
Theoretical Foundation for
Lecture Games

Thesis for the degree of Philosophiae Doctor

Trondheim, June 2013

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Bian Wu

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Bian Wu

ISBN 978-82-471-4502-9 (printed ver.)
ISBN 978-82-471-4503-6 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2013:195

Printed by NTNU-trykk

 i

Abstract
Nowadays, computer games are played in a technology-rich environment equipped with
laptops, smart phones, game consoles (mobile and stationary), set-top boxes, and other
digital devices. It is believed that the intrinsic motivation for games in young people can
be combined with educational content and objectives into what Prensky calls “digital
game-based learning” [1]. In recent years especially, the innovative mobile electronic
products, such as phones and Android phones, present new opportunities for Game-
Based Learning (GBL). These devices can be combined with game content to be played
in different locations such as classrooms, offices, homes, and outside, for formal and/or
informal learning. Further, new game development tools, including some game editors,
simplify the game development process and even let game players create their own
games without programming. In this context, not only can a game be used for learning,
but game development can also be used as assignments in education.

This thesis investigates how to apply games or game development as a motivation for
lecture-based coursework learning using current computer technology. The term
“lecture games” is defined and categorized in order to identify the research scope.
Generally, games can be integrated in coursework in three ways. First, games can be
used instead of traditional exercises motivating students to put more effort into the
work, and giving the teacher and/or teaching assistants an opportunity to monitor how
the students progress with the exercises in real-time. Second, games can be played
within lectures to improve the participation and motivation of students. These two
approaches presented above are categorized as “Game as a motivation for lectures”.
The third way, categorized as “Game development as a motivation for lectures”,
involves modification or development of a game as a part of coursework using a Game
Development Framework (GDF) to learn specific skills. The latter method is termed
“Game Development-Based Learning” (GDBL). This term is used to define a new
research area. The GDF denotes the toolkits, which can be used to develop/build/modify
games, e.g. game engines, game editors, game (simulation) platforms, or even an
Integrated Development Environments (IDE) such as Visual C++. GDBL is typically
used in computer-related courses, but can also be used in other fields, e.g., literacy in
primary education [2]. Based on these concepts, a major challenge is to find a
supportive theory from the perspective of game design and pedagogy, to guide the
process of applying a game or game development in learning in the context of a
technology-rich environment, and evaluate the results in education. In summary, the
research goal is to use supportive theory and current computer technology as dual basis
to facilitate lecture games in the contemporary technology-rich environment.

In order to describe the research questions and contributions clearly and systematically,
the research questions have been grouped according to two topics. Topic 1 - “Games as
a motivation for lectures”, deals with identifying supportive theory to guide the design
and evaluation of lecture games, as well as application of current relevant technology
and appropriate peripherals to provide various play experiences in the Lecture Games
project. Topic 2 - “Game development as a motivation for lectures”, is concerned with
game development based learning (GDBL), including the researchers’ views of GDBL,

 ii

and the GDBL characteristics in terms of supportive theory and the current technology-
rich environment.

For the study of topic 1, the relevant literature review was undertaken to get an
overview of the existing research, and four case studies were conducted with four
multiplayer games, using quiz and other concepts, on various devices, including smart
phones in lectures. In the study of topic 2, it was found that there were no existing
literature reviews available, so a systematic literature review of GDBL was carried out.
In addition, quasi-experiments were run integrating two GDFs, Microsoft XBOX New
Architecture (XNA) Game Studio and Android Software Development Kit (SDK), in
exercises for a software architecture course where students worked in teams to develop
a game using their knowledge from this course. Then, based on the data and experiences
in the above research, the supportive theory was identified for each topic to enrich the
theoretical foundation for GBL. Further, the GBL field was extended in this study by
including GDBL.

The main contributions for game as a motivation for lectures are:
C1: Identification of research topics and cases in regards to the recent technology-rich
environment within the context of game as a motivation for lectures.
C2: An analysis chart of applying supportive theory and enabling technology to guide
the study of educational games for lectures.

The main contributions for game development as a motivation for lectures are:
C3: Identification of a set of research themes and elements in GDBL.
C4: Identification of the factors contributing to the success or failure of GDBL.
C5: Framework of linked elements for the design of GDBL.

 iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfillment of the requirements for the degree of Philosophiae
Doctor.

This doctoral work has been performed at the Department of Computer and Information
Science (IDI), NTNU, Trondheim, Norway under the supervision of Professor Alf Inge
Wang as the main supervisor, and Associate Professor Harald Øverby and Associate
Professor Sara Brinch as co-supervisors.

This PhD thesis has been financed as an integrated PhD study by an internal scholarship
from the Department of Computer and Information Science and the Faculty of
Information Technology, Mathematics and Electrical Engineering at NTNU.

 iv

Acknowledgements

First of all, I would like to thank Professor Alf Inga Wang for his supervision,
continuous support, and advice during my PhD studies. His inspiring thoughts and
insightful remarks helped a lot at many stages in the course of this doctoral research.
His careful editing contributed enormously to the production of my papers and this
thesis. I would like to extend my thanks to my co-supervisors, Associate Professor
Harald Øverby and Associate Professor Sara Brinch, for their encouraging guidance and
suggestions during my time as a PhD student. Next, special thanks go to all members
and participants in the Lecture Games project who provided valuable input for this
research. I am also grateful to my colleagues and teachers who shared their knowledge
and experience, and provided important feedback for my work on numerous occasions
in the software engineering research group meetings.

I would like to express my gratitude to Associate Professor Hallvard Trætteberg, Meng
Zhu, and Hong Guo for their suggestions during the project. I would also like to extend
my gratitude to all stakeholders involved in the project, especially to some graduate
students and Trygve Bragstad from Chamber of Commerce in Trondheim who provided
background knowledge on Trondheim city in one case study.

I would also like to thank Alf Inge Wang, Jingyue Li, and Tor Stålhane for helping and
cooperating in my teaching duties during these years. I would also like to take this
opportunity to thank all my friends and colleagues who made my stay at NTNU
memorable by sharing ideas, experiences, and good times. It is hard to mention
everyone’s name here, but it is even harder not to mention a few like Feng Luan,
Chengzhi Liu, Huamin Ren, Shang Gao, Shengtong Zhong, Wei Wei, Jiangqiang Ma,
Min Shi, Ellen Hoprekstad, Oskar Sündberg, Kirsti Elisabeth Berntsen, Birgit Krogstie,
Salah Uddin Ahmed, Alfredo Perez, and Gry Seland.

Finally, I would like to thank my wife, Qiaoduo Shi, and my parents, Buyun Wu and
Qingxiang Xiong in China, for providing inspiration, love, and enduring support during
all these years.

 v

Contents
Abstract ... i

Preface .. iii

Acknowledgements .. iv

Contents ... v

List of Figures ... viii

List of Tables ... ix

Abbreviations .. x

1 Introduction .. 1
1.1 Problem Outline .. 1
1.2 Research Context .. 2
1.3 Research Questions ... 4
1.4 Research Design .. 5
1.5 Papers ... 7
1.6 Contributions ... 12
1.7 Thesis Structure .. 13

2 State of the Art .. 15
2.1 Lecture games scope and taxonomy .. 15
2.2 Understanding Learning Perspective towards Lecture Games 19

2.3 Game Design Theory for Lecture Games .. 25

2.4 Experimental Software Engineering ... 29
2.5 Enabling Technology ... 30

2.6 Summary .. 36

3 Research Methods.. 37
3.1 Research Design .. 37

3.2 The Methods Selection for Data Collection ... 39
3.3 Dealing with the Data .. 40

 vi

4 Research Process ... 42
4.1 Research Goal .. 42
4.2 Game as Motivation for Lectures - Case Study ... 44

4.3 Game Development as Motivation for Lectures - Literature Review 48

4.4 Game Development as Motivation for Lectures - Quasi-experiment 52

5 Results ... 59
5.1 Summary of the Studies ... 59
5.2 Game as Motivation for Lectures .. 60

5.3 Game Development as Motivation for Lectures .. 71

6 Evaluation and Discussion .. 82
6.1 Evaluation of Research Questions .. 82

6.2 Evaluation of Contributions .. 85

6.3 Evaluation of Validity Threats ... 87

7 Conclusions .. 91
7.1 Contributions ... 91
7.2 Limitation and Future Work... 92
7.3 Concluding Remarks ... 94

 vii

8 References .. 95

9 Appendix: Selected papers .. 106

 viii

List of Figures

 ix

List of Tables

 x

Abbreviations

ACG Amazing City Game

AoC Age of Computer

ATAM Architecture Trade-off Analysis Method

COTS Commercial, off-the-shelf

CS Computer Science

CSCL Computer-Supported Collaborative Learning

DGBL Digital Game-Based Learning

GBL Game-Based Learning

GDBL Game Development-Based Learning

GDF Game Development Framework

GQM Goal/Question/Metric

HCI Human Computer Interaction

IDE Integrated Development Environment

IS Information Systems

ISO International Organization for Standardization

IT Information Technology

KW Knowledge War

LG Lecture Quiz

MMORPG Massively Multiplayer Online Role-Playing Game

NTNU Norwegian University of Science and Technology

OS Operating System

OSS Open Source Software

PMA Post-Mortem Analysis

QIP Quality Improvement Paradigm

RQ Research Question

SE Software Engineering

SG Serious Game

SPSS Statistical Product and Service Solutions

SUS System Usability Scale

SWA Software Architecture

 xi

WoW World of Wisdom

Chapter 1. Introduction

1 Introduction

1.1 Problem Outline

The first successful commercial video game was developed about forty years ago [3].
Video games have quickly become one of the most pervasive, profitable, and influential
forms of entertainment across the world. Further, it has been discussed for decades [4-6]
how games can be integrated in education in order to stimulate students’ interest for
learning, to enhance the effectiveness of study, and to motivate the attendance in class.

In recent times, technology evolved into more diverse forms than before. Various
educational goals can be achieved using advanced equipment and technologies, ranging
from software applications, such as Wikipedia, YouTube, Facebook, and Twitter, to
hardware platforms, such as Apple iPhone, Sony PlayStation, Nintendo DS, and
Microsoft XBOX. All these technologies and devices can enrich the teaching and
training environment, and provide better learning platforms through mobile network
support such as Wi-Fi1 or GSM2. In this environment, many games emerged with the
aim of improving learning, from playing educational games to other relevant game
activities used in learning, e.g. using game development to teach programming. This
phenomenon indicates that the appearance of educational game ideas is always
accompanied by novel equipment or technology, e.g. sport games based on Wii-Fit3.
Further, the advances in technology become a challenge to the educational games
themselves, posing questions how can innovative game ideas be adapted to current
technology in the context of a new generation of students, and how to design a game to
get a good balance between entertainment and education. Some challenges and
opportunities arise from establishing and enriching the theoretical base for Game-Based
Learning (GBL). They stem from the necessity to combine pedagogical aspects and
game technology in the design to improve the awareness of lecture games, and to
enhance the knowledge construction process. The implementation of many educational
games concentrates excessively on technological issues, missing the pedagogical and

1 http://www.webopedia.com/TERM/W/Wi_Fi.html
2 http://www.webopedia.com/TERM/G/GSM.html
3 http://wiifit.com

Chapter 1. Introduction

 2

psychological context, or it focuses on the game idea itself and neglects the validation
of the learning outcomes.

This thesis aims to further the research on these issues. It contributes to bridging the gap
between the pedagogy and recent game technology by formulating the game design
theory and evaluation criteria to enhance the foundation of GBL, especially for lectures
in higher education.

1.2 Research Context

The Lecture Games project, which this PhD is a part of, is interdisciplinary by nature. It
intersects the research fields of video games and learning. Lecture games are a sub-
category of educational games and Game-Based Learning with the focus on games
mainly related to a lecture in a classroom. The Lecture Games project research is carried
out in the software engineering group at the Department of Computer and Information
Science in cooperation with the Department of Telematics and the Department of Art
and Media Studies at the Norwegian University of Science and Technology (NTNU).
More specifically, the Lecture Games project aims to propose new game ideas to
improve the traditional classroom teaching style in lectures for higher education. In
addition, this thesis investigates how to integrate the popular technology into lectures,
and how to validate the ultimate learning effectiveness through case studies and
experiments. This project also involved other participants, working under supervision,
such as graduate students developing games in sub-projects of the Lecture Games
project. During the whole project process, the author was the main designer, executor,
and evaluator of the project, while the games were implemented together with graduate
students. Details of the author’s work and contributions are described in Section 1.5.

The focus of the project was on the exploration of research issues at the intersection of
lecture and games, and the intersection of pedagogy, technology, and game design
methods. The ultimate objective is to propose, evaluate, and enrich teaching methods in
lectures while facilitating GBL, and to formulate theory strengthening the theoretical
foundation of GBL. The research background will be described in detail using the sub-
categories listed below.

Digital games for learning: Video game development has now extended beyond pure
entertainment to other areas. For example, the game “Driving theory training” on
Nintendo DS, introduced in 2008, has been used to help learners study by simulating a
realistic driving test. In addition to a complete test of theory based on the real life
examination, learners can benefit from revision, graphs, mini-games, as well as
questions and answers relating to driving vehicles. Another example is “Franklin:
Birthday Surprise” on Sony PlayStation 2, which is a side-scrolling educational game
starring Franklin the Turtle. Today, more people have an open mind about learning from
games. However, in early 1990s, some educators feared that video games might foster
violence, aggression, negative imagery of women, or social isolation, and they ignored
the positive effects of using games in education [7]. Other educators saw video games
as powerful motivating digital environments, and studied video games in order to
determine how interesting factors in popular video games could be integrated into

Chapter 1. Introduction

 3

instructional design [8-11]. This argument may still exist today, but by now, video
games became a part of daily life. Indeed, video games have the potential to be valuable
in schools, because much of the content students need to learn does not motivate them
directly. The words “boring”, “dry”, or “technical” are often used to describe such
situation whether the learners are in schools or universities. The attitude of today’s
students toward the video games is the very opposite of the attitude that most of them
have toward school, as outlined in “The Myth of the Educational Computer” [12].
Nowadays, games like SimCity are used in geography or urban planning classes, and
Maxis (developer of SimCity) has published a set of resources for teachers on their
website [13]. Further, the games can be interesting, competitive, cooperative and
results-oriented, and most learners are motivated through such educational games in a
variety of ways. Referring to lecture games, it could be considered to be a subset of
GBL. The more understanding about GBL, the more helpful it will be for the Lecture
Games project. Games, as a mediator tool, play a very important role in this project.
Achieving the primary learning goal by this tool is the common aim in both GBL and
lecture games. Since game research is not a mature and traditional research field, it does
not have many systematic theoretical methods or foundations to guide the design
process or evaluate results. In addition, how to find a useful theory to design GBL in the
current technology-rich environment is still an open research question. This area
deserves more research effort and this became a motivation for this study.

Gamification: “Gamification” as a term describing using game elements in non-game
applications originated from the digital media industry. The first documented use dates
back to 2008 [14], and the term became widely adopted after the second half of 2010.
Similar terms are also introduced, such as “productivity games” [15], “surveillance
entertainment” [16], “funware” [17], “playful design” [18], “behavioral games” [19],
“game layer” [20], and “applied gaming”4. In the game industry and the game studies
community, the term “gamfication” is more widely used than in other fields. Vendors
and consultants have tended to describe “gamification” practically in terms of client
benefits, for example as “the adoption of game technology and game design methods
outside of the games industry” [21], “the process of using game thinking and game
mechanics to solve problems and engage users” [22], or “integrating game dynamics
into your site, service, community, content or campaign, in order to drive
participation” 5 . Gamification is the infusion of game mechanics, game design
techniques, and/or game style into any other activity or product. It typically involves
applying game design thinking into non-game applications to make them more
enjoyable and engaging. The core idea is to extract the elements of game mechanics and
apply them into a product to make it more interesting. The main feature of gamification
is not to use games directly in a non-game field, but to apply game elements as an
abstraction level into a product. For example, some online forums require users to get
more skills to upgrade to a higher level, which allows them to get more functionality in
the forum. Sebastian Deterding [23] proposed a definition of this phenomenon as “the
use of game design elements in non-game contexts.” He explains further that “gamified”
application refers to: the use (rather than the extension) of design (rather than game-

4 http://www.natronbaxter.com
5 http://www.bunchball.com/nitro/

Chapter 1. Introduction

 4

based technology or other game-related practices) elements (rather than full-fledged
games) related to characteristics of games (rather than play or playfulness) in non-game
contexts (regardless of specific usage intentions, contexts, or media of implementation).
A common example of gamification in the real world is “Frequent Flyer Programs”,
offered by many airlines. Typically, airline customers enrolled in the program
accumulate frequent flyer miles corresponding to the distance flown on that airline or its
partners. Acquired miles can be redeemed for free air travel, for other goods or services.
Another example of applying gamification and serious games in personalized health
could found in [24]. This suggests that by including game elements any process can
potentially benefit motivating users to take part and find enjoyment, and this concept
could be used in GBL.

The current technology environment impacts on both lectures and students:
Technology always has both positive and negative effects on human life. Whether the
effects are positive or negative usually depends on how it is applied. This means that
new technology brings challenges and opportunities to our life, including the game and
learning fields. Traditional lectures have been undergoing a gradual change through
constantly updated technology. Several years ago, there were no projectors or LCD
screens in classrooms, but now not only they are being used routinely, but also most
classrooms provide several ways of accessing computer networks. In this context, some
exciting games ideas came into being. These new ideas are based on the recent
technology-rich environment combined with new equipment in daily use, from software
aids to hardware support, mentioned in Section 1.1. This phenomenon can become an
inspiration for GBL, providing the possibility to broaden the teaching design involving
recent technology in a positive way. Further, the combination of these technologies and
lecture games matches the expectations of the new generation of students who grew up
in a technology culture and are familiar with new devices and technical novelties, for
example the touch screen found on smart phones and tablets.

The above discussion shows that new concepts, like gamification, change of learners’
attitude, and technology development play important roles in the Lecture Games
interdisciplinary project helping to achieve the learning goal. Therefore, the Lecture
Games project will consider using innovative computer technology for new generation
gamers as the basic context for the design and study.

1.3 Research Questions
The main research goal for this PhD work within the Lecture Games project was to use
supportive theory and current computer technology as dual basis to facilitate lecture
games in the current technology-rich environment. It means that this PhD work focused
on the survey and identification of supportive theory in areas such as pedagogy, game
design, and evaluation criteria, in order to build a framework for the lecture games
design and evaluation. Moreover, selecting and integrating relevant technology into
lecture games design was essential to provide interesting play experiences for students.
In summary, the lecture games should be designed based on both supportive theory and
relevant technology. Specifically, games can be integrated in lectures in three ways as
mentioned in the Abstract. The first two approaches, i.e. games, used in exercises and
played within lectures, were part of research topic 1 - “Game as a motivation for

Chapter 1. Introduction

 5

lectures”. The third approach, integrating game development in students’ exercises
based on a Game Development Framework (GDF), was given a new name - Game
Development Based Learning (GDBL). This latter approach belongs to research topic 2
- “Game development as a motivation for lectures”. Based on the description of the
research context in Section 1.2 and in order to improve the lecture process through GBL
with the supportive theory and innovative technology, the research questions
corresponding to these two topics are described as follows:

Topic 1: Game as a motivation for lectures:

RQ1: How can supportive theory be identified to guide the design and evaluation of
lecture games?

RQ2: How can current relevant technology and appropriate peripherals be used to
provide various play experiences in new lecture games?

Topic 2: Game development as a motivation for lectures:

RQ3: What is game development based learning (GDBL) and what are the researchers’
views of GDBL?

RQ4: How can the GDBL be characterized in terms of supportive theory and the current
technology-rich environment?

1.4 Research Design

The study described in this thesis aims towards building a theoretical knowledge base at
the intersection of learning and games within the context of technology-rich
environments. The specific research methods, which have been used in this thesis, are
case study, quasi-experiment, and systematic literature review. The case study and
quasi-experiment were exploratory in nature and have been conducted by following the
strategy defined by Colin Robson [25]. The systematic literature review was carried out
by following the methods described by Bryony Oates [26] and Bootes and Beile [27].
The case study was used in research topic 1 since literature reviews for this topic
already exist. For topic 2, both a systematic literature review and quasi-experiments
were used in the study.

The research design focused first on a thorough examination of the current state of
knowledge, providing taxonomy of the different solutions, and pointing out the
weaknesses or shortcomings existing in the research area. Afterwards, the focus of the
research was on two topics presented above.

For topic 1: “Game as a motivation for lectures”, two case studies were conducted to
identify the common issues in the game design and evaluation. One case was a
multiplayer online game with quiz fights as an exercise, running on both Windows and
Mac OS X. The design was based on the pedagogical theory and game design theory
extracted from the literature survey. Another case was a multiplayer quiz game for the

Chapter 1. Introduction

 6

lectures, running on mobile devices. This was the second version of the game - Lecture
Quiz [28]. It was designed in terms of game design theory extended from Malone
intrinsic motivation [29]. Both case studies aimed to fill the theoretical gap for lecture
games. Data obtained from this study was used for finding answers to research question
RQ1. In addition, two other case studies were conducted, and they showed that the
recent technology may influence education and provides various ways to combine with
learning. One was a social quiz for schools, running on iPhones. Another one was a
pervasive educational game running on Android smart phones. Both took advantage of
current popular features of smart phones, e.g. GPS and camera, and provided users with
different play experiences. The experiences and evaluation data gained in these two case
studies contributed to finding answers to research question RQ2.

For topic 2: “Game development as a motivation for lectures”, a systematic review of
literature and two quasi-experiments were conducted to identify GDBL’s effectiveness -
learning through a game development assignment in a technology-rich environment.
The term GDBL was created to define this research area since no term existed to
describe it. In addition, there has been no prior literature review work in this field.
Therefore, a systematic literature study was carried out to validate the original GDBL
method. It aimed at answering research question RQ3. In the meantime, two quasi-
experiments used XNA and Android SDK as GDFs in a NTNU’s software architecture
course. The course structure was changed to integrate game development as a basis for
the exercises in the students’ project. The students worked in teams to develop a game
using either XNA or Android SDK in order to apply the course content in practice. A
non-GDBL project was also provided in this experiment in order to obtain evaluation
data for both GDBL and non-GDBL methods. Comparing the results served to reveal
the differences between GDBL and non-GDBL, and to find answers to RQ4.

The theories and enabling technology mentioned in the study of topic 1 and topic 2 will
be described in detail in Chapter 2.

Figure 1 shows the relationship between the studies (research methods), contributions,
papers, and research questions. The papers are listed in Section 1.5 and the
contributions are listed in Section 1.6. A link between RQ-n (research questions), and
G-n (papers on “Game as a motivation for lectures”) or GDF-n (papers on “Game
Development as a motivation for lectures”) indicates that research question RQ-n was
addressed in paper G-n or GDF-n. A link between Study A and paper G-n/GDF-n
indicates that paper G-n/GDF-n describes the results of Study A. A contribution is
represented as a circle C. The list of papers, which add to a particular contribution C-m,
is positioned next to the circle C-m. In addition, the research goal converts into two
factors in the figure. The horizontal line represents one factor that both research topics
are driven by supportive theory. The supportive theory, adopted at the beginning of the
study from areas of pedagogy and game design, should direct the design process for
each topic. Each topic may involve independent supportive theories according to its
features. The vertical line represents the fact that both topics depend on the recent
widespread computer technology, especially mobile technology used mainly in topic 1
and GDFs used in topic 2.

Chapter 1. Introduction

 7

Figure 1: Relationship of studies and their contribution to research questions
and publications

1.5 Papers

This thesis is based on a collection of published papers. A list of these twelve papers is
provided below, divided into two research topics. There are four papers about the case
studies for topic 1; the remaining eight papers are literature reviews and experiments
related to topic 2. The author’s contribution to these papers is stated for each paper.

Topic 1: Game as a motivation for lectures - four case studies

G1: Bian Wu, Alf Inge Wang and Yuanyuan Zhang, "Experiences from
Implementing an Educational MMORPG", 2nd International IEEE Consumer
Electronics Society's Games Innovation Conference (GIC 2010), Hong Kong,
21-23 December 2010. ISBN: 978-1-4244-7178-2, DOI:
10.1109/ICEGIC.2010.5716896

Relevance to this thesis: This paper is mainly a tentative case study of using
MMORPG in education. It gives answers to research question RQ1, and adds
mainly to contribution C1.

Author’s contribution: This paper is the result of a two-year sub-project to
implement a game style exercise as an alternative to the traditional paper
exercise. The game content and architecture was designed, seven students were

Chapter 1. Introduction

 8

supervised, and the development process was directed over two years. The
author was the leading writer of this paper.

G2: Bian Wu; Alf Inge Wang; Erling Andreas Børresen; Knut Andre
Tidemann: "Improvement of a Lecture Game Concept - Implementing Lecture
Quiz 2.0”, 3rd International Conference on Computer Supported Education, 6-9
May 2011, Noordwijkerhout, The Nederland. ISBN: 978-989-8425-50-8

Relevance to this thesis: This paper describes a case study of using common
mobile devices and the existing technology infrastructure in education. It gives
answers to research question RQ1, and adds to contribution C1.

Author’s contribution: The author reviewed and evaluated two versions of LQ,
1.0 and 2.0, and contributed to the introduction, related work, game design,
evaluation, and conclusion. The author was the leading writer of this paper.

G3: Alf Inge Wang, Bian Wu, Sveinung Kval Bakken, "Experiences from
Implementing a Face-to-Face Educational Game for iPhone/iPod Touch", 2nd
International IEEE Consumer Electronics Society's Games Innovation
Conference (GIC 2010), 21-23 December 2010, Hong Kong. ISBN: 978-1-
4244-7178-2. DOI: 10.1109/ICEGIC.2010.5716895

Relevance to this thesis: This paper presents a case study of using a popular
mobile device, iPhone, in education. It gives answers to research question RQ2,
and adds to contribution C2.

Author’s contribution: This paper is the result of cooperation with the thesis
supervisor and another student. The author performed the related work, data
extraction and analysis, and further discussion of the results.

G4: Bian Wu, Alf Inge Wang, " A Pervasive Game to Know Your City Better",
2011 International IEEE Consumer Electronics Society's Games Innovation
Conference (IGIC 2011), November 2011, Orange, California, USA.

Relevance to this thesis: This paper mainly describes a case study of using a
popular mobile device, Android smart phone, as a tool for informal learning. It
gives answers to research question RQ2, and it adds to contribution C2 and, to
some degree, C1.

Author’s contribution: This paper is the result of integrating pervasive game
and popular technology in learning to construct a game concept supporting
education. The author designed the game, conducted game evaluation, and was
the leading writer of this paper.

Chapter 1. Introduction

 9

Topic 2: Game development as a motivation for lectures - literature review

GDF1: Bian Wu, Alf Inge Wang, "Game Development Framework for
Software Engineering Education", 2011 International IEEE Consumer
Electronics Society's Games Innovation Conference (IGIC 2011), November
2011, Orange, California, USA.

Relevance to this thesis: This paper is based on earlier experimental results of
integrating GDFs in a software architecture course. It is a survey of related
research methods using game design or game development in the software
engineering field. It gives answers to research question RQ3, and it adds to
contribution C3.

Author’s contribution: This paper is the result of literature review. The author
conducted the literature survey work and carried out the summary with the
supervisor’s support. The author was the leading writer of this paper.

GDF2: Bian Wu, Alf Inge Wang, “A guideline for game development-based
learning: A literature review”, Accepted by the International Journal of
Computer Games Technology.

Relevance to this thesis: This paper presents a systematic literature review and
investigation of the GDBL method. The review collected data related to using
the game development in all possible educational fields. It gives answers to
research question RQ3 and adds to all the contributions in the GDBL field.

Author’s contribution: The author conducted a systematic literature review
with the supervisor’s guidance. This included searching, collecting the results
and data from different bibliographies, such as IEEE Xplore and ACM portal,
the summary of the data and the analysis of their common characteristics, as
well as creation of a valuable framework for the future work.

Topic 2: Game development as a motivation for lectures - quasi-experiments

• Experiment preparation:

GDF3: Alf Inge Wang, Bian Wu, "Using Game Development to Teach
Software Architecture", International Journal of Computer Games Technology,
vol. 2011, Article ID 920873, 12 pages, 2011. ISSN: 1687-7047 EISSN: 1687-
7055. DOI: 10.1155/2011/920873

Relevance to this thesis: This paper presents a re-design of a traditional
software architecture course to integrate game development in the coursework. It
describes the experience of changing the course setting to apply the GDBL
method. It gives answers to research question RQ4, and it adds to contribution
C4.

Chapter 1. Introduction

 10

Author’s contribution: This paper is the result of cooperation with the
supervisor. The author performed the role of a teaching assistant in the course
and mainly worked on the exercise improvements.

• Experiment 1:

GDF4: Alf Inge Wang, Bian Wu, "An Application of a Game Development
Framework in Higher Education", International Journal of Computer Games
Technology, Special Issue on Game Technology for Training and Education,
Volume 2009. ISSN: 1687-7047 EISSN: 1687-7055.
DOI=10.1155/2009/693267

Relevance to this thesis: This paper presents the preliminary findings in the
GDBL field. It provides an initial conceptual framework to integrate GDBL in a
software architecture course. It gives answers to research question RQ4, and it
adds to contribution C4 and, to some degree, C5.

Author’s contribution: This paper is the result of cooperation with the
supervisor. The author was a teaching assistant in the software architecture
course using the GDBL method. This paper proposed an initial conceptual
framework for the design of GDBL based on experiences in the software
architecture course.

GDF5: Bian Wu, Alf Inge Wang, Jan-Erik Strøm and Trond Blomholm
Kvamme: "An Evaluation of Using a Game Development Framework in Higher
Education", 22nd IEEE-CS Conference on Software Engineering Education and
Training (CSEE&T 2009), February 17-19, Hyderabad, India, 2009. ISBN: 978-
0-7695-3539-5 DOI=10.1109/CSEET.2009.9

Relevance to this thesis: This paper presents the evaluation data of the initial
experiment with using XNA in teaching a software architecture course. It
follows the lecture design presented in the papers - GDF3 and GDF4, and
presents a positive initial feedback to integrating GDBL in the course. It gives
answers to research question RQ4, and it adds to contribution C4.

Author’s contribution: This paper is the result of cooperation with the
supervisor. The author contributed to the introduction, related work, data
extraction and analysis, evaluation, and conclusion. The author was the leading
writer of this paper.

GDF6: Bian Wu, Alf Inge Wang, Jan-Erik Strøm and Trond Blomholm
Kvamme: "XQUEST used in Software Architecture Education", IEEE
Consumer Electronics Society's Games Innovation Conference, August 25-28,
2009, London, UK. ISBN: 978-1-4244-4459-5, DOI:
10.1109/ICEGIC.2009.5293607

Chapter 1. Introduction

 11

Relevance to this thesis: This paper presents the next step in research of the
GDBL field. An extended Lib-XQUEST was provided, based on XNA, to
simplify the students’ effort in the game programming. It gives answers to
research question RQ4, and it adds to contribution C4.

Author’s contribution: This paper is the result of cooperation with the
supervisor and two other students. The author contributed to the introduction,
related work, data extraction and analysis, evaluation, and conclusion. The
author was the leading writer of this paper.

• Experiment 2:

GDF7: Bian Wu; Alf Inge Wang; Anders Hartvoll Ruud; Wan Zhen Zhang:
"Extending Google Android's Application as an Educational Tool", the 3rd
IEEE International Conference on Digital Game and Intelligent Toy Enhanced
Learning (DIGITEL), April 12-16 2010, Kaohsiung, Taiwan. ISBN: 978-1-
4244-6433-3. DOI: 10.1109/DIGITEL.2010.38

Relevance to this thesis: This paper presents the second step in research of the
GDBL field. It is based on the previous design and feedback to integrating XNA
in the course. The Android operating system was used in the software
architecture course as a game development tool. This paper gives answers to
research question RQ4, and it adds to contribution C4.

Author’s contribution: This paper reports the results of adding a new GDF to
the software architecture course. The author supervised the 3rd author in the
design and implementation of Sheep, an extended software library based on
Android, to aid the game development. The author conducted the theoretical
design, literature review, data extraction, analysis, and further discussion. The
author was the leading writer of this paper.

GDF8: Bian Wu, Alf Inge Wang, “Comparison of Learning Software
Architecture by Developing Social Applications vs. Games on the Android
Platform”, International Journal of Computer Games Technology, Volume
2012, Article ID 494232, 10 pages, 2012. ISSN: 1687-7047 EISSN: 1687-7055.
DOI: 10.1155/2012/494232

Relevance to this thesis: This article presents the evaluation results of using
Android as a development tool in the project in a software architecture course.
The experiment aims to provide an answer to research question RQ4, it adds to
contribution C4 and, to some degree, C5.

Author’s contribution: The author performed the experiment with the
supervisor’s help, designed the questionnaire for the data collection, collected
the data, and used SPSS to analyze the data. The collected data included
students’ feedback, complexity of the project, the effort students put into the

Chapter 1. Introduction

 12

project, and project grades to determine the features of GDBL in the context of
using Android as GDF in the software architecture course.

1.6 Contributions

The contributions of this thesis are as follows:

The main contributions to topic 1: game as a motivation for lectures:

C1: Identification of research issues and cases in the contemporary technology-rich
environment within the context of game as a motivation for lectures.

C2: An analysis chart of applying supportive theory and enabling technology as a
dual guideline in the study of educational games for lectures.

The main contributions to topic 2: game development as a motivation for lectures:

C3: Identification of a set of research themes and elements in GDBL.
C4: Identification of factors contributing to the success or failure of GDBL.
C5: Framework of linked elements for the design of GDBL.

Table 1 maps the connections between research questions, papers, and contributions.

Table 1: Links between the research questions, contributions, and papers

Topic Research
questions

Contributions Papers Research
Design

Focus

Game as a
motivation
for lecture

RQ1 C1 G1, G2 Case study Supportive
theory;
Recent
computer
technology

RQ2 C2 G3, G4

Game
development
as a
motivation
for lecture

RQ3 C3, C4, C5 GDF1, GDF2 Literature
review

RQ4 C4, C5 GDF3,
GDF4, GDF5, GDF6
GDF7, GDF8

Quasi-
experiments

Chapter 1. Introduction

 13

1.7 Thesis Structure

The structure of the remainder of this PhD thesis is as follows:

Chapter 2: State of the Art

This chapter gives an overview of games and learning through taxonomy, defines the
research scope, and then gives a short introduction to four aspects relevant to this
research: 1) Understanding learning perspective of lecture games, 2) Game design
theory for lecture games, 3) Experimental software engineering, and 4) Technical issues
related to lecture games. The first three aspects relate to the supportive theory survey
and the last aspect relates to the current computer technology.

Chapter 3: Research Methods

This chapter presents the big picture of the research methods, including the ontological
and epistemological views. Then, it briefly describes theoretical aspects of specific
research methods and data analysis methods.

Chapter 4: Research Process

This chapter presents the complete research process based on the research methods in
Chapter 3. The process of the studies is discussed showing how the research methods
were applied in this research and how the research strategies were chosen for this study,
from high level down to details.

Chapter 5: Results

This chapter describes the main results for topic 1 based on the case studies, and the
results for topic 2 based on a literature review and quasi-experiments. In addition, it
presents the answers to research questions and the final contributions.

Chapter 6: Evaluation and Discussion of Results

This chapter presents the evaluation and discusses the research results with respect to
the research questions and claimed contributions. In addition, it discusses the validity of
the research methodology.

Chapter 7: Conclusion

This chapter sums up the main findings of this study, presents the limitations of the
work, and outlines possible future work as a continuation of this research in the
interdisciplinary field of games and learning.

Chapter 1. Introduction

 14

Appendix

Appendix A contains the twelve papers, which have been accepted or published in
conferences and journals. These papers contain the material on which this thesis is
based.

Chapter 2. State of the Art

2 State of the Art

This chapter presents the context for the study in this thesis. An overview of the
research background is given by introducing taxonomy from the perspective of games
and learning. The lecture games are an inter-disciplinary field with no existing
systematic theory for the design and evaluation of such games. Therefore, concepts are
borrowed from various theoretical fields, such as learning theory to guide the design of
lecture games, and experimental software engineering to guide the evaluation of lecture
games. To summarize, three main aspects related to supportive theory of lecture games
are discussed: pedagogical context, game design theory, and experimental software
engineering. Finally, a survey of recent computer technology is presented.

2.1 Lecture games scope and taxonomy

After defining the main research goal and the research questions, the first challenge was
to identify the research scope of the Lecture Games project and its relations to other
fields, i.e. serious games, GBL, and edutainment. These three fields are sometimes
overlapping. The term “serious game” came into wide use with the emergence of the
Serious Games Initiative in 2002 (seriousgames.org). The website of the Serious Games
Initiative provides the following description of serious games:

“The Serious Games Initiative is focused on uses for games in exploring management
and leadership challenges facing the public sector. Part of its overall charter is to help
forge productive links between the electronic game industry and projects involving the
use of games in education, training, health, and public policy.”

Zyda [30] gave a more formal definition, “Serious game: a mental contest, played with
a computer in accordance with specific rules, that uses entertainment to further
government or corporate training, education, health, public policy, and strategic
communication objectives.” Commonly, these definitions describe serious games as
attempting to achieve something more than entertainment, i.e. “games that do not have
entertainment, enjoyment or fun as their primary purpose” [31].

GBL is described as “a branch of serious games that deals with applications that have
defined learning outcomes” (en.wikipedia.org). Others consider GBL and serious games
to be more or less the same (e.g., Corti [32]). According to Corti, GBL has the potential
for improving training activities and initiatives by virtue of its engagement, motivation,
role-playing, and repeatability (failed strategies can be modified and tried again). Game-

Chapter 2. State of the Art

 16

based education or educational games are another expression of GBL. Digital game-
based learning (DGBL) is closely related to GBL, with the additional restriction that it
concerns digital games. Edutainment, education through entertainment, was a popular
field in the 1990s with the growing multi-media PC market [31]. Generally,
edutainment refers to any kind of education that also entertains, even though it is
usually associated with video games with educational aims. In general terms, serious
games are associated with “games for purposes other than entertainment” [33]. Serious
games and edutainment have the same aims, but serious game also involves all aspects
of education (e.g. teaching, training, and informing) and all ages.

The taxonomy of serious games, described below, will help to clarify further the serious
games characteristics. The book ”Understanding Video Game” [34] contains one
chapter on serious games. In this book, serious games are classified into commercial
educational video games, often known as edutainment; commercial entertainment with
basic educational purposes and research-based educational video games. These three
types have different focuses. First category teaches the player certain specific skills,
while the second category teaches the player freely without focusing on specific skills.
The third category focuses on the innovative learning style and documentation about
educational effectiveness.

Another serious game taxonomy was proposed by Ben Sawyer [35]. He refuted the
notion that “serious game equals to games for learning or training” and stated that all
games are serious in some aspects. He uses vertical and horizontal axes to determine the
game type. The vertical axis corresponds to the purpose of the game, for instance games
for health, games for training, games for education, and games as work. The horizontal
axis corresponds to the application field of the game, for instance, defense, healthcare,
education, corporate, industry, as shown in Table 2. In terms of placement on two axes,
the final taxonomy is as follows:

Table 2: Serious Game Taxonomy [35]
 Game for health Games for

advertising
Games for
training

Game for
Education

Games for
Science and
Research

Production Games as
Work

Govern
ment
&NGO

Public health
education &
mass casualty
response

Political
games

Employee
training

Informing
public

Data
collection/pla
nning

Strategic & policy
planning

Public
diplomacy
, opinion
research

Defense Rehabilitation
& wellness

Recruitment
&
propaganda

Soldier
/support
training

School or
house
education

Wargames
/planning

War planning &
weapons research

Command
& control

Healthc
are

Cybertherapy /
exercise gaming

Public
health
policy &
social
awareness
campaigns

Training
games for
health
professional
s

Games for
patient
education and
disease
management

Visualization
&
epidemiology

Bio-tech
manufacturing &
Design

Public
health
response
planning
&
logistics

Marketi
ng &
Commu
nication
s

Advertising
Treatment

Advertising,
marketing
with games,
product
placement

Product use Product
Information

Opinion
research

Use real-time 3D
computer graphics
rendering engines to
create cinematic
productions.

Opinion
Research

Educati
on

Information
about

Social issue
games

Training
teachers/

Learning Computer
science &

Point-to-Point(P2P)
learning,

Teaching,
distance

Chapter 2. State of the Art

 17

diseases/risks training
workforce

recruitment constructivism,
documentary

learning

Corpora
te

Employee
health
information &
wellness

Customer
education &
awareness

Employee
training

Continuing
education &
certification

Advertising/vi
sualization

Strategic planning Command
& control

Industry Occupational
safety

Sales &
recruitment

Employee
training

Workforce
education

Process
optimization
simulation

Nano/bio-tech
design

Command
& control

In addition, James [36] argues that educational researchers have much to learn about
learning from good computer and video games. Such good games and game
technologies can be used to enhance learning. One example is Age of Mythology6 used
in primary school education. Students read about mythology inside the game and get to
know mythology from outside of game or wrote stories connected with the game and
other mythological themes. Similar examples could be Neverwinter Nights 7 or
Civilization 8 . These games were not originally designed for serious purpose, but
resulting in educational features. The lecture games put education as the a priori design
criterion. Accordingly, they are different from pure entertainment games featuring
learning principles.

The above examples of taxonomies show different perspectives and rules to determine
the category of a “serious game”, with GBL and edutainment as their sub-categories.
This is a useful method to identify the research scope. In the light of early results of
investigating the project context, the aim was to create taxonomy of lecture games in
order to define this term and the research scope, as well as to describe game examples
and related technology for each game genre.

In the Lecture Games project, the games can be integrated in the lecture in three ways,
which were briefly introduced earlier in this thesis. Here is a more detailed description:

First, games can be used instead of traditional exercises motivating students to put more
effort into the exercises, and giving a teacher and/or teaching assistants an opportunity
to monitor how the students proceed with the exercises in real-time. A game such as the
“Age of Computers” (AoC) takes a historical approach to computer science by
combining collaborative possibilities, simulations, and quiz games framed in a massive
multiplayer online role-play game [37]. Charge Master is a Windows compatible
software package, which aids in visualizing equipotentials9 produced by systems of
point charges [38]. It accomplishes this via an educational game with an option to plot
equipotentials. The Schools Quiz [39] is an educational game based on the popular
“Buzz!” series. The game's 5,000 questions are based on the curriculum for UK pupils
between the ages of 7 and 11 years.

Second, games can be used within lectures in a classroom to improve the participation
and motivation of students. This includes a multiplayer quiz game called Lecture Quiz

6 http://www.microsoft.com/games/ageofmythology/norse_home.aspx
7 http://nwvault.ign.com/
8 http://www.civilization.com/
9 Equipotentials : composed of points all at the same potential of a surface or line

Chapter 2. State of the Art

 18

(LQ) [40], where multiple players can participate using their own mobile phones, and
the teacher moderates the game using his own PC and a video projector. Lucas Arts has
lesson plans on its website to help teachers use their games to teach critical thinking
[41]. Microsoft has sponsored a “Games-to-Teach” project at MIT which is building
games for learning difficult concepts in physics and environmental science on the
XBOX and Pocket PC [42]. The teachers can use these games to explain relevant
concepts in classroom. The first and second approaches are combined as topic 1 -
“Game as a motivation for lectures”, already mentioned in Section 1.3.

Third, the students are required to develop a game as a part of a course using a GDF to
learn skills in computer science, software engineering, or other relevant courses. This is
known as GDBL. Recently, there has been an increase in the number of game editor
environments and game engines, which allow users to customize their gaming
experiences by modifying and building games. “Learning through game modding
(modifying)” [43] describes the use of modifying existing games with game editors to
learn computer science, mathematics, physics, and aesthetic principles. It describes two
exploratory case studies of modifying games in classroom settings to illustrate skills
learned by students. It also describes how game design motivates students to acquire
and apply these skills and how different game engines can be used to let students focus
on the acquisition of particular skills and concepts in the classroom. In addition, the
ACM curriculum for computer science explicitly mentions using game development as
a way of motivating software engineering students.10 Simon Egenfeldt-Nielsen refers to
GDBL as learning by making games. 11 ITALICS e-journal published an issue on
learning by making games.12 In addition, computer game development as a literacy
activity [2] considers computer game development as a pedagogical activity, which can
motivate students to improve literacy. The students were asked to develop computer
games using a game development shell to acquire literacy without programming. This
case shows that GDBL can be used outside of both computer science field and higher
education. Similar methods also appeared in [44-49]. All of these types of game related
methods have one feature in common - they depend on a mediator to teach a subject.
This mediator could be any GDF such as XNA [50], Java Instructional Game Engine
[51], Scratch [52], Warcraft map editor, or Alice [53]. This third approach is covered by
topic 2 - “Game development as a motivation for lectures”, which was mentioned in
Section 1.3.

Based on the discussion above, the Lecture Games in this thesis are defined as “use of
games and game development as a motivation for lectures and students’ exercises.”
Lecture games can be categorized according to three main approaches. Table 3 shows
how the two topics explored in this thesis map to the lecture games taxonomy.

10 http://www.acm.org//education/curricula/ComputerScience2008.pdf (Section 6.3)
11 http://egenfeldt.eu/blog/2012/01/13/the-best-schools-if-you-are-looking-to-use-games/
12 http://www.ics.heacademy.ac.uk/italics/vol5iss3.htm

Chapter 2. State of the Art

 19

Table 3: Taxonomy of Lecture Games
Topic Approach
Topic 1: Game as a motivation for lectures Exercise games

Classroom games
Topic 2: Game development as a
motivation for lectures

GDBL

The above taxonomy provides a complete overview of the research scope for this thesis,
further illustrated by Figure 2 showing the relations among the Lecture Games project,
GBL, edutainment, and serious games.

Figure 2: Relations among lecture games, serious games, GBL, and edutainment

In addition, we defined a new research area, GDBL as an extension of the GBL field
with lecture games being a subset of GBL. The next step was to identify relevant
supportive theories and enabling technology for each topic.

2.2 Understanding Learning Perspective towards Lecture
Games

In order to understand the potential role of games in support of learning, the term
“learning” must be defined. There are multiple definitions of learning, with significant
areas of disagreement as to both what it means to learn and what forms of learning are
valuable.

The literature review of educational video game design [54] presented three aspects of
the learning theory in relation to games:

1) Constructivism: Some researchers found that learning with well-designed video
games adheres to constructivist principles [36, 55-58]. E.g. Corbit [59] presented a
multi-user virtual world, SciCtr, and pointed out the merits of the constructivist
approach used to analyze virtual environments. According to Corbit, the paths to
navigate, and content embedded in these virtual worlds, are constructed by the
developer/learner through meticulous research and thoughtful design.

Chapter 2. State of the Art

 20

2) Constructionism: Designing and developing computer games, rather than playing
them, constitutes a constructionist approach to learning with games [60, 61]. El-Nasr
and Smith [43] viewed game modding (one type of GDBL), i.e. developing new
components inside of a game using toolkits within this game itself or other related game
tools as a constructionist process of learning. It involves two activities: “the
construction of knowledge through experience and the creation of personally relevant
products. The theory proposes that whatever the product, e.g. a birdhouse, computer
program, or robot, the design and implementation of products are meaningful to those
creating them and that learning becomes active and self-directed through the
construction of artifacts”. Steiner [62] concluded that, “children as design partners
improve the technologies they consume as well as gain educational benefits from the
experience”.

3) Situated Cognition: Learning theory for the analysis of educational video games,
especially for simulation games, are combined with situate learning to provide an
authentic context and involved players by allowing them to practice (play) again and
again [63]. Lunce [64] argued that situated or contextual learning provides the rationale
for simulation games because of their ability to provide a simulated context in which to
situate learning. E.g. SimCity has ability to situated learning that players can run their
own city as practice. Basically, the situated learning has better outcome in knowledge
understanding than traditional learning [55, 57, 58, 65].

Ray Schroeder [66] presented four levels for learning theories:

1) Collected opinions about learning from different fields: Behaviorists (Thorndike,
Pavlov, Skinner) focus only on the objectively observable aspects of learning.
Cognitivists (Craik, Tulving, Ausubel) look beyond behavior to explain brain-based
learning by including motivation, thinking, memory, and reflection. Constructivists
(Piaget, Vygotsky, Bruner) view learning as a process in which the learner actively
constructs or builds new ideas or concepts.

2) Mental Representations: Paivio’s Dual Coding Theory [67, 68], a theory of cognition,
proposed that there are two ways a person could expand on learned material: verbal
associations and visual imagery. Words and pictures together enhance cognitive coding
more than one of them in isolation.

3) Cognitive theory of multimedia learning [69, 70]: Mayer [69] extends Paivio’s theory
suggesting that pictures can be “animation” and text can be “narration”, with an
emphasis on computer-based multimedia presentations. In addition, prior knowledge
influences integration of pictures and text into “working memory” [71].

4) Connectivism [72, 73] is a recent theory of networked learning [74], which focuses
on learning as making connections. Viewing personal knowledge as a “network” is a
mark of “a learning theory for the digital age”. One aspect of connectivism is the use of
a network with nodes and connections as a central metaphor for learning. Consequently,
connectivism sees learning as a process of creating connections and developing a
network. Finally, Ray Schroeder proposed “just do it right” as a learning theory. This

Chapter 2. State of the Art

 21

includes motivating learners, promoting meaningful learning, encouraging interaction
and collaboration, giving timely constructive feedback, and looking at the whole person
with the learner and learning process at the center.

There is a continuing discussion and debate about some of the learning theories. Table 4
below is adapted from [4] and it defines key “battle lines” in this debate. This table also
shows an overview of learning theories.

Table 4: Theoretical Context for Learning [4]

Aspect Behaviorist Cognitivist Humanist
Social and
situational

View of the
learning
process

Changes
behavior

Process entirely
in the mind of
the learner
(including
insight,
information,
processing,
memory, and
perception)

A
development
of personal
potential

Interaction/observat
ion in a group
context, akin to an
apprenticeship

Site of
learning

External
resources
and tasks are
what matters

Making
connections in
the learner’s
mind is what
really matters

Emotion,
attitude, and
thinking are
important

Learning needs a
relationship
between people and
environment

Purpose in
education

Produce
behavioral
change in a
desired
direction

Develop capacity
and skills to
learn better

Become self-
reliant,
autonomous

Full participation in
communities of
practice, i.e. the
learner graduates
from apprentice to
craftsman

As can be seen from the above schematic presentation, these aspects of learning involve
contrasting ideas regarding the purpose and process of learning as well as the roles of
educators. Considering different views on learning, it can be stated that it is a process,
which leads to change in behavior, change in ways of thinking, achievement of personal
potential, or development of capacity to operate within particular communities. These
processes are not mutually exclusive. The understanding of learning from different
perspectives helps to get an overview of the meaning of learning as an experience which
could happen anywhere at anytime to anybody.

However, when learning is considered as a research area, from a general level down to
specifics, the questions to answer are who is learning what, where, and why. This is a
pragmatic approach, proposed by Prensky [1] and John Kirriemuir [4], from the
perspective of games and learning. They argue that “the model we apply to learning
should depend on what is that we are trying to ensure people learning at any given
time.” These issues should be considered in reference to the Lecture Games project. For

Chapter 2. State of the Art

 22

instance, “who” is the new generation students, mentioned in Section 1.2; “what”
depends on the course content; “where” points possibly to classrooms in schools where
the lectures are delivered; “why” relates to a motivation to learn through games or game
development.

Only those learning strategies are discussed here, which are relevant and were applied in
this study to guide the game design process. In the study of topic 1, the ubiquitous
technology and mobile devices provide the possibilities for the collaboration in both
virtual world and real world. A multiplayer quiz-based game concept was chosen to
match the collaborative learning features from a pedagogical point of view, and the
specific games were designed based on the game design theory by Malone [29, 75].
Further, this game concept was extended into four games as a part of this PhD research,
one running on stationary devices and the other three running on mobile devices, i.e.
iPhone or Android smart phone. It provides various playing experiences in both real
world and virtual worlds in order to show the impact of technology on the lecture games
design. Finally, the evaluation framework based on game design theory and
experimental software engineering was used to assess the game design and to direct
improvements. In the study of topic 2, the design of GDBL was guided by the
pedagogical concepts, e.g. double stimulus [76] and Project-based learning [77],
combined with game design theory by Malone [29, 75]. This approach was applied in
two quasi-experiments where XNA and Android SDK were used as GDFs in a software
architecture course. The course assignment was a game development project designed to
suit certain GDFs and course contents’ requirements, and students had to work together
to finish the project. Finally, the methods were borrowed from experimental software
engineering to design the experiment and to evaluate data in order to discover the
differences between GDBL and non-GDBL. The following sections discuss in detail the
theories used in this study.

There may be other theories or strategies, which could have been applied in the Lecture
Games project. The chosen supportive theories and technologies appeared to be most
relevant to demonstrating how to “use supportive theory and current computer
technology as dual basis to facilitate lecture games in the current technology-rich
environment.”

2.2.1 New approaches to collaboration for learning

Today’s students living in a technology-rich environment have changing preferences for
education and work environments, which may negatively affect their focus on the
traditional university course programs, e.g. enrolment and retention rates in these
programs. One phenomenon is that students get used to collaboration with each other
through social applications. To be more suitable and to improve such lecture’s
educational situation, teaching methods and tools outside of the traditional lecture
sessions and textbooks must be explored or implemented if needed. Currently, research
on educational games and on collaborative classrooms benefit each other by focusing on
this issue. The Lecture Games project deals with both educational games and students’
collaboration issues during playing games. “Literature review in games and learning”
[4] demonstrates that a collaborative educational game has an advantage by increasing

Chapter 2. State of the Art

 23

learning gains and student engagement above that of individual learning game
experiences. In addition, collaborative work in collaborative educational games may
pose to course instructors, by helping to manage and evaluate student performance [78].

Further, in this underexplored area, the term “collaborative games for learning” is used
to denote collaborative games combined with collaborative learning. Recently, studies
on game design to support effective and engaging collaboration between students have
been investigated by some computer-supported collaborative learning (CSCL)
researchers in environments such as Second Life [79] and World of Warcraft [80, 81].
These studies reveal that the multiplayer games allow players to use in-game objects to
create new activities collaboratively, and enhance social interaction in the games. These
examples show how to create multi-player games, which effectively support
collaboration between players.

Collaboration does not necessarily mean competition between teams [82]. In the real
world, a goal which requires a collaborative process, like solving a problem, may create
a conflict in the form of the interaction within the team cooperation [83], but it is not a
contest amongst adversaries. The team has to cooperate to reach a common goal.
Besides, the recent appearance of proper means of communication and interaction could
easily support collaboration in computer games, but there are very few actual truly
collaborative learning games on the market. Therefore, in the investigation of topic 1,
this study uses collaborative learning as a tool to explore how students work closely
together in a multiplayer quiz-based game.

2.2.2 Double stimulus as an element of activity theory

Another specific theory, which benefits the Lecture Games project, is double
stimulation [76]. In schools, learners face a challenge, a problem, or a task, which was
designed for a particular pedagogical purpose, or they face situations, which are likely
to appear in work and public life. In these cases, exploiting tools can help learners to
respond to such challenge/problems. Using these tools, learners can understand/solve
the problems and better grasp the relevant knowledge. The construct of the relationship
between the educational tasks and the material artifact is at the heart of Vygotsky’s
notion of double stimulation [76], a method for studying cognitive processes and not
just their effects. In a school setting, typically the first stimulus would be the problem,
challenge, task, or assignment to which learners are expected to respond. The second
stimulus would be the available mediating tools. However, it is important to note that
Vygotsky described this relationship in dynamic terms, where the second stimulus is not
a discrete end point for the process but, “Rather, we simultaneously offer a second
series of stimuli that have a special function. In this way we are able to study the
process of accomplishing a task by the aid of specific auxiliary means.” [76]. Note that
Vygotsky identifies the second stimulus in the plural as a series. This is considered to be
most important when providing the second stimulus in the form of digital tools [84].

The original “double stimulation” [76] experiment was conducted by Leontiev under
Vygotsky’s supervision. Three age groups were presented with lists of words with the
instruction to memorize the words. Each group was divided into two subgroups

Chapter 2. State of the Art

 24

corresponding to two experimental conditions. In one case, the words were the only
stimuli presented. In the other case, the subjects were given a secondary set of stimuli, a
stack of picture cards, which they could use as mnemonic tools. The results showed that
among preschool children, the performance was rather poor and approximately at the
same level in both cases. In middle-school children, the usage of cards resulted in a
marked increase in performance level compared to the no-cards case. University
students showed a high level of performance under both conditions and the difference
between the cases was small. It was found that performance in each of two cases
improved with age and that using cards as tools generally improved performance
further. However, the difference between recalling words with or without cards has
manifested differently in the three age groups (pages 44 in [85]).

In the research of topic 2, double stimulation was used to guide the design of GDBL in
a higher education course. Specifically in this course, the first stimulus was a game
development task the students had to undertake. The second stimulus was the available
mediating tool, e.g. GDFs in GDBL. In the software architecture course, the second
stimulus was the development kit, XNA or Android SDK. Although the Leontiev’s
1978 double stimulation experiment shows small differences for university students,
after decades, it can be argued that today’s new generation of students and technology
could affect the results more than before. For instance, if a GDF with no programming
requirements is provided a child is motivated to learn literacy [2], which is different
from Leontiev’s experiment results. This is an evidence of changes in the new
generation of students and development of technology. For this reason, different
outcomes for university students can be expected in the current technology-rich
environment. The evaluation data of GDBL and non-GDBL were compared to find the
differences between them. The important aspect of this comparison was to discover the
extent of the differences, and to determine whether GDBL showed a positive effect even
for small differences. It was also investigated whether the differences were affected by
the kind of tools chosen for a specific course. Using the results of this evaluation can
assist in finding optimal GDFs to maximize the desired differences. Even if the
difference is small, such an approach can improve the learning quality.

2.2.3 Project-based learning

Project-based learning is an approach to classroom activity emphasizing learning
strategies, which are long-term, interdisciplinary, and student-centered. If a class
applied the project-based learning, students usually organize their own project work and
manage their own time. This makes classroom activities less structured than traditional,
teacher-led classroom education.

Definitions of Project-based learning include features relating to the use of an authentic
(“driving“) question, a community of inquiry, and the use of cognitive (technology-
based) tools [86, 87]. Expeditionary Learning adds features of comprehensive school
improvement, community service, and multidisciplinary themes [88].

To be considered an instance of Project-based learning, a project should have the
following characteristics [77]:

Chapter 2. State of the Art

 25

• Be central, not peripheral to the curriculum.
• Be focused on questions or problems that “drive” students to encounter

(and struggle with) central concepts and principles of a discipline.
• Involve students in a constructive investigation.
• Be student-driven to some significant degree.
• Be realistic, not like schoolwork.

Project-based collaborative learning [89] is a further step to integrate the team element
into the project work, and it emphasizes the factor of collaboration in a team during a
learning process. The classroom settings combine the methods used to organize a
collaborative learning group and a process of producing technology-related projects
with instructional methodology. It also provides an analysis of the artifacts produced by
the pre-service teachers as well as the feedback from the students and the in-service
teachers involved in the project. Within the Project-based learning approach, students
collaborate to make sense of their environment and achieve a realistic goal.

In the study of topic 2, the double stimulus and Project-based learning methods were
combined in the GDBL design. The first stimulus is not a single problem, but a series of
problems organized as a Project-based learning project, which needs four to five
students to work together to complete. In view of this, Project-based learning is also an
outcome of Problem-based learning [90], used in the design of GDBL [48, 89], but not,
to a large degree, in this study.

Theories and strategies, mentioned in Section 2.2, were the foundation for the design of
the Lecture Games project, but, in general, there are more than just three strategies to
support the design of lecture games. Here, they are used as examples to show how to
design a lecture game activity from a learning perspective. Further, the “New
approaches to collaboration for learning” presented in Section 2.2.1 are mainly a guide
to the study of topic 1. The double stimulus and Project-based learning presented in
Section 2.2.2 and 2.2.3 are used as the theoretical context for the study of topic 2.

2.3 Game Design Theory for Lecture Games

In addition to the above theories for guiding the design of this study from the
pedagogical perspective, inclusion of another field can be beneficial, namely game
design theory. Since there are no systematic criteria to guide the GBL, this section
discusses the following theories and methods that can direct the design of this research:
GameFlow model, intrinsic motivation theory, and other related theories.

2.3.1 GameFlow model

The GameFlow model [91] of enjoyment in games was constructed based on the
literature on the elements of flow and the evidence of flow experiences in games. Flow
is an experience “so gratifying that people are willing to do it for its own sake, with
little concern for what they will get out of it, even when it is difficult or dangerous” [92].
Csikszentmihalyi [92] conducted extensive research into what makes experiences

Chapter 2. State of the Art

 26

enjoyable, based on long interviews, questionnaires, and other data collected over
twelve years from several thousand respondents, and he formulated seven elements in
the flow theory. The GameFlow model consists of eight core elements: concentration,
challenge, skills, control, clear goals, feedback, immersion, and social interaction. Each
element includes a varying number of criteria, which relate to Cziksentmilalyi’s
elements of flow theory, as shown in Table 5, except for the social interaction added as
a result of the game literature review.

Table 5: Mapping the elements in games literature to the elements of flow[91]
Game literature Flow

The Game A task to be completed
Concentration Ability to concentrate on the task

Challenge Player skills Perceived skills should match challenges and both must
exceed a certain threshold

Control Allowed to exercise a sense of control over actions
Clear goals The task has clear goals
Feedback The task provides immediate feedback
Immersion Deep but effortless involvement, reduced concern for self

and sense of time
Social Interaction N/A

Sweetser [91] provided further explanation for each element of the GameFlow model.
1) Concentration - Games should require concentration and the player should be able to
concentrate on the game. 2) Challenge - Games should be sufficiently challenging and
match the player’s skill level. 3) Player Skills - Games must support players’ skill
development and mastery. 4) Control - Players should feel a sense of control over their
actions in the game. 5) Clear Goals - Games should provide the player with clear goals
at appropriate times. 6) Feedback - Players must receive appropriate feedback at
appropriate times. 7) Immersion - Players should experience deep but effortless
involvement in the game. 8) Social Interaction - Games should support and create
opportunities for social interaction. As described, the purpose of the GameFlow criteria
is to build an understanding of enjoyment in games. In their current form, the criteria
are not meant to be used as an evaluation tool for game developers. However, the expert
evaluations [91] showed that the criteria are a useful tool for reviewing games and
identifying issues, as well as the effect of these issues on player enjoyment. In addition,
the criteria were used to develop a solid understanding of what constitutes good design
and player enjoyment in real-time strategy games.

The GameFlow model was used as the main validating framework in the research of
topic 1. It has several criteria to assess and review different aspects of the games.
Typically, it can also serve as the design criteria to be used in advance for the game
design. Further, an extended EGameFlow Scale [93] based on GameFlow model has
one more element - Knowledge. The attributes of this new element reflect whether the
game increases knowledge, whether the player can acquire the fundamentals of the
knowledge taught, and whether the player wants to expand this knowledge. This is an
extra criterion for the design and evaluation of an educational game. EGameFlow scale
was used as an evaluation framework in one of case studies for topic 1.

Chapter 2. State of the Art

 27

2.3.2 Motivational theory and intrinsic motivation theory for games

The existing literature reviews reveals that there exist two opinions on the source of
video games motivation. One side is the compelling nature of games to their narrative
context [55, 57, 94, 95], while another side emphasis that motivation is implanted into
game play’s goals and rewards as intrinsic [96-98]. However, both sides agree that
motivation to play is one of the important attributes of serious games and that it already
brings effects on the educational game design. The motivation aspect is of particular
interest to educational researchers because of the crucial role it plays in student learning.
Motivational models are central to game design, because without motivation a player
will not be interested in progressing further within a game [99]. Several models for
game play motivation have been proposed, including one by Richard Bartle [100]. In
addition, Jon Radoff proposed a four-quadrant model of game play motivation that
includes cooperation, competition, immersion, and achievement [101]. Generally, the
category of motivation is conceptualized as either intrinsic or extrinsic [102] usually
expressed as intrinsic motivation and extrinsic motivation [103]. Following is a short
description: Intrinsic motivation is an internal feeling, like bringing pleasure,
importance or other things that motivate people to do something. Extrinsic motivation
happens when people is compelled to do something due to external factors, e.g. good
grades or prizes.

This project in an attempt to explore the intrinsic motivation related to the educational
games field. According to the literature survey, one of the most valuable and classic
theories for GBL stems from Malone’s work. Malone and Lepper defined a taxonomy
for learning using intrinsic motivation as a factor for encouraging learners’ engagement
[29]. Intrinsic motivation is defined more simply in terms of what people will do
without an external inducement [29]. It is an activity for its own sake rather than to
receive external rewards or avoid punishment. Such activities are engaging simply by
being interesting, captivating, and/or enjoyable. Intrinsically motivating activities are
those in which people will engage for no reward other than the interest and enjoyment,
which accompanies them. Malone and Lepper integrated a large amount of research on
motivational theory by means of a synthesis of approaches to design intrinsically
motivating environments. They characterized them by seven factors: challenge,
curiosity, control, fantasy, competition, cooperation, and recognition.

Further, as an extension of Malone’s proposal, Nicoletta and Kelly [106] defined a set
of game design criteria which are likely to promote user’s interest, enjoyment, and
learning. The elements, adapted in this study, are summarized in Table 6 in a pragmatic
way. The features are derived from the elements of intrinsic motivation identified by
Malone and Lepper [75, 107] .

Chapter 2. State of the Art

 28

Table 6: Game elements for design adapted from Malone and Lepper
ID Game elements which may promote engagement,

motivation, and fun
Reference

1 A shared, imaginary story context which establishes and
supports the activities

[108, 109]

2 An overarching goal [75, 108, 110]
3 A gentle on challenge [75, 108, 110]
4 Multiple levels with variable difficulty [75, 111]
5 Uncertain outcomes [75, 108, 110]
6 Various ways to win [109]
7 A well defined advancement system [75, 108, 109]
8 Rewards associated with advancement [75, 108, 109,

112]
9 Opportunities to build new content [108, 109, 113]
10 Ability to progress at the user’s own rate [109, 110]
11 Hints not answers [110]

In this project, we mainly refer to the list in Table 6. The intrinsic motivation is used
mostly in the research of topic 1 to guide the design of quiz game interface and content,
as described in Section 5.2. Moreover, it is used as a reference in the selection of GDFs
for the research of topic 2, described in detail in Section 5.3.

2.3.3 Other criteria: More than game features

In addition to the game design theories described above, there are other methods
supporting educational game design. One example is by Nicoletta and Kelly, who used
color psychology to guide the design of an educational game’s interface [106] - “The
choice of the color and lighting schemes was based on research studies on the impact of
color and light on learning, and on the association between colors and children’s
emotions. One study shows that de-saturated colors have a negative impact on
stimulation while highly saturated colors increase alpha waves in the brain which are
directly linked to awareness.” In another research field related to games, 3D virtual
environment for learning, the ‘exploratory learning model’ (ELM) extends Kolb’s
experiential learning model by adopting the use of 3D applications. Examples of
research and development projects are provided to demonstrate how the model works in
practice [114].

The study of topic 1 included the design of an educational MMORPG game. This
design was supported by the theories of the EGameFlow model and Intrinsic
Motivation, as well as a literature survey on current popular elements in MMORPGs.
These elements were then considered for an educational MMORPG game. In the study
of topic 2, “Gamification” concept described in the Section 1.2 gave inspiration for
using one of game elements, Game Development, in the education. Further, a software
engineering course was adapted and implemented as an experiment using the GDBL
method. There might be duplicating or conflicting aspects in these theories when they

Chapter 2. State of the Art

 29

are combined in a single application. If this is the case, it is necessary to make trade-offs
between these theories during the design process.

2.4 Experimental Software Engineering

Experimental software engineering was useful for evaluating results in this study, and
thus it became a part of the framework for evaluating GDBL as well as contributing to
other evaluation processes for GBL. According to Claes Wohlin’s “Experimentation in
software engineering: an introduction” [115], experiments are appropriate to investigate
different aspects, including:

• Confirming theory, i.e. to test existing theories.
• Confirming conventional wisdom, i.e. to test people’s conception.
• Exploring relationships, i.e. to test that a certain relationship holds.
• Evaluating the accuracy of models, i.e. to test that the accuracy of certain models

is as expected.
• Validating measures, i.e. to ensure that a measurement actually measures what it

is supposed to.

Experimental software engineering is a valuable method for all software engineers who
are involved in evaluating and choosing between different methods, techniques,
languages, and tools. In the Lecture Games project, experimental software engineering
methods were helpful in validating the emerging theory and conclusions through
experiments. Such methods are mainly used in the research of topic 2 and, to some
extent, in the study of topic 1. In addition, Claes Wohlin defines five steps for carrying
out an experiment to be [115]:

• Experiment definition: This step helps to identify the object of study, purpose,
quality focus, perspective view, and context.

• Experiment plan: This step is the foundation for the experiment. It includes the
environment of the experiment, as well as inputs and output of the experiment.
The subjects and instrumentation are carefully defined in the plan.

• Experiment operation: Preparation, execution, and data validation are the basic
three steps in this period. The preparation step is concerned with preparing the
subjects and material needed. The main concern in execution is to ensure that the
experiment is conducted according to the plan and the design of the experiment.
Finally, it has to be ensured that the data actually collected is accurate and
provides a valid picture of the experiment.

• Analysis and interpretation: After data collection, descriptive statistics are used
to gain insight into their meaning. A hypothesis test can also be applied here.
The focus of interpretation should based on the analysis and testing of results.

• Presentation and package: To describe primarily results, a research paper or a
technical report is usually needed.

In the Lecture Games project, the evaluation of the topic 2 for this study was conducted
through experiments. Since the major part of the development of a game is software

Chapter 2. State of the Art

 30

engineering, a lecture game itself is the result of software development. The concepts of
experimental software engineering can be borrowed to provide guidelines and
references for the evaluation of the Lecture Games project.

In addition, during the experimentation in software engineering, different empirical
strategies can be applied in a software engineering context, i.e. Quality Improvement
Paradigm (QIP) and Goal/Question/Metric paradigm (GQM). In this project, the GQM
was chosen for the experiment design. The GQM approach [116] specifies a
measurement model targeting a particular set of issues and a set of rules for the
interpretation of the measured data. It defines a practical goal on a conceptual level, a
set of research questions on an operational level, and a set of metrics to answer the
defined research questions on a quantitative level. Additionally, the System Usability
Scale (SUS) [117] was used in the experiment to measure the game usability, since
usability and enjoyment of a game are two closely related concepts. SUS is a usability
questionnaire consisting of ten generic Likert scale items. Responses to the
questionnaire result in a score, called the SUS score, a single number between 0 and 100
indicating the overall usability of the system being studied. SUS has ten questions,
listed in Table 7. Each question has a scale from 1 to 5. For items 1, 3, 5, 7, and 9, the
total score is calculated by adding the points. For items 2, 4, 6, 8, and 10, the total score
is calculated by subtracting the points from 5, and adding the difference. This implies
that each question can contribute from zero to four points to SUS. Finally, the sum of
the scores is multiplied by 2.5 and divided by the number of replies to obtain the SUS
score. These questions can be used to test the games or tools and to get a final score to
measure their usability. The higher score denotes the higher usability.

Table 7: The questionnaire in SUS
ID Questions
1 I think that I would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.

4 I think that I would need the support of a technical person to
be able to use this system.

5 I found the various functions in this system were well
integrated.

6 I thought there was too much inconsistency in this system.

7 I would imagine that most people would learn to use this
system very quickly.

8 I found the system very cumbersome to use.
9 I felt very confident using the system.

10 I needed to learn many things before I could get going with
this system.

2.5 Enabling Technology

The contemporary computer technology improves many aspects of human life and
communication, but it also affects the society in a negative way, and its impact on
learning depends on how it is used.

Chapter 2. State of the Art

 31

2.5.1 Prerequisites – the lecture environment

In this research, the lecture hall is the main environment for using lecture games. Today,
most universities provide a complete Wi-Fi coverage over the whole campus including
the lecture halls, and most of the larger rooms have video projectors. This fulfills the
basic requirement for using ubiquitous technology in the lecture games.

In addition, the use of smart phones and mp3-players has become a part of everyday
life. In the early stage of the project, GSM networks with limited bandwidth and mobile
phones with small screens were used as peripherals for the lecture games. Recently, iOS
and Google Android platforms opened the possibility of utilizing mobile games on the
mobile devices for lectures using Wi-Fi, 3G, or 4G. These attractive peripherals can
fascinate new generation students and open new ways to learning.

2.5.2 Mobile technology - games as a motivation for lectures

Computer game technology has been developed for decades. Now, games can be played
on various devices, such as personal computer, mobile devices, and game consoles.
Mobile devices are most convenient for educational game play during the lectures. This
section contains a brief introduction to relevant hardware and software for games
utilizing mobile technology.

Since the computer was invented in mid-20th century (1940 - 1945) 13, it has become
the dominating device for electronic game playing. In 1979, the first handheld game
console, Microvision14, was released, and it opened the door to mobile gaming. Through
a successful launch of Game Boy by Nintendo in 1989, the mobile games became as
popular as non-mobile games. In the 21st century, there are several choices of platform
for the same game with a Windows version, a PSP version, a Nintendo DS version, and
an iPhone version available. The following paragraphs discuss hardware related to
lecture games and the corresponding software behind the game play.

The hardware supporting game play can be classified as stationary devices and mobile
devices. Most of the common stationary devices are desktop computers and game
consoles, such as Microsoft XBOX series, Sony Playstation series, and Nintendo series.
Game companies, like Ubisoft, usually release games for multiple platforms. Mobile
devices include laptops, smart phones, tablets (e.g. iPod), mp3-players (e.g. iPod touch),
and mobile game consoles, such as Sony Portable Playstation (PSP), and Nintendo DS.
The game play can be experienced either with full functionality on stationary devices or
usually in a more limited version on portable mobile devices.

In the Lecture Games project, especially in the research of topic 1: “Games as a
motivation for lectures”, the focus was mainly on the features of software on mobile
devices, the most relevant technology for lecture games. Students usually bring their
laptops and smart phones to lectures. The most fundamental level of software, the

13 http://www.thepcmuseum.net/timeline.php
14 http://www.engadget.com/2006/03/03/a-brief-history-of-handheld-video-games/

Chapter 2. State of the Art

 32

Operating System (OS), is the first element to be taken into consideration. According to
the survey of popular Ross in the recent mobile device market, Mac OS and Windows
are typically used for laptops, while iOS, Android OS, Symbian OS, and Windows
Mobile OS are used in most smart phones, tablets, and mp3-players. In addition, the
smart phones are used every day as the major tool and they became the most convenient
and versatile device for students to bring to school. Based on analysis of devices used
by students, the most common OS at NTNU in early 2008, when this study started, was
Symbian OS. Today, most students use devices running iOS and Android OS.

In this study, we chose these two common OSs, iOS and Android OS, to develop games
to be used as an aid for lectures. In most smart phones, the most relevant features for the
type of games to be developed are GPS, camera, Wi-Fi, Near Field Communication15,
gyroscope, accelerometer, and digital compass.

Apart from the above features offered by recent mobile devices, the ideas in lecture
games were inspired by widgets and apps already available on these devices. An on-
going survey of ions and Android OS platforms was conducted to find applications with
a potential to enrich game play experiences in the study of topic 1. Table 8 lists some
collected examples.

Table 8: Examples of apps used to provide game play
Name Description Interface
Google
Goggles16

A free image recognition application
created by Google. Google Goggles
enables the user to use photos taken
with the mobile phone to search the
web. This can be text, landmarks,
books, contact info, artwork, wine,
and logos 17 . Google Goggles
currently does not work well with
pictures of animals, plants, cars,
furniture, or apparel.

Layar18 A mobile platform for discovering
information about the world around
us by using Augmented Reality
technology. Layar displays digital
information by using the camera of
mobile phones. Layar supports a
high level of interactivity, which
includes audio and visual elements,
3D models, and social sharing
capabilities.

15 http://www.nearfieldcommunication.org/
16 http://www.google.com/support/mobile/bin/answer.py?hl=en&answer=166331
17 http://www.google.com/mobile/goggles/#text
18 http://www.layar.com

Chapter 2. State of the Art

 33

Shazam19 An application for recognizing songs
being played, for instance on the
radio. The application receives music
snippets through the microphone on
the phone, and creates a fingerprint
of the snippet based on a
spectrogram, which it matches
against fingerprints stored in a
central database of music.

ShopSavvy20 An application for reading barcodes

of products using the camera of the
mobile phone. After reading the
barcode, the application will identify
the product and provide a list of
online and local suppliers and prices.

Most of the applications in Table 8 combine more than two features of smart phones,
e.g. GPS, camera, Wife, gyroscope, and the digital compass. All of these features open
exciting possibilities for the Lecture Games project.

2.5.3 Game development frameworks - game development as a
motivation for lectures

This section introduces the relevant software used in the study of topic 2: “Game
development as a motivation for lectures”.

As mentioned before, GDFs are the game development tools used for GDBL. They are
the major tools supporting the study of topic 2. GDFs encompass the toolkits used to
develop or modify games, such as game engines, game editors, game (simulation)
platforms, or even any Integrated Development Environment (IDE), for example Visual
C++, Eclipse, J2ME, or Android SDK, since any of them can be used to build games.
GDFs are used in student exercises to learn skills, extending GDFs as a teaching aid.
The motivation for teaching through game development is to utilize the students’
enthusiasm for games and creativity for learning. The GDBL method did not appear
recently. The earliest similar application of learning by programming in a game-like
environment took place in the early 1970s. The Logo [118], the turtle graphics, is one of
the oldest libraries which was used to introduce computing concepts to beginners. The

19 http://everythingelsematterstoo.blogspot.com/2010/11/ how-shazam-works.html.
20 https://market.android.com/details?id=com.biggu. shopsavvy

Chapter 2. State of the Art

 34

concept was based on a “turtle” moved across a 2D screen with a pen, which could be
positioned on or off the screen, and thus, leave a trace of the turtle’s movements.
Programming the turtle to draw different patterns could be used to introduce general
programming concepts, such as procedural operations, iteration, and recursion. Further,
in 1987, Micco reported the experience of writing a tic-tac-toe game for learning [119].

The GDFs in the survey conducted for this study were classified as (a) Game engines:
This category covers the commercial game engines as well as mature and well-known
toolkits used to create games. (b) Self-made GDF: This category includes the game
development frameworks created by researchers for usage in a specific course. (c)
Games or game editors: This category contains editors or platforms, which can be used
to modify games. (d) Simulation platforms: This category includes controllers to create
a game-like system on a robotic or other simulation platform. (e) Hardware platforms:
This category includes both game hardware and related software on this hardware to
build games (laptops and computers are excluded), such as Wii remotes, Windows
surface with XNA, and robotic hand. (f) Others are general IDEs, such as Visual C++,
J2ME, or unspecified software creation toolkits, not specifically designed for game
development.

From the perspective of application in learning, GDFs can be classified into GDFs for
novices and GDFs for developers. The main focus of GDFs for novices, including non-
programmers, is to provide visual methods for customizing game templates and to allow
creation or design of games with little or no programming skills. The main focus of
GDFs for developers is to offer toolkits which support development of high quality
2D/3D rendering, special effects, physics, animations, sound playback, and network
communication in common programming languages, such as C++, C#, and Java. A list
of some examples found by the literature survey is given in Tables 9 and 10 to show
GDFs for novices and GDFs for developers in the context of GDBL. In the study of
topic 2, XNA and Android SDK were chosen as GDFs in the software architecture
course.

Table 9: GDFs for novices
GDFs Features Description
Alice
(http://alice.org)

Alice provides a point-and-click programming interface
allowing creation of simple 3D games and animations. It is a
tool for teaching object-oriented programming.

CeeBot Series
(http://www.ceeb
ot.com/ceebot/fa
mily-e.php)

The programming language in CeeBot is very similar to
Java, C++, and C#. It was developed especially to make
learning programming easier. “CeeBots4 School” is a
programming course for middle and high school.

Scratch
(http://scratch.mit
.edu)

Scratch provides a point-and-click programming interface to
create media-rich games, animations, and applications for
the web. Scratch is suitable for teaching children basic
programming (variables, arrays, logic, and user interface),
and for creating simple 2D “quick-and-dirty” applications.

Greenfoot
(www.greenfoot.o

Greenfoot is a solid tool, which provides many of the
constructs needed for creating 2D computer games at a level,

Chapter 2. State of the Art

 35

rg) which is especially appropriate and enjoyable for novice
programmers.

Maya/
Photoshop/Flash

These software products are mainly used for art design to
create digital characters and animations for games. Flash can
also create Flash-games.

Game maker
(www.gamemake
r.nl)

Game Maker is a rapid application development tool for
young people at home and in schools to create two-
dimensional and isometric games.

StarLogo TNG StarLogo TNG is designed upon the basic framework of
Logo. The programming is done with programming blocks
instead of text commands, which moves programming from
abstract to visual.

Game editor:
Warcraft3
Editors/
NeverWinter
Night toolsets

The editor provides a simple GUI for customizing game
templates, and requires little or no programming skills to
create interesting game designs. The editors are implemented
as visual programming tools, which allow users to customize
game behavior visually, including character behavior, game
map, and game play.

Game platforms:
Bomberman
/Wu’s Castle/
Critical Mass
board game/quiz-
based web game
shell

These are individual games, but they provide visual interface
for the users to modify or add basic code to change the game
scenarios.

Table 10: GDFs for developers

GDFs Features Description
FPS game engine:
Torque game engine
/Unreal Engine

These are the original commercial game engines already
applied in popular commercial games. They are usually not
free and provide some editing tools. They are more
complex than an individual game editor.

XNA
(www.xna.com)/
XNACS1Lib
framework/
XQUEST/ BiMIP

These are game development tools based on MFC and
DirectX on Windows platform and they have the same
structure as the game loop concept. BiMIP is a self-made
GDF similar to XNA developed by researchers. XNA is a
GDF to develop cross-platform games for the Windows PC,
Windows mobile phone, XBOX, and the Zune platform
using C#. XNA features a set of high-level APIs targeted
for 2D and 3D games. It consists of an IDE along with
several tools for managing audio and graphics. XQUEST
and XNACS1Lib are game libraries for XNA, which
contain convenient game components.

Android/Sheep
(www.android.com)

The Android mobile platform is an operating system issued
by Google. The Sheep framework is an extended game
library for Android.

Simulation These are self-made simulation games or simulators, which

Chapter 2. State of the Art

 36

platforms: Spacewar
simulator/
RoboRally/
JGOMAS
MUPPETS/ SIMPLE
framework

provide users with the controller to modify the parameters
and control the avatar in the simulation platforms. They are
used to teach programming and AI.

2.6 Summary

GBL is a relatively new research area compared to other traditional research fields. This
means that there are more challenges related to its theoretical underpinnings. Due to
lack of sufficient theoretical foundation, GBL design is usually directed by researchers’
own experiences. This study indicates that GBL is inter-disciplinary in nature and could
benefit from relevant research in mature fields such as education. In relation to the
Lecture Game project, Chapter 2 investigated some classical theories, which can benefit
game design. Further, related work in the fields of psychology and software engineering
was reviewed to enrich the supportive theory and to become a resource pool for this
research. Another area, investigated in this study, covered current popular devices and
features of the technologies, which formed a base to construct the game concepts. The
following chapters will deal with the challenges of selecting related theories and
enabling technology to design and evaluate lecture games, and to enrich the theoretical
base for both lecture games and GBL.

Chapter 3. Research Methods

 37

3 Research Methods

This chapter presents the philosophical view of the research method chosen for this
study. First, the research design is briefly introduced. Second, data collection methods
are discussed according to the corresponding research design. Finally, various data
analysis methods are given.

3.1 Research Design

Colin Robson proposed a framework for research design (page 83 in [25]). The
components are purpose(s), theory, research questions, methods, and sampling strategy,
as showed in Figure 3. The research design turns research questions into a project.

Figure 3: Framework of research design

As stated by Colin Robson [25]: “a good design framework has high compatibility
among purposes, theory, research questions, methods and sampling strategy: 1) If the
only research questions that we can get answers are not directly relevant to the
purposes of the study, then something has to change - probably the research questions
2) If our research questions do not link to theory or it is unlikely that we will produce
answers of value. In this case, theory needs developing or the research questions need
changing. 3) If the method and/or the sampling strategy are not providing answers to

Chapter 3. Research Methods

the research questions, something should change. Collect additional data, extend the
sampling or cut down on or modify the research questions.”

A study design based on experiments and surveys is classified by Anastas and
MacDonald [121] as a “fixed research design”. However, other research approaches are
also recognized. For instance, most of researchers are strong advocates for qualitative
design. It has many forms and arises from a variety of theoretical positions [122].
Anastas and MacDonald [121] refer to such designs as flexible. The two terms,
“qualitative” and “flexible”, describe important features of such designs. Usually,
“flexible designs can include the collection of quantitative data. Fixed designs rarely
include qualitative data (but could do)” [25].

Apart from fixed design and flexible design, a literature review is also used in this
research project. Conducting a literature review is a means of showing author’s
knowledge about a particular field of study, including phenomena, history,
development, theoretical basis, its key issues, and possible solutions. In addition, it also
informs other interested researchers and research groups in the field. Finally, with some
modification, the literature review is a “legitimate and publishable scholarly document”
[123].

3.1.1 Fixed design

Fixed designs are usually concerned with aggregates, group properties, and general
tendencies [25]. Traditional fixed design research strategies include both experimental
strategy and non-experimental strategy [25].

The central feature of experimental strategy is that “the research actively and
deliberately introduces some form of change in the situation, circumstances or
experience of participants with a view to produce a resultant change in their behaviors
(skills, opinions)” [25]. Usually, it is a measurement of the effects of manipulating one
or more variables on another variable. The plans and preparations should be complete
before the experiment begins. Quasi-experimental strategy shares many similarities with
the experimental strategy, but it specifically lacks the element of random assignment.
Instead, quasi-experimental strategy typically allows the researcher to control the
assignment.

The overall approach of non-experimental strategy is similar to experimental strategy
but the “research does not attempt to change the situation, circumstances or experience
of the participants” [25]. It also requires that the details of preparation are fully
specified before experiment begins.

3.1.2 Flexible design

Three traditional flexible design research strategies are case study, ethnographic study,
and grounded theory study. Colin Robson explains them as follows [25]:

Chapter 3. Research Methods

 39

Case study is to develop detailed, intensive knowledge about a single “case”, or of a
small number of related “cases”. This approach typically involves data collection and
analysis.

Ethnographic study seeks to capture, interpret, and explain how a group, organization,
or community lives, experiences, and makes sense of their lives and their world. It
typically tries to answer questions about specific groups of people, or about specific
aspects of the life of a particular group.

Grounded theory study is aimed at generating theory from data collected during the
study. It is particularly useful in new, applied areas where there is no theory and
concepts to describe and explain the observed phenomena. Data collection, analysis, and
theory development and testing are interspersed throughout the study.

3.1.3 Literature review

In addition to the above research designs, a literature review was used independently as
a research method in this project. Cooper suggests conducting a literature review in the
following steps [124]:

(1) Problem formulation
(2) Data collection
(3) Data evaluation
(4) Analysis and interpretation
(5) Public presentation

He also emphasizes the key components and strategies - “(a) a rationale for conducting
the review; (b) research questions or hypotheses that guide the research; (c) an explicit
plan for collecting data, including how units will be chosen; (d) an explicit plan for
analyzing data; and (e) a plan for presenting data. Instead of human participants, for
example, the units in a literature review are the articles that are reviewed” [124].

Further, a systematic literature review aims to provide an exhaustive summary of
literature relevant to a defined field. It has more strict requirements for the number of
the bibliographies in a field than a literature review, and it provides a relatively
complete collection of information in a current research field.

3.2 Selection of Methods for Data Collection

The selection of methods is based on the kind of information sought, from whom and
under what circumstances. It is decided at an early stage in a fixed design project. In
flexible design projects, it is better to make some initial decisions on the methods to
collect data, but these can be changed as the data collection progresses. Colin Robson
[25] provides simple rules for selecting methods for both fixed designs and flexible
designs: “1) To find out what people do in public use direct observation. 2) To find out
what they do in private, use interviews or questionnaire. 3) To find out what they think,

Chapter 3. Research Methods

 40

feel and/or believe, use interviews, questionnaires or attitude scales. 4) To determine
their abilities, or measure their intelligence or personality, use standardized tests.”

When using a literature review, the scope of the literature survey has to be decided, i.e.
how much time and how much effort is to be expended on the search of a bibliography,
especially considering the filtering workload with a large number of bibliographies,
necessary to collect the most useful data.

3.3 Dealing with the Data

After identifying the methods to collect the data, the next step is to collect the data and
prepare for the data analysis.

3.3.1 Collecting data

According to Colin Robson [25] there is no generally “best method” for data collection,
and he states: “We should do it properly using these methods in a systematic,
professional fashion.” The selection of methods depends on the research questions to be
answered. This has to be adapted to what is feasible, in terms of available time and other
resources or to the skills and expertise of the researcher.

3.3.2 Preparing for analysis

All data come in different forms, including sets of instrument readings or test results,
responses to questionnaires, diary entries, reports of meetings, documents, and possibly
audios or videos, etc. Many of them are either words or numbers. Qualitative analysis is
used for words or other data, which come in a non-numerical form, and quantitative
analysis for numbers.

3.3.3 Quantitative analysis

There are many tools for carrying out quantitative analysis, and it would be impossible
to expect everyone conducting an enquiry to use all of them. There is a tendency to gain
some familiarity with a narrow range of approaches and then be inclined to use them.
One suggestion is to get advice from a consultant or other persons familiar with a wide
range of approaches to the quantitative analysis of research data if possible. In addition,
one can use the most popular software package for statistical analysis - SPSS (the
Statistical Package for Social Science). However, for simple statistical data, such
specialized software may not be required, and spreadsheet software such as Microsoft
Excel can be used to perform a range of statistical tasks [125].

Descriptive statistical results can be obtained with the help of SPSS or Excel. These
software products provide different ways of representing some important aspects of a
dataset by a single number. The statistics can then be used to discover major tendencies.
Two most common aspects, dealt with in this way, are the level of the distribution and

Chapter 3. Research Methods

 41

its dispersion. Depending on the complexity of data and the research purpose, measures
such as mean, median, variance, or distribution can be used to evaluate the results.

3.3.4 Qualitative analysis

Text is by far the most common form of qualitative data. There are different approaches
to qualitative analysis, summarized by the author from [126] as follows:

Quasi-statistical approaches: They use word or phrase frequencies and inter-
correlations as key methods of determining the relevant importance of terms and
concepts, and they are typified by content analysis.

Template approaches: The key codes are determined either according to an a priori
criterion or by the initial perusal of the data. These codes serve as a template for data
analysis but may be changed as the analysis continues. These approaches are typified by
matrix analysis.

Editing approaches: They are more interpretive and flexible than the above methods.
They have no (or few) a priori codes. The codes are based on the researcher’s
interpretation of the meanings or patterns in the texts. These approaches are typified by
grounded theory methods.

Immersion approaches: They are the least structured and most interpretive, emphasizing
the researcher’s insight, intuition, and creativity, and as such they are fluid and not
systematized. These approaches are close to literary/artistic interpretation and
connoisseurship.

All of these research designs and methods guided the selection of methods for this
study. The next chapter will explain in detail how they were integrated in the research
process.

Chapter 4. Research Process

 42

4 Research Process

This chapter begins by briefly introducing the research goal, relations between research
questions, and the author’s papers. This project consists of two topics, and although
both topics have the same ultimate goal, each has its own characteristics and research
process. The research process presented in this chapter is based on research methods
discussed in Chapter 3, described here separately for each topic. Mainly, three research
methods were used: the case study based on flexible design, the quasi-experiment based
on fixed design, and the systematic literature review.

4.1 Research Goal

The research goal was already presented in Chapter 1 as follows: “use supportive theory
and current computer technology as dual basis to facilitate lecture games in the current
technology-rich environment”. According to this goal, the Lecture Game project was
divided into two topics. These two topics are independent but have the same goal. This
section reiterates and discusses the research questions for each topic and divides them
into sub-research questions.

Topic 1: Game as a motivation for lectures:

RQ1: How can supportive theory be identified to guide the design and evaluation of
lecture games?

• RQ1.1 What is supportive theory within the context of lecture games?
• RQ1.2 How can a relevant theoretical framework be set up and applied in the

design and evaluation of lecture games?

RQ2: How can current relevant technology and appropriate peripherals be used to
provide various play experiences in the new lecture games?

• RQ2.1. What is current technology and peripherals relevant to GBL?
• RQ2.2. How can these technologies be integrated into the Lecture Games project

and evaluated?

Chapter 4. Research Process

 43

Topic 2: Game development as a motivation for lectures:

RQ3: What is game development based learning (GDBL) and what are the researchers’
views on GDBL?

• RQ3.1 What is the definition and scope of GDBL?
• RQ3.2 What current technology and game development frameworks (GDF) are

involved in GDBL?
• RQ3.3. What is the history and current position of GDBL in other researchers’

opinion?

RQ4: How can the GDBL approach be characterized in terms of supportive theory and
current technology-rich environment?

• RQ4.1 How can the GDBL method be adopted in a software architecture course
and what is the students’ perception of the GDBL method?

• RQ4.2 How can the framework and criteria in GDBL be characterized in terms
of this study and other researchers’ views?

The history of video games as a research field is much shorter than other traditional
mature sciences. The literature review revealed a lack of theoretical constructs or
systematic research methods in GBL research. Referring to the Lecture Games project, a
cross-disciplinary approach was used combining games and learning, and the relevant
theories from both the game and learning fields were identified. In addition, it should be
noted that the rapid development of computer technology (e.g. smart devices and
wireless networks) has a profound impact on the life of new generation students, and
changes the way they acquire information. This phenomenon opens avenues for a
possible evolution of GBL. The Lecture Games project is a result of the recognition of
this phenomenon. The research questions are meant as a motivation for devising new
game concepts, which, in combination with supportive theories and current enabling
technology, will result in improved and innovative lecture games.

In Chapter 3, research methods were discussed at a high level of abstraction. Specific
research methods, selected for this PhD work, are shown in Table 11. In the research of
topic 1 (game as a motivation for lectures), the following case studies were carried out:
“World of Wisdom” (WoW), “Lecture Quiz” (LQ), “Knowledge War” (KW), and
“Amazing City Race” (ACG). Topic 2 (game development as a motivation for lectures),
comprised 1) two GDBL quasi-experiments using XNA and Android SDK as GDFs in a
software architecture course, and 2) a systematic GDBL literature review. The
connections between the studies and the research questions are also revisited. In this
section, the research design and data analysis process in the case studies, the
experiments, and the literature review are described in detail, while the final results are
presented in the next chapter.

Chapter 4. Research Process

 44

Table 11: Relationship of entities in research process
Topic RQ Research Methods Study Examples Papers
Game as a
motivation for
lectures

RQ1 Case study Case 1 WoW G1
Case 2 LQ G2

RQ2 Case study Case 3 KW G3
Case 4 ACG G4

Game
development as
a motivation for
lectures

RQ3 Literature review - - GDF1, 2
RQ4

Quasi-Experiment Experiment 1 XNA GDF3, 4,
5, 6

Experiment 2 Android
SDK

GDF7, 8

Based on Table 11, the following sections discuss which research methods were chosen,
why they were chosen, and how they were applied in practice for the two topics.

4.2 Game as a Motivation for Lectures - Case Study

As mentioned before, questions RQ1 and RQ2 belong to topic 1 - game as a motivation
for lectures. Their purpose is to identify the effectiveness of study of topic 1, and to
establish how the supportive theory and enabling technology influenced the co-design
of the project. According to three traditional flexible design research strategies, the case
study was chosen for research of topic 1. Features of the case study match requirements
of this research in terms of [25]: 1) Selection of a single case (or a small number of
related cases) of a situation, individual or group of interest, or concern. 2) Study of the
case in its context. 3) Using a range of data collection techniques including observation,
interview, and document analysis.

Figure 4 shows how the topic of game as a motivation for lectures was decomposed
based on the framework of research design presented in Figure 3 in Section 3.1.

Figure 4: Mapping of research design framework into RQ1 and RQ2

Chapter 4. Research Process

 45

The approach in this case study was to use the supportive theory to guide the design and
evaluation in a technology-rich environment. The interviews, observations, and
questionnaires are the methods for data collection. The four case studies were not
limited to just a single concrete context of course content; this means that the cases are
suitable to learn any subject. In this instance, we chose the students with computer
science (CS) background since the challenges in the lecture games relate to the
computer science field.

In addition, no systematic literature review of topic 1 was conducted because such
reviews already exist [4, 128-130]. However, related works were surveyed and reviewed
at the beginning of each case study. The case studies provided both quantitative and
qualitative data.

The objective of this study was to seek answers to questions RQ1 and RQ2. The main
purpose of this study was to identify critical success factors and design methods for
games as a motivation for lectures. There were two case studies for each research
question.

4.2.1 The case studies to answer questions RQ1 and RQ2

In order to answer question RQ1, two case studies, WoW and LQ, shown in Table 11,
were carried out to explore the design issues and evaluation methods. These two case
studies used supportive theories in the design and demonstrated how to apply them into
the implementation and the evaluation of the game.

In order to answer question RQ2, two additional case studies were chosen, mainly to
present the impact of technology on the lecture games. These two case studies
introduced an interesting learning style using recent attractive peripherals, iPhone or
Android smart phone.

Several data collection methods were used in order to get a wide range of data. The four
case studies were carried out using the same steps, including background information
investigation, procedures for the major tasks, questions, and reporting:

i. Preparing the case studies for RQ1 and RQ2:
ii. Participating in the development team meetings during the implementation.
iii. Designing a questionnaire for users.
iv. Conducting participatory observation of users during the game play.
v. Conducting the user questionnaire.
vi. Dealing with data and developers’ documents.
vii. Finishing reports and publishing the results.

i. Preparing case studies in the context of RQ1 and RQ2: These research

questions are concerned with the disciplines of game design and education. The
game plot design in all four cases was based on theoretical support, technology

Chapter 4. Research Process

 46

impact, and the developers’ background. The four cases aim to answer
questions RQ1 and RQ2. Further, each case study had its own focus: the case
studies of WoW and LQ focus on the aspect of supportive theory construction,
while the other two case studies, ACG and KW, emphasize the aspect of
innovative game concept involving recent technology and peripherals.
Specifically, WoW is an educational MMORPG game in which students can
“play exercises” through a quiz in a virtual world. LQ is a multiplayer quiz
game used in the classroom to let students review the course content and
motivate the learning process in lecture. KW is a location-aware educational
game for ions devices where students can play a quiz-based game to strengthen
the social interactions at school. ACG is a pervasive game with an educational
purpose based on the features of Android devices where the game plot is a
competition to let players move around in a city and acquire and use knowledge
such as city history.

ii. Participating in the development team meetings during the
implementation: At this stage the focus was on the implementation of
educational games using the supportive theory and enabling technology. Mobile
devices were used as the platform for development and testing. After the design
was finished, the game developer teams usually met every two weeks with the
supervisors (the author and his PhD supervisor). In these meetings, the group
reported on their progress. At least one of the supervisors was present at all of
the group meetings to follow closely the development process and to control the
quality and progress of the project.

iii. Designing a questionnaire for users: A set of questionnaires was designed,
each with a specific purpose, in order to investigate the students’ attitudes
towards the lecture games. Some questions were more general, based on the
supportive theory such as the GameFlow model, while others were designed
specifically for each case.

iv. Conducting participatory observation of users during the game play: The
supervisors became observers and members of the observed group. During the
game play, additional attention was paid to suitable/flexible game challenges
and the balance of the entertainment and learning during the game play.
Informal interviews, asking unobtrusive questions, and making notes were used
to acquire relevant data for further analysis.

v. Questionnaire for users: This step mainly involved giving the questionnaire to
the individual/group players after they finished the game play. They were
required to complete the questionnaire reporting their own playing experiences,
and they were not allowed to discuss their experiences with each other during
this phase.

vi. Dealing with data and developers’ documents: After collecting data from the
above steps, the analysis and evaluation of the data in students’ questionnaires
and relevant records, namely observation notes and developers’ documents, was
conducted.

vii. Finishing reports and publishing the results: The results of the case studies
were published in the following four papers: G1, G2, G3, and G4.

Chapter 4. Research Process

 47

4.2.2 Data collection methods

The following data collection methods were used in the case studies:

Self-completion questionnaire: The questionnaires were designed based on two
sources. Firstly, the concepts were borrowed from the GameFlow model (including
EGameFlow scale [93]), mentioned in Section 2.3.1, to measure the effectiveness of the
educational games. This model uses a series of criteria to measure the enjoyment of
video games, and it helps the game designer to understand the strengths and weaknesses
of the game. EGameFlow has all the features of the GameFlow model with addition of
knowledge improvement. Secondly, new questions were designed to investigate features
and usefulness of certain game aspects pertinent to this study.

Scale: Usability of a software product and enjoyment of a game are two closely related
concepts. According to the ISO 9241-1121 definition, usability is derived from three
independent measures: efficiency, effectiveness, and user satisfaction.

• Effectiveness - The ability of users to complete tasks using the system, and the
quality of the output of those tasks.

• Efficiency - The level of resource consumed in performing tasks.
• Satisfaction - Users’ subjective reactions to using the system.

However, there are various methods to evaluate the usability. The method chosen in this
study was the widely used System Usability Scale (SUS) [117] described Section 2.4,
with a generic questionnaire of 10 questions for a simple indication of system usability
represented by a number on a scale from 0 to 100 points.

Participant Observation: Project activities were closely observed by taking part in the
project meetings and game testing. As a supervisor and manager in the project, the
author took notes at the meeting and occasionally interacted with the project members
as needed. Several documents, for example weekly reports or meeting minutes, were
created by the project members. Further, the supervisor and the author carried out the
evaluation of the results. During the game testing, the whole process was followed,
photos were taken, videos of the game playing process were recorded, and players’
activities were observed.

4.2.3 Data analysis

After collecting the data and filtering out the incomplete data, both quantitative data and
qualitative data were available for analysis.

For the quantitative data analyzed with GameFlow Model and SUS, the required
routines were used to identify the individual scores for these measurements. In addition,
a general evaluation of students’ attitudes towards the game’s usability and engagement
was performed. The scores were compared with other games using the same criteria for

21 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=16883

Chapter 4. Research Process

 48

assessment. The weaknesses and strengths of the game itself could be identified by
comparing the scores. For other quantitative data, Microsoft Excel and SPSS were used
to identify the mean and variance for each individual score and to reach the conclusion.

For the qualitative data, for example data collected in the observation process, quasi-
statistical approaches and template approaches, mentioned in Section 3.3.4, were mainly
followed; the data was classified into categories and the implications interpreted.

4.3 Game Development as a Motivation for Lectures - Literature
Review

During the study of topic 2, the term GDBL was proposed to define the scope and
systemize the rules of this field. The research purpose was to find the theoretical
context, research methods, the application process, and the evaluation criteria. It
required following a detailed process for data analysis and theory generation in this very
new field. In this context, the decision was taken to conduct a literature review to get an
overview of the field and to find the useful data from bibliographies that can be
extracted to generic guidelines for GDBL. The first step was a preliminary literature
survey on the GDBL in the software engineering field. Further, a systematic literature
review of all possible fields was performed. The following section discusses the
systematic literature review, including the main results of the preliminary review.

4.3.1 The systematic literature review to answer RQ3

According to the framework of research design in Figure 3 in Section 3.1, the topic of
game development as a motivation for lecture was decomposed in order to answer
question RQ3, as shown in Figure 5.

Figure 5: Mapping of research design framework for RQ3

Chapter 4. Research Process

 49

In order to get an overview of GDBL and answers to RQ3, a systematic literature
review of current main bibliographies was conducted, the collected data analyzed, and
conclusions drawn.

Informed by the established method of systematic review [124, 131, 132], the review
was undertaken in the following distinct stages: development of the review protocol,
identification of the inclusion and exclusion criteria, a search for relevant studies,
critical appraisal, data extraction, and synthesis.

4.3.2 Protocol development

A protocol for the systematic review was developed following the guidelines,
procedures, and policies of the Campbell Collaboration
(www.campbellcollaboration.org), the Cochrane Handbook for Systematic Reviews of
Interventions [131], the University of York’s Centre for Reviews and Dissemination’s
guidelines for carrying out or commissioning reviews [132], and the reviews of serious
game research [4, 128]. This protocol specified the research aim, the search strategy, the
inclusion and exclusion criteria, data extraction, and methods of the synthesis.

4.3.3 Data source and search strategy

For the purpose of this study, a literature search was undertaken between August and
December 2010 in the following international online bibliographic databases: (a) ACM
portal, (b) IEEE Xplore, (c) Springer, and (d) Science Direct. The search string used
was: (“Game”) AND (“Learning” OR “Teaching”) AND (“Lecture” OR “Curriculum”
OR “Lesson” OR “Course” OR “Exercise”). “Education” was not included in the
keyword list since it was considered to be too general and it would not help minimize
the searching scope. The search process was limited to titles and abstracts of articles
published in journals and conference proceedings (some are book chapters), in English
language, from year 2000 onwards. The latter limitation was imposed due to the rapid
changes in ICT in general, and in computer game technologies in particular.

4.3.4 Data extraction with inclusion and exclusion criteria

Figure 6 shows the complete process of the data extraction. The first step was to
identify relevant studies. Journal and proceedings articles related to GDBL were located
during the search process in the afore-mentioned databases. The search resulted in 1155
articles. In step 2, the abstracts of the articles were searched for topics related to
learning through game play or game development in curriculums. Most of the excluded
articles were concerned with games used in classroom directly to motivate the students’
interest and attendance rate, and using game play instead of traditional exercises to
study or review the course content. For instance, these were articles, which addressed
using virtual online multiplayer game environments to encourage a collaborative
learning style, e.g. [133, 134], and articles which referred to games used in classroom to
motivate attendance and to review the course knowledge, e.g.[28]. The articles related
to the economics terms “game theory” and “business game” used as business terms
were also excluded. Further, articles were excluded depicting novel game concepts,

Chapter 4. Research Process

 50

which were not computer or video games but physical game activities without any
technology support. For instance, article [135] used a self-made table card game in SE
education. Mainly based on these three criteria, 1009 articles were excluded in this step.

Figure 6: Steps of the article selection process

In step 3, the whole content of the articles was checked. The inclusion criteria were
further limited to articles describing a case study or several case studies involving
GDBL. In particular, it was required that the article contains:

a) A relatively detailed description of lecture design process. The articles without
detailed description of their teaching design or exercise process made it impossible to
validate the process of integrating GDFs in lectures or exercises. According to this
requirement, posters, tutorial presentations, and some short papers without detailed
description of teaching process were excluded since they could not provide valuable
data for this research and made it impossible to validate the effectiveness of the method,
e.g. [136-141]. This was also a measure to ensure inclusion of high quality literature in
the review.

b) Articles using development toolkits in curriculum but did not aim to develop games
were also excluded, e.g. [142].

c) Articles emphasizing other aspects apart from GDBL were excluded as it was
difficult to validate how game development was integrated in class, e.g. learning in a
interactive e-lab [143]. Similarly, articles were excluded, which presented the
development of an educational game framework, but did not mention how it was
integrated in a specific curriculum, e.g. [144-147].

d) Articles, which focused on changing the controller of the software or hardware, but
without elements of computer game development, were also excluded, e.g. [148, 149].
Most of them focused on creating a robot controller to learn algorithms, or change some
components of a robot to learn Artificial Intelligence (AI). In contrast, this study

Chapter 4. Research Process

 51

included learning by modifying parts of a simulator to create the game elements or a
game-like system, e.g. [120, 150]. Finally, a total of 105 articles remained after this
step.

In step 4, the remaining articles were carefully studied and their topics, methods,
teaching processes, and evaluation quality were compared. After the comparison, the
following study requirements were included: 1) Evaluation data in these articles should
be collected from assignments or scores after using the GDBL method. 2) Questionnaire
should be converted to quantitative data and interviews or feedback should be converted
to qualitative data. Based on the survey, it was found that empirical data were limited
since GDBL is quite a new research area. In addition, diverse and innovative articles
were also included; they used GDFs outside the scope of computer higher education,
e.g. literacy for primary education [2]. However, papers reporting use of hardware tools
to create game or game-like system, such as real robot hand [150], Wii remote [151],
Microsoft surface [152], and a projector-camera system [153], to support teaching or
learning environment were not included. Finally, a total of 34 articles were included in
the review. This number appeared to be sufficient to create an extensive reference for
explaining how to integrate the GDBL methods in curriculums.

4.3.5 Synthesis of findings

A typology to categorize the 34 articles had to be devised. The classification scheme
proposed by [154] in their review of the general instructional gaming literature was
adopted for the needs of the present study. This scheme, which was also used in [155],
defines the following five categories [154]: (a) Research: systematic approaches in the
study of gaming targeted at explaining, predicting, or controlling particular phenomena
or variables; (b) Theory: articles explaining the basic concepts, aspects, or derived
outcomes of gaming; (c) Reviews: syntheses of articles concerning general or specific
aspects of gaming; (d) Discussion: articles describing experiences or stating opinions
with no empirical or systematically presented evidence; and (e) Development: articles
discussing the design or development of games or projects involving gaming.

The following criteria for classification of the articles were applied in this study. The
articles were grouped into these five categories according to their primary focus. Of the
34 articles found in step 4, 20 were placed in the ‘Research’ category, one in the
‘Theory’ category, seven in the ‘Discussion’ category, and six in the ‘Development’
category, whereas no articles were appropriate for the ‘Review’ category, which
underlines the usefulness and originality of the present study. As in other reviews of the
general instructional gaming literature [129, 155], in this study there were fewer articles
in the ‘Theory’ categories than in the ‘Research’, ‘Discussion’, and ‘Development’
categories. This can be explained by the fact that instructional gaming is a relatively
new domain of educational technology, and that a substantial empirical base is needed
to address relevant theoretical issues. The discussion above describes the research
process of the systematic literature review of GDBL in this study.

Chapter 4. Research Process

 52

4.4 Game Development as a Motivation for Lectures - Quasi-
experiment

A “quasi-experiment” in fixed design is defined as a research design involving an
experimental approach but where random assignment to treatment and comparison
groups has not been used [25]. A quasi-experiment approach, using GDFs as tools in
software architecture education in order to determine the effectiveness of GDBL in
education, was adopted for two experiments conducted during the four years of this
PhD project. Research methods presented in Chapter 3 were used to establish the core
ideas of this research design. Further, these methods were combined with the
experimental software engineering methods to guide the research process. The two
quasi-experiments used both GDBL and non-GDBL in a software architecture course in
order to measure the differences between them.

4.4.1 Quasi-experiment to answer RQ4

According to the research design in Figure 3, described in Section 3.1, the experiment
was adapted to a software architecture course in order to provide a platform for using
the GDBL method, as shown in Figure 7.

Figure 7: Mapping from framework to game design to RQ4

The purpose of the quasi-experiment was to identify the effectiveness of research on
topic 2 in terms of 1) differences between using GDBL and non-GDBL within a
software architecture course, and 2) the positive effects of using GDBL in a software
architecture course.

This quasi-experiment included two experiments: 1) using XNA as GDF in a software
architecture course, 2) using Android SDK as GDF in the same course. Based on own
experiences in GDBL and literature review results, the aim was to identify the features

Chapter 4. Research Process

 53

of GDBL. The two experiments included the same process steps: definition, planning,
operation, data collection and analysis, and results reports. The results are summarized
in the next chapter.

4.4.2 Experiment definition

The software architecture course is a post-graduate course offered to CS and SE
students (not mandatory) at the NTNU. The course is taught every spring, its workload
is 25% of one semester, and about 70-100 students attend the course every spring. The
textbook used in this course is the “Software Architecture in Practice, Second Edition”,
by Bass, Clements, and Kazman [156]. Additional papers are used to cover topics not
sufficiently covered by the textbook, such as design patterns, software architecture
documentation standards, view models, and post-mortem analysis [157-161].

The education goal of the course is as follows:

“The students should be able to define and explain central concepts in software
architecture literature, and be able to use and describe design/architectural patterns,
methods to design software architectures, methods/techniques to achieve software
qualities, methods to document software architecture and methods to evaluate software
architecture.”

The software architecture course at NTNU (course code TDT4240) is taught in a
different way than at most other universities, as the students also have to implement
their designed architecture in a project as an assignment. The motivation for doing so is
to make the students understand the relationship between the architecture and the
implementation, and to be able to perform a real evaluation of whether the architecture
and the resulting implementation fulfill the quality requirements specified for the
application. Throughout the project, the students have to use software architecture
techniques, methods, and tools to succeed according to the specified project
requirements and the document templates. The development process in the project is
affected by the focus on software architecture, which prescribes how the teams should
be organized and how they should work.

The grade awarded in the software architecture course is split, 30% is awarded for the
software architecture project all students have to complete, while 70% is awarded for
the results of a written examination. The goal of the project is for the students to apply
the methods and theory in the course to design and document fully a software
architecture, to evaluate the architecture and the architectural approaches (tactics), to
implement an application according to the architecture, to test the implementation
related to the functional and quality requirements, and to evaluate how the architectural
choices affected the quality of the application.

The experiment includes the project exercises in both GDBL and non-GDBL. It consists
of the following phases:

Chapter 4. Research Process

 54

1) Commercial Off-The-Shelf (COTS): Learn the development
platform/framework to be used in the project by developing some simple test
applications.

2) Design pattern: Learn how to utilize design patterns by making changes in two
architectural variants of an existing system designed with and without design
patterns.

3) Requirements and architecture: Describe the functional and the quality
requirements, describe the architectural drivers, and design and document the
software architecture of the application in the project, including several
viewpoints: stakeholders, stakeholder concerns, architectural rationale, etc.

4) Architecture evaluation: Use the Architecture Trade-off Analysis Method
(ATAM) [156, 162, 163] to evaluate the software architecture in regards to the
quality requirements.

5) Implementation: Design in detail and implement the application based on the
designed architecture and the results of the evaluation. Test the application
against both functional and quality requirements specified in phase 3, evaluate
how well the architecture helped to meet the requirements, and evaluate the
relationship between the software architecture and the implementation.

6) Project evaluation: Evaluate the project using the Post-Mortem Analysis (PMA)
method [158]. In this phase, the students will elicit and analyze the successes
and problems encountered during the project.

In the two first phases of the project, the students work on their own or in pairs. For the
phases three to six, the students work in self-composed teams of four to six students,
and they can decide whether their team focuses on game development or non-game
development. In both cases, the students should apply what they have learned in the
course. The students spend most time in the implementation phase (six weeks), and they
are encouraged to start the implementation in earlier phases to test their architectural
choices (incremental development). During the implementation phase, the students
extend, refine, and evolve the software architecture through several increments.

4.4.3 Experiment planning

In previous years, the goal of the project was to develop a robot controller for a robot
simulator in Java with emphasis on assigned quality attributes such as availability,
performance, modifiability, or testability. The functional aim of this project was to
develop a robot controller, which moves a robot in a maze collecting balls and bringing
them to a light source. With several years of experience using the robot simulator in
software architecture teaching, the course staff made the following changes in order to
prepare the experiment:

1) Course preparations

Chapter 4. Research Process

 55

The features of XNA and Android SDK were investigated and examples and self-
learning materials were provided to the students. Further, the approach described below
was used to integrate the game development project with the software architecture
course.

2) Changes to the syllabus

It was rather difficult to change the syllabus of the software architecture course to
include more literature on software architecture in games. Good books and papers with
an insight into game architectures and game architecture patterns do not exist. There are
several papers describing architectures of specific games such as [164, 165] or books
giving a brief overview of game architecture [166, 167], but none of them covers the
typical abstractions (architectural patterns) in game software development. In the end,
the syllabus included some chapters from the book “Game Architecture and Design”
[167] to study the initial steps of creating a game architecture, and two self-composed
sets of slides on 1) software architecture and games, and 2) architectural patterns and
games. The former was a one hour lecture on motivation in software architecture design
in games [168], architectural drivers within game development [169], challenges related
to software architecture in games [170], and the main components of game architectures
[171]. The latter was a one-hour lecture describing architectural patterns, which are
common and useful for games, such as model-view controller, pipe-and-filter, layered
architecture, and hierarchical task trees.

3) Changes to the student project

The course staff decided to let the student teams themselves choose between the game
project and the non-game project. This meant that the main structure of the project had
to remain the same, and that two variants of the project had to be devised. For the non-
game project, the students usually had fixed requirements; while for the game project
the students were to define their own requirements (design their own game). However,
the documents to be delivered were the same for both types of project, based on the
same templates, and the development process was also the same. This ensured the same
experiment conditions for GDBL and non-GDBL.

According to the above description, the main changes in project phases were as follows,
as mentioned Section 4.4.2:

o Introduction to XNA game, Android game, and social application
exercises.

o Requirements and architecture for the game/social application project.
o Evaluation of the game/social application project.
o Detailed design and implementation.

4) Changes to staff and schedule

The main change to staffing was that two last year master students were hired to give
technical support for student during the project (both game and non-game project). The

Chapter 4. Research Process

 56

main tasks of the technical support staff were to give lectures on the COTS, to be
available on email for technical questions, to be available two hours a week in a lecture
hall for questions, and to evaluate the implementation of the final project delivery
(testing the games and the robots).

After changing the setting of the course, both game development project and non-game
development project were used as student exercises. The comparison of the non-game
and game project helped to discover the differences and reveal the positive and negative
effects of introducing a game development project in the software architecture course.
The experiment plan was designed based on the Goal Question Metrics (GQM)
approach [116] where a research goal was first defined (conceptual level), then a set of
research questions was defined (operational level), and finally a set of metrics was
selected to answer the defined research questions (quantitative level). In this
experiment, the GQM approach helped to identify each element during the research
process and to ensure that this experiment properly planned and executed. Table 12
shows the experiment elements using GQM approach to evaluate GDBL in the software
architecture course.

Table 12: GQM table for GDBL experiment
Goal Analyze GDBL used in the software architecture course

For the purpose of Comparing game development with non-game
development domains

With respect to Differences between and effectiveness of two
domains

From the point of
view of

Researcher & Educator

In the context of Students in the software architecture course
Questio
ns

Q1: Are there any
differences in how
the students
perceive the
project between
students choosing
a game project vs.
students choosing
a non-game
project?

Q2: Are there any
differences
between the
software
architectures
designed by
students selecting
a game project vs.
students selecting
a non-game
project?

Q3: Are there
any differences
in the
implementation
effort in the
project between
students
selecting a game
project vs.
students
selecting a non-
game project?

Q4: Are there
any
differences in
the
performance
between
students
selecting a
game project
vs. students
selecting a
non-game
project?

Metric M1: Number of
students choosing
game project vs.
non-game project.

M3: Project
reports

M4: Source
code files

M6: Project
score

M2: Questionnaire
survey with 5
Level Likert Scale

- M5: Time spent -

Chapter 4. Research Process

 57

4.4.4 Data collection

There are six phases in the experiments, as mentioned in Section 4.4.2. In the first two
phases, the students become familiar with the COTS. The real work on the project
consisting of design and implementation starts in phase 3. The students are asked to
report how much time they spent on the project when they were conducting design and
implementation in phases 3 to 5. After the final implementation, the students answer a
questionnaire survey and sit the final written examination. During the project, all groups
(Robot, XNA, and Android) followed the same requirements and templates for the
exercises in phases 3 to 6. The data for the final evaluation comes from these phases.
The data collection methods include:

Questionnaire/Scale: After finishing the exercise, the students are required to answer
the questionnaire designed by the author and his supervisor. The questionnaire is given
to obtain the students’ feedback and opinions on the game development projects. A
reply to each question is on a scale from 1 - “completely disagree” to 5 - “completely
agree” to identify the effectiveness of the experiments. The concrete scale, like SUS,
was used to collect relevant data, but most of the questionnaires were created in this
study for certain purposes.

Test/Score: The grades for the students’ assignments and the final exam were also used
as data to investigate results. The students’ assignments were project based. The
assessments can give insight into the effectiveness of GDBL compared with non-
GDBL, and the examination scores can be used as supplementary evidence. Further, a
comparison of the grades in the game projects and non-game projects can lead to a
direct conclusion.

Observation/interview: The teachers and teaching assistants in the course can help the
students with various difficulties and discuss topics of course setting, challenges,
improvements, etc. Throughout this process, the teachers can observe student activities
during the lectures and the exercises, and collect students’ feedback during the course.

Documents: The student projects include several documents, which describe their
software architecture or other attributes according to the requirements of the exercises.
These documents are very valuable for a deeper analysis of how the students work and
learn in GDBL. The project deliveries were analysed focusing on several key indicators
which reflect the students’ effort needed for the exercise.

Code: As a part of the final delivery, the students have to present the source code of
their games and applications. The lines of source code, time spent and code structure
was used to measure the effort the students put into the project to determine whether
there were differences between the game project and the non-game project.

4.4.5 Data analysis

After using the above methods, the collected data have both quantitative data and
qualitative data. Since the experiments were based on comparison, 95% of the data was

Chapter 4. Research Process

 58

quantitative. Microsoft Excel and SPSS were mainly used to perform the quantitative
data analysis. The analysis of data involved the following steps:

i. Measure the central tendency using the mean, median, or mode.
ii. Measure the variability by showing the range, inter-quartile range, variance, or

standard deviation.
iii. Measure two variables relations through comparing the game project data and

the non-game project data.

This section described the research process, explained how the data were defined,
prepared, generated, and acquired. Next chapter will present the results of the data
analysis.

Chapter 5. Results

 59

5 Results

This chapter presents the main research results of this PhD project. In topic 1, the
experiences gained in four case studies are used to achieve the research goal. Topic 2
defines a new field “GDBL” and its research scope, supported by the results of the
systematic literature review and two quasi-experiments. The results are expected to
enrich the theoretical foundation for both lecture games and GBL.

5.1 Summary of the Studies

In the research of topic 1, game as a motivation for lectures, the focus was mainly on
how to combine supportive theory and enabling technology with educational games in
order to enhance the students’ motivation during learning and exercises. This guided the
design of four case studies, which were conducted to show how the supportive theory is
applied in the Lecture Games project and whether the design and concept can elicit
positive feedback from students.

For topic 2, the game development as a motivation for lectures, the scope was defined
and the research was conducted using two methods: literature review and quasi-
experiments. Practical and concrete understanding of this topic was gained by
conducting the experimental studies on GDBL in a software architecture course. The
literature review on GDBL revealed a broad background of other research in this field
resulting in a complete overview of GDBL.

Table 13 shows the focus of each of the papers published in the course of this study. For
instance, paper G1 mainly contributes to theoretical grounding in “Flow theory”, and
paper GDF2 is a systematic literature review with the main focus on a general level
instead of a specific theory or technology application.

In addition, Table 13 shows the theoretical grounding and relevant technology applied
in these studies, and the connections between the research questions and the papers. In
the research on each topic, the contributions were systematic and spread across the
papers, and the conclusions were based on case studies, literature review, and
experiments.

Chapter 5. Results

 60

Table 13: A brief outline and contribution of each paper

Paper Theoretical
Grounding

Enabling
Technology

Research
Question Contribution Research

Method
G1 Flow theory Features of

mobile
devices,
including
iPod Touch,
Android
Phone, etc

RQ1 C1, C2 Case Study
G2 Features of

educational
games, SUS

G3 SUS RQ2
 G4 EGameflow

GDF1&G
DF2

- - RQ3,
RQ4.2

C3, C4, C5 Literature
Review

GDF3 - - RQ4.1 C4, C5

Experiment
GDF4 Project-based

learning,
Double
Stimulus

XNA as
GDF

RQ3.2,
RQ4

GDF5&G
DF6

RQ4.1

GDF7 Android
SDK as GDF

RQ4.1
GDF8 RQ4.1

5.2 Game as a Motivation for Lectures

Four case studies were carried out to explain how to use both the technological aspects
and the supportive theory to co-design games for lectures. There were two case studies
emphasizing the technological impact of games more than the supportive theory. The
other two emphasized the supportive theory more than technological aspects. This
means that each case study targeted its primary goal, but neither of them neglected
supportive theory or technological issues. Specifically, articles G1 and G2 used the
game design theory and current technology platforms to co-design the cases, but the
core idea was the theoretical foundation for lecture game design. Articles G3 and G4
reported studies involving both interesting game peripherals and relevant evaluation
criteria as dual guidance for the design. The main focus of theses articles was on the
impact of recent technology on learning using games. The common theme of all four
case studies was that they are based on quiz game play. However, they all ran on
different platforms and provided different game concepts. A brief introduction of the
four case studies is presented below in a chronological order:

5.2.1 Case 1 - World of Wisdom

This case study involves the implementation of an educational Massively Multiplayer
Online Role-Playing Game (MMORPG), named World of Wisdom (WoW). Figure 8
shows the architecture of the WoW game. WoW design was guided by game design
theory, and MMORPG’s game features were based on surveys of popular MMORPGs.
The game was built with an open source game engine, Golden T Game engine, as

Chapter 5. Results

 61

shown in Figure 8. WoW is an open educational platform running on Windows and Mac
OS where students can “play their exercises” instead of writing them on paper. It
provides several kingdoms, where one specific kingdom represents one part of a
curriculum or full curriculum for one course. Each kingdom has several zones,
designated as a safety zone and battle zones. The safety zone is populated with re-spawn
point, shops, and buildings. When players receive quests from a non-playable character
(NPC) or the teacher, they go to various zones to complete these quests. If the quest
involves some fighting, the players must go to the battle zones where they will fight
monsters through answering various questions related to the curriculum. Further, the
players can chat with each other or ask help from the teaching assistant inside the game.
The game also provides an editor for teachers to create new game tasks and content
without the need for programming. As an aid to learning, WoW can be a supplementary
motivation for the students to do their exercises more thoroughly. This case was
published in paper G1.

5.2.2 Case 2 - Lecture Quiz

A problem, when teaching in classrooms in higher education, especially in large classes,
is the lack of support for interaction between the students and the teacher during the
lectures. The lecture quiz concept was proposed, based on collected good educational
game features, which can enhance the communication and motivate students through
more interesting lectures. Figure 9 gives the system overview for Lecture Quiz. This
game concept is based on the current technology-rich and collaborative learning
environments. A SUS evaluation of the first version and the second version of Lecture
Quiz was carried out, and it showed that the Lecture Quiz concept is a suitable game
approach for improving most aspects of lectures. The second version of Lecture Quiz

Figure 8: The architecture of World of Wisdom game

Chapter 5. Results

 62

was improved in several ways, such as addition of an editor for the teachers to update
the questions, enhanced architecture easily extended to new game modes, web-based
student clients to provide an easier start compared with the first version of Lecture Quiz,
etc. The final results were published in paper G2.

Figure 9: System overview of LQ 2.0

5.2.3 Case 3 - Knowledge War

This case study uses a location-aware educational game, KnowledgeWar, for the
iPhone/iPod Touch platform. The initial idea behind the KnowledgeWar game was the
notion that students spend much time walking around and socializing. The social
interactions among students can be both face-to-face and electronic, using mobile
devices such as smart phones and laptops. A major challenge for educational games is
to create games, which can be used in several courses, but are still enjoyable. Single
player quiz-games fit very well into this category, but they can be somewhat tedious and
repetitive. By adding a social component, such games can be much more competitive
and engaging. In this quiz game, students can challenge each other in face-to-face or
remote knowledge battles. The game contains a game lobby where players can see all
who are connected, and the physical distance to them. The implementation of the
KnowledgeWar game is based on a service-oriented client-server architecture. An
overview of the architecture is shown in Figure 10. A game server provides all services
shared by users such as player profiles, question database, and game sessions. Apple’s
Push Notification Service is used to communicate events to the iPhone/iPod Touch
clients. The results of a questionnaire survey, which included SUS questions, showed
that the game has high usability, it is helpful for summarizing topics, and it can
stimulate involvement through social interaction. It was also found that smart phones
are well suited for such social games. However, the results also revealed that the game
did not to stimulate students to attend more lectures or pay more attention during
lectures. This case was published in paper G3.

Chapter 5. Results

 63

Figure 10: KnowledgeWar architectural overview

5.2.4 Case 4 - Amazing City Game

An integration of game, learning, and ubiquitous technology can result in a new and
relaxing informal learning style. Inspired by this concept, an educational pervasive
game was implemented on the Android platform where players can participate in a
knowledge competition tour in groups in the city of Trondheim to gain better
understanding of the city through solving various problems. This adventure game asks
the contestants to undertake tasks at different locations by using relevant technologies
available on Android smart phones. Each task uses one to three hints if the player is
unable to proceed and not able to solve the problem. If a player uses a hint, a
corresponding penalty time is added to the final score. Figure 11 shows the interface of
the game running on an Android phone. The group to reach the final destination in the
least amount of time is the winner. This study represents an innovative game concept
for informal learning. The results of the EGameFlow framework [93] evaluation
showed that the idea of using pervasive technology in a game and learning context is an
interesting and innovative concept. The game scored high in the areas of feedback,
immersion, and social interaction items in the EGameflow framework. The results were
published in paper G4.

Chapter 5. Results

 64

Figure 11: ACG user interface

5.2.5 Summary for questions RQ1 and RQ2

The aim of the above four case studies, related to topic 1 (game as a motivation for
lectures), was to answer research questions RQ1 and RQ2.

RQ1: How can supportive theory be identified to guide the design and evaluation of
lecture games?

In order to answer RQ1, the theoretical background was investigated in three areas: 1)
Pedagogical theory; 2) Game design theory; and 3) Game evaluation criteria, which
were already reviewed in Chapter 2, e.g. GameFlow model. After examining the
supportive theories, the next issue was how to select and apply relevant theories to the
case studies. It is not possible to provide a single theoretical framework for the design
of lecture games based on the case studies. Usually, the first step is to create an
overview of current or classic theories for the game design or evaluation, for example
intrinsic motivation by Malone [29], GameFlow theory [91, 172] or flow experiences
[92]. In addition, since the games are mainly used for lectures, the pedagogical aspect of
the game design is also an important factor to consider, for example design of an
educational game through collaborative learning [173]. In a specific case, some
adjustment of the theory may be needed during the design process. In some cases, a
tradeoff is necessary between different supportive theories. On the other hand, it is
impossible to use/match all the elements from all the theories in each case. In the case
studies, only the best matching elements were chosen to guide the design of lecture
games. Further, the design theory was enriched based on a survey of game genres.
Depending on a specific game genre, summary or review articles need to be located,
which explain the features of this game genre, and these articles can be used as criteria
for the design of such a game, as in the case study of WoW. The final answers and
results are summarized in the next section.

Chapter 5. Results

 65

RQ2: How can current relevant technology and appropriate peripherals be used to
provide various play experiences in new lecture games?

In order to answer RQ2, relevant technologies and peripherals were reviewed. Secondly,
guided by the available budget and the popularity of the devices, ions/Android and iPod
touch/Android phone were chosen as the main platforms. The iPod touch was chosen
because it offers most of the functions of the iPhone at one-third of the price. Similarly,
Android smart phones with comparable features are generally cheaper than the iPhone.
Their attractive features are mentioned in Section 2.5.2. In terms of these features, a
quiz concept was conceived for two popular mobile devices: iPod touch and Android
phone. The similarity of both cases is that they both encourage the social interaction
through the use of ubiquitous technology. Most of the features, for example the GPS
function, the camera, the audio player, and interesting widgets, are applied in the games
to provide diverse experiences and increase flexibility of game tasks for the players. The
final evaluation of the cases shows that players gave positive feedback related to social
interaction and immersion provided by the mobile technology used in the lecture games.

5.2.6 Contribution of the study

C1: Identification of research issues and cases related to recent technology-rich
environment within the context of game as a motivation for lectures.

The research goal identifies two issues: the impact of supportive theory and recent
technology on the design and evaluation of lecture games. Through the literature survey,
it was found that the supportive theory is easy to neglect in the design and
implementation of educational games. One possible explanation can be that no
systematic supportive theory has yet been proposed in the relatively new field of GBL.
A traditional design of an educational game usually comes from the developers’ own
experience and understanding. This is often limited in terms of the utilization of theory
due to the developers’ lack of relevant knowledge and experience. Typical problems can
be that too much effort goes into innovative game ideas while the balance of learning
and game play is neglected, or own subjective criteria are used to judge the play
experiences. If a widely accepted theory could be found to guide the design of lecture
games, it would not only ensure the game quality and learning goals, but also enrich the
game content for learning. The foundation of supportive theory can be considered as a
resource for the educational game design before the educational game is implemented.
It provides a reference for the game design process. After the game has been
implemented, the supportive theory provides a further reference for the evaluation and
improvement of the game concept. Thus, the game concepts can be improved, re-
designed, and re-developed based on the evaluation results. Their relationship can be
explained as shown in Figure 12.

Chapter 5. Results

 66

Figure 12: Relationships among supportive theory, game design, and evaluation

Apart from the supportive theory, another important aspect was the relevant computer
technology and suitable peripherals. Most video games are popular within a limited
timeframe since their graphics and game concepts get outdated. This is an inspiration to
search for new ideas and technologies to be used in games. As mentioned earlier, new
developments in technology and peripherals, from the Commodore 64 game system22 to
the Wii with games controlled by body movement, from stationary devices to mobile
devices (e.g. iPhone, Nintendo DS), always bring new playing experiences. This
phenomenon shows a fast changing and improving technology environment, which
encourages new game play experiences. In this study, instead of creating new
technologies, close attention was paid to the current technologies and the ways to apply
them to this research. Specifically, in order to identify the research scope, the focus was
on two mobile device platforms popular in the project period of 2008-2012: iOS and
Android platforms. The quiz style game play was utilized with various game plots. The
supportive theory and enabling technology are believed to be the most important issues
in this research. Their relations to game design and game evaluation are showed in
Figure 13.

Figure 13: Research issues relations

22 http://www.videogameconsolelibrary.com/pg90-64gs.htm#page=reviews

Chapter 5. Results

 67

Thirdly, four cases were implemented to explain how these two issues benefit game
implementation and evaluation. These cases were already discussed in Sections 5.2.1 to
5.2.4. The four cases were the source of experience in design and evaluation of
educational games based on the dual basis of supportive theory and current computer
technology. Specifically, WoW and LQ focused on the supportive theory and balanced
each element of the game using current mature technology. The evaluation of the design
and implementation of these games included both positive and negative experiences. It
was found that there are various theories, which can benefit the design of educational
games. However, the key problem was how to choose and apply the relevant theory to
support the design. This issue will be described later in this section. The experiences
gained in the WoW and LQ cases are a good illustration of this key problem. The KW
and ACG cases included innovative concepts illustrating how the newest computer
technology at the time could be combined with a quiz. They provide a novel play
experience in a real world in order to motivate learning. The supportive theory was also
applied when designing both of these games, but SUS and EGameFlow were mainly
used for game evaluation. Figure 14 illustrates the relationships between the cases and
the research entities.

Figure 14: Relations between research issues and cases

C2: An analysis chart for applying supportive theory and enabling technology
as dual guidance in the study of educational games for lectures.

Since research on lecture games is a cross-disciplinary field, the supportive theory
framework is discussed and analyzed from three perspectives: 1) pedagogical theory, 2)
game design theory, and 3) theory for evaluating games.

First, since the learning theory is an independent research area with various concepts to
interpret the learning process such as behaviorist, cognitivist, and humanist, several
interpretations exist related to the purposes of learning, as mentioned earlier. In this
study, the learning process is understood from the perspective of an educational game
technologist. At the beginning of the study, a connection between the possible learning
theories and recent technology was examined to investigate the playing experience.

Chapter 5. Results

 68

However, the selection of game technologies depends on the game content. After
identifying the game purpose, which was to let students review the course content in a
quiz game as exercises, the most relevant theory was chosen. This was the theory of
collaborative learning as a learning strategy to match the game content and the enabling
technology. One reason is that the four case studies have common features, i.e.
multiplayer quiz game genre and the collaborative learning. The evaluation of results in
the four case studies demonstrated that the social interaction in the class was improved
by the lecture games. Most of the students expressed the opinion that this feature made
the lectures more entertaining. Another reason is that this research includes just a few
examples of how to apply the supportive theory and enabling technology together,
instead of independently, in the game design. The process of combining learning theory
is very complex and difficult. It is not possible simply to combine several learning
theories and to utilize all the respective learning strategies in a game design. The
process of combining learning theories and strategies is a separate research topic beyond
the scope of this thesis. In general case, it is suggested that the most relevant and
important learning strategies are selected to guide the game design process. These
strategies should support the usage of the enabling technology to be exploited in a
game. Further, the choice of the enabling technology always depends on the game
content. It is recommended to start the game design process by examining the game
concept, the enabling technologies, and the learning theory, and how the three can be
combined. Finally, it should be measured how well these three components match each
other through an evaluation of a game prototype.

Second, the game design theory was examined and it was found that there exists only
limited literature on game design theories to guide the design of educational games. The
most influential theory for such games is the “flow experience” theory and “intrinsic
motivation” theory by Malone, as described in Section 2.3. However, there exists other
literature to be considered when designing good educational games. Table 14 lists the
characteristics of a good educational game according to the combined supportive game
design theory.

Table 14: Characteristics of good educational games

ID Educational game
elements Explanation Reference

1 Variable instructional
control

How the difficulty level is adjustable or
adjusts to the skills of the player

[75, 174]

2 Presence of
instructional support

The possibility to give the player hints when
he or she is incapable of solving a problem

[174, 175]

3 Necessary external
support

Providing appropriate computer equipment,
technical support, time for the learner.

[174]

4 Inviting screen design The feeling of playing a game and not
operating a program

[174]

5 Practice strategy The possibility to practice the game without
affecting the user’s score or status

[174, 175]

6 Sound instructional
principles

How well the user is taught how to use and
play the game

[174, 176-178]

7 Concept credibility Abstracting the theory or skills to maintain [179]

Chapter 5. Results

 69

integrity of the instruction
8 Inspiring game

concept
Making the game inspiring and enjoyable [4, 75]

The above eight important characteristics of good educational games are proposed
based on the combined theories and the experiences gained in the Lecture Games
projects. The list of characteristics was compiled as a reference for a
researcher/developer designing educational games. Note that missing one of the
characteristics in the game does not mean that the game will be useless or unsuccessful,
but including the missing characteristics in the game may improve it.

Thirdly, the WoW case study used an additional approach in the game design. Every
game can be categorized according to its genre, besides serving an educational purpose.
Since WoW is an educational MMORPG game, the literature on main features
MMORPGs should be consulted in addition to theories on educational game design.
The current trends in MMORPGs and their characteristics were surveyed. Achterbosch
[180] listed the features which contribute to a successful MMORPG. The most of the
relevant educational features were chosen for the WoW design. Table 15 lists the most
relevant features for designing an educational MMORPG.

Table 15 Most relevant features for design of an educational MMORPG
ID Existing features Note
1 Three character development

models
Skill points-based system;
class-based system;
combination of class/skill

2 Multiplatform support -
3 Highly customizable

characters
-

ID Favorite Features Note
4 Preferred character types in

ranking
Combination of class/skill;
skill points-based system;
class-based system

5 Top 3 game setting Fantasy, futuristic, post apocalyptic
6 Top 5 MMORPGs Many class/skill options, graphics and

effects, large world to explore, Player
vs. Player, socialization

ID Improving existing features Note
7 Player versus player combat Such as balancing between classes
8 The level grinding: process of

engaging in repetitive tasks
during video games.

Repeated battles to increase the level

ID Anticipated new features Note
9 Player created and controlled -

Chapter 5. Results

 70

content
10 Mini games -
11 Dynamic content and quests -

With the WoW design and implementation experience, it was found that features
identified in certain types of games are also useful for educational games of the same
type. It was noticed that in addition to learning theory and game design theory, there is
still space for using other theories to support educational game design. This case shows
that there exist other possible disciplines or areas contributing to the design of lecture
games. It is better to consider them during the design process before presenting the final
lecture game to students. Further, there might be duplicating or conflicting aspects in
these theories. If this is the case, more experiments are needed to gain more experience
in trade-off between these theories during the design process, selecting the most
relevant theories for the game design.

Fourth, the criteria for the evaluation of games should be discussed. Basically, the
GameFlow model derived from flow experience, described in Section 2.3.1, is the core
criterion for the evaluation in these studies. Further, the GameFlow model was extended
to create the EGameflow framework for assessing educational games. The difference
between them is that “Knowledge Improvement” was added as a new element for the
evaluation of the learning output. All of these evaluation models have detailed sub-
criteria, which can serve as reference in designing the content of an evaluation
questionnaire. According to the experience in this study, these models can be used as a
reference and a starting point, but not all sub-criteria need to be included as not all of
them might suit the game being evaluated. Some of the criteria had to be adapted to
evaluate an educational game better. In addition, it was found necessary to add new sub-
criteria to cover certain aspects of the research focus. Apart from the GameFlow model,
the SUS method was also tailored to shift its focus from evaluation of system usability
in experimental software engineering to evaluation of games. Another application of
these evaluation criteria is to use them as design criteria for educational games in order
to remind the game designer of potential weaknesses in the design. It is much better and
cheaper to find these weaknesses during the design rather than after the implementation
is completed.

Figure 15 shows an analysis chart of guiding principles for using supportive theory and
technology as co-design of lecture games. This figure extends the chart in Figure 14
with four steps related to supportive theory. It is based on the case study experiences
and the above analysis. This analysis chart should be used as a framework for good
educational game design.

Chapter 5. Results

 71

Figure 15: The analysis chart of guiding principles for educational game design

The above discussion suggests that there is no single method for educational game
design. This chart helps to expose the issues in lecture game design from multiple
angles. Game design has a large variety of aspects, depending on the specific case or
game content, and a trade-off is often necessary for a good design. It is usually
impossible to cover all of the aspects of the supportive theories.

5.3 Game Development as a Motivation for Lectures

The focus of GDBL is quite different from games used as a motivation for lectures, and
it has its own supportive theory and enabling technology. A systematic literature review
was conducted to obtain an overview of the GDBL field. Further, two quasi-
experiments were carried out to discover how to apply the technological aspects and

Chapter 5. Results

 72

supportive theory to co-design GDBL for lectures. First, a preliminary literature review
was conducted, focusing on GDBL within the software engineering field. However,
GDBL can also be applied in other domains. Therefore, another systematic literature
review was carried out to cover all possible applications of GDBL. At the same time,
two quasi-experiments were conducted. At the beginning of the first experiment, a
traditional software engineering course had to be modified to adapt to the GDBL
method, as mentioned in Section 4.4.3. After the preparations, one experiment was
conducted where XNA was used as a GDF in a software architecture course. Another
experiment focused on the use of Android as a GDF in the same course.

5.3.1 Literature review of GDBL

First, a tentative small-scale literature survey was conducted on the methods of
creating/modifying a game using a game development framework (GDF) as an
assignment to learn software engineering (SE). Based on the survey, the theoretical
context was identified to guide the design of using GDF in SE. Second, relevant GDFs
used in SE education were analyzed, namely Alice [139, 181-183], Scratch [184-186],
CeeBot Series [120], Warcraft3 Editors [43], Never Winter Night Toolsets [187],
Greenfoot [188], Game maker [189, 190], StarLogo TNG [191], and Wu’s castle [192].
According to the analysis of these cases and the author’s experiences, a general
recommendation was formulated for choosing an appropriate GDF for the SE education.
These results were published in paper GDF1.

Based on the above preliminary results, it was found that learning through
creating/modifying a game on a GDF can be used in CS or SE to study topics such as
data structures, development processes, artificial intelligence, graphics programming,
and team management. It was also found that game development could be applied to
fields other than CS and SE, such as literacy education [2]. In order to define the
research field accurately, this style of learning was labeled as game development based
learning – GDBL. The next step was to conduct a systematic literature review.
Specifically, the study aimed at critically reviewing published scientific literature on the
topic of the GDBL method utilizing game development frameworks (GDF). The
systematic review of online bibliographic databases, mentioned in Section 4.3, resulted
in selection of 34 relevant articles for the final study. Further, combined with the
characteristics of the GDBL method, three aspects of the articles were analyzed: (a)
pedagogical context and teaching process, (b) selection of GDFs, and (c) evaluation of
the GDBL method. The overview of 34 articles suggests that GDFs offer many potential
benefits as an aid to teaching computer science, software engineering, art design, and
other disciplines, and that such GDFs combined with the motivation from games can
improve students’ knowledge, skills, attitudes, and behaviors compared to traditional
classroom teaching methods. Through the systematic literature review, teaching
strategies guidelines were compiled for using the GDBL method in a curriculum,
identifying features of GDFs related to GDBL, and presenting a synthesis of the
available empirical evidence and impact factors on the educational effectiveness of the
GDBL method. The empirical evidence to support the educational effectiveness of
GDBL is still rather limited, but current findings indicate a positive overall picture. The
outcomes of the literature review were discussed in terms of their implications for future

Chapter 5. Results

 73

research, and they can provide useful guidance to educators, practitioners, and
researchers in the areas of GBL. These results can even be used by the GDF creators, as
suggestions are given what functionality a GDF should have to serve pedagogical
purposes. These results were described in the published paper GDF2.

5.3.2 Experiment 1 - XNA used as a GDF

In 2008, the students in the software architecture course could choose between two
domains in their project: Khepera robot simulation in Java or XNA game development
in C#. Independently of the domain chosen, the students had to go through the same
phases, produce the same documents based on the same templates, and follow exactly
the same process. Through the evaluation, the main conclusion was that game
development projects could be used successfully to teach software architecture. Further,
the results of the evaluation showed, among other things, that students who chose the
game project produced software architectures of higher complexity, and put more effort
into the project than the Robot project students. No significant statistical differences
were found in final grades awarded to the game project students as compared with the
Robot project students. However, the game project students obtained a higher grade in
their project than in the written examination, whereas the Robot project students scored
higher in the written examination than in their project. Finally, compared to the Robot
project students, those that chose the game project had fewer problems with COTS
affecting the architecture design and introducing technical challenges. In addition, in
order to simplify the development process of using XNA in education, a Microsoft
XNA extended library, XQUEST (XNA QUick & Easy Starter Template), was
developed for the software architecture course. The evaluation of the results showed
that XQUEST enhanced XNA suitability as a teaching aid in software engineering
learning, and that it can be a useful and helpful tool for students to understand XNA.
The detailed process and the results were published in papers GDF3, 4, 5, and 6.

5.3.3 Experiment 2 - Android SDK used as a GDF

This experiment focused on how to extend Google’s Android platform as a game
development tool to learn software architecture based on the double stimulation method,
mentioned in Section 2.2.2. During 2010-2011, students in the software architecture
course at NTNU could choose between four types of projects: development of a robot
controller using Java on the Khepera Robot Simulator, development of a game on the
XNA platform, development of a game on the Android platform, and development of a
social application on the Android platform. Independently of the chosen type of project,
all students had to go through the same phases, produce the same documents based on
the same templates, and follow exactly the same process. This study focused on the
Android projects, to determine how the application domain affects the course project
independently of the chosen technology. The results revealed some positive effects for
the students choosing game development compared to social application development
on Android SDK, for example motivation to work with games, a better focus on quality
attributes such as modifiability and testability during the development, production of
software architectures of higher complexity, and higher productivity in writing lines of
code. However, no significant differences were found in awarded grades between

Chapter 5. Results

 74

students choosing the two different domains. In addition, in order to simplify the game
development process using Android SDK in students’ assignment project, an extended
library, called “Sheep”, was developed to help the students in the game development on
Android platform. The final results were published in papers GDF7 and GDF8.

5.3.4 Summary for questions RQ3 and RQ4

This section is a summary of answers to questions RQ3 and RQ4 based on the
experiments related to topic 2 - game development as a motivation for lectures.

RQ3: What is game development based learning (GDBL) and what are the researchers’
views of GDBL?

This question consists of two parts. To answer the first part, the scope of GDBL, the
term GDF and a taxonomy for GDBL must be defined. GDBL integrates game
development and course knowledge in assignments based on the GDF. The GDF
denotes the development tools or platforms for the game development purpose. This
definition is based on the preliminary small-scale literature review and the first
experiment. To answer the second part, a systematic literature review was conducted to
identify research papers describing how GDBL was used in their studies. The most
relevant cases were collected and their content examined in terms of supportive theory
aspect, technical issues, teaching process, and evaluation results. Afterwards, through
the compilation of data from the literature review, the results reported by different
research papers were summarized. The data was extracted and summarized according to
the most common views of researchers. These related mainly to the supportive theory
for the design and evaluation process, as well as GDF features as the most important
technical issue. Three aspects were discussed from the point of view of a researcher: 1)
theoretical context to support the design of GDBL, 2) common technical issues in
GDFs, and 3) impact factors, both positive and negative, based on results of
experiments or evaluation of the teaching process.

RQ4: How can the GDBL be characterized in terms of supportive theories and current
technology-rich environment?

In order to answer this question, quasi-experiments were carried out with a focus on
using GDFs in GDBL based on the supportive theory such as the Project-based learning
methodology, mentioned Section 2.2.3, for the design or using the SUS, mentioned in
Section 2.4, for the evaluation. Specifically, the first experiment, conducted in 2008,
was to use XNA in software architecture. The second experiment, conducted in 2010-
2011, was to use Android in software architecture. Before the first experiment was
carried out the research context was investigated and some parts of the course changed
to match the GDBL. The experiment was prepared by designing questionnaires and
choosing metrics to assess the results. During the experiment, students were interviewed
to get feedback, the project implementation process was observed, source code and
documents from the assignments were analyzed, etc. In both experiments, experiences
using GDBL were accumulated and the issues, relevant to application of GDBL in
software architecture course, identified. Most of the issues encountered in the

Chapter 5. Results

 75

experiments were also mentioned and discussed in some of the reviewed literature, for
example selection of a suitable GDF for the course. Finally, based on the results of the
literature review and the analysis of data from quasi-experiments, a framework was
proposed to guide the design of GDBL. The results are detailed in the description of
contributions in the next section.

5.3.5 Contributions of the study

C3: Identification of a set of research themes and elements in GDBL.

First contribution to GDBL was to identify the research issues related to the research
goal based on the literature review and the experiments. Many aspects of GDBL deserve
to be studied, and it was not the intention to explore and solve all the problems
exhaustively. The most interesting and important issues in terms of the research goal
and experiments were investigated. Finally, four themes were selected and discussed in
relation to GDBL: 1) pedagogical context support, 2) teaching process, 3) taxonomy of
GDFs, and 4) selection criteria of GDFs for GDBL. For each research theme, some
relevant entities, which deserve to be discussed, were identified. A map illustrating
relations of themes and entities is shown in Figure 16.

Figure 16: Relations of themes and entities in GDBL

For the pedagogical context in Figure 16, there exist literature considering game
development - as opposed to game play - as a pedagogical activity in the classroom.
Seymour Papert presents a relevant conclusion - programming as one example of the
constructionist learning theory [43]. This can be a fundamental concept explaining the

Chapter 5. Results

 76

pedagogical context of GDBL. Based on Seymour Papert’s opinion, another question is
how to use the pedagogical theory to support the design. A possible response is double
stimulation [76] and Project-based learning to guide GDBL’s design, as mentioned in
Section 2.2. The above results support the validity of using a GDF in education from a
pedagogical point of view. Basically, they show that students creating games by
applying the course content on GDFs participate in a knowledge construction process,
and this process can be integrated with pedagogical theory support, for example double
stimulus or Project-based learning, to improve the learning process. For instance, when
double stimulus is chosen as pedagogical support, the learning design can be
decomposed into two main elements: one is a problem, task, or goal designed by the
teacher, and the other is the corresponding learning activity undertaken by students. The
first stimulus is the task or assignment, and the second stimulus is the tool chosen to suit
the first stimulus. The outcome depends on teachers’ capacity to keep the two elements
matching each other. A good task (first stimulus) with inappropriate GDF (second
stimulus) will not optimize the output. With this double stimulus support in mind,
teachers should find an appropriate approach to connect tasks and GDFs instead of just
focusing on one aspect. It is not recommended, for instance, to design the best possible
task but neglect the effort of selecting the GDF. This would not be the correct way of
applying double stimulus. Further, if the selected GDF always conflicts with the tasks,
changing the tasks or tools should be considered, including application of a non-game
tool. It implies that the double stimulus approach can support learning activity for both
GDBL and non-GDBL methods. The teachers should keep this in mind when they apply
double stimulus in teaching, and carefully analyze which tool is better for the course
aim and for the students.

Based on the survey and the experiments in this study, the necessary common steps
were identified for teaching based on the GDBL method:

The first step is to identify the explicit aims of a course. Since each course has its own
educational goal, applying GDBL methods should not hinder reaching the course aim.
When the course aim is clear, a common way to integrate GDBL in the course is that the
teacher designs an assignment where game development is required. Then, the students
develop a solution to this assignment in order to learn course content. When a teacher
considers applying GDBL in a certain course, she or he should find an entry point to
integrate GDBL with the course and its exercises.

The second step is the exercise design and the selection of one or more GDFs. When
applying a GDF in a certain course, the selection usually depends on the course content
and exercises types. Three types of game related exercises were recognized. The first
type is to modify a game or add a component to a game or simulation platform to
implement a complete game. The second type is to create a simple exercise using a GDF
to study or practice one or two concepts in the course content. The third type is to carry
out a complete game development project applying all concepts in the course. Usually,
the first and second types can be used at the beginning of a course as a transition period
when students are not familiar with the GDF environment, while the third type exercise
can be used as a final project. The main driver of exercise design depends on the course

Chapter 5. Results

 77

aim and students’ background. The selection of GDFs is governed by separate criteria
discussed later.

The third step is to include a tutorial lecture where the GDF is introduced to the
students.

The fourth step is to run an initial exercise, which should be easy and motivating, and
let the students become familiar with the development environment. If the allocated
teaching time is limited, classroom guidance teaching over several hours can be used.

The fifth and final step is to complete exercises, typically integrated in a lager project,
which includes the implementation of a game.

The GDFs can be classified as (a) game engines, (b) self-made GDF, (c) games or game
editors, (d) simulation platform, and (e) others common tools, which were already
mentioned in Section 2.5.3. To guide the choice of a GDF for GDBL, the GDFs are
further classified into two categories: GDFs for novices, and GDFs for developers. The
main focus of GDFs for novices, including non-programmers, is to provide visual
methods for customizing game templates and to allow creation or design of games with
little or no programming skills. The main focus of GDFs for developers is to offer
toolkits supporting development of high quality 2D/3D rendering, special effects,
physics, animations, sound playback, and network communication, in common
programming languages such as C++, C#, and Java. Table 16 presents a GDFs resource
pool based on the systematic literature review results. It includes XNA and Android
used as GDFs in the quasi-experiments. Note that the list of GDFs is not complete. It
mainly gives examples of GDFs from the literature review.

Table 16: Study of GDFs

 GDFs for novices GDFs for developers
Game
engine

Alice (http://alice.org); Scratch
(http://scratch.mit.edu);
Greenfoot (www.greenfoot.org);
Game maker
(www.gamemaker.nl)

FPS game engine: Torque game
engine /Unreal Engine
XNA (www.xna.com)/
XNACS1Lib framework/
XQUEST/ BiMIP

Self-made
GDF

StarLogo TNG -

Game or
Game
editor

Game editor: Warcraft3 Editors/
NeverWinter Night toolsets

-

Game platforms: Bomberman
/Wu’s Castle/ Critical Mass
board game/quiz-based web
game shell

-

Simulation
platforms:

- Simulation platforms: Spacewar
simulator/ RoboRally/ JGOMAS
MUPPETS/ SIMPLE framework

Common Maya/ Photoshop/Flash Android/Sheep

Chapter 5. Results

 78

tools (www.android.com)

The following common guidelines, based on the literature review and experiences, can
be followed when selecting a GDF: (a) Technical environment including costs to use
and acquire: Technical environment requirements specify operating system and
hardware, what tools are provided, what third-party tools are supported, and the
difficulty to install the GDF. For instance, a typical problem is that XNA runs only on
Windows, and many students now have PCs running Linux or Mac OS X. The technical
requirements might also be an economical issue, as the choice of GDF might force
hardware upgrades or paying for licenses. (b) Sufficient documentation to guide the
usage of GDFs: Students need to explore the GDF as an additional task before they start
game development on the GDF. If the resources and materials are sufficient and easy to
acquire for beginners, it will help them shorten the time spent on getting to know this
environment. (c) Matching the students programming expertise - easy to learn and
allowing rapid development: This issue is also driven by time-constraints. Usually, if
learning a GDF is not the main study aim in the course but rather an aid to learn
something else, learning a new GDF requires additional effort and time in the course
schedule. An easy and friendly environment is needed for the students to focus more on
the course content and less on the GDF. (d) Not in conflict with the educational goals of
the course: All GDFs have constraints related to course content in terms of how they
were designed or how they are released. For example in SE education, open source
GDFs make it possible to perform white-box testing on this GDF. Further, some GDFs
might have constrains on games design in terms of design and architectural patterns,
event-handling, ability to expand the functionality, and more. These constraints must be
integrated in the SE teaching to introduce the students to the real world where software
is rarely built from scratch. (e) Using a common programming language: This issue
applies to the types of GDFs for developers using commercial game engines with
widely known programming languages, like C#, Java, and C++, which are familiar to
the students. A common language is not really needed for the GDFs for novices, if the
course lets students know the data structures. In the long term, special programming
languages are not as useful as widely accepted and used programming languages if the
students will do more software programming in the future. (f) Flexibility to combine a
GDF with teaching materials and possibility to add/change libraries to be used within
the GDF: If GDFs are not easy to use, and not strongly relevant to the course content,
an additional high-level library with APIs can be created along with a user guide to
reflect course content in the GDF. (g) Amusement and interactivity: The GDF should
provide a visual and stable development environment to encourage students’ curiosity
and imagination. A game development assignment in a user-friendly game development
environment could be a good motivation for the students compared to traditional
assignments. For example, most students think that it is more interesting to work on
their own game project compared to a system for a bank.

C4: Identification of factors contributing to the success or failure of GDBL.

The systematic literature review and the experiments revealed the impact factors, which
could cause positive or negative outcomes of GDBL. The factors are categorized as

Chapter 5. Results

 79

positive, negative, or neutral (may cause both). The list below summarizes noteworthy
factors in applying GDBL:

1) Communication between the researcher and the teacher towards the understanding
of the course content: This item does not apply where the teachers and the researchers
(including GDF’s developers if any) are the same persons. If the method is designed by
the researchers independently and the researchers invite the teachers to adopt it in
schools, good communication and mutual trust are crucial to achieving the desired
effect. For instance, in each case the teachers should become comfortable with using
GDBL and spend more time on it compared to traditional method, otherwise a
misunderstanding or bias against GDBL may develop. The researchers may be
concerned that the teachers do not have a complete understanding how usage of games
can improve education, and how motivation through games can be used to improve the
course design. This indicates that researchers should help teachers in gaining self-
confidence, and provide constant support while the decision is made to apply GDBL in
a course.

2) Teamwork: This factor could have a positive or negative effect on the teaching
results. The team size and working environment must be considered in advance. For
example, laboratory environment with teamwork can help to improve the effectiveness
of cooperative learning. In addition, instant communication in a team has significant
impact. Group work can help weaker students, but unexpected situations can occur
during the teamwork to hinder the instant communication, so students need some
experience in working effectively in teams. Most of the case studies found in literature
provide the evidence that teamwork can be used together with GDBL and the nature of
teamwork is suitable for cooperative learning. However, a few articles described
examples of applying cooperative and competitive learning in the exercises, with a
positive feedback in both cases.

3) GDF relevance: There are three aspects which impact the outcomes: (a) advantages
of using interactive graphical GDFs (graphics can provide instant feedback, making
student engaged in programs), (b) a GDF can improve students’ confidence in handling
programming tasks, (c) it is necessary to analyze the features of GDF in the light the
course content, and detailed GDF tutorials should be conducted before it is used in later
exercises.

4) Students’ background: The current students’ background was presented in Section
1.2, showing that most of them played games as they were growing up. This is a
suitable pre-requisite to GDBL. The negative aspect is addictiveness of games. Some
students may focus too much on the game and game development thus loosing focus on
what they should learn in a course. This means that the design of the course and the
project must be carried out in such a way that the students are forced to learn and use
course content and theory to succeed in the project. It was also noticed that the diversity
of student background causes some difficulty in using GDBL. The programming
experience of the students strongly affects the choice of GDF between the ones for
novices and the ones for developers. For instance, to use XNA/XQUEST or
Android/Sheep for developers (Table 16), the students must know object-oriented (OO)

Chapter 5. Results

 80

programming well and be familiar with OO design patterns and OO principles. Some
other GDFs might require learning a specific simplified programming language for
game creation, which is more suitable for students without programming experience.

5) Teachers’ requirements: Teachers’ attitude to applying the GDBL method in the
course is the essential aspect of including GDBL in a teaching process. It is suggested
that the faculty should master relevant technical knowledge and skills in the GDF before
introducing GDBL. They should prepare and solve the anticipated problems they may
face during teaching. It is essential that the course staff have technical experience in the
selected GDF to provide help for students and to avoid the focus shifting from the
course content to technical matters.

6) Time-constraints and workload: The experiments and the literature survey showed
that limited time was a key problem when applying GDBL. It is suggested that students
read the background material carefully before the class in order to save class time for
actual exercises. Time constraints were particularly felt in the beginning phase. Some
students complained about insufficient time to complete the project. To help in time
management, a comprehensive time schedule should be prepared in advance for both
the teacher and the students.

C5: Framework of linked elements for the design of GDBL.

After validating all the important entities in the design of GDBL in contributions C3
and C4, guidelines for integrating a GDF in learning and teaching strategies were
created. Figure 17 shows a simplified high-level diagram giving an overview of the
design process of applying GDBL. It contains four elements (course aim, pedagogical
theory support, GDF resource pool, and impact factor), two methods (learning by
creating and learning by modifying games), standard six steps in teaching process, and
two roles (students and teachers).

Figure 17: A Guideline for technical and pedagogical co-design of GDBL

Chapter 5. Results

 81

The course aim has the fundamental impact on the selection of GDF and pedagogical
theory to support the teaching design. The GDF resource pool in Table 16 could be the
reference point for the selection of GDFs. Usually, during steps A and B in the teaching
process, the pedagogical theory support and GDF resource pool play important roles. The
impact factor of the GDBL should be considered for the whole process from the
beginning. Based on the course aim, pedagogical theory support, and GDF resource pool,
the teaching process starts with designing lectures and exercises using the selected GDF,
then lectures and tutorials covering course content and GDFs are prepared. Finally, the
course delivery starts and students begin the design and implementation of their projects.
For the evaluation framework, it is suggested that teachers/researchers collect data using
surveys. Based on the analysis of the collected data and teaching experiences, they can
improve the teaching process. Here, a compact case is used to explain how each element
in Figure 17 works in a certain course if the GDBL method is applied. The assumption
is that the course aim is to teach basic programming for beginners. The choice should be
made between “learning by modifying games” using a game editor with scripting, and
“learning by creating games” in a GDF for novices. Then, the relationships between the
problems and tools should be considered from the perspective of double stimulus, or
other pedagogical support theory should be used to construct the learning process, for
example Project-based learning. With this in mind and according to criteria for the
choice of GDFs, commonly used tools can be selected from the GDF resource pool -
GDFs for novices in Table 16 or another GDF if no suitable GDF is found in this table.
After finishing steps A and B in the teaching process, the lectures start with the
introduction to both exercises and GDFs. Later, the students commence the
implementation individually or in groups. During the whole teaching process, from A to
D, the impact factors are relevant but optional. For instance, a graphical interactive GDF
can be chosen, time to be spent on lectures and on exercises should be estimated.
Applying the impact factors in the teaching process depends on certain course
situations. The evaluation and analysis steps E and F in Figure 17 serve this purpose.
The feedback data can help to validate the choice in each step to determine whether the
right task or the suitable GDF was chosen and whether the focus is on the most relevant
impact factors in a specific course. In addition, because of the interaction between
various elements in GDBL, a deeper analysis and evaluation must take place. Thus, an
effective evaluation helps to validate the whole teaching process, and it is not judged by
teachers’ own experiences only.

Chapter 6. Evaluation and Discussion

 82

6 Evaluation and Discussion

This chapter revisits and justifies the choice of the research questions for this study
(Section 6.1), evaluates the contributions (Section 6.2), and examines the issues related
to internal, external, construct, and conclusion validity (Section 6.3).

6.1 Evaluation of Research Questions

6.1.1 Evaluation criteria

This section revisits the research questions and justifies why the particular research
questions were chosen. According to [25], there are some basic characteristics of good
research questions:

• Clear: They should be unambiguous and easy to understand.
• Specific: They should be sufficiently specific for it to be clear what

constitutes an answer.
• Answerable: It should be possible to see what data are needed to answer

them and how those data must be collected.
• Interconnected: The questions should be related in some meaningful way,

forming a coherent whole.
• Substantively relevant: They should be worthwhile, non-trivial questions

worthy of the research effort to be expended.

In order to evaluate each research question, they are classified according to the purposes
of enquiry as “exploratory”, “descriptive”, “explanatory”, and “emancipatory”.
According to [25]: “The exploratory question is almost exclusively of flexible design. It
is to find out what is happening, particularly in little-understood situations to seek new
insights or to assess phenomena in a new light or to generate ideas and hypotheses for
future research. The features of descriptive question are typically to portray an
accurate profile of persons, events or situation and require extensive previous
knowledge of the situation, to be researched or described, so that you know appropriate
aspects on which to gather information. The explanatory question seeks an explanation
of a situation or problem, traditionally but not necessarily in the form of causal

Chapter 6. Evaluation and Discussion

 83

relationships and explains patterns relating to the phenomenon being researched to
identify relationships between aspects of the phenomenon. The features of emancipatory
question are to create opportunities and the will to engage in social action.”

6.1.2 Evaluation of the research questions

Research questions in both topics - “game as a motivation for lectures” and “game
development as a motivation for lectures” - relate to same research goal - “use
supportive theory and current computer technology as dual basis to facilitate lecture
games in the current technology-rich environment”. The evaluation of the research
questions is discussed based on the criteria for a good research question in Section 6.1.1
except the item of ‘answerable’ since it was already addressed in Chapter 5.

The first two questions in topic 1 are exploratory enquiries. For RQ1 - “How can
supportive theory be identified to guide the design and evaluation of lecture games?”,
understanding of the phenomena was attempted, and useful distinctions were identified
to clarify the understanding. In that sense, the first question is suitable for addressing
the research themes and exploring various interesting issues within the themes. It is a
further step to explore the research goal from the aspect of game as a motivation for
lectures. As an exploratory question, it is not vague. It identifies the research context,
research aim, research objects, and research orientation in a more relevant specific way
than the research goal by itself. The sub-question for RQ1, RQ1.1, “What is supportive
theory within the context of lecture games?” is a descriptive enquiry leading to an
overview of relevant themes and gathering information. It prepares for sub-question
RQ1.2 “How can relevant theoretical framework be setup and applied in the design and
evaluation of lecture games?”. RQ1.2 is an exploratory question, which means that it
proposes more specific tasks and orientation for the case study. Characteristically to
exploratory and descriptive enquiry, a flexible design case study is usually chosen to
obtain an answer. As a whole, the relationship between sub-questions is substantively
relevant to answering the main question RQ1 in a specific and feasible way, because
RQ1.1 is the preparation for RQ1.2. They constitute two steps for exploring RQ1.
Therefore, the design of this research question followed the criteria for a good question.

RQ2 - “How can current relevant technology and appropriate peripherals be used to
provide various play experiences in new lecture games?” - represents another aspect of
the research goal. RQ1 focuses on the supportive theory aspect, while in RQ2 the
emphasis is on the technical issues of the Lecture Games project. It is a research issue
stemming from the research goal. RQ2 is still an exploratory question since most of
technology appeared after 2007, e.g. iPhone, so there was little previous experience and
research work to refer to. This research resembles an exploration through a tentative
study. RQ2 identifies the important factor of how current popular devices relate to
lecture games. Examination of this issue requires an overview of the current situation,
addressed by a descriptive research question, RQ2.1 - “What current technology and
peripherals are relevant to GBL?”. The specific research orientation is expressed by
RQ2.2 - “How can these technologies be integrated into Lecture Games project and
evaluated?”. RQ2.1 and RQ2.2 have the attributes similar to RQ1.1 and RQ1.2. It
should be noted that a descriptive research question is essential for an unfamiliar or

Chapter 6. Evaluation and Discussion

 84

unexplored topic. A preliminary overview of a field provides a foundation for further
research. In this case, RQ2.1 provides a research base for RQ2.2.

The above analysis indicates that RQ1 and RQ2 are at the same level, and the structure
of their sub-questions is the same. It is an explicit explanation of the research goal in
terms of game as a motivation for lectures. The degree of clarity and specificity of the
research goal and the research questions with their sub-RQs is being gradually
strengthened. The questions are interconnected and compact, and no third research
question is need for this research topic.

In topic 2, RQ3 - “What is game development based learning (GDBL) and what are the
researchers’ views of GDBL?” is a descriptive question addressing the current status of
GDBL and motivation for this research. All of its sub-RQs are also descriptive
enquiries. It leads to the definition of GDBL (RQ3.1), explores the main technical
issues (RQ3.2), and reveals the current status of GDBL (RQ3.3). All of these sub-
questions are specific and clear, and they correspond to the different aspects of RQ3.

RQ3 is the preparation for RQ4: “How can the GDBL be characterized in terms of
supportive theory and current technology-rich environment?” In order to answer this
question, a literature review and experiments were conducted to collect sufficient data
for extracting essential elements from the implementation of GDBL. It should be
considered what kind of technical tools could be used, what kind of courses could be
taught with GDBL, and what is the final feedback from the students. All of these issues
are covered by RQ4.1: “How can the GDBL method be adopted in a software
architecture course and what is the students’ perception of the GDBL method?” After
gathering experiences in the experiments and the literature review, it was possible to
establish a framework to guide the GDBL design at a high level to provide an answer to
RQ4.2. All of these questions are linked in a logical sequence. The sub-RQs help to
specify the steps of research work, they are sufficient to explain the study, and they are
non-trivial questions worthy of the research effort. A summary of evaluation results
based on the criteria in Section 6.1.1 is shown in Table 17.

Chapter 6. Evaluation and Discussion

 85

Table 17: Evaluation of research questions
RQ Type Clear Specific Answerable Interconnected Relevant
RQ1 Exploratory Not

vague
and

easy to
underst

and

Identify
the

research
context,
research

aim,
research
objects,

and
research

orientation
to a more
specific
degree

than the
research

goal

Already
addressed in

Chapter 5

Together with R2
to address

research goal

One aspect of
research goal

in topic 1
RQ1.1 Descriptive Prepare for

RQ1.2
Two steps to
answer RQ1

RQ1.2 Exploratory Answer RQ1
RQ2 Exploratory Together with R1

to address
research goal

Another aspect
of research

goal in topic 1
RQ2.1 Descriptive Prepared for

RQ2.2
Two steps to
answer RQ2

RQ2.2 Exploratory Answer RQ2
RQ3 Descriptive Prepare for

answering R4
Overview of

topic 2
RQ3.1 Descriptive Overview of

three aspects of
R3

Three steps to
answer R3 RQ3.2 Descriptive

RQ3.3 Descriptive
RQ4 Exploratory Address research

goal
Results of

topic 2
RQ4.1 Exploratory Prepare for

answering R4.2
Another aspect

of R4
RQ4.2 Exploratory Answer R4 Together with

R3 and R4.1 to
address

research goal
in topic 2

6.2 Evaluation of Contributions

This section evaluates the contributions of this research with respect to the state of the
art. The focus is on the novelty of these contributions and the impact they have in the
research area. There are two contributions in topic 1 - game as a motivation for lectures,
and three contributions in topic 2 - game development as a motivation for lecture.

6.2.1 Evaluation of contributions in game as a motivation for lectures

The study of topic 1 did not provide a single solution or method for the design of
educational games. Instead, the design and implementation process was analyzed to
identify the experiences contributing to the theoretical construction of lecture games.

The first contribution is the identification of the research issues, which intersect games
and learning in the current technology-rich environment. With respect to the state of the
art, few similar studies for systematic theoretical construction in this area took place so
far. In this study, the focus is on the theoretical foundation and the impact of current

Chapter 6. Evaluation and Discussion

 86

technology on the design of educational games defined as “supportive theory” and
“enabling technology”. Four case studies were carried out to investigate how supportive
theory and enabling technology enhanced and enriched the game play and learning
process. Since GBL is a relatively new research field, the case studies helped to justify
the need for more focus not only on the impact of technology, but also on the
construction of theoretical basis for the design and evaluation of lecture games.

The second contribution goes one step further, proposing an analysis chart of applying
supportive theory and enabling technology as dual guidance in the study of educational
games for lectures. With respect to the state of the art, this is the first conceptual chart
describing the intersection of different disciplines in GBL. This research work deals
more specifically with lecture games being the intersection between lectures and games.
The chart provides a knowledge base for understanding the issues in lecture games
design. Further, the relevant theories and criteria were selected to enrich each element in
the chart in order to provide more choices in a game play according to the specific game
genre and research aims.

6.2.2 Evaluation of contributions to GDBL

The study of topic 2 led to a definition of a new term, GDBL, to denote the method of
“learning through game design or game development.” It extends GBL with more
variety from game to game development in order to motivate the learning. Since no
complete description or reviews in this field exist, it was explored by conducting a
systematic literature review and two quasi-experiments.

The third contribution is the identification of a set of research themes in GDBL. It
reveals research issues from the perspective of supportive theory and enabling
technology. With respect to the state of the art, several other cases of using GDBL in
specific courses were examined, but neither of them involved a collection of all similar
cases or identified common research elements in GDBL. In this study, these research
issues were examined at a high level. All common issues were recognized by the
systematic review of specific studies in GDBL and summarized in a systematic way.
This is the first attempt to identify the research scope and research issues regarding
GDBL in a scientific way. These research issues enrich the theoretical construction of
GDBL, extending the GBL field by including GDBL.

The fourth contribution is the identification of the factors affecting the success or
failure of usage of GDBL. These impact factors were discovered with the help of
experiences gained in experiments and the systematic literature reviews since no prior
studies existed with respect to the state of the art. This study should help researchers
and educators to identify the weaknesses, to avoid unnecessary losses, and to increase
the potential for success in the GDBL design.

The fifth contribution is a framework of linked elements for the design of GDBL. This
is a high-level summary of the GDBL process. It explains how each research issue
relates to the GDBL field. With respect to the state of the art and the systematic
literature review, this is the first conceptual framework to describe GDBL. This

Chapter 6. Evaluation and Discussion

 87

framework could be seen as an introduction to GDBL and it shows relationships among
the elements of GDBL. It can help educators to understand this field and guide the
usage of GDBL in their courses.

6.3 Evaluation of Validity Threats

Three research methods were used in this research: case study, literature review, and
quasi-experiment. Each method is subject to validity threats, which must be considered
during the research process.

In regards to the flexible design case study, Maxwell [193] identified the areas of threats
to validity in qualitative research as description, interpretation, and theory. All of these
are considered as internal threats to validity. The external validity may not be an issue
[25]. The strategy for dealing with internal threats to validity can be prolonged
involvement, triangulation, peer debriefing/support, member checking, negative case
analysis, and audit trail.

Bootes and Beile (2005) [27] created a five-category rubric for evaluating internal
validity threats to a literature review. They used this scoring rubric to rate a selected
sample of 12 education-related academic dissertations. The external validity threats
were discussed in terms of Dybå and Dingsøyr [194] proposition.

For the fixed design quasi-experiment, the threats to validity include construct validity,
internal validity, and external validity. They will be discussed individually.

6.3.1 Threats to validity of case studies

Maxwell [193] identified the areas of threats to validity in qualitative research for a case
study as: description, interpretation, and theory. Description and interpretation were
investigated in this case study. According to Maxwell, “the main threat to provide a
valid description of what we have seen or heard lies in the inaccuracy or
incompleteness of the data. The main threat to provide a valid interpretation is that of
imposing a framework or meaning on what is happening rather than this occurring or
emerging from what we learn during our involvement with the setting.” Finally, Padgett
[195] proposed strategies for dealing with such threats, as shown in Table 18.

Table 18: Strategies for dealing with threats to validity
Strategy Threat to validity

(reactivity)
Researcher

bias
Respondent bias

Prolonged
involvement

Reduces threat Increases threat Reduces threat

Triangulation Reduces threat Reduce threat Reduces threat
Peer

debriefing/support
No effect Reduce threat No effect

Member checking Reduces threat Reduce threat Reduces threat
Negative case No effect Reduce threat No effect

Chapter 6. Evaluation and Discussion

 88

analysis
Audit trail No effect Reduce threat No effect

These strategies can serve as the evaluation criteria. In this case study, triangulation,
peer debriefing, member checking, and negative case analysis were used since
prolonged involvement, which is used in ethnography, was not suitable. In particular,
triangulation is a valuable and widely used strategy. Denzin [196] distinguished four
types of triangulation. For the first, “data triangulation”, more than one method was
used for the data collection, namely: questionnaire, observation, and interviews. For the
second, “observer triangulation”, there were more than two observers in the study. For
the third, “methodological triangulation”, both quantitative and qualitative approaches
were used. For the fourth, “theory triangulation”, more than one theory was used to
support the case study design. The “peer debriefing and support” and “member
checking” were applied in some instances in this case study. The “negative case
analysis” was not used, but both positive and negative experiences in this study were
described in detail in the published papers. Audit trail was not suitable for this case
study research.

According to [25], the external validity, construct validity, and conclusion validity do
not relate to case studies.

6.3.2 Threats to validity of literature review

Internal validity

As mentioned above, Bootes and Beile [27] created a five-category rubric for evaluating
a literature review, shown in Table 19: coverage, synthesis, methodology, significance,
and rhetoric.

Table 19: Boote and Beile’s literature review criteria
Category Criterion
1 Coverage A. Justified criteria for inclusion and exclusion from review.
2. Synthesis B. Distinguished between what has been done in the field and what

needs to be done.
C. Placed the topic or problem in the broader scholarly literature.
D. Placed the research in the historical context of the field.
E. Acquired and enhanced the subject vocabulary.
F. Articulated important variables and phenomena relevant to the
topic.
G. Synthesized and gained a new perspective on the literature.

3. Methodology H. Identified the main methodologies and research techniques, which
have been used in the field, and their advantages and disadvantages.
I. Related ideas and theories in the field to research methodologies.

4. Significance J. Rationalized the practical significance of the research problem.
K. Rationalized the scholarly significance of the problem.

5. Rhetoric L. Was written with a coherent, clear structure, which supported the

Chapter 6. Evaluation and Discussion

 89

review

The literature review was conducted strictly following the process in Table 19. The
literature review lasted three months and the whole process was described in detail in
Section 4.3. The results of the review were presented with references to the literature.
Search keywords were updated and modified in order to gather more relevant articles.
Relevant articles from other search results were allowed as alternative sources.
Searching the references cited in the relevant articles offered multiple data sources. The
interpretation bias or subjectivity was removed by having two third parties read each
paper before including it in the review.

External Validity

Dybå and Dingsøyr [194] suggested that in the context of a systematic review, external
validity is concerned with whether or not the study is posing an appropriate research
question. They also said that the assessment depends on the purpose for which the study
is to be used. External validity is closely connected with the generalizability and
applicability of the study’s findings. The framework shown in Figure 17 was extracted
from a systematic literature review following a detailed design process, and similar
conclusions were also found in GDBL experiments. In addition, a list of the articles
included in the review and the conclusions reached were provided to readers in
Microsoft Word format, thus the proposed interpretation could be checked.

Construct validity and conclusion validity do not relate to literature reviews.

6.3.3 Threats to validity of quasi-experiment

Internal Validity

For quasi-experiment as a fixed design, there are a few threats to its internal validity
[197], e.g. testing, maturation or selection of subjects. Any of them may affect to the
experimental evidence that supports the conclusion. In an experiment, it concerns “the
validity of inferences about whether observed co variation between A (the presumed
treatment) and B (the presumed outcome) reflects a causal relationship from A to B as
those variables were manipulated or measured” [198]. So the conditions for this
causality include that A and B must be related and there should not be other
confounding, unwanted extraneous factors affecting the changes of B. In the light of
such criteria, researchers can use experimental design to reduce the threats to this
internal validity.

There are two main internal validity threats to this evaluation. The first internal threat is
that the sample of the two groups used in the evaluation was not randomized. The
students were allowed to choose freely either a game project or a non-game project. It
does not appear that one specific type of student chose one project over the other, which
could harm the evaluation results. The collected data did not reveal any major
differences between the two groups. The second internal threat would exist if there were
differences in how the students conducted the project depending on the domain chosen.

Chapter 6. Evaluation and Discussion

 90

In this quasi-experiment, the students had to go through exactly the same phases in the
project and deliver exactly the same documents based on the same document templates.

External Validity

External design validity denotes whether conclusions from an experiment can be
generalized and if they are valid for cases or groups beyond the experiment at hand.
Typical threats to external validity include pre-test effects, post-test effects,
experimental setting or the subject's knowledge [199]. In relation to an experiment, the
issue of external validity concerns “whether a causal relationship holds (1) for
variations in persons, settings, treatments, and outcomes that were in the experiment
and (2) for persons, settings, treatments, and outcomes that were not in the experiment”
[198]".

The results of the quasi-experiments are most relevant for teachers who consider
introduction of game projects in their software architecture course. Further, the results
are also relevant for teachers who want to introduce game projects in SE and CS
courses, as many of these courses have similar characteristics. A limitation of this study
is that the subjects in the evaluation are CS or SE students who have completed their
first three years of study. It is not evident that the results are valid for students without
any or less than three-year background in CS or SE.

Construct Validity

Construct validity concerns “the degree to which inferences are warranted, from (1) the
observed persons, settings, and cause and effect operations included in a study to (2)
the constructs that these instances might represent. The question, therefore, is whether
the sampling particulars of a study can be defended as measures of general constructs”
[198].

In the evaluation of using a game project in a software architecture course, the research
goal was to investigate whether a game development project was suited for teaching this
course. The GQM approach was chosen to decompose this goal into four research
questions with supporting metrics, described in Section 4.3.3. The answers to these four
research questions are based on the data sources and metrics collected in the software
architecture course run at NTNU. It cannot be claimed that the selected data sources and
metrics in the evaluation support all the conclusions, but they are all strong indicators
contributing to interpretation of the differences between the two project types. In the
evaluation, various methods were used for comparing the results. The choice of
methods was based on the best way of describing and visualizing the differences
between the two groups using the available data.

Chapter 7. Conclusions

 91

7 Conclusions

This chapter concludes this thesis based on the empirical data that were gathered. The
conclusions confirm the validity of the idea of combining supportive theory and technology
as dual basis to study lecture games, especially in the construction of the theoretical
foundation for the design of lecture games. This project contributes to this aspect of the field
further and thus constitutes a contribution to the GBL field.

7.1 Contributions

Five contributions were presented in this thesis. For an interdisciplinary field, it is important
to achieve a good understanding of the research area and to position the research in respect to
the state of the art. The contributions are based on the evaluation of the case studies in topic 1
as well as the literature review and the experiments in topic 2.

Regarding the contributions related to game as a motivation for lectures, a weakness was
identified in the theoretical foundation of GBL, namely that educational games are mainly
designed based on designer’s personal ideas and experiences. The research goal was to
enhance the theoretical foundation of the design process for GBL. The study started by taking
concepts from pedagogical theory, then adding game design theory and other criteria, which
can benefit the educational game design. This has been an interesting and encouraging
process, which contributed to the theoretical foundation of GBL. The evaluation data of the
case studies show that the games used as an aid to the formal lectures have a positive effect
on students’ motivation for exercises as well as enhancing the socialization of students in the
lectures. However, it also shows a negative feedback from students, with excessive focus on
the games, and not substantially increasing the attendance rate in the classrooms. This
deserves further research and improvement. A practical process for the design of educational
games was proposed based on experiences in the four case studies and an analysis chart for
this design process was constructed. Researchers and educators can use these contributions to
analyze various aspects of the design of lecture games, to remove weaknesses, and to identify
the ignored parts when designing a lecture game. In a specific situation, many features of the
supportive theory can come into play, e.g. a game concept or game genre may be a constraint
to applying all aspects of supportive theories, where only some parts of them fit a certain
lecture game. Additionally, designers who lack understanding of the supportive theory or
lecture content may base the game design on wrong premises. Therefore, this contribution

Chapter 7. Conclusions

 92

can reduce the possibility of failure, although it cannot guarantee the success of every lecture
game design process.

Regarding the contribution to the topic of game development as a motivation for lectures, the
term “Game Development Based Learning”, GDBL, was proposed to define the research
scope and its methods. With the unified research goal for both topics, the focus was on the
supportive theory construction and technical issues in using GDBL. Two quasi-experiments
were carried out and a new method, GDBL, proposed to teach software architecture. Based
on the experiments, it was found that students could benefit from putting more effort into
project exercises, and better understanding of course content. On a negative side, additional
time must be spent on game development, which might not be directly related to the course
aim. Further, a literature survey was performed to investigate possible fields where GDBL
can be used. Through a systematic literature survey, it was found that GDBL could be used in
fields other than software engineering and computer science, e.g. literacy education in
primary school. Through combining the experiences in the experiments and the literature
review, a framework was proposed to guide the design of GDBL. In addition, the supportive
theory was compiled to support the design of GDBL, the criteria for selecting GDFs were
proposed, and the GDBL output impact factors were identified as the final contribution.

7.2 Limitations and Future Work

This section briefly discusses the limitations of this work, and then it outlines how future
work can be carried out based on this PhD research.

For the game as a motivation for lectures, the case studies were conducted to answer the
research questions. Although four cases should be sufficient to find most of the answers,
there are still limitations, which cannot be avoided.

Each research question is supported by two relevant case studies. The results are summarized
based on these case studies. Most of the generalization for answering research questions is
based on the experiences in the case studies and the existing theories. There may exist other
circumstances not encountered in the case studies and, thus, ignored due to limited
experiences. More case studies should be carried out to increase the precision and quality of
the conclusions.

To reduce the limitations of the research on “game as a motivation for lectures”, further work
may include:

• Testing lecture games in various game genres with more supportive theories: In the
case studies, collaborative learning and intrinsic motivation were mainly used to guide
a multiplayer quiz-based concept, and the concept was evaluated with the GameFlow
model. However, other game genres with suitable learning strategies or game design
theory support should be explored.

• Exploring pervasive learning games: Game technology develops very fast, and
provides more ways to enhance playing experiences, such as pervasive learning
games. One of the case studies, ACG, was a tentative study to integrate pervasive
technology in a learning game, but it was far from exhausting the full potential of

Chapter 7. Conclusions

 93

pervasive learning games. It appears that this new research area is quite interesting,
and thus deserves more exploration.

• Systematic literature review: GBL is a relatively large and new field, and there is no
systematic literature review in this area. One serious obstacle for this kind review is
the time and effort required filtering out thousands of irrelevant articles. A possible
solution is to narrow down the topic to a specific discipline, such as physical
education or primary education. Such work would help to form more concrete
conclusions as the topic is narrowed down.

• Establishing closer collaboration with related disciplines. GBL is a cross-disciplinary
field and the theoretical foundation for lecture games, as it was presented in this
thesis, comes from related disciplines, e.g. pedagogical field and game design field. In
order to apply these supportive theories correctly in design of games, it would be
beneficial to establish a closer collaboration with the researchers in these fields and to
get a more in-depth understanding of lecture games.

The purpose of all the above work was to enrich the theoretical foundation of GBL in order to
formulate a systematic theory to guide the educational game design.

For the research of game development as a motivation for lectures, two quasi-experiments
and a systematic literature review were carried out. Even though a systematic literature
review can enhance the generalization of the results, there are still some limitations in this
study.

With the experience of conducting this literature review, the following limitations were
identified: (a) The scope of data search and collection from four scientific search engines is
relatively limited; (b) Due to the fact that game research field is newer than other traditional
research fields, the number of articles with empirical data is still limited in the survey. It may
affect the evaluation results in terms of generalization; (c) Some topics deserve further
discussion, for instance cross-disciplinary courses. A game development course covers
programming and art of design, and a machine course focuses on 3D-animation and movie
creation. Both of them could be further explored since the GDFs play different roles in these
two courses. In the game development course, the GDF is used as the main tool for
development, while in the machinima course the GDF is an innovative auxiliary tool.

In the experiments conducted for this study, the exact experimental process was not followed
and this is why they were categorized as quasi-experiments. One explanation is that the
course situation is not a real experiment environment, and it cannot be assumed that the
students will follow the experimental process, e.g. with half of them choosing game project
and half of them choosing the non-game project. In the actual situation, they were free to
choose the project they liked, making the sample of subjects not random.

To reduce the limitations in research of “game development as a motivation for lectures”,
further work could be enhanced in the following aspects:

• Finding a suitable environment allowing for a controlled experiment, strictly
following the experimental design to control all inputs of the experiments: This

Chapter 7. Conclusions

 94

could increase the confidence in the results and reduce other negative factors
affecting the output.

• Setting different goals for the experiments: For the double stimulus experiment,
there are different outcomes depending on levels of education. In the experiments
in this study, it was found that GDBL could have a positive effect in higher
education. The difference of outcomes depends on what kinds of tools are used in
the course. This means that researchers can use a different combination of
GDF/non-GDF tools/no-tools, and a different educational level: primary
education, secondary education, or higher education. For instance, it would be
interesting to explore the combination of GDF/no-tools in primary education to
compare the results of GDBL and non-GDBL.

• Adding more resources to systematic literature reviews: The systematic literature
review covered papers up to the year 2010. Since that time, more articles have
been published in this area. Inclusion of newer data would enhance the
summarized conclusions regarding GDBL.

• Enriching the GDF resource pools: Teachers may need new GDFs for a specific
course or find more GDFs, which can be used for GDBL. The continuous
development of hardware and software technology means that old GDFs will be
replaced.

• Finding new fields for GDBL: As the survey of the systematic literature review
showed, GDBL can be applied to fields other than software engineering and
computer science, and beyond higher education. There exist cases where GDBL
was used in primary education or literacy education. These are indicators that
GDBL can be applied in more fields.

GDBL is a new and original definition of a term as well as a research field established
through this thesis. Further work should mainly focus on exploring many opportunities within
GDBL including more evaluation data to improve this approach in the future.

7.3 Concluding Remarks

Finally, the contributions of this research add to the knowledge base in the interdisciplinary
research area of games and learning. Researchers can get an overview of this area based on
the investigation presented in this thesis and derive research directions from the research
issues identified here. This study has shown that both games and game development do have
the potential power to help students learn various curricula. It is hoped that this study will
provide a useful guidance to educators, practitioners, and researchers in the area of GBL,
including GDBL.

Reference

 95

8 References
[1] M. Prensky, "Digital game-based learning," Computers in entertainment, vol. 1,

pp. 21- 24, 2003.
[2] R. Owston, et al., "Computer game development as a literacy activity,"

Computers & Education, vol. 53, pp. 977-989, 2009.
[3] B. A. Myers, "A brief history of human-computer interaction technology,"

Interactions, vol. 5, p. 44, 1998.
[4] J. Kirriemuir and A. McFarlane, "Literature review in games and learning,"

Report 8.2004.
[5] S. I. d. Freitas, "Using games and simulations for supporting learning,"

Learning, Media and Technology vol. 31, 2006.
[6] T. Vold and S. McCallum, "Gamers and learning," 2011, pp. 1-4.
[7] E. F. Provenzo, Video kids: Making sense of Nintendo, 1991.
[8] R. F. Bowman, "A Pac-Man theory of motivation. Tactical implications for

classroom instruction.," Educational Technology 22(9), 14-17., 1982.
[9] J. E. D. Driskell, D.J., "Microcomputer videogame based training.," Educational

Technology, 24(2), 11-15., 1984.
[10] G. W. Bracey, "The bright future of integrated learning systems.," Educational

Technology, 32(9), 60-62., 1992.
[11] S. De Freitas and M. Griffiths, "Online gaming as an educational tool in learning

and training," British Journal of Educational Technology, vol. 38, pp. 535-537,
2007.

[12] W. N. Holmes, "The myth of the educational computer," Computer, vol. 32, p.
36, 1999.

[13] K. Squire, "Cultural Framing of Computer/Video Games," the international
journal of computer game research, vol. 2, 2002.

[14] R. Paharia. (Sep. 2012). Who coined the term “gamification”? Quora, .
Available: http://goo.gl/CvcMs

[15] M. McDonald, et al., Using Productivity Games to Prevent Defects: Microsoft
Press, Redmond, 2008.

[16] M. V. Grace and J. Hall, "Projecting Surveillance Entertainment.," in
Presentation, ETech, San Diego, CA, 2008.

[17] D. Takahashi. (2008, Funware’s threat to the traditional video game industry.)
Available: Venturebeat http://goo.gl/O9lSq

[18] J. Ferrara, "Playful Design. Creating Game Experiences in Everyday Interfaces,"
New York.

[19] A. Dignan, "Game Frame: Using Games as a Strategy for Success ," 2011.
[20] S. Priebatsch. (2011, The Game Layer on Top of the World. Available:)

http://goo.gl/DnwBH
[21] D. Helgason. (2010, Trends. Unity Technologies Blog,). Available:

http://goo.gl/AZ4vm.
[22] G. Zicherman. (2011, A Long Engagement and a Shotgun Wedding: Why

Engagement is the Power Metric of the Decade). Available: http://goo.gl/jlaO0.
[23] S. Deterding, et al., "From game design elements to gamefulness: defining

"gamification"," presented at the Proceedings of the 15th International

Reference

 96

Academic MindTrek Conference: Envisioning Future Media Environments,
Tampere, Finland, 2011.

[24] S. McCALLUM, "Gamification and serious games for personalized health,"
Phealth 2012: Proceedings of the 9th International Conference on Wearable
Micro and Nano Technologies for Personalized Health, p. 85, 2012.

[25] C. Robson, Real world research, 1997.
[26] B. J. Oates, Researching Information Systems and Computing: SAGE

Publications Ltd, 2006.
[27] D. N. Boote and P. Beile, "Scholars before researchers: On the centrality of the

dissertation literature review in research preparation.," Educational Researcher,
vol. 34(6), pp. 3-15, 2005.

[28] A. I. Wang, et al., "LECTURE QUIZ - A Mobile Game Concept for Lectures,"
presented at the In 11th IASTED International Conference on Software
Engineering and Application (SEA 2007), 2007.

[29] T. W. Malone, & Lepper, M. R., "Making learning fun: A taxonomy of intrinsic
motivation for learning," Aptitude, Learning, and instruction. , vol. Volume 3:
conative and effective process analyses, pp. (223-253), 1987.

[30] M. Zyda, "From visual simulation to virtual reality to games," Computer,, vol.
38(9), pp. 25-32, 2005.

[31] D. Michael and S. Chen, "Serious games: Games that educate, train, and
inform," 2006.

[32] K. Corti. (2006, Games-based Learning; a serious business application.
PIXELearning Limited. Available:
www.pixelearning.com/docs/games_basedlearning_pixelearning.pdf

[33] T. Susi, et al., "Serious Games – An Overview," in Technical Report 2007-02-
05.

[34] S. Egenfeldt-Nielsen, et al., Understanding video games : the essential
introduction. New York: Routledge, 2008.

[35] B. Sawyer and P. Smith., "Serious Games taxonomy," 2008.
[36] J. P. Gee, "What video games have to teach us about learning and literacy,"

Computers in entertainment, vol. 1, p. 20, 2003.
[37] L. Natvig, et al., "Age of Computers: An Innovative Combination of History and

Computer Game Elements for Teaching Computer Fundamentals," in
Proceedings of the 2004 Frontiers in Education Conference, 2004.

[38] R. F. Lyvers, "A unique instructional tool for visualizing equipotentials and its
use in an introductory fields course," IEEE transactions on education, vol. 36, p.
237, 1993.

[39] R. S. Limited. (2008, 29th,March). Buzz!: The Schools Quiz. Available:
http://www.relentless.co.uk/games/buzz-schools-quiz

[40] T. Ø. Alf Inge Wang, and Ole Kristian Mørch-Storstein., "LECTURE QUIZ - A
Mobile Game Concept for Lectures.," presented at the In 11th IASTED
International Conference on Software Engineering and Application (SEA
2007),, 2007.

[41] L. Arts. 8th, March, 2010). Lucas Learning. Available:
http://www.lucaslearning.com/edu/lesson.htm

[42] M. MIT. 8th,March,2010). Games-to-Teach. Available:
http://www.educationarcade.org/gtt/index.html

Reference

 97

[43] M. S. El-Nasr, "Learning through game modding," Computers in entertainment,
vol. 4, 2006.

[44] L. Joe and S. Amber, "Teaching game programming using XNA," presented at
the Proceedings of the 13th annual conference on Innovation and technology in
computer science education, Madrid, Spain, 2008.

[45] M. Overmars, "Teaching computer science through game design," Computer,
vol. 37, p. 81, 2004.

[46] A. I. Wang, "An application of a game development framework in higher
education," International Journal of Computer Games Technology, vol. 2009, p.
1, 2009.

[47] W. K. Chen, "Teaching object-oriented programming laboratory with computer
game programming," IEEE transactions on education, vol. 50, p. 197, 2007.

[48] J. Ryoo, "Teaching object-oriented software engineering through problem-based
learning in the context of game design," in 21st Conference on Software
Engineering Education and Training, 2008, p. 137.

[49] S. McCallum, et al., "Creating a Computer Game Design Course," Proceedings
of the New Zealand Game Developers Conference,(NZGDC), 2004.

[50] B. Brown, MacColl, I., Chalmers, M., Galani, A., Randell, C., and Steed, A.,
"Lessons from the lighthouse: collaboration in a shared mixed reality system.,"
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Florida, USA, April 05 - 10, 2003, 2003, pp. p. 577-584.

[51] M. J. McAlister and X. Peng Hui, "Using a PDA for mobile learning," in
Wireless and Mobile Technologies in Education, 2005. WMTE 2005. IEEE
International Workshop on, 2005, p. 3 pp.

[52] G. Schwabe and C. Göth, "Mobile learning with a mobile game: design and
motivational effects," Journal of Computer Assisted Learning, vol. 21, pp. 204-
216, 2005.

[53] R. E. Grinter, Aoki, P. M., Szymanski, M. H., Thornton, J. D., Woodruff, A.,
and Hurst, A. , "Revisiting the visit:: understanding how technology can shape
the museum visit. ," in Proc. ACM CSCW'02, 2002, 2002, pp. p. 146-155

[54] M. J. Dondlinger, "Educational Video Game Design: A Review of the
Literature," Journal of Applied Educational Technology, vol. Volume 4, Number
1, 2007.

[55] M. D. Dickey, ""Ninja Looting" for instructional design: The design challenges
of creating a game- based learning environment," in the ACM SIGGRAPH 2006
conference, Boston, 2006.

[56] C. Dede, et al., "Design-based research strategies for studying situated learning
in a multi-user virtual environment," in the 6th international conference on
Learning sciences, Santa Monica, CA, 2004.

[57] M. D. Dickey, "Three-dimensional virtual worlds and distance learning: Two
case studies of Active Worlds as a medium for distance education," British
Journal of Educational Technology, vol. 36(3), pp. 439-451, 2005.

[58] K. Schrier, "Using augmented reality games to teach 21st century skills. ," in the
ACM SIGGRAPH 2006 Conference, Boston, 2006.

[59] M. Corbit, "Moving into cyberspace: Game worlds for learning. ," Knowledge
Quest, , vol. 34(1), pp. 18-22, 2005.

Reference

 98

[60] J. Robertson and J. Good, "Story creation in virtual game worlds. ,"
Communications of the ACM, vol. 48(1), pp. 61-65, 2005.

[61] J. Robertson, et al., "Children's narrative development through computer game
authoring: The untapped world of video games," in the 2004 Conference on
Interaction Design and Children: Building a Community, Vienna, Austria.,
2004.

[62] B. Steiner, et al., "When play works: Turning game-playing into learning.," in
the 2006 Conference on Interaction Design and Children, Tampere, Finland,
2006.

[63] R. Halverson, et al., " Theorizing games in/and education," in the 7th
international conference on Learning Sciences, Bloomington, IN., 2006.

[64] L. Lunce, "Simulations: Bringing the benefits of situated learning to the
traditional classroom.," Journal of Applied Educational Technology, vol. 3(1),
pp. 37-45, 2006.

[65] E. Klopfer and S. Yoon, "Developing games and simulations for today and
tomorrow’s tech savvy youth.," Tech Trends, vol. 49(3), pp. 33-41, 2005.

[66] R. Schroeder, "Online Learning: Hyper Linking Higher Education to the
Future," 2006.

[67] S. K. Reed, "Cognition: Theories and application (8th ed.). ," Belmont, CA:
Wadsworth Cengage Learning., 2010.

[68] A. Paivio, Imagery and verbal processes. New York: Holt, Rinehart, and
Winston., 1971.

[69] R. E. Mayer and M. R., "A Cognitive Theory of Multimedia Learning:
Implications for Design Principles," 1998.

[70] R. Moreno and R. Mayer, "Cognitive principles of multimedia learning: The role
of modality and contiguity," Journal of Educational Psychology vol. 91 (2), pp.
358–368, 1999.

[71] A. D. Baddeley and H. G.J., "Working Memory," The psychology of learning
and motivation: advances in research and theory. , pp. pp. 47–89., 1974.

[72] R. Kop and A. Hill., "Connectivism: Learning theory of the future or vestige of
the past? ," The International Review of Research in Open and Distance
Learning, vol. Vol 9, No 3, 2008.

[73] S. Downes. (Accessed on 31th, Aug. 2012) What Connectivism Is? Available:
http://halfanhour.blogspot.no/2007/02/what-connectivism-is.html

[74] L. Dirckinck-Holmfeld, et al., "Analysing Networked Learning Practices in
Higher Education and Continuing Professional Development. ," 2009.

[75] W. M. Thomas, "What makes things fun to learn? heuristics for designing
instructional computer games," presented at the Proceedings of the 3rd ACM
SIGSMALL symposium and the first SIGPC symposium on Small systems, Palo
Alto, California, United States, 1980.

[76] L. S. Vygotski , Mind in society: The development of higher psychological
processes, 1978.

[77] J. Thomas, A review of research on project-based learning. Novato, CA: The
Buck Institute for Education, 2000.

[78] A. Nickel and T. Barnes, "Games for CS education: computer-supported
collaborative learning and multiplayer games," presented at the Proceedings of

Reference

 99

the Fifth International Conference on the Foundations of Digital Games,
Monterey, California, 2010.

[79] B. Brown and M. Bell, "CSCW at play: there as a collaborative virtual
environment," presented at the Proceedings of the 2004 ACM conference on
Computer supported cooperative work, Chicago, Illinois, USA, 2004.

[80] S. Bardzell, et al., "Blissfully productive: grouping and cooperation in world of
warcraft instance runs," presented at the Proceedings of the 2008 ACM
conference on Computer supported cooperative work, San Diego, CA, USA,
2008.

[81] B. Nardi and J. Harris, "Strangers and friends: collaborative play in world of
warcraft," presented at the Proceedings of the 2006 20th anniversary conference
on Computer supported cooperative work, Banff, Alberta, Canada, 2006.

[82] T.Manninenand and T.Korva, "Designing Puzzle for Collaborative Gaming
Experience - CASE: eScape," in DiGRA 2005 Conference: Changing Views -
Words in play 2005, Vancouver, Canada, 2005.

[83] C. Crawford, The Art of Computer Game Design: Osborne/McGraw Hill, 1982.
[84] A. Lund and I. Rasmussen, "The right tool for the wrong task? Match and

mismatch between first and second stimulus in double stimulation,"
International Journal of Computer-Supported Collaborative Learning, vol. 3,
pp. 387-412, 2008.

[85] V. Kaptelinin, Acting With Technology, 2006.
[86] J. S. Krajcik, et al., "A collaborative model for helping middle-grade science

teachers learn project-based instruction," The Elementary School Journal, vol.
94, pp. 483-497, 1994.

[87] Ronald W. Marx, et al., "Enacting project-based science: Experiences of four
middle grade teachers," Elementary School Journal, vol. 94, pp. 517-538, 1994.

[88] E. L. O. Bound, " A design for comprehensive school reform.," Expeditionary
Learning Outward Bound, 1999.

[89] J. Huang, "Improving undergraduates' teamwork skills by adapting project-based
learning methodology," in 5th International Conference on Computer Science
and Education (ICCSE), 2010, pp. 652-655.

[90] A. Garrido, et al., "Using graphics: motivating students in a C++ programming
introductory course," in EAEEIE Annual Conference,, 2009, pp. 1-6.

[91] P. Sweetser, "GameFlow: a model for evaluating player enjoyment in games,"
Computers in entertainment, vol. 3, p. 3, 2005.

[92] M. CSIKSZENTMIHALYI, "Flow: The Psychology of Optimal Experience.,"
1990.

[93] F.-L. Fu, et al., "EGameFlow: A scale to measure learners' enjoyment of e-
learning games," Computers & Education, vol. 52, pp. 101-112, 2009.

[94] S. M. Fisch, "Making educational computer games "educational"," in the 2005
Conference on Interaction design and children, Boulder, CO., 2005.

[95] A. Waraich, "Using narrative as a motivating device to teach binary arithmetic
and logic gates," in the 9th annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, Leeds, United Kingdom., 2004.

[96] A. Amory, et al., "The use of computer games as an educational tool:
Identification of appropriate game types and game elements," British Journal of
Educational Technology, vol. 30(4), pp. 311-321, 1999.

Reference

 100

[97] G. Denis and P. Jouvelot, "Motivation-driven educational game design: applying
best practices to music education," in the 2005 ACM SIGCHI International
Conference on Advances in computer entertainment technology, Valencia,
Spain, 2005.

[98] M. Jennings, "Best practices in corporate training and the role of aesthetics:
Interviews with eight experts. ," in the 2001 ACM SIGCPR Conference on
Computer Personnel Research, San Diego, CA., 2001.

[99] J. Radoff, Game On: Energize Your Business with Social Media Games, April
2011.

[100] R. Bartle, Designing Virtual Worlds, 2003.
[101] J. Radoff, "Game Player Motivations. ," May 2011.
[102] P. Alexander, et al., "Intrinsic and Extrinsic Motivations: Classic Definitions

and New Directions," Contemporary Educational Psychology, January 01, 2000.
[103] R. J. Vallerand, "The Academic Motivation Scale: A Measure of Intrinsic,

Extrinsic, and Amotivation in Education," Educational and Psychological
Measurement, March 08, 1993.

[104] S. Harter, "A New Self-Report Scale of Intrinsic versus Extrinsic Orientation in
the Classroom: Motivational and Informational Components," 1981.

[105] M. L. Diana Cordova, "Intrinsic Motivation and the Process of
Learning:Beneficial Effects of Contextualization, Personalization, and Choice,"
1995.

[106] A.-V. Nicoletta and W. Kelly, "SMILE: an immersive learning game for deaf
and hearing children," presented at the ACM SIGGRAPH 2007 educators
program, San Diego, California, 2007.

[107] M. R. Lepper, "Motivational considerations in the study of instruction,"
Cognition and Instruction, pp. 289-309, 1988.

[108] S. Barab, et al., "Making learning fun: Quest Atlantis, a game without guns,"
Educational Technology Research and Development, vol. 53, pp. 86-107, 2005.

[109] B. Shelley. (2006, Guidelines for developing successful games. Available:
http://www.gamasutra.com/view/feature/3041/guidelines_for_developing_.php

[110] C. Chuck, "An interpreted demonstration of computer game design," presented
at the CHI 98 conference summary on Human factors in computing systems, Los
Angeles, California, United States, 1998.

[111] S. Ben, Designing the User Interface: Strategies for Effective Human-Computer
Interaction: Addison-Wesley Longman Publishing Co., Inc., 1997.

[112] P. Bickford, "Interface design : The Art of developing easy - to - use software "
1997.

[113] R. Maria, "Learning by doing and learning through play: an exploration of
interactivity in virtual environments for children," Comput. Entertain., vol. 2,
pp. 10-10, 2004.

[114] S. d. Freitas and T. Neumann, "The use of ‘exploratory learning’ for supporting
immersive learning in virtual environments," Computers & Education, vol. 52,
pp. 343-352, 2009.

[115] C. Wohlin, Experimentation in software engineering: an introduction. Boston:
Kluwer, 2000.

[116] V. Basili, "Software modeling and measurement: the Goal/Question/Metric
paradigm," 1992.

Reference

 101

[117] P. W. Jordan, et al., Usability Evaluation in Industry, chapter SUS - A quick and
dirty usability scale: CRC Press, 1996.

[118] G. Lukas, "Uses of the LOGO programming language in undergraduate
instruction," presented at the Proceedings of the ACM annual conference -
Volume 2, Boston, Massachusetts, United States, 1972.

[119] M. Micco, "An undergraduate curriculum in expert systems design or
knowledge engineering," presented at the Proceedings of the 15th annual
conference on Computer Science, St. Louis, Missouri, United States, 1987.

[120] T. Phit-Huan, et al., "Learning Difficulties in Programming Courses:
Undergraduates' Perspective and Perception," in International Conference on
Computer Technology and Development, 2009(ICCTD '09), 2009, pp. 42-46.

[121] J. W. Anastas and M. L. MacDonald, Research design for social work and the
human services: New York: Lexington Books, 1994.

[122] M. Hammersley, "The Relevance of Qualitative Research," Oxford Review of
Education, vol. Vol. 26, No. 3/4,, pp. 393-405, 2000.

[123] LeCompte, et al., "Editor's introduction," Review of Educational Research, vol.
73(2), pp. 123-124, 2003.

[124] H. M. Cooper, The integrative research review: A systematic approach vol.
(Vol. 2). : Beverly Hills, CA: Sage., 1984.

[125] Pelosi M.K., et al., Doing statistics with excel 97: Chichester:Wiley, 1998.
[126] B. F. Crabtree and W. F. Miller, A Template Approach to Text Analysis:

Developing and Using Codebooks. : Newbury Park, CA, Sage Publications.,
1992.

[127] J. W. Drisko, "Qualitative data analysis: it's not just anything goes!," Charleston,
SC: Society for Social Eork and Research Annual Conference, 2000.

[128] M. Papastergiou, "Exploring the potential of computer and video games for
health and physical education: A literature review," Computers & Education,
vol. 53, pp. 603-622, 2009.

[129] R. Hays, "The effectiveness of instructional games: A literature review and
discussion.," Technical report 2005-004. Orlando, FL: Naval Air Warfare
Center, Training Systems Division.2005.

[130] A. Mitchell, The use of computer and video games for learning: A review of the
literature, 2004.

[131] J. P. Higgins and S. Green, Front Matter: John Wiley & Sons, Ltd, 2008.
[132] K. S. Khan, et al., Undertaking systematic reviews of research on effectiveness:

CRD's guidance for carrying out or commissioning reviews: CRD report,
Number 4, second ed., NHS centre for revies and lissemination, University of
York, 2001.

[133] Y. En, et al., "Enhancing software engineering education using teaching aids in
3-D online virtual worlds," in 37th Annual Frontiers In Education Conference -
Global Engineering: Knowledge Without Borders, Opportunities Without
Passports, (FIE '07) 2007, pp. T1E-8-T1E-13.

[134] B. Wu, et al., "Experiences from Implementing an Educational MMORPG," in
International IEEE Consumer Electronics Society's Games Innovations
Conference, 2010. GIC 2010., ed: IEEE conference proceedings, 2010.

Reference

 102

[135] A. Baker, et al., "Problems and Programmers: an educational software
engineering card game," in Proceedings. 25th International Conference on
Software Engineering, 2003, pp. 614-619.

[136] F. McCown, "Teaching a game programming class for the first time: tutorial
presentation," Journal of Computing Sciences in Colleges, vol. 25, pp. 131-132,
2010.

[137] C. Leska and J. Rabung, "Learning O-O concepts in CS I using game projects,"
SIGCSE Bull., vol. 36, pp. 237-237, 2004.

[138] E. Ferguson, et al., "Video game development using XNA game studio and
C#.Net," Journal of Computing Sciences in Colleges, vol. 23, pp. 186-188, 2008.

[139] R. H. Seidman, "Alice first: 3D interactive game programming," SIGCSE Bull.,
vol. 41, pp. 345-345, 2009.

[140] F. Xiang, et al., "Work in progress; A sandbox model for teaching
entrepreneurship," in 2010 IEEE Frontiers in Education Conference, 2010, pp.
F2C-1-F2C-2.

[141] M. Kolling, "Greenfoot: introduction to Java with games and simulations,"
Journal of Computing Sciences in Colleges, vol. 25, pp. 117-117, 2010.

[142] A. Azemi and L. L. Pauley, "Teaching the introductory computer programming
course for engineers using Matlab," in 38th Annual Frontiers in Education
Conference (FIE 2008), 2008, pp. T3B-1-T3B-23.

[143] A. Pardo and C. D. Kloos, "Deploying interactive e-labs for a course on
operating systems," presented at the Proceedings of the 6th conference on
Information technology education, Newark, NJ, USA, 2005.

[144] P. Rooney, et al., "Cross-Disciplinary Approaches for Developing Serious
Games in Higher Education," in Conference in Games and Virtual Worlds for
Serious Applications, 2009 (VS-GAMES '09) 2009, pp. 161-165.

[145] A. W. B. Furtado, et al., "Cegadef: a collaborative educational game
development framework," presented at the Proceedings of the 2003 conference
on Interaction design and children, Preston, England, 2003.

[146] H. C. Yang, "A General Framework for Automatically Creating Games for
Learning," in Fifth IEEE International Conference on Advanced Learning
Technologies (ICALT'05), 2005.

[147] K. Kardan, "Computer role-playing games as a vehicle for teaching history,
culture, and language," presented at the Proceedings of the 2006 ACM
SIGGRAPH symposium on Videogames, Boston, Massachusetts, 2006.

[148] S. Arakawa and S. Yukita, "An Effective Agile Teaching Environment for Java
Programming Courses," in 36th Annual Frontiers in Education Conference,,
2006, pp. 13-18.

[149] W. W. Y. Lau, et al., "Learning programming through fashion and design: a
pilot summer course in wearable computing for middle school students,"
SIGCSE Bull., vol. 41, pp. 504-508, 2009.

[150] S. v. Delden, "Industrial robotic game playing: an AI course," J. Comput. Small
Coll., vol. 25, pp. 134-142, 2010.

[151] T. E. Daniels, "Integrating engagement and first year problem solving using
game controller technology," in Frontiers in Education Conference, 2009. FIE
'09. 39th IEEE, 2009, pp. 1-6.

Reference

 103

[152] A. Striegel and D. Van Bruggen, "Work in progress; Development of a HCI
course on the Microsoft Surface," in 2010 IEEE Frontiers in Education
Conference, 2010, pp. S3F-1-S3F-6.

[153] A. Wang, "Interactive Game Development with a Projector-Camera System," in
Technologies for E-Learning and Digital Entertainment. vol. 5093, ed: Springer
Berlin / Heidelberg, 2008, pp. 535-543.

[154] J. Dempsey, et al., "The instructional gaming literature: Implications and 99
sources. ," Technical report no. 96-1. University of South Alabama, College of
Education.1996.

[155] J. Dempsey, et al., "Since Malone’s theory of intrinsically motivating
instruction: What’s the score in the gaming literature?," Journal of Educational
Technology Systems, 22(2), 173–183., 1993-1994.

[156] Len Bass, et al., Software architecture in practice: Second Edition: Addison-
Wesley Professional, 2003.

[157] J. O. Coplien, Software Design Patterns: Common Questions and Answers. .
New York, : Cambridge University Press,, 1998.

[158] A. I. Wang and T. Stalhane, "Using Post Mortem Analysis to Evaluate Software
Architecture Student Projects," in Software Engineering Education &
Training, 18th Conference on, 2005, pp. 43-50.

[159] a. A. L. W. D. P. Perry, "Foundations for the Study of Software Architecture,"
ACM Sigsoft Software Engineering Notes, vol. 17(4), , pp. 40-52, 1992.

[160] IEEE, "IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems," Software Engineering Standards Committee of the IEEE
Computer Society2000.

[161] P. Kruchten, "The 4+1 View Model of Architecture," IEEE Software,, vol. 12, 6,
, pp. 42 – 50, 1995.

[162] B. Ahmed. and M. Steve., "Using ATAM to Evaluate a Game-based
Architecture," in Workshop on architecture-Centric Evolution(ACE 2006),
hosted at the 20th European Conference on Object-Oriented Programming
ECOOP., Nantes, France, 2006.

[163] R. Kazman, et al., "The architecture tradeoff analysis method," in Fourth IEEE
International Conference on Engineering of Complex Computer Systems, 1998,
pp. 68-78.

[164] C. Vichido, et al., "A constructivist educational tool: software architecture for
Web-based video games," in Proceedings of the Fourth Mexican International
Conference on Computer Science, 2003. ENC 2003. , 2003, pp. 144-150.

[165] J. Krikke, "Samurai Romanesque, J2ME, and the battle for mobile cyberspace,"
Computer Graphics and Applications, IEEE, vol. 23, pp. 16-23, 2003.

[166] S. Rabin, "Introduction to game development," in Course Technology cengage
learning, ed: , 2008.

[167] A. Rollings and D. Morris, Game architecture and design - A new edition: New
riders publishing, 2004.

[168] J. Blow, "Game Development: Harder Than You Think," Queue, vol. 1, pp. 28-
37, 2004.

[169] G. Booch, "Best practices in game development " IBM Presentation 2007.
[170] A. Grossman, Postmortems from game developer: Focal Press, 2003.

Reference

 104

[171] R. Darken, et al., "Projects in VR: the Delta3D open source game engine,"
Computer Graphics and Applications, IEEE, vol. 25, pp. 10-12, 2005.

[172] B. Cowley, "Toward an understanding of flow in video games," Computers in
entertainment, vol. 6, p. 1, 2008.

[173] B. R. Gifford and N. D. Enyedy, "Activity centered design: towards a theoretical
framework for CSCL," presented at the Proceedings of the 1999 conference on
Computer support for collaborative learning, Palo Alto, California, 1999.

[174] J. S. Lowe and E. F. Holton., "A Theory of Effective Computer-Based
Instruction for Adults.," Human Resource Development Review,, pp. 4(2), 159-
188. , 2005.

[175] P. M. Privateer, "Academic Technology and the Future of Higher Education:
Strategic Paths Taken and Not Taken," Journal of Higher Education, Vol. 70, ,
1999.

[176] S. S. Boocock and J. S. Coleman, "Games with Simulated Environments in
Learning," Sociology of Education, vol. 39, pp. 215-236, 1966.

[177] J Kirriemuir and A. McFarlane, "Use of computer and video games in the
classroom," in Proceedings of the Level Up Digital Games Research
Conference, Universiteit Utrecht, Netherlands., 2003.

[178] J. B. M. Schick, The Decision to Use a Computer Simulation vol. Vol. 27, No. 1
(Nov., 1993), pp. 27-36 Society for History Education, 1993.

[179] C. D. Elder, "Problems in the Structure and Use of Educational Simulation,"
Sociology of Education, vol. 46, pp. 335-354, 1973.

[180] L. Achterbosch, "Massively multiplayer online role-playing games: the past,
present, and future," Computers in entertainment, vol. 5, p. 1, 2008.

[181] E. W. Amerikaner, "Introduction to computer science using Alice 2.0: tutorial
presentation," J. Comput. Small Coll., vol. 25, pp. 141-141, 2010.

[182] K. Anewalt, "Making CS0 fun: an active learning approach using toys, games
and Alice," J. Comput. Small Coll., vol. 23, pp. 98-105, 2008.

[183] L. Werner, et al., "Can middle-schoolers use Storytelling Alice to make games?:
results of a pilot study," presented at the Proceedings of the 4th International
Conference on Foundations of Digital Games, Orlando, Florida, 2009.

[184] G. Fesakis and K. Serafeim, "Influence of the familiarization with "scratch" on
future teachers' opinions and attitudes about programming and ICT in
education," presented at the Proceedings of the 14th annual ACM SIGCSE
conference on Innovation and technology in computer science education, Paris,
France, 2009.

[185] P. A. G. Sivilotti and S. A. Laugel, "Scratching the surface of advanced topics in
software engineering: a workshop module for middle school students," SIGCSE
Bull., vol. 40, pp. 291-295, 2008.

[186] W. Jui-Feng, et al., "Teaching Boolean Logic through Game Rule Tuning,"
IEEE Transactions on Learning Technologies, vol. 3, pp. 319-328, 2010.

[187] J. Robertson and C. Howells, "Computer game design: Opportunities for
successful learning," Computers & Education, vol. 50, pp. 559-578, 2008.

[188] M. Al-Bow, et al., "Using game creation for teaching computer programming to
high school students and teachers," SIGCSE Bull., vol. 41, pp. 104-108, 2009.

Reference

 105

[189] Y. Rankin, et al., "The impact of game design on students' interest in CS,"
presented at the Proceedings of the 3rd international conference on Game
development in computer science education, Miami, Florida, 2008.

[190] Yulia and R. Adipranata, "Teaching object oriented programming course using
cooperative learning method based on game design and visual object oriented
environment," in 2nd International Conference on Education Technology and
Computer (ICETC),, 2010, pp. V2-355-V2-359.

[191] K. Wang, et al., "3D game design with programming blocks in StarLogo TNG,"
presented at the Proceedings of the 7th international conference on Learning
sciences, Bloomington, Indiana, 2006.

[192] M. Eagle and T. Barnes, "Experimental evaluation of an educational game for
improved learning in introductory computing," presented at the Proceedings of
the 40th ACM technical symposium on Computer science education,
Chattanooga, TN, USA, 2009.

[193] J. A. Maxwell, "Understanding and Validity in Qualitative Research," Harvard
Educational Review, vol. 62, pp. 279-279-300, 1992.

[194] Tore Dybå and Torgeir Dingsøyr, "Strength of evidence in systematic reviews in
software engineering," presented at the Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and measurement,
Kaiserslautern, Germany, 2008.

[195] D. K. Padgett, Qualitative methods in social work research:challenge and
rewards: Thousand Oaks, Calif: Sage., 1998.

[196] N. K. Denzin, The research act: A theoretical introduction to sociological
methods, 3rd edn. Englewood Cliffs,: NJ:Prentice-Hall., 1988.

[197] T. D. Cook and D. T. Campbell, Quasi-experimentation: Design and Analysis
Issues for Field Setting. Chicago: Rand McNally., 1979.

[198] W. R. Shadish, et al., Experimental and quasi-experimental designs for
generalized causal inference: Boston, MA, US: Houghton, Mifflin and
Company, 2002.

[199] M. D. LeCompte and J. P. Goetz, "Problems of reliability and validity in
ethnographic research," Review of Educational Research, vol. 52, pp. 31-60,
1982.

 106

9 Appendix: Selected papers

In this appendix we have included the twelve papers that have contributed the most
towards the work presented in this thesis. The papers are included in chronological
order.

Topic 1 - Game as motivation for lectures:

Paper 1: Experiences from Implementing an Educational MMORPG

Paper 2: Experiences from Implementing a Face-to-Face Educational Game for
iPhone/iPod Touch

Paper 3: Improvement of a Lecture Game Concept - Implementing Lecture
Quiz 2.0

Paper 4: A Pervasive Game to Know Your City Better

Topic 2 - Game development as motivation for lectures:

Paper 5: An Application of a Game Development Framework in Higher
Education

Paper 6: An Evaluation of Using a Game Development Framework in Higher
Education

Paper 7: XQUEST used in Software Architecture Education

Paper 8: Extending Google Android's Application as an Educational Tool

Paper 9: Using Game Development to Teach Software Architecture

Paper 10: Game Development Framework for Software Engineering Education

Paper 11: A guideline for game development-based learning: A literature review

Paper 12: Comparison of Learning Software Architecture by Developing Social
Applications vs. Games on the Android Platform

Paper 1:

G1: Bian Wu, Alf Inge Wang and Yuanyuan Zhang, "Experiences from
Implementing an Educational MMORPG", 2nd International IEEE Consumer
Electronics Society's Games Innovation Conference (GIC 2010), Hong Kong,
21-23 December 2010. ISBN: 978-1-4244-7178-2, DOI:
10.1109/ICEGIC.2010.5716896

Experiences from Implementing an Educational
MMORPG

Bian Wu1, Alf Inge Wang2
Dept. of Computer and Information Science

Norwegian University of Science and Technology
Trondheim, Norway

bian@idi.ntnu.no1, alfw@idi.ntnu.no2

Yuanyuan Zhang
Computer Teaching and Research Section

Institute of Chemical Defense of People Liberation Army
Beijing, China

 yoyozhang-mail@163.com

Abstract— This paper describes the implementation of an
educational Massively Multiplayer Online Role-Playing Game
(MMORPG), named World of Wisdom (WoW). WoW is
designed under the context of game design theory and game
features extracted from surveys of popular MMORPGs. It is an
open educational platform where students can “play exercises”
instead doing them in the traditional paper way. Further, it
provides an editor for teachers to create new game plots and
content without the need of programming. As an aid for lectures,
WoW can motivate the students to do the exercises more
thoroughly. Finally, the paper presents both positive and
negative experiences from the design and implementation of the
game. We find that there are various theories that can benefit the
design of educational MMORPGs. However, the key problem is
how to choose and apply relevant theory to support the design,
our experiences in the paper are examples that explore and
explain this problem.

Keywords - MMORPG, Flow theroy, educational game

I. INTRODUCTION
Massively Multiplayer Online Role-Playing Games

(MMORPGs) have recently achieved tremendous success, and
its characteristics can be beneficial for the learning purposes.
Further, there are some cases studies [1-5] that describe how to
apply the learning in MMORPGs, and evaluate its
effectiveness for education. Most of these evaluations show
positive results that such games can motivate the learners to
study more actively. This also certificates that educational
MMORPGs are fun to play and provide good learning
experiences. Based on this context, our research has been to
look into these kind games and identify how features from
popular MMORPGs can be applied in educational MMORPGs
to enrich useful design methods that guide the implementation
of educational MMORPGs. In detail, we will present a short
survey of recent educational MMORPG games, and investigate
their design and implementations. And finally, we will propose
an educational MMORPG design method to implement a
MMORPG for learning, named World of Wisdom (WoW).
This WoW prototype presents an open knowledge world for
reviewing the contents of various courses. Finally, we discuss
the positive and negative experiences we learned during the
process of designing and implementing WoW.

The goals of WoW project are: 1) Develop an 2D
educational MMORPG that can be used as an aid in lectures in

higher education instead of traditional paper exercises by
providing “playable exercises, 2) Provide the toolsets for WoW
that can be used to create new games for different courses
without any programming requirements, and 3) Provide an
example on how to design an educational MMORPG through
supportive theories to make it enjoyable and effective for
learning. WoW is mainly considered as a supplement to the
formal classroom teaching in order to diversify lecture
teaching. How to combine WoW with the course content
depends on the lecture design of the teacher. We can use it in
the classroom for a short time playing to review several
knowledge points or let students play it on their own.

II. METHODS FOR DESIGN

A. Game design theory
Through our survey, we found that there are very limited

game design theories that guide the design of educational
MMORPG games. Most of common theories are from
Malone. Here we give one example of a game design method
from Nicoletta and Kelly [4] that have defined a set of game
design criteria which are likely to promote user’s interest,
enjoyment and learning; these elements are adapted by us and
summarized in Table I. These features are from the three
elements of intrinsic motivation (challenge, curiosity, and
fantasy) identified by Malone and Lepper [6, 7] .

TABLE I. GAME ELEMENTS FOR DESIGN ADAPTED FROM MALONE AND
LEPPER

ID Game elements that may promote
engagement, motivation and fun

Reference

1 A shared, imaginary story context that
establishes and support the activities

[8, 9]

2 An overarching goal [6, 8, 10]
3 A gentle on ramp [6, 8, 10]
4 Multiple levels with variable difficulty [6, 11]
5 Uncertain outcomes [6, 8, 10]
6 Various ways to win [9]
7 A well defined advancement system [6, 8, 9]
8 Rewards associated with advancement [6, 8, 9, 12]
9 Opportunities to build new content [8, 9, 13]

10 Ability to progress at the user’s own rate [9, 10]
11 Hints not answers [10]

To our knowledge, there are no papers that specifically
describe examples of applying other game design theory
beneficial for the design of MMORPGs. Thus, we would like
to apply the flow theory from Csikszentmihalyi [14] for game
design. He has conducted extensive research into what makes
experiences enjoyable, based on long interviews,
questionnaires, and other data collected over a dozen years
from several thousand respondents. Flow is an experience “so
gratifying that people are willing to do it for its own sake, with
little concern for what they will get out of it, even when it is
difficult or dangerous” [14]. Two individual papers by
Sweetser and Cowley [15, 16] map the elements from games
literature to the elements of flow, shown in Table II, adapted by
us.

TABLE II. MAPPING THE ELEMENTS FROM GAMES LITERATURE TO THE
ELEMENTS OF FLOW

ID Flow theory Games play elements
1 A task that can be completed; The game
2 The ability to concentrate on the task; Concentration
3 Concentration is possible because the task

has clear goals;
Clear goals

4 Concentration is possible because the task
provides immediate feedback;

Feedback

5 The ability to exercise a sense of control
over actions;

Control

6 A deep but effortless involvement that
removes awareness of the frustrations of

everyday life;

Immersion,
Flexible challenge

7 Concern for self disappears, but sense of self
emerges stronger afterwards;

Immersion, Links
between of virtual and

real worlds.
8 The sense of the duration of time is altered. Immersion
9 N/A Social interaction

B. Characteristics from MMORPGs
Since we plan to implement a MMORPG for learning, we

have surveyed current trends of MMORPGs and their
characteristics. Finally, we would like to quote results from
Achterbosch [17]. He attempts to determine the many aspects
that make a successful MMORPG by a questionnaire survey.
He also attempts to ascertain what new and innovative features
are expected by the users from the next generation of
MMORPGs. The research focuses on four areas of MMORPG:
the social interactions between players in MMORPGs; the
different architectures to build MMORPGs; the effects of
latency on MMORPGs; and the problems that plague
MMORPGs. We summarize the most popular and relevant
features in Table III that could be used as indications for the
design of educational MMORPGs. And some of the features
were ignored, as they were only relevant to pure commercial
MMORPGs, and to a less extent to the educational field. Such
as some features feedback by the player, like “real world
services”, “elaborate crafting system”, and “competition for
resources”. These are not common issues relevant for learning
games. Most relevant features for design of an educational
MMORPG are shown in Table III.

TABLE III. MOST RELEVANT FEATURES FOR DESIGN OF AN
EDUCATIONAL MMORPG

ID Existing features Remarks
1 Three character development

models
Skill Points-Based System;

Class-Based System;
Combination of Class/skill

2 Multiplatform Support -
3 Highly Customizable

Characters
-

ID Favorite Features Remarks
4 Preferred Character Types in

Ranking
Combination of Class/skill;
Skill Points-Based System;

Class-Based System
5 Top 3 Game setting Fantasy, Futuristic, Post

Apocalyptic,
6 Top 5 MMORPG Lots of class/skill options, Graphics

and effects, Large world to explore,
Play vs Play, socialization

ID Improving existing features Remarks
7 Player versus Player combat Such as balancing between classes
8 The level Grind Repeated battles to level up

ID Anticipating new features Remarks
9 Player created and controlled

content
 -

10 Mini games -
11 Dynamic content and quests -

C. Final design for WoW
According to above preparation work, most of WoW’s

features are based on what being described in Table I-III. Here
we give examples of designs that are from above design
methods, shown in Table IV. The left column is our design
and right three columns are reference IDs for this design
feature.

Such as A feature from Table IV (shorted as “A”), it mainly
comes from the ID 1 in Table I, and we choose kingdom as a
fantasy world since fantasy is top one game setting from ID5 in
Table III. And the feature B is designed based on the ID 2 in
Table I and relevant to ID 1,3,4,6 from the Table II when we
implement it in detail. Also, the feature that is no need to
struggle with level up is in B, which is from ID 8 in Table III.
The feature C is designed mainly based on the ideas of flexible
challenge to the different players. The features D and E are
designed based on the idea of providing random rewards after
killing the enemy non-playable character (NPC) or finishing
the quest, making player feel encouragement and immerse in
the game, but E also shows that the game is only one part of
the lecture content. The feature F is hinted by the factors in the
ID 1, 3, 4 in Table III. The toolset from feature G is inspired by
the new content creating from ID 9 in Table I and ID 11 in
Table III. The feature H mainly comes from ID 6 in Table II.
Feature I has many functions, such as teacher can give hints
(ID 11 in Table I), or discuss with the teacher for other help
and make socialization (ID 9 in Table II, ID 6 in Table III). The
feature J is an example that high score student will get bonus in
real world by the teachers. The features K and L are two cases
from Table III.

All of above features are general features, which are only a
part of the whole WoW’s feature set, but we can design based
on these features to make WoW more concrete and interesting.
Besides of these features, we still have others issues, like

technical implementation, which describes in the following
sections.

TABLE IV. FEATURES OF WOW AND ITS REFERENCES

ID Features of WoW ID in
Table1

ID in
Table2

ID in
Table3

A Consider each course as one imaginary
kingdom, the kingdom have safe zone

and battle zones. In each kingdom have
different quests issued to the players

 1 - 5

B The goal is various and intact. Such as
one quest requires you get level 2 from

battles, but no more level up.

2 1,3,4,6 8

C We classify the quests from easy levels
to hard levels. Also we classify the

questions from easy level to hard levels.

3, 4.

1, 2, 11

D We have different random rewards
(item, experiences) to the player if they

win the battle.

5, 8

4, 6, -

E The exercises will have different
definite way to win according the

lecture design.

 6 - 11

F Character Development Models are
mixed of class and skill-based

- - 1,3,4

G Use toolset to create new worlds, such
as new and large battle zone, monsters

or update questions

9 - 11

H Have different level quests to challenge
the newer player and skilled players.

- 6 -

I Teaching assistant can log in world and
help players. Players could chat each

other or to teaching assistant.

11 9 6

J Playing exercises is part of the lecture,
having effect to the real world, Also

best player gets bonus in real lectures.

- 7 -

K Choose Java as main programming
language

- - 2

L Mini game - - 10

III. FIRST PHASE: WORLD OF WISDOM
This section describes the prototype of WoW from aspects

of the game plots and architectural design.

A. World of Wisdom introduction
World of Wisdom provides several kingdoms, where one

specific kingdom focuses on one curriculum (one course).
Each kingdom has several zones, mainly categorized as safety
zone and battle zones. The safety zone has re-spawn point,
shops, buildings, etc. If players get quests from a NPC or a
teacher, they can go to the different zones to complete quests.
If the quest involves some fighting, the players should go to the
battle zones, and they will fight with monsters though
answering different questions related to the curriculum.
Further, the players and teaching assistants can chat with each
other in WoW for socializing or help purposes.

Figure 1 shows the battle zone with different players and
enemies. On the bottom of the figure are chatting window,
player status, and system button from left to right. Figure 2
shows a screenshot of a question popping up during battle.
Here the player has one minute to answer a question. The
question is answered by selecting one of the alternatives below
the time-left counter.

Figure 1. Battle zone from WoW

Figure 2. Questions during battle from WoW

B. Prototype overview
The prototype is divided into four applications: Client,

Lobby Server, World Server and Database Server. The
applications use a common package called Shared Library,
which contains models used by several applications and the
shared network implementation for sending messages between
the applications. Figure 3 shows an architectural overview of
the World of Wisdom prototype.

1) Client: The client is the main program for the user to
log on to a kingdom. When starting the client, it connects to
the Lobby Server, and the user creates or inputs a username
and password. The Lobby Server checks if the information is
correct via the Database Server. If the user is authorized to log
on, the Lobby Server will return a list of World Server that the
user may connect to. When the user has connected to a World
Server, the user will be in the game world. Client will present
the kingdom that user plays in. While in the kingdom, the user
may fight with enemy or walk around and chat with other
players. The user can also look at the states of the character,

attributes, attacks and inventory. In the inventory the user can
drag-and-drop items from their bag onto their body to equip
items.

Figure 3. . Architectural overview of the WoW Prototype

2) Lobby Server: The Lobby Server handles the

verification of players, and contains a list of the World Servers
that are available online. The Lobby Server is a small but
central part of the WoW prototype.

3) World Server: The World Server contains the game
worlds that the users can move around in. When the world
server starts, the teacher will choose a kingdom to register as
an online state and informs the Lobby Server, so that users
may connect to. When the user performs an action, like
movement or attack, a message will be sent to the World
Server with information about the action. The action will then
be handled, and in case of movement, it will be broadcasted to
the other players so that their worlds are updated.

4) Database Server: The Database Server receives and
handles requests from the World Server and the Lobby Server
for access to the PostgreSQL [18] database. It uses serializable
objects to package the information and send it over the
network using the TCP/IP protocol in Java.

IV. SECOND PHASE: WOW EDITOR
Before creating the WoW toolsets, we performed a survey

on the features of different toolsets in MMORPGs and tried to
integrate educational functionality when designing an editor
that are helpful for the teachers to create their own kingdom
(course) and input relevant questions and answers in the WoW
educational MMORPG.

A. Preparation works
The earlier type of game editors were often simple, using

text editors, or using simple primitives for representing game
elements, such as the editor that was made for Wolfenstein 3D
[19]. It was not an official editor, but shows how colors and
letters can be used as representatives when creating a map. The
letters represented object, like creatures or power ups, and
colors represented floors and walls.

Recent game editors are more advanced and often feature
in-game graphics that shows how it will look when you play in
the maps. Examples are Trackmania [20], which is a arcade

racing game, and Farcry [21], which is a first person shooter.
This allows quick testing of changes and also makes it faster to
develop new maps (levels). Another example is the Adventure
Construction Set [22] from 1985, which could be used to
generate entire role-playing game. Trackmania from 2003 to
2008 offers an easy to use in-game level editor, whereas
LittleBigPlanet [23] from 2008 contains a perfect example of a
state-of-the-art game with an integrated editor which is also a
part of the gameplay itself. Aurora [24] is the game engine
developed by Bioware for the game Neverwinter Nights, and
the Aurora Toolset is the world editor that comes with the
game. With this editor the players may create their own worlds
and alter most of the variables in the game, like spells,
monsters, NPC dialog, etc.

B. WoW Editor Interface Design
The main function of the WoW editor is to provide

convenience for the teachers to create game levels, and update
questions databases (not available for the players/students).
The design of the WoW editor GUI is shown in Figure 4:

Figure 4. World of Wisdom Editor

We divide editor interface into four areas, as A, B, C, and
D. Each area has its own function. A is the toolbar with major
commands and preferences, including five panels: Map editor,
World editor, Question editor, Quest editor and Item editor. B
contains a list of the objects corresponding to each panel from
A. C contains the content and its attribute that can be placed in
the world. D is the main display that shows the world, and
where most of the work is done.

Figure 5 is five screenshots of all panels, from the top to
bottom is Map editor, World Object editor, Question editor,
Quest editor and Item editor respectively.

Figure 5. World of Wisdom Editor

1) Map editor: It is mainly used for creating different
zones in a kingdom, such as add maps, trees, stones, friendly
and enemy NPC in different zones, or put a trigger between
two zones when a player wants to enter from one zone to
another.

2) World objects editor: Teachers can add new world
object and its attributes through world objects editor, such as
new enemy NPC. It can also load this NPC images through
external links.

3) Questions editor: Teachers can add or update questions
through questions editor. And the questions can be classified

into various categories, and marked with varying levels of
difficulty.

4) Quest editor: Teachers can add new or revise quests’
content through the quest editor. The quests are marked with
different difficulty levels with corresponding rewards.

5) Item editor: It can be used for adding or updating item
attributes.

C. System overview
Figure 6 is an updated overview of the WoW system

including the WoW Editor. Compared with Figure 3, WoW
editor, shorted as world editor in the Figure 6, communicate
directly with the Database server.

Figure 6. Architecture of World of Wisdom Editor

D. How to create a kingdom and exercises for students
Since WoW is an open educational platform, it can serve

different courses. Here are the steps the teacher needs to go
through to create the game world without any programming
requirements:

First, the teacher uses the WoW editor to create a kingdom
for a specific course. We can use the WoW editor to paint the
maps or load an existing map template directly. Second, the
teacher can use the Map editor to place the NPCs and items or
he/she can create new NPC and items through the world object
editor and the item editor. Third, a teacher will create the
quests and questions in the kingdom. For the questions used in
the battle, a teacher can input questions of varying difficulty
levels related the course, and link these questions to different
levels enemy NPCs. Similarly, quests can be created and
issued to the friendly NPCs. Finally, students can log into the
world and find friendly NPCs to get quests and go to the battle
zone to perform challenging tasks. Figure 7 shows an example
of a final kingdom ready to be played.

V. DISCUSSION: EXPERIENCES FROM DESIGN AND
IMPLEMENTATION

This section presents experiences we learned during
developing an educational MMORPG.

A. Positive experiences
We would like to share our positive experiences that could

be useful as reference for others wanting to design and
implement an educational MMORPG.

• Use game design methods to guide the design and
implementation. When preparing to develop an
educational MMORPG game, we had limited
supportive theories to use. Most of the examples
describe a direct way to implement MMORPGs for
learning from their own experiences, but without any
support in theory. Here we propose to apply suitable
theories for this genre in the game design. Further, we
provide an example of how to apply the combination
methods of Malone, flow theory and features of
MMORPG in the integrated design of the WoW
framework. We find it quite useful to use this approach
during the process of design and implementation. Most
of the functions and scenarios become more and more
concrete and interesting through the interwoven design
method.

Figure 7. World of Wisdom

• Use toolsets to create games based on the WoW
framework. Our toolset was inspired by some open
editors from existing computer games, which can be
used to create new maps and scenarios for game
players without requiring any programming. This
makes possibility for users to create their own
imaginative worlds and plots from the existing game
frameworks. We extend this type of editor to provide
not only the creation of traditional game plots, but also
related educational functionality. Thus the teachers can
create new games for courses, and update questions
databases and quests using the provided editors.

• Massive Multiplayer Foundation. The system is
designed with several servers (world server, database
server and lobby server) to support the client. This is
an important part of a MMORPG architecture since
these server are implemented with some specified
functionality. The client must log in with the lobby
server before being allowed to join one of the
potentially many world servers. Both the lobby server
and world servers talk to the database server to get
information from the database. From our experiences,
this foundation, while somewhat time-consuming to
develop, proved to be reliable and effective. We had
little problem with this aspect of the system, other than
it consumed quite a lot of development effort.

• Good Teamwork. The developers are all last year
master students from Norwegian University of Science
and Technology. It is positive experiences that students
can works in pairs or groups to implement the projects.
They can cooperate with each other to solve the coding
problems and use their personal advantages to help
teamwork. Another benefit of using students to
implement such games is that the students know the
game genre well and how such games should behave
since they are regularly playing such games.

B. Negative experiences
These negatives experiences need to be taken care of and

could be seen as improvement reference for the educational
MMORPGs.

• Lack of pedagogical background or learning theory
to support the design. Even we use game design
methods to implement the WoW, adding learning
theory should improve the prototype and make it more
effective for learning. Sancho describes how
MMORPG can be applied to problem-based learning
[5], while Economou shows how MMORPG can be
applied to collaborative learning [25]. These papers
can be a starting-point to improve our WoW design
methods. Since the mini-games in WoW are still under
development, we will consider applying the learning
theory in the mini-games.

• Lack of MMORPG features. There are still other
interesting or anticipating features from Achterbosch’s
survey of MMORPGs [17], such as “Technical
enhancement”, “Item crafting and Player Economy”, to
have a game master (an intermediary) between the

developers and players [26]. Due to our limited
resources and time and that these are not highly
relevant educational factors, such features are not
implemented in our prototype.

• Use of other theory. Besides of learning theory and
game design theory, there is still room for using other
theories to support educational MMORPGs design.
One example is from Nicoletta and Kelly [4], using
color psychology to guide the design: “The choice of
the color and lighting schemes was based on research
studies on the impact of color and light on learning [27,
28], and on the association between colors and
children’s emotions [29]. One study shows that de-
saturated colors have a negative impact on stimulation
while highly saturated colors increase alpha waves in
the brain which are directly linked to awareness.” It
will demand a huge amount of work to do experiments
of different supportive theories to design educational
MMORPGs. Further, there might be duplicating or
conflicting parts in these theories. If this is the case, we
need to conduct more experiments to gain more
experiences to make trade-off between these theories
during the design process.

• Limited help from a game engine. We chose to use
an existing game engine to develop WoW to save time.
Since our game should be cross-platform game, we
only considered Java game engines. Based previous
experiences, the most parts of the Golden T Game
Engine (GTGE) [30] works well, but suffer from some
existing bugs. Such as, when the file could not be
found on the hard drive by using the URL, it returns a
null object, and this caused a null pointer exception in
GTGE. The problem was that the GTGE framework
returned an error message, but didn’t throw an
exception, so the line where the error occurred was not
specified as usual with error traces. As a whole, the
GTGE is a decent game development framework for
Java, but we did encounter a few issues while using it.
In the end we are not sure if we really saved much time
by using the GTGE, since of the time demanded to
learn the parts we used, and fix bugs that we found. In
the end, we did not end up using much of the GTGE
framework and had to implement most part of WoW
from scratch.

• Lack of intact documentation for a long project.
This WoW project has lasted more than one and half
year. We developed the WoW prototype first, and later
continued to add the editor functions and make some
changes. Since the developers are all students with half
year projects, it is necessary to keep the intact logs and
complete development documentation useful for the
new comers to the project. Even we predicted this
problem, we encountered problems of effective
software management. We cannot predict which logs
are important for the new incoming coming students
since they can choose their own focus on the project.
We try to put everything in logs, but it costs a lot of
time and the work might be useless. To overcome this
problem, we make the student do the most important

key documentation. This is not always easy, as the
students have different background in programming,
experiences in Java and MMORPG, and what one
student find is sufficient documentation is not always
sufficient for another. Another aspect is that we
suggest making a classification of the documentation
to enable quick search and identify the information we
need if the logs become too large and too cluttered.

As a summary, it is still harder than we think to use an
interwoven design to implement an educational MMORPG, but
we think it will pay off in the long run. Such a design approach
covers various design methods that exceed the field of learning,
and games design theory. Our experiences presented in this
paper are examples that explore and explain this problem.

VI. CONCLUSIONS
This paper describes the implementation of an educational

MMORPG game and shares related experiences, including
positive and negative aspects. Most of the features of our WoW
game come from existing game design methods. But based on
our experiences, we find that there exists a cross-topic of
applying design methods to educational MMORPGs. From the
case study, we find that more research and experiments are
needed to find a set of criteria or a framework to guide the
design of the educational MMORPGs. This is not end, it is just
a beginning of research in this area.

ACKNOWLEDGMENT
We would like to thank Thor Grunde Krogsæter, Henrik

Halvorsen, Esben Andre Føllesdal, Andreas Johnsen, Lawrence
Valtola and Sondre W. Bjerkhaug for the works of
implementing of WoW.

REFERENCES
[1] Martin, V.S.: ‘Online Videogames in an Online History Class’,Second
conference on Digital Games and Intelligent Toys Based Education, 2008 , pp.
146-148
[2] Chang, M.: ‘Web-Based Multiplayer Online Role Playing Game
(MORPG) for Assessing Students' Java Programming Knowledge and Skills,
2010 Third IEEE International Conference on Digital Game and Intelligent
Toy Enhanced Learning’ (2010. 2010)
[3] L. Natvig, S.L., and A. Djupdal: ‘Age of Computers: An Innovative
Combination of History and Computer Game Elements for Teaching
Computer Fundamentals’, 34th Annual frontiers in education, 2004.
[4] Nicoletta, A.-V., and Kelly, W.: ‘SMILE: an immersive learning game
for deaf and hearing children’. Proc. ACM SIGGRAPH 2007 educators
program, San Diego, California2007
[5] Sancho, P.: ‘Multiplayer role games applied to problem based learning
Proceedings of the 3rd international conference on Digital Interactive Media
in Entertainment and Arts - DIMEA 08’ (2008)
[6] Thomas, W.M.: ‘What makes things fun to learn? heuristics for
designing instructional computer games’. Proc. Proceedings of the 3rd ACM
SIGSMALL symposium and the first SIGPC symposium on Small systems,
Palo Alto, California, United States1980 pp.
[7] Lepper, M.R.: ‘Motivational considerations in the study of instruction’,
Cognition and Instruction, 1988, pp. 289-309

[8] Barab, S., Thomas, M., Dodge, T., Carteaux, R., and Tuzun, H.:
‘Making learning fun: Quest Atlantis, a game without guns’, Educational
Technology Research and Development, 2005, 53, (1), pp. 86-107
[9] http://www.gamasutra.com/view/feature/3041/guidelines_for_developin
g_.php
[10] Chuck, C.: ‘An interpreted demonstration of computer game design’.
Proc. CHI 98 conference summary on Human factors in computing systems,
Los Angeles, California, United States1998 pp.
[11] Ben, S.: ‘Designing the User Interface: Strategies for Effective Human-
Computer Interaction’ (Addison-Wesley Longman Publishing Co., Inc. 1997)
[12] Bickford, P.: ‘Interface design : The Art of developing easy - to - use
software ’, 1997
[13] Maria, R.: ‘Learning by doing and learning through play: an exploration
of interactivity in virtual environments for children’, Comput. Entertain.,
2004, 2, (1), pp. 10-10
[14] CSIKSZENTMIHALYI, M.: ‘Flow: The Psychology of Optimal
Experience.’ 1990
[15] Sweetser, P.: ‘GameFlow: a model for evaluating player enjoyment in
games’, Computers in entertainment, 2005, 3, (3), pp. 3
[16] Cowley, B.: ‘Toward an understanding of flow in video games’,
Computers in entertainment, 2008, 6, (2), pp. 1
[17] Achterbosch, L.: ‘Massively multiplayer online role-playing games: the
past, present, and future’, Computers in entertainment, 2008, 5, (4), pp. 1

[18] http://www.postgresql.org/download/, accessed 30-Aug 2010
[19] http://www.idsoftware.com/games/wolfenstein/wolf3d/, accessed 22-Jan
2009
[20] http://www.trackmania.com/tm/index.php?rub=united, accessed 22-Jan
2009
[21] http://www.crytek.com/games/far-cry/overview/, accessed 22-Jan 2009
[22] http://www.spillverket.no/artikler/den_kreative_revolusjonen/66786/1,
accessed 22-Jan 2009
[23] http://www.littlebigplanet.com/ accessed 22-Jan 2009
[24] http://nwn.bioware.com/builders/index.html accessed 22-Jan 2009
[25] Economou, D.: ‘User centred virtual actor technology, Proceedings of
the 2001 conference on Virtual reality archeology and cultural heritage -
VAST 01’ (2001)
[26] Alexander, T.: ‘The Massively Multiplayer Game Development 2
(Game Development)’ (Charles River Media, 2005)
[27] Engelbrecht, K.: ‘The impact of color on learning’, NeoCON2003, 2003
[28] Duke, D.L.: ‘Does it matter where our children learn? White paper for
the national academy of sciences and the national academy of engineering.’
1998
[29] Boyatzis, C.J.: ‘Children's emotional associations with colors’, The
Journal of Genetic Psychology, 1994, 155, (1), pp. 77
[30] http://www.goldenstudios.or.id/products/GTGE/, accessed June 2009

Paper 2:

G2: Alf Inge Wang, Bian Wu, Sveinung Kval Bakken, "Experiences from
Implementing a Face-to-Face Educational Game for iPhone/iPod Touch", 2nd
International IEEE Consumer Electronics Society's Games Innovation
Conference (GIC 2010), 21-23 December 2010, Hong Kong. ISBN: 978-1-
4244-7178-2. DOI: 10.1109/ICEGIC.2010.5716895

Experiences from Implementing a Face-to-Face
Educational Game for iPhone/iPod Touch

Alf Inge Wang1, Bian Wu2
Dept. of Computer and Information Science,

Norwegian University of Science and Technology
Trondheim, Norway

1alfw@idi.ntnu.no, 2bian@idi.ntnu.no

Sveinung Kval Bakken
Dept. of Telematics,

Norwegian University of Science and Technology
Trondheim, Norway

sveinung.bakken@gmail.com

Abstract—This paper presents a location-aware educational game
for the iPhone/iPod Touch platform. The game, KnowledgeWar,
is a quiz game where students can challenge each other in face-to-
face or remote knowledge battles. The game contains a game
lobby where players can see all who are connected, and the
physical distance to them. The paper describes our experiences
from developing KnowledgeWar and results from a user test
followed by a questionnaire. The user test focused on usability,
and how well the game was suited for learning. The results
showed among other things that the game had high usability, it is
helpful for summarizing topics, it can stimulate involvement and
social interaction, and that smartphones are well suited for such
games. The results also revealed that our game did not to
stimulate students to attend more lectures or pay more attention
during lectures.

Keywords-component; Educational games, Mobile games,
Location-awareness, iPhone development

I. INTRODUCTION
In recent years, smart phones have now become

increasingly popular. In Norway with a population of only 4.8
million, close to 400,000 iPhones have been sold. Smart
phones are no longer only seen in the hands of businessmen,
but more and more students use such phones everyday. The
motivation for students to get these phones is in addition to
impressing their friends to have better access to mobile Internet
and to enjoy a richer mobile gaming experience.

In the Lecture Games project, we want to explore how to
use games in higher education to provide variation in teaching
and new ways of promoting learning through interaction
between teacher and students, and interaction between fellow
students. Smart phones open new opportunities to be explored
for educational games, including the utilization of location.

Games in education have also become increasingly popular
in recent years, especially for children and have proven to be
beneficial for academic achievement, motivation and
classroom dynamics [1]. Teaching methods based on
educational games are not only attractive to schoolchildren, but
can also be beneficial for university students [2]. Research on
games concepts and game development used in higher
education is not unique, e.g. [3-5], but there is an untapped
potential that needs to be explored.

By introducing games in higher education teachers can
access teaching aids that promote more activity among
students, provide alternative teaching methods to improve
variation in lectures, enable social learning through multiplayer
learning games, and motivate students to work harder on their
projects and exercises.

Games can mainly be integrated in higher education in
three ways. First, traditional exercises can be replaced by
games motivating the students to put extra effort in doing the
exercises, and giving the course staff an opportunity to monitor
how the students work with the exercises in real-time [6, 7].
Second, games can be used within a traditional classroom
lecture to improve the participation and motivation of the
students through knowledge-based multiplayer games played
by the students and the teacher [8, 9]. Third, game
development projects can be used in computer science (CS) or
software engineering (SE) courses to learn specific CS or SE
skills [10, 11]. This paper focuses on a presentation of
experiences from implementing a game that can be used in the
first two ways described above. The KnowledgeWar game
described in this paper can be used as an exercise to make the
students rehearse the theory in a more interesting way. It can
also be used as a part of a lecture, where the students get a few
minutes to play a game trying to remember what they have
been taught during the lecture. We believe that it is important
to incorporate games and game technologies into teaching, as it
gets more common to also use game technology in serious
applications [12-15].

This paper describes the architecture and the design of an
iPhone game where the players challenge each other in a quiz-
battle. The paper shares experiences from working with the
iPhone platform as well as results from a user test that focused
on usability and on how the students perceived learning from
playing the KnowledgeWar game.

The paper is organized as follows. Section II describes
related works. Section III describes the KnowledgeWar game
including its architecture and design. Section IV shares some
experiences we gained from working on the iPhone platform,
and describes the user test we performed to assess usability and
whether the game was successful in an educational setting.
Section V presents an evaluation and discussion of the results,
and Section VI concludes the paper.

II. RELATED WORK
In this section we present some educational games and

applications for iPhones and for other mobile devices.

Statecraft X is on a mobile learning game for iPhone,
designed and developed to enact a program for citizenship
education undertaken by 15-year-old students [16]. Located in
the Social Studies curriculum, the game represents one
component of a broader learning environment that includes in-
class dialogic activity to facilitate student sense-making and
identity construction.

The paper “Using a PDA for Mobile Learning” [17]
provides a learning space based on a Role Play Game (RPG)
and quiz model which is good at supporting high level social
interaction, progression by incremental tasks, continuous
player feedback, and reward systems. The architecture consists
of two PDAs running the game application. Information from
one application is passed to another via an infrared connection.
An exchange manager defines how data objects are passed
between two Palm OS handhelds. The user model as defined in
the database is used to control the operation of the game from
the learner’s perspective by relating information from a number
of components with which the learner interacts.

Schwabe and Göth used handheld computers running a
mobile learning game to support the orientation days at a
university [18]. The orientation rally is a fun event intended to
get to know the university and its surroundings through doing
various tasks at certain spots. The students play individually or
in small groups against other players. Each group receives a
handheld computer. During the orientation rally, each group
gets different tasks referring to significant places, people and
events. The handheld device shows the current position of the
group on the digital map of the university. When the group
enters a building the outdoor map switches to an indoor map of
the building. The whole rally is structured as a cooperative and
competitive game. The architecture integrates three
components: a mobile PDA client, a web browser client, and a
server. The architecture provides clients with their own private
state of the ongoing game so the game also works offline. The
server works as the game’s central coordination point. Any
changes in the game are transferred to the server, which
broadcast the data to all clients.

The Sotto Voce project [19] is a PDA mobile companion
for Museum co-visiting that provides audio content of artwork
descriptions and acts as an audio media space between visitors
providing a mean for awareness and sociability. The authors
have identified four kinds of activity: (i) shared listening to
promote interaction and communication between companions;
(ii) independent use to enable temporarily or entirely the
switching off of the shared listening for visitors that do not
want to engage social interactions; (iii) following, when a
companion is in charge of driving, implicitly or explicitly, the
tour; and (iv) checking in, which is a short activity to maintain
and update the shared context.

The City project [20] takes place at the lighthouse in
Glasgow. The system considers three kinds of technologies: (i)
a real visit using a PDA; (ii) a virtual reality visit in a 3D
world; and (iii) a Web visit. With this system, visitors are able

to share their museum experience visit and navigate jointly
through mixed realities: the Web, the virtual and physical
reality. Information is provided about each visitor location and
orientation. In addition, they may communicate through audio
channels. The authors have observed that voice interaction,
location and orientation awareness, and mutual visibility are
essential to the success of co-visiting between remote users.

The paper “Using mobile phones in English education in
Japan” [21] proposes an application that create a Web site
explaining English idioms. Student-produced animation shows
each idiom’s literal meaning; a video shows the idiomatic
meaning. Textual materials include an explanation, script, and
quiz. Thirty-one Japanese college sophomores evaluated the
site using video-capable mobile phones, finding few technical
difficulties, and rating highly its educational effectiveness.

TAMALLE (television and mobile phone assisted language
learning environment) [22] describes the development
processes for a cross-platform ubiquitous language learning
service via interactive television (iTV) and mobile phone. The
aim of the system is to support advanced learners of English as
a second language in their television viewing, as just one
element in their language learning activities. As the focus of
the learners will be on media consumption rather than on
conscious language learning, this environment is designed to
be as discreet and non-intrusive as possible. The system
provides support for captions and other on-screen displays for
comprehension of specific language (or sometimes cultural)
items for viewers as they watch English language programs.
The mobile phone can further support learners’ understanding
of the program by enabling them to access the summary of
program as well as difficult language and cultural items that
may appear. Viewers are also able to add, search for and
remove items from/into their personal spheres. Even without
television, the mobile service is useful for learning the new
language items and as a tool for managing personal knowledge.

Lecture Quiz is a multiplayer game where students can play
a quiz game using their own mobile phone and the teacher
moderates the game using his PC and a video projector [8, 9].
The game provides two game modes: score distribution – the
3D animated presentation of the students answers distributed
on the various alternatives, and last man standing where the
players have to answer correctly to make it to the next round.

Mobile Game-Based Science Learning [23] describes a
pedagogical methodology based on interactive games for
mobile devices (PDAs). The methodology is oriented to
developing problem-solving skills in science classes for 8th
graders, by including pre-classroom activities with the teacher,
classroom activities, and a central activity using an interactive
game for a mobile device. The core problem they have to solve
through the game consists in preserving and evolving different
biological species from the animal kingdom, in an unknown
and varying environment, by modifying some key factors for
evolution of the species.

III. THE KNOWLEDGEWAR GAME
This section presents the KnowledgeWar iPhone/iPod

Touch game as well describing the main architecture and the
design of the game.

A. The Game
The initial idea behind the KnowledgeWar game is the

notion that students spend a lot of time walking around
socializing. Sometimes students even skip classes to just spend
some time together. The social interaction among students can
be both face-to-face and electronically using mobile devices
such as smart phones and laptops. With the KnowledgeWar
game, we would like to offer the students an opportunity to
spend this social time both entertaining and educational.

A major challenge for educational games is to create games
that can be used in several courses but still can be fun. Single
player quiz-games fits very well into this category, but they can
be a bit tedious and repetitive. By adding a social component,
such games can be much more competitive and engaging.
Figure 1 shows four screenshots from KnowledgeWar.

Figure 1. Screenshots from the KnowledgeWar game

The game is interesting, but not very complex. When the
user starts the game application on his iPhone/iPod Touch, the
player can set a nickname and choose a picture if it has not
been done before (see Figure 1a). The lobby screen of the game
shows all the available players with names and pictures, and
how far away they are (see Figure 1b). In this way, a player can
choose to have a face-to-face game or to play remote. Since the

game does not enforce the players to be on the same spot, our
game supports players with different social preferences. To
play the game, the user simply touches the player to be
challenged (see Figure 1c). If the other player agrees to start a
knowledge fight, the game is on (see Figure 1d). The game
itself is a quiz game where the player can choose among a set
of alternatives using an iPhone selector (roll selector). The
alternative chosen when the timer runs out will be evaluated,
and the players get points if their choice is correct. After
playing through several questions, the winner is announced to
both players. The game application will then take the user back
to the game lobby, where the user can challenge more players
to fight. The quiz questions used for the game are stored in a
database on the game server. The main restrictions regarding
the questions are that there must be two or more answer
alternatives that can be described in a short sentence
(maximum 30 characters) for every question and that the time
limit for giving an answer and the correct alternative must be
specified. This format makes the game perfect for rehearsing
theory in a course to test students’ theoretical knowledge. The
game is not suitable for testing certain skills or techniques.
Many textbooks provide teachers with multiple-choice
assignments ready-to-be used for testing students’ knowledge.
These multiple-choice assignments can directly be used in the
game as long as the description of alternatives is not too long.
When a player challenge another player in the KnowledgeWar
game, the game server will randomly pick five questions from
the database to be used in a game session. A natural extension
of the game would be for the teacher to be able to bundle
questions at different difficulty levels, to let students get
questions that are appropriate for their level of knowledge. The
difficulty level could also be related to the score you get from
winning a knowledge fight.

The main challenge when implementing the iPhone client
was to learn Objective C and the interfaces in the iPhone OS.

B. The Arhictecture
The implementation of the KnowledgeWar game is based

on a service-oriented client-server architecture. An overview of
the architecture is shown in Figure 2. A game server takes care
all services shared by users such as player profiles, question
database and game sessions. Apple’s Push Notification Service
is used to push events to the iPhone/iPod Touch clients.

Figure 2. KnowledgeWar architectural overview

Figure 3 shows the game server architecture. We used
several free and open source libraries for providing the main
services of the server to make the server as flexible as possible.
The server is Java-based and all of the components are tied
together with Maven, Spring XMLs and custom Java code.
This enables a flexible plugin interface to the server. The
architecture shown in Figure 3 is divided into three main parts.

Figure 3. KnowledgeWar Game Server Architecture

The left part in Figure 3 takes care of the data management
and data persistence. The middle part consists of a web server
and a framework for providing web services to the client. The
right part takes care of pushing events to the client via Apple’s
Push Notification Service. The architecture also includes JUnit
use for testing and Log4j for providing logging when running
the server. The domain model shared between the server and
the client consists of Challenge – a challenge from one player
to another, Heartbeat – position processing, Opponent –
contains a Player object and the distance to this player, Player
– containing unique identification, nickname and avatar image,
and Round – containing questions, possible answer and correct
answer. Services provided by the server are a game service, a
location service, a player service, a persistence service, and a
push notification service.

Figure 4 shows the client architecture. When the client is
launched, the application delegate is initiated. The other parts
of the architecture is the persistency class providing persistency
locally on the device, the domain model similar to the server
(Heartbeat, Challenge, Player, Opponent and Round), the
backend integration, view controllers consisting of four views
(see Figure 1), the view definitions used by the view
controllers, and the Utility class providing shared attributes and
methods.

The third author of this paper implemented the
KnowledgeWar game over 4 months in his master project.

IV. EXPERIENCES AND USER TEST
In this section we will share some experiences we learned

from developing an iPhone application, describe how we

performed the user tests of the game, and present the results
from the user tests and the questionnaire.

Figure 4. KnowledgeWar Client Architecture

A. Provision of iPhone Apps
The iPhone OS has a built-in security mechanism to ensure

that applications have not been tampered with before they are
installed. The security mechanism consists of a chain of
certificates that must be signed by all applications to be
installed on the device. In practice, this means that researchers
cannot simply compile and build the code and then deploy it
directly on a device. It is important for researchers wanting to
use iPhone/iPod Touch as an exploration platform to know
about the limitations related to deployment and what options
are available. There are four methods for deploying an
iPhone/iPod Touch application: 1) Use App IDs that will
identify your application and make it related to your
provisioning profile; 2) Use ad hoc distribution that will allow
the developer to distribute an un-approved application to up to
100 pre-registered devices through iTunes; 3) Use a debug
install where the application is deployed to a physically
connected device by launching the application directly from the
development tool; and 4) Use the AppStore distribution
channel where the application must be approved by Apple
before it is made available on Apple’s AppStore.

For many developers, including ourselves, we were not
used to the approval process enforced by Apple. Even though
we did not plan to release our KnowledgeWar game on
AppStore, we were curious on how hard it was and how much
time was required to get an application approved and ready for
download/sale at AppStore. To test the entire app approval
lifecycle, we submitted a four unrelated apps to the AppStore.
The applications we submitted were two variants of a time
tracking application and two applications for efficient
emergency event management. Three out of the four apps were

payable apps. The results of our test on approval time are
shown in Table I.

TABLE I. TIME FROM APPSTORE SUBMISSION TO READY FOR SALE

Application Approval time

App1 4 days

App2 4 days

App3 version 1 5 days

App3 version 2 6 days

App4 version 1 5 days

App4 version 2 6 days

Our experiences from submitting apps to AppStore
approval were that we did not encounter any problems, and that
the processing time was acceptable. For larger apps, for apps
that challenges the technical constraints or for apps that
challenges the moral constraints of Apple, longer processing
time must be expected.

B. The User Test of the KnowledgeWar Game
To get the users’ verdict of what they thought of the

KnowledgeWar game we conducted a user test. The purpose of
the test was two-fold. First, we wanted to test the usability of
the application, as high usability is expected on iPhone/iPod
Touch applications. Second, we wanted to see if the students
found the game useful for learning and fun to play.

The user test was held on April 30th, 2010 in a reserved
auditorium at the university campus. We recruited students
from 1st, 2nd and 5th year of the Master of Science (MSc) in
Communication Technology to do drop-in sessions during a
two-hour time window. In total eight subjects participated. All
the subjects had a technical background and were familiar with
smart phones. The game was pre-installed on six iPhones and
IPod Touches before the test began. The students played
against each other with mainly technical questions from a
software architecture course in the questions pool. The
available wifi network on campus was used as the carrier for
the communication, and the game server was hosted on a
laptop on the same wi network.

The users had to go through the following steps:

1. Start the application
2. Input a nickname and select an image for the

player profile
3. Challenge another player
4. Play the game
5. Repeat steps 3 and 4 a couple of times
6. Fill inn the questionnaire

The success criteria for the KnowledgeWar game were:

• H1: The game application has high usability

• H2: The game is a fun way of practicing knowledge

• H3: The KnowledgeWar game has a positive effect on
learning

C. The Results
To assess the usability of our KnowledgeWar game we

used the System Usability Scale (SUS) [24]. SUS measures
usability through ten statements, which the subject is to state a
degree of agreement by using the Likert scale (from Strongly
disagree=1 to Strongly agree=5). Odd statements contribute
with their “average value – 1”, and the even statements
with “5 – average value”. These contributions are
multiplied by 2.5 to get a score between 0 and 100 points
where higher is better. Table II shows the SUS statements and
the scores we got from the student questionnaires.

TABLE II. SUS STATEMENTS AND SCORES

KnowledgeWar received a SUS score of 78 points (see

Table II) out of 100. According to Bangor, Kortum and Miller
[25], our score is well within the acceptable range on their SUS
score, and is about in the middle between the markers for good
and excellent. The three biggest contributors to the SUS score
was:

• Disagree with the statement: “I needed to learn a lot of
things before I could get going with this game”. This
statement contributed 9.06 pts.

• Disagreement with the statement: “I think that I would
need the support of a technical person to be able to use
this game application”. This statement contributed
8.75 pts.

• Agreement with the statement: “I would imagine that
most people would learn to use this game application
very quickly”. This statement contributed 8.44 pts.

The statement with the lowest contribution was the
agreement with the statement: “I think that I would like to play
this game frequently” (only 6.25 pts). Hopefully it is possible
to improve this part by improving the graphical presentation of
the game, introducing new game modes, and populating the
database with more entertaining and engaging questions.
Another possible explanation for the low score could be that

the test was not carried out as a part of a course, and the
questions were not taken from their current courses.

Although the number of participants in this study was fairly
low (n=8) and there are some sources of errors in how the
subjects perceived the game, the SUS score strongly indicates
that a quiz game like KnowledgeWar is suitable on the smart
phone platform.

The next part of the assessment was to investigate the
subjects’ perceptions of using a game like KnowledgeWar as a
part of a class or for teaching purposes. This assessment was
made through ten additional (to SUS) statements in the
questionnaire. The results are shown in Table III.

TABLE III. KNOWLEDGEWAR GAME AND LEARNING ASSESSMENT

Table III shows the results of the additional non-SUS
statements in the user test. These statements were added to the
questionnaire specifically to address if “The game would be a
fun way of practicing knowledge” (success criteria H2) and if
“The KnowledgeWar game has a positive effect on learning”
(success criteria H3). We will first look into the former. For the
statements 1, 6 and 7, 75% of the participants check the
strongly agree box, “This game can create healthy competition
in a class”, “I like the idea of challenging other fellow
students” and “I would like to challenge the teacher through
this game”, which clearly support H2. 88% strongly agreed to
statement 8 that “This game was social”. Improved social
integration in a class is desirable from both teacher and
students support that also support H2.

If we consider success criteria H3, we find that only 38%
strongly agreed to statement 3, that “They would attend more
lectures if it was supported by a game like KnowledgeWar”. It
seams that the game in its current version is not likely to
improve lecture attendance. However, every subject strongly
agreed to that “This game would help summarize a topic after a
lecture” (statement 4), which is very encouraging. 88% of the
subjects strongly agreed to “This game might stimulate to
better involvement” (statement 2) and “The use of mobile
smart phones as platform” (statement 5). These are very
positive results that encourage us to continue the development
of such games in the future.

V. EVALUATION AND DISCUSSION
This section presents evaluation and discussion of using

iPhone as a development platform for lecture games and how
smart phone affects the usability of lecture games.

A. Developing for the iPhone
Developing for the iPhone proved to be an interesting

learning experience. The platform has a number of good
characteristics that aid the development of rich and powerful
mobile applications. Some of the good features of the platform
that deserve to be highlighted are:

• Excellent development tools for both code and GUI.

• Good run-time environment, desirable features at place
for the developer.

• Well-documented and mature platform.

• Good process support for certificate generation and
provisioning profiles with web portal.

• Provided service for standardized push communication
to the mobile device.

What might be left as arguments against choosing the
iPhone as platform for a mobile application might include:

• Application guidelines restrict the use of
undocumented system libraries, which exclude certain
hardware and system information (like visible wi
access points).

• The lack of automatic garbage collector and not so
widespread programming language (object C).

• Intel Mac is required to run the development toolkit
Xcode & Interface Builder. No support for Windows
or Linux operating systems.

The KnowledgeWar game was developed for the iPhone
OS version 3.2.3. A major restriction for this version was the
lack of support for multitasking. This problem has been solved
in the iOS4 (iPhone OS version 4) release where multitasking
was introduced. However, the multitasking is still limited as it
can only be used to execute some specified services. Here are
some new features in OS4 that could have improved our game:

Text messaging - A pre-filled type and send Short Message
Service (SMS) screen could have been included in one
of the application views. This feature could have been
used to improve the social aspects of the
KnowledgeWar game.

 Background processes – multitasking – is one of the most
important contribution of the iOS4. Instead of
completely exiting and destroying applications when
pressing the Home button, applications can continue to
run in a background context. An event is raised
informing the application about the state change.
Applications that require to prevail can do so by three
techniques: (i) Schedule local notifications to alert the
user of activity, basically a local, scheduled version of
the Apple Push Notification Service. Possible usage
scenario could be alerting the user about it is time to

play another round of quiz game; (ii) It can request to
run for more time to complete some important task that
will take more time than what is allowed during
shutdown, e.g. writing large amounts of data to disk;
and (ii) It can become a background service that will
be awaked at specific intervals or at a specific time.
This will allow e.g. background updates to a web
service or similar.

The communication and back-end solution was designed
and implemented with flexibility and agility as one of the main
criteria. Best practices from the respective developer
communities have been adopted into this solution’s
requirements. The flexibility and agility has been provided by
using the Spring architecture and the Maven build system. By
following Java standards, the solution should also be ready for
future changes in the technologies and libraries. Implementing
an additional web service or a new server with this solution as
a mold, serving a completely different purpose, with its own
domain model and another transportation format is trivial and
would require only a minimal effort. We have not executed any
substantial performance and load tests, but we do not believe
that this will be a major problem as it is not likely that
hundreds of players will play the game simultaneously. If an
alternative component emerge who offers speed, functionality
or other improvements, it can be swapped with the original
component with no or little source code changes.

Based on experience from this project and others, we find
that the iPhone platform is an extensive and mature platform
for application and game development. No major technical
issues were encountered during the implementation that was
impossible to overcome. The solutions provided to the
developers for technical issues, like the addressing and delivery
of server-initiated notifications, further elaborated the maturity
and quality of the frameworks and tools provided for
applications and application developers.

Most of the limitations we encountered such as no support
for background process have been addressed in iOS4. Other
issues like undocumented system libraries and time-consuming
application approval process still put extra burden on the
developer, but these restrictions can be beneficial for the end-
user with a more homogeneous and reliable end product. In
some applications these properties can be worked around, but
in others they are deal breakers that will force the use of
another platform.

Research projects that do not demand, or will pass an
application approval process have alternative means of
distribution which will lift some of the restrictions as presented
in this paper, but imply other restrictions like maximum one
hundred pre-registered ad hoc users.

The push functionality in our game was implemented by
using Apples Push Notification Service (APNS). The APNS
was selected for addressing and routing simplicity as a server-
initiated channel and it proved to be easy to use, reliable and
fast. The second communication channel was a lightweight
REST/JSON web service, which was designed and
implemented with flexibility and extensibility in mind. This
worked also very well in our architecture.

B. Usability and Learning
The KnowledgeWar game was tested by a small number of

subjects during a usability experiment before they answered a
questionnaire about usability and the use of games in an
educational context. Overall, the feedback from the experiment
was very positive, especially on the general usability. We
found the smart phone platform in general and iPhone/iPod
Touch platform specifically to be well suited for lecture games.
The main benefits of using this platform is that the platform is
popular with the students, it provides high usability if the
applications are designed correctly, it has a large screen that is
well suited for quiz games with texts of varying lengths, and it
is a cheap platform for doing large scale tests with own
equipment. A major headache when doing large-scale user tests
with mobile equipment is to provide enough sim cards for
several mobile phones or smart phones. It might be possible to
get a limited set of non-functional sim cards to opens the
phones so they can be used in tests where only the wifi network
is used. However, if applications are developed for the
iPhone/iPod Touch platform, iPod Touch devices can be used
for testing. These devices cost about the half or less than smart
phones, they have all the functionality of smart phones apart
from being able to make calls, and they can be used for testing
right out of the box. The major limitation of using iPod Touch
as a deployment platform is that the device does not come with
a built-in GPS. This means that the iPod Touch works well for
testing location-aware applications that do not require very
accurate positioning (accuracy of 15-20 meters and better) or
positioning without wifi coverage.

The location-awareness functionality in the KnowledgeWar
game is designed not to be intrusive by showing the physical
distance to other players connected to the game server. This
makes it possible for players to choose to play the game face-
to-face or remote. With iOS4, we could have improved the
location-awareness functionality of the game. One
improvement could be to let the game run in background and
notify the user when other players are nearby. Similarly, we
could have extended the game lobby to allow users to create
friend lists. This could stimulate players to build a community
of players that enjoy playing against each other.

The KnowledgeWar game it self is not a very complex
game. What we would like to add in the future is a role-playing
aspect where the players level up and get new features and
game modes as they progress. The goal of the game will then
be to level up and be the king of the hill (the best overall
player). Another feature to make it a more interesting
experience is to add AI-controlled knowledge monsters that
players have to beat to level up. Some of these monsters might
be very powerful and skillful and could involve knowledge
fights where several players have to collaborate to beat the
monster (similar to quests in MMORPGs). There are limitless
opportunities of expanding the game. In this design process,
the main drivers is to make the game more social and hook the
players into the game by providing new and interesting features
as they level up (rewards). Further, we could provide every
player with an avatar that levels up as the game progress,
which will also improve players vs. player encounters. In this
way, we hope that this will be a game motivating students to
spend more time studying, just to beat the game.

VI. CONCLUSION
The KnowledgeWar game was designed with three success

criteria in mind: H1: “The game application should have high
usability”, H2: “The game should be a fun way of practicing
knowledge”, and H3: “The KnowledgeWar game should have
a positive effect on learning”.

The results from our user test shows that the game has high
usability (close to 80% SUS score). However, we identified
some areas that must be improved. The statements with lowest
scores were “I would like to play this game frequently” (6.25
point) and “I found the various functions in the game well
integrated” (6.56 points). These statements indicate that the
coherence of the game application must be improved along
with providing more engaging and variable gameplay. We
believe adding role-play elements to the game including
leveling up, new game modes, and challenges against AI
knowledge monsters can solve this problem. Further, we
believe that improving the social aspects of the game will also
make students to play the game more frequently. This can be
done by adding friend lists and opening for collaborative
gameplay.

The scores from the non-usability statements were overall
positive in relation to the game being a fun way of practicing
knowledge and to have a positive effect on learning. The
students liked that the game was social and that this was an
engaging way of rehearsing theory. The statements that scored
the lowest were “I would attend more lectures, if they were
supported with such a game” (38%) and “I would pay more
attention in the lecture, if I could play such a game after a
lecture” (50%). We believe that these statements scored low as
the user test was not carried out in the context of a course, and
this issue can be improved if we make the game more
competitive and introduce a clearer overall goal of the game
(e.g. to be the king of the hill). Especially, if we introduce a
prize for the best player of the semester, and if the questions
are directly linked to the lecture, we believe that lecture
attendance and paying attention during lectures will improve.

REFERENCES

[1] R. Rosas, M. Nussbaum, P. Cumsille, V. Marianov, M. Correa, P.

Flores, V. Grau, F. Lagos, X. López, V. López, P. Rodriguez, and M.
Salinas, "Beyond Nintendo: design and assessment of educational video
games for first and second grade students," Computer Education, vol.
40, pp. 71-94, 2003.

[2] M. Sharples, "The design of personal mobile technologies for lifelong
learning," Comput. Educ., vol. 34, pp. 177-193, 2000.

[3] A. Baker, E. O. Navarro, and A. v. d. Hoek, "Problems and
Programmers: an educational software engineering card game," in
Proceedings of the 25th International Conference on Software
Engineering Portland, Oregon: IEEE Computer Society, 2003.

[4] L. Natvig, S. Line, and A. Djupdal, "Age of Computers: An Innovative
Combination of History and Computer Game Elements for Teaching
Computer Fundamentals," Proceedings of the 2004 Frontiers in
Education Conference, 2004.

[5] E. O. Navarro and A. v. d. Hoek, "SimSE: an educational simulation
game for teaching the Software engineering process," in Proceedings of
the 9th annual SIGCSE conference on Innovation and technology in
computer science education Leeds, United Kingdom: ACM, 2004.

[6] B. A. Foss and T. I. Eikaas, "Game play in Engineering Education -
Concept and Experimental Results," The International Journal of
Engineering Education vol. 22, 2006.

[7] G. Sindre, L. Nattvig, and M. Jahre, "Experimental Validation of the
Learning Effect for a Pedagogical Game on Computer Fundamentals,"
IEEE Transaction on Education, vol. 52, pp. 10-18, 2009.

[8] A. I. Wang, T. Øfsdal, and O. K. Mørch-Storstein, "Lecture Quiz - A
Mobile Game Concept for Lectures," in IASTED International
Conference on Software Engineering and Application (SEA 2007)
Cambridge, MA, USA: Acta Press, 2007, p. 6.

[9] A. I. Wang, T. Øfsdal, and O. K. Mørch-Storstein, "An Evaluation of a
Mobile Game Concept for Lectures," in Proceedings of the 2008 21st
Conference on Software Engineering Education and Training - Volume
00: IEEE Computer Society, 2008.

[10] M. S. El-Nasr and B. K. Smith, "Learning through game modding,"
Computer Entertainment, vol. 4, p. 7, 2006.

[11] B. Wu, A. I. Wang, J.-E. Strøm, and T. B. Kvamme, "An Evaluation of
Using a Game Development Framework in Higher Education," in
Proceedings of the 2009 22nd Conference on Software Engineering
Education and Training - Volume 00: IEEE Computer Society, 2009.

[12] N. Holmes, "Digital Technology, Age, and Gaming," Computer, vol. 38,
pp. 108-107, 2005.

[13] A. Sliney, D. Murphy, and J. Doc, "A Serious Game for Medical
Learning," First international Conference on Advances in Computer-
Human interaction, February 10-15 2008.

[14] F. Mili, J. Barr, M. Harris, and L. Pittiglio, "Nursing Training: 3D Game
with Learning Objectives," Proceedings of the First international
Conference on Advances in Computer-Human interaction, pp. 10-15,
2008.

[15] L. v. Ahn, "Games with a Purpose," Computer, vol. 39, pp. 92-94, 2006.
[16] Y. S. Chee, E. M. Tan, and Q. Liu, "Statecraft X: Enacting Citizenship

Education Using a Mobile Learning Game Played on Apple iPhones," in
Proceedings of the 2010 6th IEEE International Conference on
Wireless, Mobile, and Ubiquitous Technologies in Education: IEEE
Computer Society.

[17] M. J. McAlister and P. H. Xie, "Using a PDA for Mobile Learning," in
Proceedings of the IEEE International Workshop on Wireless and
Mobile Technologies in Education: IEEE Computer Society, 2005.

[18] G. Schwabe and C. Göth, "Mobile learning with a mobile game: design
and motivational effects," Computer Assisted Learning, vol. 21, pp. 204-
216, 2005.

[19] R. E. Grinter, P. M. Aoki, M. H. Szymanski, J. D. Thornton, A.
Woodruff, and A. Hurst, "Revisiting the visit:: understanding how
technology can shape the museum visit," in Proceedings of the 2002
ACM conference on Computer supported cooperative work New
Orleans, Louisiana, USA: ACM, 2002.

[20] B. Brown, I. MacColl, M. Chalmers, A. Galani, C. Randell, and A.
Steed, "Lessons from the lighthouse: collaboration in a shared mixed
reality system," in Proceedings of the SIGCHI conference on Human
factors in computing systems Ft. Lauderdale, Florida, USA: ACM, 2003.

[21] P. Thornton and C. Houser, "Using mobile phones in English education
in Japan," Computer Assisted Learning, vol. 21, pp. 217-228, June 2005.

[22] S. Fallahkhair, L. Pemberton, and R. Griffiths, "Development of a cross-
platform ubiquitous language learning service via mobile phone and
interactive television," Computer Assisted Learning, vol. 23, pp. 312-
325, August 2007.

[23] J. Sánchez, A. Salinas, and M. Sáenz, "Mobile game-based methodology
for science learning," in Proceedings of the 12th international
conference on Human-computer interaction: applications and services
Beijing, China: Springer-Verlag, 2007.

[24] J. Brooke, "SUS - a quick and dirty usability scale," in Usability
Evaluation in Industry: Taylor and Francis London, 1996, pp. 189-194.

[25] A. Bangor, P. Kortum, and J. Miller, "Determining what individual SUS
scores mean: Adding an adjective rating scale," Usability Studies, vol. 4,
pp. 114-123, 2009.

Paper 3:

G3: Bian Wu; Alf Inge Wang; Erling Andreas Børresen; Knut Andre
Tidemann: "Improvement of a Lecture Game Concept - Implementing
Lecture Quiz 2.0”, 3rd International Conference on Computer Supported
Education, 6-9 May 2011, Noordwijkerhout, The Nederland. ISBN: 978-989-
8425-50-8

IMPROVEMENT OF A LECTURE GAME CONCEPT
- Implementing Lecture Quiz 2.0

Bian Wu, Alf Inge Wang
Dept. of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway

bian@idi.ntnu.no, alfw@idi.ntnu.no

Erling Andreas Børresen, Knut Andre Tidemann
Dept. of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway

erling.andreas.borresen@stud.ntnu.no, knut.andre.tidemann@stud.ntnu.no

Keywords: Educational game, Multiplayer game, Computer-supported collaborative learning, Software engineering
education, Evaluation, System Usability Scale (SUS).

Abstract: A problem when teaching in classrooms in higher education is lack of support for interaction between the
students and the teacher during the lecture. We have proposed a lecture game concept that can enhance the
communication and motivate students through more interesting lectures. It is a multiplayer quiz game,
called Lecture Quiz. This game concept is based on our current technology rich and collaborative learning
environment and was proved as a viable concept in our first prototype evaluation. But based on our previous
implementing experiences and students’ feedbacks about this game concept, it was necessary to improve
this first lecture quiz prototype in four aspects: 1) Provide a more extensible and stable system; 2) Easier for
students to start and use; 3) Easier for the teachers to use; and 4) Good documentation to guide the further
development. According to these aims, we developed the second version of Lecture Quiz and carried out an
evaluation. Through comparing the evaluation data from second version with first version of Lecture Quiz,
we found that both surveys show that the Lecture Quiz concept is a suitable game concept for improving
lectures in most of aspects and that Lecture Quiz have been improved in several ways, such as editor for the
teachers to update the questions, improved architecture that could be easy to extend to the new game modes,
web-based student clients to get an easier start than first version of lecture quiz, etc. The results are
encouraging for further development of the Lecture Quiz platform and for exploring more in this area.

1 INTRODUCTION

Traditional educational methods may include lecture
sessions, lab sessions, and individual and group
assignments, in addition to exams and other standard
means of academic assessment. From experiences at
our university, we acknowledge that today’s lectures
mostly use slides and electronic notes and can still
be classified as one-way communication lectures. In
a typical lecture the teacher will talk about a subject,
and the students will listen and take notes.

However, the exclusive use of such methods
may not be ideally suited to today's students,
particularly those in the generation born after 1982,
or "Millennial students," as termed by education
researchers (Raines; Oblinger and Oblinger, 2005;
D. Oblinger, 2003). Millennial students prefer

hands-on learning activities, and collaboration in
education and the workplace. Female, African
American, Hispanic, and other underrepresented
students may also be inclined toward ways of
learning and working that involve more group work
and social interaction than traditional university
education provides (Williams et al., 2007).

The technology has now evolved and smart
phones, laptops and wireless networking have
become an integrated part of students’ life. These
technologies open new opportunities for interaction
during lectures. As game technology is becoming
more important in university education, we proposed
a way to make the lecture more engaging and
interactive. In 2007 we developed Lecture Quiz, an
educational multiplayer quiz game prototype (Wang
et al., 2007; Wang, 2008) denoted as LQ 1.0 in this
paper. It provides a possibility for the students to

participate in a group quiz using their mobile phone
or laptop to give an answer. The questions are
presented on a big screen and the teacher has the
role as host of a game show. This prototype was
created in a hastily manner to prove that the game
concept was viable for educational purposes.

The implementation of LQ 1.0 was clearly a
prototype that was made as a primary proof of
concept. It lacked a good structure to serve as a
platform for various lecture quiz games and was not
designed with extendibility and modifiability in
mind. As everything was hard-coded, it was difficult
to extend this prototype to be used at a larger scale.
There were also issues with an unstable application
and the architecture itself was not built for large-
scale usage. This could be easily identified by some
limitations, such as that only one session was
allowed per server and no ability for the teacher to
edit quiz data without hacking into the database. We
wanted to extend its structure to support playing
many lectures at the same time. Besides of these
limitations of the software architecture, we also
wanted to add new features to save preparation time
to make a quick and easy start of the game, provide
guidance for the new developers, and quiz editor
tools for teachers. In the light of this, the main aim
was to develop second version of Lecture Quiz,
denoted LQ 2.0, providing the following features: 1)
A more extensible and stable system with a suitable
architecture; 2) Easier to start and use; 3) Easier for
the teachers to use; and 4) Good documentation as
reference for the further development in future, such
as add new game modes to the system.

The final goal was to give a good and solid base
as an extendable lecture game platform, thus
hopefully making it a regular part of university
lectures.

2 RELATED WORKS

Here we will present a survey of similar approaches
for lectures, the design criteria for Lecture Quiz and
introduce the previous version and the
improvements of second version.

2.1 Literature Review

There was no paper describing exactly the same
game concept using the technical infrastructure in
lecture halls for higher education when we
implemented LQ 1.0. During implementing LQ 2.0
in 2010, we found some new similar quiz games
used in education in different ways, but excluding
the quiz used without any technology, such as

(Schuh et al., 2008) or the quiz development
frameworks, such as Quizmaker (Landay, 2010).

Using a game in a portable console (Larraza-
Mendiluze and Garay-Vitoria, 2010) describes an
educational strategy that directly situates students in
front of a game console, where the theoretical
concepts will be learned collaboratively through a
question and answer game. PCs and Nintendo DS
consoles were compared.

Moodle (Daloukas et al., 2008) is an online open
source software aiming at course management. It
focuses on a game module consisting of eight
available games, which are “Crossword”,
“Hangman”, “Snakes and Ladders”, “Cryptex”,
“Millionaire”, “The hidden picture”, “Sudoku” and
“Book with questions”. Their data are derived from
question banks and dictionaries, created by users,
both teachers and students. The rationale behind the
design is to create an interactive environment for
learning various subjects. Since learners are
accustomed and attracted to gaming as well as they
are able to gain immediate feedback on their
performance, they should be easily engaged in them.

The baseball game (Han-Bin, 2009) implements
an learning platform for students by integrating a
quiz in virtual baseball play. Students can answer
questions to get higher possibilities to win the game.
The higher percentage they made right decisions, the
better performance can be made in the baseball
game. By integrating authoring tools and gaming
environment, students will be focused in the
contents provided by teachers.

Also, we found some related approaches prior to
2008 based on technology rich environment,
described in LQ 1.0 (Wang, 2008). Such as, the
Schools Quiz (Boyes, 2007), Quiz game for Medical
Students (Roubidoux et al., 2002), the TVREMOTE
Framework (Bar et al., 2005), Classroom Presenter
(Linnell et al., 2007), WIL/MA(Lab), ClassInHand
(UNIV.), ClickPro (AclassTechnology). Only the
first two cases are designed as games.

2.2 Criteria for the Game design

Our lecture game concept intends to improve the
non-engaging classroom teaching by collaborative
gaming. And its design is based on the eight
elements that make the games more fun to learn.

2.2.1 Collaborative Gaming for Learning

Today's Millennial students (Raines; Oblinger and
Oblinger, 2005; D. Oblinger, 2003) have changing
preferences for education and work environments
that negatively affect their enrolments and retention
rates into university course programs. To better suit
these preferences, and to improve the lecture’s

educational techniques, teaching methods and tools
outside of the traditional lecture sessions and
textbooks must be explored and implemented.
Currently, both work on serious games and
collaborative classrooms focus on this issue. The
proposed lecture game concept deals with both
serious games and student collaboration research,
proposing that educational games with collaborative
elements (multiplayer games) will take advantage of
the benefits offered by each of these areas. The
result is an educational game that demonstrates
increased learning gains and student engagement
above that of individual learning game experiences.
Collaborative educational games and software also
have the potential to solve many of the problems that
collaborative work may pose to course instructors in
terms of helping to regulate and evaluate student
performance (Nickel and Barnes, 2010).

Currently, research into the combination of
serious games and collaborative work (for example,
collaborative, or multiplayer educational games) is
an underexplored area, although recently, computer-
supported collaborative learning (CSCL) researchers
have begun investigation how games are designed to
support effective and engaging collaboration
between students. Studies on social interaction in
online games like Second Life (Brown and Bell,
2004), or World of Warcraft (Bardzell et al., 2008;
Nardi and Harris, 2006) reveal how multiplayer
games allow players to use in-game objects to
collaboratively create new activities around them,
and how social interaction in the games is facilitated
and evolving. From these studies, we learn how to
create multi-player games that effectively support, or
even require, collaboration between players.

Collaboration does not necessarily mean
competition between teams, or otherwise an
adversarial approach (Manninenand and Korva,
2005) in the virtual environment, like above online
multiplayer games. In the real world, a goal that
requires a collaborative process, like solving a
puzzle does create a conflict in the form of the
interaction within the game (C. Crawford, 1982), but
it is not a contest amongst adversaries. The team has
to cooperate to reach a common goal. Up until
recently, the lack of proper means of communication
and interaction has made it difficult to support
collaboration in computer games, and there exist few
actual true collaborative games on the marked. So
we would like to explore this issue by a case study
of using multiplayer quiz game in lecture to see what
will happen when combining serious game with
collaborative works in the physical world.

2.2.2 Characteristics of Good Educational
Games

This section presents eight important characteristics
of good educational games based on computer
supported collaborative learning and Malone’s
statements of what makes games fun to learn. The
following list of characteristics is extracted as a
reference for people designing educational games,
shown in Table 1. Note that missing one of the
characteristics may not mean that the game will be
unpopular or unsuccessful, but including the missing
characteristics in the game concept may make it
better.

Our lecture games concept, both in LQ 1.0 and
2.0 are designed based on these characteristics.

Table 1: Characteristics of good educational games

ID Educational Game
elements

Explanation Reference

1 Variable instructional
control

How the difficulty is adjustable or adjusts to the
skills of the player

(Thomas, 1980; Lowe and Holton.,
2005)

2 Presence of
instructional support

The possibility to give the player hints when he
or she is incapable of solving a task

(Lowe and Holton., 2005; Privateer,
1999)

3 Necessary external
support

The need for use of external support (Lowe and Holton., 2005)

4 Inviting screen design The feeling of playing a game and not operating
a program

(Lowe and Holton., 2005)

5 Practice strategy The possibility to practice the game without
affecting the users score or status

(Lowe and Holton., 2005; Privateer,
1999)

6 Sound instructional
principles

How well the user is taught how to use and play
the game

(Lowe and Holton., 2005; Boocock and
Coleman, 1966; J Kirriemuir and
McFarlane, 2003; Schick, 1993)

7 Concept credibility Abstracting the theory or skills to maintain
integrity of the instruction

(Elder, 1973)

8 Inspiring game
concept

Making the game inspiring and fun (Thomas, 1980; Kirriemuir, 2004)

2.3 Lecture Quiz 1.0

The developed prototype of LQ 1.0 consisted of one
main server, a teacher client and a student client. To
begin a session the students had to download the
student client to their phone using Wifi, Bluetooth or
the mobile network (GPRS/EDGE/3G). After the
download was finished, the software had to be
installed before the students were ready to
participate. This was seen as a bit of a cumbersome
process. The teacher client was implemented in Java
and used OpenGL to display graphics on a big
screen.

The prototype implemented two game modes. In
the first game mode, all the students answered a
number of questions. Each question had its own time
limit, and the students had to answer within that
time. After all the students had given their answers,
a screen with statistics was displayed providing
information on how many students that answered on
each option. At the end of the quiz, the teacher client
displayed a high-score list.

The other game mode was named “last man
standing”. The questions were asked in the same
fashion as with the plain game mode, but if a student
answered incorrectly, he or she was removed from
the game. The game continued until only one student
remained and was crowned as the winner.

One of the main drawbacks of LQ 1.0 was that it
lacked a good architecture, making it hard to extend,
modify and maintain. It also lacks good
documentation, and there was not quiz editor to add
a new quiz or a question. The teacher had to
manually edit the data in the database. The time
spent on downloading and installing the software on
the students’ devices also made it less interesting for
regular use in lectures.

2.4 Improvements of Lecture quiz

Firstly, LQ 2.0 was based on above design methods
and lecture quiz concept. But according to previous
experiences and students’ feedback, we made some
improvements on these aspects. Table 2 shows the
additional functional requirements in LQ 2.0.

Table 2: List of added new functional requirements

Functional requirement
A developer can extend the game with new game modes
A teacher can update the question through a quiz editor
A teacher can tag questions for easier reuse and grouping
A server should be able to run several quiz sessions at the
same time

In addition to functional requirements, we

defined some non-functional requirements for LQ
2.0 described as quality scenarios (Len Bass et al.,
2003). Table 3, 4, and 5 shows three quality
scenarios for modifiability respectively.

Table 3: Modifiability scenario 1.

M1 - Deploying a new game mode for a client
Source of stimulus Game mode developer

Stimulus The game mode developer wants to
deploy a new game mode for one of
the Lecture Quiz clients or the server

Environment Design time
Artefact One of the Lecture Quiz clients or

the game server
Response A new game mode is deployed and

should be ready for use
Response measure The new game mode should be

possible to be deployed in few hours

Table 4: Modifiability scenario 2.

M2 - Creating a new client
Source of stimulus Client developer

Stimulus The client developer wants to
create a new client for the Lecture
Quiz game

Environment Design time
Artefact The Lecture Quiz service

Response A new client supporting to play the
Lecture Quiz game.

Response measure The server communication part of
the client should be complete
within two days

Table 5: Modifiability scenario 3.

M3 - Adding support for a new database back-end
Source of stimulus Server developer

Stimulus Server developer wants to add
support for another database back-
end

Environment Design time
Artefact The Lecture Quiz server

Response A new option for database storage in
the server

Response measure The new back-end should be
finished in two hours

Also we required including a guide explaining

how to create a new game mode for the Lecture
Quiz server as well as for the clients. Such a guide
would make it possible for an external developer to
create new game modes with minimal effort.

As the ability for further development and
expansion of the Lecture Quiz framework was an

important part of our work, we decided to include
detailed information on how this could be done. This
information was intended for new developers
wanting to pick up the Lecture Quiz system and
continue development on the many aspects of it.

3 IMPLEMENTATION

In this section we describe how we have
implemented the architecture for LQ 2.0. The main
component in this architecture is the Lecture Quiz
Game Service. The clients are implemented as
flexible components that are easy to extend and
improve. Figure 1 gives the system overview.

Figure 1: System overview of LQ 2.0

3.1 Lecture Quiz Game Service

The Lecture Quiz Game Service is the server
component that handles all the game logic. Both
teacher and student clients connect to this server
through its web service API. The server itself is
implemented in Java EE 6 and was running on the
Apache Tomcat application server during
development, but should be able to run on any Java
web container.

3.2 Database Design

The database design is given in Figure 2. Based on
five main tables in the database, we have added two

reference tables that help provide the needed
relations between quizzes and questions, as well as
the tags that could be as a new function for teachers
to search certain questions.

 Figure 2: ER diagram of database

3.3 Student Client

The student client was developed in Java using the
Google Web Toolkit4 (GWT) and the AJAX5
framework. As with the teacher client, the main
focus of this implementation has been on
functionality and providing a reference as of how a
client can be implemented. Hence, the graphical
design is minimalistic that also fits the small screens
and easy to download content for mobile phones.

3.4 Teacher Client

The teacher client is developed in Java SE 6. The
development mainly focused on the functional parts
of the client. Implemented in the teacher client is a
simple menu system, a quiz editor to create and edit
quizzes and questions, and a single game mode.
When the teacher client is started, a connection
check is performed to make sure the application can
reach the Lecture Quiz web service. Figure 3 shows
the interface of teacher clients.

Figure 3: Screenshots from teacher client

4 EVALUATION

In this section we will present an empirical
experiment where our system was tried out in a
realistic environment and the findings we found.

4.1 Experiment Delimitation

The goal of this experiment was to get an overall
picture of how the Lecture Quiz service and clients
worked in a real life setting, and comparing it to the
similar experiment conducted for LQ1.0 in 2007
(Wang et al., 2007; Wang, 2008). We will point out
and discuss trends based on these results and our
experiences. Statistical analysis and thorough
psychological analysis are out of the scope of the
current aim.

4.2 Experiment Method

The goal of the formative evaluation was to assess
engagement and usability of lecture quiz concept

with a group of target users. The group of subjects
included 21 students with average age of 22. The
minimum number of participants was determined
using the Nielsen and Landauer formula (Nielsen
and Landauer, 1993) based on the probabilistic
Poisson model:
Uncovered problems = N (1 - (1 – L) n)

Where: N is the total number of usability issues,
L is the percentage of usability problems discovered
when testing a single participant (the typical value is
31% when averaged across a large number of
projects), and n is the number of subjects.

Nielsen argues that, for web applications, 15
users would find all usability problems and 5
participants would reveal 80% of the usability
findings. Lewis (Nielsen and Landauer, 1993)
supports Nielsen but notes that, for products with
high usability, a sample of 10 or more participants is
recommended. For this study it was determined that
testing with 15 or more participants should provide
meaningful results.

Usability and enjoyment of a game are two
closely related concepts. According to the ISO 9241-
11 (Jordan et al., 1996) definition, usability is
derived from three independent measures:
efficiency, effectiveness, and user satisfaction.

• Effectiveness - The ability of users to
complete tasks using the system, and the
quality of the output of those tasks

• Efficiency - The level of resource
consumed in performing tasks

• Satisfaction - Users’ subjective reactions to
using the system.

Also, there are various methods to evaluate the
usability. To measure usability we chose the System
Usability Scale (SUS) (Jordan et al., 1996), which is
a generic questionnaire with 10 questions for a
simple indication of the system usability as a
number on a scale from 0 to 100 points. Each
question has a scale position from 1 to 5. For items
1,3,5,7 and 9, the score contribution is given by
subtracting from the scale position. For item 2,4,6,8
and 10, the contribution is 5 minus the scale
position. This implies that each question has a SUS
contribution of 0-4 points. Finally, the sum of the
scores are multiplied by 2,5 and divided by the
number of replies to obtain the SUS score. The
questionnaire is commonly used in a variety of
research projects.

4.3 Experiment

This experiment tested the usability and
functionality of LQ 2.0. The experiment took place
on May 2010.

The purpose of this experiment was to collect
empirical data about how well our prototype worked
in a real life situation, especially regarding usability
and functionality.

4.3.1 Participants and Environment

The experiment was conducted in a lecture in the
Software Architecture course at our university, and
all the participants were students taking this course.
21 students took part of this experiment, where 81%
were male and 19% where female. As the test was
conducted in a class of computer science students,
most of the students consider themselves to be
experienced computer users, but none of the
participants had tried the software before the
experiment. The test was lead by the teacher, and he
controlled the progress of the game with the teacher
client running on a laptop and displayed the quiz on
a big screen by a video projector. The students used
own mobile phones or laptops to participate through
a web browser supporting java script. The Lecture
Quiz server was running on a computer located
outside of the lecture room.

4.3.2 Experiment Execution

21 of the students in class agreed to participate in the
experiment. The lecture was a summary lecture in
the Software Architecture course. In the first part of
the lecture, theory from current semester was
summarized and discussed. The students were
allowed to ask questions. The experiment took place
in the second part of the lecture, after a short break.

The teacher client was started on a laptop, and an
URL to the student client was shown on the
projector. Each student logged in on the web client
using a desired username and the quiz code

displayed on the large screen processed by the
teacher’s client.

The experiment was executed without any
problems. Everyone was able to answer the
questions using their own mobile clients, and there
was a relaxed atmosphere in the room. Some of the
answer options made the students laugh a bit. In one
of the questions, the teacher client was not able to
display the statistics and correct answer. But this
was displayed correctly on the student client. The
problem was solved by the next question, and all the
software seemed to handle this issue well. All of the
21 students that took part of the experiment did also
answer the questionnaire.

4.4 Results and Findings

We will present our results mainly on two aspects:
the usability and usefulness of the LQ 2.0.

4.4.1 SUS Score and Student Feedbacks

In this section we will present the results of the
questionnaire. First we explain how the SUS score
was calculated. Most of statements had five choices
for the user to answer. From strongly disagree to
strongly agree. These choices were displayed in the
graphs as values from 1 to 5 respectively, and -1
means that the user did not answer this question.

To calculate our SUS score we had to discard 6
of the 21 returned questionnaires, as they had not
answered all of the questions included in the SUS
part of the questionnaire. That made it 15 valid
questionnaires for our SUS calculation.

Our software got a SUS score of 84 out of 100.
This is displayed in Table 6, and shows how Lecture
Quiz scored on each question along with the results
from LQ 1.0 (the previous experiment).

Table 6: Lecture Quiz 1.0 and 2.0 SUS Scores

 - LQ 2.0 LQ 1.0
ID Question Avr Score Avr Score
1 I think that I would like to use this system frequently 3.53 3.53 3.6 2.6
2 I found the system unnecessarily complex 1.40 3.6 1.85 3.15
3 I thought the system was easy to use 4.53 3.53 4.02 3.05
4 I think that I would need support of a technical person to be able to use this

system
1.13 3.87 1.35 3.65

5 I found the various functions in this system were well integrated 3.73 2.73 3.2 2.2
6 I thought there was too much inconsistency in this system 1.73 2.73 1.95 3.05
7 I would imagine that most people would learn to use this system very quickly 4.73 3.27 4.35 3.35
8 I found the system very cumbersome to use 1.73 3.27 1.95 3.05
9 I felt very confident using the system 4.33 3.33 3.55 2.55

10 I needed to learn a lot of things before I could get going with this system 1.27 3.73 1.95 3.05
-- SUS score 84.00 74.25

LQ 2.0’s SUS score of 84 shows that it has high
usability. The SUS score of the experiment in LQ
1.0 was 74.25. LQ 2.0 does mainly the same things
from the students’ aspect, except that the student
client is web-based. Thus we conclude that the web-
based approach was a success.

Also, if we look closely to the questions: 3, 4, 7,
10 from Table 6, it shows that LQ 2.0 has the scores
of 4.53, 1.13, 4.73 and 1.27 respectively. We find
the results relatively clear. The people that answered
our questionnaire found LQ 2.0 both easy to use and
easy to getting started with. All of these results are
somewhat better compared to previous LQ 1.0. It
shows the system is easy to getting started with and
use.

This was an encouraging result, but we still had
to face some negative feedback from students on the
LQ 2.0 experiment. Some of the students
commented that the graphical design of the software
was not good. Many students complained that the
answer buttons where to small, although this could
be solved using the zoom function in their web
browser. We are fully aware that we are not
graphical designers, and that major improvements
could be done on this area. But our main focus in
this system was to get the technical issues on the
back-end done right.

There were also some complains about the
colour chosen as a background about option two on

the teacher client. This colour was displayed
differently from the projector than on a standard
computer screen and this made the text almost
unreadable. In the experiment, the teacher read out
all the choices, so that all the students did get the
information they needed. The colour problem was
corrected after the experiment by choosing a darker
background colour for the teacher client to improve
readability.

From the teacher’s perspective, LQ 2.0 was
clearly an improvement over LQ 1.0 as the time to
start a quiz was shorten dramatically and there were
no technical issues the teacher had to attend. The
teacher only needed to put an URL on the
blackboard or on the large screen, and then let the
students log into the system. This meant that Lecture
Quiz did not introduce a break during the lecture.

4.4.2 Results from Usefulness Questions

Our questions and results regarding usefulness of
using Lecture Quiz both in LQ 1.0 and 2.0 are
shown in Table 7. In this part of the survey, we
looked at the students’ attitude towards the game
compared to the previous version. We also had an
open question part where the students could come
with their comments.

Table 7: Usefulness questions

ID Question Strongly
disagree

Disagre
e

Neutral Agree Strongly
agree

Version

- - - - - LQ 1.0 1 I think that I am an experienced
computer user 0 0 5% 19% 76% LQ 2.0

10% 10% 30% 40% 10% LQ 1.0 2 I think I paid closer attention during
the lecture because of the system 5% 0 42% 32% 21% LQ 2.0

35% 35% 15% 10% 5% LQ 1.0 3 I found the system had a distracting
effect on the lecture 60% 25% 5% 5% 5% LQ 2.0

5% 5% 40% 50% 0 LQ 1.0 4 I found the system made me learn
more 0 15% 25% 50% 10% LQ 2.0

5% 55% 25% 10% 5% LQ 1.0 5 I think I learn more during a
traditional lecture 15% 25% 40% 15% 5% LQ 2.0

0 0 5% 35% 60% LQ 1.0 6 I found the system made the lecture
more fun 0 0 10% 30% 60% LQ 2.0

15% 0 15% 45% 25% LQ 1.0 7 I think regular use of the system
will make me attend more Lectures 10% 15% 30% 20% 25% LQ 2.0

35% 15% 30% 10% 10% LQ 1.0 8 I feel reluctant to pay 0.5 NOK in
data transmission fee per lecture to
participate in using the system

20% 25% 5% 20% 30% LQ 2.0

- LQ 2.0 question Yes No If no, please describe the problem
9 Did the client software work

properly on your mobile/laptop?
90% 10% Totally we got 20 responses, only two have

problems.

From question 2 and 3 in Table 7, we can found
that most students did not find the system intrusive in

the lecture. Question 2 shows that most of the
students (53%) thought they paid closer attention

during the lecture because of the system. We find
this as a positive result, as this was more evenly
distributed in LQ 1.0. And question 3 shows that
over 80% disagreed in some way that the system had
a distracting effect on the lecture, where 60%
strongly disagreed. This is a slightly better result
than survey data from LQ 1.0, where 70% disagreed
to this statement in some way. We guess that having
the quiz at the end of the lecture, and not having to
change lecture room as in 2007, may be factors
changing this result.

From question 4 and 5, we found that lecture
quiz have positive effect to the learning. Over half
students agree that they learned more from the
system and the lecture quiz at least do not have
negative effective on learning compared to
traditional lectures.

Also from question 6 we found that the students
found the system inspiring and fun. From both
surveys of LQ 1.0 and LQ 2.0, we see a clear trend
that students (over 90%) think using the lecture quiz
system in lectures make them more fun.

From question 7 in the LQ 1.0 survey, the
majority thought that regular use of the system
would make them attend more lectures. But in LQ
2.0 survey, the distribution of answers was more
even. We guess there are more factors that affect the
attendance rate, and maybe game factor is not the
biggest one. This proves that more research is
necessary before we can make a valid result on this
question,

From question 9, we found that the system
worked as it should. Out of the 21 returned
questionnaires, 18 reported that the software worked
as it should on their devices. One did not answer,
one meant that the software did not work because of
the problem with small buttons in the mobile screen;
this could be solved when he zoomed in the mobile
browser, and one complained that the software did
not work in Opera Mini. The reason for the problem
in Opera Mini is that LQ 2.0 is based on AJAX and
therefore needs java script support in the browser. In
Opera Mini the requests are compressed and handled
on a central server before being sent to the mobile
device, and thus java scripts do not work. And this
student switched the browser before the formal
experiment starts.

During the experiment the teacher client failed to
show the statistics for one of the questions once. But
the statistics where displayed correctly on all the
student clients, and all answers was stored as they
should. The quiz continued as usual when the
teacher pressed the button to start the next question.
This is only a minor bug in the teacher client and
that the rest of the system works as expected. We
were not able to reproduce this bug later.

As a whole, we had less technical problems than
the comparable experiment in 2007, thus probably
resulting in the users to be friendlier in their
evaluation of the system. The results of this
experiment are mostly positive and in most areas
better than for the previous version of the system.

5 CONCLUSION

Through the data from the evaluation and by
comparing with the first version of lecture quiz, we
found that lecture quiz is a suitable game concept to
be used in lecture from both evaluation data.

And LQ 2.0 improved lecture game quiz concept
in several ways. The main feature of building a
strong and easily modifiable web-based architecture
is extendable game modes, the ability to run multiple
game servers on the same database and run many
different quiz sessions on the same server. The new
student web-based client reaches more students as
close to 100% of students have access to a web-
browser using a laptop or a mobile phone. In
addition, the quiz editor makes it easy for teachers to
maintain the question database, and it is easy to
extend the game with the new game modes through
the architecture. All of these features can be the
factors that made the survey and evaluation better
than the last version in most of aspects. More
elaborate experiments must be conducted to find
whether Lecture Quiz improves how much the
students actually learn.

REFERENCES

Raines, C. Managing Millennials; [cited October, 2010].
Available from:
https://www.cpcc.edu/millennial/presentations-
workshops/faculty-or-all-college-workshop/9%20-
%20managing%20millennials.doc

Oblinger, D.; Oblinger, J. Educating the Net Generation.
Boulder, CO: Educause, . 2005.

D. Oblinger. Boomers, Gen-Xers, and Millennials:
Understanding the New Students. Educause Review,.
July/August 2003, ; vol. 38, no. 4, :pp. 37-47.

Williams, L.; Layman, L.; Slaten, K.M.; Berenson, S.B.;
Seaman, C. On the Impact of a Collaborative
Pedagogy on African American Millennial Students in
Software Engineering. Proceedings of the 29th
international conference on Software Engineering:
IEEE Computer Society; 2007. p. 677-687.

Alf Inge Wang; Terje Øfsdahl; Mørch-Storstein., O.K.
LECTURE QUIZ - A Mobile Game Concept for
Lectures., In 11th IASTED International Conference
on Software Engineering and Application (SEA
2007),: Acta Press; 2007. p. pages 128–142.

A.I. Wang, An Evaluation of a Mobile Game Concept for
Lectures Software Engineering Education and
Training, 2008 IEEE 21st Conference on; 2008. 197 p.

Schuh, L.; Burdette, D.E.; Schultz, L.; Silver, B. Learning
Clinical Neurophysiology: Gaming is Better than
Lectures. Journal of Clinical Neurophysiology.
2008;25(3):167-169
110.1097/WNP.1090b1013e31817759b31817753.

Landay, S. Online Learning 101: Part I: Authoring and
Course Development Tools. eLearn. 2010;2010(6).

Larraza-Mendiluze, E.; Garay-Vitoria, N. Changing the
learning process of the input/output topic using a game
in a portable console. Proceedings of the fifteenth
annual conference on Innovation and technology in
computer science education. Bilkent, Ankara, Turkey:
ACM; 2010. p. 316-316.

Daloukas, V.; Dai, V.; Alikanioti, E.; Sirmakessis, S. The
design of open source educational games for
secondary schools. Proceedings of the 1st international
conference on PErvasive Technologies Related to
Assistive Environments. Athens, Greece: ACM; 2008.
p. 1-6.

Han-Bin, C. Integrating baseball and quiz game to a
learning platform. Pervasive Computing (JCPC), 2009
Joint Conferences on; 2009. p. 881-884.

Boyes, E. Buzz! spawns School Quiz.; [modified 2007].
Available from:
http://www.gamespot.com/news/6164009.html

Roubidoux, M.A.; Chapman, C.M.; Piontek, M.E.
Development and Evaluation of an Interactive Web-
Based Breast Imaging Game for Medical Students.
Academic Radiology. 2002;9(10):1169-1178.

Bar H.; Tews, E.; G. Robling. Improving Feedback and
Classroom Interaction Using Mobile Phones. In
Proceedings of Mobile Learning; 2005. p. 55-62.

Linnell, N.; Anderson, R.; Fridley, J.; Hinckley, T.;
Razmov, V. Supporting classroom discussion with
technology: A case study in environmental science.
Frontiers In Education Conference - Global
Engineering: Knowledge Without Borders,
Opportunities Without Passports, 2007 FIE '07 37th
Annual; 2007. p. F1D-4-F1D-9.

Lab, L. Wireless Interactive Lecture in Manheim: UCE
Servers & Clients, Lecture Lab. WIL/MA; [cited
2007]. Available from: http://www.lecturelab.de/

UNIV., I.A.W.F. ClassInHand: Wake Forest University;
[cited 2007]. Available from:
http://classinhand.wfu.edu

AclassTechnology. EduClick-Overview; [cited 2010].
Available from:
http://www.aclasstechnology.co.uk/eduClick/index.ht
ml

Nickel, A.; Barnes, T. Games for CS education: computer-
supported collaborative learning and multiplayer
games. Proceedings of the Fifth International
Conference on the Foundations of Digital Games.
Monterey, California: ACM; 2010. p. 274-276.

Brown, B.; Bell, M. CSCW at play: there as a
collaborative virtual environment. Proceedings of the
2004 ACM conference on Computer supported

cooperative work. Chicago, Illinois, USA: ACM;
2004. p. 350-359.

Bardzell, S.; Bardzell, J.; Pace, T.; Reed, K. Blissfully
productive: grouping and cooperation in world of
warcraft instance runs. Proceedings of the 2008 ACM
conference on Computer supported cooperative work.
San Diego, CA, USA: ACM; 2008. p. 357-360.

Nardi, B.; Harris, J. Strangers and friends: collaborative
play in world of warcraft. Proceedings of the 2006
20th anniversary conference on Computer supported
cooperative work. Banff, Alberta, Canada: ACM;
2006. p. 149-158.

T.Manninenand; T.Korva. Designing Puzzle for
Collaborative Gaming Experience - CASE: eScape.
DiGRA 2005 Conference: Changing Views - Words in
play 2005. Vancouver, Canada, 2005.

C. Crawford. The Art of Computer Game Design:
Osborne/McGraw Hill; 1982.

Thomas, W.M. What makes things fun to learn? heuristics
for designing instructional computer games.
Proceedings of the 3rd ACM SIGSMALL symposium
and the first SIGPC symposium on Small systems.
Palo Alto, California, United States: ACM; 1980.

Lowe, J.S.; Holton., E.F. A Theory of Effective
Computer-Based Instruction for Adults. Human
Resource Development Review,. 2005:4(2), 159-188. .

Privateer, P.M. Academic Technology and the Future of
Higher Education: Strategic Paths Taken and Not
Taken. Journal of Higher Education, Vol 70, . 1999.

Boocock, S.S.; Coleman, J.S. Games with Simulated
Environments in Learning. Sociology of Education.
1966;39(3):215-236.

J Kirriemuir; McFarlane, A. Use of computer and video
games in the classroom. Proceedings of the Level Up
Digital Games Research Conference. Universiteit
Utrecht, Netherlands.; 2003.

Schick, J.B.M. The Decision to Use a Computer
Simulation. Vol. Vol. 27, No. 1 (Nov., 1993), pp. 27-
36 Society for History Education; 1993.

Elder, C.D. Problems in the Structure and Use of
Educational Simulation. Sociology of Education.
1973;46(3):335-354.

Kirriemuir, J.M., A. Literature review in games and
learning. Report 8.; 2004.

Len Bass; Paul Clements; Kazman, R. Software
architecture in practice: Second Edition: Addison-
Wesley Professional; 2003.

Nielsen, J.; Landauer, T.K. A mathematical model of the
finding of usability problems. Proceedings of the
INTERACT '93 and CHI '93 conference on Human
factors in computing systems. Amsterdam, The
Netherlands: ACM; 1993. p. 206-213.

Jordan, P.W.; Thomas, B.; Weerdmeester, B.A.;
McClelland, A.L. Usability Evaluation in Industry,
chapter SUS - A quick and dirty usability scale: CRC
Press; 1996. pages 189–194. p.

Paper 4:

G4: Bian Wu, Alf Inge Wang, " A Pervasive Game to Know Your City
Better", 2011 International IEEE Consumer Electronics Society's Games
Innovation Conference (IGIC 2011), November 2011, Orange, California,
USA.

Abstract— This paper presents a pervasive game on Android
platform where players can play a knowledge competition tour in
groups in the city of Trondheim, and gain better understanding
of the city through solving different tasks. From the evaluation,
the result shows that the concept of using pervasive game in a
learning context is an interesting concept that should be explored.

I. INTRODUCTION
During recent years, there is a growing trend that can be

referred to as pervasive and social games, which brings more
physical movement and social interactions into game world
[1]. Concretely, smart phones with Internet, GPS and other
capabilities have become increasingly common, making
mobile phone-based pervasive games easy to play and more
interesting. Inspired by the game-based learning [2], one
possible research area is to provide learning platform through
pervasive games. In this context, we have a tentative case
study to explain how learning is perceived and integrated in
pervasive game.

There are two main inspirations for this case study: one is
about the game plot, and another is about the new and
interesting applications of mobile technology. The first is the
American television series “The Amazing Race”
(http://en.wikipedia.org/wiki/The_Amazing_Race), a reality
show where contestants compete to be the first to reach
different checkpoints all over the world. Similarity, the other
two are: 1) a treasure hunt called “The Game”
(http://en.wikipedia.org/wiki/The_Game_(treasure_hunt)),
Shelby Logan’s Run is the 2002 edition of “The Game”, a
Seattle-based yearly puzzle hunt. 2) A pervasive learning
space called Heroes of Koskenniska [3], it combined mobile
and sensor technologies with environmental education.
Another motivation is popularity of Android platform and its
applications. Its features can meet our requirements in
different technology demanding scenarios in our case study.
By getting contestants to travel to several different locations,
we can thoroughly put the GPS-unit, Wi-Fi or 3G into work.
In addition, recent interesting applications based on the
camera, microphone and headphone from Android Market
provide a multitude of other technologies that can be
integrated in a pervasive game. For instance, 1) QR code and
barcode can be scanned through phone’s camera, and we can
use barcode generator to output clues for game tasks. 2)
Google Goggles (http://www.google.com/mobile/goggles) is a
free image recognition application. It enables the player to use
pictures taken from the mobile phone to search on web
resource; these pictures could come from text, landmarks,
books, contact information, artwork, wine, or logo. 3) Layar
(http://www.layar.com/) is a mobile platform for discovering

information about the world around us by using augmented
reality technology, 4) Shazam (http://www.shazam.com/) is an
application for recognizing songs that are playing, the
application listens to music snippets through the microphone,
and search the songs information. 5) ShopSavvy
(http://shopsavvy.mobi/) is an extensive application from
barcode category to scan the information of products using the
camera of the mobile phone. After reading the barcode, the
application will identify the product information and provide a
list of online and local prices for it. In this context we
introduced Trondheim city through a knowledge race called
“The Amazing City Game” (ACG). The game is an adventure
game where the contestants have to solve tasks at different
locations by using relevant technologies from the Android
phone. The group that reaches the final destination in the least
amount of time is the winner.

II. DESIGN AND IMPLEMENTATION
The game has three main goals: 1) to integrate ubiquitous

technologies from the Android platform in games, 2) to give
the contestant knowledge about the city of Trondheim, and 3)
to let the contestants have fun while playing the game.

Based on the above goals, we have constructed the
following types of tasks for ACG. Each task may have 1-3
hints. If player uses a hint, a responding penalty time will be
counted in the final score.

A. Tasks Design
Location Task: The player has to find a specific location

and confirm it with the use of the GPS.
Scan Task: The player has to scan a barcode, text, figures or

audio in order to get assigned a route or answer.
Open Task: The player is given a question and has to type

answer into the answer text box.
Multiple Choice Tasks: The player is given a question and

has to select the right answer out of the possible solutions.
Checkbox Task: The player is given a question and has to

select the right answer out of the possible choices, where
multiple answers might be correct.

Further, some tasks are combinations of above two or three
types of tasks. E.g. Shazam Challenge: The player is given a
question and has to type answer into the answer text box. The
difference between this task and the Open Task is that the
player is given an audio clue in the task description, and can
be recognized by Shazam. Shopsavvy Challenge: The player is
given a series of multiple-choice questions. The difference
from other tasks is that the alternatives for each question are
printed as barcode on a sheet of paper at the location, where
each corresponding answer is next to a commercial product

Bian Wu, Alf Inge Wang, Norwegian University of Science and Technology

A Pervasive Game to Know Your City Better

picture that can be found by scanning the barcode. By taking
the first letter of the each product name and grouped letters in
correct order to be a word, and then they will give this word
that is typed into a text box and get relevant information about
the city.

For the final game play, one task is to know the city flag
and city flower. Players will find the left picture from Figure
1, and they can open the Goggles application from the phone
to scan this figure and search and find the web resource link.
The correct link information shows that the figure is the city
flag. If they read the information carefully, they will know the
flower in the flag is rosa canina. Another task example related
to the right side of Figure 1 is that audio will be broadcast and
searched by Shazam and get the songs information and find
famous musical writer from the city. To all tasks, another
possible solution is that they can ask local passengers for help
or search information from city library.

Figure 1: Trondheim flag (left) and Shazam (right)

B. User Interface
The user interface is clean and simple. Figure 2 shows

examples of the interface: left top is the “Wrong Answer” pop
up on a single choice task; right top is the Confirmation Box
after choosing the answer. Left bottom is the GPS task
interface and right bottom is the Shazam task.

Figure 2: ACG user interface

III. RESULTS

A. Participants and Execution
The contestants were students with computer science

background. There were four groups with two students in each
group, totally eight students. Four of them were Norwegian,
two were Spanish, one was Chinese and the one was
Lithuanian. Each group had one Android phone with ACG
installed. The game play was set from 1:15pm to 4:15pm on
3rd of May, and took place in Trondheim city of Norway. All
groups started at meeting point. When all groups were ready, a
brief introduction was given, and the first location disclosed.
Immediately after this, everyone raced off to this location.

Upon arriving at the location, each group received different
routes according to their arrival time. The groups started
solving the tasks, and observed and recorded closely by the
tutors. When the task at first location was finished, the groups
continued with unique routes. From this point, each group was
alone with their tutor for the rest of the game play (Tutor
followed the group and recorded the video about the group’s
activity for the later observation). To the left in Figure 3 is a
group is using the camera of an Android phone to scan a
barcode. To the right a group is asking for help from a person
working in a Tourist Information Center.

Figure 3: ACG play process

B. Results
Most of the groups spent 2-3 hours in the city tour game.

From several observations, the GPS accuracy did not reach
participants’ expectation. Also the participants’ background
was not at the same level for the competition: E.g. some tasks
were difficult for the foreigners since they did not have
relevant culture background, while other participants were
unfamiliar with the android applications. Overall, participants
thought the tasks were a bit challenge but interesting. They
claimed to have gained a better understanding of the city and
more interested in android technology.

IV. SURVEY AND EVALUATION
A survey was conducted to evaluate our game system. The

survey includes two parts: 1) System usability, and 2)
Enjoyment of an educational game.

The System Usability Scale (SUS) [4] has previously been
used to evaluate the usability of games, e.g. [5-7]. SUS is a
generic questionnaire with 10 questions for a simple indication
of the system usability as a number on a scale from 0 to 100
points. Each question has a scale position from 1 to 5. For
items 1,3,5,7 and 9, the score contribution is given by
subtracting 1 from the scale position. For item 2,4,6,8 and 10,

the contribution is 5 minus the scale position. This implies that
each question has a SUS contribution of 0-4 points. Finally,
the sum of the scores are multiplied by 2,5 and divided by the
number of replies to obtain the SUS score.

We used the EGameFlow scale to measure the enjoyment of
our educational game [8]. It is a scale that measures the
enjoyment offered by E-learning games, and helps the game
designer to understand the strengths and weaknesses of the
game efficiently from the learner’s point of view. EGameFlow
consists of a number of questions in eight areas. The eight
areas of EGameFlow are:
• Concentration: Games must provide activities that

encourage the player’s concentration while minimizing
stress.

• Goal Clarity: Tasks should be clearly explained from the
beginning.

• Feedback: Feedback allows a player to determine the gap
between the current stage of knowledge and the
knowledge required for completion of the task.

• Challenge: The game should offer challenges that fit the
player’s skill level, the difficulty of these challenges
should change in accordance with the increase in the
player’s skill level.

• Autonomy: The learner should enjoy taking the initiative
in game-playing and asserting total control over his or her
choices in the game.

• Immersion: The game should lead the player into a state
of immersion.

• Social Interaction: Tasks in the game should become a
mean for players to interact socially.

• Knowledge Improvement: The game should increase the
player’s level of knowledge and skills while meeting the
goals of the curriculum.

To answer the questions or statements in each area, the
respondents have to express their degree of agreement or
disagreement. Each item in the questionnaire is responded to
by assigning a scale value from 1 to 7, where 1 indicates
strong disagreement and 7 indicates strong agreement.

A. The results from the SUS survey
The number of survey respondents was eight. This gives us

a small sample size, and thus the results are seen as useful
indications rather than definite results.

TABLE 1 SUS SCORE FOR AMAZING CITY GAME
ID Question Avr Score
1 I think that I would like to use this system

frequently
2.63 1.63

2 I found the system unnecessarily complex 2.13 2.88
3 I thought the system was easy to use 3.88 2.88
4 I think that I would need support of a technical

person to be able to use this system
2.13 2.88

5 I found the various functions in this system were
well integrated

3.38 2.38

6 I thought there was too much inconsistency in
this system

2.13 2.88

7 I would imagine that most people would learn to
use this system very quickly

3.88 2.88

8 I found the system very cumbersome to use 2.00 3.00
9 I felt very confident using the system 3.75 2.75

10 I needed to learn a lot of things before I could get
going with this system

1.75 3.25

-- SUS score 68.44

Six of the respondents were students from computer

science. All of the respondents therefore have a high technical
competence. The SUS score for our game was 68.44, which is
a bit below the mean score of 70.14 taken from 2324 surveys
of other systems [9]. For a game, this score is a bit low
meaning that the user-interface of the game was a bit difficult
to use. In the debrief of the participants several challenging
areas of the usability were identified. First of all, the
participants were not sure about the overall goal of the game
through the introduction and how the game should be used.
Further, the users had to switch between several applications
in order to solve the challenges (QR bar code scanner,
Googles, Layer, Shazam, and ShopSavvy). The ACG
application was open-ended and it was left very much in the
hand of the user how it should be used. This made it a bit
difficult for the players what to do next. An identified
improvement would have been to integrate all the needed extra
applications into ACG to avoid switching between
applications. We also noticed that users with prior Android
experience had far less usability problems compared to those
unknown to Android. Our SUS score suffers also from users
that both had to learn the application as well as Android.

B. EGameflow survey
Table 2 shows a comparison of the ACG EGameFlow

results compared to four other games found in [8].

TABLE 2 EGAMEFLOW GAMES VS. AMAZING CITY GAME
Category Game1 Game2 Game3 Game4 ACG
Concentration 5.118 5.225 5.214 5.153 5.22
Goal Clarity 4.180 5.360 5.048 5.306 5.03
Feedback 4.890 4.950 5.230 5.149 6.22
Challenge 4.654 4.880 5.019 4.764 4.22
Autonomy 4.686 4.880 5.019 4.764 4.38
Immersion 4.686 4.378 4.651 4.265 5.44
Social Interaction 3.163 3.250 3.365 2.826 5.38
Knowledge
Improvement

4.985 5.420 5.171 5.055 5.21

Table 3 shows detailed feedback for each area:

TABLE 3 EGAMEFLOW SCALE FOR AMAZING CITY GAME
Concentration Mean
Most of the gaming activities are related to the learning task 5.13
Generally speaking, I can remain concentrated in the game 5
I am not distracted from tasks that the player should
concentrate on

5.13

Workload in the game is adequate 5.63
Average 5.22
Goal Clarity Mean
Overall game goals were presented in the beginning of the
game

4.13

Overall game goals were presented clearly 4.63
Intermediate goals were presented in the beginning of each
scene

5.75

Intermediate goals were presented clearly 5.63
Average 5.03
Feedback Mean
I receive feedback on my progress in the game 5.75
I receive immediate feedback on my actions 6
I am notified of new tasks immediately 6.63
I receive information on my success (or failure) of
intermediate goals immediately

6.5

Average 6.22
Challenge: Mean
The game provides ”hints” in text that help me overcome
the challenges

5.38

The game provides video or audio auxiliaries that help me
overcome the challenges

4.13

The game provides new challenge with an appropriate
pacing

5

The game provides different levels of challenges that is
tailored to different players

2.38

Average 4.22
Autonomy: Mean
I feel a sense of control and impact over the game 4.25
I know the next step in the game 4.5
Average 4.38
Immersion Mean
I forget about time passing while playing the game 5.88
I become unaware of my surroundings while playing the
game

4.63

I temporarily forget worries about everyday life while
playing the game

5.13

I experience an altered sense of time 5.25
I can become involved in the game 5.88
I feel emotionally involved in the game 5.88
Average 5.44
Social Interaction Mean
I feel cooperative toward other classmates 5.38
I strongly collaborate with other classmates 5.13
The cooperation in the game is helpful to the learning 5.63
Average 5.38
Knowledge Improvement Mean
The game increases my knowledge 5.5
I catch the basic ideas of the knowledge taught 5.38
I want to know more about the knowledge taught 4.75
Average 5.21

Basically, from the survey, we found this pervasive
educational game have high quality in feedback, immersion,
social interaction since their average score is much higher than
the other games’ score shown in Table 2. It indicates that
advantage to implant pervasive elements into an educational
game. Although we can not make it as a general conclusion
due to the limitation of total amount of participants, our results
shows that the idea of using pervasive game in a learning
context is an interesting concept that should be explored.

For the concentration and knowledge improvement, the
score is similar to the other games’ score shown in Table 2.
But if we look further in Table 3 for knowledge improvement

area, we get high marks on first two items: game increases
participant knowledge and let them catch the basic knowledge.
For the third item, it seems that this game’s motivation is not
as strong as we thought.

The rest of Goal clarity, challenge and autonomy are a bit
lower score that the other games’ score shown in Table 2. For
the Goal clarity, we found intermediate goals are clear in
Table 3, but overall goal is not clearly present. We thought
that lack of detailed instruction in the beginning of game
maybe the reason. For the Challenge area, two groups meet
troubles in the video and auxiliaries maybe cause a low score
in second item. For fourth item, it reminds us that more
resources and plots should be input to create challenges to
match different levels. For Autonomy area, it indicates that
autonomy of the game could be improved to let participant to
feel freer to control the game. For the second item, the
participants are not supposed to know the next step of the
game until they have arrived at it. Although, this item has a
low score, it is exactly a positive feedback from our aspect.

V. CONCLUSION
From our experiences we acknowledge that pervasive

games for learning purposes need more exploration. Our study
shows that pervasive educational games could be an informal
learning environment and could be an interesting supplement
to the formal and traditional education.

ACKNOWLEDGMENT
We thank Runar Os Mathisen, Lawrence Alexander Valtola,

Sondre Wigmostad Bjerkhaug and Trygve Bragstad for
providing content and implementing the prototype of the
amazing city game.

REFERENCE

[1] H. Guo, et al., "TeMPS: A Conceptual Framework for Pervasive
and Social Games," in Third IEEE International Conference on
Digital Game and Intelligent Toy Enhanced Learning (DIGITEL),,
2010, pp. 31-37.

[2] M. Prensky, "Digital game-based learning," Computers in
entertainment, vol. 1, pp. 21- 24, 2003.

[3] T. H. Laine, et al., "Viable and Portable Architecture for Pervasive
Learning Spaces," in 9th International Conference on Mobile and
Ubiquitous Multimedia, Limassol, Cyprus., 2010.

[4] P. W. Jordan, et al., Usability Evaluation in Industry, chapter SUS
- A quick and dirty usability scale: CRC Press, 1996.

[5] B. Wu, et al., "IMPROVEMENT OF A LECTURE GAME
CONCEPT- Implementing Lecture Quiz 2.0," in Proceedings of
the 3rd International Conference on Computer Supported
Education, 2011, pp. 26-35.

[6] A. I. Wang, "An Evaluation of a Mobile Game Concept for
Lectures," presented at the IEEE 21st Conference on Software
Engineering Education and Training, 2008.

[7] B. Wu, et al., "XQUEST used in software architecture education,"
in International IEEE Consumer Electronics Society's Games
Innovations Conference,(ICE-GIC 2009), 2009, pp. 70-77.

[8] F.-L. Fu, et al., "EGameFlow: A scale to measure learners'
enjoyment of e-learning games," Computers & Education, vol. 52,
pp. 101-112, 2009.

[9] A. Bangor, et al., "An Empirical Evaluation of the System
Usability Scale," International Journal of Human-Computer
Interaction, vol. 24, pp. 574-594, 2008.

Paper 5:

GDF1: Alf Inge Wang, Bian Wu, "An Application of a Game Development
Framework in Higher Education", International Journal of Computer Games
Technology, Special Issue on Game Technology for Training and Education,
Volume 2009. ISSN: 1687-7047 EISSN: 1687-7055.
DOI=10.1155/2009/693267

An Application of Game Development Framework in Higher Education
Alf Inge Wang and Bian Wu

Dept. of Computer and Information Science
Norwegian University of Science and Technology

alfw/bian@idi.ntnu.no

ABSTRACT
This paper describes how a game development framework was used as a learning aid in a
software engineering course. Games can be used within higher education in various ways to
promote student participation, enable variation in how lectures are taught, and improve
student interest. In this paper, we describe a case study at the Norwegian University of
Science and Technology (NTNU) where a game development framework was applied to
make students learn software architecture by developing a computer game. We provide a
model for how game development frameworks can be integrated with a software engineering
or computer science course. We describe important requirements to consider when choosing a
game development framework for a course, and an evaluation of four such frameworks based
on these requirements. Further, we describe some extensions we made to the existing game
development framework to let the students focus more on software architectural issues than
the technical implementation issues. Finally, we describe a case study of how a game
development framework was integrated in a software architecture course, and the experiences
from doing so.

KEY WORDS
Game development framework, Software architecture, Software engineering education

Games have been used in schools for many years to help children learn skills in math,
language, geography, science and other domains in an interesting and motivating way.
Research shows that integrating games within a classroom with children can be beneficial for
academic achievement, motivation and classroom dynamics [24]. There is also evidence that
the teaching methods based on educational games are not only attractive to schoolchildren,
but also to university students [19]. There have been conducted research on games concept
and game development used in higher education before, e.g. [3, 16, 11], but we believe there
is an untapped potential that needs to be explored. Games can provide teachers in higher
education teaching aids that can promote more active students, provide alternative teaching
methods to improve variation, and enable social learning through multiplayer learning games.

Games can be integrated in higher education in three ways. First, games can be used instead
of traditional exercises motivating students to put extra effort in doing the exercises, and
giving the teacher and/or teaching assistants an opportunity to monitor how the students work
with the exercises in real-time [29, 30]. Second, games can be used within lectures to improve
the participation and motivation of students [1, 31]. In this approach, the students and the
teacher participate in knowledge-based games. Third, the students are required to develop a
game as a part of a course using a game development framework (GDF) to learn skills within
computer science or software engineering [32]. This paper focuses on the latter, where game
development and a GDF is used in student projects to learn software engineering skills,
extending the use of games as a teaching aid in higher education. The motivation of making
students develop games to learn software engineering is to bring the students’ enthusiasm
from playing games to learn to courses through game development. In addition, we wanted to
investigate if the specific features of a GDF are suitable for teaching software engineering,
and how game development can be integrated with the education process. More specifically,
we wanted to explore how the use of game development and the GDF would affect the
learning of software architecture with focus on the technical aspects of the GDF.

This paper focuses on how the technical aspects of a GDF affect the learning of software
architecture, the selection of appropriate GDF for a software architecture course, and how a
GDF can be applied in a software engineering course. The main contribution of this paper is a
presentation of a novel GDF concept that can be used in courses that includes software
development, experiences from actual usage of the GDF, and some course design
considerations.

The rest of the paper is organized as follows. Section 2 describes and motivates for how a
GDF can be used in higher education and what criteria should be considering when choosing
one. Section 3 describes a case study of applying a GDF in a software architecture course.
Section 4 describes experiences from using a GDF in a software course. Section 5 describes
similar approaches, and Section 6 concludes the paper.

This section presents the motivation for applying GDFs in higher education, a model for how
GDFs can be integrated with a course, and requirements for how to choose the appropriate
GDF for educational purposes.

The main motivation for introducing GDF in software engineering (SE) or computer science
(CS) courses is to motivate students to put more effort into software development project in
order to improve software development skills. Game development offers an interesting way of
learning and applying the course theory. By introducing a game development project in a
course, the students have to establish and describe most of the functional requirements
themselves (what the game should be like). This can be a motivating factor especially for
group-based projects, as each group will develop a unique application (the game), it will
encourage creativity, and it will require different skills from the group members (art,
programming, story, audio/music). The result will be that the students will have a stronger
feeling of ownership to the project. Furthermore, students also could learn about game
development technology. The main disadvantages by introducing a game development project
and a GDF into a SE or CS course is that the student might spend too much time on game-
specific issues and that the project results might be difficult to compare. It is critical that the
students get motivated applying a GDF in a course, and that they get increased motivation for
learning and applying course theory through a game development project.

Tom Malone has listed three main characteristics that make things fun to learn: they should
provide the appropriate level of challenge, they should use fantasy and abstractions to make it
more interesting, and they should trigger the player’s curiosity [26]. These characteristics can
directly be applied when developing a game for learning purposes. However, we can also
consider these characteristics when introducing a GDF in a SE or CS course. By allowing the
students to develop their own games using a GDF, such projects are likely to trigger students’
curiosity as well as provide a challenge for students to design fun games with their
knowledge, skills, imagination and creativity. The level of the challenge can be adjusted
according to the project requirements given in courses by the teacher. Thus, the challenge
level can not only be adjusted to the right level for most participants, but also tailored for
individual differences. As the students will work in groups, group members helping other
group members can compensate for the individual differences. An open platform and agile
courses requirements should be provided for students to design their own games, combined
with their ability, fantasy and comprehension of lecture content.

The main benefit of using a GDF as a teaching aid is that it can be a motivating initiative in
courses to learn about various topics such as software requirements, software design, software

architecture, programming, 2D and 3D graphic representation, graphic programming,
artificial intelligence, physics, animation, user interfaces, and many other areas within
computer science and software engineering. It is most useful for learning new skills and
methods within a specific domain but also useful for testing and rehearsing theory by
applying know skills and knowledge in a project using a GDF.

There are several good reasons for introducing a GDF and game development projects in CS
and SE courses as described in previous section, but in order to make it a success it is
important that the GDF is well integrated with the course. Based on our experiences, we have
developed a circular model for how to apply a GDF in a CS or SE course through six steps
(see Figure 1). The model is intended for courses where a software development project is a
major part of the course.

Figure 1. Circulatory model of GDF’s application in courses

To choose one appropriate development platform according to the course content, it is
important to consider the process of the course related to the development project. This
process starts with choosing an appropriate GDF (step A) for the course related to some
requirements (described in the next section). Next, the design of exercises and projects (step
B) must reflect the limitations and constraints of the chosen GDF. In the initial phase of the
student project, it is important that the students get the required technical guidance and
appropriate requirements (step C) related to the GDF. It is important that the students get to
know the GDF early, e.g. by introducing an exercise to implement a simple game in the GDF.
It is critical that there is sufficient course staff that knows the GDF well enough to give the
required feedback. The next step is for the students to start designing and implementing (step
D) their own game according to the constraints within the course and the GDF. After the
students have delivered their final version of their project implementation and documentation,
the students should get the chance to evaluate and analyse (step E) their own projects to learn
from their successes and mistakes. This information should then be used to provide feedback
in order to improve the course (step F). The feedback from the students might indicate that
another GDF should be used or that the course constraints on the projects should be altered.
The core of this model is that the teacher should encourage the students to explore the course
theory through a game development project using a GDF, and give the opportunity to improve
the game development project through feedback from the students.

How to choose an appropriate GDF that easily can be integrated with course content should
be based on the educational goals of the course, the technical level and skills of students, and
the time available for projects and/or exercises. Based on experiences from using GDFs and
from student projects in CS and SE courses, we have come up with the following
requirements for choosing a GDF for a CS or SE course:

1) It must be easy learn and allow rapid development. According to Malone’s
recommendation of how to make things fun to learn, it is crucial that we provide the
appropriate level of challenge. If the GDF is too much of a challenge and requires too
much to learn before becoming productive, the whole idea of game development will
be wasted as the student will loose motivation. An important aspect of this is that the
GDF offers high-level APIs that makes it possible for the students to develop
impressive results without writing too many lines of code. This is especially critical
in the first phase of the project.

2) It must provide an open development environment to attract students’ curiosity.
Malone claims that fantasy and curiosity are other important factors that make things
fun to learn. By providing a relatively open GDF without too many restrictions on
what you can produce, the students get a chance to realize the game of their dreams.
This means that the GDF itself should not restrict what kind of game the students can
make. This requirement would typically rule out GDFs that are tailored for producing
only one game genre such as adventure games, platform games or board games. In
addition, ideally an open development environment should offer public and practical
interfaces for developers to extend their own functions. In this respect, open source
game development platforms are preferred.

3) It must support programming languages that are familiar to the students. The
students should not be burdened to have to learn a new programming language from
scratch in addition to the course content. This would take away the focus of the
educational goals of the course. We suggest to choose GDFs that support popular
programming languages that the students know like C++, C# or Java. It is also
important that the programming languages supported by the GDF have high-level
constructs and libraries that enable the programmers to be more productive as less
code is required to produce fully functional systems. From an educational point of
view, programming languages like Java and C# are better suited than C and C++, as
they have more constraints that force the programmers to write cleaner code and there
is less concern related to issues like pointers and memory leakage. From a game
development perspective, programming languages like C and C++ are more attractive
as they generally produce faster executables and thus faster games.

4) It must not conflict with the educational goals of the course. When choosing a GDF it
is important that the inherent patterns, procedures, design and architecture of the GDF
are not in conflict with the theory taught in the course. One example of such a conflict
could be that the way the GDF enforces event handling in an application is given as
an example of bad design in the textbook.

5) It must have a stable implementation. When a GDF is used in a course, it is essential
that the GDF has few bugs so the students do not have to fight a lot of technical
issues instead of focusing on the course topics. This requirement indicates that it is
important that the GDF is supported by a company or a development community that
have enough resources to eliminate serious technical insufficiencies. It is also
important that the development of the GDF is not a dead project, as this will lead to
compatibility issues for future releases of operating systems, software components
and hardware drivers.

6) It must have sufficient documentation. This requirement is important both for the
course staff and the students. The documentation should both give a good overview
of the GDF as well as document all the features provided. Further, it is important that
the GDF provides tutorials and examples to demonstrate how to use the GDF and its
features. The frameworks should provide documentation and tutorials of high quality
enabling self-study.

7) It should be inexpensive (low costs) to use and acquire. Ideally, the GDFs should be
free or have very low associated cost to avoid extra costs running the course. This
requirement also involves investigating additional costs related to the GDF such as
requirements for extra or more powerful hardware, and/or requirements for additional
software.

The goal of the requirements above is to save the time and effort the students have to spend
on coding and understanding the framework, making them concentrate on the course content
and software design. Thus, an appropriate GDF could provide the students exciting
experiences and offer a new way of learning through a new domain (games). The
requirements above are also important for the course staff, as they will help to find a GDF
that would cause less effort spent on technical issues, and incompatibility between GDF and
the course contents.
From the requirements above, we acknowledge that there is a conflict between requirement
one and two. The level of the freedom the developer is given to make whatever game he likes
could be in conflict with providing a development environment that allows rapid development
and is easy to learn. A more open GDF usually means that the developer must learn more
APIs as well as the APIs themselves usually are lower level, and thus harder to use. However,
it is possible to get a bit of both worlds by offering high-level APIs that are relatively easy to
use, but still allow the developer to access underlying APIs that gives the developer the
freedom in what kind of games that can be made. This means that the GDF can allow
inexperienced developers to just modify simple APIs or example code to make variants of
existing games, or to allow more experienced developers make unique games by using more
of the provided underlying APIs. How hard the GDF is to use will then really depend on the
ambition of the game developer and not on the GDF itself. This can also be a motivating
factor to learn more about the GDF’s APIs.

This section describes a case study of a software architecture course at the Norwegian
University of Science and Technology (NTNU) where a GDF was introduced.

The software architecture course is a post-graduate course offered to CS and SE students at
NTNU. The course is taught every spring, its workload is 25% of one semester, and about 70
postgraduate students attend the course every semester. The students in the course are mostly
of Norwegian students (about 80%), but there are about 20% foreign students mostly from
EU-countries. The textbook used in this course is the “Software Architecture in Practice,
Second Edition”, by Bass, Clements and Kazman [23]. Additional papers are used to cover
topics that are not sufficiently covered by the book such as design patterns, software
architecture documentation standards, view models, and post-mortem analysis [2, 8, 6, 22].
The education goal of the course is:

“The students should be able to define and explain central concepts in software
architecture literature and be able to use and describe design/architectural patterns,
methods to design software architectures, methods/techniques to achieve software
qualities, methods to document software architecture, and methods to evaluate
software architecture.”

The course is taught in four main ways:

1) Ordinary lectures given in English
2) Invited guest lectures from the software industry
3) Exercise in design patterns
4) A software development project with emphasis on software architecture

30% of the grade is based on an evaluation a software architecture project that all students
have to do, while 70% is given from the results of a written examination. The goal of the
project is for the students to apply the methods and theory in the course to design a software
architecture and to implement a system according to the architecture. The project consists of
the following phases:

1) COTS (Commercial Off-The-Shelf) exercise: Learn the development platform to be
used in the project by developing some simple test applications.

2) Design pattern: Learn how to utilize design pattern by making changes in an existing
system designed with and without design patterns.

3) Requirements and architecture: Describe the functional and the quality requirements,
and design the software architecture for the application in the project.

4) Architecture evaluation: Use the Architecture Trade-off Analysis Method (ATAM)
[23, 36] to evaluate the software architecture in regards to the quality requirements.
Here one student group will evaluate another student group’s project.

5) Implementation: Do detailed design and implement the application based on the
created architecture and based on the results from previous phase.

6) Project evaluation: Evaluate the project after is has been completed using a Post-
Mortem Analysis (PMA) method.

In the two first phases of the project, the students work on their own or in pairs. For the
phases 4-6, the students work in self-composed groups of four students. The students spend
most time on the implementation phase (6 weeks), and they are also encouraged start the
implementation in earlier phases to test their architectural choices (incremental development).
In previous years, the goal of the project has been to develop a robot controller for a robot
simulator in Java with emphasis on an assigned quality attribute such as availability,
performance, modifiability or testability.

Fall 2007, we started to look for appropriate GDFs to be used in the software architecture
course spring 2008. We looked both for GDFs where the programmer had to write the source
code as well as visual drag-and-drop programming environments. The selection of candidates
was based on GDFs we were familiar with and GDFs that had developer support. Further, we
wanted to compare both commercial and open source GDFs. From an initial long list
candidate GDFs, we chose to evaluate the following GDFs more in detail:

• XNA: XNA is a GDF from Microsoft that enables development of homebrew cross-
platform games for Windows and the XBOX 360 using the C# programming
language. The initial version of Microsoft XNA Game Studio was released in 2006
[18], and in 2008 Microsoft XNA Game studio 3.0 was released that includes support
for making games for XBOX Live. XNA features a set of high-level API enabling the
development of advanced games in 2D or 3D with advanced graphical effects with
little effort. The XNA platform is free, and allows developers to create games for the
Windows, Xbox 360 and Zune using the same GDF [20]. XNA consists of an
integrated development environment (IDE) along with several tools for managing
audio and graphics.

• JGame: JGame is a high-level framework for developing 2D games in Java [33].
JGame is an open source project and enables developers to develop games fast using
few lines of code as JGame will take care of typical game functionality such as sprite-
handling, collision detection, and tile handling. JGame games can be run as stand-
alone Java-games, Java applets games running in a web-browser or on mobile devices
(Java ME). JGame does not provide a separate IDE, but is integrated with Eclipse.

• Flash: Flash is a high-level framework for interactive applications including games
developed by Adobe [34]. Most programming in Flash is carried out in Action script
(a textual programming language), but the Flash environment also provides a

powerful graphical editor for managing graphical objects and animation. Flash
applications can run as stand-alone applications or in a web-browser. Flash
applications can run on many different operating systems like Windows, Mac OS X
and Linux as well as on mobile devices and game consoles (Nintendo Wii and Sony
Playstation 3). Programming in Flash is partly visual by manipulating graphical
objects, but most code is written textually. Flash supports development of both 2D
and 3D applications.

• Scratch: Is a visual programming environment developed by MIT Media Lab in
collaboration with UCLA that makes it easy to create interactive stories, animations,
games, music and art – and share the creations on the web [17]. Scratch works similar
to Alice [5] allowing you to program by placing sprites or objects on a screen and
manipulate them by drag-and-drop programming. The main difference between
Scratch and Alice is that Scratch is in 2D while Alice is in 3D. Scratch provides its
own graphical IDE that includes a set of programming primitives and functionality to
import various multimedia objects.

An evaluation of the four GDF candidates is shown in . From the four candidates, we
found Scratch to be the least appropriate candidate. The main disadvantage with Scratch was
that it would be very difficult to teach software architecture using this GDF as the framework
did not allow exploring various software architectures. Further, Scratch was also very limited
in what kind of games that could be produced, limiting the options for the students. The main
advantage using Scratch is that it is very easy to learn and use. JGame suffered also from
some of the same limitations as Scratch, as it put some restrictions on what software
architecture that could be used and it had little flexibility in producing a variety of types of
games. The main advantage using JGame was that is was an open source project with access
to the source code and that all the programming was done in Java. All CS and SE students at
NTNU learn Java in the two first introductory programming courses. An attractive alternative
would be to use Flash as a GDF. Many developers use Flash to create games for kids as well
as games for the Web. Flash puts little restrictions on what kind of games you can develop
(both 2D and 3D), but there are some restrictions on what kind of software architecture that
you can use in your applications. The programming language used in Flash, Action Script, is
not very different from Java so it should be rather easy for the students to learn. The main
disadvantage using Flash in the software architecture course was the licence costs. As the
computer and information science department does not have a site licence for the Flash
development kit, it would be too expensive to use. XNA was found an attractive alternative
for the students, as it made it possible for them to create their own XBOX 360 games. XNA
puts little restrictions on what kinds of software architectures you apply in you software, and
it enables the developers to create almost any game. XNA has strong support from its
developer (Microsoft) and has a strong community of developers along with a lot of resources
(graphics, examples, etc). The main disadvantages using XNA as a GDF in the course were
that the students had to learn C# and that the software could only run on Windows machines.
Compared to JGame and other Java-based GDFs, XNA has a richer set of high-level APIs and
a more mature architecture.

Selection
requirement

XNA

JGame

Flash

Scratch

1 Easy to learn Relatively easy to
learn, but requires to
learn several core
concepts to utilize the
offered possibilities.

Easy to learn, but
requires to learn a
small set of core
concepts.

Relatively easy to learn,
but requires to learn
several core concepts to
utilize the offered
possibilities.

Very easy and intuitive to
learn and supports dynamic
changes to the game in run-
time.

2 Open develop
environment

XNA puts little
restrictions on what
kind of games that can
be developed and
supports development

JGame supports a
limited set of games
mainly classical 2D
arcade games. Open
source project.

Flash puts little
restrictions on what kind
of games that can be
developed and supports
development of both 2D

Scratch limits the options of
what kind of games the user
can make through the
limited options provided in
the graphical programming

of both 2D and 3D
games. Not open
source project.

and 3D. Not open source
project.

environment. Not open
source project.

3 Familiar
programming
language

All programming is
done in C#.

All programming is
done in Java

Some programming can
be done using drag-and-
drop, but most will be
written in Action Scripts.

All programming is done in
the visual drag-and-drop
programming language
Scratch.

4 Not in conflict
with educational
goals

XNA puts little
restrictions on what
kinds of software
architectures that can
be used.

JGame puts some
restrictions on what
kinds of software
architecture that can
be used.

Flash puts some
restrictions on what
kinds of software
architectures that can be
used.

Scratch puts strict
restrictions on what kinds
of software architectures
that can be used.

5 Stable
implementation

XNA has a very stable
implementation and is
updated regularly.

JGame has a
relatively stable
implementation and
is updated regularly.

Flash has a very stable
implementation and is
updated regularly.

Scratch has a relatively
stable implementation and
is updated regularly.

6 Sufficient
documentation

XNA is well
documented and offers
several tutorials and
examples. Many books
on XNA are available.

JGame is not well
documented, but
some examples
exist.

Flash is well
documented and offers
several tutorials and
examples. Many books
on Flash are available.

Scratch is ok documented
and has some examples and
tutorials available.

7 Low costs XNA is free to use. A
$99 for a year of
membership is
required to develop
games for XBOX 360.

JGame is free to use. The Flash development
kit costs $199 per licence
(university licence).

Scratch is free to use.

Based on the evaluation described above, we chose XNA as a GDF for our course. From
previous experience we knew that it does not require much effort and time to learn C# for
students that already know Java.

After we had decided to use XNA as a GDF in the software architecture course, we launched
a project to extend XNA to make XNA even easier to use in the student project. This project
implemented XQUEST (XNA QUick & Easy Starter Template) [27], which is a small and
lightweight 2D game library/game template developed at NTNU that contains convenient
game components, helper classes, and other classes that can be used in the XNA game
projects (see Figure 2). The goal of XQUEST was to identify and abstract common game
programming tasks, and create a set of components that could be used by students of the
course to make their life easier. We choose to focus only on 2D. There are a few reasons for
this. First, the focus of the student projects is software architecture, not making a game with
fancy 3D graphics. Second, students unfamiliar with game programming and 3D
programming may find it daunting to have to learn the concepts needed for doing full-blown
3D in XNA, such as shader programming and 3D-modelling, in addition to software
architectures. To keep the projects in 2D may reduce the effect of students focus only on the
game development and not on the software architecture issues.

Figure 2. The XQUEST library shown in the XNA development environment

XNA was introduced in the software architecture course to motivate students to put extra
effort in the student project with the goal to learn the course content such as attribute driven
design, design and architectural patterns, ATAM, design of software architecture, view points
and implementation of software architecture. This section will go through the different phases
of this project and describe how XNA affected these phases.

In the start of the semester the course staff gave an introduction to course where the software
architecture project was presented. Before the students started with their project, they had to
do an exercise individually or in pairs where they got to choose their own partner. The goal of
the first exercise was to get familiar with the XNA framework and environment, and the
students were asked to complete four tasks:

1) Draw a helicopter sprite on the screen and make it move around on its own.
2) Move around the helicopter sprite from previous task using the keyboard, change the

size of the sprite when a key was pressed, rotate the sprite when another key was
pressed and write the position of the sprite on the screen.

3) Animate the helicopter sprite using several frames and do sprite collision with other
sprites.

4) Create the classical Pong game in XNA.

Before the students started on their XNA introduction exercise, they got a two-hour technical
introduction to XNA. During the semester, two technical assistants were assigned to help
students with issues related to XNA. These assistants had scheduled two hours per week to
help students with problems, in addition to answer emails about XNA issues.

After the introduction exercise was delivered, the students formed groups of four students.
Students that did not knew anyone, were assigned to groups. The course staff then issued the
project task where the goal was to make a functioning game using XNA based on students’
own defined game concept. However, the game had to be designed and implemented
according to their specified and designed software architecture. Further, the students had to

develop a software architecture that focused on one particular quality attribute assigned by the
course staff. We used the following definitions for the quality attributes in the game projects:
Modifiability, the game architecture and implementation should be easy to change in order to
add or modify functionality; and Testability, the game architecture and implementation should
be easy to test in order to detect possible faults and failures. These two quality attributes were
related to the course content and the textbook. A perfect implementation was not the ultimate
quest of this XNA game project, but it was critical that the implementation reflected the
architectural description. It was also important that the final delivery was well-structured,
easy to read, and made according to the template provided by the course staff.

The first phase of the project was the requirement and architecture phase where the students
should delivery requirements and the software architecture of the game along with a skeleton
code reflecting the architecture. The requirements document focused on a complete functional
requirement description of the game and several quality requirements for the game described
as scenario focusing on one particular quality attribute. The architectural description was the
most important part of the final delivery of for the game project, and the students had to
document their architecture according to IEEE 1471-2000[14]. The architecture
documentation could be altered several times before its final delivery. lists main
attributes required in the architectural description in the game projects.

Architectural
Description Attributes

Details of the Implementation

1 Architectural Drivers

The main drivers that affect the system mostly, including the attribute on which the
students focus.

2 Stakeholders and Concerns Stakeholders of the system, and their concerns.
3 Selection of Architectural

Viewpoint
A list of the viewpoints used, their purpose, target audience and from of description.
Places to look for possible viewpoints include the book [23], and the 4+1 article by
Kruchten [15].

4 Quality Tactics

Including all attributes and more detailed for the focused ones.

5 Architectural Patterns The major patterns of your architecture, both architectural and major design ones.
6 Views

A separate section for each required views: logic, process and development views or
other views added by students.

7 Consistency Among Views Discuss the consistency between each described view.
8 Architectural Rationale In this section and sub-sections, add why things are chosen.

We also required that the students wrote the code skeleton for the architecture they had
designed. This was done to emphasize the importance of starting the implementation early,
and to ensure that students designed an architecture that was possible to implement.

After the requirements, the architecture and the code skeleton were delivered, the student
groups were assigned to evaluate each other’s architecture using ATAM. The whole idea was
for one project group to evaluate the architecture of the other group’s game to give feedback
on the architecture related to the quality focus of the software architecture [37]. It included
attribute utility tree, analysis of architectural approach, sensitivity points, trade-off points,
risks and non-risks, and risk themes.

The focus of implementation phase was to design, implement and test the game application.
The documentation delivered in this phase focused on the test results from running the game
related to the specified requirements, and the discussion of the relationship between the
implemented game and the architectural documentation [8, 6]. lists what should be
delivered in the implementation phase:

Implementation Details of Implementation

Deliverables
1 Design and

Implementation
A more detailed view of the various parts of the architecture describing of game
design.

2 User’s Manual To guide the users the steps to compile and run the game.
3 Test report Contain both functional requirements and quality requirements (quality

scenarios).
4 Relationship with the

architecture
List the inconsistencies between the game architecture and the implementation
and the reasons for these inconsistencies.

5 Problems, Issues and
Points learned

Listing problems and issues with the document or with the implementation
process.

For the test report part in the , the functional requirements and quality requirements
had the attributes like shown in List 1, 2. The test reports should also include a discussion
about the observation of the test unless there was nothing to discuss about the test results.

F1: The role in game should be able to jump along happily
Executor:
Date:
Time used:
Evaluation:

Super Mario III
23.3.2005
5min
Fail: White role cannot jump!

List 1 Attributes of functional requirements

A1: The role in game should not get stuck
Executor:
Date:
Stimuli:
Expected response:
Observed response:
Evaluation:

Snurre Sprett
24.3.2005
The role should be able to move around for 10 min
Success in 8 of 10 executions
Success in 3 of 10 executions
Fail

List 2 Attributes of quality requirements

At the end of this phase, the students had to submit their final delivery of their projects that
included all documents, code and other material from all project phases. The course staff
evaluated all the groups’ deliveries and gave grades by judging document and implementation
quality, document and implementation completeness, architecture design, and readability and
structure of code and report.

In this workshop, selected groups had to give short presentations about the project goal,
quality attribute focus, proposed architectural solution with some diagrams or explanations,
and an evaluation of how well did the solution worked related to functional requirements and
quality focus. Further, the selected groups ran demos of their games and it was opened for
questions from the audience.

The workshop provided an open mind environment to let students give each other feedback,
brainstorm about improvements and ideas, and to discuss their ideas to give a better
understanding of the course content and game architecture design.

In the final task in the project, every group had to perform a post-mortem analysis of their
project. The focus of the PMA was to analyse successes and problems of the project. The
PMA was documented in a short report that included a positive (successes) and a negative
(problems) KJ-diagram (structured brainstorm map); a positive and a negative causal map (a
diagram that shows cause-effect relationships), and experiences from using PMA [2]. The
PMA made the students reflect on their performance in the project and gave them useful
feedback to improve in future projects and inputs for the course staff to improve the course.
The main topics analysed in the PMA were issues related to group dynamics, time
management, technical issues, software architecture issues, project constraints, and personal
conflicts.

The experiences described in this section are based on the final course evaluation, feedback
from the students during the project, and the project reports.

The final course evaluation made all students (mandatory) taking the course answer three
questions. The results reported below are a summary of the students’ responses related to the
project and the GDF.

1) What have been good about software architecture course?

• About the project itself: “Cool project”, “Really interesting project”, “We had a lot
of fun during the project”, “It is cool to make a game”, “Fun to implement something
practical such a game”, “Videogame as an exercise is quite interesting”, “I really
liked the project”, “The game was motivating and fun”.

• Project and learning: “Good architectural discussion in the project group I was in”,
”Learned a lot about software architecture during the project”, “The project helped to
understand better the arguments explained in the lectures, having fun at the
meantime”, “Fun project where we learned a lot”, “I think that the creation of a
project from the beginning, with the documentation until the code implementation,
was very helpful to better understand in practice the focus of the course”, “The game
project was tightly connected to the syllabus and lectures and gave valuable
experience. The main thing I learned was probably how much simpler everything gets
if you have a good architecture as a basis for your system”, “The interplay of game
and architectural approaches”.

• The project being practical work: “I think it was pretty good that you guys made us
do a lot of practical work”, “To choose C# as a platform is a good idea as it is used a
lot in the software industry, at the same time it is very similar to Java so it is rather
easy to learn the language.

• Interplay between groups: “It was also good to see the results of the others' projects
in the final presentation”.

2) What have been not so good about the course software architecture?

• XNA support: “The way the student assistants were organized, during the
implementation periods at least they should be available in a computer lab and not
just in the classroom”, “Maybe the use of XNA Framework XQUEST was very
difficult because I never use it. Maybe some extra lecture focus on the use of
XQUEST Framework was better”, “We didn’t have lectures on XNA, could have got
some more basic info...Hmm…”

• XNA vs. software architecture: “Took a lot of time getting to know c#, I liked it,
but I did not have the time to study architecture”, “The use of game as a project may
have removed some of the focus away from the architecture. XNA and games in
general limits the range of useful architectures.”

3) What would you have changed for next year's course?

• Project workload: “Maybe just little more time to develop the game”, “I would
change the importance of the project. I think that the workload of the project was very
big end it can matter the 50% of the total exam.”

• XNA support: “Perhaps have some c# intro?”, “It would be helpful to have some lab
hours”.

• Project constraints: “Maybe more restrictions on game-type, to ensure that the
groups choose games suited for architectural experimentation.”

The responses from the students were overall very positive. In the previous years, the students
in the software architecture course had to design the architecture and implement a robot
controller for a robot simulator in Java. The feedback from the XNA project was much more
positive than the feedback from the robot controller project. Other positive feedback we got
from the students was that they felt they learned a lot from the game project, that they liked
the practical approach of the project and having to learn C#, and the interaction between the
groups (both ATAM and the project workshop).

The negative feedback from the course evaluation was focusing on lack of XNA support and
technical support during the project, and that some student felt that there was too much focus
on C#, XNA and games and too little on software architecture.

The suggestions to improve the course was mainly according to the negative feedback,
namely to improve XNA support and to adjust the workload of the project. One student also
suggested limiting the types of games to be implemented in project to ensure more focus on
software architectural experimentation.

Figure 3 shows screenshots from four student game projects. The game at upper left corner is
a racing game, the game at the upper right corner is a platform game, and the two games
below are role-playing games (RPGs). Some of the XNA games developed were original and
interesting. Most games were entertaining, but were lacking contents and more than one level
due to time constraints.

Figure 3. Game based on XNA framework

(Top left: Racing; Top right: Codename Gordon; Bottom: RPG)

This paper describes experiences from utilizing the special features of a GDF in a software
architecture course. The main benefits from applying a GDF in a CS or SE course is that the
students get more motivated during the software development project. As far as we know,
there are few papers that describe the usage of a professional GDF concept applied in
universities courses that is not directly target for learning game development, especially no
papers about usage of XNA in higher education. However, there are some related approaches
in education described in this section.

El-Nasr and Smith describes how the use of modifying or modding existing games can be
used to learn computer science, mathematics, physics and ascetic principles [32]. The paper
describes how they used modding of the WarCraft III engine to teach high school students a
class on game design and programming. Further, they describe experiences from teaching
university students a more advanced class on game design and programming using the Unreal
Tournament 2003 engine. Finally, they present observations from student projects that
involve modding of game engines. Although the paper claims to teach students other things
than pure game design and programming, the GDFs were used in the context of game
development courses.

The framework Minueto [4] is implemented in Java and it is used by students in their second
year of undergraduate studies at McGill University in Montreal, Canada. The framework
encapsulates graphics, audio and keyboard/mouse inputs to simplify Java game development.
It allows development of 2D games, such as card games and strategy games, but it lacks in
support for visual programming and suffers from limited documentation.

The Labyrinth [9] is implemented in Java and it is a flexible and easy-to-use computer game
framework. The framework enables instructors to expose students to very specific aspects of
computer science courses. The framework is a finished game in the Pac-Man genre, highly
modular, and it lets the students change different aspects of the game. However, it cannot be
used to develop different genres of game and there is little room for changing the software
architecture of the framework.

The JIG (Java Instructional Gaming) Project [28] is a collaborative effort between Scott
Wallace (Washington State University Vancouver) and Andrew Nierman (University of Puget
Sound) in conjunction with a small group of dedicated students. It has three aims: 1) to build
a Java Instructional Game Engine suitable for a wide variety of students at all levels in the
curriculum; 2) to create a set of educational resources to support the use of the game engine at
small, resource-limited, schools; and 3) to develop a community of educators that use and
help improve these resources. The JIG Project was proposed in 2006, after a survey of
existing game engines revealed a very limited supply of existing 2D Java game engines. JIG
is still in development.

GarageGames [12] offers two game engines written in C++. The Torque Game Engine targets
3D games, while the Game Builder provides a 2D API and encourages programmers to
develop using a proprietary language (C++ can also be used). Both engines are aimed at a
wide audience, including students and professionals. The engines are available under separate
licenses ($50 per licence per year for each engine) that allow full access to the source code.
Documentation and tutorials cover topics appropriate for beginners and advanced users.

The University of Michigan’s DXFramework [10] game engine is written in C++. The current
version is targeted specifically for 2D games, although previous versions have included a 3D
API as well. This engine is designed for game programming education and is in its third
major iteration. The DXFramework is an open source project. Compare to XNA,

DXFramework has no competitive advantage as it has limited support for visual programming
and it is not easier than XNA to learn.

The University of North Texas’s SAGE [21] game engine is written in C++ and targets 3D
games, not 2D. Like the DXFramework, SAGE is targeted specifically for game
programming educational usage. The source code can be downloaded and is currently
available without license.

Marist College’s GEDI [7] game engine provides a second alternative for 2D game design in
C++, and is also designed with game programming educational use in mind. Source code can
be downloaded and is currently available without license, but GEDI is still in the early phases
of development. Only one example game is distributed with the code, and little
documentation is available.

For business teaching, Arena3D [25] is a game visualization framework with its animated 3D
representations of the work environments, it simulates patients queuing at the front desk, and
interacts with the staff. IBM has also produced a business game called INNOV8 [13] which is
“an interactive, 3-D business simulator designed to teach the fundamentals of business
process management and bridge the gap in understanding between business leaders and IT
teams in an organization”.

In this paper we have presented a case study of how a GDF was evaluated, chosen and
integrated with a software architecture course. The main goal of introducing a GDF and a
game development project in this course was to motivate students to learn more about
software architecture during the game development project. The positive feedback from the
students indicate that this was a good choice as the student really enjoyed the project and
learn software architecture from carrying out the project.

We will continue to explore the area of using games, games concept and game development
in CS and SE education and evaluate how this affects the students’ motivation and
performance. The choice of XNA as a GDF proved to be a good choice for our software
architecture course. The main disadvantage using XNA is the lack of support for non-
Windows operating systems like Linux and Mac OS X. Mono.XNA is a cross platform
implementation of the XNA game framework that allows XNA to run on Windows, Mac OS
X and Linux using OpenGL [35]. The project is still in an early phase. An alternative to solve
this problem is to let the students choose between different GDFs, e.g., XNA and a Java-
based GDF. The main challenge for this approach is the course staff needs to know all the
GDFs offered to the students to give proper technical assistance. Based on the feedback from
the students, the technical support is very important and must be considered before providing
choices of more GDFs.

We would like to thank Jan-Erik Strøm and Trond Blomholm Kvamme for implementing
XQUEST and for their inputs for this paper. We would also like to thank Richard Taylor and
Institute for Software Research (ISR) at University of California, Irvine (UCI) for providing a
stimulating research environment and for hosting a visiting researcher.

[1] A. I. Wang, O. K. Mørch-Storstein, T. Øfsdahl, “Lecture quiz - a mobile game concept for
lectures”, The 11th IASTED International Conference on Software Engineering and Application (SEA
2007), November 19-21, 2007.
[2] A. I. Wang, T. Stålhane, “Using Post Mortem Analysis to Evaluate Software Architecture Student
Projects”, In Proceedings of the 18th Conference on Software Engineering Education & Training, April
18 - 20, 2005.
[3] A. Baker, E. O. Navarro, and A. Hoek, “Problems and Programmers: an Educational Software
Engineering Card Game”, In Proceedings of the 25th International Conference on Software
Engineering (ICSE 2003), pages 614–619, 2003.
[4] A. Denault. Minueto, “An undergraduate teaching development framework”, Master's thesis,
School of Computer Science McGill University, 2005.
[5] Carnegie Mellon University, “Alice.org”, Web: http://www.alice.org/ Retrieved June 2008.
[6] A. Rollings and D. Morris, “Game Architecture and Design - A New Edition”, New Riders Games,
pages 462-500, 2003. Web:
[7] R. Coleman, S. Roebke, L. Grayson, “GEDI: a game engine for teaching videogame design and
programming”, Journal of Computing Science in Colleges, 21(2), 72–82, 2005.
[8] J. O. Coplien, “Software Design Patterns: Common Questions and Answers”, The Patterns
Handbook: Techniques, Strategies, and Applications, Cambridge University Press, New York, pp. 311-
320, 1998.
[9] J. Distasio and T. Way, “Inclusive computer science education using a ready-made computer game
framework”, ITiCSE '07: Proceedings of the 12th annual SIGCSE conference on Innovation and
technology in computer science education, pages 116-120, 2007.
[10] C. Johnson and J. Voigt, “DXFramework”, Web: http://www.dxframework.org, Retrieved June,
2008.
[11] A. O. Navarro and A. Hoek, “SimSE: an Educational Simulation Game for Teaching the Software
Engineering Process”, In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation
and technology in computer science education, pages 233–233, New York, NY, USA, 2004. ACM
Press.
[12] GarageGames, “GarageGames”, Web: http://www.garagegames.com, Retrieved June, 2008.
[13] IBM, “INNOV8 – a BPM Simulator”, Web: http://www-
304.ibm.com/jct03001c/software/solutions/soa/innov8.html, Retrieved June 2008.
[14] IEEE, “IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems”, Software Engineering Standards Committee of the IEEE Computer Society, 2000.
[15] P. Kruchten, “The 4+1 View Model of Architecture”, IEEE Software, 12, 6, Pp. 42 – 50, 1995.
[16] L. Natvig, S. Line, and A. Djupdal, “Age of Computers: An Innovative Combination of History
and Computer Game Elements for Teaching Computer Fundamentals”, In FIE 2004: Proceedings of
the 2004 Frontiers in Education Conference, 2004.
[17] Lifelong Kindergarten Group, MIT Media Lab, “Scratch | Home | imagine, program, share”, Web:
http://scratch.mit.edu/, Retrieved June.2008.
[18] Microsoft corporation, “XNA developer center”, Web:
http://msdn.microsoft.com/en-us/xna/aa937794.aspx Retrieved June,2008
[19] M. Sharples, “The design of personal mobile technologies for lifelong learning”, Computer &
Education, 34(3-4):177–193, 2000.
[20] B. Nitschke, “Professional XNA Game Programming: For Xbox 360 and Windows”, Wiley
Publishing, Inc.,2007.
[21] I. Parberry, “SAGE: a simple academic game engine”, Web: http://larc.csci.unt.edu/sage,
Retrieved June 1, 2008.
[22] D. P. Perry, and A.L. Wolf, “Foundations for the Study of Software Architecture”, ACM Sigsoft
Software Engineering Notes, 17(4), Pp. 40-52, 1992.
[23] P. Clements L. Bass and R. Kazman, “Software Architecture in Practice Second Edition”,
Addison-Wesley, 2003.
[24] R. Rosas, M. Nussbaum, P. Cumsille, V. Marianov, M. Correa, P. Flores, V. Grau, F. Lagos, X.
Lopez, V. Lopez, P. Rodriguez, and M. Salinas, “Beyond Nintendo: design and assessment of
educational video games for first and second grade students”, Computers & Education, 40(1): 71–94,
2003.
[25] Rockwell Automation Inc, “Arena Simulation Software”, Web: http://www.arenasimulation.com/,
Retrieved June 2008.

[26] T. W. Malone, “What makes things fun to learn? Heuristics for designing instructional computer
games”, In SIGSMALL ’80: Proceedings of the 3rd ACM SIGSMALL symposium and the first SIGPC
symposium on Small systems, pages 162–169, New York, NY, USA, 1980. ACM Press.
[27] T. Blomholm Kvamme and J.-E. Strøm, “Evaluation and Extension of an XNA Game Library
used in Software Architecture Projects”, Master thesis at NTNU, June 2008.
[28] Washington State University Vancouver and University of Puget Sound, “The Java Instructional
Gaming Project”, Web: http://ai.vancouver.wsu.edu/jig/, Retrieved June. 2008
[29] G. Sindre, L. Nattvig, M. Jahre, “Experimental Validation of the Learning Effect for a Pedagogical
Game on Computer Fundamentals”, to appear in IEEE Transaction on Education.
[30] B.A. Foss and T.I. Eikaas, “Game play in Engineering Education - Concept and Experimental
Results”, The International Journal of Engineering Education 22(5), 2006.
[31] A. I. Wang, T. Ø. and O. K. Mørch-Storstein: “An Evaluation of a Mobile Game Concept for
Lectures”, 21st IEEE-CS Conference on Software Engineering Education and Training (CSEE&T
2008), Charleston, S. Carolina, USA, April 14-17, 2008,.
[32] M. S. El-Nasr and B. K. Smith, “Learning through game modding”, ACM Computer
Entertainment 4(1), Jan. 2006.
[33] JGame project, “JGame: a Java game engine for 2D games”, Web:
http://www.13thmonkey.org/~boris/jgame/, Retrieved November 2008.
[34] Adobe, “animation software, multimedia software – Adobe Flash CS4 Professional”, Web:
http://www.adobe.com/products/flash/, Retrieved November 2008.
[35] Monoxna, “monoxna – Google Code”, Web: http://code.google.com/p/monoxna/, Retrieved
November 2008.
[36] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, "The Architecture
Tradeoff Analysis Method," Engineering of Complex Computer Systems, IEEE International
Conference on, vol. 0, no. 0, pp. 0068, Fourth IEEE International Conference on Engineering Complex
Computer Systems (ICECCS'98), 1998.
[37] A. BinSubaih, S.C. Maddock (2006), "Using ATAM to Evaluate a Game-based Architecture",
Workshop on Architecture-Centric Evolution (ACE 2006), Hosted at the 20th European Conference on
Object-Oriented Programming ECOOP 2006, July 3-7, 2006, Nantes, France.

Paper 6:

GDF2: Bian Wu, Alf Inge Wang, Jan-Erik Strøm and Trond Blomholm
Kvamme: "An Evaluation of Using a Game Development Framework in
Higher Education", 22nd IEEE-CS Conference on Software Engineering
Education and Training (CSEE&T 2009), February 17-19, Hyderabad, India,
2009. ISBN: 978-0-7695-3539-5 DOI=10.1109/CSEET.2009.9

An Evaluation of Using a Game Development Framework in Higher
Education

Bian Wu , Alf Inge Wang , Jan-Erik Strøm , and Trond Blomholm Kvamme
Dept. of Computer and Information Science

Norwegian University of Science and Technology
Bian/alfw@idi.ntnu.no, janerist/trondblo@stud.ntnu.no

Abstract
This paper describes an application of a Game Development Framework (GDF) -

Microsoft XNA in software architecture (SA) course at Norwegian University of Science and
Technology (NTNU) and evaluates how well the GDF is to use and integrate in a software
engineering (SE) course. The result of the evaluation is based on the questionnaire with 9
types of general questions related to SE learning. In most aspects, the result shows that XNA
is a suitable teaching aid in SE learning and can be used to teach SA. It is easy to use and
save students time in development, thus let them have more time focusing on the course
theory.

Keyword: Game development framework, XNA, Software architecture, Software
engineering education, Evaluation.

1. Introduction

Research on games concept used in higher education has been done before, e.g. [2, 4, 3],
but we believe there is an untapped potential that needs to be explored. This paper will
change the angle from using games to teach to applying GDFs in student projects for learning
computer skills, extending its application as a teaching aid in higher education. The GDF can
be integrated mainly in three ways with a university course. First, it can be used to develop
games that can replace traditional exercises. Second, it can be used to develop games that can
be integrated in lectures to improve the participation and motivation of students. Third, the
students can use a GDF in projects to develop software to understand the courses content
related to computer science.

This paper will focus on GDF’s application in higher education and evaluate its application
in an existing course. The evaluation focuses the suitability of a specific GDF to be used by
students, and whether the GDF is useful for the teaching and understanding course theory.

2. Application of a GDF in Higher Education

This section is a case study of Master course of SA at Norwegian University of
Science and Technology (NTNU) to elaborate the application of a GDF used as a
teaching aid in higher education.

2.1. Choice of the GDF

The course staff started searching for any GDF that provided high-level APIs to ease
game development and that was easy to learn. As many GDFs were immature, we ended
up with choosing Microsoft XNA (Xbox/DirectX New Generation Architecture)
framework [5]. It was the most suitable framework for fast game development at that
time. Another reason for choosing it was that support for developing game for XBOX
360 would be a motivation factor for students to put an extra effort into projects.

2.2. Student projects based on XNA

In NTNU’s SA course, the goal of the project is for the students to apply the methods
and theory from the course to design a SA and to implement a system based on XNA
framework. The project consists of the following phases: 1) COTS (Commercial Off-
The-Shelf) exercise: Learn the technology to be used through developing a simple
application. 2) Design pattern: Learn how to use and apply design pattern by making
changes in an existing system. 3) Requirements and architecture: List functional and
quality requirements and design the SA for the application (a game). 4) Architecture
evaluation: Use the ATAM (Architecture Tradeoff Analysis Method) evaluation method
to evaluate the SA of project in regards to the quality requirements. 5) Implementation:
Do a detailed design and implement the application based on the created architecture
and on the changes from the evaluation. 6) Project evaluation: Evaluate the project as a
whole using a PMA (Post-Mortem Analysis) method [1].

The course staff issues the task to make a functioning game using XNA. The game
has to be designed according to a specified SA. Further, the students had to develop an
architecture where they had to focus on one particular quality attribute: Modifiability,
the game architecture and implementation should be easy to change in order to add or
modify functionality; or Testability, the game architecture and implementation should
be easy to test in order to detect possible faults and failures. The course’s workload was
25% of one semester and students were grouped in 3-4 persons and spent most time on
the implementation phase (6 weeks).

3. Evaluation of XNA used in a software architecture course

This paper investigates the XNA framework’s usefulness for teaching students SA based
on book “Software Architecture in Practice” [6]. Concretely, we investigate the following
research questions:

• R1: To what degree does the COTS influence the learning process?
• R2: How much time is spent on technical matters and on architectural matters?
• R3: How difficult is it to integrate known architectural and design patterns and learn

the necessary prerequisite skills to be able to develop programs?
• R4: How much do the students feel they have learned about SA through the game

development project?

3.1. Questionnaire and Result

The participants of our survey were postgraduate students of NTNU’s SA course. We
published a questionnaire using the existing e-learning platform (It’s Learning) three days
after the delivery deadline of the students’ projects, and received a total of 46 responses to the
general questionnaire. Table 1 shows statistical results of quality attributes from students’
projects. Table 2 lists the 9 general items and students responses.

Table 1: Distribution of responses related to assigned quality attributes
55% Testability 46 Responses in XNA 45% Modifiability

Table 2: The 9 general questions labeled Q1-Q9

Question Strongly
Disagree Disagree Neutral Agree Strongly

agree

Q1: I found it hard to come up with good
requirements 5% 30% 40% 20% 5%

Q2: I think the COTS did not hinder the
design of a good architecture(Total) 5% 20% 35% 35% 5%

Q2.1 I think the COTS did not hinder the
design of a good architecture(Testability) 10% 25% 30% 35% 0%

Q2.2 I think the COTS did not hinder the
design of a good architecture(Modifiability) 0% 10% 45% 35% 10%

Q3: I found it difficult to evaluate the other
group’s architecture in the ATAM 0% 20% 15% 45% 20%

Q4: I think the COTS made it easier to
identify architectural drivers(Total) 10% 15% 55% 20% 0%

Q4.1 I think the COTS made it easier to
identify architectural drivers(Testability) 15% 15% 60% 10% 0%

Q4.2 I think the COTS made it easier to
identify architectural drivers(Modifiability) 0% 15% 50% 35% 0%

Q5: I found it difficult to focus on our
assigned quality attributes(Total) 10% 25% 10% 25% 30%

Q5.1 I found it difficult to focus on our
assigned quality attributes(Testability) 10% 0% 0% 30% 60%

Q5.2 I found it difficult to focus on our
assigned quality attributes(Modifiability) 10% 50% 20% 20% 0%

Q6: I found it easy to integrate known
architectural or design patterns(Total) 0% 10% 40% 40% 10%

Q6.1 I found it easy to integrate known
architectural or design patterns(Testability) 0% 10% 35% 45% 10%

Q6.2 I found it easy to integrate known
architectural or design patterns (Modifiability) 0% 10% 45% 35% 10%

Q7: I spent more time on technical matters
than on architectural matters 5% 20% 30% 30% 15%

Q8: I spent too much time trying to learn the
COTS in the start of the course 5% 35% 30% 25% 5%

Q9: I have learned a lot about software
architecture during the project(Total) 10% 15% 30% 40% 5%

Q9.1: I have learned a lot about software
architecture during the project(Testability) 10% 10% 35% 45% 0%

Q9.2: I have learned a lot about software
architecture during the project(Modifiability) 10% 20% 25% 35% 10%

3.2. Analysis of questionnaire results

Here we will evaluate the results against the stated problems.
R1: To what degree does the COTS influenced the learning process?
• The requirements gathering and specification: Reflected in Q1 of Table 2, the result

did not show that the COTS made a significant impact on requirements phase of the project.
• The design of the architecture: From Q2, most of students agreed that the COTS did

not hinder design of a good architecture. The major reason is that XNA supports different
types of games development with flexible architecture. There was a tendency that
modifiability groups thought the COTS was a less hindrance than the testability groups.

• The ATAM evaluation: Reflected in Q3, most of students found it difficult to evaluate
another group’s ATAM document. The main reason is because of XNA’s open environment
and different types of games, all of them have their own structure and playing style.

• Architectural Drivers: From Q4, it seems safe to say that the COTS did not influence
the difficulty of identifying architectural drivers. And students who focused on modifiability

tend to agree more that the COTS made it easier to identify architectural drivers, while
students who focused on testability tend to disagree more.

• Quality Attribute Focus: From Q5, the results indicate that choice of COTS does not
have much influence on difficulty of focusing on the assigned quality attribute. And generally
students with modifiability focus found it easy and students with testability focus found it
difficult. The probably reason is that students have a much better understanding of
modifiability, but creating a program that makes testing easier is a whole new area.

R2: How much time is spent on technical matters and on architectural matters?
From Q7, the choice of COTS influences the time the students have at their disposal to

focus on architectural matters. From our own experience, the XNA environment is much
more user-friendly with a high-level API, the probable reason was that many students were
completely new to both C# and XNA.

R3: How difficult was it to integrate known architectural and design patterns and learn
the necessary prerequisite skills to be able to develop programs?

• Integrate known architectural and design patterns: From Q6, the result shows that
generally the majority of students thought it was easy. Also, we found when looking at the
quality attribute distribution, there was several suitable patterns presented, such as Model-
View-Controller, Pipe and filter, Layered, Task Control and so on.

• Learn the necessary prerequisite skills to be able to develop programs: From Q8,
results show that majority students disagree that they spent too much time learning the COTS.
Also, from our own experience, we received almost no help requests from students’ groups.

R4: How much did the students feel they have learned about SA through the project?
From the results of Q9, most of the students feel they have learned a lot about SA

throughout the project. For the negative attitude in result, probably due to the first time to use
XNA in teaching and some of students might have become spellbound by the fun of creating
a game, thus focusing more on game play than architecture.

5. Conclusion

In this paper we have presented an evaluation of the XNA integrated into a SA lecture. The
result shows that XNA is easy to use, requires little time to develop, and supports different
types of game development. Further, the students claimed that XNA framework contributed
to increased learning and motivation.

6. References
[1] A. I. Wang, T. Stålhane. Using Post Mortem Analysis to Evaluate Software Architecture Student Projects,
Conference on Software Engineering and Training 2005, 8 pages.
[2] Alex Baker, Emily Oh Navarro, and Andr´e van der Hoek.Problems and Programmers: an Educational
Software Engineering Card Game. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 614–619,Washington, DC, USA, 2003. IEEE Computer Society.
[3] Emily Oh Navarro and Andr´e van der Hoek. SimSE: an Educational Simulation Game for Teaching the
Software Engineering Process. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation
and technology in computer science education, pages 233–233, New York,NY, USA, 2004. ACM Press.
[4] Lasse Natvig, Steinar Line, and Asbjørn Djupdal. Age of Computers: An Innovative Combination of History
and Computer Game Elements for Teaching Computer Fundamentals. In FIE 2004: Proceedings of the 2004
Frontiers in Education Conference, 2004.
[5] Microsoft corporation.XNA developer centers. http://msdn.microsoft.com/en-us/xna/aa937794.aspx, Retrieved
June,2008
[6] P. Clements L. Bass and R. Kazman. Software Architecture in Practice Second Edition, 2003. Addison-
Wesley.

Paper 7:

GDF3: Bian Wu, Alf Inge Wang, Jan-Erik Strøm and Trond Blomholm
Kvamme: "XQUEST used in Software Architecture Education", IEEE
Consumer Electronics Society's Games Innovation Conference, August 25-28,
2009, London, UK. ISBN: 978-1-4244-4459-5, DOI:
10.1109/ICEGIC.2009.5293607

XQUEST used in Software Architecture Education

Bian Wu
Dept. of Computer and Information Science

Norwegian University of Science and Technology
Trondheim, Norway

Bian@idi.ntnu.no

Jan-Erik Strøm
Dept. of Computer and Information Science

Norwegian University of Science and Technology
Trondheim, Norway

Janerist@stud.ntnu.no

Alf Inge Wang
Dept. of Computer and Information Science

Norwegian University of Science and Technology
Trondheim, Norway
Alfw@idi.ntnu.no

Trond Blomholm Kvamme

Dept. of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
trondblo@stud.ntnu.no

Abstract— This paper describes the motivation and application of
a Microsoft XNA extended library- XQUEST (XNA QUick &
Easy Starter Template) in a software architecture course.
Further, it presents the evaluation of the usability and usefulness
of the XQUEST library in the context of a software architecture
course. XQUEST was designed and implemented to save
students’ time in development projects offering flexible
components. The evaluation was based on the survey of students
questionnaires. Finally, the questionnaire results were analyzed
in relation to three aspects: suitability, usefulness and usability.
In many aspects, the results show that XQUEST enhances XNA
in suitability as a teaching aid in software engineering learning,
and can be a useful and helpful extension to understand XNA.
The results also show that XQUEST is easy to use and save
students time in development, thus giving students more time to
focus on the practice of course theory.

Keywords- XNA; Software architecture; Software engineering
education; Evaluation; Games

I. INTRODUCTION
Research on games concept and game development used in

higher education has been done before, e.g. [1, 2, 3], but we
believe there is an untapped potential that needs to be explored
due to development of new technologies. After some
commercial SDKs have come out in recent years, such as XNA
[6], iPhone SDK [19] or Android [20], we had considered how
to use new technology and devices in the higher education to
enrich the learning environment. This paper will focus on how
to use a game development environment to teach software
architecture or related courses. The motivation is to bring the
same enthusiasm from playing games to learn to courses’
contents through game development. The specific features of a
game SDK can give new insights and provide support for the
educational process used in the teaching directly, providing an
open platform for students during teaching. The games and
game development frameworks can be integrated mainly in
three ways with a university course. First, they can be used to
replace traditional exercises. This approach would motivate
students to put extra effort into exercises and give teachers

and/or teaching assistants an opportunity to monitor how the
students work with the exercises in real-time [22, 23]. Second,
they can be integrated in lectures to improve the participation
and motivation of students [24, 25]. The goal of proposed game
concept is to prompt students and increase students’ attendance
in lectures. Third, the students can use them in projects to
develop software to understand the courses’ content related to
software engineering or computer science [21, 26, 32].

This paper focuses on the latter, where students do game
development to learn software engineering skills. Concretely,
we focus on one specific game SDK, XNA. Our idea was to
extend the XNA game libraries to improve it and make it more
suitable for higher education in two ways: shorten students’
development time, and improve the content and structure of
XNA to fit certain course. Further, an evaluation and analysis
of extension of XNA game libraries’ application is presented.

The rest of the paper is organized as follows. Section 2 is
an introduction of XNA and its application in software
architecture course. Section 3 describes the XQUEST design
and its structure. Section 4 describes an assessment of
XQUEST application, Section 5 describes related work, and
Section 6 concludes the paper.

II. XNA USED IN HIGHER EDUCATION
This section is a detailed discussion of XNA structure and

its application in a software engineering course at Norwegian
University of Science and Technology (NTNU).

A. XNA Structure
XNA is a game development platform developed by

Microsoft, which includes a programming framework and a set
of tools to offer a complete game development package [4].
The overview architecture of XNA consisting of four layers is
shown in Fig. 1. Based on the .NET platform, XNA offers
game development for the PC, the Xbox 360, and more
recently the Zune [5] media player. Further, XNA uses the C#
programming language. XNA mainly targets students,

hobbyists, and independent game developers. XNA is free to
use, but to deploy games on the Xbox 360, a subscription to the
XNA Creators Club [6] is required. XNA was motivated by an
earlier attempt at bringing the DirectX C++ multimedia API [7]
over to the .NET platform, called Managed DirectX [8]. It was
essentially a 1:1 mapping of the DirectX API onto .NET. XNA
took the idea one step further and provides a complete game
development solution, not just the programming API. First
released version 1.0 was shipped in December 2006, and the
latest version of XNA is 3.0, released in October 2008 [6].

Figure 1. The Deployment View of XNA

B. XNA used in Software Architecture Course
The software architecture course is a post-graduate course

offered to computer science and software engineering students
at NTNU. The course is taught every spring based on the book
Software Architecture in Practice [9], and its workload is 25%
of one semester. In the software architecture course, 30% of the
grade is based on an evaluation of a software architecture
project all students have to do. The rest 70% is given from a
written examination. The goal of the project is for the students
to apply the methods and theory in the course to design
software architecture and to implement a system based on
XNA framework according to the architecture. The project
consists of the following phases [32]:

1) COTS (Commercial Off-The-Shelf) exercise: Learn the
technology to be used through developing a simple
application.

2) Design pattern: Learn how to use and apply design
pattern by making changes in an existing system.

3) Requirements and architecture: List functional and
quality requirements and design the software architecture for
the application (a game).

4) Architecture evaluation: Use the ATAM (Architecture
Tradeoff Analysis Method) evaluation method to evaluate the
software architecture of project in regards to the quality
requirements.

5) Implementation: Do a detailed design and implement
the application based on the created architecture and on the
changes from the evaluation.

6) Project evaluation: Evaluate the project as a whole
using a PMA (Post-Mortem Analysis) method [10].

The course staff issued the tasks to make a functioning
game using XNA, based on students’ own defined game
concept. However, the game had to be designed according to a
specified and designed software architecture. Further, the
students had to develop an architecture where they had to focus
on one particular quality attribute. We used following
definitions for the quality attributes in the game projects:
Modifiability, the game architecture and implementation should
be easy to change in order to add or modify functionality; and
Testability, the game architecture and implementation should
be easy to test in order to detect possible faults and failures.
These two quality attributes also were related to the course
content.

III. MOTIVATION AND OVERVIEW OF XQUEST
XQUEST (XNA QUick & Easy Starter Template) [11] is a

small and lightweight 2D game library/game template
developed by the two master students Strøm and Kvamme at
NTNU (co-authors of this paper) that contains convenient
game components, helper classes, and other classes that can be
used in the XNA game projects. The goal of the XQUEST
project was to identify and abstract common game
programming tasks and create a set of components that could
be used by students of the course to make their programming
life easier. We chose to focus mainly on 2D. There were a few
reasons for this. First, the focus of the student projects is
software architecture, not making a game with fancy 3D
graphics. Second, students unfamiliar with game programming
and 3D programming may find it daunting to have to learn the
concepts needed for doing full-blown 3D in XNA, such as
shade programming and 3D-modelling, in addition to software
architectures. To keep the projects in 2D may reduce the effect
of students only focusing on the game development instead of
focusing on the software architecture issues. However, we still
consider to implement basic 3D components in XQUEST and
help documentation for the students interested in 3D gaming
programming, but it is not a mandatory for students to use
them.

A. Motivation for XQUEST
From the feedback of using XNA in the software

architecture course [21], the majority of the students thought
there was much time focus on game issues and little time on
software architecture, even the XNA environment is very
developer-friendly with a high level graphic API. The
following Table I is a collection data from 46 students’ replies
in software architecture course. From the table we can see that
a great percentage of the students (55%) claim that too much
time is spent on developing game play compared to time spent
on the software architecture.

Apart from the negative feedback above, we also consider
to enrich educational features of XNA for the software
architecture course:

• Save time in C# learning and programming and add
appropriate guidance and cases on mini 3D game
programming.

• Provide cases of good designed software architecture
based on XNA and XQUEST.

XNA Framework

.NET Framework .NET Compact Framework

XNA Game Studio

Windows XBOX360 Zune

TABLE I. COLLECTION DATA ABOUT DEVELOPING TIME ON XNA FROM STUDENTS

Question Strongly
disagree Disagree Neutral Agree Strongly

agree
Q: I spent too much time developing the game play

and not enough time on the architecture 5% 30% 10% 40% 15%

• Provide some documentation to explain the trade-off

between architecture design and COTS, especially
XQUEST components.

B. Design Principles for XQUEST
Here were the general principles used to design XQUEST:

1) Flexible structure: Due to XQUEST is used for
teaching software architecture, and students will design game
projects based on suitable software architectures like Model-
View-Controller, Pipe and filter, Layered, Task Control and
etc., we tried to provide flexible components for the students
that would not hinder the students to design their own
software architecture.

2) Easier to use: From our teaching experiences, 90%
students had programming skills in Java, but not in C#.
XQUEST should help them to learn XNA in an easy and quick
way with good comments on code and supported
documentation. And XQUEST is based on XNA and it should
make it easier for students to use and save development time.
Students should learn it quickly even they only have
experience in Java programming.

3) 3D guidance: We intended to lead students into the
world of 3D, and give them the basic ideas of 3D
programming. But 3D programming needs more time on 3D
models and some basic 3D transformations to 2D on screen.
We should provide several demos in XQUEST to show some
3D technologies and give the students some sensorial 3D
concepts in mind and to get a quick entrance into the 3D
world. Thus, they did not need to know the Math basics of
how to do 3D transformations into 2D.

4) Providing tutorials to investigate the software
architecture in game: Very little literature have been
published on the subject of software architecture in game
development, although some attempts had been done [12, 13,
14]. However, these attempts have failed to deliver a general
high-level presentation on software architecture topics in
games, and tend to focus more on the design and
implementation of software modules common in games. We
have looked into the differences between traditional software
development and game development, as well as identifying
different architectural and design patterns that were useful for
game development. Also, portraying the challenges of
designing and implementing game architectures could be
proved useful for determining the scope of such an endeavor.

5) Reflect the quality attributes in a game architecture:
Quality attributes should be the driving force behind every big
decision in the development process, and had to be considered

at all times. We identified some quality attributes that were
most relevant for game development, such as modifiability,
testability, availability or usability. We would look at
structures and patterns that underline certain quality attributes,
and to use these elements in a game architecture.

C. XQUEST Structures and Components
The XQUEST library is presented component by

component as shown in Fig. 2. The XQUEST functionality is
split into eight components described with their relationships.
We put the XQUEST.GameObjectManagement component in
the middle purposely to indicate its importance. It contains the
game object system, which is at the heart of XQUEST.

Here is a brief description of each component:

1) XQUEST.GameObjectManagement contains the game
object system, responsible for handling game objects such as
players, enemies, power ups, etc. The object system allows for
many different types of objects, 2D or 3D, and provides state
tracking and a flexible collision detection system.

2) XQUEST.CameraSystem provides functionality for
setting up both 2D and 3D cameras to view a scene or track
game objects in multiple perspectives.

3) XQUEST.GameStateManagement handles state and
state transitions in the game. It uses the concept of game
screens. A game screen can be a menu screen, an inventory
screen, a combat screen, etc.

4) XQUEST.Audio handles audio-related functionality like
playback of sound effects and music, adjustment of volume
levels, grouping into categories, etc.

5) XQUEST.Misc contains miscellaneous components of
utility that do not fit into any other namespace.

6) XQUEST.Input handles querying and interpretation of
keyboard, mouse, and Xbox 360 game pad input.

7) XQUEST.Helpers contains convenient helper classes
for common tasks.

Besides of above components, we also provided some
demos and directions to illustrate how to use these components,
what kind of architecture used in one demo and what types of
attributes (modifiability, testability or others) it focuses on.

IV. EVALUATION OF XQUEST USED IN A SOFTWARE
ARCHITECTURE COURSE

One goal of this paper was to investigate how successfully
the XQUEST could be applied in a software architecture
course. Concretely, we investigated the following research
questions:

• RQ1: What is the usability of XQUEST?

Figure 2. Structure View of XQUEST

• RQ2: What is the suitability and usefulness of
XQUEST?

• RQ3: What is the usefulness of the specific
components in XQUEST?

• RQ4: What other positive or negative issues are related
to XQUEST?

A. Preparation for Evaluation
In this part, we present our research methods and research

context of the evaluation process.

1) The research methods:
a) System Usability Scale: The System Usability Scale

[17], hereafter SUS, is a usability questionnaire consisting of
ten generic Likert items. Responses to the questionnaire result
in a score, called the SUS score. The SUS score is a single
number between 0 and 100 indicating the overall usability of
the system being studied. The SUS is used for subjectively
measuring usability of a system at a high level. The outcome
of a SUS questionnaire is a score within the range of 0 to 100,
where higher values indicate a higher measured usability of
the system. Each item in the SUS is responded to by assigning
a scale value from 1 to 5, where 1 indicates strong
disagreement and 5 indicates strong agreement. To calculate
the SUS score, we first sum together the score contributions
for each question. Each question’s score contribution is a
number in the range 0 to 4. There are totally 10 questions, for
odd-numbered questions (1, 3, 5, 7, 9), the score contribution
is given by the scale position minus 1. For even-numbered
questions (2, 4, 6, 8, 10), the score contribution is 5 minus the
scale position. The sum of the score contributions are then
multiplied by 2.5 and divided by the number of replies to the
survey to obtain the final SUS score. We had incorporated the
SUS items in our XQUEST questionnaire.

b) Empirical investigation: The survey was based on the
method of conducting an empirical investigation [15]. We had
applied the recognized methods combined with our own

subjective assessments to implement the survey. Measureable
items in the questionnaires had been formed as Likert [16]
items. These were not questions, but statements that the
respondents responded to by specifying their agreement to the
statements. We had used 5-level Likert items, where the levels
of agreement were: Strongly Disagree; Disagree; Neutral;
Agree and Strongly Agree. The items from the questionnaires
were assessed subjectively. And these subjective analyses
were based on our teaching experiences.

2) The participants and Environments.
The participants of our survey were postgraduate students

of the software architecture class spring 2008 at NTNU. They
used an online e-learning platform during the course. The
questionnaire was published three days after the students had
delivered their projects on the e-learning platform by using its
survey functionality. Each question was prefixed with a context
name indicating which section it belonged to. The participants
and environment was authentic in the sense that the students of
the course were the intended users of XNA and XQUEST.

B. Results from System Usability Scale (SUS) Questions
Here we present the results from the SUS part of the

XQUEST questionnaire.

The result of SUS score is shown in Table II. Our system
achieved a score of 60.53 out of a possible 100. It is above the
average usability, which indicates that the system is not
difficult to use. The main challenge for some students was to
spend required time on becoming familiar with the 2D/3D
structure in XQUEST. This process can be improved by giving
an introduction lecture about 2D/3D concept after first simple
exercise when the students had already setup some experiences
and context of XNA programming environment. We also need
to improve 2D/3D components into two separate components
in next XQUEST version.

C. Results from Suitability and Usefulness Questions
The results from the questions about suitability and

usefulness of XQUEST are shown in Table III. This

XQUEST.
GameObjectManagement

XQUEST.Input XQUEST.Misc

XQUEST.SpriteAnimation XQUEST.CameraSystem

XQUEST.
GameStateManagement

XQUEST.
Audio

XQUEST.Helpers

questionnaire was only for students using both XNA and
XQUEST in project. We received a total of 19 responses from
the students using XQUEST out of the 46 students that worked
on an XNA game project.

The results showed that students could use XQUEST as a
template or referring to it as a library, 40% modified the code
of XQUEST, and 30% kept it unchanged. This reflects of the
fact that one successful design philosophy of XQUEST was to
create it as abstract and reusable as possible, enabling the
students to choose their own ways of using XQUEST that
helped the project design.

Q2 shows a positive result that XQUEST prepared most
commonly used components for students, and it saves the time
in game development.

We found that 60% students disagreed that they spent too
much time looking into the source code of XQUEST. This
positive result indicates our good documentation work and self-
explanatory public interfaces. This positive result is also
caused by Visual Studio’s functionality to show comments in
source code through the IntelliSense [18] tooltips that pop up
while the programmer is typing in code. For example, when
creating a new instance of a class, the IntelliSense will display
any comments available for the different parameters that the
constructor accepts.

It is also inevasible that students should both focus on
architectural matters and on technical matters. However, from
the Q4 result, to a certain extent, XQUEST still could help one
third of the students more on architectural matters than on
technical matter.

D. Results from Usefulness of Every Component Questions
From Table IV result, we could find out how the students

used XQUEST in their projects related to the offered
components, and where we should focus on to improve
XQUEST.

As we expected, the most popular component was the
Animated Sprite Framework. Since all groups worked on 2D
games, this is understandable since sprite rendering is the
easiest way to output graphics in a 2D environment. Another
popular component was the Game Object Management
component. From the results going through the XNA
deliveries, we were surprised to find that most groups did not
create their own implementation of the IGameObject interface,
but rather used the standard BasicGameObject. Using
BasicGameObject has some limitations, as it is tightly
interwoven with the Sprite Animation Framework for
representing the game object using sprites. This implies that the
groups that used this approach, also needed to use the Sprite
Animation Framework. Looking at the high percentage of
students who responded to have used both of these
components, there is no doubt that the use of BasicGameObject
is the main reason for this. This finding shows that the students
need to pay attention during lectures.

In third place comes the InputManager component. This is
probably the most useful component in XQUEST, since every
game needs to handle input in some forms. It contains several

methods for supporting all the XNA input devices such as
keyboard, mouse, and up to four Xbox 360 game pads. By
looking at the deliveries, we found that most games were
single-player games played with a keyboard, or hot-seat
multiplayer games where all players shared the same keyboard.
Some games used the mouse as the primary input device, but
very few implemented gamepad support, since they did not
have access to Xbox 360 game pads during the project unless
they brought one themselves. The input needs may therefore
have not been so great that it required a component like the
InputManager. We will therefore simplify the functions in
InputManager component to minimize the amount of code the
students needs to read to save total time of code reading, such
as delete input support for XBOX360 according to the practical
application from students.

The least used components were the AudioManager and
TextOut components. Having music and sound effects in your
game may not take the greatest priority in a school project,
where the evaluation criteria leans more towards software
architecture and fulfilling an assigned quality attribute. For this
reason, many groups decided not to implement audio features
in their games to save development time, and hence no need for
the AudioManager component. Still, almost half of the games
used this component. The TextOut component was a
component we thought would be more popular. It is really
simple to use, and has features that makes it very convenient
for text display. It may be the fact that text display is so simple
that the students did not see the need for using it. The standard
way of displaying text with SpriteBatch may fulfill all the
desired text rendering needs. In this way, we could also cut
some functions in TextOut to save coding reading workload.

E. Open Questions Analysis
Table V is the collection of main feedback from students to

the open question. 20% of the students agreed that some
components were missing in XQUEST. Pixel-perfect collision
detection is a very performance-intensive operation that we
described as not suitable for a multi-purpose game object
system such as the one in XQUEST. However, we decided to
include support for it in next XQUEST version. It is disabled
by default, but can be enabled on a per-object basis, meaning
the user is in total control of how the collision detection should
be executed for every object in the scene.

BasicGameObject is per definition not supposed to be
flexible. The flexibility of the game object management system
in XQUEST lies in the IGameObject interface, of which
BasicGameObject is an implementation. As expressed above,
we were surprised that so few groups did not take advantage of
this flexibility by providing their own implementation of the
IGameObject interface. By doing so, they could have tailored it
for their game. Instead, they chose to use the standard
implementation in BasicGameObject, which of course also
constrained them to using the Sprite class for the graphical
representation.

TABLE II. RESULTS FROM THE SUS

Question Sum score contribution
of 19 students

1 I think that I would like to use this system frequently. 35
2 I found the system unnecessarily complex. 52
3 I thought the system was easy to use. 50
4 I think that I would need the support of a technical person to be able to use this system. 55
5 I found the various functions in this system were well integrated. 47
6 I thought there was too much inconsistency in this system. 48
7 I would imagine that most people would learn to use this system very quickly. 44
8 I found the system very cumbersome to use. 45
9 I felt very confident using the system. 40
10 I needed to learn a lot of things before I could get going with this system. 44

Sum: 460
SUS Score: 460 * 2.5 / 19 = 60.53

TABLE III. THE 5 GENERAL QUESTIONS LABELED Q1-Q5

Question Strongly
disagree Disagree Neutral Agree Strongly

Agree
Q1: I found that I could use XQUEST as is
without modifications 15% 25% 30% 25% 5%

Q2: I think XQUEST saved me a lot of time
and effort by providing components and
functionality that I otherwise would have had
to create myself

10% 10% 15% 40% 25%

Q3: I spent too much time looking into the
XQUEST source code 10% 50% 25% 15% 0

Q4: I think XQUEST helped me focus more
on architectural matters and less on technical
matters

5% 35% 30% 30% 0

TABLE IV. QUESTIONS ABOUT EVERY COMPONENT IN XQUEST

I used the following components of XQUEST

Component Sprite/
AnimatedSprite

GameObject
Manager InputManager

Percentage 90% 85% 75%
Component TextureStore AudioManager TextOut
Percentage 65% 40% 30%

TABLE V. OPEN QUESTION COLLECTION

Question Strongly
disagree Disagree Neutral Agree Strongly

agree
Q: I think there were components missing that
most students could benefit from 0 25% 55% 10% 10%

Q: If you felt there were components missing, which ones would you like to see in a future version of
XQUEST?
A1. Sprite layers and pixel collision detection.
A2. Pixel-based collision detection, system for being called with certain intervals, better modifiability.
A3. More flexible BasicGameObject, allowing non-sprite objects.

V. RELATED WORK
This paper described experiences how to improve and

enhance the XNA for teaching purposes in a software
architecture course. As far as we know from the literature,
XNA is always directly used in education without any
modifications. There are only few papers describing its
application in education and no paper goes further to describe
the idea to extend the XNA’s structure to enhance its features
as a teaching aid for certain course. However, there are some
related approaches used in education described in this section.

Joe Linhoff describes a game development course that uses
the XNA platform to allow a heterogeneous group of students
to gain experience in all aspects of console game creation [31].
It uses the features of XNA directly for the teaching, such as
Pipeline or console that could be XBOX360 to activate
students’ programming interesting.

Youngblood describes how XNA game segments can be
used to engage students in advanced computer science
education [27]. Game segments are developed solution packs
providing the full code for a segment of a game with a clear
element left for implementation by a student. The paper
describes how XNA was used in a artificial intelligence course

where the students was asked to implement a chat bot, motion
planning, adversarial search, neural networks and flocking.
Finally the paper describes seven design principles for using
game segments in CS education based on lessons learned.

Oliver Denninger and Jochen Schimmel present their
experiences utilizing game programming for project courses
based on XNA [30]. Game programming usually involves
many repetitive and time consuming tasks such as accessing
hardware resources and managing game content. Since XNA
framework relieves programmers from many of the tedious
tasks and allows them to develop a feature complete game and
to gain experience with the process of software development,
students were so fascinated by the subject that they prefer to
spend more time on the courses.

El-Nasr and Smith describes how the use of modifying or
modding existing games can be used to learn computer science,
mathematics, physics and ascetic principles [26]. The paper
describes how they used modding of the WarCraft III engine to
teach high school students a class on game design and
programming. Further, the describe experiences from teaching
university students a more advanced class on game design and
programming using the Unreal Tournament 2003 engine.
Finally, they present observations from student projects that
involve modding of game engines. Although the paper claims
to teach students other things than pure game design and
programming, the game engine is used in the context of game
development courses.

The Labyrinth [28] was implemented in Java and it is a
flexible and easy-to-use computer game framework. The
framework enables instructors to expose students to very
specific aspects of computer science courses. The framework is
a finished game in the Pac-Man genre, highly modular, and it
lets the students change different aspects of the game.
However, it cannot be used to develop different genres of game
and there is little room for changing the software architecture
of the framework.

The JIG (Java Instructional Gaming) project [29] is a
collaborative effort between Scott Wallace (Washington State
University Vancouver) and Andrew Nierman (University of
Puget Sound) in conjunction with a small group of dedicated
students. It has three aims: 1) to build a Java instructional game
engine suitable for a wide variety of students at all levels in the
curriculum; 2) to create a set of educational resources to
support the use of the game engine at small, resource-limited,
schools; and 3) to develop a community of educators that use
and help improve these resources. The JIG project was
proposed in 2006 and the JIG engine 1.0 is available now.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the principles to design

XQUEST to improve XNA teaching functions for students in
the exercise of the software architecture course. Furthermore,
we evaluated the XQUEST application and analyzed several
aspects of XQUEST’s suitability, usefulness and usability
based on questionnaires. In many aspects, the results show that
XQUEST enhances XNA in suitability as a teaching aid in
software engineering learning, and that it can be a useful and
helpful extension to understand XNA. The results also show

that it is easy to use and save students time in development, and
let students have more time to focus on the practice of course
theory.

This paper describes results from the first time we have
used XQUEST in the software architecture course. Based on
our experiences and evaluations so far we acknowledge that
more work needs to be done in improving the components in
XQUEST to make them more useful, and updating the
documentation due to updated XNA versions. We will go
further to extend game library and enriching help resources of
XQUEST in 3D development.

ACKNOWLEDGMENT
We would like to thank Jan-Erik Strøm and Trond

Blomholm Kvamme for implementing XQUEST and for their
inputs to this paper.

REFERENCES
[1] Alex Baker, Emily Oh Navarro, and André van der Hoek. Problems and

Programmers: an Educational Software Engineering Card Game. In
ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 614–619,Washington, DC, USA, 2003. IEEE
Computer Society.

[2] Emily Oh Navarro and André van der Hoek. SimSE: an Educational
Simulation Game for Teaching the Software Engineering Process. In
ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on
Innovation and technology in computer science education, pages 233–
233, New York, NY, USA, 2004. ACM Press.

[3] Lasse Natvig, Steinar Line, and Asbjørn Djupdal. Age of Computers: An
Innovative Combination of History and Computer Game Elements for
Teaching Computer Fundamentals. In FIE 2004: Proceedings of the
2004 Frontiers in Education Conference, 2004.

[4] N. Landry, "Microsoft XNA: Ready for Prime Time?," in CoDe
Magazine. vol. Sept/Oct, 2007.

[5] Microsoft; "Zune.net", http://www.zune.net/. Retrieved April 24, 2008.
[6] Microsoft; "XNA Creators Club Online", http://creators.xna.com/.

Retrieved May 21, 2008.
[7] F. Luna, Introduction to 3d Game Programming with Direct X 9.0c.

Plano: Wordware Publishing, Inc, 2006.
[8] T. Miller, "Managed DirectX 9 Graphics and Game Programming,"

Sams Publishing, 2004.
[9] P. Clements L. Bass and R. Kazman. Software Architecture in Practice

Second Edition, 2003. Addison-Wesley.
[10] A. I. Wang, T. Stålhane. Using Post Mortem Analysis to Evaluate

Software Architecture Student Projects , Conference on Software
Engineering and Training 2005, 8 pages.

[11] Trond Blomholm Kvamme and Jan-Erik Strøm, “Evaluation and
Extension of an XNA Game Library used in Software Architecture
Projects”, Master thesis in NTNU, June 2008.

[12] A. Rollings and D. Morris, Game Architecture and Design, 2 ed.: New
Riders Publishing, 2003.

[13] D. Eberly, 3d Game Engine Architecture. Amsterdam: Morgan Kaufman
Publishers, 2005.

[14] R. Rucker, Software Engineering and Computer Games. Boston:
Addison-Wesley, 2003.

[15] V. R. Basili, "The Experimental Paradigm in Software Engineering," in
Dagstuhl Workshop. vol. Experimental Software Engineering Issues:
Critical Assessment and Future Directives, H. D. Rombach, V. R. Basili,
and R. W. Selby, Eds. Dagstuhl Castle, Germany: Springer-Verlag,
1992, pp. 3-12.

[16] Microsoft, "Shader Series Primer: Fundamentals of the Programmable
Pipeline in XNA Game Studio Express," 2007.
http://creators.xna.com/downloads/?id=128

[17] J. Brooke, "SUS - A quick and dirty usability scale," in Usability
Evaluation in Industry London: Taylor and Francis, pp. 189-194.

[18] Wikipedia; "IntelliSense",
http://en.wikipedia.org/w/index.php?title=IntelliSense&oldid=20872008
9. Retrieved May 7, 2008.

[19] Apple. “iPhone Dev Center”, http://developer.apple.com/iphone/,
Retrieved February 2, 2009.

[20] Google. “Android - An Open Handset Alliance Project”,
http://code.google.com/intl/en/android/documentation.html. Retrieved
February 2, 2008.

[21] Bian Wu, Alf Inge Wang, Jan-Erik Strøm, Trond Blomholm Kvamme,
"An Evaluation of Using a Game Development Framework in Higher
Education," CSEET, pp.41-44, 2009 22nd Conference on Software
Engineering Education and Training, 2009

[22] G. Sindre, L. Nattvig, M. Jahre, “Experimental Validation of the
Learning Effect for a Pedagogical Game on Computer Fundamentals”,
to appear in IEEE Transaction on Education.

[23] B.A. Foss and T.I. Eikaas, “Game play in Engineering Education -
Concept and Experimental Results”, The International Journal of
Engineering Education 22(5), 2006.

[24] A. I. Wang, O. K. Mørch-Storstein, T. Øfsdahl, “Lecture quiz - a mobile
game concept for lectures”, The 11th IASTED International Conference
on Software Engineering and Application (SEA 2007), November 19-
21, 2007.

[25] A. I. Wang, T. Ø. and O. K. Mørch-Storstein: “An Evaluation of a
Mobile Game Concept for Lectures”, 21st IEEE-CS Conference on

Software Engineering Education and Training (CSEE&T 2008),
Charleston, S. Carolina, USA, April 14-17, 2008,.

[26] M. S. El-Nasr and B. K. Smith, “Learning through game modding”,
ACM Computer Entertainment 4(1), Jan. 2006.

[27] Youngblood, G. M. 2007 Using XNA-GSE Game Segments to Engage
Students in Advanced Computer Science Education. In The 2nd Annual
Microsoft Academic Days Conference on Game Development, February
22-25.

[28] Distasio, J. and Way, T. 2007 Inclusive computer science education
using a ready-made computer game framework. In ITiCSE '07:
Proceedings of the 12th annual SIGCSE conference on Innovation and
technology in computer science education, 116-120.

[29] Washington State University Vancouver and University of Puget Sound.
2008 The Java Instructional Gaming Project. Web:
http://ai.vancouver.wsu.edu/jig/, Retrieved June 2008.

[30] Oliver Denninger, Jochen Schimmel, Game Programming and XNA in
Software Engineering Education, Proceedings of Computer Games and
Allied Technology (CGAT08), 2008.

[31] Joe, L. and S. Amber (2008). Teaching game programming using XNA.
Proceedings of the 13th annual conference on Innovation and technology
in computer science education. Madrid, Spain, ACM.

[32] Wang, Alf Inge; Wu, Bian. An Application of a Game Development
Framework in Higher Education. International Journal of Computer
Games Technology 2009 ;Volume 2009.

Paper 8:

GDF4: Bian Wu; Alf Inge Wang; Anders Hartvoll Ruud; Wan Zhen
Zhang: "Extending Google Android's Application as an Educational Tool",
the 3rd IEEE International Conference on Digital Game and Intelligent Toy
Enhanced Learning (DIGITEL), April 12-16 2010, Kaohsiung, Taiwan. ISBN:
978-1-4244-6433-3. DOI: 10.1109/DIGITEL.2010.38

Extending Google Android’s Application as an Educational Tool

 1Bian Wu;1Alf Inge Wang;1Anders Hartvoll Ruud
1Norwegian University of Science and Technology,

1Norway
1bian,alfw,anderru@idi.ntnu.no

2Wan Zhen Zhang
2Guilin University of Electronic Technology,

2China
2zwan_zer@163.com

Abstract—This paper introduces how to extend Google android
platform as a game development tool to learn software
architecture based on the double stimulation method. It starts
with the motivation to choose the android platform since most
of students in software architecture course from NTNU
(Norwegian University of Science and Technology) have
experiences of using java and eclipse platform before they
starts this course. And then it describes the design and
construct of extended android platform, called “Sheep”
framework. Further, it presents the application of the Sheep
framework as second stimulus means integrated in the game
exercises in the software architecture course. Finally, the paper
discusses the contribution from the aspects of technology, game
ideas and pedagogy.

Keywords- Google Android; Higher Education; Double
Stimulation; Software Architecture; XNA; iphone SDK

I. INTRODUCTION
The rapid development of electronic devices and network

communication provides a foundation for improving the
learning and teaching environments through technology. A
common phenomenon is that new game ideas grow up with
distinctive technology or novel equipments used in learning,
and it also brings a challenge to educational games, how we
could integrate games in lectures, exercises, day life with
recent technologies, such as 3G[11], PSP [10], iphone [3] or
youtube, etc, to enrich the teaching or training environment
and achieve better learning life.

However, when we live in and start to deliberate our
learning and teaching in technology rich learning
environments, we are facing some challenges and
opportunities that arise from introducing technology into
learning and teaching. Most of the theoretical literature on
learning and teaching has not yet incorporated a perspective
on technology as to how perceive learning and teaching,
especially on game-based learning. As such, we would
discuss it by present cases of how game technology to
perceive the learning in this paper.

This paper’s idea was inspired by the work on using
XNA [13] successfully in teaching software architecture
through students’ teamwork on game projects [1]. Similarly
we want to see if we could use other development
frameworks than XNA for teaching software engineering and
computer science. Currently, most attractive choices are the
Google android [2] and iphone SDK [3], both are issued in
2007 and free to download from their official websites. After
two years, these SDKs become more matured, the newest

version of iphone SDK is 3.1, and android is 1.6. Both of
them have potential power to enrich the learning life through
diverse ways based on the various educational purposes.

This paper is organized as follows: Section 2 describes
the theoretical context, previous works and investigates the
features of Google android and iphone SDK. Section 3
introduces why and how to extend android platform as a
game development tool for teaching purpose. Section 4
explains design issues and results. Section 5 presents how to
integrate game development into teaching context based on
our extended android platform for software architecture
course. Section 6 presents a discussion of the teaching
method from different aspects, and Section 7 concludes the
paper.

II. RELATED WORKS

A. Theoretical Context
In schools, learners face a challenge, a problem, or a task

that has been designed for a particular pedagogical purpose
or they face situations that are likely to appear in work and
public life. In both cases the purpose of exploiting tools is
for learners to respond to such diverse challenges. Our focus
is on the construct of the relationship between the
educational tasks and the material artefact. This relationship
is at the heart of Vygotsky’s notion of double stimulation
[14], a method for studying cognitive processes and not just
results. In a school setting, typically the first stimulus would
be the problem, challenge, task, or assignment to which
learners are expected to respond. The second stimulus
would be the available mediating tools. However, it is
important to note that Vygotsky described this relationship
in dynamic terms and where the second stimulus is not a
discrete end point for this process but, “Rather, we
simultaneously offer a second series of stimuli that have a
special function. In this way we are able to study the process
of accomplishing a task by the aid of specific auxiliary
means” (p. 74, emphasis in the original). Note that
Vygotsky identifies the second stimulus in the plural—a
series. We take this to be most important when approaching
the second stimulus in the form of digital tools [15].

Based on this point, we have a case design of learning
environment present as below to describe how to construct
the double stimulation in software architecture course. Also
the design of the first stimulation (tasks) and criteria to

2010 IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning

978-0-7695-3993-5/10 $26.00 © 2010 IEEE
DOI 10.1109/DIGITEL.2010.38

23

choose second stimulation (game development tools) are also
given.

B. Previous works – Student projects based on XNA in
software architecture course
In NTNU (Norwegian University of Science and

Technology), the software architecture course is a post-
graduate course offered to computer science students for
one semester. Students were grouped in 3-4 persons and
spent most time on the implementation phase (6 weeks) to
finish game projects. The goal of the project is for the
students to apply the methods and theory from the course to
design software architecture and to implement a system
(game) based on Microsoft XNA framework [4, 8]. The
project consists of the following tasks:

1) COTS (Commercial Off-The-Shelf) exercise: Learn
the technology to be used through developing a simple
game.

2) Design pattern: Learn how to use and apply design
pattern by making changes in an existing system.

3) Requirements and architecture: List functional and
quality requirements and design the software architecture
for a game.

4) Architecture evaluation: Use the ATAM
(Architecture Trade off Analysis Method) evaluation
method to evaluate the software architecture of project in
regards to the quality requirements.

5) Implementation: Do a detailed design and implement
the game based on the created architecture and on the
changes from the evaluation.

6) Project evaluation: Evaluate the project as a whole
using a PMA (Post-Mortem Analysis) method [12].

The second stimulus is chosen based on Malone’s “What
makes things fun to learn?” [16] and our own teaching
experiences. The following are the criteria:

• Easy to learn and allow rapid development;
• Providing an open development environment to

attract students’ curiosity;
• Supporting programming languages familiar to the

students;
• Not in conflict with the educational goals of the

course;
• A stable implementation;
• Have sufficient documentation;
• Low costs to use and acquire. From our previous

experiences, we found XNA to be a suitable tool in
the software architecture course according to overall
positive feedback from the students [1].

C. Features of the Google android and iphone SDK
This section compares the differences between android

and iphone SDK. Table 1 is the summary features of the
Google android and iphone SDK. Also, in order to get the
overall understanding of game development platform, we
also list the XNA’s features for the comparison in the Table.

Both android and iphone SDK have strong support and
market share. From technical perspective, they all have the
potential value that could be extended as game development
tools since most of their applications in the market are about
games.

From the evaluation of the two SDKs [17], we decided to
go for the android SDK to be used in the software
architecture course to learn the syllabus through a project.
However, we found that before android could be used, we
had to tailor it for our educational purpose.

III. EXTENSION OF ANDROID FOR AN EDUCATIONAL
PURPOSE

This section gives motivation of improving the android
for teaching purpose and direction of how to extend it.

Due to the different educational environments and
teaching aims, there could be various extending methods
and directions. Under this situation, we will give a case
study on how to improve Google android platform under the
direction of learning software architecture through game
projects.

A. Motivation
From our experiences of using XNA in software

architecture course, the survey of students’ context in NTNU
are nearly 90% have background of java programming [4],
and less than 20% have the background of C# or even more
less have the Objective C experiences. Most of students face
the time consuming of learning new programming languages
if they choose the game project in software architecture
course. This point is very important, since they have only 6
weeks for the implementation, and they also involve in other
courses. As such, Google android could give one more
choice for students with java background and enrich the
resources for the second stimulus (game development tools)
during teaching process. Moreover, using android to develop
mobile games also could attract students’ attention. So, our
goal is as follows:

• Extend the android platform as a game development
framework to match the first stimulus (tasks) based
on the double stimulation;

• Save students game programming time, let them
have more time focus on the course theory.

B. Direction of improving android
From our knowledge, there is no paper that describes

extending android or iphone SDK’s application as a game
development tool for an educational purpose, so not much
previous experiences are available. We must start from
validating which of the desired characteristics are present in
the extended android platform--we called it “Sheep”
framework. According to our goal, Sheep both enhances the
students' learning experience and helps them achieving their
goal faster by saving game development time.

While the android development kit provides a huge
programming interface for general application development,
the Sheep framework should not only focus on game

24

development, but also on game development for the purpose
of learning software architecture to meet the tasks design in
the first stimulus in further.

C. Method
The method we used to get inputs for the required

features of the Sheep framework was a survey of previous
students’ exercises in the software architecture course.

This section presents a survey of student projects based
on XNA submitted in the software architecture course in
spring 2008, and investigates games types the students
made, game components they used in their games projects,
and architectural patterns and design pattern they used the
most. In total, 15 projects are analyzed. The use frequency
of game components are list as follows:

• 100% of the groups chose to make a 2D game. The
complexity of a game can be significantly reduced
by developing a 2D game rather than a 3D game.
Many of the architectural challenges which are
present in 3D game creation still apply in 2D games.

• 100% of the groups used fonts and text to some
extent in their game.

• 93% of the projects utilize collision detection. Many
groups use simple rectangle or circle collision
detection, some use per-pixel collision maps, and a
few use collision detection with advanced geometry.

• 93% of the games contained graphics in multiple
layers.

• 87% used graphical user interfaces to some extent.
• 87% also used game state logic in their games. Most

games had at least a initial state with a menu, and a
running state.

• 87% used sound and two variants are relevant:
background music, which enhances the atmosphere,
and sound effects, which are triggered when some
events occurs in the game.

• 40% of the projects used tiled graphics. Tiled
graphics makes sense in many contexts, especially
role-playing games, strategy games and platformers.

• 27% of the projects used frame-by-frame
animations.

• 20% used persistent data storage in their game, such
as saving/loading of progress, or a simple high-
score.

• Only 7% used particle effects, which are used to
achieve certain visual effects like fire, smoke, snow,
and so forth.

Certain elements, which we take for granted in any game
have been omitted from above lists, such as input. This is
simply to avoid inflating the list with entries of 100%
frequency. These omitted parts will not be neglected in the
design of the framework.

Also, the patterns that students used in game projects are
also useful references for the requirements and design for
the Sheep framework. The Model-View-Controller (MVC)
[5, 6] is by far the most popular architectural pattern, with
46% of the groups use it. Other favourites include Pipes
and Filters (23%), Layered (11%), Strategy (8%) and
Client-Server (8%), showing in Figure 1. And the Figure 2
shows that Observer, Abstract factory, State and Singleton
pattern are the most popular design pattern. All these
patterns are the key concept in practice of software
architecture.

TABLE I. FEATURES OF GOOGLE ANDROID, IPHONE SDK AND XNA

Criteria Google Android iPhone SDK XNA
Development
Environment

Eclipse recommended by Google Xcode provided by Apple Visual Studio and XNA Game Studio
provided by Microsoft

Operating Systems for
Development

Windows, Mac OS X, Linux Mac OS X Windows

Documentation Official developer website
provided

Official developer website provided Official developer website provided

Emulator Provided Provided Provided
Programming Language Java Objective-C C#

Mobile
Devices

Phone Google phone is available in most
countries.

iPhone is available in most countries. No mobile phones type.

Digital
player

No digital player type. iPod touch is a great developer
device, no SIM card required.

ZunePlayer accepts partly XNA
games, no SIM card required.

Programming Interface API contains key high-level
abstractions which short

development time.

Mainly rely on the low-level
standards, like OpenGL ES and

OpenAL.

Contains high level abstractions to
ease the game programming.

Share of Applications Publish/sell the applications on
Google android Market.

Publish/sell the applications on
iTunes apple store.

Publish on the XNA creator club
websites.

25

Figure 1. The distribution of chosen architectural patterns for game

projects

Figure 2. Distribution of usage of design patterns for game groups

D. Student expectations — requirements for sheep
framework
As main criteria, the components with higher frequency

will take a higher priority than the ones with lower
frequency, but we must also take the usage frequency of
patterns into account.

Under this point, we formed requirements as following
for what the students expected to be able to use with the
Sheep framework:

1) Graphics. The framework should be able to draw
images, primitives and text on screen.

2) Math. The framework should be able to perform
collision detection, and transformations on the graphics.

3) Audio. The framework should be able to play sound
effects (non-streaming) and music (streaming).

4) Timing. The framework should be able to determine
the timing of frames.

5) Storage. The framework should provide means to
store persistent data.

6) Networking. It should be possible to transfer data
over the network.

7) Resource Management. The framework should
provide classes, which makes resource management as easy
as possible.

8) Input. The framework should provide means of
accessing input information.

Under these requirements, we also investigate what is
available in the bare Android API. It is expected that some
of the students’ requirements will be satisfied fully by the
bare Android API, such as networking.

IV. THE “SHEEP” FRAMEWORK
This section introduces the structure of the Sheep

framework and the key components’ value.

A. Design goals
From our previous experiences on XNA, students should

not be involved in the programming too much time and
cause less time on software architecture study, so the main
goal of the Sheep framework is to allow the students to save
time in game programming. In a nutshell, the two overall
goals for all major components in the Sheep framework are:

• Simplify a common task in game development, so
the students can spend more time on structure or
course theory and less time on technical issues.

• Use known patterns to interact with client code, as to
teach students these patterns, let them to perceive the
course theory through using this framework.

According to these goals, we classify the components
values in the Sheep framework as:

1) Practical value means that components which
simplify common tasks without requiring the use of any
particular patterns. The primary goal of these components
is to allow faster development, and save time for student to
focus on the course content.

2) Academic value means that components which
require the use of certain patterns. The primary goal of
these components is to illustrate the usefulness of a certain
technique, let students could handle or use this pattern.

Not all components achieve both goals. Some may be of
no direct academic value to the students, and may simply
exist as a convenience, some components may be of great
academic value, but may not be practical in a certain game
genre or specific game design.

B. Structure of Sheep
According to our design goals, we could describe Sheep

structure in two ways in which the Sheep framework makes
the android platform more feasible for game development to
learn the software architecture.

From aspect of time saving goal for game programming,
the Sheep structure is organized as packages as follows:

• Sheep.audio provides components for loading and
playback of sound.

• Sheep.collision contains collision detection and
spatial partitioning components.

26

• Sheep.game assists in structuring the game logic (the
model) of the game.

• Sheep.graphics contains components for loading
images and fonts.

• Sheep.gui holds the graphical user interface system.
• Sheep.input contains the input devices, and the

interfaces needed to subscribe to events.
• Sheep.math contains some math classes which aren't

directly related to collision detection.
• Sheep.util is meant to contain miscellaneous

components, but for now it only contains a singleton
which keeps track of time between frames.

From aspect of encouraging or requiring the use of
patterns, the components in the framework are:

• Sprites, which uses the Model-View-Controller.
• Game states, which uses the State pattern.
• Collision detection, which uses the Observer pattern

and the Template pattern.
• Spatial partitioning, which uses the Visitor pattern.
• Graphical user interface system, which uses the

Observer pattern and Chain of command.
• Other components without expected patterns.
All above pattern concepts are from the software

architecture course, and students should master them during
the process of using this framework.

C. Packages analysis
Three packages will be examples to explain the

components values.
1) Sheep.game package. It provides components, which

help organize the game model. Game State pattern is one of
the main design concepts in this package. It keeps track of
the high-level states of the game. Its main controller object
contains methods for loading content, updating its internal
state, drawing itself, and responding to input events. The
practical value is that having a complete state system in
place is beneficial because it allows relevant input events to
be presented more clearly and quickly to the students. And
its academic value is that State pattern is a well-known
pattern, which allows an object partially changes its class at
run-time. Specific game behaviour should be implemented
via subclasses of the State class. Each state represents a
different view of the game, when students use it in
programming, they probably would understand it clearly.

2) Sheep.collision package. It provides functionality for
detecting interactions between objects in the game world,
and generates collision events, which may be subscribed by
observers.

The practical value is that collision detection was used in
most of the student projects, and getting the details of such
collision systems to work right can be incredibly time
consuming. When providing the students with a full
collision detection system, they could use it directly to work
efficiently.

The academic value is that two patterns will be visible
from the perspective of the student, the Template pattern
and Observer pattern. The Template pattern is in the Shape
class, where the overall algorithm is fixed, but some sub-
parts are modifiable by derived classes. The Observer
pattern will be used for custom collision responses. As an
example, perhaps a player should lose health when it is hit
by another object, A “Lose Health Listener” could then be
attached to listen for collision events occurring to the player
object.

3) Sheep.gui package. It provides a graphic user
interface system and can be used to create complex
windowed menus or simple buttons. The practical value is
that a few buttons were present to allow the user to start and
quit the game, and also provide functional kit for the
extensibility. The academic value is that Observer pattern is
used to listen for events. The Chain of command pattern is
used to control how input events are passed through the
widget class hierarchy.

V. INTEGRATE SHEEP IN THE SOFTWARE ARCHITECTURE
COURSE

This section presents how patterns work in Sheep
framework, and how students interact with the framework
based on the double stimulation. We choose two design
cases to explain it.

A. First Task: Sheep and patterns
When the students start to use Sheep, they are inevitable

to get into the code of Sheep. So the first task is to let the
students become familiar with Sheep by list some patterns
that they could find (or construct) in Sheep framework.

Here we give three exercise examples to explain the
patterns that the Sheep framework used. Also, other
patterns, such as Template, Visitor, Singleton, etc also can
be found in Sheep, but not list here.

1) Exercise 1: Model-View-Controller. Student should
find a Model View Controller design in the Sheep.

In the Sheep framework, the Sprite class acts as the
superclass for all models. When a method on the Sprite
itself is called to draw a sprite, this call is either redirected
to the associated SpriteView, or ignored in case a
SpriteView is not set. If the client code wishes to change the
way that a Sprite is represented, for instance an animation
instead of a static image, the client can simply create a new
SpriteView subclass. The logic in the Sprite remains the
same.

Figure 3 is one example to the exercise: a
PlayerController listen for events on the keyboard. This
controller can for example cause the Player to shoot bullets
when a certain key is pressed.

27

Figure 3. MVC pattern in Sheep framework

2) Exercise 2: State. Students should find an example of
State pattern used in Sheep.

State pattern causes an object to appear as if it has
changed its class. It can be used in the Sheep framework by
adding subclasses of State to the instance of the Game class.
Figure 4 is an example of State pattern used in Sheep.

Figure 4. State pattern in Sheep framework

3) Exercise 3: Observer. Students should find an
example of Observer pattern used in Sheep.

The observer pattern could be found under some
conditions, such as, a) When listening to input devices, either
via the keyboard or touch singletons or via a State; b) When
listening to events from the collision detection system.
Events are issued when Sprite objects collide; c) When
listening to events from the graphical user interface system.
Events are issued for various reasons, for instance when a
button is pressed.

Figure 5 is an example in Sheep that PlayerController
responds to events from the keyboard, touch or collision
detection system.

Figure 5. Observer pattern example in Sheep framework

B. Second Task: Patterns design and game implementation
We propose three exercises to implement small games by

apply the patterns design through Sheep.
1) Exercise 1: Moving Sprite. The requirement is to

make a simple game where a Sprite is controlled by the
user. This could be done by subscribing to events issued by
the Touch singleton.

The purpose of this task is to show how the observer
pattern can be used to respond to input events in a way which
is familiar to gamers.

In a solution, the students could create a subclass of
Sprite, which listens to events directly; or simply instantiate
Sprite and use the main state class as the controller; or they
could create a separate controller class (Figure 6). There are
also other possibilities of the solutions.

Figure 6. Possible solution to the exercise 1

2) Exercise 2: Game States. This task is to make a game
with at least three States: a title screen, a main running state,
and an in-game menu. The game can be as simple as Pong
or Tic-Tac-Toe, as long as these states are present.

 This exercise shows how an object may change its
perceived class using the state pattern. A solution would
consist of three (or more) subclasses of State, and some
mechanism for transition between the states.

3) Exercise 3: Racing Game. This task is to make a
racing game architecture with following characteristics:

a) It should be possible to change between two sets of
graphics in the middle of the game; one with graphical
sprites, and the other using primitive shapes only, for
instance rectangles for cars and lines for the racetrack.

b) There should be more than one car; all cars except
the player's car are controlled by the computer.

c) It should be possible to click on other cars and take
control of them. In so doing, the computer should take
control of your old car.

The racing game does not need good artificial
intelligence or realistic car simulation, but these
characteristics should be evident in the game.

This exercise shows how to decouple the visual
representation, input handling, from the Model of Racecar.
The solution here is to use the Model-View-Controller
(Figure 7).

Figure 7. Solution to the exercise 3

VI. DISCUSSION
The software architecture course at NTNU is taught in an

untraditional way, in that the students in addition to
designing and evaluating their software architecture have to
implement the architecture in a game project as well. The

28

main advantage with this approach is to let the students feel
the “pain” of making their design decisions, as complicated
and look-nice-on-paper architectures can be very difficult
and time-consuming to implement.

From Sheep’s application view, the Sheep framework is
a very useful tool to help the students with the transmission
between the design and implementation by offering high-
level components based on architecture and design patterns.
The most difficult task for the students when implementing
a software architecture is to decompose a high-level
architecture into classes and design the interaction between
these classes. The Sheep framework will make this
transition easier, as the built-in architecture and design
patterns is the first step in decomposing a high-level
architecture. Due to this type of design in Sheep, the
students could find appropriated available components to
start with. The Sheep framework also enables the students to
focus more on the architecture and less on issues related to
the programming.

From a view of edutainment, the android platform was
chosen and extended based on the Malone’s “What makes
things fun to learn?” [16] and our own experiences [1]. We
believe that it is useful to teach the students about design
and architecture patterns in a practical way through the
suitable game exercises proposed. This game domain is
likely to motivate the students to put an extra effort when
learning the patterns through various exercises. The students
are motivated by learning how to program on the android
platform as well as programming interesting games.

Game development for devices like android phones and
iPhone/iPod Touch can also be motivating for the students
from a business point of view, as development of games on
these platforms can be low-cost and low risk. The result of a
game project in a software architecture course might end up
as a continuing hobby game project uploaded to android
Market or AppStore to sell or as a student start-up game
company.

From the pedagogical point of view, the design and
application of the Sheep framework is also an example how
to bridge pedagogy, technology and game ideas to enhance
teaching in a reasonable way. During this double
stimulation process, students seek to align their continuous
interpretation of a task and tools. Also, the second stimulus
is provided with series of tools that can be classified in
horizontal-vertical orientations. From horizontal aspect,
XNA and android are provided in parallel for the same task;
from vertical aspect, XNA is used with other related tools,
such as XNA club website for the help and sharing games,
Zuneplayer for testing game demos, and PowerPoint for the
final presentation. Corresponding, android is used with
android Market, android phone and PowerPoint too.

We believe our analysis points to the necessity for further
pedagogical and technological co-design to better facilitate
awareness of game-based learning, better conduct the
direction of how to design the knowledge construction
process of involving individuals and small groups to

stimulate their initiative and creativity in game related
activities. This indicates that future evaluation of using the
Sheep framework for teaching the course is also beneficial, it
reveals not only the efficiency of using the framework along
with how much the students actually learn from game
projects, but also the social relationships of learner-learner
and learner-teacher. We also need to further investigate the
relationship between games, tasks, and tools in technology-
rich and collectively oriented knowledge construction in
order to better understand and support the game-based
learning.

VII. CONCLUSIONS
From our previous experiences in the software

architecture course, we would like to offer a new choice for
the double stimulation in this course. And we found that
Google android is a suitable tool for the educational use. In
this way, we extended the android platform mainly based on
the requirements from previous students’ projects. Further,
we have developed a game development platform called
Sheep based on android. We also described how to integrate
the game technology and software architecture learning in
Sheep framework to explain one perspective of how
technology perceives learning.

From the discussion, we found that there are various
orientations to apply or extend a tool according to the
previous experiences, context of students, local environment
and technology and teaching aims. Based on these
conditions, the game ideas, technology and learning should
be integrated in a reasonable way to let the second stimulus
match the first stimulus. This paper is an example from this
idea that applied theoretical and empirical context to support
the design process of game-based learning.

ACKNOWLEDGMENT
We would like to thank Anders Hartvoll Ruud for

implementing Sheep framework and for his inputs to this
paper.

REFERENCES
[1] Wang, Alf Inge; Wu, Bian. “An Application of a Game Development

Framework in Higher Education.” International Journal of Computer
Games Technology 2009 ;Volume 2009.(2)

[2] Google. “Android developers”
http://developer.android.com/index.html, Retrieved September 22,
2009.

[3] Apple. “iPhone Dev Center”, http://developer.apple.com/iphone/,
Retrieved September 22, 2009.

[4] Bian Wu, Alf Inge Wang, Jan Erik Strøm and Trond Blomholm
Kvamme: "XQUEST used in software architecture Education", IEEE
Consumer Electronics Society's Games Innovation Conference ,
August 25-28, 2009, London, UK.

[5] Trygve M. H. Reenskaug, MVC, XEROX PARC, 1978-79. Accessed
March 16th, 2009

[6] Koen Witters, Game Architecture: Model-View-Controller, 2008.
http://dewitters.koonsolo.
com/gamemvc.html, Accessed March 16th, 2009.

29

[7] Gamma et.al, Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Publishing Co, 1994.

[8] Bian Wu, Alf Inge Wang, Jan-Erik Strøm, Trond Blomholm
Kvamme,"An Evaluation of Using a Game Development Framework
in Higher Education," 22nd Conference on Software Engineering
Education and Training, pp.41-44, 2009.

[9] T. Blomholm Kvamme and J.-E. Strøm, “Evaluation and Extension of
an XNA Game Library used in Software Architecture Projects”,
Master thesis at NTNU, June 2008.

[10] PSP, “Sony PlayStation Portable” http://www.us.playstation.com/psp,
Retrieved September 24, 2009

[11] 3G “Definition” http://en.wikipedia.org/wiki/3G, Retrieved
September 24, 2009

[12] A. I. Wang, T. Stålhane. Using Post Mortem Analysis to Evaluate
Software Architecture Student Projects, Conference on Software
Engineering and Training 2005, 8 p.

[13] XNA, “Microsoft XNA” http://www.xna.com, Retrieved October 5,
2009

[14] Vygotsky, L. S.. Mind in society: The development of higher
psychological processes. Cambridge, MA: Harvard University Press,
1978

[15] Lund, A., & Rasmussen, I. (2008). The right tool for the wrong task?
Match and mismatch between first and second stimulus in double
stimulation. International Journal of Computer-Supported
Collaborative Learning, 3(4), 387–412.

[16] T. W. Malone, “What makes things fun to learn? Heuristics for
designing instructional computer games”, In SIGSMALL ’80:
Proceedings of the 3rd ACM SIGSMALL symposium and the first
SIGPC symposium on Small systems, pages 162–169, New York,
NY, USA, 1980. ACM Press.

[17] Anders Hartvoll Ruud, “Designing a Game Development Framework
for Teaching Software Architecture on the Android Platform”, Master
thesis at NTNU, June 2009.

30

Paper 9:

GDF5: Alf Inge Wang, Bian Wu, "Using Game Development to Teach
Software Architecture", International Journal of Computer Games Technology,
vol. 2011, Article ID 920873, 12 pages, 2011. ISSN: 1687-7047 EISSN: 1687-
7055. DOI: 10.1155/2011/920873

Using Game Development to Teach Software Architecture
Alf Inge Wang

Norwegian University of Science and Technology
Sem Sælandsv. 7-9,

N-7491 Trondheim, Norway
+47 7359 4485

alfw@idi.ntnu.no

Bian Wu
Norwegian University of Science and Technology

Sem Sælandsv. 7-9
N-7491 Trondheim, Norway

+47 7359 1726

bian@idi.ntnu.no

ABSTRACT
This paper describes a case study of how a game project using the XNA Game Studio from Microsoft was
implemented in a software architecture course. In this project, university students have to construct and design a
type of software architecture, evaluate the architecture, implement an application based on the architecture, and
test this implementation. In previous years, the domain of the software architecture project has been a robot
controller for navigating a maze. Robot controller was chosen as the domain for the project, as there exist several
papers and descriptions on reference architectures for managing mobile robots.

This paper describes the changes we had to make to introduce an XNA game development project to the software
architecture course, and our experiences from running a software architecture project focusing on game
development and XNA. The experiences described in this paper are based on feedback from the course staff, the
project reports of the students, and a mandatory course evaluation. The evaluation shows among other things that
the majority of the students preferred the game project to the robot project, that XNA was a considered to be
suitable platform for a software architecture project, that the students found it useful to learn XNA and C#, and
that some students were carried away when developing the game in the software architecture project.

Key words
Software architecture, Game Development, Software Engineering Education, XNA.

1. INTRODUCTION
Games have been used in education for many years mainly focusing on teaching children in an interesting and
motivating way. Research shows that integrating games within children’s classroom can be beneficial for
academic achievement, motivation, and classroom dynamics [1]. Teaching methods based on educational games
are not only attractive to schoolchildren, but can also be beneficial for university students [2]. Research on game
concepts and game development used in higher education is not unique, e.g. [3, 4, 5], but we believe there is an
untapped potential that needs to be explored. By introducing games in higher education lecturers can access
teaching aids that promote active students, provide alternative teaching methods to improve variation, enable
social learning through multiplayer learning games, and motivate students to work harder on projects and
exercises.

Games can mainly be integrated in higher education in three ways. First, traditional exercises can be replaced by
games motivating the students to put extra effort in doing the exercises, and giving the course staff an opportunity
to monitor how the students work with the exercises in real-time [6, 7]. Second, games can be used within a
traditional classroom lecture to improve the participation and motivation of the students through knowledge-based
multiplayer games played by the students and the teacher [8, 9]. Third, game development projects can be used in
computer science (CS) or software engineering (SE) courses to learn specific CS or SE skills [10, 11]. This paper
focuses on the latter, where a game development project was introduced in a course to teach CS and/or SE skills.
The motivation for bringing game development into a CS or SE course is to utilize the students’ fascination for
games and game development to stimulate the students to put extra effort in the course project. Many students
dream of making their own games, and game development projects allow the students to use their creativity in
contrast to e.g. developing a more traditional web-based application. Game technologies and game user interfaces
are now being more commonly used in serious applications [12, 13, 14], and the market for serious games is

growing. This makes it important for students to learn how to develop games even the students do not target to
work in the game industry.

In this paper we describe a case study of how a game project was integrated with a software architecture course.
From the perspective of a game developer, knowledge and skills about how to develop appropriate software
architectures are becoming increasingly important. As games are growing bigger and becoming more complex,
well-designed software architectures are needed to cope with variations in hardware configurations, functional
modifications, and network real-time constraints [15]. From the perspective of a software architect, games are
interesting due to the inherent characteristics of the domain including real-time constraints, changing and varying
functionality, and user-friendliness. In addition, games are interesting from the perspective of a software
architect, as there exist no real functional requirements that stem from the users. Typical user requirements for
games are that the game should be fun to play, it should have enough variety, and it should be engaging.

The case study presented in this paper describes how a software architecture course was adapted to include a
game development project. The paper describes the parts of the course and syllabus that had to be changed to
make game development a natural part of the course, and how XNA was used as a game development platform in
the course. Further, we present an evaluation of how the game development project was perceived by the students
and the course staff compared to the robot project. The data of this evaluation is based on the students’ responses
to the final course evaluation, the feedback from the students during the project, and the student project reports.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3 describes the software
architecture course. Section 4 describes how the course was changed to adapt to the game project. Section 5
presents experiences we learned from running a game development project along with the robot development
project in a software architecture course, and Section 6 concludes the paper.

2. RELATED WORK
This paper describes experiences from introducing an XNA game development project in a software architecture
course. The main benefits from using XNA to teach software architecture is that the students get more motivated
during the software development project. As far as we know, there are only few papers (presented here) that
describe usage of XNA to teach CS or SE, and only few papers that contain case studies of games used in CS and
SE education (also described here). In this section we will also briefly describe alternative game development
frameworks to XNA that can be used in CS and SE education.
Youngblood describes how XNA game segments can be used to engage students in advanced CS education [16].
Game segments are developed solution packs providing the full code for a segment of a game with a clear element
left for a student to implement. The paper describes how XNA was used in an artificial intelligence course where
the students were asked to implement a chat bot, motion planning, adversarial search, neural networks and
flocking. Finally the paper describes seven design principles for using game segments in CS education based on
lessons learned. The approach described by Youngblood could also be used in a software architecture course,
where the students can put together parts of the game (game segments) based on their designed architecture.
However, this approach is very limiting as the architectural freedom will be very restricted and the students will
not get the chance to design their own software architecture of their own game.
El-Nasr and Smith describe how modifying or modding existing games can be used to learn CS, mathematics,
physics and ascetic principles [10]. The paper describes how modding of the WarCraft III engine was used to
teach high school students a class on game design and programming. Further, they describe experiences from
teaching university students a more advanced class on game design and programming using the Unreal
Tournament 2003 engine. Finally, they present observations from student projects that involve modding of game
engines. Although the paper claims to teach students other things than pure game design and programming, the
focus is on game development in contrast to CS or SE. Modding existing games is not very useful in a software
architecture course, as the focus of the course is the structure of software components and not game content nor
game engine scripts.

Sweedyk and Keller describe how they have introduced game development in an introductory SE course [17]. The
students learn principles, practices and patterns in software development and design through three projects. In the
first project, the students develop a campus life 2D arcade game over four weeks with the educational focus on
gaining familiarity with UML tools, learn and use a variety of development tools and gain understanding of game
architecture and the game loop. In the second project, the students should build a one-hole miniature golf game
over five weeks with the educational focus on learning and practicing evolutionary design, prototyping and re-
factoring, usage of UML design tools, usage of work management tools and design and implementation of a test
plan. In the third and final project, the students can develop a game of their own choice over five weeks with
educational focus on reinforcing the practices and principles learned in two previous projects, learn to apply
design patterns and practice management of complex software projects. The students’ response to this SE course
has according to the authors been extremely positive. They argue that game projects allow them to better achieve
the learning objectives in the SE course. Their main concern is related to gender, as women are less motivated to
learn SE through game development projects. The main difference with Sweedyk and Keller’s approach and ours
is that they have introduced three projects instead of one, and the SE focus is different. For our purpose, more
than one project would take away the focus on the software architectural educational goals and miss the
opportunity to follow the evolution of the software architecture through a complete development cycle.
Kajal and Calypool describe another SE course where a game development project was used to engage the
students and make the course more fun [18]. In this course, the students worked with one game project where the
students had to go through all the phases in a software development process. The preliminary results of comparing
the game-based SE course with a traditional SE course showed that the game version had higher enrollment,
resulted in average higher grades, a higher distribution of A grades, and had a lower number of dropouts. The
feedback from the students was also very positive. The approach described in this paper is very similar to our
approach. The main difference is that in our course the students carry out the various phases in a software process
from a software architecture perspective focusing on quality attributes, software architecture design and software
architecture evaluation.
Volk describes how a game engineering course was integrated into a CS curriculum [19] motivated by the fact
that game development projects are getting more and more complex and have to deal with complex CS and SE
issues. The experiences from running this course showed that it was a good idea handle the game engineering
course more in a form of a real project, that the students were very engaged in the course and the project, that the
lack of multidisciplinary teams did not hinder the projects, that the transition from pre-production to production
was difficult (extracting the requirements), and that some student teams were overambitious for what they wanted
to achieve in their project. In our software architecture course we experienced some of the same issues as
described in this paper, namely difficult extraction of requirements and overambitious teams.
Linhoff and Settle describe a game development course where the XNA platform was used to allow the students
gain experience in all aspects of console game creation [20]. The course focuses on creating of fonts, icons, 3D
models, camera and object animation paths, skeletal animations, sounds, scripts and other supporting content to
the XBOX 360 game platform. In addition, the students are required to edit the source code of a game to change
variables, and copy-and-paste code. The student response to the course was positive. The results also showed that
students with programming background did better in the class. The students did not learn any CS or SE skills.
Zhu, Wang and Tan describe how games can be introduced in SE courses to teach typical SE skills [21]. The
paper describes how the two games SimSE and MO-SEProcess were used to give students an opportunity to
practice SE through simulations to learn the complex cause and effect relationships underlying the process of SE.
MO-SEProcess is a multiplayer online SE process game based on the SimSE in 3D implemented in Second Life.
In this game, the players should collaborate with other developers to develop a system by giving out tasks and
following up tasks. Although the models and simulations in SimSE are much more extensive than the ones in
MO-SEProcess, the usage of Second Life bring some advantages such as better support for group sharing and
collaboration, and the possibility to create interactive learning experiences that would be hard to duplicate in real
life. This approach is very different from ours and does not fit with our educational goals.

Rankin and Gooch describe a study on how game design project impact on students’ interest in CS [22]. In a
Computer Science Survey course, the students are given the task to apply SE principles in the context of game
design. The pre and post survey results reveals that game design project can have both a positive and a negative
impact on students’ attitudes about enrollment in a game design course, pursuit of a CS degree, further
development of programming skills and enrollment in additional CS courses.
Leutenegger and Edgington argue that the course assignment and example content is more important than whether
a introductory programming course should focus on procedural vs. object-oriented approach [23]. Their paper
describes an introductory programming course focusing on game programming. The results showed that the
students improved their understanding basic programming concepts, and the students were satisfied with the
course.

Coller and Scott describe an interesting approach for teaching mechanical engineering through game
programming [24]. In a numerical methods course, the students are asked to program the behavior of a car in the
Torcs open racing car simulator. The students must use numerical methods to program acceleration, steering,
gearshifts, and breaking. A comparison with a traditional version of the course showed that for the game-based
course the students on average spent roughly twice as much time on the course, and that the students achieved
deeper learning as the students were more interested, more engaged and invested more in learning the material.

We have found the XNA was a perfect fit for our game project as it provides a high-level API, the framework is
mature and well supported, and the students are motivated by the fact that XNA makes it easy to develop for
XBOX 360. There are also other alternative game frameworks that can be used. The Labyrinth [25] is
implemented in Java and is a flexible and easy-to-use computer game framework. The framework enables
instructors to expose students to very specific aspects of CS courses. The framework is a finished game in the
Pac-Man genre, highly modular, and it lets the students change different aspects of the game. The JIG (Java
Instructional Gaming) project [26] has the aims to build a Java Instructional Game Engine suitable for a wide
variety of students at all levels in the curriculum, to create a set of educational resources to support the use of the
game engine at small, resource-limited, schools, and to develop a community of educators that use and help
improve these resources. The DXFramework [27] is a game engine written in C++ targeted specifically for 2D
games to be used in game programming education. The SAGE [28] game engine is also written in C++ and is
targeted for game programming educational use focusing on 3D games. GEDI [29] game engine is another
alternative for 2D games in C++ designed with game programming educational use in mind. For business
teaching, Arena3D [30] is a game visualization environment with animated 3D representations of the work
environments, simulation of patients queuing at the front desk, and interacts with the staff. IBM has also produced
a business game called INNOV8 [31], which is “an interactive, 3D business simulator designed to teach the
fundamentals of business process management and bridge the gap in understanding between business leaders and
IT teams in an organization”.
Of the related work described in this section, the work by Kajal and Calypool is closest to the work described in
this paper. The main difference with our approach is that we focus on software architecture methods and
processes and not only software engineering topics in general. The students’ responses to our course are very
similar to the studies described in this section, characterized by higher motivation, higher enrollment and more
effort spent on the course.

3. SOFTWARE ARCHITECTURE COURSE
The software architecture course is a post-graduate course offered to CS and SE students (not mandatory) at the
Norwegian University of Science and Technology (NTNU). The course is taught every spring, its workload is
25% of one semester, and about 70-80 students attend the course every spring. The students in the course are
mostly of Norwegian students (about 80%), but there are also 20% foreign students mostly from EU-countries.
There are about 10% female students. The textbook used in this course is the “Software Architecture in Practice,
Second Edition”, by Bass, Clements and Kazman [32]. Additional papers are used to cover topics that are not

sufficiently covered by the book such as design patterns, software architecture documentation standards, view
models, and post-mortem analysis [33, 34, 35, 36, 37].

The education goal of the course is:

“The students should be able to define and explain central concepts in software architecture literature, and be
able to use and describe design/architectural patterns, methods to design software architectures,
methods/techniques to achieve software qualities, methods to document software architecture and methods to
evaluate software architecture.”

The course is taught in three main ways:

1) Ordinary lectures given in English

2) Invited guest-lectures from the software industry

3) A software development project with emphasis on software architecture

The software architecture course at NTNU (course code TDT4240) is taught in a different way than at most other
universities, as the students also have to implement their designed architecture in a project. The motivation for
doing so is to make the students understand the relationship between the architecture and the implementation, and
to be able to perform a real evaluation of whether the architecture and the resulting implementation fulfill the
quality requirements specified for the application. The architecture project in the course has similarities with
projects in software engineering courses, but everything in the project is carried out from a software architecture
perspective. Throughout the project, the students have to use software architecture techniques, methods, and tools
to succeed according to the specified project requirements and the document templates. The development process
in the project will also be affected by the focus on software architecture, as the development view of the
architecture will specify how the teams should be organized and how they should work. The main disadvantage of
this approach is that the students get less time dedicated to do the architectural design, as they have to spend time
on the implementation. The main advantage is that the students are learning software architecture through doing a
whole project where they can see the results of their architectural design as a product.

The TDT4240 software architecture course has been rated as one of the most useful and practical courses offered
at the Dept. of Computer and Information Science in surveys conducted among ex-students now working in the IT
industry. The course staff has also seen the benefits of making the students implement the architecture, as the
students have to be aware of the developing costs of fancy and complicated architectural designs.

30% of the grade awarded to the software architecture course relate to the evaluation of the software architecture
project all students have to do, while 70% is awarded for the results of a written examination. The goal of the
project is for the students to apply the methods and theory in the course to design and fully document a software
architecture, to evaluate the architecture and the architectural approaches (tactics), to implement an application
according to the architecture, to test the implementation related to the functional and quality requirements, and to
evaluate how the architectural choices affected the quality of the application. The main emphasis when grading
the projects is on the quality of the software architecture itself, but the implementation should also reflect the
architecture and the architectural choices.

The project consists of the following phases:

1) Commercial Off-The-Shelf (COTS): Learn the development platform/framework to be used in the project
by developing some simple test applications.

2) Design pattern: Learn how to utilize design patterns by making changes in two architectural variants of
an existing system designed with and without design patterns.

3) Requirements and architecture: Describe the functional and the quality requirements, describe the
architectural drivers, and design and document the software architecture of the application in the project
including several view points and views, stakeholders, stakeholder concerns, architectural rationale, etc.

4) Architecture evaluation: Use the Architecture Trade-off Analysis Method (ATAM) [32, 38, 39] to
evaluate the software architecture in regards to the quality requirements.

5) Implementation: Do detailed design and implement the application based on the designed architecture and
based on the results from the evaluation. Test the application against both functional and quality
requirements specified in phase 3, evaluate how well the architecture helped to meet the requirements,
and evaluate the relationship between the software architecture and the implementation.

6) Project evaluation: Evaluate the project using a Post-Mortem Analysis (PMA) method [34]. In this phase,
the students will elicit and analyze the successes and problems during the project.

In the two first phases of the project, the students work on their own or in pairs. For the phases 3-6, the students
work in self-composed teams of four students. The students spend most time in the implementation phase (6
weeks), and they are also encouraged start the implementation in earlier phases to test their architectural choices
(incremental development). During the implementation phase, the students continually extend, refine and evolve
the software architecture through several increments.

In previous years, the goal of the project has been to develop a robot controller for a robot simulator in Java with
emphasis on an assigned quality attribute such as availability, performance, modifiability or testability. The
functional aim of this project was to develop a robot controller that moves a robot in a maze collecting balls and
bringing them to a light source. Robot controller was chosen as a case for the software architecture project, as the
problem of software architecture is well defined within this domain. For the robot controller domain there exist
several examples of software architecture patterns or reference architectures that can be applied, such as Control
loop [40], Elfes [41], Task Control [42], CODGER [43], Subsumption [44], and NASREM [45].

4. HOW THE COURSE WAS CHANGED
This section presents the changes we made to the course to integrate an XNA game development project with the
software architecture course.

4.1 Course Preparations
Half a year before we integrated the game development project with the software architecture course, we initiated
a master research project, named XQUEST, to explore how XNA could be used and integrated with the course.
The goal of this project was to answer the following questions:
Q1) How well is the XNA framework suited for teaching students software architecture?
Q2) What resources must be in place to quickly get up to speed developing games using the XNA framework?
Q3) How should XNA be introduced to the students?

The first question (Q1) was decomposed into three sub-questions. First, the XQUEST project investigated which
software/game components were required to allow the students to stay focused on the software architecture during
the their project. This work resulted in an implementation of a game library named XQUEST framework [46] to
provide a high-level sprite animation framework, a game object management framework, and some additional
helper classes (audio, input, text out and texture store) on top of XNA to ease the development. Second, the
XQUEST project investigated how difficult it was for the students that only knew Java to learn the C#
programming language. They found that it took about three days to learn the most essential features of C# for a
postgraduate student with average Java skills. Third, the XQUEST project investigated what limitations or
restrictions that should be put on a game development project in a software architecture course. The conclusion
was to limit the projects to 2D games, and only to focus on the two quality attributes modifiability and testability.
2D games were preferred to 3D games, as the students should not spend too much time on 3D graphics and focus
on the structure of the software. We also considered the quality attributes performance and usability for the

project. Performance was dropped because the XNA framework handles most of the performance issues and it is
hard to make architectural design that actually will affect this quality attribute. Further, usability was dropped
because this quality attribute is rather hard to measure without extensive usability tests (not within the scope of
the software architecture course).
The necessary resources to quickly develop games in XNA (Q2) was found to be C# and XNA tutorials, XNA
examples, XNA documentation, libraries of graphical art (sprites, tiles, etc.), a high-level API on top of XNA, and
making course staff available that could answer specific XNA or C# questions. Although XNA provides a high-
level API, the XQUEST framework was found necessary to provide an even higher API to help the students get
going faster.
The conclusion of final question (Q3) was that XNA should be exposed to the students through a mixture of
lectures, an XNA resource webpage and continues technical support through the semester. It was found to be very
important to give an introductory lecture in XNA to learn the tools, environments and the core concepts of XNA,
and give an overview of the differences between Java and C#.

4.2 Changes to the Syllabus
It was rather difficult to change the syllabus of the software architecture course to include more literature about
software architecture in games. Good books and papers that give an in-depth insight into game architectures and
game architecture patterns are to our knowledge non-existent. There are several papers that describe architectures
of specific games such as [47, 48] or books that give a brief overview of game architecture [49, 50], but none that
looks at the typical abstractions (architectural patterns) you can observe in game software development. The
syllabus ended up with including some chapter from the book “Game Architecture and Design” [50] to describe
the initial steps of creating a game architecture, and two self-composed sets of slides on 1) software architecture
and games, and 2) architectural patterns and games. The former was a one hour lecture on motivation software
architecture design in games [15], architectural drivers within game development [51], challenges related to
software architecture in games [52], and the main components of game architectures [53]. The latter was a one-
hour lecture describing architectural patterns that are common and useful for games, such as model-view
controller, pipe-and-filter, layered architecture, and hierarchical task trees.

4.3 Changes of the Project
The course staff decided to let the student teams themselves choose between the robot and the game project. This
meant that the main structure of the project had to remain the same, and that we had to make two variants of the
project. For the robot project the students had fixed requirements, while for the game project the students should
define their own requirements (design their own game). However, the documents to be delivered were the same
for both types of projects based on the same templates, and the development process was also to be the same.

To evaluate and grade the software architecture project, we posted some project evaluation criteria in the
beginning of the semester that stated how the project should be documented, what should be documented, what
should be delivered (such as documents, source code, complied code etc.), completeness of robot controller or
game, and an implementation that reflects the architecture. The main difference between the game and the robot
versions of the evaluation criteria was how the implementation was to be evaluated. For the XNA projects we
required the game to have a certain level of complexity (at least five classes organized in a structure), the game
should be easy to install and run. For a top grade (A), the game should be impressive in some way (fun, nice,
creative, or original). For the robot controller, the implementation should similarly have a certain level of
complexity, but it had to adhere to the given functional requirements. For a top grade (A), the robot should be able
to solve the task efficiently.

Another thing we had to change was the quality attributes the various teams should focus on during the project.
The teams that chose the robot projects were assigned to focus on safety of the robot (not get stuck in the maze),
modifiability (easiness of changing the robot controller software), and testability (easiness of testing the robot

software). For the game projects we ended up with modifiability (easiness of changing the game software) and
testability (easiness of testing the game software).

The main change of the project assignments was to add XNA game variant of the COTS intro exercise (phase 1,
see Section 2). The COTS intro exercise for the robot controller asked the students to do simple navigation and
make to robot pick up balls. In the XNA game variant of this exercise, the students were asked to perform the
following four tasks:

1) Draw a helicopter sprite on the screen and make it move around on its own (computer controlled);

2) Move around the helicopter sprite from previous task using the keyboard or a game controller, change the
size of the sprite, rotate the sprite, and write the position of the sprite on the screen;

3) Animate the helicopter sprite using several frames and do sprite collision with other sprites; and

4) Create the classical Pong game (2D from-above tennis game).

4.4 Changes of the Staff and the Schedule
The main change to staffing was that two last year master students were hired to give technical support for student
during the project (both robot and XNA). The main tasks of the technical support staff were to give lectures on the
COTS, to be available for technical questions on email, to be available two hours a week in a lecture halls for
questions, and to evaluate the implementation of the final project delivery (testing the games and the robots).

The main changes that were made to the course schedule were:

• Changed the motivation of the software architecture project to also include the game project. An extra
bonus for the teams that chose the game project was that they could register for the Norwegian Game
Awards competition [54]. This is an open national game developer competition for the all universities and
colleges in Norway.

• Added an extra two-hour COTS introduction lecture to give an introduction to the robot simulator, C#,
and XNA.

• Added an extra two-hour technical support lecture on COTS every week (both for robot and XNA).
• Changed a one-hour lecture on architectural patterns to also include architectural patterns on games.
• Added a one-hour lecture on software architecture in video games.
• Changed the project workshop where selected teams presented their work to give room to show more

demos (mostly games and some demos of robots).

5. EXPERIENCES AND RESULTS
This section presents experiences and results from running the course. The experiences presented here are
collected from course staff interviews and notes, final course evaluation, the project reports, student feedback by
email, and feedback during lectures. The students doing game development projects used version 2.0 of XNA
Game Studio (the most recent version at that time).

5.1 Staff Experiences
In the first weeks of the semester we were faced with a problem introduced by allowing students to choose
between a robot and a game project. In previous years, the students did not have to make any decisions (e.g.
forming teams etc.) regarding the project before week 7, as this was the start of the main project (phase 3, see
Section 3). By introducing two variants of the project, the students had to choose in week 3 if they were going to
do the robot or the game project (before they had formed the teams) due to the two variants of the COTS exercise.
As a result, some students ended up doing an exercise on the robot and later did the game project and vice versa.

The course staff was exited to see the distribution the number of student that chose the robot vs. the game project.
When we introduced the project to the students in the beginning of the semester, we admitted that this was the
first time running a game project in the software architecture course, and that the robot version of the project was
better supported through previous experience, examples, literature, and software architecture patterns. The result
was that 6 teams chose the robot project while 16 teams chose the game project (see the distribution in Figure 1).
The percentage of teams choosing the game project was much higher than we expected (almost 3 out of 4). The
results show that students are attracted to games and it indicates that games can be a motivation for choosing a
course or for putting extra effort into projects.

Figure 1 Distribution of Project Selection

During the semester, the students receive feedback on their part-deliveries from the course staff. The most notably
difference between the part-deliveries made by robot and game project teams were found in phase 3 of the project
(Requirements and Architecture, see Section 3). For many game project teams, it was hard to create proper
requirements documentation. This was not unexpected, as these teams first had to specify some gameplay element
and then translate these into functional requirements. The course staff suspected that it also would be harder to
specify the software architecture in the game projects due to less available literature and architectural patterns.
This was, however, not the case. For the final delivery of the project, there was no noticeable difference in the
quality of documentation, requirements, design, architecture and implementation between the two variants (robot
vs. game). The implementation of some teams (both robot and game) suffered for being too ambitious resulting in
unfinished implementations. For teams implementing a robot controller, the main challenge was to implement an
intelligent maze navigator. For teams implementing a game, the main challenge was to implement advanced game
logic.

The educational approach for our software architecture course is to force the students to use the theory described
in the textbook during the project by applying the methods and theoretical framework described. To make this
work, the course schedule is heavy on theoretical presentations in the first part of the semester. At the same time,
the students have to learn the COTS through exercises (phase 1 and 2). Phase 3 is really the start of the project,
where the students will document the requirements and do the architectural design. Although the students at this
stage should know the COTS and all the software architectural theory required to describe the requirements and to
the design, we discovered that the students were lacking both knowledge of the COTS and the theory. This was
true for both types of projects and we did not discovery any differences between robot and game teams. Based on
feedback from the course staff and from another student team evaluating the project using ATAM, the software
architectures improved significantly in terms of quality and quantity in the implementation phase of the project.
The teams discovered problems with their architectural design mainly due to wrong assumptions about the COTS.
Both XNA and Khepera put constrains on how to design the architecture, and the students discovered this through
trial and error. The XNA teams struggled to make this work due to the complexity of the COTS, while for the
Khepera simulator the main problem was lack of documentation. The students learned most during the
implementation phase of the project, as they in this phase had to put everything together, reflect on their choices,

make changes to make it work, and do the final documentation including updating documentation from previous
phases. The course staff also noticed that the students worked a lot the last couple of weeks to be able to finish in
time, and put everything together.

One noticeable difference for the course staff after introducing the game project was that the software architecture
workshop, where a selected number of teams presented their work, was much more interesting and exciting. In
previous years, these workshops have not been very interesting, since most all the students had worked with the
same domain (robot). The game projects brought new life to the workshop and it was very interesting to learn
from creative game projects.

5.2 The Games Developed
In total, 16 different 2D games were developed. The type of games varied in several dimensions like number of
players, game genre, network support, real-time vs. turn-based games, etc. The distribution of the game genres
implemented by the students is shown in Figure 2. From the figure we can see that most students chose to
implement a variant of a shooter game including a bee-shooter, space shooters, balloon-shooter, tank-shooter etc.
The other major game genre was the strategy games that included trading games, and turn-based worm clones.

Figure 2 Distribution of Game Genres in Student Projects

The student projects also varied in support for multiplayer and network, and usage of the XQUEST-framework as
shown in Figure 3. More than 56% of the games developed supported multiplayer, 31% were turn-based, and only
two games supported playing over network. About 44% of the games used the XQUEST framework that was
developed for this course to simplify the development in XNA.

Figure 3 Distribution of Game Characteristics

None of the games developed were groundbreaking in terms of gameplay or graphics, but several of the games
had new twists in gameplay or graphics (like including the two most known buildings in the local city –
Trondheim). The most novel game was a two-player split screen death-match shooting game, where two players
were navigating in an environment that was hand-drawn using colored pencils. One of the levels in the game was
actually architectural drawings of the implementation of the game itself. Figure 4 shows a screenshot this game
named BlueRose.

Figure 4 Screenshots from the BlueRose XNA game

Some of the teams have continued to develop their games after the course ended.

If we look further into differences between how the robot teams and the game teams in terms of the
implementation, we found that the projects varied in complexity and size. Although the APIs of XNA and
Khepera framework is about at the same abstraction level, the game projects on average had more complex
architectures. The architecture of game teams on average consisted of 12 classes compared to 9 for robot teams.
We also noticed that the robot teams had a standard deviation of about 3 classes compared to 4 classes for game
teams. We found the same tendency for lines of code where robot teams wrote in average 1800 lines of code
(without comments), while game teams wrote 3400 (about 90% more lines of code). Another finding was that
there was much more variation in number of lines code in game teams compared to robot teams. For robot teams,
the most productive team wrote about 2500 lines of code (less than the average for game teams), and the least
productive 850 lines of code. For game teams, however, the most productive team wrote about 12000 lines of
code and the least productive about 800 lines of code. From analyzing the code, we found that the game teams
that produced most lines of code really got carried away with programming the game with less attention to the
software architecture. We also compared the final grade of students doing game projects vs. students doing robot
projects and did not find any significant difference in the final grade. However, we noticed a tendency that
students from game teams got a better grade on the project compared to the final written examination, and the
students from the robot teams the opposite. An extensive analysis of the differences between the two projects is
described in [55].

5.3 Lessons Learned from the Students
This section describes experiences described in the students’ lessons learned section of the teams’ final reports.
A striking difference between students that did a game vs. students that did a robot project was how they
experienced using the COTS. None of the robot students said anything positive about the Khepera framework.
The students that did the game projects described XNA and C# to be easy to learn and work with, that the tools
were user-friendly and helpful, that the XNA framework provided the most important functionality including the
game loop, and that the game project was very interesting. The students also wrote that it was very valuable to
learn XNA and C#, and that XNA and the XQUEST library let them focus on the logic of the video game thus
saving a lot of time.
There were several comments both from robot and game teams about the negative experiences from using the
chosen COTS. For the students working with the robot simulator the main problems were related to random and
unpredictable behavior of the robot, that the robot simulator performed differently on different PCs, that it was
difficult to implement the designed architecture using the API, and that the implementation forced the students to
think too much on AI issues instead of software architecture. The random and unpredictable behavior of the robot
simulator is a built-in feature to simulate unpredictable sensors in the real worlds. This issue caused a lot of
frustration among the students. The different performance of the robot simulator on different PCs is due to
problems of real-time execution in Java and real-time performance on different virtual machines. The negative
experiences from using XNA was insufficient audio support (only support uncompressed audio files), no support
for network testing of two instances on the same machine, limitations of the provided network API in XNA, and
that more knowledge of the XNA framework was required to do a good architectural design.
Another topic that was covered by many teams in the lessons learned was their experience with the software
architecture domain. Both robot and game teams found that they had learned a lot about software architecture
through the design and implementation of the software architecture. One game team said that especially the
XQUEST put some major restrictions on the architecture as it was tightly coupled to XNA. This made it difficult
to implement a layered architectural pattern. Their conclusion was that the team should have spent more time in
the beginning discovering the architectural limitations of the COTS. Another XNA team found that the COTS
enabled a proper balance between the game functionality and the software architecture, which resulted in a
smooth implementation. Finally, an XNA team described that they did not do an attempt to separate game logic
and graphics beyond what was done in XNA, and that this was a big mistake that cause a lot of problems later in
the project. For the robot teams, one team said that they used an inappropriate amount of time on the
implementation and that the software architecture was therefor put in the background. One robot team discovered

that having a well-planned architecture before starting to implement made it a lot easier to divide the work and
make changes during the project. Another robot team explained that they in the beginning only had considered the
top-level architecture without examining the architecture of the major modules, which caused a lot of problem.
Finally, yet another a robot team admitted that they should had thought more about splitting different classes into
packages, as they ended up with code that was hard to modify and manage.
The overall lessons from the students doing a robot project were a mixture of positive and negative issues. The
robot simulator itself frustrated the students and they had nothing positive to say about the COTS. Many students
found the robot simulation domain to be fascinating, but they thought it was too difficult to implement the logic of
the robot. However, the students had many positive comments about learning software architecture through such a
project and designing a software architecture for a robot controller. They also mentioned that they had many
reference architectural patterns they could use as a starting point. The hard part was implementing the architecture
and the logic for the robot controller.

The overall lessons learned from the students doing an XNA game project were very positive about introducing a
game project in a software architecture course. Some students felt that learning C# and XNA in addition to the
syllabus was a bit too much, but generally most students said that to learn XNA and C# did not take much time.
Some students said that the XNA architecture put major restrictions on their architecture. This is of course true,
but this is also the case in most commercial software development projects, as they often use some kind of
framework that the architecture must adhere to. The main challenges of using XNA in the software architecture
project was to spend enough time learning the framework before designing the architecture, and doing the design
and implementation. The identified issue of lacking support for other audio format than wav was resolved in XNA
Game Studio 3.0. From the reports we could also see that our own XNA extension (XQUEST) limited the choices
of architecture more than only using XNA. The main benefit of using XQUEST was a simpler interface to some
of the most useful game functionality.

5.4 Student Evaluation Feedback
After completing the project, all students had to fill in a final course evaluation and write responses to three
questions: What has been good about the course, what has been not so good, and what would you like to change
to next year?

The responses regarding what had been good about the course can be categorized into main areas the project,
learning, practical work, and group dynamics. Both students from robot and game teams stated that the project
had been good, but students from game teams were overall happier with the project and described it to be cool,
interesting, fun and motivating. Also both categories of students described that they learned a lot from the project
in that they got to try out the theory from the lectures in practice. They also gave concrete example of theory that
they got to try out in the project such as architectural and design patterns and how the software architecture is
represented in code. Many students from game teams also wrote that the project was a fun way of learning
software architecture and that it was useful to learn about the interplay of game and architectural approaches.
Regarding the practical work, students from game teams mentioned that is was really useful to learn C# as it is
commonly used in industry and that it was easy to learn because of its similarities with Java. Both robot and game
students gave positive comments about the fact that the course forced the students to do practical work. Finally, it
was mentioned that it was useful to learn from other teams through the final workshop. The responses from the
students taking the course were overall very positive. The feedback from game team students was generally more
positive than the feedback from the robot controller projects. Typical positive feedback we received from students
doing a game project was that they felt they learned a lot from the game project, that they liked the practical
approach of the project and having to learn C#, and the interaction between the teams (both ATAM and the
project workshop). The students doing a robot project were pleased with learning software architecture through
practical work, and thought it was very interesting to learn about software architecture in general.

The responses regarding what had been not so good about the course mainly concerned the COTS. Both students
from robot and game teams complained about the lack of technical support during the project and sufficient

introductory lecture on the COTS in the beginning of the course. Further, both categories of students complained
that the COTS took away focus from software architecture in the course. Few students on game teams complained
that learning C# took so much time that they did not have enough time to study software architecture. Some other
students on game teams said that the focus on the game itself keep them from focusing on the software
architecture, and that the game domain limits the choice of architecture too much. Students on robot teams
complained that the difficulty of implementing the robot controller took the focus away from architectural design,
and that the workload of the project was way too high. The main negative feedback from students doing game
projects focused on the lack of XNA technical support during the project, and that some student felt that there was
too much focus on C#, XNA and games and too little on software architecture. The students doing a robot project
also complained about not sufficient technical assistance, and that the robot simulator and the robot domain were
very difficult to master.

On the final question in the course evaluation, what would you have changed for next year’s course; we received
various course improvement suggestions. Game team students suggested to allocate more time to develop the
game, to make the project count 50% of the grade, to give a better C# introduction, to provide better technical
support, and to put more restrictions on game-type to ensure that the teams choose games suited for the course.
The robot team students suggested to either give better information on how to program the robot or drop the robot
project all together, provide better technical support during the project, and split the project into several smaller
exercises. One robot team student said that he rather would choose the game project if he could start all over
again. The suggestions to improve the course were mainly according to the negative feedback namely to improve
teaching and technical support related to the COTS (XNA and robot simulator), and to adjust the workload of the
project.

6. CONCLUSION
In this paper we have described how we changed a software architecture course to include a game development
project. The main motivation for introducing such a project was to motivate the students to put extra effort into
the project and motivating for higher course enrollment. Some parts of the syllabus were changed to include game
development as a natural part of the software architecture course. A challenge we discovered was to find
appropriate literature on design of software architecture for the game domain, which we are still looking for. It is
not very hard to motivate for why game developers can benefit from learning more about software architectures as
games are becoming increasingly more complex (especially massively multiplayer online games). From a
software architecture perspective, games are interesting since they introduce relevant challenges such as dealing
with continues changes of functional requirements (modifiability), and hard real-time requirements both for
hardware and network.

Our experience from running a game development project in a software architecture course is very positive. The
course staff noticed an increasing interest and motivation for the project in the course. From the course evaluation,
we also notice that students choosing the game project were more positive towards the project compared to those
who chose the robot project. Robot team students complained more about the project while game team students
generally expressed that the project was fun and engaging. Game development projects are also very positive for
the group dynamics, as other that CS and SE skills are required (e.g., creative and artistic skills). The main
negative effect of introducing a game development project was that some teams focus more on developing the
game than on the software architecture of the game. This effect was not a major issue, as most teams did a good
job of designing the architecture and then implementing it. There will always be some students that do not like to
do a project on games. When we looked at the demographics to see if there were any various in choosing game
projects, we only found minor variations between male (73%) and female (71%). Actually, the difference was
larger between Norwegians (74%) and foreign students (70%). One challenge for some students was that they had
to learn C#. Most students did not think this issue was negative thing, as to know C# is useful for later in the
career and it is not very different from Java. Another challenge using XNA as a development platform was that it
only runs on the Microsoft Windows platform. This is a major problem as more and more students have laptops

running Mac OS X and Linux. To compensate for this problem we provided a computer lab where 10 PCs
running Microsoft Windows with XNA Game developer studio 2.0 installed. Unfortunately these PCs did not
have proper graphics cards, making game development slow and tedious. To compensate for this problem in the
future, we might offer game projects on other platforms such as Android and iPhone. Apart from the lack of
support for other operating systems, we were very pleased with using XNA as a game developer platform. The
high-level APIs in XNA makes it possible to be productive with little effort. Also XNA is flexible in terms of
what games can be implemented and how the architecture can be designed. For the students, the opportunity to
develop XBOX 360 games is very tempting. Only few of the teams tried to run their games on the XBOX 360
mainly due to time pressure. In XNA Game Studio 4.0 it is also possible to develop for Windows Phone,
extending the target platform even more. This can give more variety of what kind of projects the students can
develop in future projects.

ACKNOWLEDGMENTS
We would like to thank Jan-Erik Strøm and Trond Blomholm Kvamme for implementing XQUEST and for their
inputs to this paper. We would also like to thank Richard Taylor at the Institute for Software Research (ISR) at
University of California, Irvine (UCI) for providing a stimulating research environment and for hosting a visiting
researcher from Norway. The Leiv Eriksson mobility program offered by the Research Council of Norway has
sponsored this work.

REFERENCES
[1] R. Rosas, M. Nussbaum, P. Cumsille, V. Marianov, M. Correa, P. Flores, V. Grau, F. Lagos, X. Lopez, V.

Lopez, P. Rodriguez, and M. Salinas, Beyond Nintendo: design and assessment of educational video games
for first and second grade students. Computers & Education, 40(1): 71–94, 2003.

[2] M. Sharples, The design of personal mobile technologies for lifelong learning. Computer & Education, 34(3-
4): 177–193, 2000.

[3] A. Baker, E. O. Navarro, and A. Hoek, Problems and Programmers: an Educational Software Engineering
Card Game. In Proceedings of the 25th International Conference on Software Engineering (ICSE 2003),
pages 614–619, 2003.

[4] L. Natvig, S. Line, and A. Djupdal, Age of Computers: An Innovative Combination of History and Computer
Game Elements for Teaching Computer Fundamentals. In FIE 2004: Proceedings of the 2004 Frontiers in
Education Conference, 2004.

[5] A. O. Navarro, and A. Hoek, SimSE: an Educational Simulation Game for Teaching the Software
Engineering Process. In ITiCSE ’04: Proceedings of the 9th annual SIGCSE conference on Innovation and
technology in computer science education, pages 233–233, New York, NY, USA. ACM Press, 2004.

[6] G. Sindre, L. Nattvig, and M. Jahre, Experimental Validation of the Learning Effect for a Pedagogical Game
on Computer Fundamentals. To appear in IEEE Transaction on Education.

[7] B.A. Foss, and T.I. Eikaas, Game play in Engineering Education - Concept and Experimental Results. The
International Journal of Engineering Education 22(5), 2006.

[8] A.I. Wang, O.K. Mørch-Storstein, and T. Øfsdahl, Lecture quiz - a mobile game concept for lectures. In The
11th IASTED International Conference on Software Engineering and Application (SEA 2007), November 19-
21, 2007.

[9] A.I. Wang, T. Øfsdahl, and O.K. Mørch-Storstein, An Evaluation of a Mobile Game Concept for Lectures. In
21st IEEE-CS Conference on Software Engineering Education and Training (CSEE&T 2008), April 14-17,
2008.

[10] M. S. El-Nasr, and B.K. Smith, Learning through game modding. In ACM Computer Entertainment 4(1), Jan
2006.

[11] B. Wu, and A.I. Wang, An Evaluation of Using a Game Development Framework in Higher Education. In
22nd IEEE-CS Conference on Software Engineering Education and Training (CSEE&T 2009), February 17-
19, Hyderabad, India, 2009.

[12] A. Sliney and D. Murphy, JDoc: A Serious Game for Medical Learning. In Proceedings of the First
international Conference on Advances in Computer-Human interaction, February 10 – 15, 2008.

[13] F. Mili, J. Barr, M. Harris, and L. Pittiglio, Nursing Training: 3D Game with Learning Objectives. In
Proceedings of the First international Conference on Advances in Computer-Human interaction, February 10
– 15, 2008.

[14] L.v. Ahn, Games with a Purpose. IEEE Computer Magazine: 39(6), June, 92-94, 2006.
[15] J. Blow, Game Development: Harder Than You Think. In Queue: 1(10), February 28-37, 2004.
[16] G.M. Youngblood, Using XNA-GSE Game Segments to Engage Students in Advanced Computer Science

Education. In The 2nd Annual Microsoft Academic Days Conference on Game Development, February 22-
25, 2007.

[17] E. Sweedyk and R.M. Keller, Fun and games: a new software engineering course. ACM SIGCSE Bulletin,
37(3), 138-142, September 2005.

[18] K. Claypool and M. Claypool, Teaching software engineering through game design. In Proceedings of the
10th Annual SIGCSE Conference on innovation and Technology in Computer Science Education (ITiCSE
'05), Caparica, Portugal, 123-127, June 27 - 29, 2005.

[19] D. Volk, How to embed a game engineering course into a computer science curriculum. In Proceedings of the
2008 Conference on Future Play: Research, Play, Share, 192-195, Toronto, Ontario, Canada, November 3 - 5,
2008.

[20] J. Linhoff and A. Settle, Teaching game programming using XNA. In Proceedings of the 13th Annual
Conference on innovation and Technology in Computer Science Education (ITiCSE '08), 250-254, Madrid,
Spain, June 30 - July 02, 2008.

[21] Q. Zhu, T. Wang, and S. Tan, Adapting Game Technology to Support Software Engineering Process
Teaching: From SimSE to MO-SEProcess. In Proceedings of the Third international Conference on Natural
Computation (ICNC 2007) - Volume 05, 777-780, August 24 - 27, 2007.

[22] Y. Rankin, A. Gooch, and B. Gooch, The impact of game design on students' interest in CS. In Proceedings of
the 3rd international Conference on Game Development in Computer Science Education (GDCSE '08), 31-35,
Miami, Florida, February 27 - March 03, 2008.

[23] S. Leutenegger and J. Edgington, "A games first approach to teaching introductory programming," SIGCSE
Bull., vol. 39, pp. 115-118, 2007.

[24] B. D. Coller and M. J. Scott, "Effectiveness of using a video game to teach a course in mechanical
engineering," Comput. Educ., vol. 53, pp. 900-912, 2009.

[25] J. Distasio and T. Way, Inclusive computer science education using a ready-made computer game framework.
In ITiCSE '07: Proceedings of the 12th annual SIGCSE conference on Innovation and technology in computer
science education, 116-120, 2007.

[26] Washington State University Vancouver and University of Puget Sound. 2008 The Java Instructional Gaming
Project. Web: http://ai.vancouver.wsu.edu/jig/, Retrieved June 2008.

[27] C. Johnson and J. Voigt, DXFramework. Web: http://www.dxframework.org, Retrieved June 2008.
[28] I. Parberry, SAGE: a simple academic game engine. Web: http://larc.csci.unt.edu/sage, Retrieved June 1,

2008.

[29] R. Coleman, S. Roebke, and L. Grayson, GEDI: a game engine for teaching videogame design and
programming. Journal of Computing Science in Colleges: 21(2), 72–82, 2005.

[30] Rockwell Automation Inc, Arena Simulation Software. Web: http://www.arenasimulation.com/, Retrieved
June 2008.

[31] IBM, INNOV8 – a BPM Simulator. Web: http://www-
304.ibm.com/jct03001c/software/solutions/soa/innov8.html, Retrieved June 2008.

[32] P. Clements, L. Bass, and R. Kazman, Software Architecture in Practice Second Edition. Addison-Wesley,
2003.

[33] J.O. Coplien, Software Design Patterns: Common Questions and Answers. The Patterns Handbook:
Techniques, Strategies, and Applications. Cambridge University Press, New York, 311-320, 1998.

[34] A.I. Wang, and T. Stålhane, Using Post Mortem Analysis to Evaluate Software Architecture Student Projects.
In Proceedings of the 18th Conference on Software Engineering Education & Training, April 18 – 20, 2005.

[35] D. P. Perry, and A.L. Wolf, Foundations for the Study of Software Architecture. ACM Sigsoft Software
Engineering Notes: 17(4), 40-52, 1992.

[36] IEEE, “IEEE Recommended Practice for Architectural Description of Software-Intensive Systems”, Software
Engineering Standards Committee of the IEEE Computer Society, 2000.

[37] P. Kruchten, The 4+1 View Model of Architecture, IEEE Software, 12, 6, Pp. 42 – 50, 1995.
[38] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere, "The Architecture Tradeoff Analysis

Method," Engineering of Complex Computer Systems, IEEE International Conference on, vol. 0, no. 0, pp.
0068, Fourth IEEE International Conference on Engineering Complex Computer Systems (ICECCS'98),
1998.

[39] A. BinSubaih, S.C. Maddock (2006), "Using ATAM to Evaluate a Game-based Architecture", Workshop on
Architecture-Centric Evolution (ACE 2006), Hosted at the 20th European Conference on Object-Oriented
Programming ECOOP 2006, July 3-7, 2006, Nantes, France.

[40] T. Lozano-Pérez, In Preface to Autonomous Robot Vehicles, Springer Verlag, New York, NY, 1990.
[41] A. Elfes, Sonar-Based Real-World Mapping and Navigation. In IEEE Journal of Robotics and Automation,

no.3, 249-265, 1987.
[42] R. Simmons, Concurrent Planning and Execution for Autonomous Robots In IEEE Control Systems, no. 1,

46-50, 1992.
[43] S.A. Shafer, A. Stentz, and C.E. Thorpe, An Architecture for Sensor Fusion in a Mobile Robot. In

Proceedings of the IEEE International Conference on Robotics and Automation, April 7-10, 2002-2011, 1986.
[44] D. Toal, C. Flanagan, C. Jones, and B. Strunz, Subsumption architecture for the control of robots, In 13th Irish

Manufacturing Conference (IMC-13), 703-711, 1996.
[45] R. Lumia, J. Fiala, and A. Wavering, The NASREM Robot Control System and Testbed. In International

Journal of Robotics and Automation, no.5, 20-26, 1990.
[46] A.I. Wang and B. Wu, An Application of Game Development Framework in Higher Education, Submitted to

International Journal of Computer Games Technology, 2008.
[47] C. Vichoido, M. Estranda and A. Sanchez, A constructivist educational tool: Software architecture for web-

based video games, 4th Mexican International Conference on Computer Science (ENC 2003), 8-12
September, Apizaco, 2003.

[48] J. Krikke, Samurai Romanesque, J2ME, and the Battle for Mobile Cyberspace, IEEE Computer magazine,
23(1), 2003.

[49] S. Rabin, Introduction to Game Development, Course Technology Cengage Learning, 2008.
[50] A. Rollings and D. Morris, Game Architecture and Design - A New Edition. New Riders Publishing, 2004.

[51] G. Booch, Best Practices in Game Development. IBM Presentation March 12, 2007.
[52] A. Grossman, Postmortems From Game Developer. Focal Press, January 2003.
[53] R. Darken, P. McDowell, and E. Johnson, The Delta3D Open Source Game Engine. In IEEE Computer

Magazine, May/June 2005.
[54] NGA, Norwegian Game Awards 2011 – Home, Web: http://www.gameawards.no , Accessed April 7th 2011.
[55] A. I. Wang, "Extensive Evaluation of Using a Game Project in a Software Architecture Course," Trans.

Comput. Educ., vol. 11, pp. 1-28, 2011.

Paper 10:

GDF6: Bian Wu, Alf Inge Wang, "Game Development Framework for
Software Engineering Education", 2011 International IEEE Consumer
Electronics Society's Games Innovation Conference (IGIC 2011), November
2011, Orange, California, USA.

Abstract--This paper presents a literature survey about the

method of creating/modifying a game on a game development
framework (GDF) as an assignment to learn software engineering
(SE), and we share our recommendation for choosing an
appropriate GDFs.

I. INTRODUCTION
Games have been used in schools for many years to help

students learn skills in math, language, science, engineering
and other domains in an interesting and motivating way.
Another innovative way is to provide exercises that require
students to work individually or in groups to modify or
develop a game as a part of a course using a game
development framework (GDF) to learn skills within computer
science or software engineering (SE) [1-3]. GDF denotes all
toolkits used to develop games. This paper focuses on criteria
for selecting appropriate GDFs that can be used in student
exercises to learn SE skills. The motivation for teaching SE
through game development is to utilize the students’
enthusiasm for game creation. More specifically, we wanted to
investigate how GDFs are used in SE education through our
own experiences and a literature survey.

II. EXPERIENCES
We present our experiences as an example to explain how

we apply XNA as a GDF in software architecture course in
2008 [1]. In this course, 30% of the grade is based on an
evaluation of a software architecture project all students have
to do. The rest 70% is given from a written examination. The
goal of the project is to let students work in groups and apply
the methods and theory from the course to design a software
architecture for a game and implement it based on the XNA
framework. The project consists of the following phases:

1) COTS (Commercial Off-The-Shelf) exercise: Learn the
technology to be used through developing a simple game.

2) Design pattern: Learn how to use and apply design
pattern by making changes in an existing game.

3) Requirements and architecture: List functional and
quality requirements and design the software architecture for a
game.

4) Architecture evaluation: Use the ATAM (Architecture
Tradeoff Analysis Method) evaluation method to evaluate the
software architecture of game project in regards to the quality
requirements.

5) Implementation: Do a detailed design and implement the
game based on the created architecture and on the changes
from the Architecture evaluation.

6) Project evaluation: Evaluate the project as a whole using

a PMA (Post-Mortem Analysis) method.
The course staff issued the tasks of making a functioning

game using XNA, based on students’ own defined game
concept. However, the game had to be designed according to a
specified and designed software architecture. Further, the
students had to develop an architecture where they had to
focus on one particular quality attribute. We used following
definitions for the quality attributes in the game projects:
Modifiability, the game architecture and implementation
should be easy to change in order to add or modify
functionality; and Testability, the game architecture and
implementation should be easy to test in order to detect
possible faults and failures. These two quality attributes also
were related to the course content. Finally, we got positive
feedback from students’ survey [1-3].

III. RESEARCH CONTEXT SURVEY
The scope of this paper is limited to the selection of GDFs

only used in SE education, as SE is the major teaching field
where GDFs applied. The survey is based on literature from
IEEE Xplore and ACM digital library.

When looking into the background of how GDFs are used
in SE education, we focus on why apply a GDF in a SE course
in the first place. It is common to describe the teaching design
using a GDF from the angle of teachers previous experiences
from the course, not explaining its learning theory context [4,
5]. However, we still can find literatures that explain this
learning activity, especially in SE education field.

For example, the paper “Learning Through Game
Modding” [2] presents its experiences of using a GDF to teach
students SE. It considers the learning activity of
modifying/creating a game in a GDF in SE education as a
design activity that has educational benefits such as learning
content, skills, and strategies [6]. Design activities are
meaningful and engaging to students for exploring skills
(analysis, synthesis, evaluation, revision, planning and
monitoring) and concepts to understand how they can be
applied in the real world. Further, learning by
modifying/creating games can be considered as variant of
several available construction activities.

Seymour Papert presents programming as one example of
the constructionism learning theory [2]. Constructionism
involves two activities [7]. The first is the mental construction
of knowledge that occurs with world experiences, a view
borrowed from Jean Piaget’s constructivist theories of learning
and development. The second is a more controversial belief
that new knowledge can be constructed with particular
effectiveness when people engage in constructing products

 Bian Wu, Alf Inge Wang, Norwegian University of Science and Technology

Game Development Frameworks for SE Education

that are personally meaningful. The important issue is that the
design and implementation of products are meaningful to
those creating them, and that learning becomes active and self-
directed through the construction of artifacts. In SE education,
creating games on GDFs could be this artifact.

A similar positive response to above is [8]. It presents a
case study to use double stimulation [9] to guide the exercise
designs based on a GDF. It also considers that using a GDF in
SE education could be a knowledge construction process. It
describes how to use double stimulus to guide a teaching
activity, including the learning activity from creating a game.
In schools, learners face a challenge, a problem, or a task that
has been designed for a particular pedagogical purpose or they
face situations that are likely to appear in work and public life.
In both cases the purpose of exploiting tools is for learners to
respond to such challenges. Based on constructionism, it
constructs the relationship between the educational tasks and
the material artifacts. This relationship is at the heart of
Vygotsky’s notion of double stimulation [9], a method for
studying cognitive processes and not just results. In a school
setting, typically the first stimulus would be the problem or
challenge to which learners are expected to respond. The
second stimulus would be the available mediating tools, like
GDFs.

Similarity, using GDFs in SE education is related to
Problem-Based Learning (PBL) [10, 11]. PBL is a
pedagogical model that emphasizes the role of a real-life
problem and a collaborative discovery process in learning
[12]. Within a typical PBL setting, students are first given a
challenging but realistic problem of significant size, relevant
to the learning objectives of a given course. They are then
encouraged to solve the problem in a group throughout the
semester as independently as possible with minimum help
from the instructor of the course. Apart from the traditional
lecture-oriented teaching approach, PBL puts more emphasis
on the instructors’ role as facilitators, to prepare meaningful
and interesting problems, and to create and organize course
materials in a manner that students have a just right dose of
information in each class to incrementally develop a final
solution based on a GDF to the primary problem of the
semester.

IV. SURVEY OF GDFS USED IN SE EDUCATION
In order to identify the main feature of several GDFs, we

classify them according to two categories: GDFs for novices,
and GDFs for developers.

The focus of GDFs for novices is to provide visual interface
for customizing game templates and to allow creating or
designing games with little or no programming skills. Here are
examples of GDFs used in assignments to learn SE from
literature survey and its resource link: Alice [13-16]; Scratch
[17-19]; CeeBot Series [20]; Warcraft3 Editors [2]; Never
Winter Night Toolsets [21] ; Greenfoot [22]; Game maker [23,
24]; StarLogo TNG [25]; and Wu’s castle [26]. The way these
GDFs are used in SE education varies. E.g., Alice and Scratch
are typically used for introducing programming or object-

orientation concept to students where the students get
introduced to programming concepts through visually
manipulating objects in order to implement some simple game
behaviors from scratch. Other GDFs are mainly editors or
modifiers for existing games, such as the Warcraft3 editor or
the Never Winter Night toolsets. The educational approach
when using such GDFs are totally different, as the focus is on
tailoring or modifying existing behavior in the game instead of
building everything from scratch.

The focus of GDFs for developers is to offer toolkits that
support development of high quality 2D/3D rendering, special
effects, physics, animations, sound playback, and network
communication in common programming languages such as
C++, C# and Java. Most of the commercial game engines
belong in this category. Here are examples of such GDFs used
in SE education: BiMIP [27]; Unreal Engine [2, 5]; XNA [28,
29]; XQUEST[30]; XNACS1Lib framework [31];
Android/Sheep [8]; MUPPETS framework [32]; and SIMPLE
framework [33]. When using GDFs such as XNA, XQUEST
and Android/Sheep, the students will mainly develop
everything from scratch and follow the whole software cycle.
But for other GDFs, such as Unreal game engine, the basic
game functionality is in place and the programming will focus
on the game instance. This is a more restrictive approach in
what you can learn and the application of the software
development process. If the goal of the SE course is to go
through the whole software cycle, game engines are not
usually suitable GDFs.

V. RECOMMENDATIONS
From both of our experiences and literature survey,

introducing a GDF in a SE course can have positive effects
such as higher enrollment, improved student motivation and
project group dynamics, and more effort put into projects/
assignments [34]. The higher enrollment is mainly due to most
of students think it is more interesting to work on a game
project than e.g. a banking system. The improved student
motivation and group dynamics is mainly due to collaboration
of the teamwork provides the possibility of creating their own
imaginative games and game development require other than
pure technical skills.

However, there are also some obvious disadvantages. The
most evident one is that some students will focus too much on
the game development thus loosing focus on what they shall
learn in SE. This means that the design of the course and the
project must be carried out in such a way that the students are
forced to learn and use the SE methods and disciplines being
taught in the course. One approach to enforce SE elements in
exercises and projects is to require documentation during the
whole project focusing on the SE learning goals and
emphasize that the evaluation of the exercise and project will
mainly focus on the quality of these SE deliverables and less
on the game being produced. This is from our experiences on
using XNA in the software architecture course. To ensure the
SE focus, the students had to deliver part-deliveries focusing
on different areas of software architecture, such as design and

architectural patterns, functional and quality requirements, a
software architecture for the game described through several
views, an architectural evaluation, and an implementation of
the game where the students had to adhere to their quality
requirements, their chosen patterns and their designed
software architecture.

Further, it is really important to choose the appropriate GDF
to be used in a SE course. There are many factors that come
into play when conceiving an assignment based on a GDF:

Educational goal: The educational goal of the SE course
will greatly affect the choice of GDF, e.g. if the focus of the
course will be on requirements, software architecture, design,
implementation, testing, maintenance, project management or
the software process. As mentioned before, SE courses
focusing on the whole development cycle should use GDFs
that allow the students to develop a game from scratch such as
XNA. However, if a SE course only focuses on testing or
quality assurance, a game engine can be very effective for the
education goals such as Unreal can work very well. Another
important factor is whether course’s focus on procedural
programming vs. Object Oriented (OO) programming. For SE
courses with more technical requirements, GDFs such as
XNA, XQUEST or Android/Sheep are more appropriate. In
other courses, the most important goal is not to learn
programming, but rather to learn the SE principles such as
requirements, design, and the project management. For such
courses, GDFs with visual programming such as Alice,
Scratch or the Warcraft3 editor can be used.

SE constraints: All GDFs have constraints related to SE in
how they have been designed or how they are released. One
example is open source GDFs that make it possible to do
white-box testing on the GDF, while for other GDFs the
source code is not available for the students. Open source
GDFs are also important in courses where it is necessary to
understand the details of the components used in students’
game creation. Further, some GDFs might constrain how you
can design your games, what design and architectural patterns
you can use, how event handling must be managed, the
freedom of expanding the GDFs functionality and more. These
constraints must be integrated in the SE teaching to introduce
the students to the real world where software never is built
from scratch. Another important issue is the openness of the
GDF to other tools. This issue could be very important e.g. the
integration of test tools.

Programming experience: The programming experience
of the students will highly affect the choice of GDF between
the ones for novices and the ones for developers. Another
factor is what programming languages the students know, such
as Java, C#, C, C++ etc. E.g. to use XNA/XQUEST or
Android/Sheep, the students must know OO programming
well and be familiar to design patterns and OO principles in
addition to C# and Java. And some GDFs offer their own
programming languages to simplify the game programming
(scripting). From our own experience, the hardest part for the
students is not the programming language itself but rather the
libraries and APIs they have to learn.

Staff expertise: It is essential that the course staff have
technical experience in a GDF used in a SE course to provide
help to students to avoid having them focusing on only the
technical matter and not the SE challenges. From our own
experiences on running a software architecture course, it is
necessary to have dedicated staff to provide technical GDF
support. Although it is important that the teacher teaching the
SE course knows the basics of the GDFs, it is not necessary
for this teacher to have a complete technical insight of the
GDF. However, it is critical to have course staff available that
can help the student with technical problems during the
exercises or project.

Usability of the GDF: To avoid too much focus on
technical matters and problems, it must be possible to learn the
GDF quickly without too much of a hassle. In practice this
means that the GDF must be well-designed, have a logical
structure, provide high-level APIs, provide correct, updated
and available documentation, provide helpful and many
examples, and have many available tutorials. It is also a huge
advantage if an active developer community supports the
GDF. XNA is a good example of a GDF, which is well
designed with high-level APIs, well documented and
supported, and an active community. It is recommended to
establish a GDF community within a course e.g. using a web
forum, as well as encouraging the students to use external web
resources.

Technical environment: Technical considerations must be
taken into account when selecting a GDF. Typical technical
considerations include operating system and hardware
compatibility, license policies, tool support, support for third-
party tools, and how difficult the software is to install on the
students’ PCs. The technical requirements might also be an
economical issue, as the choice of GDF might force hardware
upgrades or paying for expensive licenses. A typical problem
is e.g., that XNA runs only on Windows, and many students
now have PCs running Linux or Mac OS X. As our
experiences on using XNA in a software architecture course,
many of the students did not have a Windows PC at first and
these students were told to use the available computer labs.
Soon, however, we discovered that the existing computer labs
running thin-clients were insufficient for running XNA. The
problem was partly solved by the students themselves as many
of the Mac OS X and Linux users installed Windows on their
PCs (dual boot). In addition, our department gave access to a
computer lab with stand-alone PCs powerful enough to run
XNA.

The list of considerations above should be included in the
process of finding the appropriate GDF for a SE course. If an
appropriate GDF is chosen and the project or exercises “force”
students to provide SE deliveries through the semester, the
result is likely to be improved project results as the students
are better motivated and put more effort into the work.

VI. CONCLUSIONS AND FURTHER WORK
Through our experiences and literature survey on the

theoretical context and various GDFs used in SE education, it

has shown that this method has potential motivation to help
students to learn SE courses. In order to select an appropriate
GDF, we also identify the impact factors that play important
roles on design process for the course when using GDFs in SE
education. We believe that our study can provide the guidance
for the teachers or researchers in the area of SE education,
even for the GDFs’ designers in the aspect of the enhancement
of GDFs’ educational features.

However, time, cost and expertise are significant barriers to
experimenting with GDFs in educational settings, and there
are limitations to what skills can be acquired using GDFs [2].
Based on our initial survey, this area deserves more research
on the applications of GDF for SE education and how to
design and improve the teaching process to maximize the
effectiveness of using GDF in education.

REFERENCE
[1] A. I. Wang and B. Wu, "An Application of a Game Development

Framework in Higher Education," International Journal of Computer
Games Technology, vol. 2009, 2009.

[2] M. S. El-Nasr, "Learning through game modding," Computers in
entertainment, vol. 4, 2006.

[3] B. Wu, et al., "An Evaluation of Using a Game Development
Framework in Higher Education," Proceedings / Conference on
Software Engineering Education and Training, 2009.

[4] S. v. Delden, "Industrial robotic game playing: an AI course," J.
Comput. Small Coll., vol. 25, pp. 134-142, 2010.

[5] E. L. Wynters, "3D video games: no programming required," J. Comput.
Small Coll., vol. 22, pp. 105-111, 2007.

[6] S. Puntambekar and J. L. Kolodner, "Toward implementing distributed
scaffolding: Helping students learn science from design," Journal of
Research in Science Teaching, vol. 42, pp. 185-217, 2005.

[7] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. New
York, 1980.

[8] B. Wu, et al., "Extending Google Android's Application as an
Educational Tool," presented at the The 3rd IEEE Information
Conference on Digital Game and Intelligent Toy Enhanced Learning
(DIGITEL 2010), Kaohsiung, Taiwan, April 12-16, 2010. , 2010.

[9] L. S., Mind in society: The development of higher psychological
processes, 1978.

[10] A. Garrido, et al., "Using graphics: motivating students in a C++
programming introductory course," in EAEEIE Annual Conference,,
2009, pp. 1-6.

[11] J. Ryoo, "Teaching object-oriented software engineering through
problem-based learning in the context of game design," in 21st
Conference on Software Engineering Education and Training, 2008, p.
137.

[12] H. S. Barrows, "A taxonomy of problem-based learning methods,"
Medical Education, vol. 20, pp. 481-486, 1986.

[13] R. H. Seidman, "Alice first: 3D interactive game programming,"
SIGCSE Bull., vol. 41, pp. 345-345, 2009.

[14] E. W. Amerikaner, "Introduction to computer science using Alice 2.0:
tutorial presentation," J. Comput. Small Coll., vol. 25, pp. 141-141,
2010.

[15] K. Anewalt, "Making CS0 fun: an active learning approach using toys,
games and Alice," J. Comput. Small Coll., vol. 23, pp. 98-105, 2008.

[16] L. Werner, et al., "Can middle-schoolers use Storytelling Alice to make
games?: results of a pilot study," presented at the Proceedings of the 4th
International Conference on Foundations of Digital Games, Orlando,
Florida, 2009.

[17] G. Fesakis and K. Serafeim, "Influence of the familiarization with
"scratch" on future teachers' opinions and attitudes about programming
and ICT in education," presented at the Proceedings of the 14th annual
ACM SIGCSE conference on Innovation and technology in computer
science education, Paris, France, 2009.

[18] P. A. G. Sivilotti and S. A. Laugel, "Scratching the surface of advanced
topics in software engineering: a workshop module for middle school
students," SIGCSE Bull., vol. 40, pp. 291-295, 2008.

[19] W. Jui-Feng, et al., "Teaching Boolean Logic through Game Rule
Tuning," IEEE Transactions on Learning Technologies, vol. 3, pp. 319-
328, 2010.

[20] T. Phit-Huan, et al., "Learning Difficulties in Programming Courses:
Undergraduates' Perspective and Perception," in International
Conference on Computer Technology and Development, 2009(ICCTD
'09), 2009, pp. 42-46.

[21] J. Robertson and C. Howells, "Computer game design: Opportunities for
successful learning," Computers & Education, vol. 50, pp. 559-578,
2008.

[22] M. Al-Bow, et al., "Using game creation for teaching computer
programming to high school students and teachers," SIGCSE Bull., vol.
41, pp. 104-108, 2009.

[23] Y. Rankin, et al., "The impact of game design on students' interest in
CS," presented at the Proceedings of the 3rd international conference on
Game development in computer science education, Miami, Florida,
2008.

[24] Yulia and R. Adipranata, "Teaching object oriented programming course
using cooperative learning method based on game design and visual
object oriented environment," in 2nd International Conference on
Education Technology and Computer (ICETC),, 2010, pp. V2-355-V2-
359.

[25] K. Wang, et al., "3D game design with programming blocks in StarLogo
TNG," presented at the Proceedings of the 7th international conference
on Learning sciences, Bloomington, Indiana, 2006.

[26] M. Eagle and T. Barnes, "Experimental evaluation of an educational
game for improved learning in introductory computing," presented at the
Proceedings of the 40th ACM technical symposium on Computer
science education, Chattanooga, TN, USA, 2009.

[27] A. Garrido, et al., "Using graphics: motivating students in a C++
programming introductory course," in EAEEIE Annual Conference,
2009, 2009, pp. 1-6.

[28] B. Wu, et al., "An Evaluation of Using a Game Development
Framework in Higher Education," 22nd Conference on Software
Engineering Education and Training, 2009, pp. pp.41-44, 2009.

[29] K. Sung, et al., "Game-Themed Programming Assignment Modules: A
Pathway for Gradual Integration of Gaming Context Into Existing
Introductory Programming Courses," IEEE Transactions on Education,
2010.

[30] B. Wu, et al., "XQUEST used in software architecture education," in
International IEEE Consumer Electronics Society's Games Innovations
Conference,(ICE-GIC 2009), 2009, pp. 70-77.

[31] R. Angotti, et al., "Game-themed instructional modules: a video case
study," presented at the Proceedings of the Fifth International
Conference on the Foundations of Digital Games, Monterey, California,
2010.

[32] K. J. Bierre and A. M. Phelps, "The use of MUPPETS in an introductory
java programming course," presented at the Proceedings of the 5th
conference on Information technology education, Salt Lake City, UT,
USA, 2004.

[33] H. C. Jiau, et al., "Enhancing Self-Motivation in Learning Programming
Using Game-Based Simulation and Metrics," IEEE Transactions on
Education, vol. 52, pp. 555-562, 2009.

[34] A. I. Wang, "Extensive Evaluation of Using a Game Project in a
Software Architecture Course," Transactions on Computing Education
(ACM), vol. Volume 11,, February 2011. 2011.

Paper 11:

GDF7: Bian Wu, Alf Inge Wang, “A guideline for game development-based
learning: A literature review”, Accepted by the International Journal of
Computer Games Technology.

Abstract— This study aims at reviewing published scientific literature on the topics of game development-based learning
(GDBL) method using game development frameworks (GDFs) with the perspective of: (a) summarizing a guideline for using
GDBL in a curriculum; (b) identifying relevant features of GDFs; and (c) presenting a synthesis of impact factors with empirical
evidence on the educational effectiveness of the GDBL method. After systematically going through available literature on the
topic, 34 relevant articles were selected for the final study. We analyzed the articles from three perspectives: 1) Pedagogical
context and teaching process, 2) Selection of GDFs, and 3) Evaluation of the GDBL method. The findings from the 34 articles
suggests that GDFs have many potential benefits as an aid to teach computer science, software engineering, art design and
other fields, and that such GDFs combined with motivation from games can improve students knowledge, skills, attitudes and
behaviors in contrast to traditional classroom teaching. Furthermore, based on the results of literature review, we extract a
guideline of how to apply the GDBL method in education. The empirical evidence of current findings gives a positive overall
picture and can provide a useful reference to educators, practitioners and researchers in the area of game-based learning.

Index terms —Game based learning, Game development-based learning, Game development framework, Teaching design,
Literature review

1 INTRODUCTION
Computer games and video games have become very
popular in children and adolescents’ life and play a
prominent role in the culture of young people [1].
Games can now be played everywhere in technology-
rich environments equipped with laptops, smart
phones, game consoles (mobile and stationary), set-top
boxes and other digital devices. From this
phenomenon, it is believed that the intrinsic motivation
that young people shows towards games can be
combined with educational content and objectives into
what Prensky calls “digital game based learning” [2].

Besides of an abundant appearance of games in
young students life, game development technology has
matured and become more advanced than before [3].
Based on various existing game development software,
the whole duty of game development process can be
divided into several domains and roles such as game
programmers, 3D model creators, game designers,
musicians, animators, play-writers, etc. Under this
situation, some web-resources and game engines can
simplify the game development process. For instance,
Microsoft’s XNA game development kit provides the
game loop function to draw and update the game
contents, and it also provides convenient game
development components to load the different format
of graphics, audio, and videos. This makes it possible
for students to modify existing games or develop own
new games with or without programming. They can
design and implement their own game concepts with
these game creation tools, learn the developing skills
and relevant knowledge, and accumulate related
practical experience.

In this context, not only can a game be used for
learning, but also the game development tools be used
for studying relevant topics within computer science,
software engineering (SE) or game programming
through motivating assignments. Generally, games can
be integrated in education in three ways [4, 5]. First,
games can be used instead of traditional exercises
motivating students to put extra effort in doing the
exercises, and giving the teacher and/or teaching
assistants an opportunity to monitor how the students
work with the exercises in real-time, e.g. [6, 7]. Second,
games can be played within lectures to improve the
participation and motivation of students, e.g. [8, 9].
Third, the students are required to modify or develop a
game as a part of a course using a Game Development
Framework (GDF) to learn skills within computer
science and SE, e.g. [10]. And we label this third as
Game Development-Based Learning (GDBL). And the
GDFs denote the toolkits that can be used to develop or
modify games, e.g. game engine, game editors, or game
(simulation) platforms, or even any Integrated
Development Environment (IDE), like Visual C++,
Eclipse, J2ME, and Android SDK since all of them can
be used to build games. This literature review focuses
on using the GDBL method in education, where GDFs
are used in student exercises to learn skills, extending
the use of GDFs as a teaching aid. The motivation for
teaching through game development is to utilize the
students’ enthusiasm for games. This GDBL method is
not new. The earliest similar application of learning
through programming in a game-like environment was
in early 1970s. The Logo [11], the turtle graphics, is one
of the oldest libraries that was used to introduce
computing concepts to beginners. The concept was

A guideline for game development-based
learning: A literature review

Bian Wu, Alf Inge Wang, Norwegian University of Science and Technology

based on a “turtle” that could be moved across a 2D
screen with a pen, which could be positioned on or off
the screen, and thus, may leave a trace of the turtle’s
movements. Programming the turtle to draw different
patterns can be used to introduce general computing
skill, such as procedural operations, iteration, and
recursion. Further, in 1987, Micco presented the usage
of writing a tic-tac-toe game for learning [12]. After
several years of development, we believe that GDBL
methods have been improved through the
development of technology. Thus, we investigate how
GDFs are being used in education through a literature
survey and investigate how traditional lectures can
become more dynamic, collaborative and attractive to
the students utilizing the current technology rich
environment. However, this assertion needs to be
further supported by relevant theory, application
experiences, evaluation results, and empirical evidence.
Nevertheless, to the best of the authors’ knowledge,
there does not exist any comprehensive literature
reviews on application of the GDBL method so far.

The aim of the study is to review recently published
literature on the use of GDFs in education to:

(a) Summarize a guideline for how to use GDBL in a
curriculum.

(b) Identify the features of GDFs related to GDBL.
(c) Present a synthesis of impact factors with the

empirical evidence on the educational effectiveness of
the GDBL method.

The study is unique in that it presents an overview
of the recently published literature on the use of GDFs
in education, while taking into account both game
engines and relevant toolkits to create/modify games
or game-like systems (e.g. simulators). The study can
provide useful guidance to teachers at different
educational levels or areas, as well as to educators,
practitioners and researchers in the areas of game-
based education.

The paper is organized as follows. Section 2
describes the method used for carrying out the
systematic review of articles, Section 3 presents the
results from the literature review, Section 4 extracts a
guideline for GDBL according to existing literature, and
finally Section 5 concludes the paper.

2 METHOD
Informed by the established method of systematic review
[13, 14], the review was undertaken in distinct stages: the
development of review protocol, the identification of
inclusion and exclusion criteria, a search for relevant
studies, critical appraisal, data extraction, and synthesis.

2.1 Protocol development

We developed a protocol for the systematic review by
following the guidelines, procedures and policies of the

Campbell Collaboration1, the Cochrane Handbook for
Systematic Reviews of Interventions [13], the
University of York’s Centre for Reviews and
Dissemination’s guidance for those carrying out or
commissioning reviews [14], and also refer to reviews
on serious game research [15, 16]. This protocol
specified the research aim, search strategy, inclusion,
exclusion criteria, data extraction, and methods of
synthesis.

2.2 Data source and search strategy

For the purpose of the study, a literature search was
undertaken in December 2010 in the following
international online bibliographic databases: (a) ACM
portal, (b) IEEE Xplore, (c) Springer, (d) Science direct.
The search string used was: (“Game”) AND
(“Learning” OR “Teaching”) AND (“Lecture” OR
“Curriculum” OR “Lesson” OR “ Course” OR “
Exercise”). And “education” was not included in the
keyword list since we considered that education was a
quite general word and did not help minimize the
searching scope. Searches were limited to titles and
abstracts of articles published in journals, and
conference proceedings (some are book chapters), in
English, from 2000 and onwards. The latter limitation
was posed due to the rapid changes in ICT
(Information and Communications Technology) in
general, and in computer game development
technologies in particular.

2.3 Data extraction with inclusion and
exclusion criteria

Figure 1 shows the complete process of the data
extraction. The first step was to identify relevant
studies. A number of journal and proceedings articles
about GDBL were located during searches in the afore-
mentioned databases. The articles were examined and
the search resulted in 1155 articles. In the step 2, from
abstracts of each article, we distinguished learning
through game play or game development. And most of
the excluded articles were using games directly in
classroom to motivate the students’ interest and
attendance rate, and using game play instead of
traditional exercises to study or review the course
content. For instance, these were articles generally
addressing using virtual online multiplayer game
environments to provide a collaborative learning style,
e.g. [17, 18], articles which referred to games used in
classroom to motivate attendance and to review the
course knowledge, e.g. [8]. In addition, the articles
related to the economics terms “game theory” and
“business game” used as business terms were also
excluded from this category. Besides, we excluded
articles that depicted novel game concepts that were
not computer or video games but physical game

1 www.campbellcollaboration.org

activities without any technology support for the
lecture. For instance, article [19] used a self-made table
card game in SE education. Mainly based on these three
criteria, a total of 1010 articles were excluded after this
step. p

Fig. 1. Steps of the study selection process

In the step 3, the whole content of the articles was
checked. The inclusion criteria were further limited to
the scope: a case study or several case studies in the
article to describe GDBL. In particular, it required a) A
relatively detailed description of lecture design process.
The articles without a detailed description of their
teaching design or exercise process made it impossible
to validate their process of how to integrate GDFs in
lectures or exercises. According to this requirement,
posters, tutorial presentations and some short papers
without detailed description on teaching process were
excluded since they could not provide valuable data for
our research aim and made it impossible to validate the
effectiveness of the method, e.g. [20-25]. This was also a
measure to ensure inclusion of high quality literature in
the review. b) Articles using development toolkits in
the curriculums but did not aim to develop games were
also excluded, e.g. [26]. c) Articles emphasizing on
other aspects apart from GDBL were excluded as it was
difficult to validate how game development was
integrated in class, e.g. learning in a interactive e-lab
[27]. Similarly, articles that presented the development
of an educational game framework but did not mention
how it was integrated in a specific curriculum were
excluded, e.g. [28-31]. d) Articles, which focused on
changing the controller of the software or hardware,
but without elements of computer game development
were also excluded, e.g. [32, 33]. Most of them focus on
creating a robot controller to learn algorithms, or
changing some component of a robot to learn Artificial
Intelligence (AI). In contrast, we included learning
from modifying parts of a simulator to create the game
elements or a game-like system, e.g. [34, 35]. Finally, a
total of 105 articles were remaining after this step.

In the step 4, we carefully looked through the
remaining articles and compared their topics, methods,
teaching process, and evaluation quality from the
presentation of their concepts. After the comparison,

the following studies criteria were included: 1) Articles
that had collected data from assignments or scores after
using GDBL method. 2) Articles that had
questionnaires with quantitative data and interviews or
feedback with qualitative data. 3) Detailed discussion
of the collected data and conclusion. In addition,
diverse and innovative articles were not neglected, in
order to show the various ways to integrate GDFs in
education. However, articles reporting on use of
hardware tools to create game or game-like system,
such as real robot hand [34], Wii remote [36], Microsoft
surface [37], and a projector-camera system [38] to
support teaching or learning environment were not
included. Finally, a total of 34 articles were included in
the review. And we believe these articles were sufficient
to get a complete guideline to explain how to integrate
the GDBL method in the curriculums.

2.4 Synthesis of findings

A typology to categorize the 34 articles has to be
devised. The classification scheme proposed by [39] in
their review of the general instructional gaming
literature was adopted for the needs of the present
study. This scheme, which was also used in [40],
defines the following five categories [39]: (a) Research
(systematic approaches in the study of gaming targeted
at explaining, predicting or controlling particular
phenomena or variables), (b) Theory (articles
explaining the basic concepts or aspects or derived
outcomes of gaming), (c) Reviews (syntheses of articles
concerning general or specific aspects of gaming), (d)
Discussion (articles stating or describing experiences or
opinions with no empirical or systematically presented
evidence), and (e) Development (articles discussing the
design or development of games or projects involving
gaming).

Specifically, for the categorization of the articles, the
following criteria were applied in this study. Articles
comprising empirical research related to GDBL were
assigned to the ‘Research’ category. Articles comprising
theoretical analyses of concepts, aspects or outcomes of
GDBL were placed in the ‘Theory’ category. Articles
presenting syntheses of articles concerning GDBL
conducted according to explicit methodology were
placed in the ‘Review’ category. Articles reporting on
opinions and experiences regarding GDFs used in
teaching, with no empirical or systematically presented
evidence, were assigned to the ‘Discussion’ category.
Finally, articles mainly reporting on the design or
development of GDFs used in the GDBL method were
assigned to the ‘Development’ category. The articles
were grouped into these five categories according to
their primary focus. Of the 34 articles found after the
step 4, 20 were placed in the ‘Research’ category, 1 in
the ‘Theory’ category, 7 in the ‘Discussion’ category
and 6 in the ‘Development’ category, whereas no
articles fit the “Review” category, which highlights the
usefulness and originality of the present study. Like

results from other literature reviews on instructional
games [40, 41], in this study there were fewer articles in
the ‘Theory’ categories than in the ‘Research’,
‘Discussion’ and ‘Development’ categories. This can be
explained by the fact that instructional games,
including GDBL are a relatively new domain of
educational technology.

3 RESULTS
This section presents an overview of the studies of the
GDBL method based on the results after step 3 and step
4 in Figure 1.

3.1 Overview of the study after the step 3

In order to have a complete overview of GDBL, we
chose the results from step 3 mainly due to: (a) They
covered a more complete variation of types of GDFs
and contained more information than the 34 articles
from step 4. (b) They provided more cases in the
diversity of GDFs methods used in teaching, which
also presents the potential advantages of using GDF in
education. (c) They showed the development tendency
of GDF related to other factors (e.g. times and
technology). We had a study of 105 articles from step 3
representing use of GDBL method spanning over 11
years. Figure 2 presents the distribution of these articles
related to publishing year after step 3. The result after
step 4 is also presented for reference. p p

Fig. 2a. Study of each year on using GDBL method (Step 3)

Fig. 2b. Study of each year on using GDBL method (Step 4)

The types of GDF are classified as (a) Game engines:
It mainly covers the commercial game engines and
mature and well-known toolkits mainly to create
games. (b) Self-made GDF: It mainly includes the game
development frameworks that were made by the
authors of the articles for usage in a specific course. (c)
Games or game editors: It mainly contains editors or
platforms that can be used to modify games. (d)
Simulation platform: It mainly includes controllers to
create a game-like system for robots or other simulation
platforms. (e) Hardware platform: It mainly includes
both game hardware and related software to build
games (laptops and computers are excluded), like Wii
remotes, windows surface with XNA, robotic hand. (f)
Others are general IDEs, like Visual C++, J2ME, or
unspecified game creation toolkits with no specific
requirement for learning. For some articles that covers
more than one attribute like self-made GDF and
simulation platform, we choose priority adhering the
following sequence: game engine, self-made GDF,
game editor, simulation platform, hardware, and
others. Figure 3 shows distribution of types of GDFs
applied in GDBL articles in percentage. Further, the
top five in game engine subcategory are: XNA (9
articles); First Person Shooter (FPS) game engines
(Unreal: 2 articles, Torque: 2 articles, Half-life: 1 article),
Flash (4 articles), Alice (4 articles), Scratch (3 articles).

Fig. 3. Study about types of GDF.

From statistics shown in Figure 2 and 3, we
discovered the following clues:

1) Tendency of popularity. Figure 2a and 2b present the
tendency of increasing number of publications of GDBL
articles from 2000, especially from 2006. Between 2006
and 2009, the number of GDBL publications grew with
3-7 articles per year, up to max of 25 articles in Fig 2a.
Figure 3 shows the distribution of the types of GDFs.
From the statistics, game engines are most frequently
used in GDBL method. We can infer that the
continuous development and improvement of game
engines will drive the GDBL’s development further in
near future.

2) Technology changes the ways of learning. After 2006,
there was a rapid increase in the number of GDBL
articles published. We have analyzed possible reasons

concerning to this phenomenon from three
perspectives: (a) Frequent release of new commercial
GDFs free of charge, like XNA (2007), Android SDK
(2008), and evolution of software development
environments, like Flash (acquired by Adobe in 2007)
made game development easier than before.
Technology changes or enriches the ways of learning
and teaching. (b) Cross-disciplinary curriculum started
to be used after 2006, e.g. [42, 43]. It provides the
possibility to use game development in these topics. c)
The up-growing generation of students is a part of a
game accepting culture where the public has an open
mind towards games. This culture does not only focus
on negative effects of video games such as violence and
sex, but embraces the positive aspects of games such as
social integration, various improved skills, and usage
of games for educational purposes, such as Sim-city
and Civilization. Furthermore, students that grew up
with games have become teachers in schools and may
use games in their teaching. They show how
technology changes the learning style. Whether it has

positive and negative impact on learning depends on
how we adopt the technology (game) and how it is
used in teaching and learning.

3.2 Overview of the study after the step 4

In terms of classification method used in e-learning
literature [44], a subcategory was iteratively developed
based on the thematic topics found in the articles. Each
subcategory was labeled with the disciplinary area –
programming, SE, art and other topic areas. As already
mentioned in the introduction, the intended target
audiences of the present study are educators,
practitioners, researchers and game designers that use
GDFs in learning. The thematic subcategories should
help the readers review teaching design, benefits,
empirical findings and future research topics in own
topic of interest. A similar thematic sub-categorization of
research articles was also performed in review of the
general instructional games literature [41]. The overview
of 34 articles after the step 4 is shown in Table 1 grouped
in four categories and labeled with course topics.

TABLE 1
OVERVIEW OF ARTICLES

Category Item Article Major topics Course topic
R1 [45] Students develop games on Torque game engine to learn game development. Game

development
R2 [46] Undergraduate and graduate build games by adding code in Spacewar simulator to learn artificial

intelligence.
AI

R3 [47] Undergraduates develop games on XNACS1Lib framework to learn programming. Programming
R4 [48] Students develop games on Scratch to learn basic programming. Programming
R5 [49] Students develop games on Game maker platform to learn software engineering. SE
R6 [50] Students develop games using Greenfoot to learn programming. Programming
R7 [51] Students build games by adding code in Wu’s Castle to learn programming. Programming
R8 [42] Students build 3D movies on First person shooting game engine, Maya, Photoshop to learn Digital

Character Production and Machinima.
Art

R9 [10] Students develop or modify Warcraft3 game editor, unreal game engine, etc. to learn software
development, programming, project management, artistic concepts, etc.

Mixed topics

R10 [43] Undergraduates develop games to learn outsourcing and software engineering. SE
R11 [52] Students develop games on self-made toolsets to learn programming. Programming
R12 [53] Students develop games on GameMaker to learn programming. Programming
R13 [54] Undergraduates develop Critical Mass board game on web-based platform to learn data structure. Data structure
R14 [55] Undergraduates develop games to learn programming. Programming
R15 [5] Undergraduates develop mini-games on XNA to learn programming. Programming
R16 [56] Graduate develop games on XNA to learn software architecture. SE
R17 [57] Students build games on Scratch to learn Boolean logic. Boolean logic
 R18 [58] Pupils build games by adding quiz to a web-based game shell platform to learn literacy. Literacy
 R19 [59] Students build games by adding code to a board game: RoboRally to learn artificial intelligence. AI

Research

R20 [60] Middle-school students build games on Storytelling Alice to learn information technology. Mixed topics
D21 [4] Graduate Students develop games on XNA to learn software architecture. SE
D22 [61] Middle school Students build games on adding code in StarLogo TNG to learn 3D programming. 3D

programming
D23 [62] Art design students develop games on Flash to learn programming. Programming
D24 [63] Electronics design field Students build game-like system to learn programming, distributed system,

etc.
Mixed topics

D25 [64] Undergraduate Students develop games to learn programming. Programming
D26 [65] Pupils develop games on NeverWinter Night toolsets to learn basic ICT curriculum. Mixed topics

Discus-
sion

D27 [66] Students build games by adding code to Bomberman game to learn programming. Programming
Theory T28 [67] Survey of mobile game development for different learning purposes. Mixed topics

Dev29 [68] Develop MUPPETS that students could use it for game development to learn programming. Programming Develop
ment

Dev30 [69] Develop XQUEST based on XNA that graduate could use it for game development to learning
software architecture.

SE

Dev31 [70] Develop Sheep based on Android that graduate could use it for game development to learn software
architecture.

SE

Dev32 [71] Design and develop SIMPLE framework that students could use it for game development to learn
programming.

Programming

Dev33 [72] Develop BiMIP framework that undergraduate could use it for game development to learn
programming.

Programming

Dev34 [73] Develop JGOMAS framework that undergraduate could use it for game development to learn artificial
intelligence.

AI

 These articles presents various GDFs used in GDBL

and the covered course topics are summarized in the
Figure 4. The article T28 in Table 1 presents a study for
using mobile game development as a motivational tool
and a learning context in the computing curriculums.
From their survey, the game development process can be
used in the study of AI, database, computer networks,
SE, human-computer interaction, computer graphics,
algorithms, programming, computer architectures, and
operating systems.

Fig. 4. Distribution of the course topic

Both the data from the Figure 4 and article T28 can
validate that the GDBL method can be used to teach
various topics. Most applications are in the field of
computer science, electronic, and basic IT learning.
However, there are some innovative examples of other
applications as well: Article R18 presents how a web-
based game-shell platform is used to create quiz game to
teach pupils literacy with no programming requirement.
Article R8 presents how Maya and Photoshop are used
to create the digital character and movies that could be
used as a video inside of a game.

From Table 1, it also shows that GDBL not only can be
used in higher education, but also for basic IT education
for kids in middle schools. The article D26 presents how
pupils are taught basic ICT (Information and
Communications Technology) curriculum by creating
games. And the articles R20 and D22 describe how
middle school students are taught IT and basic 3D
programming by building games. The common GDFs
used in the primary and middle schools are some GDFs
that do not require much programming experiences for
pupils, e.g. the game editor. This will be further
discussed in Section 4.

4 FINDINGS
The articles collected after the step 4 are further
discussed in this section to serve the purpose of helping
to identify and extract the significant elements to meet
our aims, like elements to be used to guide the teaching
design process when using GDFs in education.
Findings are further presented as three aspects: 1)
pedagogical context and teaching process, 2) technical
aspects, and 3) evaluation results in relation to the aims
of this study.

4.1 Pedagogical context and teaching
process

This section focuses on the current design process of
integrating GDFs in courses or exercises to make the
traditional teaching style become more engaging and
diversified. This section also provides the detailed steps
of how pedagogical theory can be used to guide the
teaching design as well as strategies to aid the teaching.

The articles collected in this section are mainly from
“Discussion” part in Table 1, and the rest is from the
“Research” and “Development” categories. The
“Discussion” articles usually have a more complete
description than the articles of other categories and
include: student background, GDF analysis, course
setting and background, and teaching design with
strategies. We are also concerned with the diversity and
flexibility of using GDBL. The diversity shows not only
that standard game engines or game frameworks are
used in teaching, e.g. XNA, but also that GDFs that are
adapted or extended for teaching, e.g. in article Dev31
they developed an extended library for the Android
platform as a GDF for a specific course. Flexibility
shows that: (a) the same GDF can be used in different
situations, e.g. article D22 use XNA to teach software
architecture and article R15 use XNA to teach
programming, (b) the teaching process can be flexible
to include other strategies than just integrating GDFs in
the learning. For instance, article R13 adds the
competition in game development for the assignments.

4.1.1 Pedagogical context

Integrating game developments in a course study can
provide increased motivation and attractiveness for the
students. What is behind this motivation and can any
theoretical context explain why GDBL can support
learning? We investigated this question in the literature
review, mainly focusing on a) why apply the GDBL
method in education, and b) how to apply it in a course

in the first place. We found it was common to present
the teaching design using a GDF in articles from the
perspective of a teacher’s experiences from the course,
not thinking this process from a learning theory
perspective.

Apart from the fact that games motivate for
learning, we do not have strong evidence from
pedagogical theory to explain why it is a good idea to
apply game development in education yet. However,
there exists literature that explains game development,
opposed to game play, as a pedagogical activity in the
classroom. M.S. El-Nasr mentioned that Seymour
Papert presented a relevant conclusion that
programming is one example of the constructionism
learning theory [10]. Constructionism involves two
activities [74]. The first is the mental construction of
knowledge that occurs with world experiences, a view
borrowed from Jean Piaget’s constructivist theories of
learning and development. The second is a more
controversial belief that new knowledge can be
constructed with particular effectiveness when people
engage in constructing products that are personally
meaningful. The important issue is that the design and
implementation of products are meaningful to those
creating them, and that learning becomes active and
self-directed through the construction of artifacts. In the
GDBL method, creating games with GDFs could be this
artifact. This could be the fundamental concept to
explain the pedagogical context of the GDBL. We can
find support for this view from the articles in Table 1.
For instance, article R9 considers the learning activity -
modifying/creating a game using GDFs as a design
activity that has educational benefits such as learning
content, skills, and strategies [75]. Design activities are
meaningful and engaging to students for exploring
skills (analysis, synthesis, evaluation, revision,
planning and monitoring), and concepts to understand
how they can be applied in the real world. Further,
GDBL can be considered as variant of several available
construction activities. Similarity, for “learning by
design”, the article D23 presents using Flash for
students from aspect of “learning by doing”--Dewey’s
theory [76, 77]. The article D26 uses “learning by
making” to learn basic ICT (Information and
Communications Technology) knowledge by making
games, and it describes that “game making” has the
potential to be a powerful learning environment
according to attributes identified by Smeets [78]. These
contexts are the evidence to explain the GDBL method
as a constructionism activity from a theoretical aspect.

Based on Seymour Papert’s opinion, another
question pops up: how to use the pedagogical theory to
support the design? A positive response is the article
Dev31. It presents a case study on the use of double
stimulation [79] to guide the exercise design. It
considers that using a GDF in education could be a
knowledge construction process and describes how to

use double stimulus to guide a teaching activity. In
schools, learners face a challenge, a problem, or a task
that has been designed for a particular pedagogical
purpose or they face situations that are likely to appear
in work and public life. In both cases the purpose of
exploiting tools is for the learners to respond to such
challenges. Based on constructionism, it constructs the
relationship between the educational tasks and the
material artifacts. This relationship is at the heart of
Vygotsky’s notion of double stimulation [79], a method
for studying cognitive processes and not just results. In
a school setting, typically the first stimulus would be
the problem or challenge to which learners are
expected to respond to. The second stimulus would be
the available mediating tools, like GDFs. Similarity,
other pedagogical strategies are also found to support
for the GDBL’s teaching design. Problem-Based
Learning (PBL) presented in the articles R6, R14, D25
and Dev33 are also considered as theoretical reference
when using GDBL methods. PBL is a pedagogical
model that emphasizes the role of a real-life problem
and a collaborative discovery process in learning [80].
Within a typical PBL setting, students are first given a
challenging but realistic problem of significant size,
relevant to the learning objectives of a given course.
They are then encouraged to solve the problem in a
group throughout the semester as independently as
possible with minimum help from the instructor of the
course. Even further, article D25 classified the process
into the inception phase of PBL by giving game
development requirements; the elaboration phase of
PBL by building a rapid game prototype; the
construction phase of PBL by implementing a game in a
project; and the transition phase of PBL by a results
evaluation. Apart from the traditional lecture-oriented
teaching approach, PBL puts more emphasis on the
instructor’s role as a facilitator, to prepare meaningful
and interesting problems, and to create and organize
course materials in a manner that students have a just
right dose of information in each class to incrementally
develop a final solution based on a GDF to the primary
problem of the semester. In addition, the articles R12
and Dev29 proposed to use collaborative learning
together with the game creation process, and article
D24 proposed using “old model of Aristotle” [81] in the
teaching design. All of them are helpful support for the
understanding of the teaching process.

The collections of above results explain the validity
of using a GDF in education from a pedagogical angle.
Basically, it explains that applying the course content
on GDFs by creating games fits well into a knowledge
construction process, and it can be integrated with the
pedagogical theory supports, like double stimulus or
PBL to achieve an improved learning process and
outcome. For instance, when we choose double
stimulus as a pedagogical theory support, the learning
design can be decomposed into two main elements: one

is a problem, task or goal that is designed by the
teacher, and the other is a responding learning activity
that is implemented by students. From the double
stimulus perspective, the first stimulus is tasks or
assignments and second stimulus can be chosen as a
corresponding tool based on the first stimulus. Its
outcome depends on teachers’ capacity to keep the two
elements match each other. A good task (first stimulus)
with inappropriate GDF (second stimulus) will not
optimize the output. With this double stimulus support
in mind, teachers should find an appropriate match
between tasks and GDFs instead of just focusing on one
aspect more than the other, like over focus on the
design of task but neglect the effort of selecting the
GDF. This is not a correct way for applying double
stimulus. Further, if the selected GDF always conflicts
with the tasks, we should re-consider changing the
tasks or GDFs, or even apply a non-game tool. It
implies that double stimulus can support learning
activity for both GDBL and non-GDBL methods. The
teachers should realize it and analyze which tool is
better for the course aim and for the students when
they apply double stimulus in teaching.

The number of case studies shows that only 30% of
34 articles include both pedagogical and technological
design when applying GDBL. This phenomenon
reminds us to improve the teaching process with
relevant theoretical support. We believe our analysis
points to the necessity for further pedagogical and
technological co-design to better facilitate awareness of
GDBL, thus better conduct the teaching process.

4.1.2 Teaching process

How to integrate GDFs in teaching and exercises is a
very important process when applying GDBL. This
section analyzes the teaching process and exercise
designs on various GDFs to achieve learning by
implementing/modifying a game using GDFs. From
our survey, we found necessary and common steps for
integration of GDFs in a course from selected articles:

The first step is to identify explicit course aims.
Figure 3 and Figure 4 show relationships between
GDBL and other fields, and provides the case studies of
how to integrate GDBL into different courses. After the
course aim is clear, a common way to integrate GDBL
in the course is that the teacher can design an
assignment asking to develop a game. The students
should then find a solution to this assignment that is in
alignment with the course content. When facing such
situation, the teacher should find an entry point in how
to integrate GDBL with the course and exercises. If this
is not possible, we recommend reading articles about
similar courses from the selected examples in Table 1
and getting some inspiration. The second step is the
exercise design and selection of GDFs. When applying
a GDF in a certain course, the selection usually
depends on the course content and exercises types, etc.
We have recognized three types of exercises: One type

is to modify the game or adding component to game
platform or simulation platform to achieve a complete
game, like in the articles D26 or Dev29. The second
type is to create a simple game as an exercise to study
or practice one or two concepts from the course
content, like in the article R9. The third type is to do a
complete game development project applying all
concepts from the course. Usually, the first and second
types can be used in the beginning of a course as a
transition period when students are not familiar with
the GDF environment, while the third type exercise can
be used as a final exercise. However, there are other
special cases, like in article R2 where only one type
exercise were selected and applied in the whole
process. The main driver of exercise design depends on
the course aim and students’ background. Selection of
GDFs is separately discussed in Section 4.2. The third
step is to do a tutorial lecture where the GDF is
introduced to the students. The fourth step is to run an
initial exercise, which should be easy to do and let the
students get familiar with the development
environment. The fifth and final step is to do exercises
that include implementation of a game. Usually, it is
accompanied with some suggestions that were applied
in most of the literature: (a) Collaborative learning: the
student groups range from 2-6 students in our statistics,
further article R12 has some discussions about how to
locate student members in groups such as regular
meetings with instructors and flexible meetings among
group members. It is important to keep instant
communication with the exercise requirements, which
would be positive to the students’ learning towards the
GDBL method. For each group member, it would be a
tradeoff between cooperative and individual work
during the work duty allocation. Further, a workshop is
suggested to be held at the end of course. (b) Support:
Technical support to help students overcome the
technical difficulties they face. It is helpful to give
examples in the beginning such as to provide optional
examples codes and exercise examples to explain the
exercise’s complexity. Also there are other strategies
like conducting a pilot study before the formal
application of GDBL. This approach only appeared in
two articles. After the whole teaching process is
completed, usually a survey to evaluate both the
teaching process and the used strategies is conducted
and a more detailed analysis is performed considering
the impact factors described in Section 4.3 based on the
evaluation from the literature.

4.2 Technical solution

The technical aspect of the GDBL method is mainly
about GDFs’ features described in the 34 articles. And
this section will not go into technical details of
development of GDFs due to out of the scope of this
paper. On contrary, we mainly analyze the GFDs
features in the context of GDBL based on our aim of
this study.

4.2.1 GDFs survey

In order to provide a guide to choose a GDF for
GDBL, we classify GDFs into two categories: GDFs for
novices, and GDFs for developers. The main focus of
GDFs for novices, including non-programmers, is to
provide visual methods for customizing game
templates and to allow creating or designing games
with little or no programming skills. The main focus of
GDFs for developers is to offer toolkits that support
development of high quality 2D/3D rendering, special
effects, physics, animations, sound playback, and
network communication in common programming
languages, such as C++, C#, and Java. The 34 articles
are classified into Table 2 and Table 3 according to the
GDFs used in the study. The unspecified GDFs or
general SDK have been excluded, e.g. the articles R10,
R11, R14, D24, D25, T28.

TABLE 2.
STUDY OF GDFS FOR NOVICES

GDFs Features Description Origin
Alice
(http://alice.org)

Alice provides a point-and-click programming
interface allowing creation of simple 3D games
and animations. It is a tool for teaching object-
oriented programming through creating simple
games or animations.

R20

Scratch
(http://scratch.mit.
edu)

Scratch provides a point-and-click
programming interface to create media-rich
games, animations and applications for the
Web. Scratch is suitable for teaching children
basic programming (variables, arrays, logic,
and user interface), and for creating simple 2D
quick-and-dirty applications.

R4,
R17

Greenfoot
(www.greenfoot.o
rg)

Greenfoot is a solid tool that provides many of
the needed constructs for creating 2D computer
games at a level that is especially appropriate
and fun for novice programmers.

R6

Maya/
Photoshop/Flash

They are mainly used for art design to create
digital characters and animations for games.
Flash could also create Flash-games.

R8,
D23

Game maker
(www.gamemaker
.nl)

Game Maker is a rapid-application
development tool for young people at home
and in schools to create two-dimensional and
isometric games.

R5,
R12

StarLogo TNG StarLogo TNG is designed upon the basic
framework of Logo. The programming is done
with programming blocks instead of text
commands, and moved programming from
abstract to visual.

D22

Game editor:
Warcraft3 Editors/
NeverWinter
Night toolsets

The editor provides a simple GUI for
customizing game templates, and requires little
or no programming skills to create interesting
game designs. The editors are implemented as
visual programming tools that allow users to
visually customize game behavior, including
character behavior, game map, and game play.

R9,
D26

Game platforms:
Bomberman
/Wu’s Castle/
Critical Mass
board game/quiz-
based web game
shell

These are concrete games, but provide visual
interface for the users to modify or add basic
code to change the game scenarios.

R7,
R13,
R18,
D27

 TABLE 3.

STUDY OF GDFS FOR DEVELOPERS
GDFs Features Description Origin
FPS game engine:
Torque game
engine /Unreal
Engine

These are original commercial game engines and
already have applied in commercial and popular
games. They are usually not free and provide
with some edit tools. And more complex than a
concrete game editor.

R1, R8,
R9,

XNA
(www.xna.com)/
XNACS1Lib
framework/
XQUEST/ BiMIP

These are game development tools based on
MFC and DirectX from windows platform and
have same structure on game loop concept.
BiMIP is a self-Made similar to XNA. And
XNA is a GDF to develop cross-platform games
for the Windows PC, Windows mobile phone,
XBOX and the Zune platform using the C#.
XNA features a set of high-level APIs targeted
for 2D and 3D games. It consists of an
integrated development environment (IDE)
along with several tools for managing audio and
graphics. XQUEST and XNACS1Lib are game
library for XNA that contains convenient game
components.

R3,
R15,
R16,
D21,
Dev30,
Dev 33

Android/Sheep
(www.android.com)

The Android mobile platform is a mobile
application development platform issued by
Google. And Sheep framework is an extended
game library for Android.

Dev31

Simulation
platforms:
Spacewar
simulator/
RoboRally/
JGOMAS
MUPPETS/
SIMPLE
framework

There are self-made simulation game or
simulator that provide the controller for the users
to modify the parameters and control the avatar
in these simulation platforms, they usually to
teach the programming and AI field.

R2,
R19,
Dev29,
Dev32,
Dev 34

 In addition, one mature GDF selected from step 3 in
Figure 1 could be a backup for novices -- CeeBot Series2
[35]. The programming language in CeeBot is very
similar to Java, C++ and C#. It has been developed
especially to make learning programming easier.
“CeeBots4 School” is a programming course for middle
and high school.

4.2.2 Criteria for selection of suitable GDFs

Choosing a GDF is considered to be an important
procedure during the preparation work for teaching.
This process can be described by the following steps: a)
Finding various GDF candidates. b) Analyze each
GDF’s features. c) Make criteria to filter GDF
candidates, and choose one or more GDFs that fit best
with the course content. Although our literature survey
shows that different course aims have different
requirements for the selection of the GDFs, there are
still some common points to share. The article D21
presents a general criteria to choose a suitable GDF for
the education in terms of theory - What makes learning
to be fun” by Malone [82]: e.g. easy to learn, allow
rapid development, and provide an open development
environment to attract students’ curiosity. R1 presents
that the GDFs should be chosen based on its cost and
license, quality, difficulty, textbooks for guidance, and

2 http://www.ceebot.com/ceebot/family-e.php

its main functionality. The article D26 explains that
their students were not to become experts in
programming, and thus they chose GDFs for novices.
The article D27 introduces their self-made GDF and
assess their own GDF by comparing it with other GDFs
in terms of interactive, amusement, easy to use, using
official program language, combine with teaching
materials, evolutionary learning mode, census analysis,
and storylines. The article Dev31 chose the GDF based
on analysis of development environment, tutorial
documents, emulator, programming language
requirements, test devices, interface of the GDF, and
possible ways to share games. Further both articles R3
and Dev31 developed a library for the GDF to make it
more suitable for the course context. If we face the
condition of only one choice, article D22 presents their
effort to improve the only GDF. The article D23
presents how they compared different versions of same
GDF, and made a choice between the newest version
with powerful functions or old version but more stable.

To summarize, there are common and essential
guidelines when selecting the GDFs: (a) Technical
environment and inexpensive (low costs) to use and acquire:
The technical environment requirements include
required operating system and hardware, what tools
are provided, are third-party tools supported and how
difficult it is to install GDF. A typical problem can be
e.g., that XNA runs only on Windows, and many
students now have PCs running Linux or Mac OS X.
The technical requirements might also be an
economical issue, as the choice of GDF might force
hardware upgrades or paying for licenses. (b) Sufficient
documentation to guide the usage of the GDF. Students
need to explore the GDF as an extra task before they
start game development on the GDF. If the resources
and materials are sufficient and easy to acquire for
beginners, it will help them shorten the time spent on
learning the technical environment. Time is an
important factor during the whole teaching process,
which will be further discussed in Section 4.3. (c) Meets
the students programming technique contexts. The GDF
must be easy to learn and allow rapid development.
This issue is also driven by time constraints. Usually, if
learning the GDF is not the major educational goal in
the course and only an aid to learn something else,
learning a new GDF will steal time from the course
schedule. An easy and friendly environment is
welcome in order to save time for the students and to
keep the focus on the course content, and less on the
GDF. (d) Not in conflict with the educational goals of the
course, flexibility to combine a GDF with teaching materials
and possible to add/change libraries that can be used within
the GDF. All GDFs have constraints related to course
content in how they have been designed or how they
are released. One example is in SE education where
open source GDFs make it possible to do white-box
testing on the GDF, while the source code for other

GDFs might not be available. Further, some GDFs
might have constraints on how you can design your
games, what design and architectural patterns you can
use, how event-handling must be managed, the
freedom of expanding the GDFs functionality and
more. These constraints must be integrated in the SE
teaching to introduce the students to the real world
where software rarely is built from scratch. In addition,
if GDFs are not easy to use, and not strongly relevant to
the course content, we can add/change a library with a
user guide to apply course content in the GDF. (e) Using
an official programming language. Conditionally, it
applies to the types of GDFs for developers using
commercial game engine with widely known
programming languages, like C#, Java and C++, which
are familiar to the students. But for the types of GDF
for novices, if the course just lets students know the
data structure, an official language is not really needed.
But special programming languages are not widely
accepted and as useful as official programming
languages in a long run if the students will do more
software programming in the future. (f) Amusement and
interactive. The GDF should provide a visual and stable
development environment to attract students’ curiosity
and engagement. A game development assignment in a
user-friendly game development environment could be
a good motivation for the students compared to
traditional assignments. For example, most students
think it is more interesting to work on a game project
than e.g. a system for a bank. (g) Ability to develop games
in a cross-platform environment. Conditionally, it applies
to the types of GDFs for developers. One good example
is XNA where the students can choose developing their
games either in PC, mobile (Windows Phone 7), and/or
console (Xbox360). Other game engines such as
Unity3D also allow developing the game in
multiplatform. The advantages are: (1) Provide
students degrees of freedom in developing their games
for the platform of their choice, and (2) Learn about the
strengths and constraints of different platforms (e.g.
user interface, viewing screen size, resolutions,
resources such as memory and processor power,
storage for saving/loading the game, and etc.) in game
development.

We consider the above to be the most important
criteria to guide the teachers in selecting one or more
GDFs for their courses. And some criteria could be
changed according to the specific context of the
teaching environments. For instance, the target
students are middle school pupils and the course goal
is to let students familiarize themselves with
information technology, it is not necessary to choose
(e). In principle, the course aims and students context
are the two fundamental and prioritized attributes to
decide the selection of GDFs.

4.3 Evaluation

Besides the pedagogical analysis and the GDFs’

analysis in GDBL, this section summarizes the
evaluation data from the articles mainly in the
“Research” category. Furthermore, we hope to find
empirical evidence to support the effectiveness of GDBL.
Specifically, in order to approach the third aim of the
study, the following information was drawn from each
article (if provided in the article): (a) Major empirical
findings related to the actual effectiveness of GDFs used
as an aid in teaching, and (b) Factors that impact the
teaching outcome in terms of the experiment data from
the articles are also posed. It is not a simple process to
assess the effectiveness of GDBL, and it covers at least
two aspects: Teachers’ and students’ satisfaction of using
this method. The teachers’ concerns are the researcher’s
understands of the course (not applied where the
researchers and the teachers are the same), the GDFs’
features, matching between the selected GDFs and the
course content, and teachers’ expertise on games. The
students’ concerns involve having interesting exercises
and the difficulty of learning extra content – the GDF.
Our literature review focuses on these aspects and Table
4 shows a summary of the evaluation process of GDBL
in each article. Comparing the students’ and teachers’
satisfaction, students’ satisfaction could be the most
important result since directly relates to teaching
effectiveness. And the following results are extracted
from the literature and used to validate the effectiveness
of GDBL and the impact factors related to it. The results
in Table 4 are mainly shown in three categories: (a)
Experiment Data that describes the collected data and
materials for the measurement of the effectiveness of the
results, (b) Conclusion of effectiveness of GDBL, and (c)
Impact Factor that describes the elements that effect
outcomes, and is classified into positive, neutral and
negative categories based on the articles’ data and
conclusions.

From evaluation data in Table 4, the common
expressions of measurements are: (a) Students’ grade or
score on the course exam. (b) Project results, including
analysis of project size and classes they used in game
programming; obtaining certain requirements of
exercises by percentage; length of codes; percentage
completed of the projects and time spent on the projects
or the GDF, etc. (c) Questionnaire surveys to measure
following aspects: students’ satisfaction about the
exercise, course and GDF; students background;
students’ interest in game development topic; course
and exercise learned and open questions to get
suggestions for the improvement of a course, etc. (d)
Observation and feedback to perceive the fluency of the
teaching process and interaction between students and
the teacher.

From Table 4, the effectiveness of each article is
collected. Generally, 22 of 23 articles have positive
conclusion about using game development in a course in
most of aspects, e.g. student motivation, engagement in
lectures and exercises. Only the article R5 presents that

learning by game design did not have the expected
outcome, and that the time constraint was a critical issue.
Students indicated that they needed more time than two
weeks to write a satisfactory 2D game. And finally, it
explained that they did not have an adequate number of
participants to have an accurate picture about the effects
of game design on students’ motivation and attitudes.

Apart from validating the effectiveness of using
GDBL methods, the impact factors that could cause
positive or negative outcome deserve to be analyzed.
From Table 4, we have summarized what should be
noticed when applying GDBL. The following items are
the most common issues that appeared repeatedly in in
our survey:

1) Communication between the researcher and teacher
towards the understanding of the course content: This item is
not applied to the condition where the teacher and the
researcher is the same person. If the researcher designs
the method and the researcher invites the teachers to
adopt it in schools, good communication and mutual
trust between them are crucial to achieving the desired
effect. The article R15 states that the teachers should
become comfortable with using GDBL and spend a bit
more time on it compared to traditional method in a
certain course, otherwise it maybe cause a
misunderstanding or bias against GDBL. Another aspect
is that the researcher may worry about the teacher not
totally understands the game effectiveness in education,
and how game motivation can be successfully be used to
improve the course design, which is mentioned in the
articles R3, R6, R15, and R18. This indicates that the
researchers should help teachers in gaining self-
confidence, and provide constant support while the
decision is made to apply GDBL in the curriculum.

2) Teamwork: This factor could have both positive and
negative effects on the teaching results if students work
in groups. First, the team size and working environment
must be considered in advance. For instance it was
found in article R10 that a big team size could have
positive impact on outsourcing course teaching, and
article R1 claims that Lab environment with teamwork
could help improving the effectiveness of cooperative
learning. On contrary, as the team gets larger, it becomes
more difficult to set the time for general meetings and
joint work hours. Further, it also means complex
relations in a large group. A serious issue - bottleneck
could happen in the game development process. If one
member of the team does not perform, then the entire
game development process slows down. Second, instant
communication in a team has significant impact. Article
R2 mentions that group work can help weaker students.
Article R12 also agrees with this statement, but it
describes that unexpected situations can occur during
the teamwork to hinder the instant communication
which the teacher should take care of. Third, the R14
article concludes that students need more experience in
working effectively in teams. Most of the case studies

found in the articles provide the evidence that teamwork
can be used together with GDBL and the nature of
teamwork is suitable for cooperative learning and
teacher should take care of the issues that may happen
during teamwork. However, most of articles did not
mention the strategy of competitive learning in GDBL.
Only the articles R1 and R13 apply both cooperative and
competitive learning in the exercises with a positive
feedback in both cases.

3) GDF relevance: The most mentioned aspects related
to GDFs that impact the outcome are: (a) The articles R2,
R3, R12, and R15 present the advantages of using
interactive graphical GDFs. It shows that visual graphics
can provide instant feedback, making student engaged
in programs, (b) The articles R3 and R4 describe how a
GDF can improve students’ confidence in programming
tasks, and (c) The articles R1, R8, R9 R17, and R19
emphasize the need to analyze of the GDF’s features in
the light the course content, and detailed GDF tutorials
should be conducted before it is used in the later
exercises.

4) Students’ background: In the article T28 surveys, the
students’ background was that most of them had played
games as they were growing up. This is a suitable pre-
requisite to apply GDBL. But a negative aspect is the
addictiveness to games, as mentioned in the articles R16
and R17. Some students may focus too much on the
game and game development thus losing focus on what
they shall learn in the course. This means that the design
of the course and the project must be carried out in such
a way that the students are forced to learn and use
course content. From the articles R5 and R11, it was also
noticed that the diversity of student background causes
some difficulty of using GDBL. For instance, the
programming experience of the students strongly affects
the choice of GDF between the ones for novices and the
ones for developers. For instance, to use XNA/XQUEST
or Android/Sheep from Table 3 for developers, the
students must know Object-Oriented (OO)
programming well and be familiar with OO design
patterns and OO principles. And some other GDFs
require learning a specialized and simplified
programming language for game creation, which is more
suitable for students without programming experiences.

5) Teachers’ requirements: Teachers’ attitude of applying
the GDBL method in the course is an essential aspect in a
teaching process. The articles R3, R6, and R15 suggest
that the faculty should have relevant technical
background about the applied GDFs. The article R14 also
mentions they should prepare and solve the anticipated

problems they may face during teaching. It is essential
that the course staff have technical experience in the
selected GDF to provide help for students and to avoid
the focus shifting from the course content to technical
matters.

6) Time constraints and workload: This problem has
been stressed repeatedly in several articles. Most of
articles found that the time was limited. For instance, the
article R5 mentions that time constraint caused to cut
down the time in beginning phase. The article R13
reports that some students complain about insufficient
time to complete the project. So there are some advices
correspondingly, like the article R18 proposes some
suggestions on the time-consumption, and the article R3
suggests reading the background material better before
the class in order to save class time for students. To help
with the time management, a comprehensive time
schedule should be prepared in advance for both the
teacher and the students. Specifically, a series
countermeasures can be: 1) Make sure that the students
learn, understand, and apply the GDBL-project process;
2) Force students to set a mandatory rule for teams to
create the schedule (strict milestones and deadlines); 3)
Get involved with the students early to make sure that
they make a realistic goal; 4) Teacher continuously
monitor their progress and guide them to make
adjustments, if needed, in order for them to complete
their projects.

Other atypical factors could be found in Table 4.
Further, Section 4.3 also provides a reference of how to
assess the GDBL method. This indicates that future
evaluation data of using GDBL is also beneficial, e.g.
[83]. As it not only reveals the efficiency of using the
framework along with how much the students actually
learn from game projects, but also the social
relationships’ investigation of learner-learner, learner-
teacher and teacher-researcher.

5 CONCLUSIONS
From the above findings, we summarize a guideline

for integrating a GDF in learning with teaching
strategies. Figure 5 shows a simplified diagram that
gives an overview of the design process of applying
GDBL (adapted from article D21 and Section 4.1.2). It
contains four elements (Course aim, Pedagogical
theory support, GDF resource pool, and Impact factor),
two methods (learning by creating and learning by
modifying games) and six steps in the teaching process
and two subjects (students and teachers).

Fig. 5. A guideline for technical and pedagogical co-design of GDBL

Basically, the course aim has the fundamental affects
on the selection of GDF. And the pedagogical theory
(Section 4.1.1) could support the teaching design. The
GDF resource pool (Section 4.2.2) could be the reference
for the selection of GDFs. Usually, during steps A to B in
the teaching process in the Fig. 5, pedagogical theory
support and GDF resource pool play important roles in
these two initial steps. Impact factors concern the whole
process, but we suggest considering them at beginning
as well. In terms of the course aim, pedagogical theory
support and GDFs resource pool, the teaching process
(Section 4.1.2) starts with designing the lectures and
exercises with the selected GDF. After the lectures and
tutorials, the course delivery starts and students begin
the design and implementation of their projects. For the
evaluation framework (Section 4.3), teachers/researchers
are suggested to collect data using surveys. Based on the
analysis of collected and teaching experiences, they can
improve the teaching process framework. Here, we use
a compact case to explain how each element in Figure 5
works in a certain course if the GDBL method is
applied. The assumption is that the course aim is to
teach basic programming rules for beginners. The
choice could be made between “learning by modifying
games” using a game editor with scripting, or
“learning by creating games” using a GDF for novices.
Then, we should consider the relationships between the
problems and tools from the perspective of double
stimulus or use other pedagogical theories to construct
the learning process, for example PBL. With this in
mind and according to criteria in Section 4.2.2,
commonly used tools can be selected from the GDF
resource pool - GDFs for novice in Table 2 or use
another GDF if no suitable GDF is found in Table 2.
After finishing steps of A to B in teaching process we
start the lecture and the introduction of both exercises
and GDFs. Later, students commence the
implementation individually or in groups. During the
whole teaching process from A to D, the impact factors

are relevant but optional. For instance, we can choose a
graphical interactive GDF, and estimate time to be
spent on lectures and exercises. Applying the impact
factors in the teaching process depends on the courses’
situations. That is why we have the evaluation and
analysis steps E and F in Figure 5. The feedback data
can help to validate the choice in each step - whether
we choose a right task or a suitable GDF or focus on the
most relevant impact factors in a course. In addition,
since many elements interact in GDBL, which makes
the real situation more complex to analyze and evaluate.
Thus, an effective evaluation helps to validate the
whole teaching process, and it is not only judged by
teachers’ own experiences, but also get opinions from
students’ aspect.

From the experience of accomplishing this literature
review, we still have the following limitation: (a) The
scope of data search and collection from four scientific
search engines is relative limited; (b) Due to the game
research field is younger than other traditional research
fields, amount of articles with empirical data is still
limited in our the survey, it maybe cause the pitfall of the
evaluation results, e.g. generalization; (c) Some topics
deserve further discussion. E.g. Cross-disciplinary
courses, like game development course in article R1
covers programming and art design, and machinima
course in article R8 have 3D animation and movie
creation. Both of them could be further discussed since
GDFs plays different roles -- main tool in article R1 and
an innovative auxiliary in article R8.

This study has shown that GDBL do have the
potential power to help students to learn different
curriculums. We hope that the study will provide useful
guidance to educators, practitioners and researchers in
the area of GDBL, as well as to GDF designers, and that
it will inform their future professional practices and
research.

REFERENCES
[1] S. M. Dorman, "Video and Computer Games: Effect on Children and

Implications for Health Education," Journal of School Health, vol. 67,
pp. 133-138, 1997.

[2] M. Prensky, "Digital game-based learning," Computers in
entertainment, vol. 1, pp. 21- 24, 2003.

[3] J. Blow, "Game Development: Harder Than You Think," Queue, vol.
1, pp. 28-37, 2004.

[4] A. I. Wang and B. Wu, "An Application of a Game Development
Framework in Higher Education," International Journal of
Computer Games Technology, vol. 2009, 2009.

[5] K. Sung, et al., "Game-Themed Programming Assignment Modules:
A Pathway for Gradual Integration of Gaming Context Into Existing
Introductory Programming Courses," IEEE Transactions on
Education, 2010.

[6] G. Sindre, "Experimental validation of the learning effect for a
pedagogical game on computer fundamentals," IEEE transactions
on education, vol. 52, p. 10, 2009.

[7] B. A. Foss and T. I. Eikaas, "Game Play in Engineering Education
Concept and Experimental Results," International Journal of
Engineering Education, vol. 22, pp. 1043-1052, 2006.

[8] A. I. Wang, et al., "LECTURE QUIZ - A Mobile Game Concept for
Lectures," presented at the In 11th IASTED International Conference
on Software Engineering and Application (SEA 2007), 2007.

[9] A. I. Wang, "An Evaluation of a Mobile Game Concept for Lectures,"
presented at the IEEE 21st Conference on Software Engineering
Education and Training, 2008.

[10] M. S. El-Nasr, "Learning through game modding," Computers in
entertainment, vol. 4, 2006.

[11] G. Lukas, "Uses of the LOGO programming language in
undergraduate instruction," presented at the Proceedings of the
ACM annual conference - Volume 2, Boston, Massachusetts, United
States, 1972.

[12] M. Micco, "An undergraduate curriculum in expert systems design
or knowledge engineering," presented at the Proceedings of the 15th
annual conference on Computer Science, St. Louis, Missouri, United
States, 1987.

[13] J. P. Higgins and S. Green, Front Matter: John Wiley & Sons, Ltd,
2008.

[14] K. S. Khan, et al., Undertaking systematic reviews of research on
effectiveness: CRD's guidance for carrying out or commissioning
reviews: CRD report, Number 4, second ed., NHS centre for revies
and lissemination, University of York, 2001.

[15] M. Papastergiou, "Exploring the potential of computer and video
games for health and physical education: A literature review,"
Computers & Education, vol. 53, pp. 603-622, 2009.

[16] J. Kirriemuir and A. McFarlane, "Literature review in games and
learning," Report 8.2004.

[17] Y. En, et al., "Enhancing software engineering education using
teaching aids in 3-D online virtual worlds," in 37th Annual Frontiers
In Education Conference - Global Engineering: Knowledge Without
Borders, Opportunities Without Passports, (FIE '07) 2007, pp. T1E-8-
T1E-13.

[18] B. Wu, et al., "Experiences from Implementing an Educational
MMORPG," in International IEEE Consumer Electronics Society's
Games Innovations Conference (GIC 2010), 2010.

[19] A. Baker, et al., "Problems and Programmers: an educational
software engineering card game," in Proceedings. 25th International
Conference on Software Engineering, 2003, pp. 614-619.

[20] F. McCown, "Teaching a game programming class for the first time:
tutorial presentation," Journal of Computing Sciences in Colleges,
vol. 25, pp. 131-132, 2010.

[21] C. Leska and J. Rabung, "Learning O-O concepts in CS I using game
projects," SIGCSE Bull., vol. 36, pp. 237-237, 2004.

[22] E. Ferguson, et al., "Video game development using XNA game
studio and C#.Net," Journal of Computing Sciences in Colleges, vol.
23, pp. 186-188, 2008.

[23] R. H. Seidman, "Alice first: 3D interactive game programming,"
SIGCSE Bull., vol. 41, pp. 345-345, 2009.

[24] F. Xiang, et al., "Work in progress; A sandbox model for teaching
entrepreneurship," in 2010 IEEE Frontiers in Education Conference,
2010, pp. F2C-1-F2C-2.

[25] M. Kolling, "Greenfoot: introduction to Java with games and
simulations," Journal of Computing Sciences in Colleges, vol. 25, pp.
117-117, 2010.

[26] A. Azemi and L. L. Pauley, "Teaching the introductory computer
programming course for engineers using Matlab," in 38th Annual
Frontiers in Education Conference (FIE 2008), 2008, pp. T3B-1-T3B-
23.

[27] A. Pardo and C. D. Kloos, "Deploying interactive e-labs for a course
on operating systems," presented at the Proceedings of the 6th
conference on Information technology education, Newark, NJ, USA,
2005.

[28] P. Rooney, et al., "Cross-Disciplinary Approaches for Developing
Serious Games in Higher Education," in Conference in Games and
Virtual Worlds for Serious Applications, 2009 (VS-GAMES '09) 2009,
pp. 161-165.

[29] A. W. B. Furtado, et al., "Cegadef: a collaborative educational game
development framework," presented at the Proceedings of the 2003
conference on Interaction design and children, Preston, England,
2003.

[30] H. C. Yang, "A General Framework for Automatically Creating
Games for Learning," in Fifth IEEE International Conference on
Advanced Learning Technologies (ICALT'05), 2005.

[31] K. Kardan, "Computer role-playing games as a vehicle for teaching
history, culture, and language," presented at the Proceedings of the
2006 ACM SIGGRAPH symposium on Videogames, Boston,
Massachusetts, 2006.

[32] S. Arakawa and S. Yukita, "An Effective Agile Teaching Environment
for Java Programming Courses," in 36th Annual Frontiers in
Education Conference,, 2006, pp. 13-18.

[33] W. W. Y. Lau, et al., "Learning programming through fashion and
design: a pilot summer course in wearable computing for middle
school students," SIGCSE Bull., vol. 41, pp. 504-508, 2009.

[34] S. v. Delden, "Industrial robotic game playing: an AI course," J.
Comput. Small Coll., vol. 25, pp. 134-142, 2010.

[35] T. Phit-Huan, et al., "Learning Difficulties in Programming Courses:
Undergraduates' Perspective and Perception," in International
Conference on Computer Technology and Development,
2009(ICCTD '09), 2009, pp. 42-46.

[36] T. E. Daniels, "Integrating engagement and first year problem
solving using game controller technology," in Frontiers in Education
Conference, 2009. FIE '09. 39th IEEE, 2009, pp. 1-6.

[37] A. Striegel and D. Van Bruggen, "Work in progress; Development of
a HCI course on the Microsoft Surface," in 2010 IEEE Frontiers in
Education Conference, 2010, pp. S3F-1-S3F-6.

[38] A. Wang, "Interactive Game Development with a Projector-Camera
System," in Technologies for E-Learning and Digital Entertainment.
vol. 5093, ed: Springer Berlin / Heidelberg, 2008, pp. 535-543.

[39] J. Dempsey, et al., "The instructional gaming literature: Implications
and 99 sources. ," Technical report no. 96-1. University of South
Alabama, College of Education.1996.

[40] J. Dempsey, et al., "Since Malone’s theory of intrinsically motivating
instruction: What’s the score in the gaming literature?," Journal of
Educational Technology Systems, 22(2), 173–183., 1993-1994.

[41] R. Hays, "The effectiveness of instructional games: A literature
review and discussion.," Technical report 2005-004. Orlando, FL:
Naval Air Warfare Center, Training Systems Division.2005.

[42] M. C. v. Langeveld and R. Kessler, "Two in the middle: digital
character production and machinima courses," SIGCSE Bull., vol. 41,
pp. 463-467, 2009.

[43] W. L. Honig and T. Prasad, "A classroom outsourcing experience for
software engineering learning," SIGCSE Bull., vol. 39, pp. 181-185,
2007.

[44] S. Hrastinski, "What is online learner participation? A literature
review," Computers & Education, vol. 51, pp. 1755-1765, 2008.

[45] A. D. Ritzhaupt, "Creating a Game Development Course with
Limited Resources: An Evaluation Study," ACM Transactions on
Computing Education, vol. 9, pp. 1-16, 2009.

[46] A. McGovern and J. Fager, "Creating significant learning experiences
in introductory artificial intelligence," SIGCSE Bull., vol. 39, pp. 39-
43, 2007.

[47] R. Angotti, et al., "Game-themed instructional modules: a video case
study," presented at the Proceedings of the Fifth International
Conference on the Foundations of Digital Games, Monterey,
California, 2010.

[48] G. Fesakis and K. Serafeim, "Influence of the familiarization with
"scratch" on future teachers' opinions and attitudes about
programming and ICT in education," presented at the Proceedings
of the 14th annual ACM SIGCSE conference on Innovation and
technology in computer science education, Paris, France, 2009.

[49] Y. Rankin, et al., "The impact of game design on students' interest in
CS," presented at the Proceedings of the 3rd international conference
on Game development in computer science education, Miami,
Florida, 2008.

[50] M. Al-Bow, et al., "Using game creation for teaching computer
programming to high school students and teachers," SIGCSE Bull.,
vol. 41, pp. 104-108, 2009.

[51] M. Eagle and T. Barnes, "Experimental evaluation of an educational
game for improved learning in introductory computing," SIGCSE
Bull., vol. 41, pp. 321-325, 2009.

[52] W. K. Chen, "Teaching object-oriented programming laboratory with
computer game programming," IEEE transactions on education, vol.
50, p. 197, 2007.

[53] Yulia and R. Adipranata, "Teaching object oriented programming
course using cooperative learning method based on game design
and visual object oriented environment," in 2nd International
Conference on Education Technology and Computer (ICETC),, 2010,
pp. V2-355-V2-359.

[54] R. Lawrence, "Teaching data structures using competitive games,"
IEEE Transactions on Education, vol. 47, pp. 459-466, 2004.

[55] J. Huang, "Improving undergraduates' teamwork skills by adapting
project-based learning methodology," in 5th International
Conference on Computer Science and Education (ICCSE), 2010, pp.
652-655.

[56] B. Wu, et al., "An Evaluation of Using a Game Development
Framework in Higher Education," Proceedings / Conference on
Software Engineering Education and Training, 2009.

[57] J.-F. Weng, et al., "Teaching Boolean Logic through Game Rule
Tuning," IEEE Trans. Learn. Technol., vol. 3, pp. 319-328, 2010.

[58] R. Owston, et al., "Computer game development as a literacy
activity," Computers & Education, vol. 53, pp. 977-989, 2009.

[59] I. Timm, et al., "Teaching Distributed Artificial Intelligence with
RoboRally," in Multiagent System Technologies. vol. 5244, ed:
Springer Berlin / Heidelberg, 2008, pp. 171-182.

[60] L. Werner, et al., "Can middle-schoolers use Storytelling Alice to
make games?: results of a pilot study," presented at the Proceedings
of the 4th International Conference on Foundations of Digital
Games, Orlando, Florida, 2009.

[61] K. Wang, et al., "3D game design with programming blocks in
StarLogo TNG," presented at the Proceedings of the 7th international
conference on Learning sciences, Bloomington, Indiana, 2006.

[62] H. Chun-Hsiung, et al., "Computer Game Programming Course for
Art Design Students by Using Flash Software," in 2008 International
Conference on Cyberworlds, 2008, pp. 710-713.

[63] B. Lennartsson and E. Sundin, "Experience from a course aiming at
understanding system development with focus on system design
and integration," in Frontiers in Education, 2002. FIE 2002. 32nd
Annual, 2002, pp. T3G-1-T3G-6 vol.1.

[64] J. Ryoo, "Teaching object-oriented software engineering through
problem-based learning in the context of game design," in 21st
Conference on Software Engineering Education and Training, 2008,
p. 137.

[65] J. Robertson and C. Howells, "Computer game design:
Opportunities for successful learning," Computers & Education, vol.
50, pp. 559-578, 2008.

[66] W.-C. Chang and Y.-M. Chou, "Introductory C Programming
Language Learning with Game-Based Digital Learning," in
Advances in Web Based Learning - ICWL 2008. vol. 5145, ed:
Springer Berlin / Heidelberg, 2008, pp. 221-231.

[67] S. Kurkovsky, "Can mobile game development foster student
interest in computer science?," in International IEEE Consumer
Electronics Society's Games Innovations Conference, (ICE-GIC
2009), 2009, pp. 92-100.

[68] K. J. Bierre and A. M. Phelps, "The use of MUPPETS in an
introductory java programming course," presented at the
Proceedings of the 5th conference on Information technology
education, Salt Lake City, UT, USA, 2004.

[69] B. Wu, et al., "XQUEST used in software architecture education," in
International IEEE Consumer Electronics Society's Games
Innovations Conference,(ICE-GIC 2009), 2009, pp. 70-77.

[70] B. Wu, et al., "Extending Google Android's Application as an
Educational Tool," presented at the The 3rd IEEE Information
Conference on Digital Game and Intelligent Toy Enhanced Learning
(DIGITEL 2010), 2010.

[71] H. C. Jiau, et al., "Enhancing Self-Motivation in Learning
Programming Using Game-Based Simulation and Metrics," IEEE
Transactions on Education, vol. 52, pp. 555-562, 2009.

[72] A. Garrido, et al., "Using graphics: motivating students in a C++
programming introductory course," in EAEEIE Annual Conference,,
2009, pp. 1-6.

[73] A. Barella, et al., "JGOMAS: New Approach to AI Teaching," IEEE
Transactions on Education, vol. 52, pp. 228-235, 2009.

[74] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas.
New York, 1980.

[75] S. Puntambekar and J. L. Kolodner, "Toward implementing
distributed scaffolding: Helping students learn science from design,"
Journal of Research in Science Teaching, vol. 42, pp. 185-217, 2005.

[76] J. Dewey, Democracy and education: An introduction to the
philosophy of education. New York, 2005.

[77] J. Dewey, Experience and education. New York, 1997
[78] E. Smeets, "Does ICT contribute to powerful learning environment

in primary education," Computer and Education, pp. 343-355, 2005.
[79] L. S. Vygotski , Mind in society: The development of higher

psychological processes, 1978.
[80] H. S. Barrows, "A taxonomy of problem-based learning methods,"

Medical Education, vol. 20, pp. 481-486, 1986.
[81] B. Lennartsson and E. Sundin, "Fronesis-the third dimension of

knowledge, learning, and evaluation," in 31st Annual Frontiers in
Education Conference, 2001, pp. T2B-14-19 vol.1.

[82] W. M. Thomas, "What makes things fun to learn? heuristics for
designing instructional computer games," presented at the
Proceedings of the 3rd ACM SIGSMALL symposium and the first
SIGPC symposium on Small systems, Palo Alto, California, United
States, 1980.

[83] A. I. Wang, "Extensive Evaluation of Using a Game Project in a
Software Architecture Course," Transactions on Computing
Education (ACM), vol. Volume 11,, February 2011. 2011.

TABLE 4
 EVALUATION DATA COLLECTION AND IMPACT FACTOR

Title Sample Comparison Experiment Data Conclusion of Effectiveness Outcome of Impact factor
R1 22 students No Quantitative data:

1) Questionnaire of student background
2) Survey project results of student game
play preferences
3) Questionnaire on student satisfactory
4) Questionnaire on interest level in
game development careers
5) Questionnaire on student assessment
of gains
6) Questionnaire on helpful course
elements

Students generally satisfied
the elements in the course
and resources (including
teamwork).

Positive:
1) Lab environment and teamwork helped to
archive the effectiveness of cooperative learning.
2) Teaching game development required a shift
from teacher-centered to student-centered learning
environment.
3) GDFs provided an environment that students
could integrate wide variety of skills and
knowledge.
4) Motivation factor: competition.
Negative:

7) Student Peer-Evaluation 5) Poor textbook for GDF provided negative effect.
R2 33 students

(28
undergradu
ates and 5
graduate)

No Quantitative data:
1) General questionnaire

Qualitative data:
2) Students feedback about the course

Generally, students enjoyed
the project and it fulfilled all
of the criteria of a successful
project outlined at the
beginning plan.

Positive:
1) Flexible and interactive simulation platform.
2) Providing examples for difficulty part in the
project that was out of the course aim.
3) Group project and discussion helped weaker
students.
Neutral:
4) Difficulties at first year, but smoothed out by get
more teaching experiences and previous evaluation
for the improvement.

R3 21
undergradu
ates

No Quantitative data:
1) General questionnaire

Qualitative data:
2) Video recording about course process
3) Faculty feedback

The GDF was excellent
catalysts, enabling faculty to
begin exploring teaching with
game topics and help students
to be more engaged.

Positive:
1) Because of the immediate interactive graphical
feedback, students were engaged and motivated to
experiment with the programs.
Neutral:
2) Instructor’s attitude toward the interest in GDF.
Negative:
3) Visual feedback, although a powerful learning
tool, could also be a source of distraction for
students.
4) Time spending should not involve the reading of
background material in class (better before class).
5) Limited classroom time was challenging for
students.

R4 35 female
students
from both
preschool
and
university

No Quantitative data
1) Questionnaire: student opinions about
GDF
2) Questionnaire: effect of students
familiarization with scratch in using of
ICT education
3) Questionnaire (pre and post-test)
attitudes against internet in education
and application development

Scratch was user friendly and
satisfied by the students, and
it also has a rather positive
effect on students’ opinions
and attitudes towards
computer programming and
ICT educational value in
education.

Positive:
1) Scratch helped to setup confidence of students in
exploration of ICT in education.

R5 20
undergradu
ates

No Quantitative data:
1) Questionnaire: Likert-scale (pre and
post survey in game design course)

Game design had both
positive and negative impact
on students’ attitudes about
computer science, game
design and further
development of programming
skills.

Positive:
1) Students who had prior programming experience
can express interest in game design.
Negative:
2) Time constraints: assignment might be better
received and increase student interest if students
were given more time and equal emphasis on other
phases.
3) Game design topic course had a negative impact
on students’ interest in pursuing a CS degree.
4) Not adequate number of participants to have an
accurate picture of true effects of game design on
students’ motivation and attitudes.

R6 26 high
school
students
and 8
teachers

Yes Quantitative data:
1) Questionnaire: Assignment survey
2) Questionnaire with pre and post
survey: self-assessment on art and design
3) Questionnaire survey on teachers’
attitude

It showed great promise for
engaging high school
students programming and
increasing interest in
computer related fields of
study. Both teachers and
students felt a significant
improvement in computer
programming and self-
confidence.

Positive:
1) Researchers trained both students and teachers
by applying GDBL.
Neutral:
2) Teacher attitudes and self-confidence about
GDBL’s effect the teaching process.

R7 26 students
in
experimenta
l group. 29
in control
group

Yes Quantitative data:
1) Each phase of study
2) Pre and post-test score
3) Learning difference between groups
and subgroups
4) Game statistics
5) Questionnaire survey of each task

Students in the game-first
group felt they spent less time
on assignments and all
students preferred the
learning game to the
program.

Positive:
1) “ Wu castle” was more effective than a
traditional programming assignment for learning,
and could help prepare students to create deeper,
more robust understanding of computing concepts
and improving their perceptions of homework.

R8 -- No Quantitative data:
1) Questionnaire to survey students
feedback
2) Compared with whole school average
score

Students got higher score in
this course than school’s
average score.

Positive:
1) Assessing the GDF in the starting.

R9 26 students No Quantitative data:
1) Questionnaire to survey assignment

Using game development
motivated students to learn

Positive:
1) GDBL could learn several subjects and concepts.

R9 26 students No Quantitative data:
1) Questionnaire to survey assignment
difficulty with Likert-scale
Qualitative data:
2) Observation of students progress

Using game development
motivated students to learn
and allowed them to apply
and visualize the utility and
application of the concepts.

Positive:
1) GDBL could learn several subjects and concepts.
Neutral:
2) Different game engines implicitly stressed the
use and development of certain skills.

R10 40
undergradu
ate students

No Quantitative data:
1) Pre and post-test questionnaire to
survey: Changed perception of
outsourcing concept
2) Questionnaire: SE outcomes
Qualitative data:
3) Observation: Discoveries in
communications

Students improved their
understanding of outsourcing,
developed better appreciation
for the importance of SE
techniques, and created ad-
hoc communication protocols
between teams.

Neutral:
1) Enlarging the teams’ sizes to other universities to
create an inclusive teaching environment, which
had limitation that only applied in outsourcing
teaching.

R11 38 students
(19 teams)

No Quantitative data:
1) Length of codes according to grade
2) Project size and classes
3) Methods used in programming
4) Weekly working hours
5) Proportion of work: discussion,
coding, thinking, graphics, audio
6) Object-Oriented skills applied in code.

Positive experience had been
gained in teaching the topic
by using game framework.

Neutral:
1) To keep the students motivated, and teachers
tailored the course for each student.
2) Using game development to achieve depth of
objects and object interactions training.

R12 124
students

No Quantitative data:
1) Grade
2) Questionnaire to survey students
attitude

Learning by creating game
was able to improve the
student grades largely.

Positive:
1) Object-Oriented programming concept became
easier to understand after seeing object design
visually in the GDF.
2) Students felt happy with using cooperative
learning system, games development and visual
design.
Negative:
3) The group members’ communication was
hindered by the in front of computers.
4) GDBL could help with the passing rate, but still
have improving space for graduation aim.

R13 55 students No Quantitative data:
1) User survey of game project:
percentage completed
2) Login times
3) Questionnaire with Likert-scale:
Student satisfaction
4) Questionnaire with Likert-scale:
Tournament features

Combination of game
development and friendly
student competition was a
significant motivator for
increased student
performance.

Positive:
1) Tournament could increase student participation
and motivation.
Negative:
2) Students’ common complaint of not having
adequate time to complete the project.

R14 -- No Quantitative data:
1) Individual and group creativity levels
perceived by students
2) Students’ perception of abilities
developed at intermediate or high levels
Qualitative data:
3) Future career survey

Game project development
with collaborative learning
was manageable and effective
for increasing students’
teamwork capability and
increase the employability
confidence.

Positive:
1) Project (game project development) based
learning motivated their team collaboration.
Negative:
2) Teacher attitudes: Initial resistance for problems
that students teams faced could be discouraging to
faculty members who did not expect it.
3) Teamwork: students were not born knowing how
to work effectively in teams. A Flawed team-based
instructional model had negative effect.

R15 CS1:22 in
GTA and
10 in
Console
CS2 : 18 in
GTA and 9
in Console

Yes Quantitative data:
1) Success rate (Passing rate)
2) Assignment score
3) Self-reported time spent on
assignment
4) Post Assignment Survey
5) Pre and Post course survey
Qualitative data:
6) Feedback from faculty

Interactive graphical
assignments could be a good
tool for teaching CS1
students. The success of
GDBL hinged on the
instructor’s expertise and
enthusiasm.

Positive:
1) GDF feature: interactive graphical application
supported experimentation and visualization.
Negative:
2) Teacher’s background and attitudes towards the
games impacted the output of a lecture, faculty
“dropped” GDBL in the end at first experiment, but
became more comfortable later.

R16 46 students No Quantitative data:
1) Questionnaire about learning process,
trade-off between technical and
architecture problems, integration of
game development and course, learning
outcome.

GDF was easy to use and not
conflict with course aim. A
good GDF could save
development time.

Neutral:
1) GDF selection influenced learning process and
extra technical issues, but students could learn a lot
through a game project.

R17 27 in
control
group, 43 in
experimenta
l group

Yes Quantitative data:
1) score of the pre- and post-test by a test
sheet.

Results showed the proposed
game development activity
could have higher learning
achievements compared to
the traditional lecturing.

Positive:
1) GDF issues: choosing modifying game according
to course topic with simple scenario. And tutorials
for GDF were prepared well. Understanding game
topic could make engage learning.

R18 125
experimenta
l students
and 186
control
group
students

 Yes Quantitative data:
1) GRADE test scores (pre-test, post-
test)

Qualitative data:
2) Interviews on teacher’s feedback

Game development helped to
improve student content
retention, etc.

Positive
1) Optimum amount of time to spend at a sitting on
game development activities was about 45 min by
observation.
Negative:
2) Too little time allotted to the development of
game and insufficient gaps between each game
creation activities.

R19 33
undergradu
ate

No Quantitative data:
1) Questionnaire with Likert in general

Using GDBL indicated the
motivation of the students
was higher and they
understand complex
problems easier and exercise
could be done more rapidly.

Positive:
1) GDF was searched and chose based on the
requirements.

R20 22 middle-
schoolers

No Quantitative data:
1) Questionnaire: pre and post surveys of
participants information
2) Programs analysis.
Qualitative data:
3) Daily log
4) Interviews on students

Findings suggested the
middle school students could
use Alice to make games to
build information technology
fluency.

Neutral:
1) To provide proper challenge in class.
2) Difficulty in using GDF to finish the assignment

T28 NA No Quantitative data:
1) Survey of students background
2) Relevant application about Mobile
GDBL

Mobile game development
could be successfully
integrated into computer
science education.

Positive:
1) Student background: student lived in game
environment and game development exercise could
be a good motivation.

Dev30 19 graduate No Quantitative data:
1) Questionnaire survey with Likert
scale, and System Usability Scale survey

XQUEST enhanced XNA in
suitability as a teaching aid in
SE learning,

Positive
1) To design the XQUEST from the previous
assessment experiences.

Dev32 57 in
group1, 45
in group2

Yes Quantitative data:
1) Questionnaire result of student user
experience
2) Score for pre/post test

SIMPLE improved both
learning motivation and
programming skills for the
students.

Positive:
1) Use GQM approach in developing game metrics
for students’ exercise.

Paper 12:

GDF8: Bian Wu, Alf Inge Wang, "Comparison of Learning Software
Architecture by Developing Social Applications vs. Games on the Android
Platform", International Journal of Computer Games Technology, Volume
2012, Article ID 494232, 10 pages, 2012. ISSN: 1687-7047 EISSN: 1687-
7055. DOI: 10.1155/2012/494232

Comparison of Learning Software Architecture by Developing
Social Applications vs. Games on the Android Platform

Bian Wu, Alf Inge Wang

Dept. of Computer and Science

Norwegian University of Science and Technology

Bian@idi.ntnu.no, Alfw@idi.ntnu.no
Abstract: This article investigates how much the chosen application domain in a development project affects the learning
and perception of a software architecture course. Specifically, it describes an empirical study where the focus was on
discovering differences and similarities in students working on development of social applications vs. students working
on development of games using the same Android development platform. In 2010-2011, students attending the software
architecture course at the Norwegian University of Science and Technology (NTNU) could choose between four types of
projects: Development of a robot controller using Java on the Khepera Robot Simulator, development of a game on the
XNA platform, development of a game on the Android platform, and development of a social application on the Android
platform. Independent of the chosen type of project, all students had to go through the same phases, produce the same
documents based on the same templates, and follow exactly the same process. This study focuses on the Android projects,
to see how much the application domain affects the course project independent of the chosen technology. Our results
revealed some positive effects for the students doing game development compared to social application development to
learn software architecture, like motivated to work with games, a better focus on quality attributes such as modifiability
and testability during the development, production of software architectures of higher complexity, and more productive
coding working for the project. However, we did not find significant differences in awarded grade between students
choosing the two different domains.

Keywords: Game based learning, Game development based learning, Android, Evaluation, Software engineering education,
Software Architecture

1 Introduction

Computer games and video games have become very popular for children and youths, and play a
prominent role in the culture of young people [1]. Games can now be played everywhere in technology-rich
environments equipped with laptops, smart phones, game consoles (mobile and stationary), set-top boxes
and other digital devices. From this phenomenon, it is believed that the intrinsic motivation that young
people show towards games could be combined with educational content and objectives into what Prensky
calls “digital game based learning” [2].

Besides of an abundant appearance of games in young students life, game development technology has
matured and become more advanced [3]. Based on various existing game development environments, the
whole duty of game development process can be divided into several expert domains and roles such as game
programmer, 3D model creator, game designer, musician, animator, play-writer, etc. The process of
integrating game content with technology can be simplified through the usage of game engines and available
information on the web from various user and expert communities. For instance, Microsoft’s XNA game
development kit provides the game loop function to draw and update the game contents, and it also provides
convenient game development components to load the different format of graphics, audio, and videos. This
makes it possible for game fans such as students with or without programming background to modify
existing games or develop new games. They can design and implement their own game concepts with these
game creation tools, and learn the developing skills and relevant knowledge, and accumulate related
practical experience.

In this context, not only can games be used for learning, but also the game development tools can be used
for studying relevant topics within computer science (CS), software engineering (SE) and game
programming through motivating assignments. Generally, games can be integrated in education in three
ways[4, 5]. First, games can be used instead of traditional exercises motivating students to put extra effort in
doing the exercises, and giving the teacher and/or teaching assistants an opportunity to monitor how the
students work with the exercises in real-time, e.g. [6, 7]. Second, games can be played as a part of a lecture
to improve the participation and motivation of students, e.g. [8, 9]. Third, the students are asked to modify or
develop a game as a part of a course using a Game Development Framework (GDF) to learn skills within CS
and SE, e.g. [10]. We label the latter learning approach Game Development-Based Learning (GDBL). And
the GDF denotes the toolkits that can be used to develop or modify games, e.g. game engine, game editors,
or game (simulation) platforms, or even any Integrated Development Environment (IDE), like Visual C++,
Eclipse, J2ME, and Android SDK since all of them can be used to develop games.

This article focuses on an evaluation where we wanted to discover similarities and differences between
making students learn software architecture through game development vs. social application development

(e.g. Weather Forecast, chatting software) using the Android platform. The motivation for bringing game
development into a CS or SE course is to exploit the students’ fascination for games and game development
to stimulate them to work more and better with course material through the project.

2 Related works
This section describes the research context and previous results about using GDBL method in software

engineering field.

2.1 Research contexts

The earliest similar application of learning by programming in a game-like environment was in early
1970s. The Logo [11], the turtle graphics, is one of the oldest libraries that was used to introduce computing
concepts to beginners. The concept was based on a “turtle” that could be moved across a 2D screen with a
pen, which could be positioned on or off the screen, and thus, may leave a trace of the turtle’s movements.
Programming the turtle to draw different patterns could be used to introduce general computing skill, such as
procedural operations, iteration, and recursion. Further, in 1987, Micco presented the usage of writing a
tic-tac-toe game for learning [12]. Afterwards, other studies have been conducted using specialist game
programming toolkits such as Stage Cast Creator [13], Gamemaker [14], Alice [15] and Neverwinter Nights
[16]. Besides, article [17] presents a investigation for using mobile game development as a motivational tool
and a learning context in computing curriculum. From their survey, it shows the relation between game
programming and other computer science fields – Game development can be used in study of Artificial
intelligence (AI), database, computer networks, SE, human-computer interaction, computer graphics,
algorithms, programming, computer architecture, and operating system.

These studies indicate that making games is motivating and develops storytelling as well as technical
programming skills. The nature of the task of making games is slightly different in purpose-built
environments, and the balance of the roles assumed by the learner shifts accordingly. More recent game
programming toolkits tend to have a stronger visual aspect than Logo, either in the sense that they enable
designers to easily create graphical games or because they have a visual programming language, or both.
This shifts the emphasis away from low-level programming, enabling learners to focus on the other roles as
designers or writers. Thus, we investigate how GDFs are used in education through an experiment study and
explore the evolution of the traditional lecture to be dynamic, collaborative and attractive to the students
under current technology rich environment. However, this assertion needs to be further supported by relevant
theory, application experiences, evaluation results, and empirical evidence. This is one motivation for
sharing our experiences and empirical results in field of GDBL on using Android in a software architecture
course.

2.2 Course and Project setting

The software architecture course at Norwegian University of Science and Technology (NTNU) (course
code TDT4240) is taught in a different way than at most other universities, as the students also have to
implement their designed architecture in a project. The motivation for doing so is to make the students
understand the relationship between the architecture and the implementation, and to be able to perform a real
evaluation of whether the architecture and the resulting implementation fulfill the quality requirements
specified for the application. The architecture project in the course has similarities with projects in other
software engineering courses, but everything in the project is carried out from a software architecture
perspective. Throughout the project, the students have to use software architecture techniques, methods, and
tools to succeed according to the specified project.

The software architecture project consists of the following phases:

i. COTS (Commercial Off-The-Shelf) exercise: Learn the technology to be used through developing a

simple game.

ii. Design pattern: Learn how to use and apply design pattern by making changes in an existing system.

iii. Requirements and architecture: List functional and quality requirements and design the software

architecture for a game.

iv. Architecture evaluation: Use the Architecture Trade off Analysis Method (ATAM) [18] [19] [20]

evaluation method to evaluate the software architecture of project in regards to the quality

requirements.

v. Implementation: Do a detailed design and implement the game based on the created architecture and

on the changes from the evaluation.

vi. Project evaluation: Evaluate the project as a whole using a Post-Mortem Analysis (PMA) method

[21].
In the first two phases of the project, the students work on their own or in pairs. For Phases 3-6, the

students work in self-selected teams of 4-5 students. Meantime, students have one fixed primary assigned
quality attribute to focus on during the project. For the secondary quality attribute, students can chose the
quality attribute they like. The students spend most time in the implementation phase (six weeks), and they
are also encouraged to start the implementation in earlier phases to test their architectural choices
(incremental development). During the implementation phase, the students continually extend, refine, and
evolve the software architecture through several iterations.

2.4 Previous results

Previous, the goal of the project has been to develop a robot controller for the WSU Khepera robot
simulator (Robot) in Java [22] with emphasis on an assigned quality attribute such as availability,
performance, modifiability, or testability. The students were asked to program the robot controller to move a
robot around in a maze, collect four balls and bring them to a light source in the maze. In 2008, the students
were allowed to choose between a robot controller project and a game development project. The process, the
deliverables and the evaluation of the project were the same for both types of projects - only the domain was
different. In the Game project, the students were asked to develop a game using the Microsoft XNA
framework and C#. Finally, an evaluation about software architecture course are conducted [23, 24]. The
evaluation is based on data from a project survey, the project deliverables from the students and other
accessible course information. The main conclusion from study was that game development projects can
successfully be used to teach software architecture if we consider Robot as an evaluation benchmark.

Integrating our experiences on running of game project in software architecture course in 2008, we
conducted a new option to add one more COTS - Android in software architecture course project during
2010-2011. The students could now in addition to the Java Robot project and the XNA Game project, choose
to develop a social application or a game in Android. Independent of the COTS and the domain chosen, the
students had to focus on the same software architecture issues during the project and follow the same
templates. The introduction of game and social Android projects allowed us to compare how the domain the
students work on in the project affect the learning and the project experiences independent of the COTS. A
detailed description was in following chapters.

3 Method

This section describes the research method to get the relevant data for our experiment of using Android
development in software architecture projects.

3.1 Aim

This article focuses on using the same COTS but with different development domains to investigate
whether the different domains produce different output. In our previous research, the effectiveness of GDBL
conclusion was based on the different COTS - Robot and XNA. This paper excludes game developed in
XNA and robot controller developed in Java, and only focuses on the Android platform and development of
social application vs. game application. Our evaluation covers five topics: distribution of chosen domain,
students’ perception of the project, project deliveries and code quality and complexity, students’ Effort, and
awarded project grades.

3.2 GQM approach

The comparison of the social and game project should help to discover the differences and reveal the
effects of introducing a project on the Android platform. This evaluation is a quasi-experiment, not a
controlled experiment. The research method used is based on the Goal, Question Metrics (GQM) approach
[25] where we first define a research goal (conceptual level), then define a set of research questions
(operational level), and finally describe a set of metrics to answer the defined research questions
(quantitative level). In our case, the metrics used to give answers to the research questions are a mixture of
quantitative and qualitative data. Table 1 shows the GQM approach used to analyze game development
project in software architecture course.

Table 1. GQM Table

Analyze Software development project

For the purpose of Comparing social application vs. game application domain on same COTS

Goal

With respect to Difference and effectiveness of two domain of the projects

From the point of view of Researcher & Educator

In context of Students in software architecture course

Questions Q1: Are there any differences in how
the students perceive the project for
students choosing an Android game
project vs. students choosing an
Android social project?

Q2: Are there any
differences in the
software architectures
designed by students
doing an Android
game project vs.
students doing an
Android social
project?

Q3: Are there any
differences in the
implementation effort
in the project by
students doing an
Android game project
vs. students doing an
Android social
project?

Q4: Are there any
differences in the
performance of
students doing an
Android game
project vs. students
doing an Android
social project?

M1: Number of students choosing
game project vs. social project.

M3: Project reports M4: Source code files M6: Project score Metric

M2: Questionnaire survey with
5-Level Likert Scale: Strong disagree
(1)- Disagree (2)- Neutral (3)-Agree
(4)-Strong Agree (5)

 M5: Time spent

3.3 Procedures

When students start the project and follows the projects phases, they should report the time they spend on
each phase of the project. The first two phases allow the students individually or in pairs to get familiar with
the COTS and architectural and design patterns. The main work of the project is carried out in the phases 3-5
and includes requirement specification, architectural design, architectural evaluation, implementation and
testing. The students produce a delivery for each phase, which is evaluated by the course staff, and feedback
is given to improve before the final delivery. At the end of phase 5, the students will produce a final
delivery, which is evaluated and graded by the course staff. After completing phase 5, the students have to
answer a questionnaire that focuses on how the students perceive the project. In phases 6, the students must
carry out a post-mortem analysis of their project as a whole to reflect on their successes and their challenges.

4 Results

In 2010 and 2011, the students could choose to do the project using three COTS: Robot (Java), XNA (C#)
and Android (Java). The students’ selection of COTS is shown in Figure 1, where 36 students chose Khepera
robot (19%), 55 students chose XNA (27%) and 102 students (54%) chose Android. Of the students that
chose Android, 58 students (57%) chose social application vs. 44 students (43%) game. If we look at the
domains the students chose we see that 51% chose game development, 30% chose social applications and
19% chose robot controller.

Figure 1. Distribution of selection of type of software architecture projects

The statistics of figure 1 clearly reveals that the majority of students prefer game development compared
to other domains. And Android is the most popular COTS by far, and we believe this is due to its openness
for developers, development in Java, attractive devices, innovative features and development, and a new way
of sharing developed applications through Android marked.

In the first phase of the project, the students were asked to fill in a questionnaire on the reasons to choose
the COTS and domain. The top reasons list were: 1) Programming reason (familiar with Java or C#)
(70.7%), 2) To learn about the COTS (Robot, XNA, Android) (59.5%), 3) Games motivation or amusement

reasons (40.1%), 4) Social application motivation (39.5%), 5) To learn about the domain (Robot, Game,
Social) (34.2%), 6) Hardware motivation, running games on Android phone, Zuneplayer (33%), and 7)
Make games for Android Market or XNA club (24.5%). From above data, we found that the game domain
has advantages in drawing students’ attention and its attractive peripherals, like hardware or software
markets, and so does android social domain. This was not the case for the Robot domain.

The following subsections focus on the analysis of whether the domain game vs. social cause any
significant different output in the following four aspects: 1) Students perception of the project, 2) The design
complexity of software architectures, 3) Students’ implementation effort in the project, and 4) Students’
score in projects.

4.1 Differences in how students perceived the project

A project survey was conducted one week after the students completed their software architecture project.
The goal of this survey was to reveal possible differences in the students’ perception of the project between
teams working with social projects vs. teams working with game projects on the same COTS - the Android
platform. Statements in the survey made the students reflect on how the project helped them to learn
software architecture.

The hypothesis defined for this survey was the following:

H0: There is no difference in how students doing game project and social project on the same COTS -
Android perceive the software architecture project.

To test hypothesis we used Kruskal-Wallis Test [26] since it is a non-parametric method for testing
equality of population medians among groups [24]. This test is usually for: 1) users cannot assume a normal
population and 2) the sample sizes of the two groups are different. Table 2 shows the results of
Kruskal-Wallis Test on the statements PS1-PS6. 38 of 44 game project students replied while 35 out of 58
social project students replied the questionnaire. Each item in the questionnaire is responded to by assigning
a scale value from 1 to 5, where 1 indicates strong disagreement and 5 indicates strong agreement.

Table 2. Wilcoxon Test of the statements PS1-PS11

Statement COTS Average Median Standard
deviation

P

Game 3.45 4 1.06 PS1: I found it difficult to evaluate the other group’s architecture in
the ATAM?

Social 3.77 4 0.91

0.178

Game 3.05 3 1.09 PS2: I found it difficult to focus on our assigned quality attributes

Social 3.57 4 0.85

0.024

Game 3.21 3 0.93 PS3: I found it easy to integrate known architectural or design
patterns

Social 2.94 3 1.03

0.332

Game 3.71 4 1.20 PS4: I spent more time on technical matters than on architectural
matters?

Social 4.06 4 1.03

0.175

Game 3.50 4 0.86 PS5: I have learned a lot about software architecture during the
project.

Social 3.31 4 0.99

0.552

Game 1.13 1 0.34 PS6: I would have chosen other project if I could go back in time

Social 1.20 1 0.41

0.289

From the test results, the lowest significant difference (P<=0.05) in questionnaire’s response is PS2
(P=0.024). We conclude that the Android game and Android social has significant difference on the students
perceived the difficulty to focus on the assigned quality attributes in the project. The median of Likert scale
score is 3 for android game, but 4 for android social. It indicates that android game project students were
neutral on this PS5, but social project students have a tendency on the agreement of PS5. One possible
explanation is that quality attribute, like terms - modifiability or testability linked to a game concept is easier
to imagine and catch the students’ attention to look into it. But social applications may have more fixed
impression in students’ life and cause less deep effect than games to motivate students to think. Others
statements have no significant difference from students perception.

Further, even there is no significant difference for the two other low P-value, the average value of PS1
and PS4 still indicates that students from game project found less difficult to evaluate the other group’s
architecture in the ATAM and spent less time on technical matters than the students from social projects. In

addition, PS6: the students had to answer whether they would have chosen another project if they could go
back in time. Figure 2 shows a more detailed statistics for it.

Figure 2. Reponses to PS6: Would you have chosen the same project if you could go back in time.

Figure 2 shows that there is a higher percentage of the social project students that would have chosen
another project (20%) compared to the game project students (13%).

As an overall, the survey reveals one significant difference that students from game projects have a better
focus on quality attributes. Statements got low p-values (P1, P2, P4) that revealed the tendency that game
teams were more positive feedback than the social teams on how they perceived the project.

4.2 Differences in the design of software architecture

It is difficult to evaluate software architectures empirically, but we have chosen to do so by comparing the
number of design patterns the students used, the number of main modules/classes identified in the logical
view of the software architecture, and the number of hierarchical levels in the architecture. We admit that
that there are many sources of errors in this comparison, as the two domains are so different. However, the
emphasis in this course is on using software design patterns and presenting the different views of the
software architecture in sufficient detail with emphasis on the logical view. The empirical data should
highlight the differences between the two types of projects if any. The empirical data has been collected by
reading through and analyzing the final project reports from 12 game project teams and 16 social project
teams.

1) Use of design patterns
Table 2 presents the descriptive statistics of the number of architectural and design patterns used in the

Social and the Game projects. The results in Table 2 indicate that there are some differences in how patterns
are used in the two types of projects.

Table 2. Number design patterns used

 Average Standard
deviation

Max Min

Game 2.67 1.92 7 1 Design
Patterns

Social 1.56 0.73 3 1

Table 3 presents Kruskal-Wallis Test results and shows that there are no statistically significant

differences in the number of design patterns produced by the two different project types.

Table 3: Hypothesis tests on number of design patterns used

Hypothesis COTS N Median P

Game 12 2 No difference in number of used design patterns

Social 16 1

0.111

 Table 3 indicates no statistically significant difference for the number of design pattern used for the two
types of projects. From reading through the projects reports, Figure 3 presents the distribution of design
patterns used by social teams and by game teams. The charts show that the Observer was the most popular
for both types of project. Further, that the Abstract Factory, State pattern was among the top three for Game
teams, singleton and template pattern was among the top three for social teams. The Game projects had more
diversity in applying architecture and design patterns than social project. For instance, game projects used
eight design patterns compared to six design patterns in social projects as shown in Figure 3.

Figure 3. Distribution of usage of design patterns for game and social projects

Even there is no significant difference, but the low P-value is close to 0.1. The median in table 3 implies
that game teams used more design patterns in their projects, it may cause that game projects used more types
of patterns than social projects in an overall statistics showed in figure 3.

2) Software Architecture Complexity
Two metrics were chosen to indicate the complexity of the software architecture [24]: (1) The number of

main modules or main classes described in the logical view of the software architecture, and (2) The number
of hierarchical levels in the model presented in the logical view of the software architecture. The reason the
logical view was chosen for computing complexity is that the logical view is the main one that gives the best
overview of the designed architecture. Table 4 lists the measurements of the number of main
modules/classes and the number of hierarchical levels in the logical view of the software architecture for
social and game projects.

Table 4. Measurement of software architecture complexity

 Numbers of Main Modules/classes Number of Levels in architecture

 Game Social Game Social

Average 14 9.7 3 1,75

Standard deviation 4.9 6.6 0.6 0,77

Max 21 28 4 3

Min 7 3 2 1

Table 4 shows that the game project teams on average have almost four more main modules/classes

(28%) than the social teams and the standard deviation is lower. Further, the number of levels in the
architecture in game projects can be decomposed into almost twice as many levels compared to social
projects.

Table 5. Hypothesis tests on architectural complexity

Hypothesis COTS N Median P

Game 12 14 No difference in
number of main
modules/classes Social 16 7

0.021

Game 12 3 No difference in
number of levels in
architecture Social 16 2

0.000

Table 5 gives the results from Kruskal-Wallis Test on a number of main modules/classes and numbers of
levels in the architecture. Both of the tests give low P-values (P <0.05). Specifically, the tests show that there
is statistically significant difference on the number of main classes and levels in architecture. From this
result, it implies game project has more complexity in architecture levels than social projects, it may be due
to they used more patterns to implement in their game projects that cause this difference.

4.3 Differences in the Effort Put into the Project

To evaluate the effort of each project that students put into, two indicators are used as the measurement
criteria: 1) Time spent on the project, and 2) Structure and size of project files and number of lines of code.

1) Time spent

We have asked students to estimate on how many hours the project teams worked in the software
architecture project during the phases 3-5 (core phases of the project). Table 6, shows the estimated number
of hours given by each team.

Table 6. Time spent on the project for each team

Time per team (Hours) Game Social

Average 334 338

Standard Deviation 133.7 114.7

Max 520 535

Min 110 183

Based on each team’s time effort, we ran the Kruskal-Wallis Test on the difference on hours spending in
the project for each team.

Table 7. Hypothesis on hours spending

Hypothesis COTS N Median P

Game 12 362 No difference on time
spending for each
team Social 16 334

0.889

From above results, there is no statistically significant difference on time spent on the project for game
teams and social teams. On contrary, the time spending is quite similar.

2) Project analysis

Further, we chose to look at metrics from the implementation to give an estimate on how much was
produced during the project. It can give a good indication of the complexity of the software architecture and
the resulting implementation of the application [24]. Since both types of teams used Android and the
domains are comparable in terms of complexity, we expected to find difference in productivity. During the
development process, they were free to use online resource or other open source libraries for Android to save
coding time for the software architecture design.

The following metrics were chosen to compute the effort of the student teams: 1) Number of source Files
(NoF); 2) Number of Comments in code (NoC); 3) Lines of source Code not counting empty lines or
comments (LoC).

Table 8 presents a comparison of the implementation metrics for the game projects and social projects,
only java code files to be counted in the table, and the external library code files and resource files are
excluded.

Table 8. Implementation metrics from the architecture projects

NoF NoC LoC

Game Social Game Social Game Social

Average 37 24 1016 536 2585 1949

Standard deviation 13 13 807 755 1172 1368

Max 54 45 2571 2886 4173 5082

Min 15 5 206 37 844 390

Table 9 shows the results from Kruskal-Wallis Test on the difference in the number of files and the
number of lines of code produced by the two different types of project.

Table 9. Hypothesis tests on project implementation codes

Hypothesis N Median P

Game 12 2672 No difference in number
of lines of code

Social 16 1523

0.114

The results from the Kruskal-Wallis Test indicate that there is no statistically significant difference in
LoC between the two types of project. But the low P-value is close to 0.1. The average value from Table 8
indicates game teams put more effort on the implementation, like coding, making comments, structure codes
into more files during the project.

From the Table 6-9, we can found: the game project teams have produced on average almost one third as
much code (133% more) in similar time spending (334 vs. 338). It implies that game project teams are more
productive to put effort in coding, comments to construct a complex game software architecture in similar
time spending than social project teams.

4.4 Difference in the project grades

The project score is between 0-30 points and takes 30% of the final grade. The project grades interval are
classified as: A: Score 90%; B: Score 80% and score <90%; C: Score 60% and score <80%; D: Score

50% and score <60%; E: Score 40% and score <50%; F: Score <40% (fail).

In order to investigate if there were any differences in how the group scored (0-30 points) on the project
for students that has chosen game and social projects on Android. The Kruskal-Wallis Test was used to test
this hypothesis, as we cannot assume a normal population and the sample size of the two groups is different.
Table 10 presents the results of the Kruskal-Wallis Test on the difference in project grades for each game
and social student.

Table 10. Kruskal-Wallis Test on different in project score

Hypothesis COTS N Median P

Game 44 26 No difference in project score groups get
from doing Game vs. Social project

Social 58 26

0.997

There is no significant difference in the project score using same COTS for development. We run the
social project in 2010 and game project in 2011 separately. The project implementation requirements and
templates are keeping the same from phase 3 to 6 in two years and evaluation process and persons are the
same, we can identify that students accomplished both projects under the same conditions. It reflects the
difficulty could be similar. So, we only make a conclusion on the project score has no significant difference,
In order to get an overview of the scores, Figure 4 gives the distribution of grades on the project for the two
types of projects (game vs. social).

Figure 4. Grades distribution on project

5 Validity Threats

We now turn to what are considered to be the most important threats to the validity of this evaluation.

5.1 Internal Validity.
The internal validity of an experiment concerns “the validity of inferences about whether observed

covariation between A (the presumed treatment) and B (the presumed outcome) reflects a causal relationship
from A to B as those variables were manipulated or measured” [27]. If changes in B have causes other than
the manipulation of A, there is a threat to internal validity.

There are two main internal validity threats to this evaluation. The first internal threat is that the sample
of two groups used in the evaluation is not randomized. The students were allowed to choose either a
Android game or a Android social project. We do not believe that one specific type of student chose one
project over the other, thus harming the evaluation results. The second internal threat is if there were any
differences how the students had to perform the project independently of the domain chosen. Independently
of doing a social or a game project, the students had to go through exactly the same phases in the project and
deliver exactly the same documents based on the same document templates in both 2010 and 2011. We have
identified one difference in how the two types of projects were carried out. The 1- 2 phases of the project
phase was different for the game and social projects students. These two phases are not a part of inclusive
data and material used to evaluate the project. We do not believe that these differences have had any major
impact in the way the students did or performed in their projects since it is the preparation phases, we
noticed and excluded of them.

5.2 Construct Validity.
Construct validity concerns the degree to which inferences are warranted, from (1) the observed persons,

settings, and cause and effect operations included in a study to (2) the constructs that these instances might
represent. The question, therefore, is whether the sampling particulars of a study can be defended as
measures of general constructs [27].

In the evaluation of using Android project in a software architecture course our research goal was to
investigate the difference and similarity of game project and social project on Android platform. The GQM
approach was chosen to detail this goal into four research questions with supporting metrics. In order to give
answers to these four research questions the data sources and metrics available from our software
architecture course were chosen. It cannot be claimed that the selected data sources and metrics in our
evaluation give evidence for all the conclusions, but they are all strong indicators contributing to a picture
that describes the differences between the two project types. Through the evaluation we have used various
methods for comparing the results. The choice of methods is based on the best way of describing and
visualizing the differences between the two groups using the available data.

5.3 External Validity.
The issue of external validity concerns whether a causal relationship holds (1) for variations in persons,

settings, treatments, and outcomes that were in the experiment and (2) for persons, settings, treatments, and
outcomes that were not in the experiment [27].

The results reported in this article are most relevant for other teachers thinking of introducing game
projects as a part of their software architecture course. Further, the results are also relevant for teachers that
want to introduce game projects in SE and CS courses, as many of these courses have similar characteristics.
A limitation of this study is that the subjects in the evaluation are CS or SE students who have completed
their first three years. It is not evident that the results are valid for students without any or less than three
years background in CS or SE.

6 Conclusions

Based on our previous experiment of using XNA and current experiment of using Android in software
architecture, we found game motivation and surround interesting peripherals are one of most attractive
factor. Besides of the introduction of a new COTS – Android in a software architecture course, the goal of
this article is to identify the difference output of same COTS and get evaluation result to answer the four
research questions.

The first research question asked if there are any differences in how students choosing Android game vs.
Android social projects perceived the software architecture project (RQ1). The statistically significant
finding is that social project students found it more difficult to focus on the assigned quality attributes than
game project (P = 0.024). Other data from lower P-value also reflect that game teams have more positive
attitudes towards project requirements than the social team. In addition, the results show that 20% of the

students doing an Android social project would have chosen the other projects if they had to do the project
again, which is more than the android game project students.

The second research question asked if there are any differences in how students choosing Android game
vs. social projects designed their software architectures (RQ2). Even the analysis of the project reports
concludes that no significant difference on design pattern used, but the low P-value close to 0.1 reveals that
game teams applied more diverse patterns in their projects than social team. Further, the statistically
significant difference shows that the software architectures produced in game projects were on average more
complex than the architectures produced in social projects (p < 0.05).

The third research question asked if there were any differences in the effort the students put into the
project when they worked with an Android game or an Android social project (RQ3). The results show that
in similar time spending, teams working with game projects produced on average almost 133% as much
code as teams working with Android social projects and game project students had customs to make twice
detailed comments on the codes and organized codes into more files than social projects students.

The fourth and final research question asked if there are any differences in the performance for students
doing a Game project vs. students doing a social project (RQ4). The comparison of the two types of projects
showed that there was no statistically significant difference in the project.

According above conclusion and compared with previous research on XNA and Robot project used in
software architecture course [24], we found that there exist quite similar conclusions for both game domain
(XNA and Android game) in respect to: 1) Stable popularity of game domain; 2) Better perception of project
from students aspect. 3) More design patterns used and high complexity of software architecture. 4) Same
output in project score as social project.

Refer to Android COTS specifically, the main differences to Android game projects could be used an
interesting and effectiveness tool in software architecture teaching in aspect to motivate students on design
of complex architecture with applied more patterns and more productive coding work than Android social
projects. Further, compared to XNA and Robot simulator, Android is an attractive platform to the students
from the students’ survey, that encourage us to conduct more practices on improvement of using Android as
a development tool in software engineering practices, and inspire us the possibility to bring more choices,
like iPhone SDK into COTS domains.

Reference

[1] S. M. Dorman, "Video and Computer Games: Effect on Children and Implications for Health
Education," Journal of School Health, vol. 67, pp. 133-138, 1997.

[2] M. Prensky, "Digital game-based learning," Computers in entertainment, vol. 1, pp. 21- 24, 2003.

[3] J. Blow, "Game Development: Harder Than You Think," Queue, vol. 1, pp. 28-37, 2004.

[4] K. Sung, et al., "Game-Themed Programming Assignment Modules: A Pathway for Gradual
Integration of Gaming Context Into Existing Introductory Programming Courses," IEEE Transactions on
Education, 2010.

[5] A. I. Wang and B. Wu, "An Application of a Game Development Framework in Higher Education,"
International Journal of Computer Games Technology, vol. 2009, 2009.

[6] B. A. Foss and T. I. Eikaas, "Game Play in Engineering Education Concept and Experimental Results,"
International Journal of Engineering Education, vol. 22, pp. 1043-1052, 2006.

[7] G. Sindre, "Experimental validation of the learning effect for a pedagogical game on computer
fundamentals," IEEE transactions on education, vol. 52, p. 10, 2009.

[8] A. I. Wang, "An Evaluation of a Mobile Game Concept for Lectures," presented at the IEEE 21st
Conference on Software Engineering Education and Training, 2008.

[9] A. I. Wang, et al., "LECTURE QUIZ - A Mobile Game Concept for Lectures," presented at the In 11th
IASTED International Conference on Software Engineering and Application (SEA 2007), 2007.

[10] M. S. El-Nasr, "Learning through game modding," Computers in entertainment, vol. 4, 2006.

[11] G. Lukas, "Uses of the LOGO programming language in undergraduate instruction," presented at the
Proceedings of the ACM annual conference - Volume 2, Boston, Massachusetts, United States, 1972.

[12] M. Micco, "An undergraduate curriculum in expert systems design or knowledge engineering,"
presented at the Proceedings of the 15th annual conference on Computer Science, St. Louis, Missouri, United
States, 1987.

[13] M. Habgood, et al., "The educational and motivational content of digital games made by children," in
CAL' 05: Virtual Learning, Bristol, UK., 2005.

[14] Yulia and R. Adipranata, "Teaching object oriented programming course using cooperative learning
method based on game design and visual object oriented environment," in 2nd International Conference on
Education Technology and Computer (ICETC),, 2010, pp. V2-355-V2-359.

[15] L. Werner, et al., "Can middle-schoolers use Storytelling Alice to make games?: results of a pilot
study," presented at the Proceedings of the 4th International Conference on Foundations of Digital Games,
Orlando, Florida, 2009.

[16] J. Robertson and C. Howells, "Computer game design: Opportunities for successful learning,"
Computers & Education, vol. 50, pp. 559-578, 2008.

[17] S. Kurkovsky, "Can mobile game development foster student interest in computer science?," in
International IEEE Consumer Electronics Society's Games Innovations Conference, (ICE-GIC 2009), 2009, pp.
92-100.

[18] B. Ahmed. and M. Steve., "Using ATAM to Evaluate a Game-based Architecture," in Workshop on
architecture-Centric Evolution(ACE 2006), hosted at the 20th European Conference on Object-Oriented
Programming ECOOP., Nantes, France, 2006.

[19] Len Bass, et al., Software architecture in practice: Second Edition: Addison-Wesley Professional,
2003.

[20] R. Kazman, et al., "The architecture tradeoff analysis method," in Engineering of Complex Computer
Systems, 1998. ICECCS '98. Proceedings. Fourth IEEE International Conference on, 1998, pp. 68-78.

[21] A. I. Wang and T. Stalhane, "Using Post Mortem Analysis to Evaluate Software Architecture Student
Projects," in Software Engineering Education & Training, 18th Conference on, 2005, pp. 43-50.

[22] WSU. (2009, Download WSU_KSuite_1.1.2.

[23] B. Wu, et al., "An Evaluation of Using a Game Development Framework in Higher Education,"
Proceedings / Conference on Software Engineering Education and Training, 2009.

[24] A. I. Wang, "Extensive Evaluation of Using a Game Project in a Software Architecture Course,"
Transactions on Computing Education (ACM), vol. Volume 11,, February 2011. 2011.

[25] V. Basili, "Software modeling and measurement: the Goal/Question/Metric paradigm," 1992.

[26] W. H. Kruskal and W. A. Wallis, "Use of Ranks in One-Criterion Variance Analysis," Journal of the
American Statistical Association, vol. 47, pp. 583-621, 1952.

[27] W. R. Shadish, et al., Experimental and quasi-experimental designs for generalized causal inference:
Boston, MA, US: Houghton, Mifflin and Company, 2002.

Declarations on Co-author Consensus

Co-Authors Papers
Alf Inge Wang Paper 1-Paper 12
Yuanyuan Zhang Paper 1
Sveinung Kval Bakken Paper 2
Erling Andreas Børresen Paper 3
Knut Andre Tidemann Paper 3
Jan-Erik Strøm Paper 6 and Paper 7
Trond Blomholm Kvamme Paper 6 and Paper 7
Anders Hartvoll Ruud Paper 8
Wan Zhen Zhang Paper 8

To Whom It May Concern,

Statement of authorship on joint publications to be used III Bian
Wu's PhD-thesis

(Cf. NTNU PhD-regulation S7.4, section 4 and dr.philos regulation S3, section 5)

As co-author on the following joint publications in Bian Wu's PhD-thesis:

1. Alf Inge Wang, Bian Wu, Sveinung Kval Bakken, "Experiences from
Implementing a Face-to-Face Educational Game for iPhone/iPod Touch", 2nd
International IEEE Consumer Electronics Society's Games Innovation
Conference (GIC 2010), 21-23 December 2010, Hong Kong. ISBN: 978-1-
4244-7178-2. DOl: 10.1109/ICEGIC.201O.5716895

Details: This study was done by all three authors. Contribution to introduction,
game design, data collection, analysis and writing was also done all. The 1st

author contributed in the introduction, related works, data extraction and
analysis, evaluation and conclusion. The 2nd author contributed in the
introduction, related works, evaluation and conclusion. The 3rd author was a
student supervised by 1st author and contributed in the game design, data
analysis, and evaluation.

I declare that the candidate's contribution to these works are correctly identified and
that I consent that the works are done to be used as part of the thesis.

Date: 2 {-08 -2..0 II
Location: OS-LOr 1J(J/(WJ9 Y S~/evJ j3~

Sve' ung Kval Bakken

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Subsample
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Subsample
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Subsample
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

