to wireless services development and provision [111,121].

Symbian was to fulfill certain, at the time, very fundamental requirements in the
mobile computing sector. Working on a stand-alone portable device, being future
proof, having open, equal and fair licensing terms, and open standards based apps
development was some of the central ideas in Symbian. And the system designs
were meant to accommodate event-driven, graphical and cross-platform technological
patterns with client server model on top of providing facilities like streaming, data
persistence together with battery optimization fixtures [101]. During the early days
of Symbian, there was too much expectation that Symbian will enable application
developers and device manufacturers to come up with innovative network applications
and as a result increase mobile service subscribers that big companies—the like of
Ericsson, Nokia, Panasonic, Psion, Siemens, Sony-Ericsson, Fujitsu, Kenwood, Sanyo
and others with big plan, most notably Nokia—having invested 50 million USD—
jumped on board to make it successful [111].

Fig 14 is an overview of Symbians system architecture reflecting its cross-platform
tendencies.

Symbian—considered to be one of the most developer hostile and complaints rid-
den OS [57, 104]—is a light weight mobile operating system written in C++ and
uses small system architecture to optimize mobile applications performance on a con-
strained device [34].

Having floundered for almost a decade with lack of a clear goal and strategy, and
its inability to stop device fragmentation, it had to later be elbowed for Windows
Phone 7 by its sponsor—Nokia. According to Gartner and IDC, Symbian—in terms
of market share—will successfully be out of the mobile computing scene in about 3
years [77,152].

15

Figure 13: Windows phone architecture [3]

During its golden age and when it ruled the market, the Symbian platform had
its own App store and Android Google Play look alike—Nokia Ovi internet service.
Ovi was specifically designed for Symbian based smartphones providing app store,
navigational maps, media sharing, messaging, gaming, music, contact repository, cal-
endar and file access services [57,141].

BlackBerry RIM

BlackBerry is a smartphone which is a product of the company RIM—Research In
Motion. BlackBerry RIM commands the fourth market share of smartphones [107].
BlackBerry is not a one off operating system enabled device product like Google’s
Android and Apple’s iOS. What is different about BlackBerry smartphones is that
it comes as an integrated service between RIM, telecom operators and the smart-

16

Figure 14: Symbian system architecture [57]

phone hardware. BlackBerry RIM is well-known for its highly secure corporate email
communications solutions. BlackBerry smartphones tap into a bigger IT solution in-
frastructure to help users stay connected through information services such as email,
phone, organizers, intranet and multimedia applications [88,93].

Fig 15 shows the BlackBerry’s enterprise solution architecture. BlackBerry smart-
phones use telecom carriers network to connect to RIM’s Network Operating Center
(NOC) [23]. The BlackBerry Enterprise Solution (BES) provides a means to access
corporate emails and business critical applications. The BES has six major compo-
nents to render its service to BlackBerry smartphone holders. Those are [22]:

• BlackBerry Enterprise Server — This is the server that integrates with enterprise
services to provide messaging and collaboration facilities and also handles all
data traffic from the BlackBerry smartphones.

• BlackBerry Mobile Data System — This includes everything from developer
tools, administrative services, and BlackBerry Device software that is used to
author, deploy and manage applications for the BES.

• BlackBerry Smartphones — The smartphones are one of the components of the
enterprise service architecture that provide access to email, MMS, SMS, web
and other applications.

• Devices with BlackBerry Connect Software — This is a device with the ability

17

Figure 15: BlackBerry Service Architecture

to run the BlackBerry Connect software and maintain a link to the BlackBerry
Enterprise Server.

• BlackBerry Alliance Program — This is a community of software developers
that make applications for the BlackBerry enterprise solution.

• BlackBerry Solution Services — This consists of technical support, training and
certification programs that will help organizations that need to deploy and use
BES.

Samsung Bada

Samsung Bada is another mobile platform which promises a more interactive services
using UI controls, Adobe Flash support, in-app-purchasing, and SNS (Social Net-
working Services) integration. Bada comes with features such as multipoint touch
and 3D graphics. In Samsung Bada, applications are developed using C++, Flash
and web programming languages [20,46].

Table 3: Android Vs Bada OS comparison [19]

OS Layers
Android Bada Function
App Framework Open API framework Apps and Widgets
Libraries Service Library C++ library
Kernel Kernet Linux kernel

2.4 Mobile Applications

A mobile application, mobile app, is a software which is written to run on mobile com-
puters. They have the feel of a form based desktop application but with an internet

18

Figure 16: Bada System Architecture [47]

connection, the applications content come organized in menus, views together with
multimedia contents. They can also be offline, batch-and-cache or always connected
apps. They are developed using traditional software development methodologies in
combination with specialist device emulator or testing simulators. Mobile apps are
distributed usually with platform specific market places such as Google Play, Apple’s
App Store and Windows Phone market. A registered developer publishes a mobile
app on a market and users acquire and deploy the apps on their device through
the application markets. The figure below describes the application distribution and
deployment lifecycle [15,74,96].

Figure 17: Mobile apps distribution and development life cycle overview [70]

Inside the above model, a number of financial arrangements and application in-
telligence and other communications take place between third party registered users
and processes. The app markets are centralized mobile application platforms pro-
viding integrated clearing house between platform owners and application developers
as well [70]. Here is a more detailed description from Microsofts Windows Phone
marketplace.

19

Figure 18: Windows phone market model

Until fairly recently, the mobile industry was a privilege to mobile network opera-
tors [72]. They probably had an upper hand in defining the technology or how service
was rendered. With the arrival of Apple and Google, they seem be to increasingly
sidelined.

Mobile applications are distributed from developers to users through portals that
are centralized or decentralized, where centralization provides access to mass market
distribution through shops like Google play and AppStore. Full portal integration
means having dominion over the entire application distribution process, a good exam-
ple for this would be Apple’s AppStore—no app will be installed on a device without
the approval of Apple [71].

Table 4: Overview of platform providers [71]

Platform Technology Portal Devices Integration
Apple Closed Centralized Uniform Full
Google Open Centralized Various Portal
Linux Open Decentralized Various Device
Nokia Open Decentralized Various Full
RIM Closed Decentralized Various Full
Windows Closed Decentralized Various Portal

According to Gartner [107], Android is set to dominate the mobile applications
scenario in the near future. Android has been crouching faster and nearer to Ap-

20

ple in terms of mobile apps economy and number of applications on the market
[112,119,129], and the mobile applications market is assumed to have amassed 9 bil-
lion USD in 2011 [71] while Google claimed to have had its 10 billionth app download
in December 2011 [24].

Mobile app market monitor Distimo reported that of the major app stores it
monitors—including Apple App Store for iPhone and iPad, Apple Mac App Store,
BlackBerry App World, GetJar, Google Play, Nokia Ovi Store, Palm App Catalog
and Windows Phone 7 Marketplace—iPhone did well than android in the amount of
revenue generated while Google performed far better than iPhone in the freemium
business model in the US in 2011 [48]. The figure below shows the proportion of
revenue generated by freemium apps in the US in November 2011.

Figure 19: Android and iOS performance in the US [48]

2.4.1 Types of mobile applications

Mobile application can range from purely communication to gaming to entertain-
ment. Despite the smaller user interface, hardware limitations and other constraints,
application development is infinitely varied. Google play and Windows marketplace
have classified their apps into two major classifications: Games and Apps. In the
apps category, there are entertainment, comics, communications, finance, health and
fitness, and other. The table below will sample few types of mobile applications by
function to users.

21

Table 5: General Mobile apps category [122]

Mobile Application Tyes Example from Google play
Communication Email Clients Facebook

IM Clients
Mobile web & browsers
News
Social Network Clients

Games Puzzle (Tetris, Sudoku) Angry Birds
Cards (Solitaire, Roulette)
Action (Doom)
Sports (Football, Soccer)

Multimedia Graphics viewers youtube
Presentation viewers
Video players
Audio players
Streaming players

Productivity Calendars CalenGoo
Calculators
Diary
Notepad/ Memo
Spreadsheets
Directory services
Banking & finanace

Travel City guide FlightTrack
Currency converter
Translator
GPS/ Maps
Itineraries
Weather

Utilities Profile manager
Idle screen
Address book
Task manager
Call manager
File manager

22

2.4.2 Telco-enriched apps

SMS — Short Messaging Service

SMS is a mobile network services that is used to transfer short, usually a 160 character
text, message to other mobile phone users over a cellular network [128]. SMS is an
integral feature of GSM, TDMA and CDMA mobile networks [110].

Figure 20: SMS System [110]

SMS is used in business communications such as banking and individual commu-
nication [89]. SMS provides a store and forward system—which makes it possible for
the message to be stored in a telecom operators infrastructure until the receiver is
ready to accept it. SMS can be received at any time even while a phone call is in
progress. SMS provides a low cost non-voice communication system [99].

USSD — Unstructured Supplementary Service Data

USSD is a session-oriented and transaction-oriented GSM technology with a shorter
response time for menu based interactive applications or could also serve as a trigger
for other actions [99, 128]. Unlike SMS, USSD communications are not stored and
forwarded. It, instead, sets up a virtual connection between communicating devices
[110]. It works based on sending predefined codes such as *150# for requesting
current balance on Chess telephone service in Norway.

Network-based Geolocation

Network based location determination is a facility that is provided by cellular net-
work infrastructure the phones use [7]. Location information is computed from time
of arrival, time difference of arrival time, angle of arrival, timing advance and mul-
tipath fingerprinting. Network-based geolocation helps acquire startup of location
information—TTFF, time-to-first-fix—faster than GPS and consumes less power.
Network-based location information are claimed to fare far less accurate than GPS
and require considerable investment on upgrading cellular networks for such ser-
vices [49,126].

23

Figure 21: Cellular network based positioning [85]

2.4.3 Mobile Enterprise Applications tools

Enterprise application tools are tools that involve the whole mobile applications devel-
opment life cycle, just like the SDLC in traditional software development life cycles.
They are meant to develop enterprise mobile applications that have an extensive
backend systems that the mobile apps have to rely on. They include everything
from development to integration to publishing to management. These tools come
with database connectors, middleware, app hosting mechanisms, push messaging and
policy management [98]. Examples of such tools are Rhomobile and Worklight.

2.4.4 Mobile Applications Development tools licensing

One of the factors to consider in mobile applications development is the cost of the
tools and technologies in terms of acquisition or licensing cost. The fact that a tool
is commercial or properietry essentially means that the tool comes with some sort of
cost associated with it. To help avoid the inevitable, free and open source tools come
for free but with some inalienable license agreements which will add up to the cost
of development of mobile appliations development.

MIT Licensing [76]

MIT licensing allows a developer to copy, use, modify, merge, publish, distribute, sell
of software in anyway a developer wants with the condition that the following text is
included in the copy of the software. “THE SOFTWARE IS PROVIDED ”AS IS”,
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUD-
ING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

24

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE“. The only restriction being that the above statement be
included in the modifications.

Apache 2.0 Licensing [56]

Apache 2.0 licensing has a different approach in treating rights and patents. Any
licensing might be for both using the right or the patented material. Rights once
acquired can be used infinitely and any right given in one country is applicable any-
where. This makes rights irrevocable and free given and with no royalty. A developer
can use this licensing by including the following structured text.

”Copyright
year

nameofcopyrightowner

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an ”AS IS” BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the License”

2.4.5 Common native features of a mobile platform

There are several native features in a mobile phone. Some of the most common native
features supported in a mobile are described below.

Accelerometer

Accelerometer is a feature of a mobile phone that is used to detect the orientation of
a mobile device or how the phone is held by a user. It can be used to detect motion
in three dimensions [114].

Geolocation

Geolocation is an API that is used to provide or access geographical location of a
mobile holder or the mobile device to a computer application. Location informa-
tion expressed using the earths latitude and longitude are usually collected from
Global Positioning System (GPS), IP address, Wi-Fi, Bluetooth, MAC address or
GSM/CDMA mobile networks [142].

Barcode

Barcode is an API used to read barcodes through a mobile device camera and interpret
the information encoded in the barcode [145].

25

Calendar

The Calendar API gives access to the native calendar functionality and data of a
mobile phone platform [145].

Database

A fast lightweight embedded SQLite database module in a mobile platform. It is
used to create, access and store data on the mobile phone and accomplish database
management tasks [45,132].

Media

The media feature enables to access multimedia functionalities of a mobile platform
such as playing and recording of audio and video. Access to platform players and
multimedia file operations [138].

Network

The network feature of a mobile phone platform provides access to a mobile phone
devices cellular and internet connection [114,138].

Notification

Notification allows to raise audible, visual or vibrational notification [114]

26

3 Cross platform Mobile Apps Development

3.1 Mobile application Development

In mobile applications development there are certain major tasks whether it is native
or cross platform mobile applications development.

Develop

In mobile applications development, one of the main tasks is the development pro-
cess. The development process involves having a profound insight into the software
users, the target platform, the programming languages and the tools. There are
also methodologies or frameworks that could potentially be considered to manage
and plan the process. MOWAHS framework is one of them. MOWAHS framework
helps in eliciting requirements for a mobile system, helps plan an architecture, how
and when each functionality in a mobile system will be implemented [143]. When it
comes to the authoring tools for mobile applications, the choice can be so varied and
might need a careful selection on condition that a developer has a target platform, a
user platform and technology in mind. The development goal can be native or cross
platform. Mobile applications development can follow a web based rendition using
HTML5, CSS, JavaScript. C++, Java are two other authoring languages one uses
to develop mobile applications. During mobile applications development, it is com-
mon to use IDEs (integrated development environments), debuggers, testing modules
(device emulators or simulators), and source control tools [98,116].

Integrate

Integration stage is where the mobile application could be made to work with enter-
prise IT facilities, cloud infrastructure and native device capabilities. Integration will
help it extend its functionalities with extra features that depend on another system.
This extra facilities might be in-app billing, analytics tools, diagnostic tools, social
networking facilities and storage [98,154].

Build

Building is where application compiling, conversion, optimization of the application
code into executable binaries or packages occur. A lot of cross platform applications
optimization for individual platforms are accomplished in this stage [98,116].

Publish

Publishing is putting apps on stores like Apple’s app store and Google’s Google Play.
It is the process of making it accessible for download with or without fee for interested
user [98,115,116].

Manage

Management facilities such as remote installation or removal, presenting users with
the right version of application for their device, push messaging, data flow man-
agement, app performance data gathering are provided. Some examples of cross
platform development tools that also provide management facilities are Appcelerator

27

Titanium, Worklight, Rhomobile [98,116].

There are two major ways of developing applications for mobile devices. Those
are native and cross platform development. In each development process different
techniques are applied to achieve the same result whether one develops using one
method or the other. Native features that are most commonly utilized to develop
mobile applications are accelerometer, camera, compass, contacts, calendar, database,
file, geolocation, media, network, notification services, and storage.

3.1.1 Native mobile applications development

Native application development involves developing software specifically designed for
a specific platform, hardware, processor and its set of instructions . The advantages
of native applications development are predictable performance, streamlined sup-
port, native UI, native API, coherent library updates. Native development requires
platform specific SDK, programming language and it comes at a cost of developing
different software for different platforms [44].

Native apps are executable binary files of an application that will be installed into
the mobile device without the need for other abstraction layering to the operating
system. They are able to call built in functionalities such as contacts, the dialer,
and integrated emails directly. Despite the fact that native applications development
requires platform specific skill and expertise, this strategy delivers a higher quality
user experience than other mobile application development methods. Native apps are
also best distributed through an app store [154].

Figure 22: Native App Development [153]

28

3.1.2 Cross platform development

Sun Microsystems tried to bring the idea of write-once-run-anywhere to popularity
in the 1990s. With the explosion of multiple devices like pagers, PDAs, set-to-boxes,
DVD players with different manufacturers, Sun Microsystems came up with a Java 2
Micro Edition [69].

Figure 23: J2ME [69]

The plan in Java ME was to provide a common and shared platform layering
environment onto which hardware manufacturers and application developers work
on. Java ME promised a standardized application development environment for all
sort of mobile devices at the time. Due to lack of standardized implementation of
the idea, the idea itself became a problem to software developers and device man-
ufacturers [21, 40]. To achieve cross platform application development, specification
and implementation were split into separate entities. And Java ME tried to support
multiple platform development using configurations and profiles but this did not do
much to help developers from implementing applications using various versions to
meet java specification(JSR) for multiple devices [60].

One thing that is common to all smartphones is understanding JavaScript which
is what currently most cross platform tools are exploiting to develop multiplatform
running mobile apps. The cross platform tools depend on HTML, CSS and JavaScript
together with native accessing wrapper codes [9, 44].

3.2 The benefits of cross platform MAD

Cross platform development promises lower cost and time of development since it
produces one code base to maintain and write targeting multiple devices and plat-

29

forms. The figure below shows the trend for native to cross platform development
cost and time factors.

Figure 24: Native vs. Cross platform development [12]

[60] claims that cross platform development might inhibit future development
in the field since it might be focused only on making it easy for developers than on
innovation. Some noteworthy benefits of cross platform development are: [9, 60]

• Cross platform development is mainly based on using HTML5 technologies and
developers in web site development might be able to leverage their experience

• Learning web technologies might be less challenging that learning an all new
platform

• Devices come in all sorts of technology and feature that through cross platform
development it might be possible to develop an application that works well on
each one of them with less effort

• Cross platform mobile apps written using one SDK, operating System and de-
velopment environment requiring less financial investment

• Cross platform apps try best to emulate natively written applications

• Cross platform apps might exploit well the native controls

• Cross platform development might help reduce cost in human resource, time
resource, and development period

• Cross platform might help enable developers reach mass device through their
hardware and platform abstraction features

30

• Democratization of mobile application development in which everyone will be
able to develop without the constraints of proprietary and closed systems.

3.3 Cross platform system architecture

Developing an application that can run on multiple platforms such as iOS, Android,
RIM, Symbian, WP7 and Bada or others might be a difficult task considering the
number of technological implementations that comes with each platform. But efforts
have been made to make cross platform running application a possibility. Some of
the ways to implement cross platform mobile applications are outlined below.

3.3.1 Mobile Web Apps

These are standard web applications specifically designed to target mobile devices.
But the application is built purely using HTML, CSS, JavaScript and other simi-
lar technologies that are used to build a website application for the desktop brows-
ing experience. This type of mobile app runs entirely in the confinements of the
mobile browsers. It accesses no native features of the mobile phone. These sorts
of application are accessed by entering the addresses of the website on the mobile
phone browsers address bar. Examples of such application are Wikipedia Mobile
-http://en.m.wikipedia.org/, Facebook Mobile http://m.facebook.com, and BBC
News mobile (http://www.bbc.co.uk/mobile/index.html) They are capable of run-
ning on any sort of device that comes with a browser [6].

3.3.2 Abstraction based cross platform system

The second form of developing a cross platform mobile application is using an ab-
straction model. These are a combination of both the web technologies and native
API accessibility feature of a mobile device. These applications are written mostly
in HTML/ CSS/ JavaScript with an architecture that abstracts device or platform
variation for uniform device feature accessibility.

Figure 25: Abstraction based cross platform overview

The software code is customized to run inside the specific mobile platforms We-
bView or JavaScript interpreter. But what makes hybrid mobile apps development
different is that there is no need to start a browser to use the apps, there will be an
icon which will start up the apps, and most of all the possibility of access to native
features of the phone through APIs of the specific platform using JavaScript. WAC

31

development falls under this category. The diagram below illustrates that the mobile
application lies on top of an abstraction layer that negotiates native API calls to the
operating system [98].

Although these forms of apps provide access to native features, full API accessi-
bility and faster performance and some of the latest UI technologies support might
not be guaranteed [53].

Abstraction model based cross platform applications are usually developed using
tools and frameworks that help in developing applications with a platform indepen-
dence goal such as web technologies [54].

Table 6: App development comparison [154]

Device Access Speed Devt Cost AppStore Approval Process
Native Full Very fast Expensive Yes Mandatory
Hybrid Full Native speed Reasonable Yes Low overhead
Web Partial Fast Reasonable No None

The mobile platforms’ APIs give JavaScript access to the devices features and
sensors and help it mimick the devices native interface. According to J. Dehlinger
and J. Dixon, abstraction based cross platform—HTML5 tools, like PhoneGap, try to
create a near native application for multiple platforms, but this does not allow for rich
features that have access to the devices APIs and is a technological solution rather
than a software engineering solution that allows reuse of engineering assets [82]. The
table below will summarize what a mobile websites(mobile web apps) and abstraction
based mobile apps are.

32

T
ab

le
7:

M
ob

il
e

w
eb

ap
p
s

v
s

M
ob

il
e

ap
p
s

[6
]

M
ob

il
e

w
eb

si
te

M
ob

il
e

ap
p

A
u
d
ie

n
ce

A
n
y

m
ob

il
e

b
ro

w
se

r
n
ee

d
s

sp
ec

ia
l

d
ev

ic
e

U
se

r
ex

p
er

ie
n
ce

d
ep

en
d
s

on
b
an

d
w

id
th

,
te

ch
n
ol

og
y,

si
te

ca
p
ac

it
y

ro
b
u
st

u
se

r
ex

p
er

ie
n
ce

G
ra

p
h
ic

s
&

eff
ec

ts
li
m

it
ed

b
y

b
an

d
w

id
th

,
si

te
p

er
fo

rm
an

ce
A

cc
es

s
to

H
ar

d
w

ar
e

li
m

it
ed

U
n
li
m

it
ed

(c
am

er
a,

G
P

S
et

c)
E

as
e

of
d
ev

el
op

m
en

t
u
se

s
w

eb
te

ch
n
ol

og
ie

s
n
at

iv
e

co
d
e,

cr
os

s
p
la

tf
or

m
co

d
es

D
ev

el
op

m
en

t
re

so
u
rc

e
b
u
il
d

on
ce

d
ep

lo
ye

d
ev

er
y
w

h
er

e
b
u
il
d

fo
r

sp
ec

ifi
c

M
ob

il
e

O
S

D
ev

el
op

m
en

t
co

st
le

ss
ex

p
en

si
ve

m
or

e
ex

p
en

si
ve

E
as

e
&

sp
ee

d
of

im
p
le

m
en

ta
ti

on
p
u
b
li
sh

ed
as

a
w

eb
si

te
re

q
u
ir

e
ap

p
st

or
e

D
is

tr
ib

u
ti

on
in

te
rn

et
d
ow

n
lo

ad
an

d
in

st
al

la
ti

on
In

st
al

la
ti

on
N

o
in

st
al

la
ti

on
d
ow

n
lo

ad
an

d
in

st
al

le
d

U
p

d
at

es
&

m
ai

n
te

n
an

ce
ea

sy
re

q
u
ir

es
an

ap
p

st
or

e
S
ea

rc
h

op
ti

m
iz

at
io

n
st

an
d
ar

d
se

ar
ch

ap
p

st
or

e
se

ar
ch

co
n
n
ec

ti
v
it

y
re

q
u
ir

ed
ca

n
b

e
u
se

d
offl

in
e

33

3.3.3 Native compiling cross platform system

Native compiling cross platform mobile applications are applications that are built
using a specifically designed tool and programming language and that the code base
will be directly changed into the processors machine code—currently most are ARM
based processors. In cross platform mobile applications, different types of technologi-
cal approaches were deployed to achieve the desired portability. A framework in case
of Rhomobile, runtime in case of WAC, JavaScript interpreter and other forms of lay-
ering between the operating system, the machine and the mobile applications. But in
native compiling cross platform applications, the application code is directly changed
to the right operating system and to the bare machine execution instructions. This
in effect makes native compiling applications faster, fairly predictable, and have light
system foot print [86,95,106,146].

3.4 cross platform MAD tools

3.4.1 Appcelerator Titanium

Appcelerator Titanium is a cross platform mobile application development tool. It
claims to use open web standards, architecture and follows open source initiatives.
According to the Appcelerator Titanium’s website, it provides 5000 device and mobile
operating system APIs to create native like applications. Using the tool, a developer
might be able to develop applications that will be able to run on tablet pcs, smart-
phones and desktops.

Figure 26: Appcelerator Titanium architecture [139]

Titanium Mobile SDK relies on JavaScript, HTML and CSS to enable the devel-
opment of cross platform mobile apps. Titanium Mobile SKD webpage writes that
1.5 million developers are using it worldwide, more than 25000 apps have been de-
veloped with it and big brands like Reuters, eBay, Cisco are using the tool.

34

Titanium Mobile SDK comes with its own IDE. Titanium Studio is an eclipse like
IDE which is used to write and test applications together with and Android Emulator.
Appcelerator titanium supports database, media, geolocation, contacts, notification
and many other native features of a smartphone.

Titanium enables web developers to create native mobile, desktop, and tablet ap-
plications using open web technologies such as JavaScript, HTML and CSS. One uses
JavaScript APIs for UI(native), JavaScript for scripting [139].

Streaming an audio clip can take between 50- 500 lines of code of Objective-C or
Java, in Appcelerator Titanium a developer can simply write one line of JavaScript to
point to a URL location to start clip streaming [137]. Appcelerator Titanium has two
components in its framework, UI API and Phone API. The former handles mappings
to native UI from cross platform codes while the later deals with mappings to native
feature of the phone such as database, file system and network.

Table 8: Appcelerator Titanium native support [139]

Appcelerator Titanium native API support
Android iOS BlackBerry

Accelerometer 4 4 4

Analytics 4 4 8

Barcode 8 8 8

Calendar 4 8 8

Camera 4 4 4

Compass 4 4 4

Contacts 4 4 4

Database 4 4 4

File 4 4 4

Geolocation 4 4 4

Map 4 4 4

Media 4 4 4

Network 4 4 4

Notification 4 8 8

SMS 4 4 4

3.4.2 PhoneGap

PhoneGap is a cross platform mobile applications development tool. It uses HTML5,
JavaScript and CSS3 web technologies to develop cross platform mobile applications
that exploit native features of a mobile device [10,17,114].

PhoneGap supports the largest number of platforms of all other tools—iOS, An-
droid, BlackBerry, webOS, WP7, Symbian and Bada. PhoneGap developed apps are

35

hybrid apps that are neither pure web apps nor native apps. PhoneGap is an open
source mobile apps development tool. With PhoneGap, one can develop an abstrac-
tion based cross platform applications using web technologies and wrap the code in
native accessing system architecture of an application [108,114].

PhoneGap uses jQuery JavaScript library in its development framework and made
it easier to build jQuery Base mobile apps to native feature accessing applications. It
supports accelerometer, camera, compass, contacts, file, geolocation, media, network,
notification (alert, sound, vibration) and storage [27,114].

Table 9: PhoneGap native support [114]

PhoneGap native support
Android iOS BlackBerry WP7 Symbian Bada

Accelerometer 4 4 4 4 4 4

Analytics 8 8 8 8 8 8

Barcode 8 8 8 8 8 8

Calendar 8 8 8 8 8 8

Camera 4 4 4 4 4 4

Compass 4 4 8 4 8 4

Contacts 4 4 4 4 4 4

Database 4 4 4 4 4 8

File 4 4 4 4 8 8

Geolocation 4 4 4 4 4 4

Map 8 8 8 8 8 8

Media 4 4 8 4 8 8

Network 4 4 4 4 4 4

Notification 4 8 8 4 4 4

SMS 4 4 4 4 4 4

Building apps in PhoneGap could involve authoring the application and then
submitting the developed application to PhoneGap build service which will return
a platform optimized application ready for distribution [118]. The build service of
PhoneGap comes at a price from Adobe Systems. The diagram below illustrates
PhoneGap’s system of achieving cross platform.

36

Figure 27: PhoneGap architecture [75]

3.4.3 Xamarin

Xamarin is a commercial cross platform mobile applications development tool. Xam-
arin enables to develop applications for iOS and Android using .NET framework and
C# programming language. Application development using Xamarin comes in two
forms as MonoTouch for iOS and Mono for Android [52,156].

Mobile applications development using Xamarin is claimed to bring the benefit
of sharing codes between platforms, using existing .NET expertise, easy access to
native APIs, the niceties of rich IDE—Visual Studio in case of Android—and devel-
oping applications using strongly typed programming along with garbage collecting
feature of .NET framework. Xamarin IDE comes as MonoDevelop for android and
as a Visual Studio plug-in component for windows and Mac OSX and as monotouch
for Mac OSX only.

Xamarin follows a native compiling cross platform system. The codes written for
both iOS and Android are mapped directly to native codes. Xamarin claims to have
1:1 mapping for 4000 C# and 1700 C# classes for both Android and iOS respectively.

Figure 28: Xamarin architecture for MonoTouch and Mono for Android [155]

37

Xamarin uses the .NET Base Class Library (BCL) which is a collection of Mi-
crosofts .NET framework libraries and it uses LINQ—a feature of .NET framework
that extends the power of C# to handle data source querying [106,148].

According to Xamarin, mobile applications developed using its Mono for Android
tool build 40% faster, have 70% smaller system footprints, and faster installation
than Java due to small size of the applications [155].

Xamarin is being adopted by over 600 developers everyday and 3M, AT&T, Mon-
ster jobs, HP, Cisco and Microsoft are some of its users [155]. The table below
illustrates native features Xamarin supports.

Table 10: Xamarin native support [156]

Xamarin native support
Android iOS

Accelerometer 4 4

Analytics 8 8

Barcode 8 8

Calendar 4 4

Camera 4 4

Compass 8 8

Contacts 4 4

Database 4 4

File 4 4

Geolocation 4 4

Map 4 4

Media 4 4

Network 4 4

Notification 4 4

SMS 4 8

38

3.4.4 Rhombile

Rhomobile is a Motorola Solutions owned company that brought a cross platform
mobile applications development tool that relies on Model-View-Controller(MVC)
system architecture of programming applications using HTML, CSS and JavaScript
and Ruby. Rhomobile supports iOS, RIM, Windows Mobile and Android.

Rhomobile comes with a Rhodes framework for building locally running web ap-
plications that are device optimized and be able to work with transactional enterprise
applications such as Oracle CRM on demand, Microsoft Dynamics CRM, and Sales-
Force.

The Rhomobile development tool comes with three integrated tools. Those are
Rhodes, RhoConnect, RhoHub and RhoGallery. Rhodes is an open source framework
which is used to build native applications using HTML, CSS, JavaScript and Ruby.
It supports GPS, calendar, camera, push, barcode, Bluetooth and near field commu-
nication (NFC).

Figure 29: Rhodes application architecture [75]

RhoConnect provides a connection path to a backend enterprise data source. This
will enable mobile apps to access data between local and backend systems using web
services technologies of SOAP, REST, XML and JSON.

RhoHub enables to write applications online without the need for installing the
RhoStudio SDK and provides git like source control for programmer collaboration
and online build while RhoGallery is the equivalent of an app store.

Rhodes applications are composed of models, views and controllers. The views
are HTML, CSS and JavaScript webpages executed by a WebView on the phone and
a local lightweight server running on the phone and the controllers and the models
are parts that are written using the programming language Ruby.

39

Figure 30: Rhoconnect architecture [120]

3.4.5 MoSync

MoSync is an open source cross platform mobile applications development tool. It
enables one to develop native like cross platform mobile applications using C/C++,
HTML5 and JavaScript.

Using MoSync, a developer can develop an application using a single codebase but
target multiple platforms. MoSync supports iOS, Android, RIM, JavaME, Symbian,
and Windows Phone. Application development using MoSync takes place in three
forms. One of them is using HTML5 and JavaScript referred to as WebUI applica-
tions, the other one is HTML5 and JavaScript code but accessing native applications
while the third method is using C++, JavaScript and HTML5 which, MoSync claims,
to be real native applications [75,102].

MoSync produces MoSync intermediate language using a C++ compiler that will
be put together with all the application sources and MoSync libraries into a pipe tool.
A pipe is a custom C++ compiler which outputs MoSync intermediate language. This
is fed into the pipe tool, along with the application resources and the MoSync libraries.
The pipe tool builds the codes, analyzes, optimizes and outputs either C/C++ source
code, MoSync bytecode or Java bytecode. This is then packaged with the appropriate
runtime for a specific platform [147].

40

Table 11: MoSync native support [145]

MoSync native support
Android iOS BlackBerry WP7 Symbian

Accelerometer 8 8 8 8 8

Analytics 8 8 8 8 8

Barcode 8 8 8 8 8

Calendar 4 4 4 4 4

Camera 4 4 4 4 4

Compass 4 4 4 4 4

Contacts 4 4 4 4 4

Database 4 4 4 4 4

File 4 4 4 4 8

Geolocation 8 4 4 4 4

Map 4 4 8 8 8

Media 4 4 8 4 8

Network 4 4 4 4 4

Notification 4 4 8 4 4

SMS 4 8 4 4 4

3.4.6 IBM Worklight

Worklight is a proprietary cross platform mobile applications development tool. It
is used to develop mobile web apps or abstraction based mobile apps using HTML5,
CSS3 and JavaScript. Like Rhomobile, the main focus of Worklight is enterprise
applications with backend systems like servers and databases. Worklight SDK comes
with four components as Worklight Studio, Worklight Device runtime, Worklight
Server and Worklight Console [98,154].

Worklight Studio is an Eclipse based IDE which consists of facilities to develop
Worklight standard web or native applications and includes third party and backend
connectivity facilities. Worklight uses PhoneGap components to wrap its JavaScript
code for native device accessing capabilities. Worklight applications, usually target-
ing enterprise users and developers, are not published on app stores rather they are
published on an internal server or private application hosts. Fig 31 illustrates the
components of Worklight.

Worklight Device runtime component provides server integration framework, se-
cure server connectivity, authentication, remote disable, notification and cross plat-
form compatibility whereas Worklight Server provides direct access to backend trans-
actional data access and Worklight Console handles application version management,
analytics, and administrative dashboards [154].

Worklight supports iOS, Android, RIM and Windows Phone 7. Worklight to-
gether with PhoneGap’s JavaScript-to-native device API interpreter provides an en-

41

Figure 31: Worklight Architecture [154]

terprise applications development platform [98].

Accoring to Worklight’s website, it has been used in large number of applications
in healthcare, energy, financial, media and hospitality industries.

3.4.7 Corona

Corona is a cross platform mobile applications development tool that is used to author
games and apps. Mobile applications development in Corona are written using the
programming language Lua. The Lua code is compiled into an intermediate bytecode
for a native runtime abstraction [97].

Corona supports only iOS and Android. Corona is a commercial development
tool and the SDK comes with mobile app templates, API libraries, sample code, a
debugger, a simulator but the SDK does not have a full IDE with GUI based tools.
It uses a text editor like SDK [97,98].

Corona follows the abstraction based cross platform approach. According to
Corona’s website, developers can build an application tasks such as animation with
less code and ten times faster and with a rich multimedia experience [97].

42

3.4.8 Marmalade

Marmalade is a cross platform mobile applications development tool that follows ei-
ther abstraction-based or native compiling style of cross platform mobile applications
development. Using marmalade a developer can author an application using HTML5,
CSS3 and JavaScript or a fully native compiling, yet portable cross platform applica-
tions using C++ [95]. Marmalade is most suitable to develop rich HTML5 apps and
cross platform and high performance 2D and 3D games using C++.

Marmalade supports iOS, BlackBerry, Symbian, and Bada. Marmalade uses Mi-
crosoft Visual studio and Xcode as its integrated development environment (IDE).
Marmalade is commercial tool which makes it difficult to know the details of its API
support and documentations [146].

3.4.9 Adobe Air

Adobe Air is a runtime based cross platform mobile applications development tool.
It uses HTML, JavaScript, ActionScript, Flex, Adobe Flash Professional, and Adobe
Flash Builder for development of mobile applications that run on platforms and de-
vices of Android, BlackBerry, iOS devices, and personal computers [5].

Adobe Air is a proprietary tool and it employs abstraction based cross platform
technology. Adobe Air runtime is believed to be deployed on over a billion devices,
which comes as second after JME. Adobe Air is most known for its technology to
create creative and fancy looking user interfaces and for apps that require rich multi-
media games and mobile apps. Adobe Air combines a number of technologies within
it, most notably Adobe Flex and ActionScript to program applications, in addition
to the drag-and-drop user interface designing strategy of Adobe [60,98].

Adobe Air negotiates with the platform specific Adobe Air runtimes to access the
native APIs of the phones. Through its runtime, Adobe Air accesses the network,
database and other APIs.

Summary

In this document a number of cross platform mobile application tools have been
investigated. Each tool was described based on modes of cross platform technology
implementation such as just mobile web, abstraction based and native compiling
cross platform. The technologies each tool depends on to develop applications such
as web technology—HTML, CSS and JavaScript—or a general purpose programming
language such as C++ or C# or Lua have been discussed. The tables below will
summarize the main similarity, difference, weakness, strength, licensing and other
key information about each tool.

43

T
ab

le
12

:
C

ro
ss

p
la

tf
or

m
to

ol
s

m
ar

ke
t

p
en

et
ra

ti
on

[1
3,

97
,9

8,
11

4–
11

6,
11

6,
12

0,
13

8,
14

5,
14

6,
15

3,
15

4,
15

6]

D
ev

el
op

er
S
D

K
D

ow
n
lo

ad
s

N
u
m

b
er

of
A

p
p
s

S
am

p
le

A
p
p
s

L
ic

en
se

A
p
p

ce
le

ra
to

r
T

it
an

iu
m

16
00

00
0

25
00

00
35

00
0

N
B

C
iP

ad
,

M
y
T

ra
ve

l
A

p
ac

h
e

2.
0

P
h
on

eG
ap

N
A

60
00

00
N

A
W

ik
ip

ed
ia

,
N

et
fl
ix

M
IT

R
h
om

ob
il
e

N
A

10
00

00
N

A
S
u
p

er
T

ra
in

er
H

Q
M

IT
M

oS
y
n
c

20
00

0
18

00
00

N
A

M
oS

y
n
c

R
el

oa
d

G
P

L
/C

om
m

er
ci

al
X

am
ar

in
N

A
N

A
N

A
M

on
st

er
S
ta

ck
2

C
om

m
er

ci
al

W
or

k
li
gh

t
N

A
N

A
N

A
N

A
C

om
m

er
ci

al
C

or
on

a
10

00
0

10
00

00
60

00
B

u
b
b
le

b
al

l
C

om
m

er
ci

al
M

ar
m

al
ad

e
50

00
0

N
A

N
A

P
la

n
ts

v
s

Z
om

b
ie

s,
B

ac
k
b
re

ak
er

2
C

om
m

er
ci

al
A

d
ob

e
A

ir
30

00
00

0
N

A
N

A
eB

ay
,

B
B

C
iP

la
ye

r
C

om
m

er
ci

al

44

T
ab

le
13

:
C

ro
ss

-p
la

tf
ro

m
to

ol
su

m
m

ar
iz

at
io

n
[1

3,
97

,9
8,

11
4–

11
6,

11
6,

12
0,

13
8,

14
5,

14
6,

15
3,

15
4,

15
6]

B
es

t
fo

r
ap

p
s

of
S
tr

en
gt

h
W

ea
k
n
es

s
C

ro
ss

p
la

tf
or

m
m

o
d
el

P
ro

gr
am

m
in

g
L

an
gu

ag
e

A
p
p

ce
le

ra
to

r
T

it
an

iu
m

C
om

m
u
n
ic

at
io

n
s,

P
ro

d
u
ct

iv
it

y,
T

ra
ve

l
F

re
e,

M
P

S
C

,
C

D
S
,

R
ic

h
d
o
cu

m
en

ta
ti

on
,

n
at

iv
e

U
I

ac
ce

ss
,

J
S
O

N
S
u
p
p

or
ts

on
ly

iO
S

an
d

A
n
d
ro

id
A

B
H

T
M

L
,

C
S
S
,

J
S
,

P
H

P
,

R
u
b
y,

P
y
th

on
P

h
on

eG
ap

T
ra

ve
l

F
re

e,
M

P
S
C

,
M

P
S

R
u
n
s

co
n
fi
n
ed

in
W

eb
V

ie
w

A
B

H
T

M
L

,
C

S
S
,

J
S

R
h
om

ob
il
e

P
ro

d
u
ct

iv
it

y
F

re
e,

M
P

S
C

,
C

D
S

co
d
e

in
te

rp
re

te
d
,

re
q
u
ir

es
R

u
b
y

sk
il
l

A
B

H
T

M
L

,
R

u
b
y

M
oS

y
n
c

C
om

m
u
n
ic

at
io

n
s,

G
am

es
P

ro
d
u
ce

s
n
at

iv
e

co
d
e

-
A

B
/

N
C

C
/C

+
+

,
H

T
M

L
,

J
S

X
am

ar
in

C
om

m
u
n
ic

at
io

n
s,

G
am

es
,

M
u
lt

im
ed

ia
,

P
ro

d
u
ct

iv
it

y,
T

ra
ve

l
P

ro
d
u
ce

s
n
at

iv
e

co
d
e

C
om

m
er

ci
al

an
d

su
p
p

or
ts

on
ly

iO
S

an
d

A
n
d
ro

id
N

C
C

#
W

or
k
li
gh

t
P

ro
d
u
ct

iv
it

y
M

P
S
C

,
C

D
S
,

M
P

S
-

A
B

H
T

M
L

,
C

S
S
,

J
S

C
or

on
a

G
am

es
,

M
u
lt

im
ed

ia
2D

an
d

3D
ga

m
e

L
im

it
ed

to
ga

m
e

ap
p
s

A
B

L
u
a

M
ar

m
al

ad
e

G
am

es
,

M
u
lt

im
ed

ia
2D

an
d

3D
ga

m
e

L
im

it
ed

to
ga

m
e

ap
p
s

N
C

C
+

+
A

d
ob

e
A

ir
C

om
m

u
n
ic

at
io

n
s,

G
am

es
,

M
u
lt

im
ed

ia
,

P
ro

d
u
ct

iv
it

y,
T

ra
ve

l
R

ic
h

m
u
lt

im
ed

ia
co

n
te

n
t

d
is

tr
ib

u
ti

on
la

rg
e

ap
p
li
ca

ti
on

si
ze

,
re

q
u
ir

es
fl
as

h
p
la

ye
r

A
B

H
T

M
L

,
C

S
S
,

J
S
,

A
ct

io
n
S
cr

ip
t

K
E

Y
:

M
P

S
C

M
u
lt

ip
le

P
la

tf
or

m
w

it
h

si
n
gl

e
co

d
e

b
as

e
M

P
S

M
u
lt

ip
la

tf
or

m
su

p
p

or
t

C
D

S
C

lo
u
d

d
at

a
sy

n
ci

n
g

A
B

A
b
st

ra
ct

io
n

b
as

ed
cr

os
s

p
la

tf
or

m
sy

st
em

N
C

N
at

iv
e

C
om

p
il
in

g
cr

os
s

p
la

tf
or

m
sy

st
em

45

Table 14: Mobile platform support [95,97,102,106,114,120,134,138,154]

Cross platform development tools mobile platform support
iOS Android WP7 RIM Symbian Bada

Appcelerator Titanium 4 4 8 4 8 8

PhoneGap 4 4 4 4 4 4

Rhomobile 4 4 4 4 8 8

MoSync 4 4 4 4 4 8

Xamarin 4 4 8 8 8 8

Worklight 4 4 4 4 8 8

Corona 4 4 8 8 8 8

Marmalade 4 4 8 4 8 4

Adobe Air 4 4 8 4 8 8

3.5 Tools comparison framework

Cross platform mobile applications come in so many forms. Each tool might ap-
proach cross platform mobile applications development in so many ways. Some come
as runtime implementations or interpreter abstraction layers and when it comes to
licensing some are completely free and open source while some are proprietary and
commercial. The level of native feature support of a mobile device varies widely that
much. As seen in the previous sections, the level native support some tools provide
is wider and some of the other ones also provide a limited support but might also
provide a special feature that a particular developer might be keen to utilize.

For a company engaged in cross platform mobile applications development or for
a developer in this business, choosing a single tool can be a tricky one. With so
many choices, features and conditions to review before making any decision, landing
one tool and going cross platform could prove to be a challenging experience. After
having seen several tools, picking one is not as straight forward.

What this section does is to provide a developer or a developing company with a
framework through which they can compare the tools using the following criteria so
they could be able to make a sane decision. Every tool comes with

Level of Platform support

This will help a company identify a tool that will help it reach the maximum target
audience through the number of platforms a tool supports. A company or a developer
that wants to reach Android users should consider or rate a tool that has the best
support for Android and similarly for others.

Level of device feature set support

Once a tool is selected or primed to be selected, the next evaluation will be the
level of native feature the tool provides for the platform it supports and how good
it supports them. Or considering some unique feature one tool provides others can’t

46

such as cloud data syncing, social network integration.

Programming language the tools uses

Learning a new programming language can make a developer less productive and
as a result could potentially be a cost to a company sponsoring the developer or the
development, plus learning a new language from the ground up might probably require
a lot of effort and time. Developers must take into account the development language
of the tools in their tool screening sessions. A company which has been in web
development will find it easier to adopt tools like Appcelerator Titanium, Worklight
or PhoneGap while a company with Java, C++ or C# development background
might find it easier to adopt tools like MoSync, Xamarin, Marmalade.

Tool license

A developer or a developing company should take into account the cost associated
with using the tools. Some are entirely free to use, some are free but require acknowl-
edging the license agreement and some of them are commercial and require payment
to use them or publish the applications. A developer should be able to review the
options using the tool comparison framework.

In the framework proposed, developers must find ways of rating their needs by
putting values of 1 and 0 or between 1 to 3, see section 3.5.1, for native feature support
and platform support they are interested in and sum the total together. Selecting the
highest scoring tool will more likely satisfy their requirements. The table below will
be used to rate native support and platform support of each tool during a selection
process.

Table 15: Tool comparison framework

Score Native feature support CPDT Platforms Score
Geolocation Camera SMS Contact DB Android iOS WP7 BlackBerry Symbian Bada

A.Titanium
PhoneGap
Rhomobile

MoSync
Xamarin
Worklight

Corona
Marmalade
Adobe Air

KEY:

CPDT Cross platform development tool

In the following table, developers could compare the cost of using each tool once
they have prescreened one tool and they can also list the specific language each tool
uses and rate the level of effort and taxiing effort to adopting one of the languages in
their development stage. For instance, a developer can rate a programming language
for the tool zero if they have already been using that language and if the development
language of the tool is new to them they might rate it five which means it is going
to require a lot of effort and time to start using it.

47

Table 16: License cost and developer effort

CDPT Cost/ License Programming Language Score
HTML5 Java C++ Ruby PHP

Appcelerator Titanium
PhoneGap
Rhomobile
MoSync
Xamarin
Worklight
Corona
Marmalade
Adobe Air

3.5.1 Example: How to use the framework

To help show as to how one uses the framework designed in this masters thesis, a
small mock up company with mock needs is presented below. This could indicate
how a developer should go about selecting a cross platform tool.

Assumption: A small company called Easter wants to put its online software to
mobile devices. The company has been developing webpages for the last 8 years using
web technologies of HTML, CSS, JavaScript and PHP. Its software engineers are all
experts in web authoring technologies. Now they plan to reach a minimum audience
of those on Android and iOS in a minimum cost. Its mobile applications must use
the SMS and Geolocation feature of mobile devices. The company is interested in
a cross platform tool that is used for productivity or travel apps. This is how the
company selects a certain cross platform mobile applications development tool.

Rating API needs

• 3 — Very important {SMS, Geolocation}
• 2 — Important {Contacts}
• 1 — Nice to have {File}
• 0 — Doesn’t matter or not supported {Media, Compass, Barcode, DB}

Platform Support

• 3 — Very important {Android, iOS}
• 2 — Important {BlackBerry}
• 1 — Nice to have {WP7}
• 0 — Doesn’t matter or not supported {Symbian, Bada}

The next step will be to estimate the cost and effort associated with selecting a
tool.

48

T
ab

le
17

:
A

P
I

an
d

P
la

tf
or

m
co

ve
ra

ge

S
co

re
N

at
iv

e
fe

at
u
re

su
p
p

or
t

C
P

D
T

P
la

tf
or

m
s

S
co

re
G

eo
lo

c
C

am
er

a
S
M

S
C

on
ta

ct
D

B
A

n
d
ro

id
iO

S
W

P
7

B
la

ck
B

er
ry

S
y
m

b
ia

n
B

ad
a

8
3

0
3

2
0

A
.T

it
an

iu
m

3
3

0
0

0
0

6
8

3
0

3
2

0
P

h
on

eG
ap

3
3

1
2

0
0

9
*

*
*

*
*

*
R

h
om

ob
il
e

3
3

1
2

0
0

9
5

0
0

3
2

0
M

oS
y
n
c

3
3

1
2

0
0

9
8

3
0

3
2

0
X

am
ar

in
3

3
0

0
0

0
6

*
*

*
*

*
*

W
or

k
li
gh

t
3

3
1

2
0

0
9

*
*

*
*

*
*

C
or

on
a

3
3

0
0

0
0

6
*

*
*

*
*

*
M

ar
m

al
ad

e
3

3
0

2
0

0
8

K
E

Y
:

C
P

D
T

C
ro

ss
p
la

tf
or

m
d
ev

el
op

m
en

t
to

ol
*

n
o

av
ai

la
b
le

in
fo

rm
at

io
n

49

Rating cost

• 3 — New technology (learning can be costly in terms of time, effort and tech-
nology)

• 2 — Easy to re-adjust existing resource (Human or technology)

• 1 — small cost

• 0 — Free or no cost

Table 18: Technology and cost rating

CDPT Cost Technology Score
Organizational License JavaScript HTML5 CSS PHP

A. Titanium 0 0 0 0 0 0
PhoneGap 0 0 0 0 0 0
Rhomobile 2 0 0 0 0 2
MoSync 2 0 0 0 * 2
Xamarin 3 * * * * 3
Worklight 3 0 0 0 * 3
Corona 3 * * * * 3
Marmalade 3 0 0 0 * 3

Key
* not supported
Organizational cost might vary from human resource to technology cost

From table 17 and table 18, developers can see that in API coverage Appcelerator
Titanium, PhoneGap, MoSync and Xamarin had an equal score but when it comes to
platform coverage PhoneGap, Rhomobile, MoSync and Worklight seemed to provide
the widest coverage of platforms. But our company needs to consider other factors
such as cost, license, novelty of technology for its operations. In technology, since
the company Easter had been involved in web technologies, it saw that adopting
cross platform tools that depended on web technologies might be less costly to adopt.
PhoneGap is a purely web technology based cross platform mobile applications devel-
opment tool and the cost and technology cost score for it is either zero or very small
and it fulfills the needs of the company. It handles both the important API coverage
and provides wide platform support. Using the above reasoning and the company
Easters need, the tool selected has to be PhoneGap

50

3.6 Sample Applications

After having looked at several cross platform mobile applications development tools,
it might be useful to select at least two of the tools and make an application as
an experiment to show that the nature and make of the best tools we selected. In
this simple experiment, the tools will be investigated to show how they implement
the same functionality. Number of code lines, how a tool implements user inter-
faces, application size, compilation speed, how user controls such as buttons are
constructed, the symmetry between simulation and actual device implementation of
the applications—testing on simulation and running on actual devices should not
cause misplacement of the user controls.

The sample application for this case study is a pizza cross platform mobile appli-
cation. The applications provide facilities to users for selecting pizza type, selecting
toppings type, filling delivery address and finally sending the order to a pizza shop.
The applications will have four windows

Pizza selection

This is where a user selects a pizza bread. The pizza bread choices are Hand Made,
Natural, Pan Crust, Stuffed Crust, Thin and Crispy Crust and they will be arranged
in some sort of horizontally scrollable gallery.

Figure 32: Pizza bread selection window

Toppings selection

After pizza selection, the application will transition to this window so users can select
the toppings of their preference. The available choices for topping are Bacon, Beef,
Italian Sausage and Grilled Chicken.

51

Figure 33: Toppings selection window

Address filling

Having selected the pizza bread and the toppings, a user can proceed and fill the
delivery address. The address is composed of name of ordering user, street, house no,
zip code or any other preferred addressing system. The addressing window has three
textbox bars.

Figure 34: Address filling window

52

Order submission

This is the last window in the application where a user gets to send the order via
SMS to a pizza shop using the address embedded in the application.

Figure 35: Order submission window

Previous sections of this document have explained and documented the various
features, the strength and weakness of several tools—Appcelerator Titanium, Phone-
Gap, Xamarin, Rhomobile, MoSync, Marmalade, Worklight, Adobe Air and Corona.
Some of these tools are meant for general mobile application development while the
other are specialized mobile applications development tools specifically optimized ei-
ther for games or other forms of mobile application categories. Some are also open
source while other are proprietary and commercial.

For this sample application, Appcelerator Titanium and Xamarin were selected
based on the following criteria:

• These two tools were designed for general mobile application development pur-
poses

• Appcelerator Titanium is open source and Xamarin is commercial. This is to
sample how open source and commercial tools deal with cross platform mobile
application development tasks.

• Appcelerator Titanium is an abstraction based cross platform implementation
while Xamarin is native compiled based cross platform implementation. This
provides a good opportunity to see how these two strategies work in a cross
platform mobile application development processes

• Appcelerator Titanium uses web technologies such as HTML5, CCS, and JavaScript
and might serve as representative of all other cross platform tools that use the
same technology while Xamarin uses C# as its authoring tools. C# is a multi-
purpose core programming language from Microsoft.

53

• Both Appcelerator Titanium and Xamarin support many native features of a
mobile phone such as SMS, Camera and others.

• They both support Android and iOS fully and this makes them equivalent can-
didates for comparison.

In the applications developed, certain features of both tools were explored. Those
features were how both of these tools implemented user controls like buttons, text
boxes, windows, and overall application size. The other observation that was taken
into account was how many lines of code one needs to write to achieve the same
feature in both tools. One native API feature, SMS, is explored in the applications
and comparison were made how similar the codes of each tools are to native authoring
codes, i.e. code syntax. Mobile applications once developed using a certain SDK and
tested on an emulator might look perfect and when deployed on devices they might
appear different, this is also one of the things that will be explored.

Appcelerator Titanium application

Appcelerator Titanium uses web technologies and applications developed using this
tool depend on HTML5, CSS3 and JavaScript codes. In the sample pizza order-
ing sample application, all the codes are JavaScript. The windows, the scroll view,
the text box, the checkbox and buttons in this application were constructed using
JavaScript. While this can give a developer the freedom to construct everything from
the ground up any user interface component, the reality is that one needs to write
several lines of code to just implement the smallest of user interface component such
as checkbox. And the placement of the user controls on an application window took
a lot of time and required dividing the screen geometrically. One needs to consider
the screen size of a device as to where and how to put user controls. When mak-
ing applications using Appcelerator Titanium, a developer must take into account
the portrait and landscape view of a screen, plus the width and height of the screen
of an application. Constructing user interface components using Appcelerator Tita-
nium requires one to use images in file formats .jpeg or .png which might possibly
have contributed to higher application size, slower compilation and slower running
experience. There might be a possibility also that some devices might not support
certain image formats. Images of buttons, checkboxes, text boxes for user interface
have to be authored in graphics editing software like Adobe Photoshop, this might
require additional cost as license for extra supporting software. The code syntax
similarity between Objective-C for iOS and Java for Android is found to be little
in comparison to Appcelerator Titanium—almost no similarity. This dissimilarity
might require a developer—with a background in either only Java or Objective-C—
to learn JavaScript anew to work with Appcelerator Titanium. See Fig 36 and Fig 37.

Appcelerator has advantages, though, especially for a developer with a strong
background in web development. Appcelerator is entirely dependent on web tech-
nologies except on a few cases that it uses PHP and other server side technologies.
For an application where system foot print in processor demand, storage and memory
is not a concern, Appcelerator seems to be perfect for general purpose applications
like the Pizza ordering application. The look and feel of every component of the user
interface of an application can be drawn in any form the developer wants to do it.

54

The SMS support provided by Appcelerator was found to be flawless. It brought
the phones native SMS interface with the messages from the Pizza ordering applica-
tion in the SMS message body and all the user has to do was to press the button send.

The Appcelerator Titanium Pizza ordering application was taken from [140] and
customized to fit the context of this master’s thesis while the Xamarin version was
written from the ground up.

Xamarin Application

Xamarin uses C# as application authoring language. In the Pizza ordering appli-
cation, Xamarin seemed to give the best result than Appcelerator Titanium. The
application size was by far smaller than Titanium, the user controls appeared where
they were meant to be either in a simulator or on an actual device. When deploying
the Pizza ordering application to an actual device, everything looked the same and
there were no need to tweak or adjust the positions and placements of the user con-
trols in the application.

Xamarin also required significantly fewer code lines to implement user controls
such as Textbox, checkbox, scrollview, windows and buttons than Appcelerator Ti-
tanium. Xamarin uses XAML (eXtensible Application Markup Language) [130].
XAML is a sort of XML syntax that is used by Android for UI implementation,
by Silverlight for Windows Phone, and as Windows Presentation Foundation (WPF)
for desktop and mobile applications. XAML is XML like structured code that is
used to define user interfaces such as buttons, checkboxes, textboxes and other user
controls. See Fig 38. Xamarin uses XAML to define user controls. Using XAML en-
ables Xamarin developers to design a predictable, clean and standard user controls.
Placing UI controls was easier in Xamarin than in Appcelerator Titanium.

Xamarin is used to make general purpose cross platform mobile applications.
Xamarin also compiles faster and runs without any loading or updating interface
elements as that was quite visible in Appcelerator Titanium. Xamarin comes with
a lot of support and documentation. The code syntax of C# in Xamarin shared so
many similarities with Adroid Java. Xamarin’s intent declaration and handling is
indistinguishable from Android’s Java. See Fig 39. Developers who come from C++,
Java and C# should find adopting Xamarin effortless. Defining classes, control flows,
function definition, intent definition and others using C# appeared to be indistin-
guishable from native authoring tools such as Java for android. The Pizza Ordering
application version written in Xamarin had generally a smaller size and runs faster
and produced robust user interface.

The table below summarized the differences that were identified in the way the
two tools were used to realize the Pizza ordering cross platform mobile application.

55

T
ab

le
19

:
P

iz
za

or
d
er

in
g

ap
p

d
ev

el
op

m
en

t
to

ol
co

m
p
ar

is
on

A
p
p

ce
le

ra
to

r
T

it
an

iu
m

X
am

ar
in

co
d
e

li
n
es

W
in

d
ow

(t
op

p
in

gs
)

22
1

89
T

ex
tb

ox
13

2
C

h
ec

k
b

ox
6

2
B

u
tt

on
7

2
S
cr

ol
lv

ie
w

9
4

U
se

r
co

n
tr

ol
im

p
le

m
en

ta
ti

on
s

W
in

d
ow

J
S
,

T
it

an
iu

m
C

o
d
e

X
A

M
L

an
d

C
#

T
ex

tb
ox

J
av

aS
cr

ip
t,

T
it

an
iu

m
C

o
d
e

an
d

Im
ag

es
C

h
ec

k
b

ox
B

u
tt

on
S
cr

ol
lv

ie
w

J
S
,

T
it

an
iu

m
C

o
d
e

P
er

ce
iv

ed
sp

ee
d

C
om

p
il
at

io
n

sl
ow

er
fa

st
er

R
u
n
n
in

g
sl

ow
er

fa
st

er
C

o
d
e

T
y
p

e
J
S
,

T
it

an
iu

m
C

o
d
e

C
#

C
o
d
e

S
y
n
ta

x
S
im

il
ar

it
y

J
av

aS
cr

ip
t

J
av

a,
C

+
+

S
M

S
su

p
p

or
t

ye
s

ye
s

A
p
p
li
ca

ti
on

S
iz

e
22

.8
M

B
2.

28
M

B
T

es
t

re
su

lt
as

ex
p

ec
te

d
N

o
Y

es

56

Figure 36: Appcelerator Titanium Code sample 1

In the figure above, line 4, 5, 17, and 33 are Titanium specific codes.

57

Figure 37: Appcelerator Titanium Code sample 2

Figure 38: XAML sample code

58

Figure 39: Xamarin sample code

59

4 Discussion and Evaluation

4.1 Main findings

Using literature study and experimental methods, it was tried to find out the bene-
fits of using cross platform mobile applications development and formulate evaluation
method for each tool so developers could assess cost-time-technology trade off asso-
ciated with each tool and identify tools that best support cross platform mobile
applications development in least cost and trouble for developers. The main findings
are summarized in this section.

Mobile technology fragmentation

In line with the documentations in earlier sections, it is clear that the technologies of
mobile computing and cross-platform technologies are fraught with several key tech-
nological features that could make decisive selection of tools as hard.

As can be seen from section 2, Mobile devices come from different device man-
ufacturers with various mobile platform and technologies. The mobile device has a
different set of hardware such as screen size, camera, connectivity, storage and pro-
cessor. Clearly, the only way one might be able to accommodate myriad devices
and platforms is to adopt cross platform development. Using cross platform, a de-
veloper will be able to write one code base and be able to deploy the applications,
at least with some modification, on several platforms and mobile devices. Not only
cross platform tools have to accommodate different device features, requirements and
technologies but also has be able to meet the three classical mobile applications de-
velopment challenges outlined in section 2.2. All this elements make selection of cross
platform mobile applications development tools a difficult task.

Mobile platforms

Mobile platforms come in various forms some closed some open and completely free.
Mobile platforms come also with their own app store which might be centralized or
decentralized or which works only with specific devices to operate. See table 4. iOS,
BlackBerry RIM and Windows Phone 7 are most known for being closed and pro-
prietary while Android comes as an open technology with its own app store—Google
Play. WAC follows a rather different approach compared to other platforms in that
it needs a reliable device manufacturer to include the runtime. Although WAC has
been supported by big telecom operators, it has not been able to make any effect on
the market and it was decided to sideline it in the discussion. WAC seems to lack the
right stamina to break into popularity partly because it does need a close collabora-
tion and willingness of device manufacturers to install WAC runtime in their device.
It is not only a tool but also a framework. See section 2.3

While every mobile computing industry player fighting ferociously for survival or
dominance, expecting the industry to streamline—bringing forth standard devices to
make developers and sponsors predicament more comprehensible—can be a bit of a
naivety. Currently, Android and iOS make up major market share percentage. see
Fig 6 and Fig 19 shows freemium revenue performance in the United States. For
maximum target audience, considering Android and iOS coverage as a requirement

60

might be advisable—leaving the detail to developers. Having said that, a developer
aiming to target multiple platforms and market shares have to consider a cross plat-
form development that at least covers Android and iOS.

Referring to table 1, we can see that there are several cross platform tools that a
developer has to consider. A cross platform development tool that targets additional
platform such as BlackBerry’s RIM and Windows Phone 7 in addition to Android
and iOS might come as a blessing depending on a developers needs and target au-
dience. Undoubtedly, cross platform tools like Appcelerator Titanium, PhoneGap,
Rhomobile, MoSync, and Worklight provide a considerable benefit in covering multi-
ple platforms, device functionality features and in effect Resulting in a multi-platform
telco-enriched app possibility.

Cross platform scenario

One of the findings was that in addition to multiple platform coverage and offering
support for maximum number of mobile device feature functionality, cross platform
development tools benefit developers in keeping one code base. A single code base
based application development will reduce cost of development, maintenance, up-
grade, support and management of application codes. This will help developers pool
their resources to develop one code and be able to deploy it in as many platforms as
possible. Fig 24 and section 3.2 show the benefits of adopting cross platform instead
of native mobile applications development. However, native applications produce
better user experience, run faster even if they are expensive to develop. See Fig 24

As can been seen from table 14 and table 13, there are several cross platform
tools in the market and each one of them has their own unique features that makes
them indispensable and at the same time lack some key functionality that a developer
might really want to exploit. Deciding on one killer-solve-everything cross platform
development tool seems unrealistic expectation. Developers must plan meticulously
what they expect from a tool, must know in advance their target audience and plat-
form aim, must have a clear idea of what they intend to exploit in the device features,
and must decide how they want to implement using them. This provides developers
with a draft tool selection guidelines.

From table 13, one can see that cross platform tools like Appcelerator Tita-
nium, Worklight and all other tools that employ web authoring technologies such
as JavaScript, HTML and CSS should really provide a clear advantage to a company
or developer with a website development experience that was dependent on these
technologies. Cross platform tools that use web authoring technologies might not
have introduced a radically brand new technology, all they do is access device func-
tionalities like SMS and Camera using JavaScript callable APIs that are provided
with the cross platform tools. And cross platform tools like Corona, Marmalade, and
Xamarin are tools that use programming languages of Lua, C/C++ and C#. De-
velopers must consider cost of adopting new technology, new programming language,
and the programming language that meets their needs best. Cross platform tools
give a developer a greater access to the power of the mobile device to be able to
write applications that go deep into the capabilities of the device than the usually su-
perficial web based technology using tools like Appcelerator Titanium and PhoneGap.

61

As explained in section 3.1, mobile applications development has to go through
five common steps—namely develop, integrate, build, publish and manage stages.
How each tool provides these services varies widely. In addition to that cross platform
mobile application development occurs as abstraction based, native compiling system
architectures or as mobile web apps. The developer must be able to pick one of these
architectures based on his or her needs.

Cross platform tools

According to the summarization in table 13, Web technology using cross platform
tools are excellent for making communications, productivity, travel and utilities mo-
bile applications. Great examples of these tools are Appcelerator Titanium and
PhoneGap followed by Rhomobile, Adobe Air. Rhomobile requires Ruby skills,
though and ActionScript is one of the requirements for Adobe Air. Being too re-
liant on Adobe Air might be a little short-sighted since it has garnered significant
complaints for being too big, buggy and draining battery power. Section 3.3 shows
that native compiling cross platform development architecture is considered to make
the most out of the mobile hardware and run faster while abstraction based tools re-
quire some form of layering to access device feature sets of a mobile device. See table
19. Tools such as Corona, Xamarin, Marmalade and MoSync are great for developing
applications that need to use the raw power of the mobile device for animation, games
and processor intensive applications. These tools give mobile developers sheer power
to make mobile devices obey their instructions. Above all that, Corona, Marmalade
and Xamarin codes are converted into machine specific codes by-passing some sort
of layering which in return makes them run faster. In our experiment in earlier sec-
tion 3.6, the pizza application written using Xamarin visibly runs faster and seems
to require less developer effort to bring about the desired interface and application
functionalities.

There are also tools that are best for corporate applications that provide good
integration to existing enterprise IT infrastructures with big database and business
intelligence reports. Worklight and Rhomobile are two of the best tools for applica-
tions that depend on integration of existing data warehouse and syncing of business
reports together with the possibility of extending them with third party libraries and
software services. See section 3

Cost model

Section 3.4.9 sums up the time, level of effort, licensing and technology of the cross
platform tools cost that add up to as a result of adopting one of the tools. Considering
time to proper developing—taxiing to initialization of formal development—depends
on how familiar are the developers to the technologies the tools might bring. For in-
stance, Appcelerator Titanium, even though its syntax is dominated by JavaScript, it
brings with it some unique lines of codes developers have to acquaint themselves with.
Time and effort of users depends on the technology and the programming language
the cross platform tools come with. Another key issue that could potentially have
an effect on the cost of using the tools is licensing. See table 12. Appcelerator Ti-
tanium, PhoneGap, Rhomobile offer free or arrangements that have free components

62

while Corona, Xamarin, Marmalade, Adobe Air are closed and commercial tools that
require license fees to use for authoring or publishing. MoSync is in between free
and commercial. However, cost of using tools might indirectly come from device and
platform coverage of the tools. The more platform and device the tools support, the
less the cost of cross platform development endeavor.

The trade off

Selecting the best cross platform development tool that provides the best cross plat-
form support and cross platform development experience is a matter of trade off de-
velopers has to go through. Appcelerator Titanium supports two platforms—iOS
and Android—fully, BlackBerry support is for a fee and Windows Phone 7 support is
in the making. Appcelerator provides the most coverage of device feature functional-
ity sets, integration with social networks such as Facebook, Twitter and has support
for data syncing with bigger enterprise IT infrastructures. See section 3.4.1. Appcel-
erator is excellent for a great majority of mobile apps category with an exception of
Games and animation intensive mobile apps. The level of documentation provided
by the Appcelerator Company for Titanium is excellent. There are examples and
code documentation for each API it provides plus a sample application that covers
most of the important APIs of the tool. It has a huge user base and the fact that it
depends on web technologies makes it a tool in touch with current technology trends,
if not future proof.

Xamarin, as described in section 3.4.3, is a powerful cross platform development
tool that produces native machine code for mobile apps. C# is an object oriented
powerful programming language and a developer can bring the power of C# for the
desktop to mobile devices. Besides, Xamarin can be used for any categories of mo-
bile applications—including communications, games, multimedia, productivity, travel
and utilities.

In the sample application section 3.6, it has been possible to find out that Ap-
pcelerator Titanium truly depends on web technologies of JavaScript and some
syntax of its own to author applications. It is found to be representative of a class of
cross platform mobile application development tools that depend on web technologies.
Appcelerator Titanium is an abstraction based cross platform mobile applications de-
velopment tool and can best represent PhoneGap, Rhomobile, Worklight, Adobe Air
and partly MoSync and Marmalade. Anything that can be developed using Phone-
Gap, Rhomobile, Worklight, can be best done using Appcelerator Titanium. Even
though MoSync and Marmalade are capable of and best suited for native compil-
ing mobile applications development, Appcelerator Titanium can be used be used
instead if the application did not require animation and processor demanding tasks
in a game. In table 13, it is clear that nine of the tools evaluated only two of them
use native compiling cross platform model. While MoSync uses both cross platform
architecture models and native compiling architecture, and except Xamarin, Corona
and marmalade, the rest of the tools depend on purely web technologies of JavaScript,
CSS, HTML and some scripting languages such as PHP. Xamarin well represents na-
tive compiling cross platform MAD tools but one thing to note about Xamarin would
be that it is a commercial product and has associated cost to use it. While native
compiling cross platform mobile applications development tools such as Marmalade,

63

MoSync and Corona are best for games and rich multimedia mobile applications,
Xamarin beats them all in that Xamarin is best for developing any sort of mobile
applications from productivity to communication to games and to multimedia appli-
cations.

Developers should look deep into their needs before selecting a cross platform tool.
The tool comparison framework provided in section 3.4.9 will help a lot in finding
out developer needs, technology, cost and other issues of cross platform development.
Case by case subjective decision to select the best tools might result in better decision
than a strict recommendation of criteria for a decision. This will help to incorporate
recent developments in the ever changing cross platform technologies.

As one can see in the application zip attachment to this thesis and the comparison
in table 19, Appcelerator titanium built applications had the biggest size and required
a verbose code to produce a window with user controls while Xamarin managed to
do exactly the same task with less code and better code organization possibilities.
Compilation and running the same application was slower in case of Appcelerator
Titanium than in Xamarin.

4.2 Validity of result

The research method that was applied was literature study based on gathering in-
formation from various sources—sources like the tools websites and scientific publi-
cations about the tools together with two simple sample experimental applications
using Appcelerator Titanium and Xamarin. It has been possible to identify quite
important points about each tool in how they cover mobile platforms, what sort of
device functionality features they support and how they enable to author different
categories of mobile applications. In the sample applications development using Ap-
pcelerator Titanium and Xamarin, it was possible to see that Xamarin produced
excellent interfaces and that it was more flexible to work with Xamarin than Appcel-
erator Titanium. Writing codes in Xamarin was rather well organized. Developers
can put codes in classes and objects in separate files. Working with Appcelerator
Titanium is mostly in JavaScript and its code is more verbose than Xamarin. User
control implementation in Xamarin is done using XAML. User controls are defined
using XAML and are stored separately from the C# code while in Appcelerator ev-
erything is in the same file. See Table 19. Appcelerator Titanium built pizza ordering
application had the bigger file size than Xamarin—10 times bigger. This is due to the
fact that Appcelerator Titanium uses image files of .jpg, .png and others to generate
the user controls. In comparison, Xamarin is a self-contained tool providing every fa-
cility to author mobile applications. With Appcelerator Titanium, a developer needs
some other supporting tools such as Adobe Photoshop to have background coloring,
button designing and the like.

Despite the fact that several key information have been collected, as one can see
in the previous paragraph, the main point to note here is that all of the information
about the tools—device functionality feature set, platform support, the technology
the tools use is gathered from the tools’ vendors websites and publication. Care
should be taken when using this thesis. The ideal approach would have been to make
a sample application using each one of these tools and be able to confirm what they

64

wrote and how well they meet what the tools claim. Following a more practical exper-
imental approach might help to refine the result further. Experimental approach will
probably help in verifying the device coverage, device feature functionality coverage,
third party library integration, cloud service integration and other claims vendors
make.

Another point to note would be that studying cross platform tools is like a moving
target. They keep changing so fast that it is difficult to have a clear cut opinion about
each one of them at any given time. During the writing of this thesis, Appcelerator
Titanium had three updates bringing in new functionalities, new supports and new
syntax and APIs. While Xamarin had about three in the last 2 months and the
syntax of the Pizza ordering application had to be changed. This requires developers
to have a constant vigilance to stay abreast of the developments in cross platform
tools. It is incredibly hard to imagine how cross platform development tools evolve
in the next six to eight months.

5 Conclusion

The cross platform development technological ground is constantly shifting with each
tool introducing new functionalities every time—making what holds three months
from now fairly unpredictable. During the writing of this master’s thesis, Appceler-
ator Titanium and Xamarin has gone through major changes each time each intro-
ducing changes in their syntax and functionalities. This makes drawing out a clearly
defined selection framework a daunting task. The best recommendation for any de-
veloper is to really know the technological needs and to keep oneself up-to-date of
the changes in the technology and considering each tool using the tool comparison
framework in the thesis to make a decision on selection of a cross platform tools.

Cross platform development is an actively developing young technology. It could
be sometime before the dust settles and a tools comes out as a winner. Considering
each tool based on its merit for a mobile application need and target audience seems
the only sensible option available right now.

But there are two system architecture of cross platform development—native com-
piling and abstraction based. Xamarin might be an ideal tool to start with native
compiling while with abstraction based cross platform development, Appcelerator
Titanium might be a good starting point.

65

References

[1] Aepona February 2010. Network as a service and mobile cloud com-
puting http://www.aepona.com/wp-content/uploads/2010/10/Aepona-White-
Paper-NaaS-MCC-Feb-2010.pdf, Mar 2012.

[2] SATNAC 2010. Mobile cloud computing: Embracing network as a service
http://www.satnac.org.za/proceedings/2010/papers/progress/GutierrezMar
2012.

[3] Microsoft Developer Network Channel 9. The future of the web is
at mix11 - video presentation, windows phone architecture: Deep dive,
http://channel9.msdn.com/events/MIX/MIX11/DVC19, Mar 2012.

[4] Joyram Chakraborty A. Ant Ozok, Dana Benson and Anthony F. Norcio. A
comparative study between tablet and laptop pcs: User satisfaction and prefer-
ences. International Journal of Human-Computer Interaction, 24(3):329–352,
2008.

[5] Adobe. Adobe air 3 http://www.adobe.com/products/air.html, April 2012.

[6] Adobe. Adobe air http://www.adobe.com/newsletters/inspire/february2012/articles/article7/,
April 2012.

[7] I.K. Adusei, K. Kyamakya, and K. Jobmann. Mobile positioning technologies
in cellular networks: an evaluation of their performance metrics. In MILCOM
2002. Proceedings, volume 2, pages 1239 – 1244 vol.2, oct. 2002.

[8] Dharma Prakash Agrawal and Qing-An Zehg. Introduction to Wireless and
Mobile Systems. Cenage Learning, Connecticut, USA, 2011.

[9] Niyaz Noor Ali and Hussain Mansoor. Cross platform mobile application de-
velopment framework, 2011. http://ieeepkhi.org/studentseminar/doc/Cross

[10] Sarah Allen, Vidal Graupera, Lee Lundrigan, Sarah Allen, Vidal Graupera, and
Lee Lundrigan. Phonegap. In Pro Smartphone Cross-Platform Development,
pages 131–152. Apress, 2010. 10.1007/978-1-4302-2869-1 8.

[11] Open Handset Alliance. Android overview, sept 2011
http://www.openhandsetalliance.com/android overview.html, Mar 2012.

[12] AllianceTek. Comparison chart for mobile applications development, 2011
http://www.alliancetek.com/downloads/article/comparison-chart-for-mobile-
app.pdf, April 2012.

[13] almcode. Comparison: App inventor, droiddraw, rhomobile, phonegap, appcel-
erator, webview, and aml http://www.amlcode.com/2010/07/16/comparison-
appinventor-rhomobile-phonegap-appcelerator-webview-and-aml/, May 2012.

[14] Oliver Amft and Paul Lukowicz. From backpacks to smartphones: Past,
present and future of wearable computers. IEEE Perv Comput, 8(3):8–13,
July–September 2009. Wearable Computing Department.

[15] Android. Android https://developer.android.com/index.html, Mar 2012.

[16] Android. What is android? http://developer.android.com/guide/basics/what-
is-android.html, Mar 2012.

[17] ANUBAVAM. Phonegap developer http://www.anubavam.com/phonegap-
developer, April 2012.

66

[18] S.Z. Asif. Next Generation Mobile Communications Ecosystem: Technology
Management for Mobile Communications. John Wiley & Sons, 2011.

[19] Bada. The basic architecture and ui comparison between bada and android
http://developer.bada.com/documentation/docView.do?docID=D000001372&&searchCategoryID=C000000002&searchTag=&searchDisplayDate=¤tPage=2&menu=MC01310000pageCount=10&orderField=DISP DD TXT DESC&searchPubYNFlag=Y,
April 2012.

[20] Bada. What is bada http://bada.com/whatisbada/index.html, April 2012.

[21] Judith Bishop and Nigel Horspool. Cross-platform development: Software that
lasts. Computer, 39(10):26–35, October 2006.

[22] BlackBerry. Blackberry enterprise solution architecture,
http://us.blackberry.com/ataglance/solutions/architecture.jsp, Mar 2012.

[23] BlackBerry. Programming the blackberry with j2me,
http://www.oracle.com/technetwork/java/index-139239.html#1, Mar 2012.

[24] Google Official Blog. 10 billion android market downloads and
counting http://googleblog.blogspot.com/2011/12/10-billion-android-market-
downloads-and.html, April 2012.

[25] S Blom, Matthias Book, Volker Gruhn, Ruslan Hrushchak, and Andr K. Write
once, run anywhere a survey of mobile runtime environments. 2008 The 3rd
International Conference on Grid and Pervasive Computing Workshops, 0:132–
137, 2008.

[26] Dan Bornstein. Dalvik virtual machine internals. Google I/O 2008, Juni 2008.

[27] Brad Broulik and Brad Broulik. Easy deployment with phonegap. In Pro
jQuery Mobile, pages 227–247. Apress, 2011. 10.1007/978-1-4302-3967-3 10.

[28] Ed Burnette. Hello, Android: Introducing Google’s Mobile Development Plat-
form. Pragmatic Bookshelf, 2nd edition, 2009.

[29] Nina Kirstine Busk. Smartphone etiquette http://ninakirstineis.me/wp-
content/uploads/BMMS-Nina.pdf, Feb 2012.

[30] R. Cameron. Pro Windows Phone App Development. Apress Series. Apress,
2011.

[31] Giovanni Camponovo and Yves Pigneur. Business models analysis applied to
mobile commerce. 2003.

[32] A. Charlesworth. The ascent of smartphone. Engineering Technology, 4(3):32
–33, february 14 2009.

[33] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. An-
alyzing inter-application communication in android. In Proceedings of the 9th
international conference on Mobile systems, applications, and services, MobiSys
’11, pages 239–252, New York, NY, USA, 2011. ACM.

[34] M. Cinque, D. Cotroneo, Z. Kalbarczyk, and R.K. Iyer. How do mobile phones
fail? a failure data analysis of symbian os smart phones. In Dependable Systems
and Networks, 2007. DSN ’07. 37th Annual IEEE/IFIP International Confer-
ence on, pages 585 –594, june 2007.

[35] BBC Click. Will smartphones replace all other gadgets?
http://news.bbc.co.uk/2/hi/programmes/click online/9637184.stm, Mar
2012.

67

[36] cnet.com. Carriers try outflanking app stores with wac,
http://reviews.cnet.com/8301-13970 7-20031936-78.html, Mar 2012.

[37] Wholesale Applications Communicty. Press and
events,http://www.wacapps.net/press-releases, Mar 2012.

[38] Wholesale Application Community. Wac wiki,
http://ext.wacapps.net/web/wac/wiki/-/wiki/Developer

[39] Wholesale Applications Community. The wac core specification
defines the core requirements and base apis for a widget engine
http://specs.wacapps.net/core/index.html#deviceapisobject-interface, Mar
2012.

[40] Andreas Constaninou. Mobile operating systems - the new generation
- the competitive landscape of handset operating systems, interface
frameworks and application execution environments, vision mobile 2006
http://www.visionmobile.com/rsc/researchreports/Mobile Operating Systems The New Generation.pdf,
April 2012.

[41] J.P. Conti. The 10 greatest communications inventions. Communications En-
gineer, 5(1):14 –21, february-march 2007.

[42] Kevin Cording. A quick introduction to android, sept 2011
http://melpc.org/Downloads/Talks/A%20quick%20introduction%20to%20ANDROID.pdf,
Mar 2012.

[43] ASUS Corporation. Asus eee pad transformer prime, paired and primed for
perfection. http://eee.asus.com/en/eeepad/transformer-prime/features/, Mar
2012.

[44] D. Dern. Writing small [tools and toys]. Spectrum, IEEE, 47(6):14 –15, june
2010.

[45] Android Developers. Sqlite database http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html,
April 2012.

[46] Bada developers. Architecture of bada http://developer.bada.com/library/help,
April 2012.

[47] Bada developers. Overview of bada http://developer.bada.com/library/help,
April 2012.

[48] Distimo. Full year 2011 http://www.distimo.com/publications/, April 2012.

[49] G.M. Djuknic and R.E. Richton. Geolocation and assisted gps. Computer,
34(2):123 –125, feb 2001.

[50] Carlos Duarte and Ana Paula Afonso. Developing once, deploying everywhere:
A case study using jil. Procedia Computer Science, 5(0):641 – 644, 2011. The
2nd International Conference on Ambient Systems, Networks and Technologies
ANT − 2011 / The 8th International Conference on Mobile Web Information
Systems MobiWIS2011.

[51] David Ehringer. The dalvik virtual machine architecture
http://davidehringer.com/software/android/The Dalvik Virtual Machine.pdf,
Mar 2012.

68

[52] eWeek. Xamarin delivers monotouch 5.2 for iphone and ipad app
development http://www.eweek.com/c/a/Application-Development/Xamarin-
Delivers-MonoTouch-52-for-iPhone-and-iPad-App-Development-366462/, April
2012.

[53] Mark Power Center for Educational Technology and JISC CETIS
A Briefing Paper Interoperability Standards. Mobile web apps
http://wiki.cetis.ac.uk/images/7/76/Mobile Web Apps.pdf, April 2012.

[54] Forbes. Mobile web app vs. native app? itś complicated
http://www.forbes.com/sites/fredcavazza/2011/09/27/mobile-web-app-vs-
native-app-its-complicated/, April 2012.

[55] George H. Forman and John Zahorjan. The challenges of mobile computing.
Computer, 27:38–47, April 1994.

[56] Apache Software Foundation. Apache license version 2.0
hhttp://www.apache.org/licenses/LICENSE-2.0.html, April 2012.

[57] Symbian Foundation. General symbian os topics
http://symbianresources.com/tutorials/general.phpmobileos, Mar 2012.

[58] Louis Galambos and Eric John Abrahamson. Anytime, Anywhere: En-
trepreneurship and the Creation of a Wireless World. Cambridge University
Press, New York, NY, USA, 2002.

[59] Monica J. Garfield. Acceptance of ubiquitous computing. Information Systems
Management, 22(4):24–31, 2005.

[60] D. Gavalas and D. Economou. Development platforms for mobile applications:
Status and trends. Software, IEEE, 28(1):77 –86, jan.-feb. 2011.

[61] Mark H. Goadrich and Michael P. Rogers. Smart smartphone development:
ios versus android. In Proceedings of the 42nd ACM technical symposium on
Computer science education, SIGCSE ’11, pages 607–612, New York, NY, USA,
2011. ACM.

[62] Robert Godwin-Jones. Emerging technologies: E-books and the tablet pc.
Language Learning Technology, 7(1):4–8, January 2003.

[63] P. Golding. Connected Services: A Guide to the Internet Technologies Shaping
the Future of Mobile Services and Operators. John Wiley & Sons, 2011.

[64] Vnia Gonalves, Pieter Ballon, and Vrije Universiteit Brussel. Mobile operators
and mobile web applications : the evolution from SaaS to PaaS models, pages
1 – 14. 2009.

[65] Groupe Speciale Mobile GSMA. Mobie phone, Feb 2012.

[66] Abhishek Kumar Gupta. Challenges in mobile computing. In Proceedings of
the second national conference on Challenges and Opportuinities in Information
Technologty, PCOIT ’02, pages 86–90, RIMT-IET, Mandi Gobindgarh, 2008.

[67] Sharon P. Hall and Eric Anderson. Operating systems for mobile computing.
J. Comput. Sci. Coll., 25(2):64–71, December 2009.

[68] Richard Harper. People versus information: The evolution of mobile technology.
In Proceedings of 5th International Symposium on Mobile HCI, pages 1–18.
Springer-Verlag, 2003.

69

[69] Sumi Helal. Pervasive java. IEEE Pervasive Computing, 1:82–85, 2002.

[70] Adrian Holzer and Jan Ondrus. Trends in mobile application development. In
Cristian Hesselman, Carlo Giannelli, Ozgur Akan, Paolo Bellavista, Jiannong
Cao, Falko Dressler, Domenico Ferrari, Mario Gerla, Hisashi Kobayashi, Ser-
gio Palazzo, Sartaj Sahni, Xuemin Sherman Shen, Mircea Stan, Jia Xiaohua,
Albert Zomaya, and Geoffrey Coulson, editors, Mobile Wireless Middleware,
Operating Systems, and Applications - Workshops, volume 12 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, pages 55–64. Springer Berlin Heidelberg, 2009. 10.1007/978-
3-642-03569-2 6.

[71] Adrian Holzer and Jan Ondrus. Mobile application market: A developers per-
spective. Telematics and Informatics, 28(1):22 – 31, 2011.

[72] Adrian Holzer and Jan Ondrus. Mobile application market: A mobile network
operators perspective. In Raj Sharman, H. Raghav Rao, T. S. Raghu, Wil Aalst,
John Mylopoulos, Michael Rosemann, Michael J. Shaw, Clemens Szyperski, Wil
Aalst, John Mylopoulos, Michael Rosemann, Michael J. Shaw, and Clemens
Szyperski, editors, Exploring the Grand Challenges for Next Generation E-
Business, volume 52 of Lecture Notes in Business Information Processing, pages
186–191. Springer Berlin Heidelberg, 2011. 10.1007/978-3-642-17449-0 19.

[73] Apple Inc. Identifying iphone models http://km.support.apple.com/library/APPLE/APPLECARE ALLGEOS/HT3939/HT3939-
iphone 4-side front dimensions-001-en.png, Mar 2012.

[74] Apple Inc. ios developer program https://developer.apple.com/programs/ios/,
Mar 2012.

[75] Manuel Palmieri Inderjeet Singh. Compari-
son of cross-platform mobile development tools
http://www.idt.mdh.se/kurser/ct3340/ht11/MINICONFERENCE/FinalPapers/ircse11 submission 16.pdf,
April 2012.

[76] Open Source Initiative. Mit licensing http://www.opensource.org/licenses/mit-
license.php, April 2012.

[77] IDC International Data Corporation. Idc forecasts world-
wide smartphone market to grow by nearly 502011,
http://www.idc.com/getdoc.jsp?containerId=prUS22762811, Mar 2012.

[78] IntoMobile. Wac 2.0 specification announced; 8 operators already connected
to the platform, http://www.intomobile.com/2011/02/16/wac-20-specification-
operators/, Mar 2012.

[79] IntoMobile. Wac 2.0 specification announced; 8 operators already connected
to the platform, http://www.intomobile.com/2011/02/16/wac-20-specification-
operators/, Mar 2012.

[80] Apple: iOS Developer Library. ios technology overview, oct 2007
https://developer.apple.com/library/ios/#DOCUMENTATION/Miscellaneous/Conceptual/iPhoneOSTechOverview/IPhoneOSOverview/IPhoneOSOverview.html#//apple ref/doc/uid/TP40007898-
CH4-SW5, Mar 2012.

[81] ITU. The world in 2010 - facts and figures, Feb 2012.

[82] J. Dixon J. Dehlinger. Mobile application software engineering: Chal-
lenges and research directions http://www.mobileseworkshop.org/papers/7-
Dehlinger Dixon.pdf, April 2012.

70

[83] Richard L Kerns John E Andereson, Paul H Schwager. The drivers for accep-
tance of tablet pcs by faculty in a college of business. Journal of Information
Systems Education, 17(4):429, Winter 2006.

[84] L. Kleinrock. Nomadicity: Anytime, anywhere in a disconnected world. Mobile
Networks and Applications invitedpaper, 1(4):351–357, January 1996.

[85] A. Küpper. Location-based services: fundamentals and operation. John Wiley,
2005.

[86] Tribal Labs. Cross platform mobile app development
http://webinos.org/crossplatformtools/, May 2012.

[87] J. Liberty and J. Blankenburg. Migrating to Windows Phone. Apress Series.
Apress, 2011.

[88] Feida Lin and Weiguo Ye. Operating system battle in the ecosystem of smart-
phone industry. In Information Engineering and Electronic Commerce, 2009.
IEEC ’09. International Symposium on, pages 617 –621, may 2009.

[89] Johnny Li-Chang Lo, Judith Bishop, and Jan H. P. Eloff. Smssec: An end-to-
end protocol for secure sms. Computers & Security, 27(5-6):154–167, 2008.

[90] Smartphones Magazine. Lg optimus 2x meet the first dual core smartphone in
the world? http://smartphonespc.com/lg-optimus-2x-meet-the-first-dual-core-
smartphone-in-the-world/, Mar 2012.

[91] Time Magazine. Invention of the year oct 2007
http://www.time.com/time/specials/2007/article/0,28804,1677329 1678542 1677891,00.html,
Mar 2012.

[92] Time Magazine. A photographic history of the cell phone, Feb 2012.

[93] Qusay H. Mahmoud and Allan Dyer. Integrating blackberry wireless devices
into computer programming and literacy courses. In Proceedings of the 45th
annual southeast regional conference, ACM-SE 45, pages 495–500, New York,
NY, USA, 2007. ACM.

[94] David Mark, Jeff LaMarche, and Jack Nutting. Beginning iPhone 4 Develop-
ment: Exploring the iOS SDK. Apress, Berkely, CA, USA, 1st edition, 2011.

[95] Marmalade. Cross platform mobile applications and games development
http://www.madewithmarmalade.com/marmalade, May 2012.

[96] Microsoft. Application platform overview for windows phone
http://msdn.microsoft.com/en-us/library/ff402531v = vs.92.aspx, Mar
2012.

[97] Ansca Mobile. Corona http://www.anscamobile.com/corona/, April 2012.

[98] Vision Mobile. Cross-platform developer tools 2012
http://www.visionmobile.com/rsc/researchreports/VisionMobile Cross-
Platform Developer Tools 2012.pdf, April 2012.

[99] MobileIN. Short message service http://www.mobilein.com/sms.htm, April
2012.

[100] Mobilosoft. What is a smartphone? http://mobilosoft.com/blog/what-is-a-
smartphone/, Feb 2012.

71

[101] B. Morris. The Symbian OS architecture sourcebook: design and evolution of a
mobile phone OS. Symbian Press. J. Wiley & Sons, 2007.

[102] MoSync. Mosync home http://www.mosync.com/, April 2012.

[103] Motorola. Motorola atrix 4g http://www.motorola.com/Consumers/US-
EN/Consumer-Product-and-Services/Mobile-Phones/Motorola-ATRIX-US-
EN, Mar 2012.

[104] Collin Mulliner. Exploiting symbian, symbian exploitation and shellcode devel-
opment, 25th chaos communication congress, berlin, germany. In Fraunhofer-
Institute for Secure Information Technology SIT , Darmstadt, Germany, 2008.

[105] Microsoft Developer Network. Application platform overview for windows
phone, http://msdn.microsoft.com/en-us/library/ff402531v = vs.92.aspx, Mar
2012.

[106] Microsoft Developer Network. Linq http://msdn.microsoft.com/en-
us/library/bb397926.aspx, April 2012.

[107] Gartner Newsroom. Gartner says sales of mobile devices grew 5.6 per-
cent in third quarter of 2011; smartphone sales increased 42 percent
http://www.gartner.com/it/page.jsp?id=1848514, Mar 2012.

[108] Sigma Noblis. Bridging the mobile app gap
http://www.noblis.org/NewsPublications/Publications/TechnicalPublications/SigmaJournal/Documents/SigmaDigEco2011.pdfpage=29,
Vol 11, Number 1, October 2011 Last accessed: April, 2012.

[109] Cambridge Dictionaries Online. History http://www.gsma.org/history/, Feb
2012.

[110] T. Ozkul and A. Al Homoud. Communication protocol for monitoring a large
number of remotely distributed hazardous material detection devices. Computer
Standards amp; Interfaces, 25(5):553–561, 2003.

[111] Nokia White paper. Nokia and symbian os, 2002.
http://nds2.ir.nokia.com/NOKIA COM 1/About Nokia/Press/White Papers/pdf files/symbian net.pdf,
Mar 2012.

[112] PCWorld. Android market hits 450k apps, challengers abound
http://www.pcworld.com/article/250765/android markethits 450k apps challengers abound.html,April2012.

[113] Microsoft Windows Phone. Windows phone: How-to,
http://www.microsoft.com/windowsphone/en-us/howto/wp7/start/whats-
new-in-windows-phone.aspx, Mar 2012.

[114] PhoneGap. How phonegap works http://phonegap.com/about, April 2012.

[115] Tribal: Medical Mobile Project. Cross plat-
form mobile development http://www.mole-
project.net/images/documents/deliverables/WP4 crossplatform mobile development March2011.pdf,
March 2011.

[116] Adam M. Christ Noblis publication. Mo-
bile application: Bridging the mobile app gap
http://www.noblis.org/NewsPublications/Publications/TechnicalPublications/SigmaJournal/Documents/SigmaDigEco2011.pdf#page=29,
March 2011.

72

[117] REDMONDPIE. Windows phone 7 versus android
http://cdn.redmondpie.com/wp-content/uploads/2010/02/ Windows-
Phone7vsAndroid2.jpg, Mar 2012.

[118] refulz web developerś blog. Build cross platform phone applications
with phonegap http://php.refulz.com/build-cross-platform-phone-applications-
with-phonegap-1/, April 2012.

[119] CNET Reviews. Report: Android app market growing faster than iphone apps
http://reviews.cnet.com/8301-13970 7-20032228-78.html, April 2012.

[120] Rhomobile. The universal mobile application integration server
http://www.rhomobile.com/products/rhoconnect/, April 2012.

[121] J. Sales. Symbian OS Internals: Real-time Kernel Programming. Symbian
Press. John Wiley & Sons, 2006.

[122] Jane Sales. Symbian OS internals, Real-Time Kernel Programming. John Wiley
and Sons, 2005.

[123] Jane Sales. Building Tablet PC Applications. O’Reilly Media, Inc., 2009.

[124] M. Satyanarayanan. Fundamental challenges in mobile computing. In Pro-
ceedings of the fifteenth annual ACM symposium on Principles of distributed
computing, PODC ’96, pages 1–7, New York, NY, USA, 1996. ACM.

[125] M Satyanarayanan. Pervasive computing: vision and challenges. Ieee Personal
Communications, 8(4):10–17, 2001.

[126] A.H. Sayed, A. Tarighat, and N. Khajehnouri. Network-based wireless loca-
tion: challenges faced in developing techniques for accurate wireless location
information. Signal Processing Magazine, IEEE, 22(4):24 – 40, july 2005.

[127] J.H. Schiller. Mobile communications. Addison-Wesley, 2003.

[128] S. Schwiderski-Grosche and H. Knospe. Secure mobile commerce. Electronics
Communication Engineering Journal, 14(5):228 – 238, oct 2002.

[129] Lookout Mobile Security. App genome report
http://www.pcworld.com/article/250765/android markethits 450k apps challengers abound.html,April2012.

[130] Silverlight Show. Wp7 for iphone and android developers - introduction
to xaml and silverlight http://www.silverlightshow.net/items/WP7-for-iPhone-
and-Android-Developers-Introduction-to-Xaml-and-Silverlight.aspx, May 2012.

[131] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating system concepts. Oper-
ating System Concepts. J. Wiley & Sons, 2005.

[132] SQLite. About sqlite http://www.sqlite.org/about.html, April 2012.

[133] K. Stanoevska-Slabeva and T. Wozniak. Opportunities and threats by mobile
platforms: The new role of mobile network operators. In Intelligence in Next
Generation Networks ICIN , 2010 14th International Conference on, pages 1
–6, oct. 2010.

[134] Adobe Systems. Adobe air 3 http://demand.assets.adobe.com/en/downloads/guides/6408.guide.Mobile DDD.en.pdf,
April 2012.

[135] A.S. Tanenbaum. Modern operating systems. GOAL Series. Pearson Prentice
Hall, 2008.

73

[136] WIRED DO TCOM. Htc’s aria: Android phone that can be had for a song
http://www.wired.com/images/productreviews/2010/06/pr htc aria f.jpg,
Mar 2012.

[137] Technoholik. Titanium: an app making tool for web develop-
ers http://technoholik.com/news/mobile/apps/titanium-an-app-making-tool-
for-web-developers/80, April 2012.

[138] Appcelerator Titanium. Api documentation
http://docs.appcelerator.com/titanium/2.0/index.html#/api, April2012.

[139] Appcelerator Titanium. Getting started with titanium studio
https://wiki.appcelerator.org/display/tis/Getting+Started+with+Titanium+Studio,
April 2012.

[140] Mobile Tuts+. Introduction to cross platform develeopment with appcelerator
http://www.adobe.com/newsletters/inspire/february2012/articles/article7/,
April 2012.

[141] Virpi Kristiina Tuunainen, Tuure Tuunanen, and Jouni Piispanen. Mobile
service platforms: Comparing nokia ovi and apple app store with the iisin
model. Mobile Business, International Conference on, 0:74–83, 2011.

[142] W3C. Geolocation api specification http://dev.webinos.org/deliverables/wp3/Deliverable32/wiki$t3-
2$API investigations.html, April 2012.

[143] Alf Wang, Carl-Fredrik Srensen, Heri Ramampiaro, Hien Le, Reidar Conradi,
and Mads Nygrd. Using the mowahs characterisation framework for develop-
ment of mobile work applications. In Frank Bomarius and Seija Komi-Sirvi,
editors, Product Focused Software Process Improvement, volume 3547 of Lec-
ture Notes in Computer Science, pages 111–127. Springer Berlin / Heidelberg,
2005. 10.1007/1149745512.

[144] Bekkering E. Schimdt M. Johnston A. Warkentin, M. Proposed study of end-
user perceptions regarding tablet pcs. In Proceedings of the Information Re-
sources Management Conference, pages 430–431. Idea Group Publishing, 2004.

[145] Webinos. Barcode api http://www.mosync.com/, April 2012.

[146] Webinos. Cross platform development tools
http://webinos.org/crossplatformtools/, May 2012.

[147] webinos. Mosync http://webinos.org/crossplatformtools/mosync/, April 2012.

[148] webinos. Xamarin — monotouch and mono for android
http://webinos.org/crossplatformtools/xamarin-monotouch-and-mono-for-
android/, April 2012.

[149] Andrew Wheen and Andrew Wheen. The mobile revolution. In Dot-Dash to
Dot.Com, Springer Praxis Books, pages 163–173. Springer New York, 2011.
10.1007/978-1-4419-6760-2 12.

[150] Wikipedia. Mobile application development, 2011
http://en.wikipedia.org/wiki/Mobile application development, April 2012.

[151] Wikipedia. Mobile operating systems http://en.wikipedia.org/wiki/Mobile operating system,
Mar 2012.

74

[152] WMPoweruser. Gartner predicts windows phone 7 will overtake blackberry
in 2013, overtake iphone in 2015, http://wmpoweruser.com/gartner-predicts-
windows-phone-7-will-overtake-blackberry-in-2013-overtake-iphone-in-2015/,
Mar 2012.

[153] Worklight. Native, web or hybrid mobile app development
http://www.slideshare.net/WorkLightInc/native-web-or-hybrid-mobile-app-
development-webinar, April 2012.

[154] Worklight. Products overview http://www.worklight.com/product/overview,
April 2012.

[155] Xamarin. Mono for android 4.0 introduction
http://www.slideshare.net/Xamarin/mono-for-android-4-0-introduction,
April 2012.

[156] Xamarin. Xamarin documentation http://www.xamarin.com, April 2012.

[157] Jonathan A. Zdziarski. Iphone open application development. O’Reilly, first
edition, 2008.

[158] Pospischil Gnther Zeiss Joachim, Davis Marcin. The role of wac in
the mobile apps ecosystem, ftw, telecommunications research cen-
ter, vienna, austria http://cdn.intechopen.com/pdfs/24902/InTech-
The role of wac in the mobile apps ecosystem.pdf, Mar 2012.

[159] The Amazing Zones. Nokia lumia 800 windows mango smartphone re-
view, http://www.theamazingzones.com/wp-content/uploads/2012/02/nokia-
lumia-800-review.jpg, Mar 2012.

[160] Dino A Dai Zovi. Apple iOS 4 Security Evaluation. 2010.

75

Appendices

Acronyms

MRC Maximal Ratio Combining

API Application Programming interface

BAP BlackBerry Alliance Program

BCS BlackBerry Connect Software

BMDS BlackBerry Mobile Data System

BS BlackBerry Smartphone

BCL Base Class Library

BS Base Station

BSS BlackBerry Solution Services

CDMA Code Division Multiple Access

CPMAD Cross Platform Mobile Applications Development

CPU Central Processing Unit

CRM Customer Relations Management

DVM Dalvik Virtual Machine

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile

GUI Graphical User Interface

HD High Definition

HDMI Hight Definition Multimedia Interface

IDE Integrated Development Environment

IE9 Internet Explorer 9

IP Internet Protocol

JIL Joint Innovation Lab

JME Java Mobile Edition

JS JavaScript

JSR Java Specification Request

LCD Liquid Crystal Display

LMU Location Measurement Unit

MAD Mobile Applications Development

MOWAHS Mobile Work Access Heterogeneous Systems

MP Megapixel

MS Mobile Station

76

MVC Model-View-Controller

NaaS Network as a Service

OEM Original Equipment Manufacturer

OS Operating System

OTD Observed Time Difference

PDA Personal Digital Assistant

QVGA Quarter Video Graphics Adapter

RAM Random Access Memory

RIM Research In Motion

RIT Radio Interface Timing

SDK Software Development Kit

SDLC Software Development Life Cycle

SMS Short Messaging Service

SNS Social Networking Services

TDMA Time Division Multiple Access

TFT Thin Film Transistor

TTFF Time-to-first-fix

UI User Interface

URL Uniform Resource Locator

USSD Unstructured Supplementary Service Data

VOIP Voice Over IP

WAC Wholesale Applications Community

WP7 Windows Phone 7

XAML Extensible Application Markup Language

77

	Title Page
	preface
	finaldoc
	Introduction
	Motivation
	Objective
	Research Method

	Mobile Applications Development
	Mobile Device Evolution
	Smartphones
	Tablet PCs

	Classic MAD Challenges
	Mobile Platform
	Types of mobile platforms (Mobile OS)

	Mobile Applications
	Types of mobile applications
	Telco-enriched apps
	Mobile Enterprise Applications tools
	Mobile Applications Development tools licensing
	Common native features of a mobile platform

	Cross platform Mobile Apps Development
	Mobile application Development
	Native mobile applications development
	Cross platform development

	The benefits of cross platform MAD
	Cross platform system architecture
	Mobile Web Apps
	Abstraction based cross platform system
	Native compiling cross platform system

	cross platform MAD tools
	Appcelerator Titanium
	PhoneGap
	Xamarin
	Rhombile
	MoSync
	IBM Worklight
	Corona
	Marmalade
	Adobe Air

	Tools comparison framework
	Example: How to use the framework

	Sample Applications

	Discussion and Evaluation
	Main findings
	Validity of result

	Conclusion

