
DSL and Engine for Pervasive Treasure
Hunt Games

Habibollah Hosseinpoor
Christian Skar

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: May 2012

Norwegian University of Science and Technology

Abstract

The purpose of this master thesis was to eliminate the technical barrier for cre-
ating pervasive games. In order to achieve this a domain-specific language (DSL)
was made along with an engine to interpret the DSL scripts. This was done by
using a customized development method, combining the DSL lifecycle and an it-
erative game development method. The goal was to make pervasive games more
established in society and to make them more popular. Initial stage was to an-
alyze pervasive games and making a game specification. This resulted into the
four pervasive dimensions, goal, mobility, social, and temporal, with their three
levels, low, medium, and high. These dimensions and levels, along with certain
game elements, made it possible to create a DSL expressive enough to make per-
vasive treasure hunt games. The conclusion was that a DSL can be used to create
pervasive games, thus making them more available for the audiences. This could
eventually make pervasive games more popular.

i

ii ABSTRACT

Sammendrag

Hensikten med denne oppgaven var å eliminere den tekniske barrieren for å skape
pervasive spill. For å oppnå dette ble det laget et domene-spesifikk språk (DSL)
med en tilhørende motor for å tolke språket. Dette ble gjort ved å tilpasse en
utvikling metode ved å kombinere en DSL livssyklus og en iterativ spill utviklingsme-
tode. Målet var å gjøre pervasive spill mer etablerte i samfunnet og gjøre dem
populære. Innledende forskning var å analysere pervasive spill og lage en spill-
spesifikasjon. Dette resulterte i de fire pervasive dimensjonene, goal, mobility,
social og temporal, med sine tre nivåer, lav, middels og høy. Disse dimensjonene
og nivåene, sammen med spesifikke spill elementer, gjorde det mulig å lage et ut-
trykkskraftig DSL som kan brukes til å lage pervasive rebus løp spill. Konklusjonen
var at et domene-spesifikk språk kan brukes til å lage pervasive spill. Dette kan
hjelpe til med å øke tilgjengelighet til pervasive spill og dermed gjøre dem mer
populær.

iii

iv SAMMENDRAG

Preface

This report is the result of our master thesis written during the spring semester
2012, a total of 18 weeks, at the Norwegian University of Science and Technology
in Trondheim. This work presented is based on the two individual projects we
completed previous semester, a course named TDT4501 Specialization Project.
Our projects had different research focus but complemented each other in the way
that they both were meant to support PLAYTRD, a platform for research on
pervasive games. We would like to thank our supervisor, Hallvard Trætteberg
for his guidance and sharing of expertise during this project.

Trondheim, May 25, 2012

Habibollah Hosseinpoor Christian Skar

v

vi PREFACE

Contents

Abstract i

Sammendrag iii

Preface v

Content viii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 1
1.3 Problem Definition . 6
1.4 Report Outline . 7

2 Preliminary Studies 9
2.1 Games . 9
2.2 Game Technologies . 14
2.3 Domain Specific Language . 19
2.4 DSL Technologies . 23

3 Project Methodology 27
3.1 Research Question . 27
3.2 Design Science . 29
3.3 DSL Lifecycle . 32
3.4 Game Development . 35
3.5 Project Method . 36
3.6 Toolbox . 39

4 Results 41
4.1 Domain . 41
4.2 Game Specification . 46

vii

viii CONTENTS

4.3 System Architecture . 55

5 Discussion 65
5.1 Project Methodology . 65
5.2 Treasure Hunt DSL . 67
5.3 DSL Engine and Graphical Editor 74

6 Conclusion 75
6.1 Conclusion . 75
6.2 Further Work . 76

Bibliography 81

A Task 83

B Game Concepts 85

C First Prototype 101

D Second Prototype 111

E Third Prototype 121

F Fourth Prototype 131

G User manual 135

List of acronyms 141

List of Figures

1.1 “Do the right things right and fast”[2]. 4

2.1 Code size, flexibility and technical levels for game engines and level
editors . 15

2.2 Generic solution vs Specific solution 19
2.3 Domain size vs semantic expressiveness 20
2.4 DSL domain and level of expressiveness 22
2.5 Code-generator vs Interpreter . 24
2.6 Xtext - DSL development steps . 25

3.1 Information Systems Research Framework [7] 29
3.2 Implementation guidelines [13] . 34
3.3 Iterative development method . 35
3.4 Our customized project method . 36

4.1 Elaboration of the game specifications 41
4.2 Main elements for pervasive games 42
4.3 Goal dimension . 48
4.4 Mobility dimension . 49
4.5 Social dimension . 50
4.6 Temporal dimension . 51
4.7 Overlapping dimensions . 52
4.8 First prototype . 53
4.9 Third prototype . 54
4.10 Code generator strategy vs Engine strategy 58
4.11 Engine - Client-Server pattern . 58
4.12 Architectural significant use-cases . 60
4.13 Package and subsystem . 61
4.14 Extended EMF generated classes by Xtext 62
4.15 Activity diagram for creation and execution 63
4.16 Main Game loop - runtime model . 64
4.17 Client-Server - main game loop . 64

5.1 Number of unique treasure hunt games 71

ix

x LIST OF FIGURES

5.2 DSL coverage . 73

6.1 Mockups, illustrating further work concerning mobile clients 77

B.1 A model illustrating the behavior of game concept 1 87
B.2 Game triangle of game concept 1 . 88
B.3 A model illustrating the behavior of game concept 2 89
B.4 Game triangle of game concept 2 . 89
B.5 A model illustrating the behavior of game concept 3 90
B.6 Game triangle of game concept 3 . 91
B.7 A model illustrating the behavior of game concept 4 92
B.8 Game triangle of game concept 4 . 92
B.9 A model illustrating the behavior of game concept 5 93
B.10 Game triangle of game concept 5 . 94
B.11 A model illustrating the behavior of game concept 6 95
B.12 Game triangle of game concept 6 . 96
B.13 A model illustrating the behavior of game concept 7 97
B.14 Game triangle of game concept 7 . 97
B.15 A model illustrating the behavior of game concept 8 98
B.16 Game triangle of game concept 8 . 99

C.1 Treasure hunt UI - first iteration . 102
C.2 EMF models for third prototype . 105
C.3 Xtext generated editor for treasure hunt DSL (.th) 106
C.4 World . 107
C.5 EnginePlayer . 108
C.6 Overview of steps crating a model in .th 108
C.7 Treasure hunt first prototype . 110

D.1 Treasure hunt second prototype . 119

E.1 An example of game, by combining axis 124
E.2 Treasure hunt third prototype . 129

F.1 Graphical Editor - fourth prototype 132
F.2 Graphical Editor - Creating and editing a Post object 132
F.3 Graphical Editor - Creating and editing a Player object 133

G.1 Graphical Editor . 138
G.2 Creating and editing treasure hunt DSL scripts with graphical editor 139
G.3 Activity diagram for creation and execution 140

List of Tables

2.1 Game genres in different forms . 10
2.2 Game play categories . 12
2.3 Game play types . 12
2.4 Selecting prototyping methods based on game type 13
2.5 Software components in the IPerG software packages 16

3.1 Design-science research guidelines [7] 30
3.2 Input and output overview for each step in our project method . . . 37

4.1 Pervasive matrix . 43
4.2 Template for creating game concepts 45
4.3 Pervasive dimensions and levels . 46
4.4 Identified game elements and patterns 47
4.5 Levels affecting the goal dimension 48
4.6 Levels affecting the mobility dimension 49
4.7 Levels affecting the social dimension 50
4.8 Levels affecting the temporal dimension 51
4.9 Dimensions affecting each other . 52
4.10 Stakeholders . 55
4.11 Functional Requirements . 56
4.12 Technical Platform . 57
4.13 Separation of Concerns (views) . 59

5.1 How elements can expand the expressiveness 70

E.2 Combination of axis . 123
E.1 Matrix of dimensions . 124

G.1 Item Check List . 135
G.2 Domain concepts . 136

xi

xii LIST OF TABLES

Chapter 1

Introduction

This chapter presents the introduction to this master thesis. It starts by presenting
the motivation and background, before presenting the problem definition. It also
contains a readers guide for the reminder of this report.

1.1 Motivation
PLAYTRD is a platform for research about pervasive games. Typical research
topics are game concepts, architecture and technology. The purpose with these
games is for the players to familiarize themselves with Trondheim by using it as
play area. The research we present in this report is meant to contribute to this
platform, and we planned to do so by using our skills and competences. We hope
our research can contribute in making pervasive games more established in society
and making them more popular.

1.2 Background
Imagine that you are walking through the city when you get a message on your
smart phone saying; “WARNING: Zombie outbreak in the city. Get to the metro
station at Fifth Street within 20 minutes for extraction. All transportation vehicles
are believed to be contaminated, avoid using them at all cost”. Your body starts
to fill with adrenalin as you read the message, and without much delay you start
running towards Fifth Street.

After running for several minutes avoiding zombies you feel you need a short
break. You run into a narrow alley looking for a place to hide when you see two
dumpsters side by side with just enough space to hide between them. Before hiding
you look around to make sure that no one followed you or sees you. Safely in your
hiding place you look at your smart phone and open an application showing a
satellite image of the city. It also shows a timer and an arrow indicating your
position as well as the zombies you are trying to avoid.

1

2 CHAPTER 1. INTRODUCTION

The metro station is located 300 meters south of your position, and the timer
shows there are only 5 minutes left. Knowing that your path to the metro is filled
with obstacles and zombies you decide that you’ve had enough rest. You exit from
your hiding place and run towards the end of the alley. Before entering the street
you look at your smart phone once again to ensure that there are no zombies in
your proximity.

You start to walk casually towards the metro station when all of a sudden your
phone starts to vibrate intensely. You know that this is a warning sign that there
are zombies very close to you. You can see there are a few people running towards
you while looking at their phones. Convinced that you have been spotted you start
to sprint towards the metro station. Finally, after an intense chase you reach your
destination before any of the zombies were able to catch you, and you receive a
message on your phone. You have just won the game and received 100 points.

The scenario above describes an advanced version of a tag game. To be more
specific, it describes an example of what could be a pervasive game. The game is
played in the city using it as a play area with natural structure and bystanders as
obstacles. The goal is to reach a real location in the city and the players either
plays the role as a chaser or as being chased. What makes these games differ from
other games is that they are tightly interwoven in our everyday lives through the
artifacts and people that surrounds us, and the places we inhabit.

If you try to search for pervasive games in a store, such as the one described
above, you might discover that there are none. Smart phone applications like En-
domondo and Google Latitude shares some of the same characteristics as pervasive
games, but they lack some essential elements. A way to overcome this is by being
creative and to establish the game mechanics (rules) separately. The smart phone
with the application will then act as an artifact for playing the game, equivalent to
what a deck of cards or a dice is for certain games. Regardless of how creative you
are, this method adds huge limitations on the game design and we might not be
able to create the games we want. In the following sections we try to reveal some
of the reasons why pervasive games aren’t more popular and bigger than what they
are today.

1.2.1 The Community
The first step is to identify who plays and develop pervasive games today. The
pervasive game community consist mostly of people with a particular interest and
representatives from schools and universities. Searching for these communities on
the Internet usually directs you to the same webpage: “Pervasive Games: Theory
and Design”, who also have provided with a book with the same title[14]. We
find this community to be relatively small compared with the conventional gaming
communities, e.g. games for PC, handheld devices, and consoles. We are yet to
see a greater effort coming from the gaming industry, who possess the necessary
resources and technological knowledge to make a difference. They could help to
increase the amount, varieties, and quality of pervasive games, which might lead
to more and higher demand from the audiences. We can only speculate that their
lack of interest is due to the low demand, high risk of failure, and low profit. This

1.2. BACKGROUND 3

emphasize the importance of the research committed by interest groups, which
have to convince both the audience and the game industry that pervasive games
can become a commercialized product.

1.2.2 Pervasive Game Challenges
One of the most challenging aspect in pervasive games is the fact that the game uses
the real world as play area. When the players are spread over a large geographical
area, like the pervasive game example described earlier, makes it difficult to monitor
player movement and actions during play. Ludocity is a homepage with a collection
of pervasive games designed by different authors, and these games uses more or less
the same solution for this problem[12]. They have solved this by designing games
without the need for constant monitoring of the players. Another possible solution
is to design games with a long response time and/or tick based mechanics. This
makes time and place independent from each other, making constant monitoring
redundant. The drawback with these solutions are that they put huge limitations
on the game design and varieties. As a consequence, this might make the games
cumbersome and less fun to play, resulting in that few people wants to play them.
Another possible solution to overcome the player monitoring problem is to develop
software solutions, which brings us to the next section.

1.2.3 Development Challenges
In the latter, new technology has helped to create a platform for supporting per-
vasive games. Ubiquitous technology like GSM, 3G, smart phones, and Wi-Fi
hotspots are some examples. With the use of these technologies it is possible to
support pervasive games, and could possibly solve the monitoring problem men-
tioned earlier. Smart phones have built in technology that can provide real-time
information regarding position, data communication, movement, and much more.
This makes them the perfect candidates to serve as clients for pervasive games.
However, developing software technology introduces some challenges. Figure 1.1
shows a venn-diagram from the article “The future of agile software development”
that could help us identify some of these challenges[2].

The venn-diagram shows three overlapping circles representing different suc-
cess factors; “do right things”, “do things right”, and “timing/Speed”. Together,
these circles are combined to make the phrase: “do the right things right and fast”
indicating what is required for making any kind of product successful. Further-
more, these overlapping areas can be used to predict the product’s possible faith,
depending what circle area the developer is in:

1. Success This is where developers should and wants to be.

2. Miss market opportunities Does not mean that the product itself is a
failure, but the product owner might lose sales due to competitors or the fact
that the product is no longer needed or obsolete.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: “Do the right things right and fast”[2].

3. Poor quality The product might be ok, but is likely to have problems in
the future.

4. Failure High quality product that fails since it is not what the customer
wants or need.

5. Combination of 2 and 3 Could work, but it is highly unlikely that it will
be a success.

6. Combination of 2 and 4 Fails since it is not what the customer wants
and/or it is no longer needed.

7. Combination of 3 and 4 A rushed product with poor quality and not what
the customer wants.

As a result from the venn-diagram, Figure 1.1, we ask four questions. By answering
them we could help to identify the development challenges.

1. “What is being developed?”. This means it is important to identify the
needs of the stakeholder, and to establish functional and non-functional re-
quirements for the product. This determines the definition and limitations
of the software itself. It is also important that the appropriate technology is
chosen in order to fulfill them. This requires good communication with the
stakeholders so that the developers know what they need to develop. Fur-
thermore, it requires domain experts so that the right technology is chosen.

2. “How is the product made?”. This describes the lifecycle of the product.
It is important that development are done in a correct manner in order to
achieve a quality product. This requires a project methodology that are
suitable for making the product. In addition, this requires trained personnel
and managers that know how to use the methodology.

1.2. BACKGROUND 5

3. “Who makes the product?”. It is crucial that the right people are in-
volved in the entire development lifecycle. These are people with expertise
within certain domains, such as hardware and software technology, design,
marketing, management and many more.

4. “When should the product be made?”. This is a difficult question to
answer since it is best answered in hindsight. Deploying a product too early
might be fatal since the public might not be ready for it yet, e.g. Dennis
Crowley’s Dodgeball, which is the predecessor to Google Latitude. However,
deploying it too late might make the product obsolete and/or miss market
opportunities, e.g. Duke Nukem Forever.

By looking at the four questions above, we see that there is a common denom-
inator concerning the people involved in the development. These people need to
have the right skills and competences, so that the product has a higher chance of
becoming a success. In chapter 1.2.1 we mentioned that the pervasive game com-
munity is small. This introduce a particular challenge for pervasive games since it
is less likely that the right people are available within their community.

6 CHAPTER 1. INTRODUCTION

1.3 Problem Definition
We believe that the low demand and the low availability of pervasive games are all
factors that are of hindrance for making them more popular. We can see in the
gaming industry today, that even thought there is a huge variety and amount of
games available, only a small percentage of them that are actually very successful.
Fearing that this also applies for pervasive games they might never become popular
unless something is done.

We are convinced that this could be solved by creating software. However,
when the big game developers are reluctant to do it, someone else needs to take
the initiative. With the challenges described earlier in mind, this is not an easy
task for someone without any technical background.

There are two questions we would like to study further based on what we have
mentioned this far. The questions are divided into two categories, domain, which
is pervasive games, and software technology. We would like to investigate what a
pervasive game is and to find existing game technologies that are available today.
In addition, we want to know if these technologies can be used by someone without
any technical background. Based on this investigation we will narrow down our
scope and establish our research question.

The following questions guides our preliminary studies:

1. What does it imply that a game is pervasive, and how can we use this answer
to make games pervasive?

2. What software solutions are used today for making pervasive games, and is it
possible for someone without a technical background to use them for making
their own games?

1.4. REPORT OUTLINE 7

1.4 Report Outline
This section presents a brief overview of the entire document and gives a short
description of each chapter.

Chapter 2 - Preliminary Studies It starts with a description of games in gen-
eral, before gradually moves on to pervasive games. Then it presents game
technologies. It also present Domain-Specific Language (DSL) and some as-
sociated technologies for DSLs.

Chapter 3 - Project Methodology It starts with presenting the research ques-
tion, followed by a brief presentation about design-science and how we intend
to use it for our research. Then we present a brief description of the DSL
lifecycle and iterative game development, which have been combined to make
our customized project method. It ends by presenting our toolbox.

Chapter 4 - Results It starts by presenting our findings concerning the domain,
before presenting the game specification. Then finally we present the system
architecture from a technical point of view.

Chapter 5 - Discussion It starts with a discussion of the project method, then
moving on to our treasure hunt DSL. It also contains a discussion concerning
the DSL engine and its graphical editor.

Chapter 6 - Conclusion It starts by presenting the conclusion for this master
thesis, before presenting our suggestions regarding further work.

Appendix A - Task Contains the initial task description.

Appendix B - Game Concepts Contains eight different treasure hunt game
concepts.

Appendix C - First Prototype Documents the first iteration (first prototype),
a simple DSL and a simple engine to execute DSL scripts.

Appendix D - Second Prototype Documents the second iteration (second pro-
totype), improved DSL, to support GPS positioning, and the engine reflects
to the changes too.

Appendix E - Third Prototype Documents the third iteration (third proto-
type). Implement support for pervasive dimension in both the DSL and
engine.

Appendix F - Fourth Prototype Documents the fourth iteration. Implement
support for graphical editor, in order to create game instances, without ex-
ternal IDE or text editor.

Appendix G - User Manual User manual for the last prototype.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminary Studies

This chapter presents the preliminary studies. It starts with a description of games
in general, before gradually moving to pervasive games. Then it presents game
technologies. It also present domain-specific language (DSL) and some associated
technologies for DSLs.

2.1 Games
“Games lubricate the body and mind”
- Benjamin Franklin

Before we go deeper into what a pervasive game is we need to get more infor-
mation about games in general. Humans are introduced to games from the very
first months of their lives. Parents play games with their children starting with
games like Peek-a-boo, and later with Hide and Seek as the child gets older and
more mobile. Playing games seems to be in our nature since they have been an
important part of human society since the early stages of civilization. The oldest
board game found, Senet, has been dated back to 3100 BC and was played by the
ancient Egyptians[18].

2.1.1 What is a Game?
A game is structured playing and is associated with enjoyment and fun. In addition,
they can be used as an educational tool and to encourage physical activities. Games
should not be considered the same as work. However, there are cases where they
overlap, e.g. professional athletes/players in sports, poker, chess, Starcraft and
many more. These people make a living playing the games normal people play for
fun[31].

Games come in many varieties and we have chosen to categorize them into
the following forms; sports, tabletop games, video games and other. In order to
understand what these categories implies we are going to describe them further
and mention some game examples for each form:

9

10 CHAPTER 2. PRELIMINARY STUDIES

Sports are physical activities that aims to entertain the participants. This is done
by using, maintaining, or improving their own physical fitness and strategical
thinking. A sport can be played casually, or through organized settings, e.g.
olympic games, world games, X games, where you can compete against other
participants. Example sports are; football, javelin, sprint, tennis.

Tabletop games are games usually played on a table or any flat surface. Typical
games are board games, card games, and dice games. This form represents
the typical form of games that have been played since ancient times and still
played today. However, it seems that this form of games is decreasing due to
succeeding form. Some example of such games are Ludo, Poker, Monopoly,
and Trivial Pursuit.

Video games are a multi-billion dollar industry today, and represents games that
are played on platforms such as handheld devices, PC’s, and consoles. The
players interact with the game through a user interface that generates a
visual feedback to the player. Typical games are Super Mario, Counter-
Strike, World of Warcraft, and Skyrim.

Other games are games that does not necessarily fall under the forms mentioned
above. Some examples are street games, drinking games, and war games.

Furthermore, the forms can be broken down into game genres, which can exists
across the different forms of games and platforms. Table 2.1 shows the game genres
that are most common for describing games today.

Sports Tabletop Video
games

Other

Action Paintball Warhammer Call of Duty -
Adventure Geocaching - Monkey

Island
Letterboxing

Role-playing Hauk og due D&D Skyrim Live RPG
Strategy Chess Risk Starcraft -
Puzzle - Sudoku Tetris Rubik’s cube

Simulator Skeet Income out-
come

Americas
Army

-

Children’s game Tag Tic-Tac-Toe Super Mario I spy

Table 2.1: Game genres in different forms

2.1.2 Why do we Play Games?
We have already mentioned that people play games for the sake of enjoyment and
fun. XEODesign, a consultant firm for putting emotions into play, has committed
a research concerning “why we play games”. This has resulted into four keys of
emotions[11].

2.1. GAMES 11

1. Hard fun is for people that enjoy challenging tasks, strategic thinking and/or
problem solving. This could be associated with the feeling of accomplishing
something difficult. Typical games that fall under this emotion are single-
player games like Tetris, Sudoku and Solitaire.

2. Easy fun fulfills intrigue and curiosity. This can be associated with a game
plot. It can sometimes be hard to put a side a video game that has an ap-
pealing plot that is revealed as you play. This awakens the player’s curiosity,
thus making them want to continue to play. Video games like Uncharted,
Metal Gear Solid, and Fallout are know for having good plots and stories.

3. Altered states makes people play for the internal sensation such as excite-
ment and relief from their own thoughts and feelings. Sometimes it might be
appealing to “disconnect” from the reality. This could be due to a stressing
environment or the need to think about other things. In most cases this
applies for all games.

4. People factor addresses the social aspects around and within a game. Com-
petition is a huge driving force for many people. New video game genres like
MMORPG’s have created a new medium for social interaction between peo-
ple from all over the world. Typical games that have this emotion are World
of Warcraft and Counter-Strike.

2.1.3 What Defines a Game?
There are three aspects that are necessary in a game; mechanics, dynamics and
play. The game mechanic is defined as the game rules. The dynamics describes
the pattern, or behavior of a game, like saying that the video game Ping Pong has
the same dynamics as tennis. The game play describes the interaction between
the players and the game rules. In order to explain the game play better we have
used the definitions defined by Roger Caillois in the book Man, play and games
[1]. According to Caillois, there are four game play categories, see Table 2.2.
In addition, there are two play types, paida and ludus, which are structured to
unstructured play respectively, see Table 2.3.

2.1.4 Pervasive Games
The word pervasive is defined as to "having the quality or tendency to pervade".
A television with it’s channels and a device with Internet are good examples of
pervasive objects that are used by many today. As a consequence, they influence
our culture and can be perceived outside their own domain.

“Pervasive games are new game experiences that are tightly interwo-
ven with our everyday lives through the items, devices and people that
surround us and the places that we inhabit” [14].

12 CHAPTER 2. PRELIMINARY STUDIES

Play categories
Name Description Game examples
Agon To compete, either against yourself,

against opponents direct or indirect.
Chess

Alea Random, there are situations in the
game that the player has no control
over.

Poker, roulette

Ilinx Also called vertigo, is the sense of dis-
rupting your own perception.

Tag game, hide and seek,
sports

Mimicry To imitate someone or something. RPG’s like Dungeons and
Dragons, simulators

Table 2.2: Game play categories

Play types
Name Description Game examples
Paida Structured, the game follows a strict

structure giving little or no freedom to
the players

Racing games

Ludus Unstructured, the players are allowed
to do almost everything and can decide
the order of events themselves.

Grand Theft Auto

Table 2.3: Game play types

According to TeMPS, which is a conceptual framework for pervasive and social
games, there exist four perspectives concerning pervasive games[6]. These are rep-
resented in the name TeMPS ; temporal, mobile, perceptual and social. Temporal
is related to the time a game is played and the duration of it. In addition it says
something about how important time is for the game, e.g. if time is critical or
not important at all. Mobile is associated with the play area, which defines where
the game is played. It can also tell us something about how the game is played
by identifying how the players interact with the game world. Note that the game
world is the real world mentioned earlier. The perceptual aspects addresses how
the real world is perceived in the game. The social perspective means the direct
and indirect interactions between players and non-playing persons.

2.1.5 Game Prototyping
A prototype is a temporary version of a product. A typical prototype don’t have
all the features and functionality that the final product possess. Their details
and complexity depends on the resources available, and are usually divided into
two categories; low-fidelity (simple and cheap) and high-fidelity (closer to the final

2.1. GAMES 13

product). In addition, the prototype is either horizontal or vertical, which describes
the implementation of features and functionalities respectively[19].

Prototypes are good for evaluating games early in the development. They can
provide with valuable feedback, either through the development itself or through
testing. This will help to shape the game in accordance with customer demands and
needs. In the article “Using Prototypes in Early Pervasive Game Development” the
authors addressed three types of prototyping methods; rapid game development,
prototyping with ready made software, and physical prototyping[15]. Furthermore,
they conclude that prototypes should be made as early as possible with the correct
method. The choice of method should depend on certain criteria, which can be
seen in Table 2.4.

Game type Prototyping method
Context-aware (sensor in-
put needed)

Often easier to implement as a software prototype;
Wizard of Oz prototyping is a good alternative.

Discrete (events occur in
predictable manner)

Physical prototypes as well as software prototypes.

Continuous (e.g., events
are functions of location
and other sensor input)

Software prototype is useful.

Technically innovative Software and/or hardware should be used early to
test technical aspects.

Social novelty Real users should be involved in realistic situations.
Both software and physical prototypes can be used,
e.g, Wizard of Oz prototyping or para typing. Can
also be supported with interviews, focus group dis-
cussions, and ethnographic studies.

Complex interaction
between various gaming
platforms

Can be difficult to demonstrate with physical proto-
types.

Persistent, long-term Software prototypes or prototypes with software
components are good. Testing with physical pro-
totypes is difficult but can be useful in testing core
mechanics.

Player-to-game interac-
tion: dexterity based
games

If manipulating game objects physically is central in
the game, as in dexterity based games like Tetris,
software prototype is needed.

Table 2.4: Selecting prototyping methods based on game type

14 CHAPTER 2. PRELIMINARY STUDIES

2.2 Game Technologies
This section starts by introducing the technological aspects for games. It continues
by introducing customized software packages that are used for making context-
aware games, before introducing a few pervasive game examples that have used
software to support their games. It continues by exploring relevant research and
technology. All these sections tries to explain the technology used, and how easy
they are to use for people without non-technical background.

2.2.1 Video Games
In the late 1940s the world was introduced with the first video game through the
cathode ray tube-based missile system, setting the starting point for the history of
video games. Since then video games have gradually increased in both sophistica-
tion and complexity, and has eventually diverged onto different platforms such as
PCs, consoles, and handheld devices.

A video game is the result of a symbiosis between hardware and software tech-
nology. The game mechanics and dynamics, as mentioned in section 2.1.3, are
implemented as software code. The player interacts with the game through hard-
ware devices such as a joystick, keyboard, or a hand controller. A visual feedback
is returned to the player either through a television, PC monitor, or the screens
on the handheld devices, depending on what platform the game is played with. In
addition to this, ambient music and sound effects are implemented to make the
games come more to life. All these features requires a multidisciplinary work force,
like having programmers, sound engineers, graphical designers, and more, working
together to create a game[30].

2.2.2 Game Engine and Level Editor
A car without an engine doesn’t work as a transportation device since it wouldn’t
have any propulsion system. The same applies for games if there were no engine
to handle the player input in the game. Furthermore, a car engine can be taken
out and used as a propulsion system for other cars, depending if it fits or not.
This can also be done for game engines. A game engine is a software framework
that abstracts the details of doing common game related tasks, such as rendering,
collision detections (physics), sound, artificial intelligence, and networking[29]. The
main purpose with game engines are that they can be reused to make many different
games. Choosing to use an existing game engine the developers can save both time
and money.

Some engines provide with an integrated development environment (IDE) for
programmers to create games. The most commonly used game engines today are
Unreal Engine, that got their own scripting language (UnrealScript) and editor (Un-
realEd), CryEngine and RAGE Engine[22]. However, these engines are licensed,
which imply that the developer needs to pay the engine owner if the engine is used.
In addition to these game engines there exists hundreds of others, ranging from a
simple programming library to high-level, both open-sourced and licensed[33].

2.2. GAME TECHNOLOGIES 15

Game engines does not completely eliminate the technical barrier for creating
games, as Figure 2.1 illustrates. Using an existing game engine puts limitations
on the game design, since the game can’t exceed the engine’s capabilities. At the
same time, it reduces some of the complexity for developing a video game.

Figure 2.1: Code size, flexibility and technical levels for game engines and level
editors

A level editor is a software tool used for designing levels, maps, campaigns, or
similar, for a specific game or game engine[32]. These tools require a lot of time to
be created due to the large code size. Their expressiveness is very limited, meaning
they are very restrictive with what they are capable of. However, they don’t require
any programming knowledge to be used. As a consequence, a level editor doesn’t
require the user to have a technical background.

2.2.3 IPerG Software
IPerG is short for integrated project on pervasive gaming. It was a EU funded
project that started in 2004 and ended in 2008. The IPerG project have created
three software packages for creating and staging pervasive games. These three
packages offer different solutions that can be used depending on a game’s technical
standpoint[24].

1. Augmented-/virtual Reality package includes the Morgan AR/VR plat-
form (MAP), Logfile Analysis tool (LAT) and the Polling tool.

2. Mobile Phone based game solution package for games that uses the mobile
phone as an input/output device, supported by a server. The main software
component is the MUPE platform but also introduce the Web Application
Framework (WAF).

3. Ubicomp based game solution package that targets games ubiquitous com-
puting principles, embedded processors and the use of sensor and actuator

16 CHAPTER 2. PRELIMINARY STUDIES

hardware. It uses a Java gaming library, based on the PIMP and PART
platforms, and in addition the Logfile Analysis tool and the Polling tool.

In order to understand more about these packages we need to identify each
software component, see Table 2.5.

SW Component Short explanation
MAP Morgan is a commercialized licensed product that supports

the development and the usage of augmented reality and
virtual reality applications.

LAT is a tool for analyzing events that occur during the lifetime
of an application.

Polling tool is for making online (web) questioners to capture player
experiences for post-game evaluation.

MUPE platform is short for Multi-User Publishing Environment. It is a plat-
form for mobile multi-user context-aware applications and
uses a plethora of technologies for reducing the complexity
in developing applications for mobile services. MUPE is
available under a Nokia Open Source License (NOKOS).

WAF supports the development and integration of java-based web
applications. It is available as open source under the BSD
license.

PIMP platform is a java library that can be used to build distributed ap-
plications.

PART platform is a light-weight distribution and data sharing library with
focus on handheld and embedded devices and peer-to-peer
connectivity. It is available under the BSD license.

Table 2.5: Software components in the IPerG software packages

The IPerG software packages offer good solutions for making pervasive games.
However, they are meant for software developers, which makes them less appro-
priate for people without the proper knowledge to use them. This doesn’t mean
they can’t use them, but it would require extra time and effort just to learn the
technology and how to use it.

2.2.4 Pervasive Game Examples

GeoQuiz

GeoQuiz is an example of a pervasive game developed with an IPerG package. It
is a mobile location-based question and answering game. The players themselves
make questions that are linked to physical locations and answer the questions that
have been made by other players. The game is played indefinitely, which implied
that no player will actually win the game. However, there are high score lists based

2.2. GAME TECHNOLOGIES 17

on the number of correct questions answered and locations found that provides a
competitive element in the game.

The technology used in this games are built in the mobile clients and uses Java
(J2ME). In addition, they use Placelab, which is a Symbian application that allows
java applications to see what GSM mast the phone is connected to[24].

Pac-Manhattan

Pac-Manhattan is a recreation of the 1980s video game called Pac-man with a few
essential changes. The game uses the New York City grid as play area. The players
runs around dressed according to their role either as Pac-man or as a ghost. The
game mechanics are the same as in the video game, where Pac-man have to collect
“virtual” dots while avoid getting caught by the ghosts. This game is supported
by using cell-phones, Wi-Fi Internet connection and a custom software developed
by the Pac-Manhattan team[25].

The specific software used by the Pac-Manhattan team is unknown, but we
know there is another Pac-man game that bases its software on theirs. The game is
called The Urban PacMan and is made by the PacMan@Lyon team. No installation
on the client side is required, meaning the cell-phones, but the server requires a
web server with a PHP interpreter and a database. They recommend a classic
configuration using XAMPP (Apache, MySQL and PHP)[17].

2.2.5 Authoring Tool
The article “Designing Enhanced Authoring Tools for Pervasive Games”[28], de-
scribes a proposal for a framework. The purpose is for allowing non-technical game
designers to create pervasive games using a GUI-based tool. Their pervasive game-
play model is based on the TeMPS framework, which they have used for extracting
atomic game elements and are combined in order to make games. Further it explain
how the user interacts with the authoring tool for making the games.

The application is based on the OpenBlocks library, which enables the developer
to build and iterate their own graphical block programming systems by specifying
a XML file. However, a compiler/interpreter is required for the programming
language created with the block editor. This will require a lot of time and effort,
but is necessary in order to create a tool with greater flexibility.

This framework is a good start towards making a tool for creating pervasive
games. However, there are still much work needed before this authoring tool can be
realized. The major challenge with this idea is to make the implementation robust
enough so that the designer doesn’t have to worry about the complexity of the
underlying technologies. In addition, it raises some questions about how expressive
and what limitations that are present with the defined gameplay model.

2.2.6 Complexity in the Software Industry
There have always been a need for reducing the complexity in computer science.
In the very beginning of software history the programmers developed software ap-

18 CHAPTER 2. PRELIMINARY STUDIES

plications using a low-level programming language like machine code and assembly
language. This required highly trained and expert programmers due to the low
abstraction level in these languages, and had long expensive development cycles.
This was a huge drawback since this might have made it cheaper to hire people
to do manual labour instead of paying for an expensive computer program that
does the same work. In order to overcome this it was necessary to reduce the syn-
tactical complexity by raising the level of abstraction, which would make software
development easier and cheaper. As a result, high-level programming languages
emerged[20].

Today, very few software applications are built from scratch, but rather built
on other frameworks. However, given the number of different frameworks, libraries,
and the communication between other applications we face a new kind of complex-
ity. In contrast to the beginning we now have an abstraction level that is very high.
This makes it possible to develop more or less anything we want, but at the same
time raises the level of software complexity. It is likely that you wont need all the
frameworks that a programming language offers. If you only need to know a few
frameworks, why should you then need to know all the others? This question has
been asked and answered before, and have led to languages such as HTML, SQL,
and BNF. These are so-called domain specific languages (DSL) that are dedicated
to a particular problem domain. This represents the solution for making program-
ming languages less complex for the user, and will be further explained in chapter
2.3.

2.3. DOMAIN SPECIFIC LANGUAGE 19

2.3 Domain Specific Language
This section present the concept of domain-specific language (DSL). It starts by
providing some definitions, followed by pointing out the benefits and disadvantages
of DSLs, and finally a small discussion about different types of DSLs.

2.3.1 What is a DSL?
Figure 2.2, shows the two approaches in all branches of science and engineering that
we can distinguish, namely generic and specific [27]. Generic approaches attempt
to provide a solution for a broader problem domain, but such a solution may not
be optimal. On the other hand, a specific approach provides a better solution, but
for a smaller problem domain. These approaches can be directly linked to the topic
of generic programming language (GPL) vs domain-specific language. A GPL that
are turing complete, such as Java, can be used to solve any kind of programming
problems, but may not always be the best tool to use. A DSL on the other hand
is designed for a specific problem domain and can solve them better.

Figure 2.2: Generic solution vs Specific solution

Before we discuss any further about DSLs we need some definitions in order to
get a better picture of what it is. However, there are no consensus definition of
what a DSL is, we therefore present three different definitions:

1. ”A computer programming language of limited expressiveness focused on a
particular domain” [10].

2. ”A domain-specific language is a programming language or executable speci-
fication language that offers, through appropriate notations and abstractions,
expressive power focused on, and usually restricted to, a particular problem
domain” [27].

3. ”A domain-specific language is a language designed to provide a notation tai-
lored toward an application domain, and is based only on the relevant concepts
and features of that domain” [4].

Common for all of these definitions are the following; (1) a DSL is a program-
ming language, (2) it provides expressive semantic power in their domains, and (3)
it is restricted to a particular problem domain.

20 CHAPTER 2. PRELIMINARY STUDIES

2.3.2 Domain Size vs Semantic Expressiveness
Given a language L, we can express the semantic expressiveness, or level of ab-
straction, of language L as expressiveness(L), and the problem domain size that
the language are able to solve as domainSize(L). It seems that the following formula
applies in general, but we can’t prove its correctness:

domainSize(L)∗expressiveness(L) = Constant

This gives us a nice curve, see Figure 2.3, where we can place both DSLs and
GPLs on it. Java has a higher value of domain size but on the other hand low
value of semantic expressiveness. The exact opposite applies for DSLs such as
SQL. However, the formula does not always apply. Take for instance a language
that are specific to a domain, but at the same time can have low value in semantic
expressiveness. This is due to the fact that a DSL is only based on the relevant
concepts and features of a particular domain.

Figure 2.3: Domain size vs semantic expressiveness

2.3.3 Advantages and Disadvantages with DSLs
We have already mentioned some of the advantages with DSLs, which was that
they can solve their problem domain better than GPLs. In addition, there are
other advantages and disadvantages, which needs to be elaborated further.

Increased development productivity, DSLs allows solutions to be expressed in a
high level of abstraction within the problem domain, which allow us to write clear
and concise code, that is self-documenting to a large extend, due to the DSL’s
domain specifics. Communication with domain experts, since DSLs are designed
for a particular problem domain they use common language, terminologies within
the problem domain, which means the same thing to everyone with respect to

2.3. DOMAIN SPECIFIC LANGUAGE 21

the problem domain. This allows for much more efficient communication with the
domain experts, which in turn allows the domain experts themselves to understand,
validate, modify and often even develop DSL programs. Shift in execution context,
DSLs are usually declarative and can therefore be viewed as specification languages,
as well as programming languages. Due to DSLs decorativeness it allow us to
shift its execution context very easy. For instance for a DSL program, we do not
care about how it is executed as long as it is executed according to the DSL’s
specification. This allows us to switch between different execution engines and
platforms.

The main disadvantage with DSLs is the cost of building. It requires both
domain and language development expertise. For instance, developing a DSL that
is only readable by a domain expert is much cheaper than a DSL that are writable
by other domain experts. In addition, they are also hard to design due to the
challenges in finding the proper scope for a DSL.

2.3.4 Different Kinds of DSLs
DSLs can be categorized by different means/dimensions, such as (1) level of exe-
cutability, (2) whether it depends on an existing language, (3) the notation used,
or even (4) the level of expressiveness (domain coverage). The last category is not
very common, since the domain that a particular DSL covers can have a different
domain size.

Category 1, namely the level of executability, is simply drawing the line between
DSLs that are executable and DSLs that are not executable. Category 2, draws
the line whether the DSL is based or has dependencies on an existing language,
which is called a base language. External DSLs, are usually built from the ground
up, allowing the developer to create custom syntax and concepts that are closely
related to the domain. On the other hand the costs for development compared
to an internal DSL are huge. Internal or embedded DSLs uses a host language,
so that the internal DSLs syntax is both influenced and restricted by the host
language selected. Depending on the selected host language, it could be simpler to
build one. Think of this kind of DLSs as a good application programming interface
(API) development. Category 3, determines if the DSL has a textual or a graphical
notation. The most common DSLs in existence today have textual notations, such
as SQL and HTML.

Figure 2.4 shows examples of different kinds of DSLs. DSL A can solve the
same problem as DSL B due to the fact that A has a broader domain size than
B. However, this doesn’t apply the opposite way since B has a smaller domain size
than A. There can also be DSLs that overlap each other, such as A and C.

22 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.4: DSL domain and level of expressiveness

2.4. DSL TECHNOLOGIES 23

2.4 DSL Technologies
This section presents tools and technologies involved when creating a DSL.

2.4.1 Tools for Creating DSL
As mentioned in section 2.3.4, DSLs can be categorized based on its dependencies
to existing (host) languages. Creating internal DSLs are simpler because you do
not need to build parsers/compilers external to your code. Internal DSLs may
not be as expressive and readable to non-developers as external ones that can use
natural languages such as English. Furthermore, creating an internal DSL can be
compared with creating APIs. This means you do not need special tools to create
them, but when it comes to readability it will dependent on the host language.
Some languages are more suited as host language for internal DSL than others,
such as Lisp.

External DSLs have their own custom syntax, therefore you need a full parser/-
compiler to process them. It can be implemented either by interpretation or code
generation. Interpretation, is simply reading in the DSL script and executing it at
run time. Code-generation, on the other hand is to read the DSL script as input
and produce code that is itself a high level language, such as java. Figure 2.5
illustrates the difference between these two implementation strategies.

Tools for Creating External DSLs

When creating external DSLs one can either build everything (parser/compiler)
from scratch, or use tools that are designed to reduce this workload. We will
present two popular tools for creating DSLs, one that have a graphical syntax,
DSL Tools, the other a textual syntax, Xtext.

Microsoft’s Visual Studio provides with DSL Tools and a text template frame-
work [26] for creating DSLs. The DSL Tools is used for building custom designers
for visual domain-specific languages, and the text template framework can be used
to write code generators. Together, they can be used to produce custom tools to
support domain-specific software development, where DSLs are used to create mod-
els that provides the correct input to drive code generators using text templates.

Xtext is a framework for developing programming languages and domain specific
languages [34]. It covers all aspects of a complete language infrastructure. It is
a powerful tool for creating external DSLs using a textual notation. Figure 2.6,
shows the three main steps required when working with Xtext. The first two steps
are used for defining a DSL and the tools for writing models/instances with this
DSL. The third step is for executing the DSL scripts. The last (fourth) step is only
required if the engine requires a graphical user interface (GUI).

1. Define the grammar. Xtext provides with the tools for grammar definition.

2. Run the generator. Once the grammar is in place, Xtext will derive various
language components by running the provided generator that will trigger the

24 CHAPTER 2. PRELIMINARY STUDIES

Figure 2.5: Code-generator vs Interpreter

Xtext language generator. It generates the parser and serializer and some
additional infrastructure code, such as an editor for writing models/instances
in the newly created DSL. The editor is very sophisticated, it comes equipped
with code completion, syntax coloring, custom keyword coloring, real time
constraints, validation and more.

3. Define/write the engine. Once the language is created, we need to know
how to execute the models. In Xtext, models are implemented using the
Eclipse Modeling Framework (EMF), which can be seen as a powerful version
of JavaBeans. There are two main approaches, using a code generator or
using an engine or interpreter.

4. Edit the GUI. (optional) If a GUI for the engine is required, one need to
update it as well in order to reflect to the latest functionalities.

2.4. DSL TECHNOLOGIES 25

Figure 2.6: Xtext - DSL development steps

26 CHAPTER 2. PRELIMINARY STUDIES

Chapter 3

Project Methodology

This chapter starts by presenting the research question, followed by a brief presen-
tation about design-science and how we intend to use it for our research. Then we
present a brief description of the DSL lifecycle and iterative game development,
which have been combined to make our customized project method. It ends by
presenting our toolbox.

3.1 Research Question
Through our preliminary studies we managed to answer our initial question, that
asked what it implied that a game is pervasive. We started by exploring games in
general moving towards pervasive games, which helped us to define different forms
of games, what defines them, and prototyping techniques. We find the TeMPS
framework to be a good tool for evaluating and creating pervasive games.

The second question concerned about the game technologies that are used to
develop pervasive games today. There exist many programming languages and
technological devices that could be used to support pervasive games. We found
that IPerG were the ones that have had the most progress. However, their software
packages were intended for software developers, which makes them less appropriate
for someone without a technical background. We felt that the paper presenting the
authoring tool had a great idea. In addition, they used the TeMPS framework
for creating the gameplay model. We also think that a DSL and engine could be
a possible solution for creating pervasive games. This have led to the following
research questions, which will guide the rest of this master thesis:

RQ1 Can pervasive games be broken down into smaller elements in order to com-
bine them to make new and existing pervasive games?

RQ2 Can we make a DSL with the proper level of expressiveness in order to make
pervasive treasure hunt games?

RQ3 Can the DSL be used outside its purpose to make games that the DSL was
never intended for?

27

28 CHAPTER 3. PROJECT METHODOLOGY

3.1.1 Short Explanation
The research for this thesis focus on two areas; domain and software technology.
The domain represents pervasive games. The second area is software technology
and represents how we want to reach the goal mentioned in section 1.1. Therefore,
we find it natural that the research question also is divided into domain, RQ1, and
software technology, RQ2. In addition, we want to answer a question that involves
both areas, which is RQ3.

3.1.2 Limitations
Due to project limitations it is very unlikely that we are able to cover all pervasive
games. As a consequence, we will provide qualitative research by having only one
focus area that concerns treasure hunt games. However, we hope that the selected
game consists of elements that are repeated in other games, thus identify the same
aspects for other games. First, we need to know more about what a treasure hunt
game is, what defines them, and to find examples of pervasive treasure hunt games
that exist today.

Treasure Hunt Games

A treasure hunt game is a game where the player tries to find the secret location
of a treasure. This is usually done by following a set of clues where the last clue
reveals the treasure. The game can be played by one or many players, and can be
played both indoors and outdoors.

Most people are likely to associate treasure hunt games with their childhood
or simply as a children’s game. A typical scenario where treasure hunt games are
played are during children’s parties. Before the party starts, a parent hides a series
of notes in a certain area. These notes will contain typical clues like “What gets
wetter as it dries?”, which indicate that there is a note with a clue hidden in a
towel somewhere. The final note will reveal the location of the treasure, which in
this case is likely to be candy for the kids attending the party.

Treasure hunt games are played by adults too. They can be used as team
building and/or as ice-breaker exercises for companies, schools, or for other events.
There exist advanced forms for treasure hunt games, like Geocaching and Letter-
boxing. Geocaching is described as an high-tech form of hide and seek, but shares
many characteristics with a treasure hunt game. By using a global positioning sys-
tem (GPS) the player can find “geocaches” that are spread throughout the world.
These geocaches contains a block where the player marks his unique player-ID sim-
ilar to orienteering. Letterboxing is similar to Geocaching except the use of art and
puzzle’s, in addition to leaving your player mark.

3.2. DESIGN SCIENCE 29

3.2 Design Science
“Design science seeks to create innovations that define the ideas, prac-
tices, technical capabilities, and products through which the analysis,
design, implementation, and use of information systems can be effec-
tively and efficiently accomplished” [7].

3.2.1 What is Design Science?
Design-science is a paradigm based on engineering and science of the artificial. It
can be used as a process for recognizing, defining, and solving problems. Design-
science is also an interdisciplinary study since it introduces foundations and method-
ologies used by many disciplines. A reason for this is the fact that an artifact is
bound by natural laws and behavioral theories. This means that future artifacts
will share the same boundaries as the existing ones. In design-science you focus on
the goal and solution simultaneously.

Figure 3.1: Information Systems Research Framework [7]

3.2.2 Design Science and our Project
The concept behind pervasive games might have been introduced many years ago,
but there are still many aspects of it that remains unexplored. It is therefore
suitable to use a design-science approach for this master thesis. This will be done by

30 CHAPTER 3. PROJECT METHODOLOGY

Guideline Description
Guideline 1: Design as an
artifact

Design science research must produce a viable arti-
fact in the form of a construct, a model, a method,
or an instantiation.

Guideline 2: Problem Rel-
evance

The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

Guideline 3: Design Eval-
uation

The utility, quality and efficacy of a design artifact
must be rigorously demonstrated via well-executed
evaluation methods.

Guideline 4: Research
Contributions

Effective design-science research must provide clear
and verifiable contributions in the areas of the design
artifact, design foundations, and/or design method-
ologies.

Guideline 5: Research
Rigor

Design-science research relies upon the application
of rigorous methods in both the construction and
evaluations of the design artifact.

Guideline 6: Design as a
Search Process

The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying
laws in the problem environment.

Guideline 7: Communica-
tion of Research

Design-science research must be presented effectively
both to technology-oriented as well as management-
oriented audiences.

Table 3.1: Design-science research guidelines [7]

following a set of guidelines that has been created especially for research concerning
information systems, see Table 3.1. The goal for this project is to provide with
research about software technology that will support pervasive games. The path
we have chosen was an iterative process, which is further explained in the succeeding
chapters.

Guideline 1: Design as an Artifact There are three artifacts created during
this project; a domain specific language, an editor for creating models, and
an engine for interpreting the models. The DSL and engine will be our main
focus areas since these artifacts are gonna help us to reach our goal. The
editor will be made purely for the sake of supporting and completeness.

Guideline 2: Problem Relevance In order to create games that uses ubiqui-
tous technology, research concerning software technology is required. This
introduces new challenges since little has been done by the big gaming indus-
try, which emphasize the importance of research provided by interest groups
with few/low resources. The problem lays therefore in the technological com-
plexity, which designers face when developing software for pervasive games.

3.2. DESIGN SCIENCE 31

Guideline 3: Design Evaluation The DSL will be evaluated on its expressive-
ness, which implies how many different types of treasure hunt games it is
capable to create. This will be done by using mathematical methods. In
addition, it will be evaluated based on its ease of use and if the DSL can be
used outside its purpose. The engine will be evaluated based on whether it is
able to interpret models created with the DSL. This will be done by testing
and analyzing.

Guideline 4: Research Contributions The design artifacts - the DSL for cre-
ating pervasive treasure hunt games developed during this master thesis is
our main research contribution. The DSL is excerpted from Xtext, thus lit-
tle is being contributed in terms of a new syntactical language. However,
there are some contribution in terms of how to use and structure the code for
making the pervasive games. In addition, we will determine if the method
developed during this thesis, see section 3.5 is a sound method for creating
and evaluating such an artifact.

Guideline 5: Research Rigor Methods for construction of the artifact have been
applied in all parts of the development. The methods are discussed in the
following sections 3.3, 3.4 and 3.5 in this chapter. Furthermore, we have used
the TeMPS framework for establishing game patterns. Methods for evalu-
ation - mathematical methods are used for evaluating the expressiveness of
the DSL.

Guideline 6: Design as a Search Process This is reflected in the method we
have used, which follows an iterative process where the DSL and engine is
evaluated at each iteration. They are evaluated against the requirements and
goals we have established, and further actions are based on this evaluation.
More information regarding the requirements can be found in section 4.3.

Guideline 7: Communication of Research Technology-oriented - which need
sufficient details about the artifact constructed. This has been solved by
adding detailed information like code, technology and other relevant infor-
mation in the appendices. Management-oriented - which in this context are
interest groups for pervasive games. This means we will have to try to “sell”
our research, making them eager to use or continue our research. In addition
to this, we wish to speak to a larger audience by catching their interest and
to enlighten them about pervasive games.

32 CHAPTER 3. PROJECT METHODOLOGY

3.3 DSL Lifecycle
We have decided to use the development method provided by [13]. This is a DSL life
cycle, consisting of five development phases; decision, analysis, design, implemen-
tation, and deployment. However in practice DSL development is not a sequential
process.

3.3.1 Decision
This is the starting phase of DSL development, where the developer has to decide
one of the following options in order to solve a particular domain problem:

1. Develop a new DSL

2. Reuse existing one

3. Use GPL

Option one, developing a new DSL, is not recommending when the domain in
question is fresh and little knowledge is available, thus option 2 and 3 is more
suited.

3.3.2 Analysis
This phase consists of identifying the problem domain and gathering knowledge.
More specifically the developer need knowledge from sources such as; technical
documents, domain experts, existing GPL code (code base) and customer surveys,
in order to produce the following:

1. A domain definition, defining the scope of the domain.

2. Domain-specific terminology (vocabulary)

3. Domain-specific semantics in abstract form.

3.3.3 Design
[13] have identified that DSL design can be characterized along two orthogonal
dimensions;

1. The relationship between the DSL and existing languages.

2. The formal nature of the design description.

The first dimension is about choosing either language invention or language
exploitation for designing a DSL. If the DSL is based on language invention, the
DSL is created from scratch with no commonality with existing languages. If the
DSL is based on language exploitation, by using an existing language, there are
three options left for designer to decide:

3.3. DSL LIFECYCLE 33

1. Piggyback, existing language is partially used.

2. Specialization, existing language is restricted.

3. Extension, existing language is extended.

Once the relationship to the existing languages have been determined, the de-
signer has to specify the design before implementation. They distinguish between
informal and formal designs. Informal design means that the DSL are described
informally, e.g. a DSL using a natural language. Formal design means that the
DSL are described formally by using an existing semantic definition method, such
as regular expressions or grammars for syntax specifications.

3.3.4 Implementation
For executable DSLs they identify the following implementation patters, which a
DSL developer has to choose from during implementation:

1. Interpreter DSL constructs are recognized and interpreted using a standard
fetch-decode-execute cycle. With this pattern no transformation takes place,
the model is directly executable.

2. Compiler/application generator DSL constructs are translated to base
language constructs and library calls. This is also called a code generation.

3. Preprocessor DSL constructs are translated to construct in an existing lan-
guage (the base language). Static analysis is limited to that done by the base
language processor.

4. Embedding DSL constructs are embedded in an existing GPL (the host lan-
guage) by defining new abstract data types and operators. A basic example
are application libraries. This type of DSL is mostly called an internal DSL,
as mentioned before.

5. Extensible compiler/interpreter A GPL compiler/interpreter is extended
with domain-specific optimization rules and/or domain-specific code genera-
tion.

6. Commercial Off-The-Shelf Existing tools and/or notations are applied to
a specific domain.

7. Hybrid A combination of the approaches mentioned above.

Furthermore, they have provided with a decision diagram on how to proceed
with DSL implementation, see Figure 3.2, that shows when a particular implemen-
tation approach is more appropriate.

3.3.5 Deployment
In the deployment phase the DSLs and the applications constructed with them are
used. Developers and/or domain experts use the DSLs to specify models.

34 CHAPTER 3. PROJECT METHODOLOGY

Figure 3.2: Implementation guidelines [13]

3.4. GAME DEVELOPMENT 35

3.4 Game Development
We have decided to use an iterative development method for developing our DSL
and engine. We start with an initial plan and some requirements, which then is
analyzed before being implemented. It will then be tested and evaluated against
our requirements. This continues until we have fulfilled all the requirements set,
which leads to deployment.

We chose to use this method in order to make functional prototypes during each
iteration, where we can test both the expressiveness of the DSL and its engine.
This is also in accordance with Table 2.4 where we have identified our game type
as “continuous”. Figure 3.3 shows how an iterative development method behave.

Figure 3.3: Iterative development method

36 CHAPTER 3. PROJECT METHODOLOGY

3.5 Project Method

In order to create our DSL and engine we had to combine and modify the two meth-
ods described in section 3.3 and 3.4. This resulted into the iterative development
method visible in Figure 3.4. The three first steps, game definition, game concepts
and game specification lays the foundation for which the DSL and engine will be
built on. The DSL and engine is built and expands during each iteration. After the
implementation step we evaluate if the DSL and engine fulfills the requirements
that we have set, see section 4.3. If the DSL and engine fulfills the requirements
they are prepared for deployment. In the other case, further work is necessary and
a new iteration round begins.

Figure 3.4: Our customized project method

3.5.1 Game Definition
This is the first step towards creating a DSL for pervasive games. It addresses the
game definition, which determines what the DSL needs to sustain. The DSL made
during this research is aimed to make treasure hunt games. This means we need
to know what this implies. In order for a game to be a treasure hunt game, there
are certain elements that needs to be present. In addition to this, we need to know
what it implies that a game is pervasive.

3.5.2 Game Concepts
Based on the requirements and limitations from the previous step, a number of
game concepts are designed. A typical concept has a textual description of the
game mechanics and a complementary behavioral model. To avoid spending too
much time making game concepts, eight concepts should be sufficient. An example
of the textual description a long with its behavioral model can be seen in chapter 4
and the game concepts can be seen in appendix B.

3.5. PROJECT METHOD 37

Step Input Output
Game Definition Research question and

brainstorming
Game requirements and
limitations

Game Concepts Game requirements and
limitations

Game concepts

Game Specification Game concepts, prelimi-
nary study

Game elements and pat-
terns

Decision Making Research question, game
requirements and limita-
tions

DSL decisions

Analysis DSL decisions, game spec-
ification

Domain definition,
domain-specific termi-
nology, domain-specific
semantics

Design Domain definition,
domain-specific termi-
nology, domain-specific
semantics

DSL design

Implementation DSL design DSL and engine
Deployment DSL and engine A ready-made DSL and

engine

Table 3.2: Input and output overview for each step in our project method

3.5.3 Game Specification
During this stage the game concepts are analyzed and broken down into smaller
elements. This process helps to identify patterns and the elements that are fre-
quently used to construct treasure hunt games. By undergoing a selective process
the identified patterns and elements are chosen to be included in the DSL.

3.5.4 Decision Making
This step determines the approach for making the DSL. There are basically three
alternatives; create a new domain specific language (DSL), reuse an existing DSL,
or use a generic programming language (GPL). During this step we decided to
create a new DSL.

3.5.5 Analysis
During this step it is necessary to identify the problem domain and to gather
relevant knowledge for further development. The information provided by the
game specification is too large to be implement at once. In order to overcome
this we have to priorities the specifications during each iteration. This means new

38 CHAPTER 3. PROJECT METHODOLOGY

elements and patterns will have to be analyzed in order to be implemented in the
existing DSL version.

3.5.6 Design
We have decided to use Xtext. This means we have most of the design decisions
already determined, since it covers aspects like language infrastructure, parser,
compilers and more. During each iteration, we have to extend the language we
have made during earlier iterations. Note that, this phase (Design) only contains
the design of the DSL, more specifically, it entails grammar definition in Xtext,
which when it is defined, Xtext can produce all the necessary tools, such as parser
in order to interpret it. But at this stage the DSL terminology/language does
not contain the domain specific semantics, that we would like. To do so, we need
to implement an engine, that can extend and limit this basic Xtext parser to the
domain in question.

3.5.7 Implementation
This phase contains the actual realization of the design phase, namely the imple-
mentation of the engine. The engine extends the basic Xtext functionalities, such as
interpret a given DSL script (also called game model or game instance), according
to the grammar definition with the domain specific semantics.

3.5.8 Deployment
The DSL and engine is released.

3.6. TOOLBOX 39

3.6 Toolbox
This section presents the tools and technologies we used to create the artifacts.

3.6.1 Eclipse IDE
In order to write code efficiently it is recommended to use an integrated developer
environment (IDE), since they offer a source code editor, build automation, and a
debugger. We ended up using the Eclipse IDE, which is plug-in based and support
several programming languages, compilers, and interpreters. We chose to use this
IDE for three reason: (1) it is free and open-source, (2) we both were familiar with
it from previous projects, and (3) it got the necessary features we need for this
project[3].

3.6.2 Xtext
We chose to use Xtext to create our DSL mainly due to the fact that it cover all the
aspect of a complete language infrastructure, such as parsers, over linker, compiler
and interpreter. But the most important feature is the fact that it got support for
EMF, thus allowing us to load and run the instances dynamically at runtime as
described in section 4.3.

3.6.3 Other Tools
The following tools and libraries were used besides the native Java libraries:

jScience is a Java tool and library for scientific calculations and visualizations.
It creates synergy between all sciences, e.g math, physics, sociology, biol-
ogy, astronomy, economics. It does this by integrating them into a single
architecture. We have used it for real positioning[9].

swingX contains extensions to the Swing GUI toolkit, including new and enhanced
components that provide functionality commonly required by rich client ap-
plications. We used this component in our engine GUI for visualizing the
game world (map)[23].

OpenStreetMap is a collaborative project to create a free editable map of the
world. We use this as our map provider for our engine GUI[16].

40 CHAPTER 3. PROJECT METHODOLOGY

Chapter 4

Results

This chapter present our results. It starts by presenting our findings concerning
the domain, before presenting the game specification. Then finally we present the
system architecture from a technical point of view.

4.1 Domain
Figure 4.1 shows how the game specification was elaborated. It all starts with
preliminary studies about games, which gradually focus more to our domain. The
black thick lines between the boxes indicates stages where we filtered and ana-
lyzed the relevant information. The results from the analysis can be seen in the
succeeding sections.

Figure 4.1: Elaboration of the game specifications

1. During this stage we gathered all the relevant information concerning games,
see section 2.1. We were able to identify some key elements that are necessary
for all games.

41

42 CHAPTER 4. RESULTS

2. See section 2.1.4 and 3.1.2 for the information we found relevant. This helped
us to identify some of the challenges with pervasive games, and a definition
for what a treasure hunt game is.

3. By this point we have made game concepts that we will have to break down
in order to find repeated patterns and game elements. Go to section 4.2 for
more information about how this was done.

4.1.1 Pervasive Games
Figure 4.2 shows three elements that we find necessary in a game. The physical
components defines the play area and the artifacts that are necessary for playing
a game. The second element is the people that plays the game. The third and
final element is the game rules, also known as the game mechanics. We will have
a deeper look on how the status is for these elements for pervasive games today:

Figure 4.2: Main elements for pervasive games

Physical components: The physical world is always present, and considering
pervasive games are played in the real world means we can play them almost
everywhere. In addition, the world got ubiquitous technology in form of GSM
masts, satellites that orbits it, and smart phones. All these artifacts can be
used for supporting pervasive games.

Players: There exists many potential players in the world. The challenge is to
convince them to start playing.

Non-physical components: As mentioned in the introduction of this thesis,
monitoring players are difficult in pervasive games. There are very few tech-
nological solutions for this today. The pervasive games today relies on trustful
players that obeys the rules or game mechanics that avoids the need for strict
monitoring. This element has room for improvement, and we want to solve
this by creating software.

4.1. DOMAIN 43

Pervasive games faces the same design challenges as conventional games, see
section 2.2.1, but they also introduce new ones. In order to identify these chal-
lenges we created a pervasive matrix, see Table 4.1. The matrix uses the pervasive
perspectives identified in the TeMPS framework, and uses them as “functions”
and “variables”. The vertical axis on Table 4.1 represent the functions while the
horizontal axis represents the variables. The result can be seen below. These chal-
lenges were used for design considerations when we designed the game concepts,
see appendix B.

Temporal Mobile Perceptual Social
Temporal - T(m) T(p) T(s)
Mobile M(t) - M(p) M(s)

Perceptual P(t) P(m) - P(s)
Social S(t) S(m) S(p) -

Table 4.1: Pervasive matrix

T(m) Real time. The time depends on global position, e.g. the time in central
europe is 1 hour in advance of Great Britain. A challenge that doesn’t have
much impact on pervasive games, but rather on online games that have play-
ers from all over the world.

T(p) Relative time. People perceive time differently depending on their state of
mind. People usually feel that the time goes faster when they are having fun.
Making an entertaining game that makes the player lose track of time should
be a goal for all game developers. When this is achieved it is usually a sign
that the game is a success.

T(s) Scheduling. People have different commitments and might not be available all
the time. This is specially an issue that is real for pervasive games since they
are interwoven into our daily lives. This is not a problem for conventional
games since the players usually play on their own terms.

M(t) Availability. Some places are not available for the public continuously, e.g.
stores during Sundays, or a road is closed due to construction or maintenance.
This is unique for pervasive games since they use the real world as play area,
which means that the constraints that exists in the real world will also affect
the game world.

M(p) Knowledge. Objects and places can be perceived differently by people de-
pending on their background, e.g. some people might think that Trondheim
is a big city, while others might think it’s small. Universal challenge for both
conventional and pervasive games.

M(s) Capacity. Places have different capacity for handling big crowds of people,
e.g. the difference between a small room and a public park. Same as M(t) in
the sense that the real world puts constraints on the game world.

44 CHAPTER 4. RESULTS

P(t) Alteration. Objects can be perceived different at different times, e.g. day and
night, seasons during a year or the bystanders walking by. This is represented
in both conventional and pervasive games. In conventional games there could
be bugs that are fixed, or new content is implemented. The difference is that
a pervasive game is more dynamic and can change very fast continuously.

P(m) Location. Objects can be perceived different at different places, e.g. playing
a pervasive game in Trondheim will be different from playing in New York.
This is unique for pervasive games that have no limitations for where the
game can be played.

P(s) Culture. People perceive gestures differently, e.g. handshaking and bowing.
A challenge all game developers face.

S(t) State of mind. People’s behavior varies depending on time and situation, e.g.
morning grumpiness. This might seem to be a challenge that is represented
for both conventional and pervasive games. However, in accordance with T(s)
a conventional game is played on the player’s own terms, but not for some
pervasive games.

S(m) Roles. People behave different at different locations, e.g. the same person can
be a student, brother, colleague depending where he is and the environment
he is in. The normal thing is that when a player starts playing he/she regards
himself as a player. However, a pervasive game that is played continuously a
player might experience that the roles collide.

S(p) Opinions. People can have different opinions and perceive things differently
from others. "A subjective belief based on results of emotion or interpretation
of facts". This is a universal challenge.

The purpose with the pervasive matrix is that it can help to reduce problems
that could occur later in development or after deployment. Examples of such
problems are that the game designer adds a post that is unreachable for the players.
This could be avoided by implementing a smart mechanic in the game engine that
notice where the designer adds a post and sends a notification back to the designer
if the location isn’t suitable. Examples to this could be stores or shopping malls
that aren’t open all the time, a dangerous river, rooftops, or in the sea.

Regardless of their importance, features in the DSL and engine to overcome
these challenges were not prioritized since it would be too time consuming and
complicated to implement. However, they were used while making the game con-
cepts. We believe it is crucial that these features are implemented later, to prevent
game designers from designing non-playable games.

4.1.2 Treasure Hunt Concepts
In order to identify what a treasure hunt game is, we had to create a range of
different game concepts. The game concepts were used to extract concrete game
elements that would be included in our domain-specific language. We started by

4.1. DOMAIN 45

reading about existing games in order to understand what it implied to be a treasure
hunt game. What we learned from this we created a template to be followed and
the result can be seen in Table 4.2.

Most of the fields in the template are derived from the TeMPS framework and
Caillois’s game play definitions described in section 2.1.3. Next step was to be
creative and make simple game concepts by filling the template. All the game
concepts that we created can be found in appendix B.

TEMPLATE FOR TREASURE HUNT GAMES
ID: A name and/or number to identify this game concept

Game pattern: Treasure hunt game
Description

A short explanatory description of the game
Game mechanics

Temporal: Determines the time aspect of the game, e.g. when you
play and for how long

Social: Human entities that are required in order to play the game
Mobile: Where is the game played?

Device(s): Are there any devices required to play the game
Objective(s): What is the purpose of playing the game?

Initial: Explains how the game is started
End: Explains how the game ends

How to win: Tell how you can win this game and what determines the
winner

How to lose: What determines the looser in the game
Other: Are there other rules necessary for the game to work as

intended?
Game play

Agon: Are you competing against others?
Alea: Are there any random aspects in the game?
Ilinx: Are there any physical activities in the game?

Mimicry: Does the players, or game, have to mimic anything?
Paida - Ludus: Describe the level of structure (structured - non-structured)

Concept Art/Models
(Model describing game behavior and the pervasive triangle)

Table 4.2: Template for creating game concepts

46 CHAPTER 4. RESULTS

4.2 Game Specification

From the game concepts we created we were able to extract game elements and
patterns we wanted for our DSL. We decided to divide the patterns into the four
dimensions, goal, mobility, social, and temporal. Three of the dimensions are taken
from the TeMPS framework, but we decided to disregard the perceptual perspective
due to high complexity. However, we believe that the perceptual perspective can
still be addressed depending how the game designer reflects the real world in other
game elements.

Furthermore, we introduce the three dimension levels, low, medium, and high,
which represents the importance and influence of each dimension. The levels can
be compared with Roger Caillois’s definition on types of play, see section 2.1.3.
Ludus represents the low level, since this gives the players the freedom to decide
what order and when they want to find the posts. Paida represents the high level,
since this puts more limitations on the players, making the game more structured.
The dimensions and levels can be seen in Table 4.3.

Low Medium High
Goal Find, the player

receives points by
finding a post

Find and solve, the
player get points
from finding the
post and solve its
task

Solve, the player
receive points by
solving a post task

Mobility There are no order
in which the posts
have to be found

There exists posts
that can only be
found when certain
other posts are
found

All posts need to be
found in order

Social The game is played
by one person and
there are no other
players visible in
the game

The game is played
alone, but you com-
pete against other
players

The player has
to cooperate with
other players

Temporal There are no dead-
lines for the posts
to be found

Some of the posts
needs to be found
within a deadline

All posts need to
be found within a
deadline

Table 4.3: Pervasive dimensions and levels

The succeeding chapters starts by presenting the identified elements and pat-
terns, before explaining the four dimensions and their levels more into detail. It
continues by presenting the expected expressiveness of the DSL, issues concerning
overlapping dimensions, and finally an iteration plan concerning the implementa-
tions of the dimensions and their levels.

4.2. GAME SPECIFICATION 47

4.2.1 Identified Game Elements and Patterns
Table 4.4 shows the game elements and patterns we identified from the game con-
cepts. The elements can be categorized using the three main game elements; phys-
ical, non-physical, and player. All these elements are used for making pervasive
treasure hunt games. Figure 4.14 shows a class diagram for these elements and
patterns and illustrates how they are interconnected.

Physical components are represented as world, post, position, task, and distance.

Non-physical components are represented by the patterns which we have de-
termined by the four dimensions goal, mobility, social, and temporal. In
addition, we got the elements level, order, clue and deadline.

Player is represented by the element player and team.

Game elements
World represents the play area, which is the real world and contains all

the game elements.
Player plays the game.
Post is located in the real world, which the player needs to find.
Clue gives information regarding a post’s location.
Task is something the player needs to complete in order to proceed in

the game.
Position indicates the real location of players and posts in the real world.
Distance indicates the distance from the player to the closest post.
Level indicates the level for a pattern. LOW, MEDIUM, and HIGH
Team is cooperative play between players.

Deadline makes a post unreachable when the time is up.
Order meaning that certain posts needs to be found before others.

Game patterns
Goal indicate how players receive points, see section 4.2.2.

Mobility indicates the importance of post sequentiality in a game, see sec-
tion 4.2.3.

Temporal indicates the importance of post deadlines in a game, see section
4.2.4.

Social indicates the importance of cooperation and competition in a
game, see section 4.2.5.

Table 4.4: Identified game elements and patterns

48 CHAPTER 4. RESULTS

4.2.2 Goal
This dimension introduce some of the competitive aspects of a game by decid-
ing how players receive points when they are playing. What the points are used
for is up to the game designer, but player ranking would be an option. See Fig-
ures 4.3(a), 4.3(b) and 4.3(c) and Table 4.5 for further explanation.

(a) LOW. The task it self is to find
the posts.

(b) MEDIUM. Player get points
both for finding a post and for solv-
ing the associated task.

(c) HIGH. Player only get points for
solving the associated task.

Figure 4.3: Goal dimension levels

Level Explanation
Low goal level means that players get points by finding a post. There are

no tasks associated with the posts.
Medium goal level means that players get points both for finding a post and

for solving the task associated with the post.
High goal level means that a player get points for solving a task associated

with a post. This makes it more challenging since the player receives
no points for finding the post itself.

Table 4.5: Levels affecting the goal dimension

4.2. GAME SPECIFICATION 49

4.2.3 Mobility
This dimension determines player movement. The game designer decides the order
of which the posts needs to be found. The player needs to follow this order to be
able to finish the game, see Figures 4.4(a), 4.4(b) and 4.4(c) and Table 4.6 for
more information.

(a) LOW. Model showing that
the player is free to find any
post

(b) MEDIUM. Model showing
that the player has to finish at
post 4

(c) HIGH. Model showing that
the player has to visit the posts
in a strict sequence

Figure 4.4: Mobility dimension levels

Level Explanation
Low mobility level is illustrated in Figure 4.4(a), where a player can find

posts in any order desired.
Medium mobility level means that posts are semi-ordered. If we have the four

posts p1, p2, p3 and p4, the developer can specify the order for how
some of these posts needs to be found. Figure 4.4(b), shows such a
semi-ordering. In this scenario, a player can only find post p4 when
he has found all the other posts. This can be achieved by writing the
following code:

p1->p4, p2->p4, p3->p4

High mobility level means that all posts have a strict ordering, which means
the posts is found in sequential order. Figure 4.4(c), shows and ex-
ample of such sequential ordering. This can be achieved by writing
the following code:

p1->p2, p2->p3, p3->p4

Table 4.6: Levels affecting the mobility dimension

50 CHAPTER 4. RESULTS

4.2.4 Social
This dimension adds competition and cooperative play into the game. Furthermore,
it decides how the game handles multiple players, see Figures 4.5(a), 4.5(b) and
4.5(c) and Table 4.7 for more information.

(a) LOW. Model showing that
there is only one player

(b) MEDIUM. Model showing
that that the players are com-
peting against each other

(c) HIGH. Model showing
that the players are cooper-
ating in group and compete
against other groups

Figure 4.5: Social dimension levels

Level Explanation
Low social level is illustrated in Figure 4.5(a), where a player can complete

the game without any cooperation or interaction with other player.
Medium social level means that players are competing against each other in-

directly, meaning no cooperation or interaction while playing. Fig-
ure 4.5(b), illustrated such an instantiation.

High social level means that the players are in teams and they have to
complete the game with each other while competing against other
teams. If we have four players pl1, pl2, pl3 and pl4, the developer
can specify the teams by the following code:

teamA(pl1,pl2),teamB(pl3, pl4)

Table 4.7: Levels affecting the social dimension

4.2. GAME SPECIFICATION 51

4.2.5 Temporal
This dimension adds time constraints in the game, see Figures 4.6(a), 4.6(b) and
4.6(c) and Table 4.8.

(a) LOW. Model showing that
there are no time limits to visit
the posts

(b) MEDIUM. Model showing
that some posts have a time
limit

(c) HIGH. Model showing that
each post have a time limit

Figure 4.6: Temporal dimension levels

Level Explanation
Low temporal level is illustrated in Figure 4.6(a), where a player can find

a post without any time constraints. This means that the game can
be played as long as the player wants.

Medium temporal level means that one or more posts can have a time con-
straints. For instance, if we have posts (p1, p2, p3 and p4), the
developer can specify time constraint this way:

deadline: 0d 0h 5m 0s // 5 minutes
posts: p3, p4

Figure 4.6(b), shows an instantiation of such a semi timeout. In this
scenario the player needs to find post p3 or p4 within 5 minutes, else
the game ends and the player will lose the game.

High temporal level means that all posts have a time constraint. Fig-
ure 4.6(c), shows a game with such strict time constraints. In this
scenario a player has to find a new post every 5 minutes, else the
player will lose the game.

Table 4.8: Levels affecting the temporal dimension

52 CHAPTER 4. RESULTS

4.2.6 Overlapping Dimensions
The dimensions and their levels introduce some overlapping design conflicts that
needs to be addressed. By conflicts we mean that the dimensions will affect each
other depending on their levels. Note that the goal dimension is not included since
this only decides how the players receive points, thus no conflicts occur.

D1/D2 LOW MEDIUM HIGH
LOW None None None

MEDIUM None Medium High
HIGH None High High

Table 4.9: Dimensions affecting each other

There are nine situations where conflicts occur between two dimensions, see
Table 4.9. Each type of overlap will affect the involving two dimensions with
different magnitude. We have decided to categorize these magnitudes into three
levels, none, medium, and high. None, indicates there are no actions necessary to
overcome the conflict. This solves itself by letting the dimension with the highest
level dominate over the other. But for the two other magnitudes it varies depending
on what the dimensions are.

Figure 4.7: Overlapping dimensions

1. Temporal vs Mobility The typical problem in these cases are that the
player won’t have enough time to reach their posts since they have to find

4.2. GAME SPECIFICATION 53

the posts in some sort of order. It is therefore important that the deadlines
and ordering are coordinated so that the players are able to finish the game.

2. Mobility vs Social This problem was identified in section 4.1.1 and is equiv-
alent with capacity and accessibility. The game should be designed so that
the game is equal for all that plays it. This means that some of the post
locations will have to be able to support multiple players simultaneously, and
should be accessible at all times. This means that the game designer needs
to be consequent with where he places the posts in the real world.

3. Social vs Temporal is equivalent with mobility vs social.

4.2.7 Iteration Plan
In order to avoid spending too many resources in the implementation phase we
couldn’t implement all the dimension levels at once. We felt it was important to
spend less time programming so that we could get feedback from testing and eval-
uating the DSL and engine by creating games. During each iteration we improved
and/or added more features.

Initial Iteration

The very first DSL and engine, did not have the defined dimensions and all the
elements implemented. This prototype was mainly made for discovering the capa-
bilities and limitations with the Xtext framework. However, the necessary elements
like player and post were implemented. In order to test the games made with the
DSL we needed to develop a game interface, see appendix C for more information.
Figure 4.8 shows how the pervasive dimensions appears in the first prototype.

Figure 4.8: First prototype

We redefined the DSL grammar slightly by implementing the goal dimension in
the second prototype. We also chose to improve the game interface by implementing
a real map to the interface using openstreetmap, see appendix D (called strategy).

54 CHAPTER 4. RESULTS

Main Iteration

Figure 4.9 show the third prototype that was implemented. This is where we
implemented the three dimensions and levels. This made it possible to add post
ordering, post deadlines, and teams to some degree. This was the iteration with
the biggest workload. More information can be found in appendix E.

Figure 4.9: Third prototype

Final Iteration

The forth and final prototype doesn’t add much more to the DSL grammar. How-
ever, we wanted to address usability by making the game interface (prototype) into
an editor as well. This means the creator doesn’t have to write code themselves
since this will be handled by the editor. More information can be found in appendix
F.

4.3. SYSTEM ARCHITECTURE 55

4.3 System Architecture
A system architecture is a conceptual model that defines the structure and behav-
ior of a system. This is done by presenting different views. These architectural
views, as described in [5], is made in order to depict different aspects of the sys-
tem (DSL, engine and editor). It is intended to capture and convey the significant
architectural decisions used to build our system. The different views are meant to
give meaningful information about the architecture for one or more stakeholders.
Before we introduce the architectural views we start by introducing the stakehold-
ers and functional requirements for this project. It continues by introducing some
technical constraints before describing the overall system design.

4.3.1 Stakeholders
Stakeholders are people, organizations, or objects that are directly or indirectly
involved with our project. They can either affect or be affected by our project or
system, which means they are important to identify. The direct stakeholders are
identified in Table 4.10.

Stakeholder Rationale
Players Are the ones that play the games created with our system.

Domain experts Are experts within pervasive games, and/or treasure hunt
games.

Developers Everyone that wants to create a treasure hunt game using
our system.

NTNU Project owner.

Table 4.10: Stakeholders

4.3.2 Functional Requirements
A functional requirement is associated with a specific function, task or behavior,
which the system has to support. There are some key requirements that have a
significant bearing on the architecture, which also provide a baseline for validation
and verification of the deliverables. The most important functional requirements
identified for our system can be seen in Table 4.11. These requirements were
elaborated during the game specification phase, and were modified or added during
the iterations through the development of the system.

56 CHAPTER 4. RESULTS

Req. ID Artifact Description
FR01 DSL The DSL (.th) should provide (have) textual repre-

sentation.
FR02 DSL The DSL (.th) should be readable by a domain ex-

pert.
FR03 DSL The DSL (.th) should be writable by a domain ex-

pert.
FR04 DSL The DSL (.th) should support all the pervasive di-

mensions.
FR05 Engine The engine should provide import and export func-

tionalities.
FR06 Engine The engine should interpret a game model of Trea-

sure hunt DSL (.th)
FR07 Engine The engine should interpret the game model created

in .th DSL such as the pervasive dimensions accord-
ing to the specified semantics.

FR08 Engine The engine should provide start and stop function-
alities.

FR09 Editor The editor (textual) should support domain-specific
validation.

FR10 Editor The system should provide an easy to use graphical
editor for creating game models

FR11 UI The engine should provide a map view for admin user
in order to monitor players.

FR12 Engine The engine should provide a function for admins to
edit players/posts and dimension configuration info
dynamically (in runtime).

Table 4.11: Functional Requirements

4.3. SYSTEM ARCHITECTURE 57

4.3.3 Technical Constraints
A constraint is an element factor that works as a bottleneck for an entity, project,
or a system. They put restrictions on the system from achieving its potential, which
makes them important to identify. Table 4.12, shows the technical constraints on
the platforms we have chosen to work with.

Technical Platform Description
Server side The engine is hosted on an Apache web server. The

web server is listening on the web standard port 80.
Web server will accept all requests from the clients and
forward them to the specific engine server hosting lo-
cation. All communication with clients have to comply
with public HTTP, TCP/IP communication protocol
standards.

Client Side The clients will be able to access the engine only
through the web (www), which implies that they need
access to the Internet (Wi-Fi or 3G). Clients are re-
quired to use built-in technology like GPS, which are
present in most smart phones today. The targeted op-
erating systems for the clients are Windows phone, iOS
and Android, which implies we need cross-platform sup-
port.

Xtext The Xtext framework can only be used with the Eclipse
IDE.

Table 4.12: Technical Platform

4.3.4 Overall System Design
Figure 4.10, shows a simple process of how our system works. First step is to create
game models using our DSL, which has the file extension .th. The model is then
passed to the engine in order to be interpreted. Examples of a models written in
.th can be seen in appendix E. As for the graphical editor, we have integrated it
with the engine. By doing this we could eliminate the need for a text-editor and an
IDE for model creation, which simplifies the creation of a model. For more details
regarding the graphical editor see appendix F.

The engine will be implemented with a client-server pattern when interpreting
a game model (.th), see Figure 4.11. The players communicate with the engine and
server through the HTTP protocol with their clients (smart phones). The engine
will provide the clients with the necessary information about their own state (or
view) in the game, and not the state of other players. By doing this, a player is not
able to get information they shouldn’t have access to, thus avoiding the possibility
for players to cheat in the game.

58 CHAPTER 4. RESULTS

Figure 4.10: Code generator strategy vs Engine strategy

Figure 4.11: Engine - Client-Server pattern

4.3. SYSTEM ARCHITECTURE 59

4.3.5 Architectural Views
The views we have chosen to use can be seen in Table 4.13, which also shows who
they are intended for.

View Audience Area Related
Arti-
facts

Use case All stake-
holders of
the system.

Describes the set of scenarios
and/or use cases that repre-
sent some significant and central
functionality of the system.

Use-Case
diagram

Implementation Programmers. Software components: describes
the layers and subsystems of the
application.

UML
class and
package
diagram

Process Programmers
and integra-
tors.

Non-functional requirements:
explain the system processes
and how they communicate.
Document the runtime behavior
of the system.

UML
sequence
and ac-
tivity
diagram

Table 4.13: Separation of Concerns (views)

Use-Case View

We made a total of five scenarios that describes situations where stakeholders
uses different functionalities provided by our system. These scenarios played a
significant importance on the architecture. Figure 4.12 shows the most important
use-cases that helped to form the system architecture.

1. Play games. A player plays a treasure hunt game using a smart-phone with
an installed application (client). The player navigates through the real world,
in Trondheim city, looking for posts. The player is initially given a clue for
the location of the first post. While the player walks around the play area,
notifications about his/her distance to the post are shown on their smart
phones. Once the player has found the post the server validates the position
and the player receives a task that needs to be completed. After the task is
done, the server sends the player a new clue for the next post.

2. Create games/models. A domain expert/developer creates a treasure hunt
game using a textual editor. He/She creates a set of posts and places them
in real locations using GPS coordinates. For each post the developer has to
initiate the following variables, title, the clue for next post, and the task.
Then the developer has to configure the pervasive dimensions levels. The
developer has now created a game, which is ready to be played.

60 CHAPTER 4. RESULTS

Figure 4.12: Architectural significant use-cases

3. Import/Export game models. A domain expert/developer selects a file
with the .th extension to be imported into the engine, so that it can be con-
figured, executed, and interpreted. After the configuration the game model
is exported from the engine to the same file.

4. Start/Stop game models. A player plays a game when a break is required.
The player push a pause button, which pauses the game. When the player
is ready to play again he push the pause button again, which continues the
game.

5. Monitor games during the execution. An admin can monitor the game
progress while the game is being played using an engine GUI. It provides
a map where posts and players position are visualized and updated in real
time. The admin selects a post by clicking on it, and a detailed view of
that post is displayed. The same happens when the admin selects a player.
The admin see that the engine GUI provides all the default administrative
capabilities, such as throwing a player out of a game, adding new posts, or
altering existing posts.

4.3. SYSTEM ARCHITECTURE 61

Implementation View

Figure 4.13, shows the main packages involved in the graphical editor, engine and
its GUI.

Figure 4.13: Package and subsystem

1. treasurehunt package includes all the EMF generated classes by Xtext
from the DSL definition. We use these generated classes in our engine in
order to load a game model and execute it dynamically at runtime. See
Appendix F for more details regarding DSL definition.

2. framework package includes all the classes that are extensions to the EMF
generated classes. By extending more functionalities to some of the EMF
generated classes we are able to hide unnecessarily details from the developers
using the treasure hunt DSL. Figure 4.14 shows both the EMF generated
classes (treasurehunt package) and all the extended classes that inherits from
the generated classes (framework package).

3. util package includes all the common functionalities that are required in
different parts of the system.

4. engine package includes both the graphical editor for creating game models,
the engine for interpreting them, and the GUI for admin monitoring.

5. client package includes client (smart phone) specific codes. However, we
have not implemented this functionality in our prototype yet.

62 CHAPTER 4. RESULTS

Figure 4.14: Extended EMF generated classes by Xtext

4.3. SYSTEM ARCHITECTURE 63

Process View

We have integrated the graphical editor with the engine to a single software com-
ponent, which allows us to create and execute a model of a treasure hunt game in
the same GUI. Figure 4.15, shows the process as an UML activity diagram. Once
the application starts, we got the options to create a brand new model or to import
an existing one by selecting a file with the .th extension. Once a game model is
imported, we are then allowed to edit it.

Figure 4.15: Activity diagram for creation and execution

When a game model is created we got the option to either export it as a file or
to execute it. If it is executed (run state), the engine interprets the game model
and waits for player actions. Figure 4.16 shows the main game loop where the
engine waits for user input, which process the input then updating the global game
state. This information is then sent to each client to update their individual game
states.

Figure 4.17, shows the sequences of method call between clients and the server/engine.
Notice that in this diagram we use a location service in order to validate that a
user is actually at a particular location. The updateState() method updates the
global game state. This method is called when a player finds a post or solves a
task associated with a post.

64 CHAPTER 4. RESULTS

Figure 4.16: Main Game loop - runtime model

Figure 4.17: Client-Server - main game loop

Chapter 5

Discussion

This chapter present our discussion concerning both the results and the methodol-
ogy used. It starts with a discussing of the project method, then moving on to our
treasure hunt DSL. It also contains a discussion concerning the DSL engine and its
graphical editor.

5.1 Project Methodology

5.1.1 Project Method
Due to the nature of our task, we had to invent a new project method, which
we elaborated in section 3.5. We did this by combining the two well established
methods; iterative game development and a DSL lifecycle.

We anticipated that the requirements would change during the project as we
learned more about the domain, which they did. Therefore we chose to use an
iterative development method in order to create the artifacts. It enabled us to easily
add and remove requirements based on both new ideas and changes, excerpted from
the testing and evaluation of the treasure hunt games we were able to make.

The project method worked well for our project. Specially, the most crucial
part of the development method was the initial steps; game definition, game con-
cepts, and game specification. This was important since this is where pervasive
games were investigated. In addition, the DSL terminologies and domain specific
abstractions were defined during this step, which determined the basis for the entire
project.

5.1.2 DSL Development
A DSL lifecycle consists of five phases, as mentioned in section 3.3. In each phase
the DSL designer has to choose one or more patterns, and we made the following
decisions:

65

66 CHAPTER 5. DISCUSSION

Decision We chose to develop a new DSL (.th). The main reasons for this decision
were the following: (1) We had a pretty good understanding of the domain
from our previous in-depth projects, [8] and [21]. Domain concepts such as
post, player, task, clue, were already defined during those projects. (2) There
are no DSL for pervasive games, therefore we couldn’t reuse an existing DSL.
(3) We wanted to develop further concepts and abstractions that are specific
to the domain of pervasive games, thus using a GPL was not a real option
for us.

Analysis During this phase we gathered domain knowledge mainly from the fol-
lowing sources: literature study on pervasive games, literature study on trea-
sure hunt games, and making treasure hunt concepts, see appendix B. These
sources were used to produce a set of domain-specific terminologies, such as
the pervasive dimensions and treasure hunt elements such as posts, players,
tasks, and clues.

Design We chose language invention over language exploitation, mainly because
we wanted to create concepts and abstractions that are specific to the domain.
This would make our DSL both readable and writable by domain experts.
Furthermore, we chose a formal specification over an informal one, when spec-
ifying the design before implementation. As mentioned before in section 3.3,
a formal description uses an existing semantics definition method, which in
our case is extended backus-naur form (EBNF). In this phase our choices
were influenced by the technology we had chosen to use, namely Xtext.

Implementation We chose the interpreter pattern, mainly due to: (1) We wanted
the DSL syntax to be close to notations for the domain in order to be both
readable and writable by a domain expert. (2) Domain-specific analysis, veri-
fication, optimization, and transformation (AVOT) possibilities. (3) Scientific
curiosity.

We managed to integrate the DSL life cycle method very well into our project
method. During each iteration we would do the analysis, design, implementation
phase multiple times. However, we never reached to the deployment stage since
our current DSL and engine are not ready to be used by the audiences.

5.2. TREASURE HUNT DSL 67

5.2 Treasure Hunt DSL

5.2.1 Treasure Hunt Concepts

In section 4.1.2 we talked about treasure hunt game concepts and the template we
had used to make them. The concepts were used to extract game elements and
patterns to be included in the DSL, thus making this a critical stage in the DSL
development.

The template was based on the preliminary study concerning information about
all games and information about pervasive games. We used the template as a frame-
work for making the game concepts. This made it easy for us to create concepts
by filling in the required information in each field of the template. In hindsight,
we think this might have added some limitations on varieties and originality in the
game concepts. However, at the same time we believe this approach made it easier
for us to extract the game elements and patterns we would base our DSL on. Other
approaches for making concepts, like free text, would also have worked, but would
require more work in analysis and breaking them down to elements and patterns.

There was a total of eight game concepts that were made during this project,
four by each designer. We felt that this was an adequate number since we believed
that a higher number wouldn’t have made much of a difference. This would be
both time consuming and repetitive. However, the number of designers could have
been raised in order to absorb the ideas by individuals with different views and
perception on the topic. The template could have been distributed to a number
of people, which then would create their own game concepts and send them back
to us. This would be a great opportunity to test and to evaluate the template
itself and to provide us with original ideas for treasure hunt games. The reason
why this wasn’t executed was due to the huge amount of time that would be spent
on management and on the analysis of the feedback. There is also a chance that
the concepts they made would be very similar in the end, thus wasting our project
resources.

The concepts we made can be found in appendix B. As mentioned earlier we
made four concepts each without any instruction on how to do it. In addition,
we had no insight in what the other had done after all concepts were made and
shared. As a result, repetitiveness is noticeable in some of the concepts. One
designer tried to avoid using game mechanics of other concepts resulting in four
distinct concepts, while the other designer built more complexity on top of earlier
concepts. We believe this could have reduced some varieties of treasure hunt games.
In retrospect we should have made it more clear from the beginning that the four
concepts should be distinct from each other.

In addition to the textual fields in the template we added a behavioral model.
This model was made using elements from the business process model and notation
(BPMN). See Figure B.1 for an example. The rational behind these models was
to provide a visual representation of the game so that is was easier to see and
understand the game flow. As a consequence, this gave us an idea that this could
be used as a graphical notation for our DSL. The end user would create treasure

68 CHAPTER 5. DISCUSSION

hunt games by combining game elements through a visual presentation by using
a game editor. However, due to project limitations the idea never took form and
remains just as an idea that could be implemented later.

The identified elements and patterns can be found in section 4.2.1 and they
where the direct result from analysis made of the game concepts. This was done
by comparing each game concept with each other in order to find common elements
and patterns. It was a relatively fast process, since all the game concepts followed
the template, and therefore easy and fast to compare. We felt that the result
was good, and we believe that not much could have been changed to improve the
analysis of the concepts.

To sum up, we are very satisfied with the game elements and patterns excerpted
from the game concepts. The template proved to be expressive enough to design
many distinct pervasive treasure hunt concepts. We also believe that our template
can be used to design other pervasive games.

5.2.2 Pervasive Dimensions
In section 4.2 we introduced the four pervasive dimensions, goal, mobility, social
and temporal, which describes the game patterns. The pervasive dimensions were
extracted from the TeMPS framework, and the goal dimension from the template
and the eight game concepts.

The goal dimension describes the objective in the game, implying how the
player receives points during the game and how to win. We found this necessary
to establish a purpose for the players in the game, so that they know how they can
win and finish the game. From the game concepts we designed we excerpted three
kinds of objectives which were repeated; finding the posts, solving a task, and a
combination of both. We believe that three goal types were sufficient and found
therefore no reason to elaborate more.

The mobility perspective was initially indented to describe the play area when
we created the template. In the game concepts we see that this play area is com-
prised to a larger geographical area, like the university campus or the city. How-
ever, we needed a pattern for describing player movement in the game and therefore
assigned the mobility dimension to describe three dimension levels of player move-
ment; freedom, some freedom, no freedom. We felt this was a good and a sufficient
solution for describing player movement in treasure hunt games, thus felt no need
to expand further.

The social dimension was the most challenging to determine. Similar to the
other dimensions we decided to have three pattern to describe the social aspect of
the games; single player, indirect interaction, and direct interaction. We decided
that the social dimension describes how players interact with each other. The
challenge was that there were few examples of cooperative play in the game concepts
we had made, see appendix B. As a consequence, we only got one dimension level
represented in the game concepts, which includes direct interaction between players
during the game. Regardless of the lack of cooperative play, we still feel we made
the right decision because we believe that this dimension would be challenging to

5.2. TREASURE HUNT DSL 69

implement in our DSL. The DSL still don’t have the last two social dimension
levels, indirect- and direct interaction, implemented yet for this reason.

Temporality concerned about the time aspect in the games, and we identified
two types how time were used in the game concepts. The first type involved the
duration of a game, how long does the player spend in order to finish the game,
which would be used to rank players. Another type was the use of deadlines, which
implied that the player had to find posts within a certain amount of time. The
latter type was decided to be implemented in the DSL since this was easier to
divide into three dimension levels; no deadline, semi-deadline, and full-deadline.
Game duration is also possible to calculate, but further work is required for this to
function.

We believe that the pervasive dimensions were key success factors for making
the DSL (.th) as robust and expressive as it is. In addition, we didn’t face much
problems to implement these dimensions and their levels, besides the social dimen-
sion. We believe that this method can be used to make DSL for other pervasive
games or they could build on top of our existing DSL.

5.2.3 DSL Expressiveness
The pervasive dimensions were implemented in the DSL to establish some design
boundaries. The reason for doing so was to create a DSL that is easy to use, but
at the same time are capable of making many different games. In addition, this
decreased the complexity for making the DSL itself. We calculate that with the
four dimensions and three levels it is possible to make 81 unique types of treasure
hunt games. All these types can be found in Table E.2 in appendix E. This is due
to the permutation rule which emerges from combining different leveled dimensions
with each other:

f(n) = nr

f(n) = 34 = 81

This doesn’t set limitation on the maximum amount of different treasure hunt
games, but there is a limit for combining the dimensions and their levels. We felt
that this was sufficient since the games can be changed further by adding and/or
altering the other game elements, e.g. posts, clues, tasks and world. Exactly what
you can change can be seen in Table 5.1. In principe it is possible to create an
unlimited number of different pervasive treasure hunt games with our DSL, but
within the boundaries set by the elements and patterns themselves.

If we want to increase the number of unique types of treasure hunt games,
or maybe make the DSL suitable for other games, we could raise the number of
levels and dimensions. A possibility is to break down the pervasive dimensions into
smaller dimensions, e.g. mobility could be post locations, play area, and player
movement. If we divided one of our dimensions in half would give us a total of 5
dimensions. The permutation formula would then give us a total number of 243
unique treasure hunt games. Another possibility could be to add a forth level, e.g.
low, mid-low, mid-high, high. The permutation formula gives us 256 unique games

70 CHAPTER 5. DISCUSSION

Element How to add expressiveness
World Also called play area, can be set wherever in the real world. How-

ever, we recommend that the play area is set according to how
the game is intended to be played. An example is games that are
played by foot should have a smaller area than a game intended
to be played with a car or bike.

Posts Can be set at any location using real GPS coordinates. In addi-
tion, there is no limit for how many posts that can be added, so
in theory the creator can add an infinite number of posts.

Clues Can be added on posts using free text. This means the creator
can basically decide himself how he wants the players to find posts
using the clues. Examples of such clues are GPS coordinates,
riddles, description, itinerary, and more.

Tasks Is an area which needs further expansion. The DSL supports
Q&A’s where the creator can ask anything he like. Examples
of such questions are location-based, history, general, and many
more.

Teams Can be made.
Deadlines Can be added to the posts. This deadline can be everything from

years to seconds and everything in between.
Order Of how the posts needs to be found can be decided by the creator.

Table 5.1: How elements can expand the expressiveness

with four dimension levels. This indicates that it is possible to raise the level of
abstraction by increasing the number of levels and/or dimensions. The graph in
Figure 5.1 shows how much the number of unique treasure hunt games raises by
adding either another level, indicated by g(x) with a red line, or adding another
dimension, indicated by f(x) with a blue line.

We are satisfied with the level of expressiveness in our DSL. Considering it
is meant for creating pervasive treasure hunt games, we don’t see the need to
expand the expressiveness by adding more dimensions or levels. This would have
required more time in implementation and might have resulted in fewer iterations.
In addition, we don’t see how raising the expressiveness would have made it more
obvious to see if a DSL is an appropriate solution for making pervasive games.
However, if we were forced to expand we would choose to add another dimension,
which would make a total of 5 dimensions. The reason for this is that this would
require less time to implement and at the same time had the least chance for ripple
effects in what we already implemented. Adding another level would have forced
us to redefine all the other levels for the dimensions, which is a total of 16. In
comparison, if we added another dimension we would simply divide an existing
dimension, which means we would just have to add 6 new levels. We are convinced
that these dimensions and levels are the correct path in making a DSL for pervasive
games. Expanding them could result in a DSL that is able to create any type of
game.

5.2. TREASURE HUNT DSL 71

Figure 5.1: Number of unique treasure hunt games

72 CHAPTER 5. DISCUSSION

5.2.4 DSL Outside its Purpose
In section 3.1 we ask a research question concerning the use of our DSL outside its
purpose (RQ3). With the last version of our DSL we tested if we could make other
games than treasure hunt games. These games were only prototyped to see if they
could be made, thus never play tested.

We started by creating games that have the most similar game mechanics and
dynamics, which is a scavenger hunt game. The player would receive a list of items,
as an initial clue, which the player would have to find and photograph. The catch
was that these items only existed in specific locations and these were indicated as
posts. Typical items were certain buildings, road signs, restaurants, and stores.
The player would have to walk to these posts and try to find the items which needs
to be photographed. However, since we have no mechanic to give points based on
the photographs taken and to crosscheck them with the list, this would have to
be done manually. In addition to the scavenger hunt game, we were also able to
create a racing game. This was done simply by making a track with posts and add
a strict ordering so that they would have to be found in sequence. The timer would
start when the first post was found and stop at the last. The last game we were
able to create was an orienteering game. This was done by distributing posts that
could be found in any order, and having the timer start when the first post was
found, and stop at the last one.

In addition to the games above we tried to make the games mentioned in section
2.2.4. The tag-based game, Pac-Manhattan, couldn’t be made with our DSL and
engine. We believe for this to be possible we need to work more on the social
dimension, since there is a lot more player interactions in a tag-based game. A
possible solution to this would be to add a dimension regarding player roles, since
in a tag game you are either the chaser or being chased. Concerning the GeoQuiz
game there was only one key feature lacking in our DSL and engine, which was
that the player could add new posts with a Q&A task. Besides that, the game
would be fully possible to create.

We were able to prove that the DSL and engine could be used to make other
games than treasure hunt games. However, these games have similar game me-
chanics and dynamics as treasure hunt games. In order to expand this we would
have to increase the number of dimensions, levels, and/or add new game elements.
Figure 5.2 illustrates the current state of our DSL and engine. It is designed for
treasure hunt games, but it is also possible to create games similar in mechanics
and dynamics.

5.2. TREASURE HUNT DSL 73

Figure 5.2: DSL coverage

74 CHAPTER 5. DISCUSSION

5.3 DSL Engine and Graphical Editor
The treasure hunt engine and its graphical editor is simply a proof of concept. It
shows that the treasure hunt DSL (.th) that we proposed is not just an idea, but
given an game model of treasure hunt DSL it can actually be executed. The final
engine is the result of several development iterations and most of the source code
had to be rewritten/factored at least three times. These changes concerned both
the grammar definition (DSL) and the underlying architecture of the engine.

In the first prototype the DSL covered most of the basic domain concepts and
abstractions. The main goal was to familiarize ourselves and to discover the pos-
sibilities of Xtext, as mentioned in section 4.2.7. As a consequence, we only imple-
mented the main functionalities of the engine. See appendix C for more technical
details.

In the second prototype the DSL supported real GPS positioning, making the
whole world a potential play ground. In order to support this functionality the
engine had to be rewritten. We implemented the support for a real word map
by integrating jScience[9], swingX[23] and openStreetMap[16] in the engine. See
appendix D for more technical details.

During the third prototype the DSL was expanded to support the pervasive
dimensions described in chapter 4. This was a big change in the DSL, which meant
the engine had to be rewritten once again. During this iteration we were able to
implement the engine to support all the pervasive dimensions except the social one.
However, some of its functions were partially supported. See appendix E for more
technical details.

In the forth and final prototype there were no changes to the DSL itself. How-
ever, in order to simplify the creation of treasure hunt games we integrated a graph-
ical editor with the engine. By doing this we hoped to eliminated the need for an
external IDE or text editor, and making it more user friendly for non-technical
users. See appendix F for more technical details.

The time spent developing the engine has given us insight in the importance of
creating something that executes the DSL. We experienced that it isn’t the DSL
itself that was challenging to create, but more the realization of it by construc-
tion an engine. It is the implementation of the engine that has consumed most
resources, since this requires a lot of time writing code, and to test and evaluate
the prototypes. In hindsight, we feel we could have been better prepared for the
development of the engine, since a lot of code was rewritten during each iteration.
By better planning we could have saved a lot of time rewriting code, and we could
have spent that time focusing on the DSL instead. However, we are satisfied with
the results we were able to achieve.

Chapter 6

Conclusion

This chapter presents the conclusion for this master thesis and further work.

6.1 Conclusion
The three pervasive dimensions, mobility, social, and temporal, proved to be a
good starting point for generalizing pervasive game elements. We also found it
necessary to have a dimension that determined how the player received points
during the game. We called this dimension for goal. Each dimension were broken
further down into three dimension levels, which could be combined to make different
treasure hunt games. Furthermore, we needed to create specific elements that were
necessary for playing treasure hunt games such as posts, clues, and tasks.

Using an iterative process we were able to create a DSL using the pervasive
elements mentioned above. We calculated that it is possible to create a total
of 81 different treasure hunt games by combining the dimensions differently. In
addition, the game designer has no limitations for how many treasure hunt elements
he/she wish to add. The expressiveness could be expanded further by adding more
dimensions or levels. However, we feel the current expressiveness is good enough
for its intended purpose, which is to make treasure hunt games.

We were able to create other games than just treasure hunt games with our DSL
and engine. These games were very similar both in terms of the game mechanics
and dynamics. However, it proved that the expressiveness in our DSL is capable
to be used outside its purpose.

75

76 CHAPTER 6. CONCLUSION

6.2 Further Work
Due to lack of resources we were not able to complete the DSL and engine for
deployment. Neither were we able to play test the treasure hunt games on smart
phones in their intended context. This section introduce how we would proceed
further and some of the remaining work required on our DSL and engine. It
continues by recommending how the DSL could be expanded and used to create
other games than treasure hunt games.

6.2.1 DSL and Engine
We estimate that we need at least two more iterations before the DSL and engine
can be deployed. First iteration would be to fully implement all the pervasive
dimensions with their respective levels. The social dimension still have work re-
maining. This is due to the fact that it is not possible to create games where the
players cooperate with each other. To be more specific, the DSL supports creation
of teams, but the engine does not. In addition to this, there are still no mechan-
ics that ranks the players based on their collected points. This is important to
implement so that the DSL supports the medium level in the social dimension.

During the second iteration we would try to deploy our code on smart phones,
so that the games created with our DSL could be play tested. In order to support
these clients we need to create code that runs on smart phones. It would also require
a server, so that the clients (smart phones) communicate with the server (engine)
as described in section 4.3. In addition, we would have to create a graphical user
interface for the clients. We have already created some mockups that shows some
important features we find important, see Figures 6.1(a) to 6.1(f).

6.2.2 DSL and Engine Expansion
By increasing the expressiveness in our DSL it would be possible to create more
than just treasure hunt games. We recommend that this is done either by dividing
one or more of the four pervasive dimensions or to add more levels. In addition to
this it might be necessary to create customized elements for the games you wish to
create, equivalent to what posts, tasks and clues are for treasure hunt games.

6.2. FURTHER WORK 77

(a) Map view - player move
around in real world to find
posts.

(b) Map view - Has just found
a post, and the associated task
pups up.

(c) Map view - player has an-
swered correct, and gets clue
for next post.

(d) Status - player can check
the game status in any time,
by clicking on the status but-
ton.

(e) Posts - player can view all
the posts s/he has found, by
clicking on the post button.

(f) Clues - player can view all
the clues s/he has gathered, by
clicking on the clue button.

Figure 6.1: Mockups, illustrating further work concerning mobile clients

78 CHAPTER 6. CONCLUSION

Bibliography

[1] Roger Caillois and Meyer Barash. Man, Play and Games. University of Illinois
Press, 2001.

[2] Michael Dubkov. The future of agile software development:
http://www.targetprocess.com/rightthing.html, April 2012.

[3] Eclipse. Eclipse ide: http://www.eclipse.org, April 2012.

[4] Martin Fowler. A preliminary study on various implementation approaches of
domain-specific language. 2008.

[5] IEEE Architecture Working Group. Ieee std 1471-2000, recommended practice
for architectural description of software-intensive systems. Technical report,
2000.

[6] Hong Guo, Hallvard Trætteberg, Alf Inge Wang, and Meng Zhu. Temps: A
conceptual framework for pervasive and social games. Department of Computer
and Information Science and NTNU, 2010.

[7] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
Science in Information Systems Research. Management Information Systems
Research Center, University of Minnesota, 2004.

[8] Habibollah Hosseinpoor. Playtrd architecture for location aware social games.
December 2011.

[9] jScience. jscience: http://jscience.org/. April 2012.

[10] Tomaž Kosar, Pablo E. Martínez López, Pablo A. Barrientos, and Marjan
Mernik. Domain Specific Languages. Addison-Wesley Professional, 2010.

[11] Nicole Lazzaro. Why we play games: Four keys to more emotion without
story. XEODesign, Inc, 2004.

[12] Ludocity. Pervasive games, street games and new sports:
http://ludocity.org/wiki/main_page, April 2012.

[13] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Comput. Surv., pages 316–344, 2005.

79

80 BIBLIOGRAPHY

[14] Markus Montola, Jaakko Stenros, and Annika Waern. Pervasive games: The-
ory and design: http://pervasivegames.wordpress.com/, April 2012.

[15] Elina M.I. Ollila, Riku Suomela, and Jussi Holopainen. Using prototypes in
early pervasive game development. Nokia, 2008.

[16] OpenStreetMap. Openstreetmap : http://www.openstreetmap.org. April
2012.

[17] Pacman@Lyon. Pacman@lyon homepage: http://pacmanalyon.net, May 2012.

[18] Peter A. Piccione. In search of the meaning of senet. Archaeology, pages 55–58,
1980.

[19] Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction design: Beyond
Human-computer Interaction. John Wiley and Sons Inc, 2002.

[20] Ram Narayanan Sastry. Reducing software complexity:
http://ramadvice.wordpress.com, May 2012.

[21] Christian Skar. Model-based software development for pervasive games. De-
cember 2011.

[22] Chris Stead. The 10 best game engines of this generation:
http://pc.ign.com/articles/100/1003725p1.html, May 2012.

[23] SwingX. Swinglabs swingx : http://java.net/projects/swingx. April 2012.

[24] IPerG team. Iperg homepage: http://iperg.sics.se/tech_space0.php, May
2012.

[25] Pacmanhattan Team. Pacmanhattan homepage: http://pacmanhattan.com,
May 2012.

[26] Domain-Specific Language Tools. Visual studio 2008 sdk, domain-specific lan-
guage tools: http://msdn.microsoft.com/. April 2012.

[27] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:
an annotated bibliography. pages 26–36, 2000.

[28] Alf I. Wang, Audrius Jurgelionis, Hong Guo, and Hallvard Trætteberg. Design-
ing enhanced authoring tools for pervasive games. Mobile Gaming workshop
(moga) 2011 on the 8th International Conference on Advances in Computer
Entertainment Technology (ACE 2011), 2011.

[29] Jeff Ward. What is a game engine?: http://www.gamecareerguide.com/, May
2012.

[30] Wikipedia. Game development: http://en.wikipedia.org/, May 2012.

[31] Wikipedia. Game: http://en.wikipedia.org/, May 2012.

BIBLIOGRAPHY 81

[32] Wikipedia. Level editor: http://en.wikipedia.org/, May 2012.

[33] Wikipedia. List of game engines: http://en.wikipedia.org/, May 2012.

[34] Xtext. The eclipse foundation (xtext) : http://www.eclipse.org/xtext/. April
2012.

82 BIBLIOGRAPHY

Appendix A

Task

Title
DSL and Engine for Pervasive Treasure Hunt Games

Supervisors
Teaching supervisor:
Hallvard Trætteberg

Task Description
Todays mobile clients, with their powerful processing power and built-in technolo-
gies, has opened the door for creating pervasive applications that was not possible
to create before.

Software complexity and integration still remains a big challenge, and both can
be managed by raising the level of abstraction. DSL is a natural way of doing it.

The aim of this master thesis is to create a DSL and an engine for rapid devel-
opment of pervasive treasure hunt games on mobile clients within the context of
Wireless Trondheim.

83

84 APPENDIX A. TASK

Appendix B

Game Concepts

This appendix presents the results of our work on domain exploration, where the
domain in question is treasure hunt games. This appendix includes several dif-
ferent instances of treasure hunt games, which is described, by means of a simple
framework/template.

Introduction
The aim of this iteration was to brainstorm and collect/create a set of treasure hunt
game concepts, in order to deduce a common vocabulary (concepts and abstraction
specific to treasure hunt games domain) for the creation of the DSL, which is
described in the next appendix.

Template
The template below was made in order to make game concepts. They were used
to extract concrete game elements that would be included in the domain-specific
language for pervasive treasure hunt games.

It is easy to get too focused on details. Try to make an overall description
instead of high level of details. (Example: “1st place receives 100 points, 2nd place
receives 50 points, ..., nth place receive 1 point“ == “The players receives points
depending on their position”).

ID: A name and/or number to identify this game concept
Short description: A short explanatory description of the game
Game pattern: What is the behavior of the game
Game mechanics:

• Temporal: Determines the time aspect of the game, e.g. when you play for
how long

85

86 APPENDIX B. GAME CONCEPTS

• Social: Human entities that are required in order to play the game

• Mobile: Where is the game played?

• Device(s): Are there any devices required to play the game

• Game objective(s): What is the purpose of playing the game

• Initial: Explains how the game is started

• End: Explains how the game ends

• How to win: Tell how you can win this game and what determines the winner

• How to lose: What determines the looser in the game

• Other: Are there other rules necessary for the game to work as intended

Game play:

• Agon: Are you competing against others?

• Alea: Are there any random aspects in the game?

• Ilinx: Are there any physical activities in the game?

• Mimicry: Does the players, or game, have to mimic anything?

• Paida - Ludus: Describe the level of structure? (structured - non-structured)

Concept Art/Models: Model describing game behavior and the pervasive axis.

Game concept 1
ID: GC1
Short description: This is a simple traditional treasure hunt game, where each
individual gets a clue for finding the correct location for the post. When the post
is found the player is given the next clue for finding another post. This is repeated
until the final post is found, which will end the game.
Game pattern: Treasure hunt game.
Game mechanics:

• Temporal: All the time, no time limit.

• Social: 1 or more persons, the game is played individually.

• Mobile: University campus.

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): Solve clues given at each post in order to find the next
post.

87

• Initial: The player receives a clue for the first post.

• End: When the last post is found.

• How to win: Find all the posts

• How to lose: Fail to complete the game.

• Other: None

Game play:

• Agon: No real competition, but indirectly against other players.

• Alea: No.

• Ilinx: Yes, walk between posts, looking for posts.

• Mimicry: No.

• Paida - Ludus: Very structured.

Concept Art/Models:

Figure B.1: A model illustrating the behavior of game concept 1

Game concept 2
ID: GC2
Short description: This is a team based treasure hunt game where the players
divide themselves in groups of 3. In order to find a post, each group member is
given clues for them to find their own sub-post located on different locations. When
all member have found their post, they are given partial clues which they have to
combine in order to find the post. This is repeated until the final post is found.
Game pattern: Treasure hunt game.
Game mechanics:

• Temporal: All the time, all group members are required to proceed.

• Social: Groups consisting of three players.

88 APPENDIX B. GAME CONCEPTS

Figure B.2: Game triangle of game concept 1

• Mobile: University campus, Trondheim city (Wireless Trondheim).

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): Solve clues given at each post in order to find the next
post.

• Initial: The groups connect to each other before getting their respective clues.

• End: When the last post is “found” by each group member the game ends.

• How to win: Reaching the last post.

• How to lose: Fail to complete the game.

• Other: None

Game play:

• Agon: Indirectly against other groups.

• Alea: The people in your group (students from your own faculty).

• Ilinx: Yes, walk between posts, looking for posts.

• Mimicry: No.

• Paida - Ludus: Very structured, players have to follow a sequence.

Concept Art/Models:

89

Figure B.3: A model illustrating the behavior of game concept 2

Figure B.4: Game triangle of game concept 2

Game concept 3
ID: GC3
Short description: This is a slightly complicated treasure hunt game where the
players are the posts. Each player is given a unique ID or codename which they
will give to any player that ask for it. By random, the player will get the location
of a post (a player) which he have to find. The game ends when a player has found
N posts.
Game pattern: Treasure hunt and racing games.
Game mechanics:

• Temporal: During a defined period.

• Social: Individual, requires a minimum number of players to work.

• Mobile: University campus.

90 APPENDIX B. GAME CONCEPTS

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): To find all the posts.

• Initial: The players are spread throughout the campus and starts when all
players are at their respective spots.

• End: When a player has found N-1 posts, where N is the total number of
players.

• How to win: Finding the player number N-1.

• How to lose: If someone else finds N-1 players first.

• Other: None

Game play:

• Agon: Competition between the players.

• Alea: The post order is random.

• Ilinx: Yes, walk between posts, looking for posts.

• Mimicry: No.

• Paida - Ludus: Structured, players have to follow a dynamic sequence.

Concept Art/Models:

Figure B.5: A model illustrating the behavior of game concept 3

Game concept 4
ID: GC4
Short description: This is a time based treasure hunt game where the players
have a time limit to find the posts. If the time runs out, the player has lost and
does no longer compete against the others.

91

Figure B.6: Game triangle of game concept 3

Game pattern: Treasure hunt and racing games.
Game mechanics:

• Temporal: During a defined period.

• Social: Individual, requires a minimum of players in order to create some
competition.

• Mobile: University campus.

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): To find all the posts within the time limit.

• Initial: The players starts from the same position at the same time.

• End: When the player has found the last post.

• How to win: Finding N posts.

• How to lose: If someone else find N posts first, or the time limit has exceeded.

• Other: None

Game play:

• Agon: Competition between the players.

• Alea: None.

• Ilinx: Yes, walk between posts, looking for posts.

92 APPENDIX B. GAME CONCEPTS

• Mimicry: No.

• Paida - Ludus: Very structured, players have to follow a sequence.

Concept Art/Models:

Figure B.7: A model illustrating the behavior of game concept 4

Figure B.8: Game triangle of game concept 4

Game concept 5
ID: TH1
Short description: TH1 is a single player treasure hunt game, where the player
is given a map with an approximately positions of the posts marked in the map.
In order to complete the game, the player has to find all the posts. Players will be
ranked with respect to time, the less time it takes to complete the game the higher
is the rank of the player.
Game pattern: Treasure hunt and racing games.
Game mechanics:

93

• Temporal: When the player starts the game.

• Social: Individual, requires a minimum of players in order to create some
competition.

• Mobile: University campus.

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): To find all the posts.

• Initial: The player starts the game.

• End: When the player has found the last post.

• How to win: Finding all the posts using less time than other players that
have completed the game.

• How to lose: If someone else finds all the posts faster.

• Other: None

Game play:

• Agon: Competition between the players.

• Alea: None.

• Ilinx: Yes, walk between posts, looking for posts.

• Mimicry: No.

• Paida - Ludus: Less structured, no determined sequence for finding the posts.

Concept Art/Models:

Figure B.9: A model illustrating the behavior of game concept 5

94 APPENDIX B. GAME CONCEPTS

Figure B.10: Game triangle of game concept 5

Game concept 6
ID: TH2
Short description: TH2 is also a single player treasure hunt game, where the
player is given a map with an approximately positions of the posts marked in the
map. In order to complete the game, the player has to find all the posts, and
also solve a task associated with each posts. The task will be given to the player
first when s/he finds the associated post. Players will be ranked with respect to
number of solved task, then time spent to complete the game. Each task has the
same number of points.
Game pattern: Treasure hunt and racing games.
Game mechanics:

• Temporal: When the player starts the game.

• Social: Individual, requires a minimum of players in order to create some
competition.

• Mobile: University campus.

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): To find all the posts and complete their associated tasks
as fast as possible.

• Initial: The player starts the game.

• End: When the player has found all the posts and completed their tasks.

95

• How to win: Finding all the posts and completing their tasks using less time
than other players that have completed the game.

• How to lose: If someone else finds all the posts and complete their tasks
faster.

• Other: None

Game play:

• Agon: Competition between the players.

• Alea: None.

• Ilinx: Yes, walk between posts, looking for posts.

• Mimicry: No.

• Paida - Ludus: Structured.

Concept Art/Models:

Figure B.11: A model illustrating the behavior of game concept 6

Game concept 7
ID: TH3
Short description: TH3 is also a single player treasure hunt game, where the
player is NOT given a map with post positions in advance, but the player is given
an initial clue to find the first post. The clue for the next post is found on the first
post, and so on. To complete the game the player has to find all the posts. Players
will be ranked with respect to time, the less time it takes to complete the game
the higher is the rank of the player.
Game pattern: Treasure hunt and racing games.
Game mechanics:

96 APPENDIX B. GAME CONCEPTS

Figure B.12: Game triangle of game concept 6

• Temporal: When the player starts the game.

• Social: 1 or more players, the game is played individually.

• Mobile: University campus.

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): Solve clues given at each post in order to find the next
post.

• Initial: The player starts the game.

• End: When the player has found all the posts.

• How to win: Find all the posts in less time than the other players.

• How to lose: If someone else has completed the game faster.

• Other: None

Game play:

• Agon: Competition between the players.

• Alea: None.

• Ilinx: Yes, walk between posts, looking for posts.

• Mimicry: No.

• Paida - Ludus: Structured.

Concept Art/Models:

97

Figure B.13: A model illustrating the behavior of game concept 7

Figure B.14: Game triangle of game concept 7

Game concept 8
ID: TH4
Short description: TH4 is also a single player treasure hunt game, where the
player is NOT given a map with post positions in advance, but the player is given
an initial clue to find the first post. To complete the game the player has to find
all the posts, and also has to solve a task associated with each post. The task will
be given to the player first when s/he finds the associated post. And the clue for
the next post, is given to the player if and only if the player solves the given task.
Players will be ranked with respect to time, the less time it takes to complete the
game the higher is the rank of the player.
Game pattern: Treasure hunt and racing games.
Game mechanics:

• Temporal: When the player starts the game.

• Social: 1 or more players, the game is played individually.

98 APPENDIX B. GAME CONCEPTS

• Mobile: University campus.

• Device(s): A smart phone with GPS and wireless network.

• Game objective(s): Solve clues given at each post in order to find the next
post and finish their task.

• Initial: The player starts the game.

• End: When the player has found all the posts.

• How to win: Find all the posts in less time than the other players.

• How to lose: If someone else has completed the game faster.

• Other: None

Game play:

• Agon: Competition between the players.

• Alea: None.

• Ilinx: Yes, walk between posts, looking for posts.

• Mimicry: No.

• Paida - Ludus: Structured.

Concept Art/Models:

Figure B.15: A model illustrating the behavior of game concept 8

99

Figure B.16: Game triangle of game concept 8

100 APPENDIX B. GAME CONCEPTS

Appendix C

First Prototype

This appendix presents the results of our first iteration, namely our first prototype
of treasure hunt application, which includes the first version of our DSL (.th), first
version of our engine (framework) and its graphical user interface (GUI).

Introduction
The aim of this prototype was mainly to discover the capabilities and possibilities
of Xtext. Therefore we only implemented the most basic and necessary elements
(domain concepts and abstraction), such as player, post, task and clue. As already
mentioned in chapter 2.4.1, there are three steps required in order to complete this
iteration and produce our first prototype. But we extended this with an extra
step (Define/Edit GUI) as the last step. However in this iteration we started with
this step, by crated the markups for the engine UI, in order to identify the main
functionalities of it.

STEP 0 - Defining GUI
Figure C.1 shows our initial mockup for the GUI. It shows the main functionalities
of our treasure hunt application.

C.0.3 Menu panel
Contains main functionalities such as import, export, etc. For instance, from menu
File →import, the user can import a new game instance written in our DLS .th.

C.0.4 Map area
This area/panel shows the game world. This world consists of (x,y) positions
indicated with _, Posts position is indicated with X. Players current position is
indicated with a character, like H for player Habibollah Hosseinpoor. Player

101

102 APPENDIX C. FIRST PROTOTYPE

Figure C.1: Treasure hunt UI - first iteration

can move around the world, this can be accomplished on this prototype by clicking
on special keys on the keyboard.

C.0.5 Info panels
Shows dynamic game information to the player. For instance, if the player moves
close to a post distanceToClosestPost would change depending on the distance to a
post from COLD to LUKEWARM, WARM, HOT and FOUND. This panels
contains tabs (Clues, Posts and Settings), which hides more functionalities.

Step 1 - Defining the grammar

C.0.6 Treasure hunt DSL .th
The following are our grammar definition (vocabularies) for our first prototype of
treasure hunt DSL.

Listing C.1: Grammar Definition for first prototype
1 grammar com.habii.treasurehunt.Treasurehunt with org.eclipse.xtext.common.Terminals
2 generate treasurehunt "http://www.habii.com/treasurehunt/Treasurehunt"
3 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
4 TreasureHunt:
5 'Title: ' name=EString

103

6 ('goal: ' goal=Goal)
7 ('mapSize: ' width=EInt ',' height=EInt)
8 ('marks: ' defaultMark=Mark ',' visitedMark=Mark ',' postMark=Mark)
9 elements+=AbstractElements*

10 ;
11 AbstractElements:
12 Post | Player;
13 Post:
14 'Post' name=EString '{'
15 'position: ' position=Position
16 ('tasks: ' tasks+=Task (',' tasks+=Task)*)?
17 ('clues: ' clues+=Clue (',' clues+=Clue)*)?
18 ('visitedBy: ' visitedBy+=[Player|EString] (',' visitedBy+=[Player|EString])

*)?
19 '}'
20 ;
21 Player:
22 'Player' name=EString '{'
23 'initialClue: ' initialClue=[Clue|QID]
24 'distanceToClosestPost: ' distanceToClosestPost=DistanceToClosestPost
25 ('visited: ' visited+=[Post|EString] (',' visited+=[Post|EString])*)?
26 ('solved: ' solved+=[Task|QID] (',' solved+=[Task|QID])*)?
27 ('currentPosition: ' currentPosition=Position)?
28 ('direction: ' direction=Direction)?
29 ('mark: ' mark=Mark)?
30 '}'
31 ;
32 QID:
33 (ID|STRING) ('.'(ID|STRING))*;
34 Position:
35 GPS | WLAN;
36 GPS:
37 'GPS: ' '(' x=EInt ', ' y=EInt ')';
38 WLAN:
39 'WLAN: ' '(' x=EInt ', ' y=EInt ')';
40 Task:
41 (name=ID)? question=EString'?' answer=EString'!' ('point: ' point=EInt)?;
42 Clue:
43 (name=ID)? clueText=EString;
44 enum Goal:
45 SOLVE = 'SOLVE' | FIND = 'FIND' | FINDANDSOLVE='FINDANDSOLVE';
46 enum Direction:
47 NORTH = 'W' | SOUTH = 'S' | EAST = 'D' | WEST = 'A';
48 enum DistanceToClosestPost:
49 FOUND = 'FOUND' | HOT = 'HOT' | WARM = 'WARM' | LUKEWARM = 'LUKEWARM' | COLD = '

COLD';
50 EString returns ecore::EString:
51 STRING | ID;
52 EInt returns ecore::EInt:
53 '-'? INT;
54 terminal Mark:
55 ('a'..'z'|'A'..'Z'|'_'|'0'..'9');

C.0.7 Example Game instance for Treasure hunt DSL .th
The following shows an instance of our first prototype Treasure hunt DSL (.th).

104 APPENDIX C. FIRST PROTOTYPE

Listing C.2: Treasure hunt DSL sample script
1 Title: "Advanture"
2 mapSize: 30,50
3 goal: FIND
4

5 Post "Native Village" {
6 position: GPS: (02, 49)
7 clues: c1 "Find the most beutiful lake in the world..."
8 }
9 Post "Paradice Lake" {

10 position: GPS: (03, 21)
11 clues: c2 "Find the snow..."
12 }
13 Post "Cold Mountain" {
14 position: WLAN: (13, 14)
15 clues: c3 "Find the the forest no man has crossed alive..."
16 }
17 Post "Fearsome Forest" {
18 position: GPS: (14, 45)
19 clues: c4 "Clue to Post4"
20 }
21 Post "Never Ending River" {
22 position: GPS: (29, 16)
23 clues: c5 "Go there where do turist go on vacation..."
24 }
25

26 Post "Pine Trees Beach" {
27 position: WLAN: (21, 34)
28 clues: c6 "Where do pirates hang out?..."
29 }
30 Post "Pirate Cave" {
31 position: GPS: (10, 09)
32 clues: c7 "Find the most famous water falls..."
33 }
34 Post "Niagra Falls" {
35 position: GPS: (27, 49)
36 clues: c8 "Where do native people live..."
37 }
38

39 // Players
40 Player Skar {
41 initialClue: "Never Ending River".c5
42 distanceToClosestPost: COLD
43 currentPosition: GPS: (05, 05)
44 direction: D
45 mark: H
46 }

Step 2 - Run the generator

As mentioned briefly in chapter 2.4.1, Xtext will drive various language components
in this step. It generates the parser and serializer and some additional infrastruc-
ture code.

105

Figure C.2 shows a class diagram of the generated models, which are imple-
mented using the Eclipse Modeling Framework (EMF), as can be seen as a very
powerful version of JavaBeans.

Figure C.2: EMF models for third prototype

Also, in this step an editor see Figure C.3 for writing models / instances in
the newly created DLS is generated. The editor is pretty sophisticated, it comes
equipped with code completion, syntax coloring, custom keyword coloring, real
time constraints, validation and more.

106 APPENDIX C. FIRST PROTOTYPE

Figure C.3: Xtext generated editor for treasure hunt DSL (.th)

Step 3 - Defining/writing the engine
A DSL isn’t worth much if you are not able to execute it somehow. Since text files
parsed by Xtext are represented as object graphs in memory, also called Abstract
Syntax Tree (AST), we can load them at runtime in order to use them dynamically.

C.0.8 Loading a Resource
EMFmodels can be persisted by the means of a so called Resource. Xtext languages
implement the Resource interface, thus allowing us to use the EMF API to load a
model into memory and do whatever we want with it:

Listing C.3: Using EMF API
1 new DomainmodelStandaloneSetup().createInjectorAndDoEMFRegistration();
2

107

3 ResourceSet rs = new ResourceSetImpl();
4 Resource resource = rs.getResource(URI.createURI("./adventure.th"), true);
5 EObject eobject = resource.getContents().get(0);

C.0.9 Working with EMF Models
In order to increase the level of abstraction and to simplify the our DSL as much
as possible, we put all the unnecessary code into the engine. We also extended
the functionalities of EMF generated objects, by created subclasses and change the
EMF Factory class to return instances of the extended classes see Figure C.4 and
Figure C.5 instead:

Listing C.4: Working with EMF models
1 TreasurehuntPackageFactory.createTreasurehuntImp(){
2 World treasureHunt = new World();
3 return treasureHunt;
4 }
5

6 TreasurehuntPackageFactory.createPlayerImp(){
7 EnginePlayer player = new EnginePlayer();
8 return player;
9 }

Figure C.4: World

How It all works out
Figure C.6, shows how it all works once everything is implemented.

108 APPENDIX C. FIRST PROTOTYPE

Figure C.5: EnginePlayer

Figure C.6: Overview of steps crating a model in .th

Text Editor / IDE Is used to create models / game instances of treasure hunt
DSL (.th),

Textual Source Code Once the model / game instance is written, it is repre-
sented in Figure C.6 as textual source code, which is given to the parser as
input.

Parser Parses the input (Textual source code) and produces an Abstract Syntax
Tree (AST), in our case Xtext produces also a complete model as java Object
by using EMF.

AST (Model as Objects) The output of the Parser is a set of generated java
objects.

Engine / Framework We extend the generated java objects from the previous
step in order to function as the defined semantic, and we call it Engine.

Runtime Once it all is lunched it works as intended.

109

Main functionalities covered in this prototype

C.0.10 .th
Our DSL is called Treasure hunt and it has got the file extension .th, see subsec-
tion C.0.7 for more detail overview of the .th DSL.

C.0.11 Grammar definition
In this prototype we have created a simple grammar definition by using Xtext, to
support creation of a game instance (model). See subsection C.0.6 for more detail
overview of the grammar definition.

C.0.12 Engine
In this prototype we managed to build a simple Engine in order to process the
model written in .th. Since Xtext models are implemented using the Eclipse Mod-
eling Framework (EMF), this reduces the complexity of our Engine greatly.

Our Engine basically consists of two java classes, and lots of UI stuff.

C.0.13 Importing game instances
In this prototype we have also implemented import/export of game instances /
models written in .th. We are able to save a game by exporting it to a file.

Figure C.7, shows our engine prototype during the execution of an instances of
treasure hunt game.

110 APPENDIX C. FIRST PROTOTYPE

Figure C.7: Treasure hunt first prototype

Appendix D

Second Prototype

This appendix presents the results of our second iteration, which is basically im-
plementing a real world map, with real coordinates in our prototype.

Introduction
The aim of this prototype was mainly to implement a real world map by using
software components such as jScience, swingX and OpenStreetMap.

Step 1 - Redefining the grammar

D.0.14 Treasure hunt DSL(v2) .th
The following are our grammar definition for our second prototype. Only one new
concepts are introduced in this iteration (Strategy), which is actually the result of
re-factorization. But now we can add read coordinates (latitude and longitude).

Listing D.1: Grammar Definition for second prototype
1 grammar com.habii.treasurehunt.Treasurehunt with org.jscience.xtext.Jscience
2 generate treasurehunt "http://www.habii.com/treasurehunt/Treasurehunt"
3 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
4

5 TreasureHunt:
6 'World: ' name=EString
7 strategy=Strategy
8 elements+=AbstractElements*
9 ;

10 Strategy:
11 'Strategy' name=EString '{'
12 'goal: ' goal=Level
13 '}'
14 ;
15 AbstractElements:
16 Post | Player

111

112 APPENDIX D. SECOND PROTOTYPE

17 ;
18 Post:
19 'Post' name=EString '{'
20 'position: ' position=ELatLong
21 ('tasks: ' tasks+=Task (',' tasks+=Task)*)?
22 ('clues: ' clues+=Clue (',' clues+=Clue)*)?
23 ('visitedBy: ' visitedBy+=[Player|EString] (',' visitedBy+=[Player|EString])

*)?
24 '}'
25 ;
26 Player:
27 'Player' name=EString '{'
28 'initialClue: ' initialClue=[Clue|QID]
29 'distanceToClosestPost: ' distanceToClosestPost=DistanceToClosestPost
30 ('visited: ' visited+=[Post|EString] (',' visited+=[Post|EString])*)?
31 ('solved: ' solved+=[Task|QID] (',' solved+=[Task|QID])*)?
32 ('currentPosition: ' currentPosition=ELatLong)?
33 ('direction: ' direction=Direction)?
34 ('world: ' world=[TreasureHunt])?
35 '}'
36 ;
37 QID:
38 EString ('.' EString)*
39 ;
40 Task:
41 name=EString'?' answer=EString'!'
42 ('solvedBy: ' solvedBy+=[Player|EString] (',' solvedBy+=[Player|EString])*)?
43 ;
44 Clue:
45 name=EString
46 ;
47 enum Level:
48 LOW = 'LOW' | MEDIUM = 'MEDIUM' | HIGH = 'HIGH'
49 ;
50 enum Direction:
51 NORTH = 'W' | SOUTH = 'S' | EAST = 'D' | WEST = 'A'
52 ;
53 enum DistanceToClosestPost:
54 FOUND = 'FOUND' | HOT = 'HOT' | WARM = 'WARM' | LUKEWARM = 'LUKEWARM' | COLD = '

COLD'
55 ;
56 EString returns ecore::EString:
57 STRING | ID;
58 EInt returns ecore::EInt:
59 '-'? INT;
60 terminal Mark:
61 ('a'..'z'|'A'..'Z'|'_'|'0'..'9');

Step 2 - Run the generator

This step is the same in all the iteration/prototype, since it just generates artifacts
according to the grammar definition (step 1).

113

D.0.15 Example Game instance for Treasure hunt DSL(v2)
.th

The following shows an instance of our second prototype Treasure hunt DSL (.th).

Listing D.2: Treasure hunt DSL (v2) sample script
1 World: Advanture
2 Strategy Simple {
3 goal: MEDIUM
4 }
5 // Posts
6 Post "Native Village" {
7 position: 63.427712,10.37607
8 clues: "Find the most beautiful lake in the world..."
9 }

10 Post "Fearsome Forest" {
11 position: 63.420723,10.39993
12 tasks: "How many trees are in this forest"? "1000000"!
13 clues: "Clue to Post4"
14 }
15 Post "Pirate Cave" {
16 position: 63.43324,10.354614
17 tasks: "Hwo is the pirate king"? "Jack"!
18 clues: "Find the most famous water falls..."
19 }
20 // Players
21 Player Habibollah {
22 initialClue: "Never Ending River"."Go there where do tourist go on vacation

..."
23 distanceToClosestPost: COLD
24 currentPosition: 63.430476,10.39255
25 direction: D
26 world: Advanture
27 }
28 Player Christian {
29 initialClue: "Niagara Falls"."Where do native people live..."
30 distanceToClosestPost: LUKEWARM
31 currentPosition: 63.42669999999989,10.389000000000003
32 direction: A
33 world: Advanture
34 }

Step 3 - Updating the engine
The biggest change to engine in this iteration was to the implementation of jScience,
swingX and OpenStreetMap.

D.0.16 jScience
Used for real Latitude and Longitude values in order to integrated a real world
map in a map viewer. We simple used the LatLong class provided by the jScience,

114 APPENDIX D. SECOND PROTOTYPE

which besides taking Latitude and longitude value also takes in a Unit in this case
Degree as opposed to Radian.

Listing D.3: Integrating jScience
1 LatLong latLong = LatLong.valueOf(34.34, 23.56, DEGREE_ANGLE);

D.0.17 SwingX
Main functionalities:

• paint all players on the map.

• paint all posts on the map.

• show post info, it it is clicked on.

• show player info, if the player is clicked on the map

• move player on the map by keys (a,w,s,d).

Listing D.4: Integrating SwingX, OpenStreetMap and jScience
1 package com.habii.treasurehunt.framework.ui;
2

3 import java.awt.Point;
4 import java.awt.Rectangle;
5 import java.awt.event.KeyEvent;
6 import java.awt.event.KeyListener;
7 import java.awt.event.MouseEvent;
8 import java.awt.event.MouseListener;
9 import java.awt.geom.Point2D;

10 import java.util.HashMap;
11 import java.util.Set;
12

13 import javax.measure.unit.NonSI;
14 import javax.swing.JOptionPane;
15 import javax.swing.ToolTipManager;
16 import javax.swing.event.EventListenerList;
17

18 import org.jdesktop.swingx.JXMapKit;
19 import org.jdesktop.swingx.JXMapViewer;
20 import org.jdesktop.swingx.mapviewer.GeoPosition;
21 import org.jdesktop.swingx.mapviewer.Waypoint;
22 import org.jdesktop.swingx.mapviewer.WaypointPainter;
23 import org.jscience.geography.coordinates.LatLong;
24

25 import com.habii.treasurehunt.framework.EnginePlayer;
26 import com.habii.treasurehunt.framework.EngineWorld;
27 import com.habii.treasurehunt.framework.ui.editor.AbstractEditor;
28 import com.habii.treasurehunt.framework.ui.editor.PlayerEditor;
29 import com.habii.treasurehunt.framework.ui.editor.PostEditor;
30 import com.habii.treasurehunt.framework.ui.map.BaseWaypoint;
31 import com.habii.treasurehunt.framework.ui.map.BaseWaypointPainter;
32 import com.habii.treasurehunt.framework.ui.map.PlayerWayPoint;

115

33 import com.habii.treasurehunt.framework.ui.map.PostWayPoint;
34 import com.habii.treasurehunt.treasurehunt.Post;
35 import com.habii.treasurehunt.treasurehunt.Task;
36

37 public class MapPanel extends JXMapKit{
38 private static final long serialVersionUID = 1787118143488776032L;
39 public final static double DEFUALT_LATITUDE = 63.430476;
40 public final static double DEFAULT_LONGITUDE = 10.39255;
41 public final int DEFAULT_ZOOM = 3;
42

43 private CardPanel editors;
44 private HashMap<String, AbstractEditor> cardMap;
45

46 private EnginePlayer selectedPlayer;
47 private Post selectedPost;
48

49 protected EventListenerList _waypointEventListeners = new EventListenerList()
;

50

51 protected Set<BaseWaypoint> waypoints;
52 private JXMapViewer map;
53

54 public MapPanel(CardPanel editors, HashMap<String, AbstractEditor> cardMap){
55 init(DEFUALT_LATITUDE, DEFAULT_LONGITUDE);
56 this.editors = editors;
57 this.cardMap = cardMap;
58 }
59

60 private void init(double latitude, double longitude){
61 setDefaultProvider(DefaultProviders.OpenStreetMaps);
62 setCenterPosition(new GeoPosition(latitude, longitude));
63 setZoom(DEFAULT_ZOOM);
64 setMiniMapVisible(false);
65 setZoomButtonsVisible(true);
66 setZoomSliderVisible(false);
67

68 ToolTipManager.sharedInstance().setInitialDelay(0);
69

70 map = getMainMap();
71

72 map.setZoomEnabled(false);
73 map.setPanEnabled(true);
74 map.addMouseListener(new MouseListener(){
75 @Override
76 public void mouseClicked(MouseEvent event) {
77 Waypoint waypoint = getWaypoint(event.getPoint());
78 if (waypoint != null){
79 if(waypoint instanceof PlayerWayPoint){
80 playerWayPointUpdate(waypoint);
81 } else if (waypoint instanceof PostWayPoint){
82 postWayPointUpdate(waypoint);
83 }
84 } else {
85 PostEditor editor = (PostEditor) cardMap.get(CardPanel.POST);
86 Post post = editor.getSelectedPost();
87

88 if(post!=null){

116 APPENDIX D. SECOND PROTOTYPE

89 LatLong coordinates = getCoordinates(event.getPoint());
90 post.setPosition(coordinates);
91 EngineWorld world = (EngineWorld) post.getWorld();
92 world.updateMap();
93 editor.update(post);
94 }
95 }
96 }
97

98 @Override
99 public void mouseEntered(MouseEvent event) {}

100 @Override
101 public void mouseExited(MouseEvent event) {}
102 @Override
103 public void mousePressed(MouseEvent event) {}
104 @Override
105 public void mouseReleased(MouseEvent event) {}
106 });
107

108 map.addKeyListener(new KeyListener() {
109 @Override
110 public void keyTyped(KeyEvent e) {
111 char keyChar = e.getKeyChar();
112 if(keyChar=='w'){
113 doMove("W");
114 } else if(keyChar=='s'){
115 doMove("S");
116 } else if(keyChar=='a'){
117 doMove("A");
118 } else if(keyChar=='d'){
119 doMove("D");
120 } else {
121 }
122 }
123 @Override
124 public void keyReleased(KeyEvent e) { }
125 @Override
126 public void keyPressed(KeyEvent e) { }
127 });
128

129 }
130

131 public LatLong getCoordinates(Point mousePoint){
132 GeoPosition centerPosition = getMainMap().getCenterPosition();
133 double latitude = centerPosition.getLatitude();
134 double longitude = centerPosition.getLongitude();
135 return LatLong.valueOf(latitude, longitude, NonSI.DEGREE_ANGLE);
136 }
137

138 private void playerWayPointUpdate(Waypoint waypoint) {
139 PlayerWayPoint playerWayPoint = (PlayerWayPoint) waypoint;
140 selectedPlayer = (EnginePlayer) playerWayPoint.getPlayer();
141 editors.showPlayerPanel();
142 PlayerEditor playerEditor = (PlayerEditor) cardMap.get(CardPanel.

PLAYER);
143 playerEditor.update(selectedPlayer);
144

117

145 }
146

147 private void postWayPointUpdate(Waypoint waypoint) {
148 PostWayPoint postWayPoint = (PostWayPoint) waypoint;
149 selectedPost = postWayPoint.getPost();
150

151 editors.showPostPanel();
152 PostEditor postEditor = (PostEditor) cardMap.get(CardPanel.POST);
153 postEditor.update(selectedPost);
154 }
155

156 @SuppressWarnings("all")
157 public void setWaypoints(Set<BaseWaypoint> waypoints){
158 this.waypoints = waypoints;
159 WaypointPainter painter = new BaseWaypointPainter();
160 painter.setWaypoints(waypoints);
161 getMainMap().setOverlayPainter(painter);
162 }
163

164 public Waypoint getWaypoint(Point mousePoint){
165 if (waypoints == null){
166 return null;
167 }
168

169 JXMapViewer map = getMainMap();
170

171 Rectangle bounds = map.getViewportBounds();
172 for(BaseWaypoint waypoint : waypoints){
173 Point2D point = map.getTileFactory().geoToPixel(waypoint.

getPosition(), map.getZoom());
174

175 int x = (int)(point.getX() - bounds.getX());
176 int y = (int)(point.getY() - bounds.getY());
177 int s = waypoint.getSize();
178

179 if (new Rectangle(x - s, y - s, s * 2, s * 2).contains(mousePoint)){
180 return waypoint;
181 }
182 }
183

184 return null;
185 }
186

187 public void addWayPoint(BaseWaypoint waypoint){
188 waypoints.add(waypoint);
189 }
190

191 public void cleanWayPoints(){
192 waypoints.clear();
193 }
194

195 public EnginePlayer getSelectedPlayer() {
196 return selectedPlayer;
197 }
198

199 public Post getSelectedPost() {
200 return selectedPost;

118 APPENDIX D. SECOND PROTOTYPE

201 }
202

203 private void doMove(String cmd) {
204 if(selectedPlayer==null){
205 return;
206 }
207 selectedPlayer.doMove(cmd);
208 Post post = selectedPlayer.calculateDistanceToClosestPost();
209 if(post!=null){
210 Task t = post.getTask();
211 String answer = JOptionPane.showInputDialog(t.getQuestion()+"?

");
212 if(t.getAnswer().equalsIgnoreCase(answer)){
213 if(selectedPlayer.calculateStopWatch()>0){
214 selectedPlayer.solved(t);
215 t.getSolvedBy().add(selectedPlayer);
216 }
217 }
218 }
219

220 EngineWorld world = (EngineWorld) selectedPlayer.getWorld();
221 world.updateMap();
222 world.updateEditor(selectedPlayer);
223 }
224 }

Open Street Map

is a collaborative project to create a free editable map of the world. We use this
as our map provider, for our engine UI.

Listing D.5: Integrating OpenStreetMap
1 setDefaultProvider(DefaultProviders.OpenStreetMaps);

The app UI
Figure C.7, shows our second engine prototype during the execution of an instances
of treasure hunt game. A player object can now be moved around in the map by
clicking on the object first, then clicking on one of the four buttons (North, Sought,
East and West).

119

Figure D.1: Treasure hunt second prototype

120 APPENDIX D. SECOND PROTOTYPE

Appendix E

Third Prototype

This appendix presents the results of our third iteration/prototype of treasure hunt
application, which includes the third version of our DSL (.th), third version of our
engine (framework) and its GUI.

Introduction
The aim of this prototype was on our DSL expressiveness, this includes defining and
implementing completely orthogonal pervasive axis, such asMobility, Temporal,
and Social, thus allowing us to create different games.

DSL expressiveness
As mentioned in Chapter 4, we defined three orthogonal pervasive dimensions Mo-
bility, Temporal, and Social. Where for each of this axis we defined three differ-
ent levels, LOW, MEDIUM and HIGH, that has a particular meaning for each
dimensions.

Table E.1, shows a compact view of all the dimensions and their levels, along
with a brief descriptions.

When creating a treasure hunt game the developer can combine this perva-
sive dimensions. Figure E.1 is once instance of this combination of dimensions,
illustrated by a radar diagram.

As Table E.2, shows we are able to create 81 unique game types by combining
the dimensions, thus giving the developer of treasure hunt games lots of flexibility.

Game ID Goal Mobility Social Temporal
GI01 LOW LOW LOW LOW
GI02 LOW LOW LOW MEDIUM
GI03 LOW LOW LOW HIGH
GI04 LOW LOW MEDIUM LOW

121

122 APPENDIX E. THIRD PROTOTYPE

GI05 LOW LOW MEDIUM MEDIUM
GI06 LOW LOW MEDIUM HIGH
GI07 LOW LOW HIGH LOW
GI08 LOW LOW HIGH MEDIUM
GI09 LOW LOW HIGH HIGH
GI10 LOW MEDIUM LOW LOW
GI11 LOW MEDIUM LOW MEDIUM
GI12 LOW MEDIUM LOW HIGH
GI13 LOW MEDIUM MEDIUM LOW
GI14 LOW MEDIUM MEDIUM MEDIUM
GI15 LOW MEDIUM MEDIUM HIGH
GI16 LOW MEDIUM HIGH LOW
GI17 LOW MEDIUM HIGH MEDIUM
GI18 LOW MEDIUM HIGH HIGH
GI19 LOW HIGH LOW LOW
GI20 LOW HIGH LOW MEDIUM
GI21 LOW HIGH LOW HIGH
GI22 LOW HIGH MEDIUM LOW
GI23 LOW HIGH MEDIUM MEDIUM
GI24 LOW HIGH MEDIUM HIGH
GI25 LOW HIGH HIGH LOW
GI26 LOW HIGH HIGH MEDIUM
GI27 LOW HIGH HIGH HIGH
GI28 MEDIUM LOW LOW LOW
GI29 MEDIUM LOW LOW MEDIUM
GI30 MEDIUM LOW LOW HIGH
GI31 MEDIUM LOW MEDIUM LOW
GI32 MEDIUM LOW MEDIUM MEDIUM
GI33 MEDIUM LOW MEDIUM HIGH
GI34 MEDIUM LOW HIGH LOW
GI35 MEDIUM LOW HIGH MEDIUM
GI36 MEDIUM LOW HIGH HIGH
GI37 MEDIUM MEDIUM LOW LOW
GI38 MEDIUM MEDIUM LOW MEDIUM
GI39 MEDIUM MEDIUM LOW HIGH
GI40 MEDIUM MEDIUM MEDIUM LOW
GI41 MEDIUM MEDIUM MEDIUM MEDIUM
GI42 MEDIUM MEDIUM MEDIUM HIGH
GI43 MEDIUM MEDIUM HIGH LOW
GI44 MEDIUM MEDIUM HIGH MEDIUM
GI45 MEDIUM MEDIUM HIGH HIGH
GI46 MEDIUM HIGH LOW LOW
GI47 MEDIUM HIGH LOW MEDIUM
GI48 MEDIUM HIGH LOW HIGH
GI49 MEDIUM HIGH MEDIUM LOW

123

GI50 MEDIUM HIGH MEDIUM MEDIUM
GI51 MEDIUM HIGH MEDIUM HIGH
GI52 MEDIUM HIGH HIGH LOW
GI53 MEDIUM HIGH HIGH MEDIUM
GI54 MEDIUM HIGH HIGH HIGH
GI55 HIGH LOW LOW LOW
GI56 HIGH LOW LOW MEDIUM
GI57 HIGH LOW LOW HIGH
GI58 HIGH LOW MEDIUM LOW
GI59 HIGH LOW MEDIUM MEDIUM
GI60 HIGH LOW MEDIUM HIGH
GI61 HIGH LOW HIGH LOW
GI62 HIGH LOW HIGH MEDIUM
GI63 HIGH LOW HIGH HIGH
GI64 HIGH MEDIUM LOW LOW
GI65 HIGH MEDIUM LOW MEDIUM
GI66 HIGH MEDIUM LOW HIGH
GI67 HIGH MEDIUM MEDIUM LOW
GI68 HIGH MEDIUM MEDIUM MEDIUM
GI69 HIGH MEDIUM MEDIUM HIGH
GI70 HIGH MEDIUM HIGH LOW
GI71 HIGH MEDIUM HIGH MEDIUM
GI72 HIGH MEDIUM HIGH HIGH
GI73 HIGH HIGH LOW LOW
GI74 HIGH HIGH LOW MEDIUM
GI75 HIGH HIGH LOW HIGH
GI76 HIGH HIGH MEDIUM LOW
GI77 HIGH HIGH MEDIUM MEDIUM
GI78 HIGH HIGH MEDIUM HIGH
GI79 HIGH HIGH HIGH LOW
GI80 HIGH HIGH HIGH MEDIUM
GI81 HIGH HIGH HIGH HIGH

Table E.2: Combination of axis

Step 1 - Defining the grammar

E.0.18 Treasure hunt (v3) DSL .th
The following are our grammar definition for our third prototype. The most im-
portant concepts defined in this iteration are the pervasive dimensions as already
described.

124 APPENDIX E. THIRD PROTOTYPE

LOW MEDIUM HIGH Constraints
Social single player Highscore cooperation Constraints on co-

operation
Temporal No timeout Semi-

timeout
Strict time-
out

Constraints on
finding posts in
time

Mobility No order Semi-order Strict order-
ing

Constraints on
finding posts in
order

Goal FIND FINDANDSOLVESOLVE Constraints on cal-
culating points

Table E.1: Matrix of dimensions

Figure E.1: An example of game, by combining axis

Listing E.1: Grammar Definition for third prototype
1 grammar com.habii.treasurehunt.Treasurehunt with org.jscience.xtext.Jscience
2

3 generate treasurehunt "http://www.habii.com/treasurehunt/Treasurehunt"
4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore
5

6 TreasureHunt:
7 'World: ' name=EString
8 elements+=AbstractElements*
9 config=Config

10 ;
11 AbstractElements:
12 Post | Player | Team
13 ;
14 Post:
15 'Post' name=EString '{'
16 'title: ' title=EString
17 'position: ' position=ELatLong
18 ('task: ' task=Task)?
19 ('clue: ' clue=Clue)?

125

20 ('visitedBy: ' visitedBy+=[Player|QID] (',' visitedBy+=[Player|QID])*)?
21 ('world: ' world=[TreasureHunt])
22 '}'
23 ;
24 Player:
25 'Player' name=EString '{'
26 'fullname: ' fullname=EString
27 'initialClue: ' initialClue=[Clue|QID]
28 'distanceToClosestPost: ' distanceToClosestPost=DistanceToClosestPost
29 ('visited: ' visited+=[Post|QID] (',' visited+=[Post|QID])*)?
30 ('solved: ' solved+=[Task|QID] (',' solved+=[Task|QID])*)?
31 ('currentPosition: ' currentPosition=ELatLong)?
32 ('direction: ' direction=Direction)?
33 ('world: ' world=[TreasureHunt])
34 '}'
35 ;
36 Team:
37 'Team ' name=EString '{'
38 members+=[Player|QID] (',' members+=[Player|QID])*
39 '}'
40 ;
41 QID:
42 EString ('.' EString)*
43 ;
44 Task:
45 name=EString '#' question=EString'?' answer=EString'!'
46 ('solvedBy: ' solvedBy+=[Player|QID] (',' solvedBy+=[Player|QID])*)?
47 ;
48 Clue:
49 name=EString '#' text=EString
50 ;
51 Config:
52 'Config' name=EString '{'
53 'world: ' world=[TreasureHunt]
54 'goal: ' goal=Level
55 mobilityAxis=Mobility
56 temporalAxis=Temporal
57 socialAxis=Social
58 '}'
59 ;
60 Mobility:
61 'Mobility' name=EString '{'
62 level=Level
63 ('ordering: ' ordering+=Order (',' ordering+=Order)*)?
64 '}'
65 ;
66 Order:
67 p1=[Post|QID] '->' p2=[Post|QID]
68 ;
69 Temporal:
70 'Temporal' name=EString '{'
71 level=Level
72 ('deadline: ' deadline=Deadline)?
73 ('for: ' posts+=[Post|QID] (',' posts+=[Post|QID])*)?
74 '}'
75 ;
76 Deadline:

126 APPENDIX E. THIRD PROTOTYPE

77 days=INT 'd'
78 hours=INT 'h'
79 minutes=INT 'm'
80 seconds=INT 's'
81 ;
82 Social:
83 'Social' name=EString '{'
84 level=Level
85 (teams+=[Team|QID] (',' teams+=[Team|QID])*)?
86 '}'
87 ;
88 enum Level:
89 LOW = 'LOW' | MEDIUM = 'MEDIUM' | HIGH = 'HIGH'
90 ;
91 enum Direction:
92 NORTH = 'W' | SOUTH = 'S' | EAST = 'D' | WEST = 'A'
93 ;
94 enum DistanceToClosestPost:
95 FOUND = 'FOUND' | HOT = 'HOT' | WARM = 'WARM' | LUKEWARM = 'LUKEWARM' | COLD = '

COLD'
96 ;
97 EString:
98 STRING | ID;

Step 2 - Run the generator
This step is the same in all the iteration/prototype, since it just generates artifacts
according to the grammar definition (step 1).

E.0.19 Example Game instance for Treasure hunt DSL(v3)
.th

The following shows an instance of our third prototype Treasure hunt DSL (.th).

Listing E.2: Treasure hunt DSL (v3) sample script
1 World: Advanture
2

3 // Posts
4 Post p1 {
5 title: "Paradise Lake"
6 position: 63.424103,10.40062
7 task: t1# "Hwo named this lake"? "the natives"!
8 clue: c1# "Find the snow..."
9 world: Advanture

10 }
11 Post p2 {
12 title: "Fearsome Forest"
13 position: 63.420723,10.39993
14 task: t2# "How many trees are in this forest"? "1000000"!
15 clue: c2# "Clue to Post4"
16 world: Advanture
17 }

127

18 Post p3 {
19 title: "Pine Trees Beach"
20 position: 63.4256386,10.3983879
21 task: t3# "Who comes here often"? "Pirates"!
22 clue: c3# "Where do pirates hang out?..."
23 world: Advanture
24 }
25

26 // Players
27 Player pl1 {
28 fullname: "Habibollah Hosseinpoor"
29 initialClue: Advanture.p1.c1
30 distanceToClosestPost: WARM
31 currentPosition: 63.425076,10.40155
32 direction: A
33 world: Advanture
34 }
35

36 Player pl2 {
37 fullname: "Christian Skar"
38 initialClue: Advanture.p1.c1
39 distanceToClosestPost: COLD
40 currentPosition: 63.4257,10.39619
41 direction: A
42 world: Advanture
43 }
44

45 // Teams
46 //Team teamA {
47 // player1,player2
48 //}
49 //
50 //Team teamB {
51 // player2,player1
52 //}
53

54 Config Simple {
55 goal: HIGH
56

57 Mobility m1 {
58 MEDIUM
59 ordering: Advanture.p1->Advanture.p2 , Advanture.p3->Advanture.p2 //

semi-order for MEDIUM strict-order for HIGH
60 }
61

62 Temporal t1 {
63 MEDIUM
64 deadline: 0d 0h 1m 0s // only for MEDIUM and HIGH
65 for: Advanture.p1,Advanture.p3 // only if MEDIUM
66 }
67

68 Social s1 {
69 MEDIUM
70 // teamA,teamB // only for HIGH
71 }
72 }

128 APPENDIX E. THIRD PROTOTYPE

Step 3 - Updating the engine
This iteration/prototype entailed by far the biggest workload, specially for making
the engine to interpret concepts according to the defined semantics as already
mentioned. Never the less we managed to implement the engine to interpret the
following concepts in this iteration:

Mobility LOW, MEDIUM and HIGH

Temporal LOW, MEDIUM and HIGH

Social LOW, MEDIUM (partly)

Goal LOW, MEDIUM, and HIGH.

As for the Social dimension, we weren’t able to implement our engine to inter-
pret level HIGH, due to time constraints.

The app UI
Figure E.2, shows our third engine prototype during the execution of an instances
of treasure hunt game. As it can be seen from the Figure E.2, we also removed the
buttons for moving the player object around the map, we now can move the player
object by keys (A = west, W= north, S=sought, D=east).

129

Figure E.2: Treasure hunt third prototype

130 APPENDIX E. THIRD PROTOTYPE

Appendix F

Fourth Prototype

This appendix presents the results of our fourth iteration/prototype of treasure
hunt application.

Introduction
The aim of this prototype was to develop a graphical editor for creation of games
as an alternative for using the textual editor generated by Xtext, in order to sim-
plifying the creation of treasure hunt games.

The app UI
Figure F.1, shows the end result of this iteration, namely the graphical editor inte-
grated into the engine, thus simplifying the deployment and improves the usability
of the application.

To create a game instance, you need to create a set of post and player objects,
and also configure the pervasive dimension (axis, see Chapter 4). Once you have
create a post or a player object you can click on the newly created object on map
view, which then allow you to edit the selected object, as Figures F.2 and F.3
shows.

131

132 APPENDIX F. FOURTH PROTOTYPE

Figure F.1: Graphical Editor - fourth prototype

Figure F.2: Graphical Editor - Creating and editing a Post object

133

Figure F.3: Graphical Editor - Creating and editing a Player object

134 APPENDIX F. FOURTH PROTOTYPE

Appendix G

User manual

This appendix presents the user manual for our final prototype.

Introduction
Treasure hunt DSL is simple and powerful language for creating treasure hunt
games, without the need of technical (programming) knowledge and expertise. It
comes with an Engine with are able to execute the model created in the treasure
hunt DSL, as well as a Graphical Editor for creating models. How ever one can
also create models using a simple text editor.

What is included
Table G.1, shows what is included in the deliverables.

Artifact Description
TreasureHunt3.2.jar The last and current prototype of the treasure hunt

engine with the graphical editor.
SourceCode The source code for DSL, Engine and the Graphical

editor.
Samples Game samples written in treasure hunt DSL.

Readme.txt Software dependencies, legal stuff.

Table G.1: Item Check List

Hardware Specification
This software is tested on Macbook Pro, with Mac OS X operative system version
10.6.8, which comes with Java preinstalled.

135

136 APPENDIX G. USER MANUAL

We assume that this software works on every operative system with the latest
java runtime installed, but we do not guaranty it.

Installation
There is no need for installation. To run the application just double click on the
TreasureHunt3.1.jar file, which start both the Engine and the graphical editor.

Basic Operations

G.0.20 Get Familiar with DSL
An example game written in treasure hunt DSL is shown bellow, where the three
most important concepts are Post, Player and Config. Each of this concepts con-
tains other concepts, see Table G.2 for more details.

Concepts Description
World has an identifier, and contains the following concepts; Post(s),

Player(s) and Config
Post has an identifier and a title. It contains the following concepts;

Position, Task, Clue and a reference to the world
Player has an identifier and a fullname. It contains the following con-

cepts; Position and references to an initial clue, distanceToClos-
estPost and a reference to the world

Config has an identifier. It contains the following concepts; Goal, Mobil-
ity, Temporal and Social. And a reference to the world

Position contains latitude and longitude values
Task has an identifier and contains a pair of question and answer.

Concepts has an identifier and contains a clue text for the next post.
Order contains references to posts

Deadline contains numbers which represents time

Table G.2: Domain concepts

1 World: Trondheim
2 Post P0 {
3 title: "Paradise Lake"
4 position: 63.424103,10.40062
5 task: t0 # "How named this lake"? "the natives"!
6 clue: c0 # "Where do the trees speak?"
7 world: Trondheim
8 }
9

10 Post P1 {
11 title: "Fearsome Forest"
12 position: 63.420723,10.39993
13 task: t1 # "How many trees are in this forest"? "1000000"!

137

14 clue: c1 # "Where do people go for vacation?"
15 world: Trondheim
16 }
17

18 Post P2 {
19 title: "Pine Trees Beach"
20 position: 63.4256386,10.3983879
21 task: t2 # "Who comes here often"? "Pirates"!
22 clue: c2 # "Where do the angles live?"
23 world: Trondheim
24 }
25

26 Player pl3 {
27 fullname: "Habibollah Hosseinpoor"
28 initialClue: P0.c0
29 distanceToClosestPost: COLD
30 currentPosition: 63.425076,10.394250000000017
31 world: Trondheim
32 }
33

34 Player pl4 {
35 fullname: "Christian Skar"
36 initialClue: P0.c0
37 distanceToClosestPost: COLD
38 currentPosition: 63.42670000000003,10.39619
39 world: Trondheim
40 }
41

42 Config Simple {
43 world: Trondheim
44 goal: HIGH
45

46 Mobility m1 {
47 MEDIUM
48 ordering: P0 -> P1 , P2 -> P1
49 }
50

51 Temporal t1 {
52 HIGH
53 deadline: 0d 0h 1m 0s
54 }
55

56 Social s1 {
57 MEDIUM
58 }
59 }

G.0.21 Get Familiar with Graphical Editor and Engine

Figure G.1, shows the graphical editor which is integrated together with the engine.

138 APPENDIX G. USER MANUAL

Figure G.1: Graphical Editor

Create treasure hunt games

In order to create a game instance, you have to create a set of post objects, a
set of player object, and configure this objects by means of dimensions (axis, see
Chapter 4.

Create Post object Click on the flag icon in order to create a post object. Once
the object is created, click on the newly created object on the map view in
order to edit its properties, see Figure G.0.21 G.2(a).

Create Player object Click on the blue user icon in order to create a player
object. Once the object is created, click on the newly created object on the
map view in order to edit its properties, see Figure G.0.21 G.2(b). Player
objects can be moved around, by clicking on the following keys (W for north,
S for south, A for west. and D for east) on keyboard.

Configure dimensions Click on the Config icon in order to configure the dimen-
sions, see Figure G.1. NB! due to a design decision, textfields changes are
effected only when the user hit the Enter key on the keyboard.

139

(a) Creating and editing a Post object

(b) Creating and editing a Player object

Figure G.2: Creating and editing treasure hunt DSL scripts (object) with graphical
editor

Notice that you can also create treasure hunt games using a textual editor.
For samples of games written in treasure hunt DSL see folder samples, which is
included in the deliverables.

Run treasure hunt games

By clicking on the run/play icon, see Figure G.1, the engine starts executing a
game instance/ model. It goes without saying that you need to feed a model to
the engine first. This can be done either by importing a game instance into the
engine first, or creating a new model using the graphical editor. Figure G.3, shows
a complete process as an UML activity diagram.

Once, the game has started, an admin can move players around in the map, by
fist selecting a player then clicking on the following keys (W,S,A and D), in order
to find post objects.

140 APPENDIX G. USER MANUAL

Figure G.3: Activity diagram for creation and execution

List of acronyms

PLAYTRD - is a platform for research about pervasive games. Typical research
topics are game concepts, architecture and technology. The purpose of these
games is for the players to familiarize themselves with Trondheim by using
it as play area. The platform is being developed at IDI in cooperation with
Trådløse Trondheim, Telenor and StudentbyEN.

DSL Domain-Specific Language.

GPL Generic Programming Language.

GUI Graphical User Interface.

EMF Eclipse Modeling Framework.

UML Unified Modeling Language is a standardized general-purpose modeling lan-
guage, it is managed, and was created, by the Object Management Group.

OTS "Off-The-Shelf" component.

COTS Commercial "Off-The-Shelf" component.

HTTP Hypertext Transfer Protocol.

Turing complete Means in principle a turing complete language, could be used
to solve any computation problem, although without no guarantees regarding
runtime or memory.

IDE Integrated Development Environment.

141

	Title Page
	Abstract
	Sammendrag
	Preface
	Content
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Problem Definition
	Report Outline

	Preliminary Studies
	Games
	Game Technologies
	Domain Specific Language
	DSL Technologies

	Project Methodology
	Research Question
	Design Science
	DSL Lifecycle
	Game Development
	Project Method
	Toolbox

	Results
	Domain
	Game Specification
	System Architecture

	Discussion
	Project Methodology
	Treasure Hunt DSL
	DSL Engine and Graphical Editor

	Conclusion
	Conclusion
	Further Work

	Bibliography
	Task
	Game Concepts
	First Prototype
	Second Prototype
	Third Prototype
	Fourth Prototype
	User manual
	List of acronyms

