
Location-based games and the use of GIS
information
Design of a DSL for (re)locating a pervasive

game

Andrea Mannara

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: June 2012

Norwegian University of Science and Technology

Norwegian University of Science and
Technology

Master Thesis

Location-based games and the use of

GIS information
Design of a DSL for (re)locating a

pervasive game

Author:

Andrea Mannarà

Supervisor:

Hallvard Trætteberg

June 2012

Abstract

In Pervasive games locations play an important role, so the task of finding proper lo-

cations for activities in the games is crucial. It is also relevant to be able to relocate a

game to new area/region, to make it available for new players. This project investigated

how GIS information can be utilized for (re)locating a pervasive game, and designed a

DSL for controlling the location process.. . .

i

Acknowledgements

I would like to say thank you first of all to my supervisor Hallvard Trætteberg for the

patience and the big help that give to me to face this project.

I would like to say thanks also to NTNU and Politecnico di Torino to give me the

possibility to have this great experience.

I also have to say thanks to all the people that i met in this wonderful journey that help

me to have the ideas for the project.

Finally i want to say thanks to my mother and my father for supporting me in all the

aspect of this work and to my sister Martina to have always believed in me.

. . .

ii

Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Outline . 3

I Background Studies 4

2 Pervasive Game 5

2.1 What is a Pervasive Game . 5

2.2 Why a Pervasive game . 6

2.3 Location in a Pervasive Game . 8

3 Introduction about the concept of Location and ”logical location” 11

3.1 Coordinate System . 12

3.2 Definition of ”logical location” . 12

3.2.1 From logical location to Coordinate: Sources 13

4 Eclipse and EMF 15

4.1 Eclipse . 15

4.2 Model Driven and EMF . 17

4.2.1 Model definition and UML . 17

4.2.2 Model Driven Programming . 19

4.2.3 XML, XMI, OCL . 19

Mapping Data on Model Driven Software 21

4.2.4 What is EMF . 21

4.3 XText . 22

5 Geographical and Location Source: OpenStreetMap 24

5.2 Open Street Map Database . 25

5.1 Insert data process on Open Street Map 26

5.3 Open Street Map API . 27

iii

Contents iv

5.4 Nominatim . 29

5.5 Other Possible Sources . 31

II Developer of the IDE for logical location of pervasive games 32

6 Production Process 33

6.1 Process Study . 34

6.2 Region Model . 38

6.2.1 Why using a Taxonomy . 38

Definition of taxonomy and Why using it 39

6.2.2 How to represent a Region Model 40

6.2.3 Region Model with DSL . 41

6.2.4 Region Model using Ecore . 42

6.2.5 Defining Element in the Region Model 45

6.2.6 Region Base Model . 45

6.3 Region Model Instances Document . 46

6.4 Location Document . 49

7 The IDE 51

7.1 Region Model Instance Editor . 51

7.2 Location Document Editor . 54

III Conclusion 56

8 Summary 57

9 Practical Utilization of the framework 58

10 Future development 59

11 Personal Conclusion 61

List of Figures

1.1 how can a IDE for location of pervasive game could be 2

4.1 Eclipse foundation Logo . 15

4.2 Analogy with XSD-XML and OOP class-instance 20

4.3 Relation between XML, Java and Ecore Model 21

4.4 A simplified subset of the Ecore Metamodel 22

4.5 The ecore editor and Ecore Diagram Editor in Eclipse 23

5.1 Main page of Open Street Map . 25

5.2 Steps to add a map on OSM . 26

6.1 Simple process flux . 34

6.2 Process flux with automatically retriever of physical information 34

6.3 Process flux with automatically retriever of physical information 36

6.4 meta-Model for Region Model . 39

6.5 Region Model of a Campus designed with Ecore Diagram 43

6.6 Xmi structure of a instances for the Campus model 44

6.7 Region Base Model . 46

6.8 Campus Model with the links to the Base Model 47

6.9 Example of element in the rmi . 48

6.10 Auditorium class in the Campus Model 48

7.1 RMI Wizard . 51

7.2 RMI Editor first tab . 52

7.3 RMI Editor second tab . 53

v

List of Tables

6.1 Associaton from Region MetaModel to Ecore Elements 42

vi

Chapter 1

Introduction

Over the past 5 or 6 years, technology has made many great strides and, day by day,

accelerating its steam. Consider, for instance, the evolution of smartphones that within

ten years have passed since gadgets for men of business to spread globally.

Hand in hand with the evolution of technology, traveling all the sciences associated with

it, from software to marketing. it is normal, then, that in the software, there has been

a significant change during all these years.

With a spread, more and more widespread, of mobile devices able to perform any type

of application, with performance comparable to that of a standard personal computer,

software engineering is increasingly oriented to mobile applications or hybrid. So now

we have a lot of software, websites and anything else that have a mobile version.

Obviously, the science of digital games has oriented in this field, constituting the largest

market [1] compared to other types of software.

In this great universe of mobile games, dominated by independent games and casual

games (a term much discussed and still in definition, as evidenced by the interesting

discussion Casual games discussion [2]), however, leaves a wide space to study new

forms of entertainment, based, mainly, on the possible new interfaces that mobile devices

provide.

And it is using these interfaces, in particular those used for the tracking and geolocation,

it’s possible to create and design games, which are known as pervasive games, ie games

where the game environment, the scenario, is the the real world. The game, as will be

explained below, interacts with the real real world, and makes the player, the avatar of

himself.

Being a fairly new area of developing, aside from standard tools of programming, yet

there is no something specific to the development of this type of games. Unlike other

1

List of Tables 2

types of games, which, however, usually are provided with special IDEs, with engine

already pre-packaged and anything else, the pervasive game provide a knowledge of

different application fields, so it is difficult to develop such products.

Precisely for this reason it is more and more prominent the need to have special tools

that allow, in a simpler way, to develop this type of game, or part of them.

As mentioned previously most such games is also educational. They normally include

the need for the player to move to various locations and in them pass a test which can

be of various nature.

Figure 1.1: how can a IDE for location of pervasive game could be

To develop such an application you need a module in which the game defines the locations

and the various task, an application that runs on portable support and uses various

technologies to interact with the player and the environment .

This can be simplified by building a dedicated IDE and an application skeleton that can

then be enriched and personalized.

More specifically, the IDE to the permit, the developer, at least the following operations:

• To define places and region of the game is involved

• To define the characteristics of the player, the basics rules and other features of

the game.

• To define the various task and make them easily linkable with the places previously

defined

• Be able to reuse previous places and task for previous games

Chapter 1. Introduction 3

This project, as indicated in the introduction, focuses on developing that part of the IDE

to define, redefine and re-use, the places where the game will take place. Key features

of the IDE will be the possibility to easily define this information, to be able to choose

the places easily and without knowledge of the technologies that will be used later to

verify the position during the game itself. Finally, to be able to define the places in a

”logical” way, in order to reuse the same structure of the game in different places in the

world. The Fig: 1.1 show how can this such of IDE could result.

1.1 Outline

This document aims to present all the studies and applications made to achieve the

purpose stated above.

In particular, the first part focuses on the background studies necessary to carry out the

project.

Chapter 1 focuses on the definition of a pervasive game and the reasons why it’s needed

to build an IDE designed for them.

Chapter 2 explains briefly the tools used: the working environment Eclipse, the EMF

framework, and XText, the framework for the development of SDL.

Chapter 3 focuses in more detail on the concept of Location and Relocation, and the

difference between the coordinate system and the ”logical location”.

Chapter 4 deals with exposing the various sources of data used in the project.

The second part of this document, however, exposes what are the steps for creating the

environment and the strategies used.

Chapter 5 then describes the process of production and what the initial statements were

made before starting to develop.

Chapter 6 focuses on the description of the development process and user interface

components of the IDE

Chapter 7 explains in a comprehensive manner the development of the DSL for the

production of the location file.

Finally, the last part draws conclusions from the work, the...

Part I

Background Studies

4

Chapter 2

Pervasive Game

2.1 What is a Pervasive Game

The 1947 is considered the year of creation of the first video game with the ”Cathode

Ray Tube Amusement Device” [3], followed by ”OXO” in 1952, the first video game

with graphical interface. To get the idea that we have today of video games we have

to wait until the ’70s with the advent of the first arcades (Galaxy Game, Pong, Gun

Fight).

Since those legendary years to now, games has made great strides, and their sudden

evolution phenomenon is incomparable to anyone else. Today digital games offering in-

creasingly realistic graphics, gameplays ever more diverse, more interesting stories and

interfaces increasingly unusual. Even the production of games has changed a lot. It

has gone from amateurs who developed on mainframes during leisure time, and often

secretly, in real multinational companies with teams of up to 100 or 200 people for the

development of a single games.

Precisely because of to the immense variety of possibilities that the current world of

games (and information technology in general that you can talk about something like

Pervasive Game, a category of games very young and under definition and development.

According with the definition of Markus Montola:

Pervasive games are a curious form of culture. They exist in the intersection of phe-

nomena such as city culture, mobile technology, network communication, reality fiction,

and performing arts, combining bits and pieces from various contexts to produce new

play experiences.[4]

5

Pervasive Game 6

In other word a pervasive game is a game that use technology as a support but locate all

the game experience in the real world. In the same book Montola describe different type

of pervasive games. This project focus his attention of a type of game called location-

based game or geogames, like in the article of Schlieder, Kiefer and Matyas: ”Geogames

are intended to bring game playing back to the physical world.” [5]. The goals of this

type of games are to move into the real world and interactive with that. Other type of

pervasive games can use something on the real world to increase the virtual experience

(like using the body of the player as interface of the game). 1

A digital game set in the real world may have difficulty not just irrelevant. It requires,

in fact, technologies and tools to verify the position of the players, the places where the

game is played, of potential objects, as well as the creation of the position for non-player

characters (NPC). The issue of locate, within of a pervasive game becomes fundamental

and not to underestimate. In a normal game, being the virtual world, you can jump from

one place to another, connect unrelated places, using graphical techniques to represent

places, and know exactly the position of the avatar of the player almost automatically.

In a pervasive game this can not be done. It must take into account the spaces and

places, the problem of connection of these places and the possibility to reach of the

same, and moreover to effectively verify the position of the players, they are not in

degrees of falsifying it.

We can say that the problem of location and position tracking is the main problem, but

as well the main features of a pervasive game.

2.2 Why a Pervasive game

The reasons why it feels the need to create a pervasive game can be quite varied. A

pervasive game, in fact, lends itself to a variety of applications that can go far beyond

the simple entertainment. For example, a pervasive game set in a city can be very useful

for all those who are about to visit.

A good example of applying the concept of pervasive game associated with the visit

of the city is the work developed at the university NTNU in Trondheim. The game is

developed on the Android platform and consists of a series of tasks of different nature

in order to learn in an interactive way the city of Trondheim and at the same time

fun to deal with other players. The project was presented at the IGIC (International

IEEE Games Innovation Conference) in 2011 and in the paper [7] it possible to find also

an extensive study on various aspects of the game and on the proposed questionnaires

to the subjects after gaming experience. The results based on the System Usability

1Partly recovered by the Project report [6]

Pervasive Game 7

Scale (SUS) can say that the game has an enjoyable than the average for other software

evaluated in this manner. This demonstrates the fact that the use of pervasive games

in these fields is effective and to be taken into consideration.

With the game, as demonstrated , you can visit and learn about the city in an easy and

fun way, combining, therefore, the fun part the learning and the exploration. The same

thing can be done within a museum, or, as orientation program for new students of a

school or a university.

Training and physical activity may be another interesting field in which a pervasive

game can fit properly. Imagine you create a game that simulates emergency situations

for police or firemen, or games of exploration and treasure hunt for the training runners

and athletes.

Finally, you can use the game as a pervasive medium for teaching in schools and univer-

sities. More and more, in fact, the science education approaches the concept of the game,

since, various studies have demonstrated the efficacy of using playful instruments for the

purposes of learning. A good example of this concept is proposed in the work done at

the University of Cordoba in Spain, where it was tried to use a pervasive game set in the

city to engage students to answer to different tests [8]. The project attempts to combine

the technology Moodle (Modular Object-Oriented Dynamic Learning Environment) [9],

with location technologies and RFID Identificator. The document is also presented as

the use of the game significantly increases student performance in examinations of the

courses under study.

As shown in the examples above the pervasive games are ideal for teaching purposes,

therefore, are often associated with the concept of ”serious games”, a term well-defined

in the book ”Developing Serious Games” by B. Bergeron [10]:

A serious game is an interactive computer application, with or without a significant

hardware component, that

• has a challenging goal;

• is fun to play and/or engaging;

• incorporates some concept of scoring;

• imparts to the user a skill, knowledge, or attitude that can be applied in the real

world.

Pervasive Game 8

In particular, what distinguishes the serious game from a normal game is just the latest

feature. The serious game lets you learn or improve skills of the player.

As said the pervasive game, by their nature, are perfectly suited to be of educational

games, but not only. Indeed, there are many examples of pervasive games that are

outside the educational component and fit perfectly into the category of entertainment

products.

A particular example of this type of games is ”Parallel Kingdom”, one of the first

MMORPG for smartphones. As you can read in the article by B. Patterson[11]:

Parallel Kingdom places the virtual world on top of the real world using the GPS inside

your phone. Attack, dance, hug or team up with anyone around you. Set up trade routes,

craft items or even create your own kingdom.

Wherever you are, you can open your phone and play, whether you’re on the bus, walking

down the street, or at home. Anywhere in the world, any time of the day. Parallel

Kingdom never stops, you play it when you want and where you are.

As demonstrated, therefore, the applications of these types of games are numerous with-

out counting the simple aspect of entertainment.

Finally, if we consider the increasingly widespread diffusion of mobile devices and the

need for users to interconnect at any place, is almost natural to think that a large branch

of the evolution of video games is directed to devices no longer static, but scattered over

the world, and it would be unwise to underestimate this condition and do not use in the

development of new softwares.

2.3 Location in a Pervasive Game

As mentioned in the preceding paragraphs, for a a pervasive game is essential the con-

cept of localization. A a pervasive game is, by definition, set in the real world, for which,

requires a system for defining location in which it is set. There are a pervasive game

”location free” that can be played everywhere, but these are often affected by the lack

of interaction with the environment, a feature that, most of all, makes interesting a

pervasive game. Except for these cases, therefore, the problem of defining the various

places where the game takes place is crucial, especially for those types of games (often

educational) that aim to explore and discover the place where the game set.

Define the places is not simple. This location can be based on explicit definition, for

every location, geographic coordinates of that in the code. This simplistic approach

brings a number of consequences should not be underestimated. First of all, write the

Pervasive Game 9

data directly in the code is a programming technique that is not recommended in any

course book, in any course at any university and any working environment.

Secondly, use directly the coordinates of a location to define it brings a significant

amount of work in order to find those coordinates. The programmer will have to worry

about first choose the exact locations where he wants to set his work, and after using

a system to retrieve the coordinates for each place and then write them in his code (or

in an external file). This, beyond to include human error, leads waste of time and energy.

Another problem is the freshness of data. During the programming process and also

during the actual usage of the game, the environment, initially studied by the developer,

can change. Imagine, for example, to design an interactive game that allows players to

live the experience more interesting and rich of visiting a museum. Basing everything

on the coordinates of the various works (imagine that the museum is large enough to

use the geographic coordinate system to distinguish various locations), does not take

into account that, in the museum, the works can be moved, loaned to other museums,

added. In this case, the developer must rewrite (and recompile) software to the new

condition. This problem, for highly variable environments, it is far from trivial. Try

to think, finally, the possibility that the museum will change the whole location, the

programmer must use the same time that he first used to retrieve all references to the

various posts and rewrite them.

Finally, a problem less important than the other but to be considered, imagine that the

software should be used in various places (taking the example above, several museums

around the world). In this case, the developer will inevitably have to rewrite the software

for each location where it should work.

From this analysis it can be understand that should strongly avoid this strategy. But,

even if you put references to the coordinates in different files, and referring to them in

a dynamic way, some of the problems described above, this would still leave unresolved.

In order, therefore, to avoid such problems, it’s possible to think of referring to locations,

not in terms of physical-mathematical (coordinate system), but in terms of ”logical”.

Nowadays, especially if we talk about larger environments than a building (a neighbor-

hood, a city, a region), there are a multitude of geolocation services and presentation

of data, up to date and reliable. Often, these systems combine to the presentation of

the coordinates of a point, a series of logical information, such as street name, building

type, business name, description and more. And, above all, these systems have search

system that are based on this information, rather than on the simple system of coordi-

nates. Just think, for example, how the users use certain systems such as Google Maps

copyright: there are very few users in the search field write a pair of coordinates. Most

Pervasive Game 10

of the time will just write an address, a name of a famous place, or a search on the types

of place.

Refer to the sites in a logical way allow avoiding the problems listed above and have a

number of advantages. Consider now, for example, want to build a game that consists

of an interactive tour of a city. Just give the game the names of the most important that

we are the stages of the tour and let the system retrieve the coordinates, and displays

the map of the software on your PDA or smartphone. But not only this: having the

logical reference, the game may use other services and provide recovery information au-

tomatically using other online search services (e.g. web sites of encyclopedias), avoiding

the burden to the programmer from having to build previously a database to refer to.

Chapter 3

Introduction about the concept of

Location and ”logical location”

The term location can mean many things. As defined in the Oxford dictionary [12]:

location: n,

1. particular place or position

2. an actual place or natural setting in which a film or broadcast is made, as distinct

from a simulation in a studio

3. the action of locating someone or something

4. a position or address in computer memory.

Somehow the concept of location, in our case, is something between the first and the

second definition. Basically it is a specific place at a precise point of our planet, but at

the same time a pervasive game can in some way resemble a movie or a play where the

site where it takes place, the location, is the set where the game takes place.

Considering then the second aspect, as it well be known, often, movies are filmed on

artificial and fictitious sets which simulate a special place in studios. In some way,

therefore, there is a scene that should be filmed in place, but for convenience and often

for economic reasons is simulated in another place, or even in a virtual way.

This concept, although the film industry is emphasized, can somehow introduce an

essential concept to the purpose of this study, i.e. the possibility of locating the pervasive

game in different places, similar in nature or by function. This introduce the concept of

”logic” location, but first of all it is good to deepen the concept of ”physical” location

to better understand the following definitions.

11

Location 12

3.1 Coordinate System

1 In order to locate places and tracking player, have a sufficient knowledge how the

coordinate system work is essential. According to wikipedia:

A geographic coordinate system is a coordinate system that enables every location on the

Earth to be specified by a set of numbers. The coordinates are often chosen such that

one of the numbers represent vertical position, and two or three of the numbers represent

horizontal position. A common choice of coordinates is latitude, longitude and elevation.

[13]

In most of the maps software and website elevation is not a strictly required value. In

order to find a specific point in the map longitude and latitude are sufficient. This two

values of a specific point corresponds respectively to the angular distance between the

equatorial plane and the line normal to the surface in this specific point (latitude), and

the angular distance from a reference meridian (as usual Greenwich meridian) (longi-

tude). In software this to value are represented in decimal degrees. Usually, for what

concern GPS technology and maps services web site this number have a precision of 6

decimals, it mean that the minimum distance from two point is c.ca 1 cm. So theoret-

ically it’s possible to use this system also in small places. The problem, in that case,

come from the technology and the intentional limitation of the GPS technology that

is property of the U.S Department of Defense. The limitation impose an precision of

at least 7.8 meters. [14] For now coordinate system is the most used way to represent

places in the world. With the enter of the internet web in our daily life it will be more

useful to start to think different ways to represent that. Coordinate give only one in-

formation of a place (the position in the Globe), but today when we looking for a place

the position is not the only information that we need. Using other type of positioning

of places, for example logical description and tags collection, could be the startpoint for

the geo-location system of the future.

3.2 Definition of ”logical location”

As mentioned in par 2.3 there are several reasons why it is not convenient to use

directly the coordinates to refer to a place. It’s needed, therefore, to use an alternative

way to define the concept of place.

The increasingly widespread dissemination of search systems and systems of classifica-

tion of places of the same, allows to create a system which a place can be defined by

1Edited from the Project report [6]

Location 13

qualitative features, rather than using coordinates. It can be used, for instance, the

name of a place, although this is often not unique, coupled with other information like

the city belong, the region, the state. With enough information you can obtain a qual-

itative description of a place that is unique throughout the world. Is defined, then,

logical location:

A set of qualitative information that renders the definition of a unique place in a given

context.

The concept of context is important. In fact, defining first the context, all the informa-

tion necessary to make a unique place can be significantly reduced. Imagine that you

define, for instance, as a context, a university campus. Define a site with the simple

term ”secretary” could be enough to make this place unique, which, however, in a wider

context may be misconceived.

By defining the place with enough information and associating them to the context you

can create a system that uses ,in order to retrieve the exact location, geolocation services

or online maps. In this way, when the exact position will be necessary (for example at

the time to verify the position of the player with respect to the target) can be easily

access to the geographic coordinates.

The amount of information needed depends on a number of factors, including the main

one is the service used to retrieve the coordinates.

3.2.1 From logical location to Coordinate: Sources

At a time when the video game will be started on a portable device is necessary that

the places, defined in a logical way during the design and programming of the game,

are somehow converted to geographic coordinates. This process can be delegated to the

portable software, but this can cause an additional burden that, in the case of software

on mobile devices, should not be underestimated. Bearing in mind that after the design

and programming of the game the places are not changed, is possible do this conversion

directly after the selection of the logical places. It will, therefore, the work environment

that will create a document in which every place has defined the appropriate coordi-

nates. In chapter 6 will explain how this document is produced.

The various sources often contain associated with each element of the database, a whole

series of information, often in the form of tags, which allow, for each geographical coor-

dinate, to have a logical, often in a natural language, description of the type of places

present in it. If the description logic used in the software is designed to be consistent

with these information, is possible to build a system that combine this information to

Location 14

the data sources so that it returns exactly one result. This is very difficult to obtain due

to the nature of the information.

There are many types of data sources from which it is possible to draw this type of

information. First of all the online mapping sites often provide specific APIs to help

programmers to use the data within them. These should be considered the main sources

where take information since they usually attach to the simply coordinate information

to help the searching system and to improve that.

Even sites like, yellow pages, or the like can be useful because, often, alongside a range

of useful information easy to address, and often these are very accurate, also because

most of the time the owner of places put information.

Combining all these resources, you can create a versatile tool that can gradually build

a geolocation system purely logical and not associated with geographic coordinates.

Chapter 4

Eclipse and EMF

In order to design a complete IDE, flexible, multi-platform, extensible and integrated

with other frameworks, the choice of possible of platform to use is fairly limited.

The combination of Eclipse software and EMF framework turns out to be the best

solution because it has all the features listed above. Using this combination is possible

to produce a highly professional software, which can be easily distributed and integrated

with future implementations. Furthermore, the community nature of the Eclipse project

allows the developer to be able to use a wide range of solutions and tools that are very

powerful and effective.

For these reasons it was decided to use such a combination with the addition of XText,

a relatively new tool but very effective to produce DSL and tools to use it.

4.1 Eclipse

Figure 4.1: Eclipse foundation Logo

It is not very easy to define what

exactly is Eclipse. Eclipse is many

things: it is primarily a software, but

also a community, is an ongoing project,

but it is also a foundation. Quot-

ing directly from the Eclipse web site

[15]:

Eclipse is an open source community, whose projects are focused on building an open

development platform comprised of extensible frameworks, tools and run times for build-

ing, deploying and managing software across the life cycle. The Eclipse Foundation is

15

Eclipse and EMF 16

a not-for-profit, member supported corporation that hosts the Eclipse projects and helps

cultivate both an open source community and an ecosystem of complementary products

and services.

With regard to this project that it’s going to use is the ”Eclipse Platform”, which is a

complete development environment, modular, editable.

The reasons why it’s decided to use Eclipse for development of this project are different

and can be listed below:

• As it is said, Eclipse is a full and expandable, written in Java, and primarily

designed to develop in Java. Develop the project in Java port a whole series of

advantages which the use of libraries and constructs already available, but also the

peculiarity of obtaining a software multi-platform, i.e. the possibility to execute

in all the main operating systems.

• On Eclipse you can use other frameworks that enable and facilitate programming

with different techniques, such as model-driven approach or DSL development,

which is what will use in this project.

• Since the aim of this project is to develop an IDE, use Eclipse allows direct pro-

gramming plugins for Eclipse itself and create a specific development environment

fully customized on the basis of Eclipse. In other words, you can create a version

of Eclipse that implements the desired IDE.

• The Community nature of the project allows Eclipse to expose their work to the

community that can enrich it, use it and review it. This can lead to very different

future scenarios that increase the potential of the software. Similarly you can use

the material in the same community to enrich their own software.

One of the features of the Eclipse platform, making it the ideal instrument for the pur-

poses of this project, is its plugins structure. The paper ”Eclipse Overview” [16] says:

A plug-in is the smallest unit of Eclipse Platform function that can be developed and

delivered separately. Usually a small tool is written as a single plug-in, whereas a complex

tool has its functionality split across several plug-ins. [...]

Plug-ins are coded in Java. A typical plug-in consists of Java code in a JAR library, some

read-only files, and other resources such as images, web templates, message catalogs,

native code libraries, etc. Some plug-ins do not contain code at all.

Eclipse and EMF 17

Since the objective of this project is to develop an IDE for managing locations of a

pervasive game, the user interface is critical. The Eclipse user interface (UI) framework

makes arrangements which puts all the APIs necessary to build interfaces for plugins.

In particular, the framework is composed by using two general-purpose libraries SWT

and JFace.

The Standard Widget Toolkit (SWT) is a graphics library written in Java that provides a

basic set of graphical widgets with which you can build interfaces. It is used in most Java

projects and is the main tool for creating graphical user interfaces in that language. Its

peculiarity is to be very performed compared to other libraries (eg swing), most complete

and richest of APIs comparing with other libraries (eg AWT) and being a wrapper library

of graphical operating system (Win32 and WPF on Windows, GTK on Unix-like OS,

Cocoa on OS X) works seamlessly with it, while remaining OS-independent.

JFace is a high level library of written on the SWT, and provides a variety of tools

based on the concept of the Viewer. There is basically a subclass of Viewer for nearly all

the widgets in SWT, allowing an approach t high-level data displayed in those widgets,

proposing methods for updating and rebuilding themselves.

4.2 Model Driven and EMF

In order to understand what EMF (Eclipse Modeling Framework) is, it’s necessary first

define two specific concept: what is a model e model driven programming.

4.2.1 Model definition and UML

According with the Oxford dictionary’s definition [17] a model is:

a simplified description, especially a mathematical one, of a system or process, to assist

calculations and predictions

In computer terms, we can say that a model is a graphical representation, a diagram, a

table that represents a process, data, a concept, and so on. In computer science there are

a multitude of different ways to represent a model. Since the early nineties, mainly as a

consequence to the sudden spread of object-oriented programming and the development

of large and complex software, various corporations and consortia have tried to create a

standard for a unique language that would serve to model the various characteristics of

a software. But it would take until 1996 for the first version of UML (Unified Modeling

Eclipse and EMF 18

Language).

In August 2011 this language reaches version 2.4.1 which says [18]:

The objective of UML is to provide system architects, software engineers, and software

developers with tools for analysis, design, and implementation of software-based systems

as well as for modeling business and similar processes. [...]

One of the primary goals of UML is to advance the state of the industry by enabling

object visual modeling tool interoperability. However, to enable meaningful exchange of

model information between tools, agreement on semantics and notation is required. UML

meets the following requirements:

• A formal definition of a common MOF-based metamodel that specifies the abstract

syntax of the UML. The abstract syntax defines the set of UML modeling concepts,

their attributes and their relationships, as well as the rules for combining these

concepts to construct partial or complete UML models.

• A detailed explanation of the semantics of each UML modeling concept. The se-

mantics define, in a technology-independent manner, how the UML concepts are

to be realized by computers.

• A specification of the human-readable notation elements for representing the indi-

vidual UML modeling concepts as well as rules for combining them into a variety

of different diagram types corresponding to different aspects of modeled systems.

• A detailed definition of ways in which UML tools can be made compliant with

this specification. This is supported (in a separate specification) with an XML-

based specification of corresponding model interchange formats (XMI) that must

be realized by compliant tools.

Today the UML language include different type of models that represent different sub-

jects. The main diagram are:

• Use Case Diagram

• Class Diagram

• State Diagram

The UML is designed to represent any type of system, not just information technology.

Today, UML diagrams are used to represent any type of process or system such as eco-

nomic, productive, industrial.

Eclipse and EMF 19

In the context of computing the use of a modeling approach has led to an improved tech-

nique for programming and managing the implementation process. He also permitted

to establish a real programming technique called Model-driven.

4.2.2 Model Driven Programming

As described in MDA Guide by J. Miller and J. Mukerji [19] the Model Driven Program-

ming is: The Model-Driven Architecture starts with the well-known and long established

idea of separating the specification of the operation of a system from the details of the

way that system uses the capabilities of its platform.

MDA provides an approach for, and enables tools to be provided for:

• specifying a system independently of the platform that supports it,

• specifying platforms,

• choosing a particular platform for the system, and

• transforming the system specification into one for a particular platform.

The three primary goals of MDA are portability, interoperability and reusability through

architectural separation of concerns.

Basically, the MDA technique consists of representing all the software in the form of UML

models, and to make sure that these models directly reflect the software. In general tried

to create languages that are directly represented as models or even that the language

used to describe the model itself is the same that is compiled and / or executed. The

technique is premised on the absolute necessity to model the production process of the

software and, therefore, has as an objective speed up this process, avoiding the manual

conversion from model to code but by placing it as an automated, semiautomatic or

direct process.

One way to obtain a model that is partially or totally executable, is to use the union

between XML, XMI, and Java, which is precisely the technique that EMF uses.

4.2.3 XML, XMI, OCL

1 Extensible Markup Language, abbreviated XML, describes a class of data objects called

XML documents and partially describes the behavior of computer programs which process

1Partly recovered by the Project report [6]

Eclipse and EMF 20

them. XML is an application profile or restricted form of SGML, the Standard Gener-

alized Markup Language [ISO 8879]. By construction, XML documents are conforming

SGML documents [20]

XML is the most used markup languages in information technology. With XML is pos-

sible to represent data with tags and attribute. It’s used for exchange data or represent

that. Currently most of the markup languages on the web is a subset of XML (HTML

is an XML based markup languages). In the Code 4.1 there is an example of XML

document.

<?xml version ="1.0" encoding ="UTF -8" ?>

<tag attribute =" attribute value">

<subtag >Sub tag value <</subtag >

</tag >

Listing 4.1: Example of XML document

When data are represented with XML files often is present also an XSD (called also

XMLSchema) file. XML Schema Description is a xml file that describe which elements

are allowed for the type of data into the XML file. It’s also described the structure of

the various elements inside the XML data. For better understand what the difference

between an XML file and a XSD file it’s possible to draw an analogy with OOP (Object-

Oriented Programming) paradigm. OOP is based on two elements: classes and instances.

A class is the declaration of an object structure and its behavior. An instances of a class

is an occurrence of the object describe by the class. With this perspective an XSD is

the collection of the declaration of classes and an XML is the collections of instances.

fig. 4.2 show a better description of the analogy.

Figure 4.2: Analogy with XSD-XML and OOP class-instance

Eclipse and EMF 21

This analogy will be useful during the description of XSD-XML approach into the frame-

work.

Mapping Data on Model Driven Software

4.2.4 What is EMF

The Eclipse Modeling Framework enables developers to rapidly construct robust applica-

tions based on surprisingly simple models.[21]

EMF is a framework for the Eclipse editor that have the objective to create an IDE for

the model driven programming technique. The goal of the framework, which is written

in Java, is to give the possibility to design models and it automatically generate the

code that implements the model. EMF uses a subset of UML to define patterns that are

mostly class model. EMF has the ultimate objective of making it virtually the same code

of java classes, the UML model and the definition XMLSchema for data serialization.

Nothing change if, using EMF, first define the Java classes and then it’s got from it the

model or, conversely, if first designs a model and then want the definition of Java classes

for the same.

This allows a model driven programming that tends to optimize the working process

and to accelerate the production times. EMF combines, as stated, Java, UML and XML

in a single equivalent product.

Figure 4.3: Relation between XML, Java and Ecore Model

Eclipse and EMF 22

EMF provides a type of model called Ecore, which is itself a model and is considered the

metamodel to build other models in the framework (in addition to be the metamodel

of itself). Ecore model provides a number of elements to represent any model. The

Fig. 4.4 from the book Eclipse Modeling Framework second edition [21] illustrates the

elements of this metamodel. As the Fig. 4.3 1 shows there is a direct relation between

xml, Java code and Ecore model.

Figure 4.4: A simplified subset of the Ecore Metamodel

Therefore, using these elements, it is possible to draw any kind of model. In particular,

class models, where each element is an element EClass instance, an instance of each

attribute and each relationship an instance of EAttribute eReference. In addition, in

the moment of generation of the code for the model, each element will be implemented

as a subclass of the class Ecore and so on.

Another peculiarity of EMF is the ability to generate not only the execution code of the

model, but if, for example, the model would represent the structure of a database, it

gives the possibility to generate an editor for the instances of the model and therefore,

to create a new file type that serializes the instances of the model. The generated editor

(which it’s possible to edit) will be similar to the editor used to manipulate Ecore models

and can be installed as a plugin or distributed as a minimal version of eclipse. The Fig.

4.5 shows how is the ecore editor and also the ecore diagram, an useful tool that allow

the developer to see his model like a graph, as like as UML standard.

4.3 XText

2 In order to understand what xText is and why is useful for this project, is better

to explain what DSL is and why is important in this context. DSL is the acronym

1Recovered by the Project report [6]
2Partly recovered by the Project report [6]

Eclipse and EMF 23

Figure 4.5: The ecore editor and Ecore Diagram Editor in Eclipse

of Domain-specific Language and, as the name says, concern all the specific language

created for a specific purpose.

Xtext is a framework for Eclipse that permit to define a DSL and create an environment

for that. As the Xtext user guide explain perfectly [22]:

Xtext provides you with a set of domain-specific languages and modern APIs to describe

the different aspects of your programming language. Based on that information it gives

you a full implementation of that language running on the JVM. The compiler compo-

nents of your language are independent of Eclipse or OSGi and can be used in any Java

environment.

Chapter 5

Geographical and Location

Source: OpenStreetMap

1

OpenStreetMap (OSM) creates and provides free geographic data such as

street maps to anyone who wants them. The project was started because

most maps you think of as free actually have legal or technical restrictions

on their use, holding back people from using them in creative, productive,

or unexpected ways.

OpenStreetMap is a website where everybody can add geographical information. There

is a very big community works on this project and the data are almost updated. The

advantages of using this instead of other maps services is that being an open-source

project the data are directly accessible for everybody. So openstreetmap could be used

as other maps services website or it’s possible to help the project and adding data. As

shown in Fig: 5.1 Open Street Map is presented in a manner similar to many other

websites that offer mapping services, in addiction of the typical wiki layout. OSM in

fact, was born to be a Map wiki community. On the right you can find the text box to

search and links to project information and guides to take part actively or to use the

service. Above we have the core services that OSM have:

view is the main environment of OSM and the first that appears. In it you can browse

the map, using different rendering engines and display the search query.

1Extended from the Project report [6]

24

Open Street Map 25

Figure 5.1: Main page of Open Street Map

edit is the editing environment of OSM. Once logged in, you can enter your data and

update the map with their information or correct the information of others. There

are several tools to edit the OSM maps.

history displays the history of changes in the area you are viewing.

export is very similar view environment and allows you to select an area to export data

in different formats.

gps-traces collects the tracks that the various users have loaded so as to be possible

to used to draw the maps.

user diaries collects various travel diaries of the community.

In addition to this OSM provides a complete and comprehensive wiki on how to best

use all the tools available, and, finally, provides the API to use OSM in different envi-

ronments.

5.2 Open Street Map Database

The most important part of this work is the database. In the beginning it was based on

MySQL but after 2009 it switched on PostgreSQL. In the Db there are two tables for

each kind of data. One is the Master Table and the other one is the Current table. The

current table is a subset of the master table and contain the current data. The master

table contain also the history of each data. The Data primitives are the generic types

of data in OSM and for each type there are the two tables.

Open Street Map 26

5.1 Insert data process on Open Street Map

Like the Fig: 5.2 shows in order to put data on OSM it’s needed to follow some the
steps for adding geographical information to the system. To do that the ”uploader”
need a special software on this gps device to retrieve gps information (there are several)
and after write with hands, or using software tool to create the XML-like files with the
description of the region. If the document is well-formatted the OSM engine read the
data and render the region (there are also different render engines). After this the data
will be available for everybody.
Have a community support is useful because the amount of data is more than the other
close maps services and you can find information very update, also because the open-
source nature allow people to using this for other project and in these cases they add the
other information that they need. This is the case, for example, of Gløshaughen Campus.
There are lots of information about this campus because for other project, that focused
of creating an interactive map of the campus, they adding all the information that they
need.

Figure 5.2: Steps to add a map on OSM

NODES are the basic elements of OSM and define almost everything in OSM. The field

tags refer to an array of tags (in another table) that define the nature of the node.

TAGS are simply couples of key-value associated to each node.

WAYS consist in a group of nodes and it’s used to describe paths, ways etc... They

also have an array of tags but also an array of nodes. If the started node and the

ended node are the same it’s a CLOSE WAY or an AREA. Area are often used

for design building shapes.

RELATIONS connect nodes or ways with specific roles.

These three primitives build all the OSM dataset. This means that in order to distinguish

the nature of the various nodes, the only possible way is to use tags. For that the domain

of tags results quite extensive and the nature of the tags is different depending on how

they are used. Although formally tags are all the same, simple key-value pairs, the

different users, real or software, assign a different weight and a different meaning and

use them in various ways.

Based on this principle, then, by analyzing the domain of tags is possible to trace

Open Street Map 27

to several subdomains, entirely arbitrary and without clear rules, but maintained by

agreements. Mainly tags are used to represent the nature of a node, ie which class node

might belong. Obviously, a node can belong to several different classes, as for example

a node might have a tag identifying it as a bar but at the same time by another tag, the

connotation of room for events.

While the firsts are used to build families of nodes with the same characteristics (for

example, the graphical representation on a map, or for the search), other tags are used

to distinguish the various instances; in this way we could have tags describing the name

of a street or a building, a room, the number of entrances, which buses stop at a specific

stop.

Finally, other tags are used by specific applications for various uses. We can imagine,

for instance, a company with several locations around the world, wishes to use OSM to

create an interactive map of the company for internal purposes and/or external. In this

case you can find specific tags used by the company in question only to identify their

own buildings. Another example would be someone a bit ’too self-centered who decides

to sign with a custom tag all nodes inserted. Since the domain of a folksonomy tags

that is possible.

5.3 Open Street Map API

2 Since OSM is an Open Source project which brings together the different entities and

even big partners, tools and the possibilities of using OSM are many. So too are the

APIs. Currently there are three major sets of APIs:

XAPI is the first set of APIs created by a user and now provided by mapquest [23].

They are APIs for the read-only data that provide the possibility of search and

querying. The other sets of APIs are mostly based on this syntax. They consist of

HTTP GET requests where the keys are inserted as parameters of query. Return

a package which contains a HTTP osm file in XML.

Overpass API are an extension of XAPI that differ from the latter to have a real query

language, Overpass QL. Request are always made in the HTTP GET format and

are also compatible with the XML format used in XAPI. If using the Overpass

QL, query must be sent into the field data of the GET request.

JOSM is a Java software for editing OSM. Since it is an OpenSource project, it is

possible to use their own libraries of search and querying the database into other

2Non present in the Project report [6]

Open Street Map 28

software. In this case, the APIs are called by the methods of a class and re-

implement XAPI.

Except for JOSM that returns an instance of a class, in the other two cases the result

of a request is an XML file formatted in XML Schema (OSM osm extension). The

result will be just a subset of the XML database of Open Street Map, wich is also fully

downloadable.

As discussed, searches and queries must be made via HTTP request to a server. There

are different depending on which is the API, and you can, if desired, create your own

server by installing the necessary API version and downloading the entire database. In

general both APIs allow to request a set of nodes via the sending of an area expressed

by four cardinal points. Also you can make requests via tags. And finally, it is possible

to combine these two requests to get all the nodes in a specific region of a specific type.

In any case the result will be an XML file with a series of nodes.

// request bounding box with XAPI

http :// api.openstreetmap.org/api /0.6/ map?bbox

=10.39843 ,63.41414 ,10.41165 ,63.4201

// request bounding box with OverpassQL

data= node (10.39843 ,63.41414 ,10.41165 ,63.4201);

out body;

http :// overpass.osm.rambler.ru/cgi/convert?data=data=node

%2810.39843%2 C63 .41414%2 C10 .41165%2 C63 .4201%29%3 Bout %20 body%3B

Listing 5.1: Example of OpenStreetMap request

The Code: 5.1 shows a request of a bounding box that surround the Gløshaughen

campus of NTNU, in the two different type of APIs.

<osm version ="0.6" generator =" Overpass API">

<meta osm_base ="2012 -02 -22 T14 \:07\:03Z"/>

<node id ="31264142" lat ="63.4263262" lon ="10.3958034" >

<tag k=" alt_name" v=" Trondhjem "/>

<tag k="name" v=" Trondheim "/>

<tag k="name:de" v=" Trontheim "/>

<tag k=" old_name" v=" Nidaros"/>

<tag k=" old_name:de" v=" Drontheim "/>

<tag k="place" v="city"/>

<tag k=" source" v="earth -info.nga.mil"/>

<tag k=" wikipedia:en" v="yes"/>

</node >

<node id ="671401968" lat ="50.9730261" lon ="11.0279965" >

<tag k="name" v=" Trondheim "/>

<tag k="shop" v=" clothes"/>

<tag k=" wheelchair" v="no"/>

Open Street Map 29

</node >

</osm >

Listing 5.2: Example of OpenStreetMap API answer

The Code: 5.2 shows a typical answer of a request, in this case a node.

With these tools you can use OSM for all possible information on various places in a

specific region, and that is exactly what is needed for the purpose of this work.

5.4 Nominatim

The APIs of OSM allow to obtain a collection of nodes specifying an area (bounds) or,

operating on tags. In the case of tags, however, we must specify at least the key, making

the very specific query. This system, in fact, lacks of a semantic search, i.e. a search

that returns the nodes that have some tags or some parameter that matches or is similar

to query search.

To avoid this and to make OSM similar to other online mapping services, OSM provides a

project (also open source and easily installed on any server) that is focused on providing

a service called Nominatim.

Nominatim is a service that has, again like the API, a HTTP interface, which via GET

queries returns a set of information that are the result of a semantic query on the

database. Nominatim performs a series of queries based on certain tags (for the list

you can see the page [24]), tags, which mostly contain information about the names or

addresses, and then returns the data in xml or json but in a different format than the

data returned by the APIs or saved in the database. The code 5.3 exposes a simple

query to the service and its response in XML.

Nominativ, finally, provide also a service called reverse geocoding that aims to result a

specific address of provided coordinates.

http :// nominatim.openstreetmap.org/search?q=Trondheim&format=xml

<searchresults

timestamp ="Tue , 05 Jun 12 14:15:58 +0100"

attribution ="Data Copyright OpenStreetMap Contributors , Some Rights

Reserved. CC-BY-SA 2.0."

querystring =" Trondheim" polygon ="false"

exclude_place_ids

="128891033 ,184917 ,69612272 ,69623905 ,51503057 ,7140200"

Open Street Map 30

more_url ="http :// nominatim.openstreetmap.org/search?format=xml&

exclude_place_ids

=128891033 ,184917 ,69612272 ,69623905 ,51503057 ,7140200& accept -

language=en-US,en;q=0.8&q=Trondheim"

>

<place place_id ="128891033"

osm_type =" relation"

osm_id ="406549"

place_rank ="14"

boundingbox

="63.3037910461426 ,63.5188484191895 ,10.0044040679932 ,10.7260761260986"

lat ="63.4091124566799"

lon ="10.3442806402932"

display_name ="Trondheim , Sor -Trondelag , Norway"

class=" boundary"

type=" administrative"

icon="http :// nominatim.openstreetmap.org/images/mapicons/

poi_boundary_administrative.p.20. png"

/>

<place place_id ="184917"

osm_type ="node"

osm_id ="31264142"

place_rank ="16"

boundingbox

="63.416322937012 ,63.436326751709 ,10.385802497864 ,10.405803451538"

lat ="63.4263262"

lon ="10.3958034"

display_name ="Trondheim , Sor -Trondelag , Norway"

class=" place"

type="city"

icon="http :// nominatim.openstreetmap.org/images/mapicons/

poi_place_city.p.20. png"

/>

<place place_id ="69612272"

osm_type ="way"

osm_id ="70724671"

place_rank ="26"

boundingbox

="56.0665512084961 ,56.0667915344238 , -3.42122840881348 , -3.4209291934967"

lat ="56.066629370311"

lon =" -3.42103396739874"

display_name ="Trondheim , Halbeath , Fife , Scotland , KY11 , United

Kingdom"

class=" highway"

type=" residential"

/>

Open Street Map 31

<place place_id ="51503057"

osm_type ="way"

osm_id ="46275499"

place_rank ="26"

boundingbox

="51.8508987426758 ,51.8515129089355 ,4.50965213775635 ,4.51104021072388"

lat ="51.8511993825579"

lon ="4.51021507633146"

display_name ="Trondheim , Vaan Park , Barendrecht , Stadsregio

Rotterdam , South Holland , 2993 LL , The Netherlands"

class=" highway"

type=" unclassified"

/>

...

</searchresults >

Listing 5.3: Example of Nominativ query and Answer

5.5 Other Possible Sources

Since Open Street Map is a community, day by day, increase the information and this

nature put this source in the position to be perfect for this kind of service.

Nevertheless, you can add other data sources that allow you to enrich and refine the

process of conversion from logical information to geographic coordinates.

Data sources that may be suitable for the purpose could be:

• yellow pages sites (such as gulesider.no, the site of the Norwegian yellow pages)

• sites of tourist guides (as full of information about places and often with indexing

and very rich classification)

• online encyclopedias (very rich in information and often they associate to the

description of the places the coordinates)

Combine different sources can be done by building ad hoc modules to extract data and

then design a system to merge this data into a single source. This most likely would

require an internal database, with all the problems that result from it (data inconsistency,

freshness of data, database size etc...)

Part II

Developer of the IDE for logical

location of pervasive games

32

Chapter 6

Production Process

In order to develop better all the objectives of this project, we started from the idea of

what should result and then go up in a bottom-up technique to try to understand what

is needed and, in the discovery phase of the elements that constitute the end product

has been changed, added all that was necessary and eliminated what was superfluous.

First, it must be clear what will be the final result. The objective of this project

is to develop an environment and a DSL for the development of pervasive games. In

particular, in the context of this specific study, the objective is to develop an environment

and a DSL for the declaration of the places affected by the pervasive game. As previously

mentioned a Pervasive Game inevitably need to specify the various places where it

will run. Finally, a additional request, was to make these statements is completely

independent of the coordinate system or the specific location of a place

To summarize, therefore, the end products will have to be:

• Development Environment

• DSL

• Independence from specific geographic locations

Finally, it is good to think about what the process of creating the game, or at least the

party directly affected the game in order to imagine the elements and products that will

produce the IDE and the DSL. The next chapter aims to understand precisely what

process leads to the development of this document and what are the necessary elements

to it.

33

Production Process 34

6.1 Process Study

In the realization of a pervasive game the definition of locations is a fundamental part.

This definition can be done directly by entering the coordinates in the code when they are

needed. This approach, however, includes a series of disadvantages, such as for instance

the review of the code in case of changes in the coordinates, errors, modifications of the

game, etc..

The next solution could be to create aliases for the coordinates in a single file and refer

to the sites using these aliases in the code.

Figure 6.1: Simple process flux

This approach is the beginning of a modular approach. Places are not directly defined

in the code but in another file. This provides a better and easier code review. As shown

in Fig. 6.1 this approach can be extended by making the conversion between aliases

and real coordinates at runtime. In this way the game can be modified without nec-

essarily recourse to recompilation (if the game is written in a compiled language). In

addition, this next step we open the doors to a relocatable vision of the game, because,

simply changing the aliases file you can edit the places where the game is run. From

the programmer’s perspective, this approach, although with some positive aspects, how-

ever, poses several difficulties, mainly related to the retrieval of physical information

(coordinates) and in the drafting of aliases for each physical location.

Figure 6.2: Process flux with automatically retriever of physical information

Production Process 35

The Fig. 6.2 shows a further improvement of the process of creating the game. In this

case the programmer during the development phase refers to the places using a special

document. In this document the places are defined in a logical manner, avoiding as much

as possible to refer to existing locations, but referring to them in a logical manner. This

approach further consists, therefore, the use of an automatic system and one or more

external services that are able to convert the logical information that the programmer

provides in the document in real references. In this way, during the development phase,

the programmer will refer to the various locations during the writing of the code by

reference to an external engine which when attached to the logic of the game will be

able to use the logical descriptions of the places provided by the programmer in places

existing at runtime and return these places to various location systems. We imagine, in

fact, that the logic of the game itself is separated from the location system of the player

and, therefore, to such a system is only necessary to send the coordinates.

This approach raises, therefore, the developer in the position of having to choose the

locations of its game based on logical and qualitative criteria, and not on to geographical

coordinates. This development philosophy lays the foundation for a vision of the game

relocatable. Defining, in fact, as the concept of region, a particular physical space,

represented by a rectangle of coordinates, or also in a logical manner, it is possible to

find places ”logically” similar in different regions. To better understand this concept,

it should give an example. If we mean a city region, we can safely say that the places

described in a logical manner as a ”Town Hall”, ”Hospital”, ”Marketplace”, ”Church”,

we can easily imagine that, once decided the city region in which you want localize the

game, is not too difficult to think that the game can work in a different city, because

most cities have the same type of places described. The same would not be easy in the

game if we had used the coordinates of the various places, and even using also alias,

because the developer would have to be to look for various coordinates.

Finally, this approach, which dissociates from the physical locations, also allows to

dissociate the technology used to identify the location of the player. Until now there has

been talk of coordinates since such a system is the easiest, intuitive level and technology,

to identify a location. This does mean that we may use other technologies such as image

recognition or qrcode, or via cell phone. If the conversion system is associated with

an outside service that returns this information, the developer does not have to worry

about the conversion.

At this point in the process, what you should cover the developer is to be able to describe

locations in a logical manner so that the data source is able to convert them into physical

information. The developer have to know the source data, how to manage them, and

what information is useful in order to generate the same places that he has in mind.

Production Process 36

Figure 6.3: Process flux with automatically retriever of physical information

Assuming that the studio work of the datasource is made by the same team that provides

the conversion system, the Fig. 6.3 shows the final process that wants to reach. The

programmer in this case uses a special IDE to write the document that describes the

places in a logical manner. This document, written in a pseudo-language query, will be

associated with a specific taxonomy of places. The taxonomy is provided according to the

type of region and is composed of classes of places. Each class has inside information

to give to the conversion service to extract data from external services and build an

instance that represents the physical location to associate with the runtime of the game.

In this way, the developer defines with the QL places in a logical manner specific to one

type of region, avoiding references to existing places. The system takes this document

and the taxonomy of the region and generates a file with instances of the classes of places

associated to the specify region. These instances convert to real places will be given to

the game at runtime.

The study shown in this chapter, is therefore essential to the development of a specific

IDE and the definition of a series of documents, in particular three documents:

Region Model that describe the taxonomy of a specific model of region. In that model

it’s the taxonomy of classes and the tags used for describe these. For example

a model of region could be a model that describes a university campus with a

taxonomy that include rooms, auditoriums, study rooms, cafe, library, canteens.

Region Model Instances Document this document will describes the different in-

stances of taxonomy classes in a specific region. It depends on a region model

document and it will be automatic or semiautomatic generated by specific engines

that querying the different sources. In this document the description of places

is only logical and it does’t have any reference to physical information. To con-

tinue the example of a campus this document will contain the logical structure of

Production Process 37

a specific campus with the name of the rooms and logical attributes descriptors

(number of seats, furniture etc..).

Location Document this will be the final document linked with the game levels de-

scription document. It will contain descriptions of places that the development

team want to use in their game. This document it will write with a domain

specific languages and it references to other of two document types. With this

references it will be possible to create an environment that suggest type of avail-

able places and specific places in according with attributes that the team want

for places. This document have to have a pure logical nature (without physical

references) but it should give the possibility at the team to specify specific places

using region documents.

Separate information in different file is an application of the modular approach, widely

used in various information technology areas.

This modular approach allow to create different location that using the same model or

change some aspect of the model without changes the Location document. In addiction

is essential for reuse the Location document because, only the Region Document contains

information linked with a specific region. With this modular techniques is more easy to

create games that can be adapts to several Regions.

Another aspect is that does not put all the possible Taxonomies in one unique file but,

has different files for each type of taxonomy. This is better for two reasons:

first because the game developer can choice only the taxonomy fits better for his game,

and that make the game lighter;

second because this allow to create future taxonomy for other type of region, so could

be upgraded in future.

Modular approach is useful also for the process of creating Region Document. With this

modular approach is possible to generate Region Document in a (semi)automatic way,

and this is essential, especially because this kind of documents need to be upgraded

when the different sources have more fresh data. A region in the real world is much

more different compared with a virtual world. In a virtual world things changes only

if the creator of the world want to modify something, and he will change for the game

purposes.

In the real world places constantly changes and so it’s necessary to be able to upgrades

the Region of the game without changes anything else. In this view is useful that the

instances of games continue to use this document and don’t convert in a document

Region Model 38

with real references. In order to develop better an integrated IDE that gives the

opportunity to work with these and other types of documents, for the reasons explained

in Chapter 4 has chosen to use Eclipse and EMF, the framework for model driven

development. Using these two tools is suitable in order to achieve the stated objectives

have required the definition and development of various elements, including:

• A model defines the structure of a Region Model Instances Document

• A model defines the retrieve resources process

• An UI permits to work on that kind of resources and documents

To better understand, however, precisely how to develop these elements, first of all, it

will be well to consider the definition of the Region Model and how to retrieve and use

resources, a subject already discussed in the Chapter ??.

6.2 Region Model

The Region Model (RE) is a document that describes the structure of a specific region.

It contains a description of possible types of place that the region can hold and the

interactions among the various. RE is essentially an instance of the metamodel fig.

6.4, where it is possible to see that each class can interact with another class through

two relationships:

• subclass: indicates the inheritance relationship. A subclass of another class in-

herits all the attributes and relations with the tag that has the superclass.

• contain: indicates the relationship for which a class of places may contain within

it other places in the class. For ”contains” it is meant that physically or logically,

the place can be found inside the other location that contains it.

This model then allows us to build a taxonomy of a region by defining classes of places,

subclasses, and indicating, which may contain other places.

6.2.1 Why using a Taxonomy

Before describing why it was decided to represent a certain class of regions with a

taxonomy of classes of sites is good to expose in more depth the concept of taxonomy

and the role in this situation.

Region Model 39

Figure 6.4: meta-Model for Region Model

Definition of taxonomy and Why using it A representation of all individual

components and their relationships within a finite group, using a predetermined method

and rule. It used to be static, predetermined, based on specific rules, without any

redundancies, often with model driven approach.

Within this project, it is useful to define a taxonomy when we model a region. In this

way we could create a hierarchy among the various classes of places and facilitate the

search and the localization of places. This is also useful to the final developer because

having a hierarchy based on which, it is easier to choose the class of places that best

suits the purpose.

What is going to create is, therefore, a taxonomy of classes, that is very close to the

concept of inheritance in object oriented programming.

In a taxonomy, first, there is a general classification (all places are ”places”) and gradu-

ally builds a tree of groups and subgroups, where the elements have common character-

istics. If we consider as characteristics common attributes and methods, this is nothing

more than create a class and subclasses that inherit characteristics from the main one.

In our taxonomy, there are two levels of interaction with each element can have. The

first is to subclassification, which is entirely consistent with the concept of inheritance

Region Model 40

found in object-oriented programming. This first deviates from inheriting relationship

between elements in some languages, in that, poses no limit to the number of elements

that interact. In other words, a class can be subclass of more than one element.

The other type of interaction is called ”containment” and represents the physical pos-

sibility that an element of a class can contain inside it an element of another class.

Being that our elements are places it is possible that a place inside it may have some

other elements. Imagine a class of places ”city”, ”mall” or ”university”, all these places

have other elements in them (shops, bars, bathrooms, classrooms, etc ...). This type

of relationship, which in fact is another type of taxonomy is less close to the concepts

of object-oriented programming, but can easily be represented in it with a variety of

different structures (arrays of pointers, maps, etc ...).

The ability to see the taxonomic classification used for the places, from the point of

view of the object-oriented programming, much ease the construction of data structures

which represent the elements.

Describe a model of the region as a taxonomy ff classes allows us to classify the possible

locations for this region in a logical matter and help the construction of a logical structure

of the region.

RM by defining a taxonomy allows adapt this model to a model-driven structure and

therefore facilitates the definition of tools for creating and managing it. Furthermore,

from the point of view of use of such a model for the definition of place documents,

the taxonomy makes the search and selection of the various elements more effective.

Taxonomies tend to be inflexible and are likely to force you to redo all the work again

in case of large changes. But, since the modular approach has been what it’s chosen to

follow, this is not a major obstacle as such taxonomies will, mostly, specific to a type

of region and, therefore, not large, and without a large number of elements. Indeed,

the modular approach tends to suggest precisely to avoid documents that describe large

regions.

In the case where the game present the need to have a wide range of possibilities, it may

be appropriate to use more models of the region in the same place-document.

6.2.2 How to represent a Region Model

In order to build a DSL for the development of pervasive game must be possible to define

the various RM in order to give effective tools to the end developer. Furthermore, the

same developer, will have the chance to create his own taxonomy for a region when the

the existing ones are insufficient.

To create the appropriate tools for define RM documents, it should first decide how the

RM will be defined. Having chosen to represent the region as a taxonomy of classes of

Region Model 41

places, it is natural to use the model-driven approach which shows that RMs will be

a model. To represent this model there are a variety of different techniques. In this

case we will focus on two possible implementations and finally draw the conclusions

about which is better to use. The two techniques are in particular, the definition of

a DSL specific for the Region Models or the use of the Ecore architecture as

a representation of the metamodel.

In order to show the pros and cons of the two techniques it will use a generic university

campus as an example of region, having, classrooms, offices, auditoriums, laboratories

and all the necessary services.

6.2.3 Region Model with DSL

One way to create RM is to define a DSL act to this. The code 6.1 shows the beginning

of an example of how a document could be with using a special grammar studied for

that (to see the entire document ...). This syntax allows you to write quickly and if the

taxonomy editor that uses syntax is modeled on that in a few seconds, you can define

complex taxonomies. The flaw in this approach is that it is difficult to adapt these

documents in different contexts and it’s not very easy to extend or using in alternative

meaning.

region campus

class Education {}

class Campus subclass of Education {

attribute name : String ,

contains{

Library ,

Room ,

ATM ,

Parking ,

BusStop ,

Reception ,

SportCentre ,

Cafe ,

BookShop ,

Canteen ,

}

}

class University subclass of Education{

attribute name : String ,

attrubute city : String ,

Region Model 42

tags{

{’amenity ’,’school ’},

{’building ’,’university ’}

}

}

class Service {}

class Room subclass of Education {

attribute room_number : Integer ,

}

class MeetingRoom subclass of Room{

attribute name : String ,

attribute n_student : Integer ,

tags{

{’room_type ’,’group ’}

}

}

...

Listing 6.1: Example of Region Model DSL

6.2.4 Region Model using Ecore

In order to you Ecore architecture to represent our model is useful to associate the

various concept of the Ecore Model to our meta model. In particular we will not using

all the Ecore framework but only a part. The Table 6.1 show which elements of the

Ecore architecture will be associated to our metamodel.

Region MetaModel Ecore Elements

PlaceClass EcoreClass

subclass rel. Inheritance

Attribute EAttribute

cointain Cointainment relationship

Tag EAnnotation

Table 6.1: Associaton from Region MetaModel to Ecore Elements

That make easy to adapt our meta-model to various type of application and help to

create other tools using Ecore framework. And also it allow to use EMF to design the

various taxonomy like Fig. 6.5 show.

Region Model 43

Figure 6.5: Region Model of a Campus designed with Ecore Diagram

Region Model 44

One things that we can notice about the two approach that the first can be a subproduct

of the second. Is possible, in fact, to use the Ecore framework to generate file in a specific

DSL that describe an Ecore architecture. Using Ecore is also simple to create Region

instances documents that are nothing more than collections of Instances of the EClasses

using for described Place Classes. For example the Fig. 6.6 show an xmi for the model

of campus that it’s used for example.

Figure 6.6: Xmi structure of a instances for the Campus model

In order to better integrate the production model of the region in this project will use

the model form of Ecore for several reasons. First of all, the possibility of having the

model in the form of Ecore provides, in an automatic manner, even the existence of a

XMLSchema, which integrated with the XMLSchema of OSM or other sources, makes

it virtually automatic the data extraction from these sources. Furthermore, as already

said, using the Ecore model, it is possible to easily associate with such a model a DSL,

and therefore, describe these models with a very precise language which returns an

Ecore.

Finally, it integrates perfectly with the other sections of the project where this part fits.

At this point, defining as ”middle programmer” who produce models for the various types

of regions, it will have provisions to different environments in order to generate the latter.

One possible solution might be to extract data sets from various sources from different

regions that may be existing instances the model that you want to create, and allow

the software to an intersection operation data, to find possible classes of sites, common

to the various regions. Once this portion of data, manually constructing the taxonomy

according to criteria defined from time to time. The software can automatically create

an Ecore already with all the classes of places and give the ”middle programmer” only

the burden of deciding the relationship.

Region Model 45

6.2.5 Defining Element in the Region Model

In order to create a useful model is necessary to clearly define what can be an element of

the taxonomy and what not, i.e. what classify and put in the model and what to leave

out.

Also, since each model’s class will be associated with a collection of tags it’s needed to

use a systematic method to choose which tags to associate with a class.

A method to create the model is to use one or more instances of the region and consider

what elements are present in these regions and how they are described (with tags which,

how many nodes, etc ...). Once this study has been done, you can begin to create the

desired taxonomy. More will be the instances of the region considered, there will be

more likely that the model represents efficiently also other possible regions.

During this study (which can hardly be done automatically) is possible has difficulty in

selecting the most appropriate tags for a given class. As mentioned in Chapter 5.2

tags are the only way to identify the nature of a node, but they have different functions

without considering that, being based on a folksonomy, it is far from said that a tag is

always used appropriately or always used to identify a certain type of element.

For these reasons a detailed study on the nature of the tags for a given element is

essential in order to create a usable model. To this issue is also added that the disparity

of information. If for example we consider of the region as a model of the University

Campus and select different campuses around the globe, we will immediately see that

by looking at the data extrapolated from various sources, they can be very detailed and

very poor for a campuses to another. A model that represents a region too small (in

terms of geography) may be completely unusable on some instances of the region for

pure lack of information linkable to classes.

In conclusion to create a model for a region is necessary to study more samples of the

region and look for the best possible intersection of possible tags for each item so as to

have more class-instance pairs as possible.

6.2.6 Region Base Model

Since the IDE will use directly Ecore model to represent Region Model, in order to use

that we cannot image to create for each Region Model a Generation project in EMF

and a plugin itself. In that case the work of the developer will be much more and there

will be a specific IDE for each kind of Region Model, and that is absurd.

In order to create a unique IDE that can use ecores to represent region models we need

Region Model Instances Document 46

another model, similar to the ”metamodel” showed in Fig 6.4, but more generic that

have the only two purposes: first to give a way to recognize if a generic ecore file could

be considered a Region Model; second to link the selected ecore to the file with the

serialization of the instances.

This model it will call Region Base Model and will have the structure showed by Fig.

6.7, and will be the model using by the EMF generation project for generating the code

for the IDE.

Figure 6.7: Region Base Model

This model imposes that every ecore want to represent a Region Model have to have at

least one classes subclasses of Region that will indicate the main containment for the

other classes. In other word, there will be a classes of place that represent all the region

and where all the other classes are contained by that.

It also have another class that will be superclasses of all the classes will have ”name” as

a attribute, to make the collection of tags for that purpose not redundant inside every

Region Model.

The Fig. 6.8 will show the same structure of a model for University Campus showed

in Fig. 6.5 but with the connection between this and the base model.

6.3 Region Model Instances Document

The IDE, which will be described in Chapter II will use the Region Model Document

described in the previous chapter, and the data retrieved from the source/s related to a

specific region in order to create the so-called Region Instances Document Model

(rmi).

This document, then, will contain the instances of various classes of places in taxon-

omy of the Region Model, refer to the specific region for which data will be extracted.

Region Model Instances Document 47

Figure 6.8: Campus Model with the links to the Base Model

Having decided to use as the implementation of the Region Model the Ecore model, au-

tomatically make the new document, neither than a xmi file, containing the serialization

Region Model.

To better understand the nature of this document and its use is necessary to make an

example. Imagine using the model of campuses displayed in Fig 6.5 and, suppose now

you want to use only OSM as data resource. Imagine, then, you want to generate the

rmi on the campus of NTNU in Trondheim (Norway) called Dragvoll.

Of course, it is necessary that the classes in the region model, will be associated with

tags and that them will be consist with the source and consistent with the study done

on that campus and on campuses considered similar.

Once this is established the process of building the file rmi consist simply in traversing

the data collected from the source and for each element of this collection attempt to

Region Model Instances Document 48

Figure 6.9: Example of element in the rmi

find which class of the taxonomy could be matched. Better is the creation of the Region

Model and its study described in the para 6.2.5, much more will be the matches

between the sources data and the classes taxonomy.

Figure 6.10: Auditorium class in the Campus
Model

During the processor of creating the in-

stances, for each classes the process will

try also to using the tags structure in

the sources data to collect information

for compiling the attributes define in the

class, if present. The result will be a col-

lection of instances very different from one

to another, because of the different nature

of the classes. The Fig. 6.9 shows an

example of how could be a generated el-

ement in the rmi file, using the interface

standard of EMF. That rmi was generated

using the Campus model shows before for

Region Model. As you can see not only

the instance of the class will generate but

also the software will collect all the possi-

ble information from the tags in order to

compile the attributes specified for that class. The Fig. 6.10 show how it’s define the

class in the campus model.As you can see the attributes (from Auditorium class and

Room class) have indicate, like annotation, which tags have to use to collect the infor-

mation. It’s possible to see that the main difference between tags using for recognize

the classes and tags using to fill out the attributes, is that the last one don’t have the

Value’s value. That because the value itself will be using like the information.

Region Model Instances Document 49

As described in the para 6.2.6 the rmi is a collection of instances of the selected Region

Model but have to have at least one instances the class region in the Base Region Model

so it can be shown on the editor in the proper ways.

6.4 Location Document

The Location document is the final result of the whole process, which, once processed,

will be joined with the other documents of the game, especially to the document that

defines the various levels and tasks. Once defined, or recovered, the Model Region, and

once chosen a region and generated the RMI, it possible to start drafting the Location

Document.

When choose to create a new Location document, it need indicates the files of the Region

Model (Ecore file) and RMI of the region selected. At this point the DSL is configured

and it possible to write to the Location Document according to the structure defined in

the Code 6.2.

name <name of the location document >

model <ecore file with the region model >

region <rmi with the region instances >

places {

place <identifier of the place > is <main container class >.<subclass

>[. place in the rmi]

[nearest <identifier of place| <class or subclass >] [and|or]

[width <attributes of the class > <operator > <value > ...

}

Listing 6.2: Structure of a general Location Document

In practice, places contains a collection of locations named with place. Each place has

a unique identifier that is used in the other documents within the game to refer to the

specific place. After is defined the type of place that can be a class in the taxonomy

(the editor, once defined the Document Region, will display the possible class) but can

also be a specific instance in the RMI file. This gives the possibility to choose a specific

site in the target region but also to leave to a heuristic in the software to choose the

instances by defining the class. The advantage of not simply declare the instance but

the class is being able to reuse that file for different region who share the same Region

Model.

After defining the type of place it can define additional parameters to ensure that the

heuristic will select the instance in the file may have multiple rmi parameters and choose

Region Model Instances Document 50

the location closest to the idea of the programmer. These rules typically consist of two

types:

The first is defined with the keyword nearest followed to an identifier of another Place

defined in the document, of a class of the taxonomy, or of an instance in the RMI. This

rule binds the software to choose between the instances of the class chosen only the one

closest to the constraint. Suppose you want to define as place a bar and in the region

there are more than one, and you want the bar near the bus stop, with this rule you can

define exactly the bar closer to that station.

The second rule allows you to make a selection on the attributes of the selected class.

In this way you can narrow the range of possibilities and possibly narrow it down to a

single element if the combination of attributes is sufficient.

These rules may be more than one and joined together with the terms AND, OR, and

NOT.

Once defined the place the editor provides an validator that in addition to checking

the grammar, informs the programmer of the possibility that one of the places do not

have a match in the file rmi. In this case it may mean that the program failed to find

a correspondence between the class chosen, the rules defined and instances within the

region.

Once the document is valid, you can generate an XML file containing the place referred

to by their identifier, geographic coordinates, obtained from the source data, and other

information useful to the game.

This is the file that the game will refer to when evaluating the position of places, com-

pared to the player, or simply for viewing.

Chapter 7

The IDE

The project’s IDE basically consists of two editors, with the corresponding wizard. The

first editor mainly concerned with the management of the Region Model and generation

of RMI files. The second editor instead offer a user friendly environment in order to

compile the Location Document.

The first editor is a plugin generated with the EMF framework, the second one instead

is a DSL design with xText.

7.1 Region Model Instance Editor

Figure 7.1: RMI Wizard

This editor allows you to generate the

RMI for a specific region. But beyond

that, has a convenient interface to man-

age the model selected in order to create

a file as useful as possible.

Once you have decided to create a new file

RMI starts a wizard that allows you to set

the initial working environment.

After a page to decide the name of the

file and to associate it with the project, a

window shown in Fig srf fig: rmi-wizard

allows the selection the Region Model and

the initial region by a map.

It has a widget that displays a map of

OSM (the widget is drawn from a project

51

The IDE and the User Interface 52

that aims to create an interface for Open-

StreeMap in Eclipse [25]). A text box allows you to move the map on a point, writing

an identifier for that point. This function is implemented by making a GET request to

the service Nominatim shown in Sec. 5.4, and once you got the result it is parsered

by a simple XML parser that selects the first coordinates available in the document

and after the move coordinates on the map above. This heuristic is based on the fact

that Nominatim sort the results nodes in a descending order according to a value that

represents the level of consistency to the value of the query.

Below the map there is a selector that allows to select the Ecore file with the desired

Region Model. After finishing the wizard, the editor for the Region Model Instance

Figure 7.2: RMI Editor first tab

Document appears. It consists of four main parts. The Fig. 7.2 shows the first of the

two tabs that compose the editor. This screen is divided into three sections. On the left

there is a tree view that give the possibility to edit the Region Model in the ecore. In

the center there is a map, always implemented with the widget described above, which

allows you to select the region which the data have to extract for the generation and

also displays the location of the nodes selected in the section below. In this last, in fact,

appear in the form of tree the data results from a request to OSM of the region that

appears in the map, when you press the button ”Load Region”.

This part has provided the ability to filter the nodes by a string. This filter acts on the

tags associated with each node and displays only the nodes that have a tag which at

least the key or the value corresponds to the given criteria.

The IDE and the User Interface 53

At the top there is a text box with a function identical to the one included in the wizard,

that is to jump up the map to a specific point.

Once the model is defined and that the data of the desire region is loaded is possible,

via an entry in the drop-down menu at the top, it’s possible to populate the RMI file

with instances generated by model and region.

The function, that generates such instances, work by iterating twice the osm file with

the nodes of the charged region. For each node searches for a corresponding class in the

model region, equating tags owned by the node with the annotations within each class.

If the node match with a class, an instance of that class is generated and added to the

collection, otherwise the node is discarded.

After generate all possible instances is started a second cycle, always on the nodes of the

region, which aims to collect data within the tags to populate the attributes, if the class

have any, of the various instances. When this cycle ends, all the generated instances are

written in the rmi file.

The second part consists of an extension to the Editor Simple Reflective Editor, already

present in the EMF framework. This is made to allow the programmer to see the

instances generated by the editor.

The fig ?? shows what it looks like. As can be seen depending on the type of class,

there are icons of different color right to display that there are instances of different

nature. It is possible to notice also in the box, Properties that all the attributes of the

class are carefully compiled from the osm data.

Figure 7.3: RMI Editor second tab

The IDE and the User Interface 54

7.2 Location Document Editor

The editor for the Location document is a simple text editor with auto-complete function,

evaluation of grammar function and generation of files with real physical locations data

of the Places selected and entered in the Location Document, as explained in Par ??.

Once selected a new document a wizard appear,and, after the usual screen for entering

the name and to choose of the project, there is another window that allow to select the

ecore containing the Region Model and the RMI file containing the instances for the

region (this selection is optional if the programmer want to work with only classes but

will be request when he tried to generate the final file.

After the wizard, an editor similar to the classic Eclipse Java editor allows the developer

to start compile the Location Document in accordance with the rules explained in the

Par. 6.4.

Whenever it start to declare the class of membership for each Place, a drop-down menu

will suggest which classes use, based on the taxonomy contained in Ecore through a

behavior quite similar to the selection of classes during writing Java code.

Once finish to write the Location Document, through the Validate option int the menu

at the top, it’s possible to validate the document.

The validation, consider the grammar, and, also, tries to generate the file of the real

locations, if an RMI file has been selected, searching for every Place an instance de-

clared in the rmi file to associate. In case this should not possible, ie if the function of

association could not find a suitable instance, an error is displayed with reference to the

place that is not associated.

In particular the method that validate this document operate as followed:

• If the Place had explicitly stated the instance, and associates the following changes

to evaluate the next Place.

• If only the class is declared, search for all instances with of class and will choose

the first match.

The error will be displayed only if for that class any instance are present in the

rmi file.

• If there is the nearest rule, the function works as in the previous case, but, instead

of returning the first instance, it will search the instance with the closest coordinate

to the point specified in the rule.

• If there is a rule for the attributes it valuate the condition and the error is displayed

if any of the possible instances is consistent with the attributes highlighted.

The IDE and the User Interface 55

Obviously this control follows the previous one, though both declared, and does

not run if any of the above checks has already give an error.

Finally, when the document is evaluate is possible to generate the file to associate to it

with the information of physical places.

Part III

Conclusion

56

Chapter 8

Summary

The work described in this document had the aim to realise an IDE for the location

definition, part of a entire framework for developing pervasive games.

In the first phase the work for focused in the choice and study of the tools to use, followed

by an in-depth study of the data source and how to interact with that.

In the second phase there was the discover of the result to produce and the design of

the production process for this result. This phase was useful also to redefine and revise

the tools to use and how to implement properly the IDE. In particular to identify the

elements to develop in the user interface and which function needed to develop.

In the third phase there was the production of the various parts. In particular the

creation of the editor and the function for populate the Region Model Instances. After

there was the creation of the wizard and the other editor for the Location Document.

Finally there was the testing phase (that was also in the other phases in order to create

a functional editor step by step) and the review statements.

57

Chapter 9

Practical Utilization of the

framework

The framework devised and described in the preceding pages has been designed, as

mentioned in the introduction, in order to provide an instrument which simplifies the

definition of the locations for a pervasive game. In the context of the pervasive game,

this is the perfect framework to define the location of a game task, a treasure hunt or

similar, i.e. those games where the achievement of a location is an integral part of the

game and not just a boundary condition .

The framework may also be used in games where there is not the existence of a path or

the need to achieve necessarily the locations. For example, it could be used to define the

position of objects or targets in the context of a shooter pervasive. Or, again, one can

use it to decide the positions of virtual opponents in an RPG with pervasive augmented

reality. Extend the area of software application outside entertaining, this framework can

be used to manage the positions of virtual tour guides for cities or monuments.

A possible application, for instance, would be made by defining with the framework a

tourist guide of a city and use the logical information for extract information directly

from Web resources for each attractions.

As can be seen from the above examples, the field of applications of this framework is

quite wide and its peculiarity to provide the programmer the ability to use patterns and

settings already programmed in different places, changing only the region and recreating

the file locations, also makes it a very versatile tool.

Finally, the IDE design could also be used in tandem with navigation systems in order

to create ”smart” routes starting from logical information. For instance, it possible to

build an application that, given the point of departure and arrival, build an itinerary

based on preference settings that the user chooses.

58

Chapter 10

Future development

This IDE project was to be part of an entire framework for the development of Pervasive

Game, which is being developed within the University. The project, due to its size, has

been divided into several parts, similar to this. The first development that should be

implemented, would be to combine these projects into a single product, which requires

a study to standardize the various products obtained from different part.

But, since this IDE is complete and working, it could be integrated into other frameworks

for building other types of application, as suggested in the previous chapter. To achieve

this, the possible outcome could be the addition of other sources of information, as

other topographic sites, and sites containing private information, such as yellow pages

or similar.

As described in the document prior to this project [6], another development could be the

implementation of a system to use the time dimension,instead of just the spatial. Would

it be possible, therefore, associate tasks of the game to cultural events or entertainment

so that the game can be played in specific time periods.

Imagine, for example, the creation of an interactive digital game that takes place during

a music festival. The tasks may be, for example, collecting for different events, specific

pictures (such as ”during the concert of that singer must be able to photograph the

face of the bassist) and link the game to an image recognition system. In order to do

this, added to the framework data sources like website of events or calendars, could be

a remarkable development.

A further development, may improve the system of creation and modification of the

Model Region.

Could be constructed a tool to build a semi-automatic skeleton of the model and opti-

mize, then, manually. The tools would take as input XML files returned by OSM for

59

The IDE and the User Interface 60

various regions and select the nodes that have common tags and build a class specifically

for each set of nodes with common characteristics. In this way, the model, once refined,

could certainly be used for those regions from which it is extracted. This would facilitate

a lot the design of the region model that to the state of art is only possible from scratch.

Finally, integrate the system with the possibility of modifying the data of OSM, could

facilitate the work of the developer and enrich the OpenStreetMap project. For instance,

when the programmer is not able to match a model’s class with the place he want to use

in the game, because that place does not have the right tags suitable for this purpose, not

for a lack of consistency with them, but simply because of gap in the OSM database,

could be good to have an easy way to add these tags directly in the OSM data. It

would benefit from this system and the entire community that uses the OSM as a simple

mapping provider, or for the other possible applications.

Chapter 11

Personal Conclusion

Working in a completely different environment like the University that host my project

was a very useful and constructive experience. In particular working together with highly

experts was very interesting and made me able to learn how to work efficiently.

The subject of the project was very interesting and taught me a lot about sector of de-

veloping that I did not know before.

I’m grateful to had the possibility to face with a professional work and I hope that in the

future my products will be useful for all the community of game developers.

61

Bibliography

[1] Indie game makers dominate ios and android. URL http://blog.flurry.com/

bid/82758/Indie-Game-Makers-Dominate-iOS-and-Android.

[2] J. Kuittinen, A. Kultima, J. Niemelä, and J. Paavilainen. Casual games discussion.

In Proceedings of the 2007 conference on Future Play, pages 105–112. ACM, 2007.

[3] T.T. Goldsmith and E.R. Mann. Cathode ray tube amusement device. United

States Patent Office, 1948.

[4] M. Montola, J. Stenros, and A. Waern. Pervasive games theory and design. MK

ISBN 01274853, 2009.

[5] C. Schlieder, P. Kiefer, and S. Matyas. Geogames: Designing location-based games

from classic board games. IEEE, 2006.

[6] Andrea Mannarà. Location-based games and the use of gis information. Technical

report, NTNU.

[7] Bian Wu and Alf Inge Wang. A pervasive game to know your city better. Interna-

tional Games Innovation Conference, 0:117–120, 2011.

[8] Pilar Castro Garrido, Guillermo Matas Miraz, Irene Luque Ruiz, and Miguel Angel

Gomez-Nieto. Use of nfc-based pervasive games for encouraging learning and stu-

dent motivation. Near Field Communication, International Workshop on, 0:32–37,

2011.

[9] About moodle. URL http://docs.moodle.org/22/en/About_Moodle.

[10] Bryan Bergeron. Developing Serious Games. Course Technolgy, 2006.

[11] Parallel kingdom: The iphone’s first mmorpg, 2008. URL http://toucharcade.

com/2008/03/21/parallel-kingdom-the-iphones-first-mmorpg/.

[12] Definition of location, oxford dictionaries. URL http://oxforddictionaries.

com/definition/location.

62

http://blog.flurry.com/bid/82758/Indie-Game-Makers-Dominate-iOS-and-Android
http://blog.flurry.com/bid/82758/Indie-Game-Makers-Dominate-iOS-and-Android
http://docs.moodle.org/22/en/About_Moodle
http://toucharcade.com/2008/03/21/parallel-kingdom-the-iphones-first-mmorpg/
http://toucharcade.com/2008/03/21/parallel-kingdom-the-iphones-first-mmorpg/
http://oxforddictionaries.com/definition/location
http://oxforddictionaries.com/definition/location

Bibliography 63

[13] Geographic coordinate system. URL http://en.wikipedia.org/wiki/

Geographic_coordinate_system.

[14] Global Positioning System, Standard Positioning Service. Performance Standard.

U.S. Department of Defense, September 2008.

[15] About the eclipse foundation. URL http://www.eclipse.org/org/.

[16] Eclipse Platform Technical Overview. Object Technology International, Inc., Febru-

ary 2003.

[17] Definition of model, oxford dictionaries. URL http://oxforddictionaries.com/

definition/model.

[18] OMG Unified Modeling LanguageTM (OMG UML), Infrastructure version 2.4.1.

Object Management Group (OMG), August 2011.

[19] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1. Object Management

Group (OMG), June 2003.

[20] Tim Bray, Jean Paoli, C.M. Spenberg-McQuenn, Eve Maler, and François Yergeau.

Extensible Markup Language (XML) 1.0 (Fifth Ed.). W3C, November 2008.

[21] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

ISBN 0321331885.

[22] Xtext 2.1 Documentation. The Eclipse Foundation, October 2011. URL

http://www.eclipse.org/Xtext/documentation/2_1_0/Xtext%202.1%

20Documentation.pdf.

[23] Open mapquest http://open.mapquestapi.com/xapi/. URL http://open.

mapquestapi.com/xapi/.

[24] Nominatim: Development overview. URL http://wiki.openstreetmap.org/

wiki/Nominatim/Development_overview.

[25] Swt mapwidget. URL http://mappanel.sourceforge.net/swt/.

http://en.wikipedia.org/wiki/Geographic_coordinate_system
http://en.wikipedia.org/wiki/Geographic_coordinate_system
http://www.eclipse.org/org/
http://oxforddictionaries.com/definition/model
http://oxforddictionaries.com/definition/model
http://www.eclipse.org/Xtext/documentation/2_1_0/Xtext%202.1%20Documentation.pdf
http://www.eclipse.org/Xtext/documentation/2_1_0/Xtext%202.1%20Documentation.pdf
http://open.mapquestapi.com/xapi/
http://open.mapquestapi.com/xapi/
http://wiki.openstreetmap.org/wiki/Nominatim/Development_overview
http://wiki.openstreetmap.org/wiki/Nominatim/Development_overview
http://mappanel.sourceforge.net/swt/

	Title Page
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Outline

	I Background Studies
	2 Pervasive Game
	2.1 What is a Pervasive Game
	2.2 Why a Pervasive game
	2.3 Location in a Pervasive Game

	3 Introduction about the concept of Location and "logical location"
	3.1 Coordinate System
	3.2 Definition of "logical location"
	3.2.1 From logical location to Coordinate: Sources

	4 Eclipse and EMF
	4.1 Eclipse
	4.2 Model Driven and EMF
	4.2.1 Model definition and UML
	4.2.2 Model Driven Programming
	4.2.3 XML, XMI, OCL
	Mapping Data on Model Driven Software

	4.2.4 What is EMF

	4.3 XText

	5 Geographical and Location Source: OpenStreetMap
	5.2 Open Street Map Database
	5.1 Insert data process on Open Street Map
	5.3 Open Street Map API
	5.4 Nominatim
	5.5 Other Possible Sources

	II Developer of the IDE for logical location of pervasive games
	6 Production Process
	6.1 Process Study
	6.2 Region Model
	6.2.1 Why using a Taxonomy
	Definition of taxonomy and Why using it

	6.2.2 How to represent a Region Model
	6.2.3 Region Model with DSL
	6.2.4 Region Model using Ecore
	6.2.5 Defining Element in the Region Model
	6.2.6 Region Base Model

	6.3 Region Model Instances Document
	6.4 Location Document

	7 The IDE
	7.1 Region Model Instance Editor
	7.2 Location Document Editor

	III Conclusion
	8 Summary
	9 Practical Utilization of the framework
	10 Future development
	11 Personal Conclusion

