
High-Order Schemes for the Shallow
Water Equations on GPUs

Espen Graff Berglie

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH
Co-supervisor: Knut-Andreas Lie, SINTEF ICT

André Brodtkorb, SINTEF ICT

Department of Mathematical Sciences

Submission date: Januar 2013

Norwegian University of Science and Technology

Abstract

In this thesis, well-balanced, central-upwind high-resolution meth-
ods of high order are developed for the two-dimensional shallow wa-
ter equations, on the graphics processing unit (GPU). The meth-
ods are based on a fifth-order Weighted Essentially Non-Oscillating
(WENO) reconstruction technique and a fourth-order Gaussian quad-
rature for the one-sided interface fluxes. Two schemes are implemen-
ted, one with bilinear interpolation of the bottom topography and a
second-order quadrature for the bed slope source term, and one with
a fourth-order source term quadrature and a fifth-order hydrostatic
WENO reconstruction of the water height. The high-order schemes
are compared to a second-order scheme by Kurganov and Petrova,
which recently has been implemented on the GPU by Brodtkorb.

The schemes are shown to be well-balanced and are capable of
outperforming the second-order scheme on smooth problems provided
that dry states and discontinuities do not occur. The performance
gain is larger after a low number of time steps, where speed-ups by
a factor between 3 and 8 are documented. As the system evolves,
the accuracy of the high-order methods drops, and the performance
gain is reduced to a factor around 1.5. The schemes do, however,
not support outflow and inflow boundary conditions, and are not yet
tested on real-world problems.

The high-order scheme using the hydrostatic reconstruction and
a fourth-order source term quadrature is implemented in such a way
that an extension to quadratures and reconstructions of even higher
order, should be fairly straight forward.

i

ii

Norsk sammendrag

I denne masteroppgaven utvikles balanserte høyoppløsningsmetoder
av høy orden for gruntvannslikningene p̊a grafiske prosesseringsen-
heter (GPU-er). Metodene er basert p̊a en femte ordens vektet
essensielt ikke-oscillerende (WENO) rekonstruksjonsteknikk og et
fjerde ordens gaussisk kvadratur for de ensidige kantfluksene. To
skjemaer er implementert. Det ene har en bilineær interpolasjon
av bunnen og andre ordens kildeleddskvadratur. Det andre har et
fjerde ordens kildeleddskvadratur og en femte ordens hydrostatisk
WENO-rekonstruksjon av vannhøyden. Skjemaene av høy orden er
sammenliknet med et skjema av Kurganov og Petrova av orden to,
som nylig er implementert p̊a GPU av Brodtkorb.

Skjemaene vises å være balanserte og er i stand til å utkonkur-
rere skjemaet av orden to p̊a glatte problemer s̊a fremt tørre soner
og diskontinuiteter ikke oppst̊ar. Effekten er størst etter f̊a tidssteg,
der kjøretiden vises å være rundt 3-8 ganger raskere. Etter hvert
som systemet utvikles, minker skjemaenes nøyaktighet og kjøretiden
vil kun være omtrent 1,5 ganger raskere. Skjemaene støtter dog ikke
ut- og innstrøms grensebetingelser og er heller ikke testet p̊a virke-
lige problemer.

Skjemaet som bruker en hydrostatisk rekonstruksjon og fjerde
ordens kildeleddskvaratur, er implementert p̊a en slik m̊ate at det
vil være rimelig ukomplisert å utvide det til å bruke kvadraturer og
rekonstruksjoner av enda høyere orden.

iii

iv

Preface

This document is my thesis for the Master’s degree program Industrial Math-
ematics at the Norwegian University of Science and Technology (NTNU), in the
field of numerical mathematics. It is a joint project with NTNU and the in-
dependent research organization SINTEF, carried out in the period September
2012 - January 2013.

First and foremost I would like to thank my supervisors at SINTEF ,
André Brodtkorb and Knut Andreas Lie, for numerous helpful e-mail corres-
pondences throughout the autumn and winter, and my supervisor at NTNU,
Helge Holden, for making the cooperation with SINTEF possible. I will also
thank Martin L. Sætra, PhD candidate at SINTEF, who, alongside with André,
was most helpful during my one week stay at their office in Oslo.

I would also like to thank the IT support crew of the Department of
Mathematical Sciences at NTNU, and in particular senior engineer Per Kristian
Hove, for setting up the software correctly in the computer lab. Without you
it would not have been possible to do the thesis work in Trondheim. Also
associate professor Anne Cathrine Elster and PhD candidate Rune E. Jensen,
in the Department of Computer and Information Science at NTNU, should be
honoured for warmly welcoming me in their computer lab, giving me access to
better hardware.

Lastly, a big thank you goes to my fellow students accompanying me
in the computer lab. Our Master’s thesis related discussions, but mostly our
extensive coffee breaks, have been of great importance.

Espen Graff Berglie
Trondheim

27th January 2013

v

vi

Contents

Preface v

1 Introduction 1

2 Hyperbolic conservation laws 3

2.1 The general conservation law . 3

2.2 The shallow water equations . 5

2.3 Finite-volume methods . 7

3 High-resolution methods 11

3.1 Reconstruction from cell averages 12

3.2 The Riemann problem and flux integral 15

3.3 Total variation diminishing Runge-Kutta methods 17

3.4 Source term quadrature . 18

3.5 High-order schemes . 19

3.6 Weighted Essentially Non-Oscillating reconstructions 20

4 Graphics processor units in heterogeneous computing 29

4.1 GPU architecture . 29

4.2 GPU computing using CUDA . 31

4.2.1 Stencil computations on the GPU 32

5 Numerical aspects of the shallow water equations 37

5.1 Fourth-order well-balanced source terms 37

5.2 Hydrostatic reconstruction . 41

5.3 Dry states . 43

vii

6 Implementation on the GPU 45
6.1 Outline of the scheme . 46
6.2 Reconstruction of the conserved variables 47
6.3 The flux-source kernel . 49

6.3.1 Implementation of second-order source term 54
6.3.2 Shared memory usage . 55
6.3.3 Block size . 57

6.3.3.1 Optimal block size 58
6.3.4 Note on the intrinsic powf() function 59

6.4 The time step kernel . 59
6.5 Boundary conditions . 60

7 Numerical results 61
7.1 Code performance . 61
7.2 The idealised circular dam break problem 64
7.3 Accuracy and verification of order 67
7.4 Test of well-balanced property . 82
7.5 Unwanted oscillations . 86

8 Concluding remarks 89
8.1 Hardware impact . 90
8.2 Accuracy and speed-ups . 90
8.3 Further research . 91

viii

1. Introduction

Developing numerical methods for hyperbolic conservation laws is a challenging
research field, subject to significant improvements over the past decades. Hy-
perbolic problems typically includes discontinuous phenomena, which regular
finite-volume and finite-difference methods might fail to capture correctly, in
that they either introduce spurious oscillations or too much numerical diffusion.
In 1983, Harten presented high-resolution methods [10] as a remedy for most
of these numerical issues. The principles of high-resolution methods have been
developed further in the new millennium, and much of the work here is based
on Shu, Kurganov, Levy and Audusse, to name a few1.

High-resolution methods is the basis for this thesis. We will implement
high-order high-resolution finite-volume methods for the shallow water equa-
tions, based on a Weighted Essentially Non-Oscillating (WENO) interpolation
technique, and the idea that analytical stationary states should be captured
exactly also numerically, so-called well-balanced methods.

High-resolution methods are rather computationally expensive, even for
low-order accuracy, including several numerical components, such as interpol-
ation, quadrature rules and possibly also Riemann solvers. However, they are
essentially just slightly advanced examples of stencil computation, and thus of
a highly parallel nature, which we will exploit by implementing the solvers on
the Graphics Processing Unit (GPU).

Using the GPU as a computational unit is a rather fresh research area,
and over the last decade, we have seen a great improvement both in terms
of the hardware being more compatible with non-graphics computation, and
also with the introduction of programming environments aimed at easing the
transition into developing code for the GPU, rather than for the CPU. A good
introduction to solving conservation laws on the GPU would be to read [9],

1See e.g. http://www.cscamm.umd.edu/centpack/publications/

1

2 1. Introduction

followed by e.g. [4,6,7]. We will restrict ourselves to GPUs from NVIDIA, using
the CUDA framework for programming. The GPU used for initial development,
was the outdated NVIDIA Quadro FX 380, which was replaced by the Quadro
5000 towards the end of the testing process.

The main concern in this research, has been whether a high-order scheme
on the GPU, due to its increased accuracy, would be comparable to the second-
order scheme implemented by Brodtkorb [7] at SINTEF ICT. Clearly, in a highly
serialized code, this would not be the case, as the computational cost of a WENO
scheme is massive compared to simpler interpolation techniques. However, on
the GPU, the parallel potential of the second-order scheme is in fact restricted
by GPU memory, which suggests that it could be beneficial to apply a more
complex stencil to the elements loaded into memory. We will investigate the
possibilities of a speed-up by the means of running a more accurate method on
a coarser grid. The natural follow-up question is in what circumstances a high-
order scheme would prove to be as good as, or even better, than a second-order
scheme.

In chapters 2 and 3, we establish the theoretical framework of the thesis,
by introducing hyperbolic conservation laws, finite-volume methods, the shal-
low water equations and high-resolution methods, as well as the WENO re-
construction technique, which is essential to this thesis. Chapter 4 gives a brief
walk-through of GPU hardware and GPU programming in the context of stencil
computing. Chapter 5 is devoted to mathematical aspects particular to numer-
ically solving the shallow water equations. The actual GPU implementation is
described in chapter 6. In chapter 7 we present and discuss the results, culmin-
ating in the summary and concluding remarks in chapter 8.

2. Hyperbolic conservation laws

2.1. The general conservation law

Several physical phenomena are governed by a principle of conservation. In
essence, a conservation law states that the rate of change of some conserved
variable within a domain Ω, is equal to the sum of inflow and production minus
the outflow and removal. For example a population could be modeled by a
conservation law, where the inflow and outflow would correspond to immigration
and emigration, whereas the production and removal would correspond to births
and deaths. Another typical example is water flow, which is the cornerstone of
this thesis.

Mathematically the conservation law for Q on the domain x ∈ Ω ⊂ Rn,
is described as the initial value problem

d

dt

∫
Ω

Q(x, t)dx+

∫
∂Ω

F (x, t,Q) · nds =

∫
Ω

S(x, t,Q)dx, t ≥ 0, (2.1)

meaning that the rate of change of some conserved variable, Q, after the initial
time, t = 0, is governed by the function, F , defined on the domain boundary
and commonly referred to as the flux function, as well as the source term,
S, which can also be dependent on other variables than the three mentioned
here. The conserved variables might be a vector valued function, meaning that
Q,F, S : Rm → Rm.

Consider for example the conservation of mass for a fluid flowing over
a control area Ω, with no source terms. The mass is given by ρV = ρhA.
The flux is a product of the flow speed, u, and the area, A, of the boundary, Γ.
Provided that the mass density is constant, the conservation of mass is therefore

3

4 2.1. The general conservation law

equivalent to a conservation law of volume, which, using (2.1), reads

d

dt

∫
Ω

hdxdy +

∫
Γ

hu · n ds = 0.

This equation, we will see, is the first component of the shallow water equations.
The integral form (2.1) of the conservation law can, provided that the

solution is sufficiently smooth, be written as a partial differential equation
(PDE), by applying the divergence theorem to the flux integral, obtaining

d

dt

∫
Ω

Q(x, t)dx+

∫
Ω

∇ · F (x, t,Q) dx =

∫
Ω

S(x, t,Q) dx,∫
Ω

(Qt(x, t,Q) +∇ · F (x, t,Q)− S(x, t,Q)) dx = 0,

which yields the PDE

Qt(x, t) +∇ · F (x, t,Q) = S(x, t,Q). (2.2)

The PDE (2.2) is therefore a special case of the integral form (2.1).
In the problems relevant to this thesis we only deal with conservation

laws in which the flux function, F , only depends on Q. Let us for time being
also restrict ourselves to the homogenous system,

d

dt

∫
Ω

Q(x, t)dx+

∫
∂Ω

F (Q) · nds = 0, Ω ⊂ Rn, t ≥ 0. (2.3)

The term hyperbolicity is concerned with the eigenvalues of the system (2.3),
more precisely the eigenvalues of JF (Q), the Jacobian of F . We denote these
eigenvalues λFk (Q). When λFk (Q) are real for all k, we call the system hyperbolic,
and if they in addition are distinct, we say that the system is strictly hyberbolic.

In this thesis we will concentrate on problems in two spatial dimensions.
It is customary to decompose the flux, F , into one component in each spatial
dimension, F and G for the x and y direction, respectively. This leads to the
notation

d

dt

∫
Ω

Q(x, t)dx+

∫
∂Ω

(
F,G

)
·
(
nx, ny

)
ds = 0, Ω ⊂ Rn, t ≥ 0, (2.4)

where the flux integral is expressed in terms of an inner product. We will stick
to this notation, even though in the general case, it would have been confusing
to name the flux F in the x direction.

5

2.2. The shallow water equations

The shallow water equations are derived from the Navier-Stokes equation under
the assumption that the water elevation is small compared to the horizontal
length of the domain, so that the vertical velocity component can be ignored.
The non-homogeneous shallow water equations, including a bed slope source
term, are on its differential form (2.2), given by

 h
hu
hv

t

+

 hu
hu2 + 1

2gh
2

huv

x

+

 hv
huv

hv2 + 1
2gh

2

y

=

 0
−ghBx
−ghBy

 , (2.5)

or, in short,

Qt + F (Q)x +G(Q)y = SB(Q,∇B),

which describes the conservation of mass and momentum. Here h is the water
elevation, u and v are the velocities in the x and y direction, respectively, g
is the gravitational acceleration and the bottom topography is given by the
function B(x, y). The bed slope source term, SB(Q,∇B), accounts for water
flow induced by the varying bottom topography. Consequently, we are left with
a homogeneous system if the bottom topography is flat.

Other source terms of relevance include the bed shear stress friction,
SF (Q), and the Coriolis force, SC(Q). The bed shear stress friction reads

SF (Q) =

 0

−gu
√
u2 + v2/C2

z

−gv
√
u2 + v2/C2

z

 , (2.6)

where Cz is the Chézy friction coefficient, which can be written Cz = h1/6/n,
using Manning’s roughness coefficient, n.

In medium-scale computations, where the domain is big enough for the
geometry, rotation and curvature of the earth to have an impact, we also add a
Coriolis force source term,

SC(Q) =

 0
fv
−fu

 , (2.7)

where f is the Coriolis parameter.

6 2.2. The shallow water equations

The general non-homogeneous shallow water equations then read

Qt + F (Q)x +G(Q)y = SB(Q,∇B) + SF (Q) + SC(Q).

The Jacobians of the flux functions, JF and JG, have the eigenvalues
u, u ±

√
gh and v, v ±

√
gh, respectively. Thus the shallow water equations in

two spatial dimensions is a hyperbolic system, with strict hyperbolicity when√
gh > 0⇔ h > 0, called a wet bed. See [17,29] for a more thorough analysis.

In this work, most of the attention will be given to the bed slope source
term, and one particular field of interest is when Qt = 0 and (2.5) admits the
stationary solution

u(x, y, t) = 0

v(x, y, t) = 0

h(x, y, t) +B(x, y) = const,

(2.8)

at which point, the water is at rest and the bed slope source is balancing out
the flux terms.

When the system is in the stationary state (2.8), it should be realized that
the water surface, h+ B, is constant, not the water height, h, which motivates
the variable change

w(x, y, t) = h(x, y, t) +B(x, y),

after which, the shallow water equations, on the difference form, read

Qt + Fx +Gy = S,

with

Q =

 w
hu
hv

 ,
F =

hu

(hu)2

w−B + 1
2g(w −B)2

(hu)(hv)
w−B

 , G =

 hv
(hu)(hv)
w−B

(hv)2

w−B + 1
2g(w −B)2

S =

 0
−g(w −B)Bx
−g(w −B)By

 .

(2.9)

Note that with this variable change, the Jacobians of the system have the ei-
genvalues u and u±

√
g(w −B) for JF and v and v ±

√
g(w −B) for JG.

7

2.3. Finite-volume methods

Non-linear hyperbolic conservation laws can be challenging to treat numeric-
ally, particularly since the equations often admit discontinuous solutions, even
from smooth initial conditions. The numerical methods need to behave nicely
around discontinuities, yet at the same time converge as rapidly as possible in
smooth areas. In particular we want to avoid spurious oscillations near discon-
tinuities. We will consider a class of methods which is called shock-capturing,
seeing as they adapt automatically to discontinuous behaviour, as opposed to
shock-fitting, also called front-tracking, methods, which tracks the position of
the discontinuities and explicitly introduce jumps in the solution.

Conservation laws are commonly solved by finite-volume methods [17,29].
Instead of operating with Taylor expansions using function values at the grid
points, as we would have done in a finite-differences setting, we divide the
grid into small control ’volumes’, or control cells, and then apply the actual
conservation law (2.1) to each cell. By this, we are able to solve the more
general integral form of the conservation law, rather than the resulting PDE,
thus obtaining the weak solution of the problem. Since (2.1) holds for any
subset, K ⊂ Ω, it holds for any cell in some defined grid.

The concepts of the finite-volume method, are usually explained in one
spatial dimension, knowing that they are easily extended to Rn. Let us, however,
do the introduction in two spatial dimensions, seeing as that is the framework
needed for the shallow water equations. In two dimensions, for a uniform grid
with cells

Iij =

[
xi −

∆x

2
, xi +

∆x

2

]
×
[
yj −

∆y

2
, yj +

∆y

2

]
,

the cell averages of a variable Q, are given by

Qnij =
1

∆x∆y

∫ x+∆x/2

x−∆x/2

∫ y+∆y/2

y−∆y/2

Q(x, y, tn) dy dx,

at the given time t = tn.
The concept is to evolve cell averages of the conserved variables, Q, by

applying (2.1) to each grid cell. A semi-discrete finite-volume discretization of
the general hyperbolic conservation law in two spatial dimensions reads

d

dt
Qi,j(t) = −

Hx
i+ 1

2 ,j
(t)−Hx

i− 1
2 ,j

(t)

∆x
−
Hy

i,j+ 1
2

(t)−Hy

i,j− 1
2

(t)

∆y
+ Si,j(t), (2.10)

8 2.3. Finite-volume methods

where Qij(t) and Sij(t) are to be interpreted as cell averages. The notation
Hx
i+1/2,j(t) is taken to be some numerical approximation of the flux integral on

the eastern cell interface,

Hx
i+ 1

2 ,j
(t) ≈ 1

∆y

∫ y
j+1

2

y
j− 1

2

F (Q(xi+ 1
2
, y, t)) dy,

and likewise for the other three interfaces, with the assumption that the flux
function only depends on the conserved variables, which indeed is the case in
the shallow water equations.

To solve the semi-discrete problem (2.10), we need an appropriate ODE
solver, see Section 3.3, restricted by a CFL condition - named after Richard
Courant, Kurt Friedrichs, and Hans Lewy - which determines an upper bound
for ∆t and serves as a necessary, but not sufficient, condition for convergence.
The CFL condition ensures that the information does not ’travel too fast’. In [17]
it is defined as

Definition 2.1. (CFL condition). A numerical method can be convergent
only if its numerical domain of dependence contains the true domain of depend-
ence of the PDE, at least in the limit as ∆t and ∆x go to zero.

If we consider a cell interface in the uniform grid, at which the flux
depends only on the two cells that share the interface, then if the time step is
too large, we allow information from more cells to cross the interface, and thus
the numerical flux formulas do not match the physical situation.

For hyperbolic problems in two spatial dimensions on the form (2.4), the
CFL condition reads

∆t ≤ Ccfl min

{
∆x/max

Ω
|λFk (Q)| , ∆y/max

Ω
|λGk (Q)|

}
, (2.11)

where the constant Ccfl depends on the ODE solver.
By applying the ODE solver, we essentially end up with a fully discrete

scheme. Exemplified by Euler’s method, the scheme, which evolves the cell
averages from t = tn to tn+1, reads

Qn+1
i,j = Qni,j −∆t

Hx,n

i+ 1
2 ,j
−Hx,n

i− 1
2 ,j

∆x
−∆t

Hy,n

i,j+ 1
2

−Hy,n

i,j− 1
2

∆y
+ Sni,j , (2.12)

where the numerical fluxes are approximations of the respective interface fluxes
integrated over ∆t. If we again consider the eastern interface, we have

9

Hx,n

i+ 1
2 ,j
≈ 1

∆y

∫ tn+1

tn

∫ y
j+1

2

y
j− 1

2

F (Q(xi+ 1
2
, y, τ)) dy dτ.

The integral over t is usually approximated by only considering function values
at t = tn. We will come back to the flux integrals in Section 3.2.

The Lax-Friedrich scheme

With this framework, we are able to establish the classical first-order Lax-
Friedrich scheme. Given cell averages Qnij , and if we only consider the homogen-
eous case, the evolution of Q, using (2.12) is fully determined by the numerical
fluxes. The Lax-Friedrich scheme assumes Q(x, y, t) to be piecewise constant,
so that Q(x, y, t) = Qnij for all x, y ∈ Iij and t ∈ [tn, tn + ∆t). Consequently, at
each cell interface, Q is discontinuous. We take the cell interface fluxes to be
the arithmetic average of the fluxes evaluated using the cell averages in each of
the two adjacent cells, e.g.

Hx,n

i+ 1
2 ,j

=
1

2

(
F (Qni,j) + F (Qni+1,j)

)
on the eastern cell interface.

Inserting this into (2.12), we get

Qn+1
i,j = Qni,j −

1

2
∆t

F (Qni+1,j)− F (Qni,j)

∆x
− 1

2
∆t

G(Qni,j+1)−G(Qni,j−1)

∆y
.

As it turns out, to ensure stability, we need to add artificial diffusion,
resulting in the Lax-Friedrich scheme in two dimensions

Qn+1
i,j =

1

4

(
Qni+1,j +Qni−1,j +Qni,j+1 +Qni,j−1

)
− 1

2
∆t

F (Qni+1,j)− F (Qni,j)

∆x
− 1

2
∆t

G(Qni,j+1)−G(Qni,j−1)

∆y
.

(2.13)

10 2.3. Finite-volume methods

3. High-resolution methods

The classical finite-volume schemes, such as the Lax-Friedrich scheme (2.13),
are typically either highly dissipative or oscillating around discontinuities. High-
resolution methods [9,10,17,29] are Godunov-type shock-capturing finite-volume
methods, tailored to cope with these issues, by providing high-order accuracy in
smooth parts of the solution, while still remaining accurate and non-oscillating
around discontinuities. One way of building up a high-resolution method, is to
apply the so-called REA algorithm - Reconstruct, Evolve, Average - which is a
three-step algorithm to advance the solution of the semi-discrete conservation
law (2.10) one time step. It is commonly defined as

1. Reconstruct. From cell averages at time t = tn, Qnij , reconstruct a piece-
wise polynomial function

Q̂ij(x, y, tn) ∈ Pk, x, y ∈ Iij ,

satisfying

Qnij =
1

∆x∆y

∫
Iij

Q̂ij(x, y, tn) dx dy.

2. Evolve. Evolve the reconstructed polynomials, Q̂ij(x, y, tn) according to

the conservation law, obtaining Q̂ij(x, y, tn+1).

3. Average. Average the polynomials over each cell,

Qn+1
ij =

1

∆x∆y

∫
Iij

Q̂ij(x, y, tn+1) dxdy.

In the actual implementations, however, the averaging typically is a direct result
of the evolution process, which is done by some Runge-Kutta method, and it

11

12 3.1. Reconstruction from cell averages

would possibly be more instructive to define the REA algorithm as in Algorithm
1. The latter definition fits better with the implementations used in this work.
Commonly the solution is evolved in time by the means of an explicit Runge-
Kutta method, which means that we approximate the fluxes during one time
step purely based on the function values at t = tn, which means that we do not
actually evolve the reconstructed polynomials, as suggested by the regular REA
definition, but rather insert the flux and source approximations at t = tn into
the right-hand side of the conservation law (2.10) and evolve the cell averages
by the Runge-Kutta method. Hence the averaging part of the REA algorithm
is somewhat disguised.

In the following sections we explain the numerical aspects of high-resolution
methods more in detail.

Algorithm 1 The REA algorithm

Given cell averages, Qnij .

Reconstruct a polynomial from cell averages, Qnij 7−→ Q̂(x, y, tn).
Compute flux and source terms at t = tn using the reconstructed polynomial,
Q̂(x, y, tn) 7−→ Fn, Gn, Sn.
Evolve solution using a Runge-Kutta method, Qn, Fn, Gn, Sn 7−→ Qn+1.

3.1. Reconstruction from cell averages

The first step of a high-resolution method is the procedure in which we use the
given cell averages, Qi, at each time step to obtain point values of the conserved
variables. We refer to this step as the reconstruction. We seek a polynomial,
Q̂i, defined in each cell, which is to be evaluated at the integration points used
in the flux interface integrals. Note here that we refer to a one-dimensional cell
for simplicity. The simplest, first-order, approach, would be to set Q̂i = Qi,
meaning that we approximate the conserved variables by a piecewise constant
function. This is in fact what we did in the Lax-Friedrich scheme, and already
in this simple setting, we are introduced to one of the key consequences of
the reconstruction step. Since, in general, we have Q̂i = Qi 6= Qi+1 = Q̂i+1,
we realize that at the cell interfaces, the reconstructed function values will, in
general, be different depending on which of the two adjacent cell reconstructions
we are evaluating. Exemplified at the interface x = xi+1/2, these two possible

13

one-sided values of Q(xi+1/2) have various notations in the literature, such as

Q̂i(xi+1/2) = Q̂(xi+1/2 − 0) = Q−i+1/2 = QLi+1/2 = QEi ,

for the Q̂i reconstruction and correspondingly

Q̂i+1(xi+1/2) = Q̂(xi+1/2 + 0) = Q+
i+1/2 = QRi+1/2 = QWi+1,

for the Q̂i+1 reconstruction. Here, R/L ,+/− means ’slightly to the right/left
of the interface’, whereas E and W refers to the eastern and western interface
relative to the cell specified by the subscript. With that in mind these notation
variants should be self-explanatory. Exploiting these one-sided reconstruction
values at the cell interfaces, is a crucial part of the flux computation.

In the first-order setting, the reconstruction step is not particularly in-
teresting. In a second-order reconstruction, however, the term gives more sense.
Here we are approximating the conserved variables by piecewise linear functions,
i.e. polynomials p ∈ P1, a reconstruction procedure which is quite popular due
to its improved accuracy, without complicating the schemes too much. Several
known schemes, such as [1, 2, 12, 14], just too name a few, are based on linear
reconstruction.

Now, let us present one of the main attributes we embrace in a recon-
struction method. Since hyberbolic problems often involves solutions with dis-
continuities, we want our reconstruction to minimize spurious oscillations near
the discontinuous points and to be total variational diminishing (TVD). The
first property is rather self-explanatory. The latter is defined as

TV(Q(·, τ)) ≤ TV(Q(·, t)), ∀t ≤ τ, (3.1)

where

TV(v) = lim sup
h→0

1

h

∫
|v(x)− v(x− h) dx.

A high-order reconstruction should possess these properties and converge
with maximal accuracy in smooth areas, but at the same time behave ’nicely’
around discontinuities. This is done with some sort of a non-linear limiting
function. To obtain second-order reconstructions we build up a polynomial
pi ∈ P1, for each cell Ii. Given the cell averages at time t = tn, for some
approximation, si, of the first derivative, we can build up the polynomial

pi(x, tn) = Q̂i(x, tn) = Qni + si(x− xi), x ∈ [xi−1/2, xi+1/2].

14 3.1. Reconstruction from cell averages

The crucial part of the reconstruction step is the choice of si. From basic theory
of finite-differences [15], we know there are three obvious choices of two-point
stencils for approximating the first derivative, namely

s−i =
Qi −Qi−1

∆xi
, sci =

Qi+1 −Qi−1

2∆xi
, s+

i =
Qi+1 −Qi

∆xi
.

Which one to choose will depend on the behaviour of the solution. We want
the stencil that causes the least oscillations. This procedure has several possible
solutions. One is the common minmod limiter

minmod(a1, a2, ...) =

mink{ak} if ak > 0 ∀k
maxk{ak} if ak < 0 ∀k
0 else

. (3.2)

We set

si = minmod
(
θs−i , s

c
i , θs

+
i

)
, θ ∈ [1, 2],

The minmod function is one example of a non-linear limiter function. Other
examples include the superbee or the modified minmod limiter [9].

While the minmod function serves as an instructive example of a key
element in the reconstruction step, it is of little relevance to this thesis, where the
main objective is to implement schemes of higher order than 2, which will involve
the use of a rather different reconstruction technique, with its corresponding
non-linear limiting functions, to be presented in Section 3.6.

So far, the description of the reconstruction procedure has been purely
general. For the shallow water equations (2.5) we encounter the issue of having a
bottom topography, B, in addition to the conserved variables, Q. The gradient
of B is present in the bed slope source term and needs to be approximated
numerically, and when using the common variable change, w = h+ B (2.9), B
itself is included in the flux integrals. The bottom topography is often known
as point values at the cell corners, as opposed to cell averages, thus applying
the reconstruction procedure to B would not make sense. However, to compute
the derivatives, we need some interpolation procedure based on the cell corners.
In a second-order scheme, this is best done using bilinear interpolation, and we
obtain, for cell Iij ,

15

B̂ij(x, y) = Bi− 1
2 ,j− 1

2
+
(
Bi+ 1

2 ,j− 1
2
−Bi− 1

2 ,j− 1
2

)x− xi− 1
2

∆x

+
(
Bi− 1

2 ,j+
1
2
−Bi− 1

2 ,j− 1
2

)y − yj− 1
2

∆y

+
(
Bi+ 1

2 ,j+
1
2
−Bi+ 1

2 ,j− 1
2
−Bi− 1

2 ,j+
1
2

+Bi− 1
2 ,j− 1

2

) (x− xi− 1
2
)(y − yj− 1

2
)

∆x∆y
.

(3.3)

3.2. The Riemann problem and flux integral

A central component of any high-resolution scheme is to determine the flux
approximations, H, involved in (2.10).

At the cell interfaces, the two one-sided reconstructions ofQ are in general
not equal, and determining the flux integral is similar to locally solving the
Riemann problem,

Qt + F (Q)x = 0, Q(x, 0) =

{
QL, x < 0

QR, x > 0,

where QL and QR are the left and right-hand sided reconstructed values of Q
at the cell interface. The Riemann problem has similarity solutions q(x, t) =
V (x/t), called the Riemann fan, and we call a method upwind if it aims to solve
the Riemann problem, either exact or by an approximate solver, in order to
compute the interface fluxes. In contrast, a central scheme, does not apply any
Riemann solvers.

Examples of central fluxes include the classical Lax-Friedrich flux,

HLF =
1

2

[
FL + FR

]
− 1

2

∆t

∆x

[
QR −QL

]
, (3.4)

where the numerical fluxes are defined by FL = F (QL), FR = F (QR). Inserting
(3.4) into (2.12), yields the Lax-Friedrich scheme (2.13).

The schemes developed in this work, belongs to a class called central-
upwind methods, as they keep the simplicity of the central methods, while
including local, one-sided, speeds of propagation, i.e. eigenvalues of JF , JG, in
the flux computation, aiming to retrieve some of the accuracy of the upwind
methods. The preferred choice of flux formula seems to be the central-upwind

16 3.2. The Riemann problem and flux integral

flux, which was introduced by Kurganov, Noelle and Petrova in [13]. This flux
approximation incorporates estimates of the Riemann fan at the cell interface.
To this end we define

a+ = max
Q∈{QL,QR}

(
λm(Q), 0

)
a− = min

Q∈{QL,QR}

(
λ1(Q), 0

)
,

(3.5)

where λ1 ≤ ... ≤ λm are the eigenvalues of F . Hence a+ is the biggest and a−

the smallest eigenvalue at any side of the cell interface and corresponds to the
one-sided wave speeds. The central-upwind flux is then defined by

HCUW =
a+FL − a−FR

a+ − a−
+

a+a−

a+ − a−
(QR −QL). (3.6)

In two dimensions, the one-sided values FL, FR, QL, QR, are computed using
the one-sided reconstructed point values in some quadrature rule at the ’plus’
and ’minus’ cell interface. Using e.g. only the midpoint, we obtain a second-
order approximation, which will integrate linear functions exactly. Having es-
tablished the reconstructed polynomial, Q̂, it is possible to choose a quadrature
rule such that the reconstructed functions are integrated exactly, meaning that
the only numerical approximation present is in the reconstruction step.

For a second-order reconstruction of Q it is customary to use the midpoint
rule, which transformed to the interval I = [−1, 1] reads∫ 1

−1

f(x(ξ)) dξ ≈ f(x(0)), (3.7)

which for the eastern boundary of cell (i, j), using the ’minus’ reconstruction
Q̂i,j , give FLi+1/2,j = F (Q̂i,j(xi+1/2, yj)), Q

L
i+1/2,j = Q̂i,j(xi+1/2, yj).

For reconstructions of higher order than two, we would also like high-
order approximations of the flux integrals. Using Simpson’s method we obtain
third-order accuracy, but we need three integrations points, which can be costly
to calculate. A more preferable method would be the Gaussian quadrature,∫ 1

2

− 1
2

f(x(ξ)) dξ ≈ 1

2
(f(x(−α)) + f(x(α))) , α =

1

2
√

3
, (3.8)

which gives a fourth order approximation using only two points. The quadrature
rules (3.7) and (3.8) are the methods of choice for second-order and high-order
high-resolution schemes respectively. Gaussian quadrature is cheaper and more

17

accurate then e.g. Simpson’s method, while the midpoint rule provide the same
accuracy as the trapezoidal rule, but with only one integration point.

When applying quadratures to the one-sided flux integrals, these quadrat-
ure points should also be included in the calculation of the smallest and biggest
eigenvalues (3.5), such that the domain in which we seek the minimum is exten-
ded to e.g. Q ∈ {QL−αj, QL+α, QR−α, QR+α} in the case of Gaussian quadrature.

3.3. Total variation diminishing Runge-Kutta
methods

A conservation law in its semi-discrete form (2.10), is an equation on the form

d

dt
Q = f(Q),

where we have used the notation f(Q) which is commonplace in the literature
on first-order ODEs.

After computing the reconstruction and flux integrals, we are left with
the discrete ODE formulation of the system, denoted

d

dt
Qij = Lij(Q).

The operator Lij is given, for each cell, by the right-hand side of (2.10). With the
notation Lij(Q), we have assumed that the problem is not explicitly dependant
on time, which clearly is true for the shallow water equations. An explicit ODE
solver then is on the form

Q(i) = Q(0) + ∆t

i−1∑
k=0

cikL(Q(k)), i = 1, 2, ...,m

Q(0) = Q(n), Q(m) = Q(n+1)

(3.9)

where L is defined by the right-hand side of (2.10). In (3.9) we have ignored
the cell indices for better readability.

Typically we would also prefer that the ODE solver is TVD (3.1). An
overview of TVD Runge-Kutta methods can be found in [8,25,26], where optimal
TVD Runge-Kutta methods, with respect to the TVD property, are derived. We
will state the main results here.

18 3.4. Source term quadrature

The suggested optimal first-order Runge-Kutta method corresponds to
the regular Euler’s method, and is TVD under CFL condition Ccfl = 1. The
optimal second-order TVD Runge-Kutta reads

Q(1) = Q(n) + ∆L(Q(n))

Q(n+1) =
1

2
Q(n) +

1

2
Q(1) +

1

2
∆L(Q(1)),

(3.10)

which is TVD in one spatial dimension under CFL condition Ccfl = 1, and
also equivalent to the regular second-order Runge-Kutta, i.e. Heun’s method or
modified Euler method. In two spatial dimensions the CFL condition is stricter,
Ccfl = 0.25 [7].

The third-order TVD Runge-Kutta is

Q(1) = Q(n) + ∆L(Q(n))

Q(2) =
3

4
Q(n) +

1

4
Q(1) +

1

4
∆L(Q(1))

Q(n+1) =
1

3
Q(n) +

2

3
Q(2) +

2

3
∆L(Q(2)),

(3.11)

under CFL condition Ccfl = 1 in one dimension and Ccfl = 0.5 in two dimension
[28]. Contrary to the second-order case, (3.11) is not equivalent to any classical
Runge-Kutta method. Note how, for the Runge-Kutta methods (3.10) and
(3.11), the global memory storage load is rather low, seeing as we, at each time
sub step, i→ i+ 1, need only store three values, Q(n), Q(i) and L(Q(i)).

Fourth-order TVD Runge-Kutta methods, however, are not as easy to
derive, as they include using the adjoint of the operator L [8,25,26], and will not
be considered here. Some schemes are using the classical fourth-order Runge-
Kutta method [18,24]. Another possibility is to use a so-called Strong Stability
Preserving (SSP) Runge-Kutta method [27]. Unfortunately, for a fourth-order
Runge-Kutta method, the global memory load is higher, seeing as we typically
need to store more than three values at each time sub step, in contrast to the
low-order methods.

3.4. Source term quadrature

In non-homogeneous conservation laws, also the source terms need to be ap-
proximated numerically. It is of course possible to use a standard quadrature
such as Gaussian quadrature of any order, or Simpson’s rule, but often we are

19

particularly interested in the system’s behaviour close to stationary state, i.e.
when Qt = 0. Analytically the flux integrals will in stationary state be canceled
out by the bed slope source term, in (2.1). To model the system accurately in,
or near, stationary state, we therefore want to ensure that also the discretized
system (2.10) has this property, meaning that, in two spatial dimensions, we
want

Qt = 0 =⇒ Si,j =
Hx
i+ 1

2 ,j
−Hx

i− 1
2 ,j

∆x
+
Hy

i,j+ 1
2

−Hy

i,j− 1
2

∆y
, (3.12)

for each cell and each time step, which can be achieved by a special quadrature
rule for the source term, which we will present in Section 5.1 for the shallow wa-
ter equations. A numerical method satisfying (3.12), is said to be well-balanced.

As with the one-sided flux integrals, it is possible to choose a quadrat-
ure of any order for the source term as long as the reconstructed polynomial is
defined for the entire cell. Special care should be given to make sure the recon-
struction procedure and the flux and source quadratures all produce about the
same level of accuracy.

3.5. High-order schemes

To obtain truly high-order high-resolution schemes, we need to increase the order
of all the methods involved in the REA procedure, both the reconstruction,
the one-sided flux integrals, the source term quadrature and the Runge-Kutta
method. For the shallow water equations, also the interpolation of B need
to be of higher order. We have already presented the fourth-order accurate
Gaussian quadrature for the one-sided flux integrals, which is sufficient in most
cases. Also high-order Runge-Kutta schemes are covered. A special fourth-
order source term quadrature for the shallow water equations will be derived in
Section 5.1.

Inspired by [18], let us first introduce a proper notation to state the order
of the high-resolution schemes, formalized in the following definition:

Definition 3.1. (Numerical order). The formal order of a high-resolution
finite-volume scheme, using the REA algorithm is given by the quadruplet

(t, r, f, s),

20 3.6. Weighted Essentially Non-Oscillating reconstructions

where
t : Order of the time integration

r : Order of the reconstruction

f : Order of the quadrature in the flux integral

s : Order of the quadrature in the source term integral,

The formal total order of the scheme is given by

min{t, r, f, s}.

In the coming discussions, we will refer to a scheme as a ’scheme of order
(t, r, f, s)’ or simply a ’(t, r, f, s) scheme’.

Typically, the time integration will be the limiting factor, t ≤ r, f, s,
which might lead to schemes that yield high order of accuracy close to the start
time, while the accuracy level tends towards order t as the system develops in
time.

3.6. Weighted Essentially Non-Oscillating
reconstructions

Let us now again turn to the reconstruction step of the REA algorithm. In
the second-order reconstruction we used a three-point stencil, (Qi−1, Qi, Qi+1),
from which we picked the least oscillating two-point stencil to compute the
derivatives in the x direction, and likewise in the y direction. In total we used
a five-point stencil to build up the complete reconstructed polynomial, pi ∈ P1.
In essence, we create reconstructions of higher order by adding more points to
the stencil.

As with second-order schemes, there will be spurious oscillations near
discontinuities of the solution if high-order schemes are applied naively. One
remedy is to invoke a method whose concept is similar to the non-linear limiter
function (e.g. the minmod function) for a second-order scheme. A widely cited
paper by Harten [11] introduced the concept of essentially non-oscillating (ENO)
reconstructions, where we choose the least oscillating stencil, of as high order as
possible, at hand. This approach was later extended to the weighted essentially
non-oscillatory (WENO) procedure, in which we use a convex combination of
all feasible stencils, each weighted by non-linear weights. In the second-order

21

setting that would mean using a weighted linear combination of s−, sc and s+,
as opposed to choosing only one.

In [9] there is a brief introduction to WENO reconstruction, including
examples of two different approaches for a multidimensional WENO scheme,
the genuinely multidimensional one, and the dimension-by-dimension approach.
The genuinely multidimensional reconstruction follows the same idea as in the
second-order case, where a complete polynomial, valid for an entire cell, is cre-
ated. For a third-order reconstruction, in two spatial dimensions, a non-linear
combination of a standard nine-point stencil for the second derivative and two-
point stencils for the first derivatives, is used in order to pick a stencil of third-
order when possible, and of lower order close to discontinuities. The approach
is highly instructive, intuitive and worthwhile reading, but it is computationally
costly to store all the coefficients for high-order polynomials. In the dimension-
by-dimension approach, however, we are computing the function values at the
integration points directly, without the use of a complete polynomial, valid for
the whole cell, which is more appealing for reconstructions of more than order
three. The dimension-by-dimension approach will therefore be the focus of this
thesis.

A stand-alone theoretical background of WENO reconstructions is found
in [25], and we will state the essentials here. The details of the two-dimensional
scheme suited for solving the shallow water equations, are taken from [28], where
an extension to three dimensions also is provided.

In the dimension-by-dimension WENO reconstruction, we perform one
reconstruction, referred to as a ’sweep’, in each spacial dimension, and design
the method such that it is of any wanted order at the chosen integration points.
In general, in a reconstruction of order 2r− 1, each sweep computes a weighted
convex combination of r polynomials, pi ∈ Pr−1. Each polynomial is then of
order r. Note that the literature is not consistent in the choice of indexes and
denotations, so to avoid confusion we emphasize that here, and in the following,
we will denote the order by r. Given that we wish to apply a fourth-order
Gaussian quadrature to the one-sided flux integrals, it is plausible to choose
r = 3, which yields a fifth-order WENO reconstruction. Increasing the accuracy
to, say seventh-order, r = 4, would not make sense without also adding an
integration point, resulting in a sixth-order Gaussian quadrature.

In two dimensions, the first sweep is designed to reconstruct line averages
from the given cell averages. A sweep along the x axis produces the line average
on a line along the y axis, and vice versa. By doing one more sweep, in the
spatial direction along the current line, we obtain the function values at the
integration points situated on the line.

22 3.6. Weighted Essentially Non-Oscillating reconstructions

In the fourth-order Gaussian quadrature, we seek the function values of
Q at the eight points

(xi+ 1
2
, yj±α) , (xi− 1

2
, yj±α) , (xi±α, yj+ 1

2
) , (xi±α, yj− 1

2
), α =

1

2
√

3
(3.13)

at the cell interfaces. Additionally, in order to apply the fourth-order accurate
bed slope source term quadrature (5.6)-(5.7), we will also need the four interior
points

(xi, yj±α) , (xi±α, yj), α =
1

2
√

3
, (3.14)

which we will come back to in Section 5.1. This leaves us with a choice, as
illustrated in Figure 3.1, either to reconstruct six line averages with two integ-
ration points each, or to reconstruct four line averages with three integration
points each. We will shortly see that the actual reconstructions are oblivious
to whether they compute line averages or point values. If the input is a cell
average, the output will be a line average, and if the input is a line average,
the output will be a point value. The only mathematical difference between the
different reconstruction sweeps, is if the offset from the cell centre of the line or
point is ±α, 0 or ±1/2. Thus, whether we choose the approach in Figure 3.1a
or the one in Figure 3.1b, has no impact on the formulas presented below.

For each cell, Iij , at a time step, t = ts we are given the cell average

Qij =
1

∆x∆y

∫
Iij

Q(x, y) dxdy.

We then wish to perform a one-dimensional WENO reconstruction to reduce
the cell average to a line average on a chosen line `. If we start by a sweep in
the x direction, we end up with the average on the vertical line ` = (xi+a, y),
for a fixed,

Qi+a,j ≈
1

∆y

∫ yj+1/2

yj−1/2

Q(xi+a, y) dy,

whereas if we start by a sweep in the y direction we obtain the averages on the
horizontal line ` = (x, yj+a),

Qi,j+a ≈
1

∆x

∫ xi+1/2

xi−1/2

Q(x, yj+a) dx,

23

b b

b b

b

bb

b b

b b

xi xi+αxi−α

yj

byj+α

yj−α

(a) Interior lines

b

b

b

bb

b b
xi xi+αxi−α

yj

byj+α

yj−α

b

b

b b

(b) Interface lines

Figure 3.1: Illustration of the two different approaches to do a WENO recon-
struction of the same points on a cell in two dimensions.

From these averages we then perform a sweep in the direction parallel to the
current line to obtain the values of the reconstructed function at the required
integration points (3.13)-(3.14).

In each of the one-dimensional sweeps, we seek to find the reconstruction
of Qij ,

Q̂ij(x, y) =

r−1∑
k=0

ωkijP
k
ij(x, y), (3.15)

where Qij can be either a line average or a cell average. The coefficients ωkij are
responsible for giving more weight to the best suited stencils, and the polyno-
mials, P kij , are solely determined from the grid.

Each polynomial, P kij , requires a stencil consisting of r grid cells in the

direction of the current sweep, so that the complete stencil for Q̂ij(x, y) covers
2r − 1 cells. The polynomials are chosen based on a linear combination of the
values of Qij in each of the r grid cells. Because of the dimension-by-dimension
approach, we might as well simply consider a one-dimensional problem. We
want the polynomials to be such that at any integration point, xξ, they are

24 3.6. Weighted Essentially Non-Oscillating reconstructions

given as a linear combination of the function values, i.e.

P ki (xξ) =

r−1∑
j=0

ck,ji Q(xξ−k+j), xξ ∈ [xi−1/2, xi+1/2] = Ii

Thus, all that is needed is to find the coefficients cj,ki . Notice that j and k are
local indexes relative to i. The same stencil can give rise to different reconstruc-
tion polynomials depending on where the stencil is located compared to the
integration point xξ. For Ii, and r = 3, i.e. a fifth-order WENO reconstruction,
we have the total stencil

Si =
{
Qi−2, Qi−1, Qi, Qi+1, Qi+2

}
,

which consists of three possible three-point stencils,

S0
i =

{
Qi−2, Qi−1, Qi

}
, S1

i =
{
Qi−1, Qi, Qi+1

}
, S2

i =
{
Qi, Qi+1, Qi+2

}
,

and clearly, in general, the reconstructed values of Q̂i will be different in each
of the three stencils.

The coefficients, ck,ji are, on a uniform grid, given by the formula [25]:

ck,ji =

r∑
m=j+1

r∑
l=0
l 6=m

r∏
q=0
q 6=m,l

(r − q + 1
2 + ξ)

r∏
l=0
l 6=m

(m− l)
. (3.16)

For the reconstructions at xi±1/2, xi±α the coefficients are given explicitly in
the literature. For a cell Ii the WENO reconstruction polynomials at the two
interfaces read

Q̂Ri− 1
2

= Q̂i(xi− 1
2
) =

1

6
Ω0(11Qi − 7Qi+1 + 2Qi+2)

+
1

6
ω1(2Qi−1 + 5Qi −Qi+1) +

1

6
ω2(−Qi−2 + 5Qi−1 + 2Qi)

(3.17)

and

Q̂Li+ 1
2

= Q̂i(xi+ 1
2
) =

1

6
ω0(2Qi + 5Qi+1 −Qi+2)

+
1

6
ω1(−Qi−1 + 5Qi + 2Qi+1) +

1

6
ω2(2Qi−2 − 7Qi−1 + 11Qi),

(3.18)

25

where R,L denotes right and left reconstructed value relative to the flux in-
terface. Again, Q̂Li+1/2 and Q̂Ri−1/2 can be either one-sided line averages of the
interface or one-sided point values.

The line averages or point values at xi±α are reconstructed using

Q̂i−α = Q̂i(xi−α) = ω0

[
Qi + (3Qi − 4Qi+1 +Qi+2)

√
3

12

]
+

ω1

[
Qi − (−Qi−1 +Qi+1)

√
3

12

]
+ ω2

[
Qi − (Qi−2 − 4Qi−1 + 3Qi)

√
3

12

] (3.19)

and

Q̂i+α = Q̂i(xi+α) = ω0

[
Qi − (3Qi − 4Qi+1 +Qi+2)

√
3

12

]
+

ω1

[
Qi − (Qi−1 −Qi+1)

√
3

12

]
+ ω2

[
Qi − (−Qi−2 + 4Qi−1 − 3Qi)

√
3

12

] (3.20)

Provided we have the non-linear weights, ωk, these four reconstruction
schemes is all we need to compute the eight integration points used in the flux
computations.

If we, however, want to use the fourth order well-balanced source term
(see section 5.1), we would also need the to reconstruct values at the cell centre,
x = xi. For these points values or line averages, the coefficients of the recon-
struction polynomials, ck,ji are not stated explicitly in the literature studied for
this thesis. Therefore we truly need the formula (3.16). Inserting the central
point xi, we find

Q̂i =
1

24
ω0(23Qi + 2Qi+1 −Qi+2)

+
1

24
ω1(−Qi−1 + 26Qi −Qi+1) +

1

24
ω2(−Qi−2 + 2Qi−1 + 23Qi),

(3.21)

which gives us all needed polynomials for fourth-order Gaussian and source term
quadratures. E.g. to obtain the points needed for the F flux, using the approach
from Figure 3.1a, we do one sweep in y direction, applying (3.19) and (3.20)
to obtain the two line averages (marked in red). Next we do a sweep in the x

26 3.6. Weighted Essentially Non-Oscillating reconstructions

direction, applying (3.17), (3.18) and (3.21) to each of the (red) line averages.
By instead doing the first sweep in the x direction and the second in the y
direction, we obtain the integration points for the G flux. The reconstruction
procedure shown in Figure 3.1b, follows analogously.

To determine the non-linear weights, ωk, we need the optimal linear
weights, dk, based on the grid, and so-called smoothness indicators, βk, based
on cell averages.

The optimal weights are based purely on the grid. They are chosen such
that when ωk = dk are inserted into (3.15) we ensure that the reconstruction is
of order 2r − 1 for smooth data. Additionally the optimal weights must satisfy
the condition ∑

k

dk = 1.

The WENO reconstruction relies on good choices of the smoothness in-
dicators. They are designed to produce polynomials of order 2r − 1 in smooth
sections and avoid oscillations in non-smooth sections. They are given by

βk =

r−1∑
m=1

∫ ξi+1/2

ξi−1/2

(
dm

dξm
Pk(ξ)

)2

∆ξ2m−1 dξ, k = 0, ..., r − 1 (3.22)

where ξ denotes the variable in a generic sweep direction, i.e. x or y in the
2D case. From this we have βk = O(∆ξ2) if the corresponding stencil contains
smooth data, and βk = O(1) in case of a discontinuity.

Having dk and βk we calculate the non-linear weights as follows:

ωk =
αk∑
l αl

, k, l = 0, ..., r − 1, (3.23)

with

αk =
dk

(ε+ βk)2
, (3.24)

for some small value of ε, simply to avoid division by zero. The choice of ε might
change depending on the problem. For computations using double precision,
ε = 10−6 or ε = 10−8 are typical choices. For single precision, as we will use on
the GPU, ε = 10−3 has been used with success. Whenever the choice of ε has
been of any significance for the problems discussed herein, it will be commented.

This yields

ωk = O(1)

27

for smooth data and
ωk = O(∆ξ4)

in case of discontinuities. That is, the weights will be close to the optimal weights
for smooth data and disregard the stencil corresponding to discontinuous data.

For a fifth-order WENO scheme, r = 3, the numerical values of β are

β0 =
13

12
(Qi − 2Qi+1 +Qi+2)2 +

1

4
(3Qi − 4Qi+1 +Qi+2)2

β1 =
13

12
(Qi−1 − 2Qi +Qi+1)2 +

1

4
(Qi−1 −Qi+1)2

β2 =
13

12
(Qi−2 − 2Qi−1 +Qi)

2 +
1

4
(Qi−2 − 4Qi−1 + 3Qi)

2

.

(3.25)

The optimal linear weights, d, are stated in Table 3.1. Worth commenting are
the weights for xi, which strictly speaking are fourth order weights. They are to
be used instead of the fifth-order weights because some of the latter are negative,
which may lead to oscillations near discontinuities. Since the center integration
points are only used in the source term quadrature, which anyway is of order
four, this does not effect the accuracy of the scheme.

xξ d0 d1 d2

xL
i+ 1

2

3
10

6
10

1
10

xi
1
4

2
4

1
4

xR
i− 1

2

1
10

6
10

3
10

xi−α 210−
√

3
1080

11
18

210+
√

3
1080

xi+α
210+

√
3

1080
11
18

210−
√

3
1080

Table 3.1: The optimal linear weights used in the WENO reconstruction.

With the optimal linear weights and smoothness indicators (3.25), we are
able to form the non-linear weights (3.23), and thus also the complete WENO
procedure (3.15). As we can see, the computational cost is massive compared
to a simple second-order reconstruction, and in the GPU implementation it will
be crucial to store as few variables as possible during the computation.

28 3.6. Weighted Essentially Non-Oscillating reconstructions

4. Graphics processor units in het-
erogeneous computing

Heterogeneous computing has gained a lot of attention in the recent years.
While the traditional computing architecture, the processor (CPU), has reached
a point where the current cooling techniques have become a limiting factor
of the attainable clock frequency [3], the need for performance improvement
by means of parallelism has increased, both through multiple core CPUs and,
more importantly, through heterogeneous computing architectures, designed for
high data throughput rather than high performance on serial instructions. An
overview of heterogeneous architectures such as CBEA, GPU and FPGA can be
found in [3]. Our focus will be limited to the Graphics processor unit (GPU),
see e.g. [3,5]. The GPU is controlled by the CPU, and was initially intended for
handling computer graphics, by computing the color of each pixel on the screen.
This is a highly parallel process, meaning that the pixels can be computed
independently, which now has been extended to more general computations.
Both AMD, Intel and NVIDIA offer programmable GPUs, but we will restrict
ourselves to the GPUs by NVIDIA.

4.1. GPU architecture

The GPU architecture is in constant development. While the Kepler1 technology
is the most recent contribution from NVIDIA, we will focus on their Fermi2

technology from 2010. Both the GPU used for benchmarking in this thesis,

1http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.

pdf
2http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf

29

30 4.1. GPU architecture

(a) GPU (b) SM

Figure 4.1: A modern Fermi-type GPU and a detailed illustration of one mul-
tiprocessor, SM. Figures taken from [5].

and the one used by Brodtkorb [7], are Fermi GPUs. In Figure 4.1 there is an
illustration of the architecture of a Fermi GPU, which consists of 16 streaming
multiprocessors (SMs), which share an L2 cache and DRAM global memory, as
well as being provided with a local memory hierarchy. The SMs are responsible
for distributing the computations to the scalar processors (SPs), or CUDA cores,
denoted as ’cores’ in Figure 4.1b. This type of parallelism is called SIMD (Single
Instruction Multiple Data). Each of the 16 SMs contain 32 CUDA cores. The
cores are equipped with L1 cache and registers and also a particularly fast, but
limited, memory, called shared memory.

The term ’core’ in this case might be somewhat misleading, seeing as
the performance of the SPs are nowhere near the levels we find on CPUs. An
SP is best suited for simple instructions, such as in stencil computing, typically
using single precision. Double precision is also supported, but this will halve the
maximum throughput, so we opt to use single precision whenever possible. On
a Fermi-type GPU, there are in total 16 · 32 = 512 CUDA cores, which clearly
underscores the massively parallel potential in GPU computing. However, one

31

or more of the SMs are typically disabled. On the GPU used for benchmarks in
chapter 7, a NVIDIA Quadro 5000, see Figure 4.2, five of the multiprocessors
are disabled, resulting in 11 · 32 = 352 CUDA cores.

Figure 4.2: The Quadro 5000 GPU from NVIDIA.

4.2. GPU computing using CUDA

Recently, GPU programming has become significantly more user-friendly, with
the introduction of GPU programming environments based on familiar high-level
programming languages, with the most known being the C99-based OpenCL3

and the C-based NVIDIA product CUDA [20]. Numerous other platforms exist,
such as DirectCompute, OpenACC, C++ AMP, PGI Accelerator. The code
developed for this thesis, however, uses CUDA, and consequently this section
will revolve around the aspects of GPU programming in a CUDA setting.

A CUDA program is initialized at the CPU. Necessary data is then copied
from CPU memory to GPU memory, via the PCI-express bus, which is a poten-
tial bottleneck. Next, the GPU executes the designated functions in parallel,
using the streaming multiprocessors, before transferring the results back to the
CPU, so that the CPU and GPU make up a heterogeneous system. We refer to
the CPU as the ’host’ and the GPU as the ’device’

When the computations on the GPU are initiated, the multiprocessors
schedules hardware threads to execute different parts of the computations in
parallel. Threads are scheduled in groups of 32, referred to as a warp. On the
Fermi-type GPUs, two warps are completed during two clock cycles and one
SM can keep 48 active warps at a time. The threads are organized into blocks,

3http://www.khronos.org/opencl/

32 4.2. GPU computing using CUDA

which are equipped with the mentioned shared memory. Data stored in shared
memory is accessible to all threads in the block. The shared memory consists
of 32 memory banks, each serving one warp every other clock cycle.

The grid, on which we want to perform computations, is then partitioned
to match the hardware threads and blocks, as illustrated in Figure 4.3. The
threads have designated temporary registers and communicate through shared
memory, while the blocks are linked to the global memory, see Figure 4.4. The
size of a block is limited by 512 threads, but in practice the computations
themselves might set the limit by requiring too much memory or register space.
For example, the shared memory capacity for one block can be configured to be
either 16 KB or 48 KB.

The functions that executes GPU code in a CUDA program are called
kernels. They take the number of blocks and threads per block as arguments,
and then performs the grid computations. The CUDA codes are written in a
language based on C, with some C++ features. We will not cover the details
regarding the syntax here, but the intrinsic CUDA function, syncthreads(), is
essential to point out, as it, when called, makes sure to synchronize all the
threads within a block. The importance of syncing threads arises in a CUDA
kernel exploiting the shared memory. The typical structure of such a kernel is
to first perform computations based on the input data and write the results to
shared memory, then synchronize the threads, before each thread reads the data
stored in shared memory and use it in its further computations.

More on CUDA programming is found in [19, 20]. For more advanced
kernel optimization, see e.g. [21, 22].

4.2.1. Stencil computations on the GPU

Stencil computation is an essential part in explicit methods for PDEs, and are
particularly well-suited for parallel computing on cores with restricted comput-
ing capacity, like the SPs. It also encourages extensive use of shared memory. To
illustrate this, consider for example the heat equation in two spatial dimensions,

ut − auxx − auyy = 0,

which can be discretized as

un+1
ij − unij

∆t
− a

uni+1,j − 2unij + uni−1,j

∆x2
− a

uni,j+1 − 2unij + uni,j−1

∆y2
= 0,

33

Figure 4.3: Illustration of how the computational grid is mapped into threads
and blocks on the GPU. Picture taken from [20].

leading to the explicit finite-differences scheme,

un+1
ij = Lij(u

n) = unij+a
∆t

∆x2
(uni+1,j−2unij+u

n
i−1,j)+a

∆t

∆y2
(uni,j+1−2unij+u

n
i,j−1),

34 4.2. GPU computing using CUDA

Figure 4.4: The GPU memory hierarchy. Picture taken from [20].

where the stencil needed for computing un+1
ij by the operator Lij , simply is

Sij = {(xi−1, yj) , (xi, yj−1) , (xi, yj) , (xi+1, yj) , (xi, yj+1)}.

Given a grid with the solution, {unij}, at t = tn, the new grid values at time
t = tn+1 are computed using a simple formula, Lij(u

n), and only a small part
of the total domain, Sij , which fits perfectly with the GPU hardware. High-
resolution methods using explicit ODE solvers are, in essence, just this kind of
stencil computation, although admittedly slightly more complex. For example,

35

the second-order reconstruction, using linear polynomials, uses the very same
stencil, Sij .

For evolving the heat equation one time step on the GPU we need to par-
tition the domain into blocks, as already seen in Figure 4.3. Say, for simplicity,
that the physical domain is square and given by the data points

Ω = (x, y) ∈ [x0, xN]× [y0, yN].

These N2 values are loaded into global GPU memory and the CUDA kernel
responsible for the time step launches the desired number of blocks and threads.
Each block then loads a portion of the total domain into shared memory. For
simplicity, let the blocks also be square and of size r × r, where r ≤ N is
even. Each block has a unique block index, (b, w). The threads are locally
indexed within each block, so we need to map the local thread index, (p, q),
and its block index, (b, w), to the global index (i, j) when communicating with
the global memory. This mapping is a matter of choice, but we have chosen
to position the index (0,0) in the bottom left corner of the grid, such that the
GPU indices match the mathematical indices in the grid.

With this set up, block Bbw of size r × r, is given by

Bbw = [xbr, xbr+r−1]× [ywr, ywr+r−1].

Each thread is commonly given responsibility for one element in the grid. The
structure of the kernel would be as mentioned above, where first all the values of
un in the domain of the current block, is read into shared memory. The reading
is done in parallel, distributed over the threads. We sync threads, and then each
thread is able to compute the corresponding function value un+1

ij = Lij(u
n).

This procedure works fine until we hit a boundary, either the boundary
of the current block, Bbw, or the boundary of the physical domain Ω. The
numerical scheme, as defined here, is oblivious to boundaries, and to keep that
property, we introduce ghost cells, also called halo or apron. The ghost cells are
added as an extra layer outside the boundary of each block, so that the stencil
is valid also for the points at the boundary. For a block situated in the interior
of the global domain, Ω, these ghost cells can simply be read from the already
existing grid. For example, if

xbr > x0, xbr+r−1 < xN , ywr > y0, ywr+r−1 < bN ,

we simply read the cells along the lines

xbr−1, xbr+r, ywr−1, ywr+r

36 4.2. GPU computing using CUDA

from global memory, in order to make them visible also to the current block.
Consequently, an element belonging to a block halo is in total read at least twice
from global memory. First once as an interior point for the block it originally
belongs to, and then once for each block halo it is included in. This also means
that there will be more elements in shared memory than there will be threads
per block.

To cope with the case when xbr+r−1 = xN or xbr = x0, we also need to
create global ghost cells, which evidently also serve as boundary conditions for
the PDE. Note also that the introduction of ghost cells, both globally and in
each block, results in an offset between the thread indexing on the GPU and
the physical domain. Point (x0, y0) in the grid will in fact, in this example, be
given the index (1, 1) on the GPU, since the allocated array needs the 0 index
for ghost cells. Furthermore, it is customary to extend the physical domain to
fit an integer number of blocks.

For further discussion of ghost cells and boundary conditions, exemplified
using image convolution, see [23].

5. Numerical aspects of the shal-
low water equations

The previous chapters have for the most part revolved around general conser-
vation laws. We will now devote our attention to the shallow water equations
in two dimensions and present some of the important numerical issues that
arise when solving them. First we present both a second-order and fourth-order
well-balanced source term quadrature for the shallow water equations, then we
introduce what is called a hydrostatic reconstruction, which is a slight variation
of the WENO reconstruction, used to avoid non-physical discontinuities in the
bottom topography. We also briefly discuss dry states, when the water height
is zero.

5.1. Fourth-order well-balanced source terms

A naive treatment of the bed slope source term, SB(Q), would be to use some
standard quadrature rule, say Simpson’s rule or Gaussian quadrature, to ap-
proximate the source integrals of each cell, given by

S(2) =
1

∆x∆y

∫
Ωij

g(w −B)Bx dxdy,

S(3) =
1

∆x∆y

∫
Ωij

g(w −B)By dxdy.

This would however, in general, violate the analytical lake at rest property
(3.12), which states that

F (Q)x +G(Q)y = S(Q).

37

38 5.1. Fourth-order well-balanced source terms

To capture the solution well in, or close to, stationary state, we need to ensure
that whenever w = const and u, v = 0, the source term quadrature cancels out
the numerical fluxes exactly. A properly well-balanced quadrature rule for the
source term is derived in [12], based on Simpson’s rule in the flux integral, but as
previously stated, Gaussian quadrature gives higher order of convergence using
less integration points, and is therefore a more desirable choice. We will show
the details of the calculations for S(2) and then state the result for S(3), which
is derived analogously.

We consider the shallow water equations using the variable change w =
h+B (2.9), and start by investigating the numerical flux terms, and in particular
the flux on the eastern cell interface, indexed by (i+1/2, j). When in stationary
state, it follows that

w+
i+1/2,j = w−i+1/2,j

which implies that

a+
i+1/2,j = −a−i+1/2,j , F+

i+1/2,j = F−i+1/2,j

so on the eastern cell interface we have that the central-upwind flux (3.6), is
given by

Hx
i+ 1

2 ,j
=
a+
i+ 1

2 ,j
(F−
i+ 1

2 ,j
− F+

i+ 1
2 ,j

)

2a+
i+ 1

2 ,j

+
(a+
i+ 1

2 ,j
)2

2a+
i+ 1

2 ,j

(w+
i+ 1

2 ,j
− w−

i+ 1
2 ,j

)︸ ︷︷ ︸
=0

(5.1)

=
F+
i+ 1

2 ,j
+ F−

i+ 1
2 ,j

2
= F+

i+ 1
2 ,j

= F−
i+ 1

2 ,j
, (5.2)

and analogously on the western interface for F and northern and southern for
G. Again, we denote by F±i,j the one-sided flux on a particular cell interface,
whereas, by F (Qi,j) we mean the flux function, as stated in the actual PDE,
evaluated at the point (xi, yj).

Now, keep in mind that the fluxes F±i+1/2,j are calculated using a quad-

rature rule along the cell interface, in this case a Gaussian quadrature (3.8). We
have

F−i+1/2,j =

∫ y
j+1

2

y
j− 1

2

F (Q̂−(xi+ 1
2
, y)) dy

=
1

2

(
F (Q̂−(xi+ 1

2
, yj−α)) + F (Q̂−(xi+ 1

2
, yj+α

)
,

(5.3)

39

where the integration points are given by

α =
1

2
√

3
.

Next, we use the fact that u = v = 0, which reduces the flux functions to

F (Q) =

hu

(hu)2

w−B + 1
2g(w −B)2

(hu)(hv)
w−B

 =

 0
1
2g(w −B)2

0

 , (5.4)

G(Q) =

hv

(hu)(hv)
w−B

(hv)2

w−B + 1
2g(w −B)2

 =

 0

0
1
2g(w −B)2

 ,
which is simply the hydrostatic pressure. Notice that the F and G fluxes con-
tribute to only the second and third equation, respectively.

Based on this, inserting (5.4) and (5.3) into (5.2), we now have that

Hx
i+ 1

2 ,j
=

1

2

(
g(wi+ 1

2 ,j+α
−Bi+ 1

2 ,j+α
)2

2
+
g(wi+ 1

2 ,j−α −Bi+ 1
2 ,j−α)2

2

)
,

and analogously for the northern, western and southern interfaces. The total F
flux contribution to the cell Iij in stationary state, amounts to

Hx
i+ 1

2 ,j
−Hx

i− 1
2 ,j

∆x

=
1

2∆x

(
g(wi+ 1

2 ,j+α
−Bi+ 1

2 ,j+α
)2

2
+
g(wi+ 1

2 ,j−α −Bi+ 1
2 ,j−α)2

2

)

− 1

2∆x

(
g(wi− 1

2 ,j+α
−Bi− 1

2 ,j+α
)2

2
+
g(wi− 1

2 ,j−α −Bi− 1
2 ,j−α)2

2

)
.

Re-arranging the terms we obtain

40 5.1. Fourth-order well-balanced source terms

Hx
i+ 1

2 ,j
−Hx

i− 1
2 ,j

∆x

=
1

2∆x

(
g(wi+ 1

2 ,j+α
−Bi+ 1

2 ,j+α
)2

2
−
g(wi− 1

2 ,j+α
−Bi− 1

2 ,j+α
)2

2

)

+
1

2∆x

(
g(wi+ 1

2 ,j−α −Bi+ 1
2 ,j−α)2

2
−
g(wi− 1

2 ,j−α −Bi− 1
2 ,j−α)2

2

)
,

which, as in [12], can be re-written into

Hx
i+ 1

2 ,j
−Hx

i− 1
2 ,j

∆x

=
g

2

(
Bi+ 1

2 ,j+α
−Bi− 1

2 ,j+α

∆x
·

(wi+ 1
2 ,j+α

−Bi+ 1
2 ,j+α

) + (wi− 1
2 ,j+α

−Bi− 1
2 ,j+α

)

2

)

+
g

2

(
Bi+ 1

2 ,j−α −Bi− 1
2 ,j−α

∆x
·

(wi+ 1
2 ,j−α −Bi+ 1

2 ,j−α) + (wi− 1
2 ,j−α −Bi− 1

2 ,j−α)

2

)
.

So we see that we end up with two terms, one for each of the Gaussian integration
point on the cell interface. To simplify the indexing a bit, we can for cell Ii,j
denote the four cell interfaces W = i−1/2, E = i+1/2, S = j−1/2, N = j+1/2,
i.e. west, east, south and north, and the integration points by ±α. Furthermore,
we write h = w −B.

Then the source term quadrature is found by (3.12). The F and G fluxes
dictate

S
(2)
i,j = −g

2

(
BEα −BWα

∆x
· h

E
α + hWα

2

)
− g

2

(
BE−α −BE−α

∆x
·
hE−α + hW−α

2

)
,

S
(3)
i,j = −g

2

(
BNα −BSα

∆y
· h

N
α + hSα

2

)
− g

2

(
BN−α −BS−α

∆y
·
hN−α + hS−α

2

)
.

(5.5)

Such a quadrature is, however, only of second-order. We use four points,
but they are all at the cell interfaces, and therefore do not coincide with the
Gaussian quadrature points in two dimensions, (xi+α, yj±α), (xi−α, yj±α). In
order to increase the order, we need to add interior cell points, (xi, yj±α) and

41

(xi±α, yj), in an extrapolation procedure, as shown in [18]. We denote the
reconstructed function values at the interior integration points BC±α and hC±α,
where the superscript refers to the coordinate in the current flux direction,
and the subscript refers to the coordinate in the direction normal to the flux.
A fourth-order well-balanced quadrature for the second component of the bed
slope source term, reads

S
(2)
i,j =

g

2

(
4S2

α − S1
α

3
+

4S2
−α − S1

−α
3

)
,

S2
±α = −

[
(BE±α −BC±α)(hE±α + hC±α) + (BC±α −BW±α)(hC±α + hW±α)

2∆x

]
,

S1
±α = −

[
(BE±α −BW±α)(hE±α + hW±α)

2∆x

]
.

(5.6)

The third component, S
(3)
ij , is given by

S
(3)
i,j =

g

2

(
4S2

α − S1
α

3
+

4S2
−α − S1

−α
3

)
,

S2
±α =

[
(BS±α −BC±α)(hS±α + hC±α) + (BC±α −BN±α)(hC±α + hN±α)

2∆y

]
,

S1
±α =

[
(BS±α −BN±α)(hS±α + hN±α)

2∆y

]
.

(5.7)

Thus, the new quadrature is a linear combination of the second-order well-
balanced quadrature (5.5) and the three-point quadrature S2. They are added
in such a way that in stationary-state, w = const, the centre integration points
cancel out, and we have S2 = S1 and the fourth-order quadrature is equivalent
to the second-order well-balanced quadrature. This way we obtain high-order
accuracy, without violating the well-balanced property in stationary-state.

Notice how we need six points to obtain order four for a well-balanced
scheme, compared to the naive approach of using four Gaussian integration
points to obtain order four.

5.2. Hydrostatic reconstruction

Out of the variables h, w and B in (2.9), we need only reconstruct two of them,
as the third follows from the two others. Which two to reconstruct, may depend

42 5.2. Hydrostatic reconstruction

on the problem and method. A natural choice for high-order schemes seems to
be reconstructing h and w from cell averages and compute B̂ = ŵ − ĥ, as
done in [1, 18]. At the cell interfaces, B̂ will then, in general, be discontinuous,
therefore we will use what is called a hydrostatic reconstruction of h, which
involves using the maximum one-sided value of B at the interface integration
points, i.e.

B̂ij(x, y) = max
{
B̂+ , B̂−

}
, (x, y) ∈ ∂Iij .

Consequently, exemplified on the eastern and northern cell interface, we have
these adjusted one-sided values of h, denoted h∗:

h∗ij(x
−
i+ 1

2

, yj±α) = max
{

0 , w−
i+ 1

2 ,±α
−Bi+ 1

2 ,j±α
}

h∗i+1,j(x
+
i+ 1

2

, yj±α) = max
{

0 , w+
i+ 1

2 ,±α
−Bi+ 1

2 ,j±α
}

h∗ij(xi±α, y
−
j+ 1

2

), = max
{

0 , w−
i±α,j+ 1

2

−Bi±α,j+ 1
2

}
h∗i,j+1(xi±α, y

+
j+ 1

2

), = max
{

0 , w+
i±α,j+ 1

2

−Bi±α,j+ 1
2

}
.

(5.8)

In the flux computations we will use the adjusted conserved variables

Q∗ =

 h∗

(hu)
(hv)

 ,

which means that we are actually altering the fluxes. This is resolved by adding
a hydrostatic correction. One hydrostatic correction term is added for each of
the integration points in each flux, which in the case of Gaussian quadrature
gives us two terms. The modified fluxes read, for the F fluxes, using a Gaussian
quadrature for the one-sided fluxes,

43

Hx
i+ 1

2 ,j
= Fhi+ 1

2 ,j
+
g

4

 0

h2
ij(xi+ 1

2
, yj+α)− (h∗)2

ij(xi+ 1
2
, yj+α)

0

+
g

4

 0

h2
ij(xi+ 1

2
, yj−α)− (h∗)2

ij(xi+ 1
2
, yj−α)

0

,

Hx
i− 1

2 ,j
= Fhi− 1

2 ,j
+
g

4

 0

h2
ij(xi− 1

2
, yj+α)− (h∗)2

ij(xi− 1
2
, yj+α)

0

+
g

4

 0

h2
ij(xi− 1

2
, yj−α)− (h∗)2

ij(xi− 1
2
, yj−α)

0

,

(5.9)

where Fh is some regular homogeneous two-sided numerical flux. In [18], the
Lax-Friedrich flux (3.4) is used. We will use the central-upwind flux (3.6).

Compared to [18], the expressions in (5.9) seem slightly different, but
whereas they first compute the two-sided flux at each integration point, using
the Lax-Friedrich flux, and then apply the Gaussian quadrature, we do it the
other way around, thus resulting in an extra factor 1/2 in the added hydrostatic
corrections, yielding g/4. We must also stress that these corrections are unique
to each cell, thus seemingly violate the physically necessary condition that the
eastern flux of cell (i− 1, j) equals the western flux of (i, j). Therefore it might
be more instructive to think of the hydrostatic correction as some sort of source
term, which is also indicated by the notation in [1]. When it comes to the actual
implementation, adding the the corrections to the source term also seems as the
easiest and ’cleanest’ approach.

5.3. Dry states

Dry states in a system of shallow water flow refers to the areas where the water
height is zero, or close to zero. Computationally the treatment of these areas is
difficult. Since the computation of the CFL condition, which is necessary for sta-
bility, typically involves calculation of the maximum eigenvalues at integration

44 5.3. Dry states

points, which in turn are given by u±
√
gh and v±

√
gh, the numerical system

breaks down if h is negative at an integration point. For any reconstruction of
more than order 1, this is bound to happen when the cell average h̄ is small
enough compared to both zero and the neighbouring averages. Negative water
heights are of course also physically meaningless. Consequently, in order for a
high-resolution scheme to support dry states, it has to ensure non-negativity
both for h at every integration point at time t = tn, and also for Q̄n+1

1 , the
resulting averages at time t = tn+1.

One way of dealing with dry states, as proposed in [4,12], is to reconstruct
the physical variables Q = (h, u, v) instead of Q = (w, hu, hv) when h < K,
where K is a given small constant. As pointed out in [29], the conservation
law governing Q = (h, u, v) is only mathematically conservative, and will only
serve as an accurate model in the presence of weak shock waves. Switching to
this system also violates the well-balanced property, as small, purely numerical
waves are introduced, even if the physical system is in stationary state.

Another approach, applicable to second-order reconstructions, is to al-
ter the slopes used for the reconstruction when a negative water height is
encountered, as done in [14]. This is a better solution with respect to GPU
memory, since there is no need for storing both the physical and conserved
variables, but it cannot be generalized to higher order reconstructions, since by
altering the slopes it is only possible to ensure non-negativity at one integration
point at one interface at a time, whereas in the high-order methods more in-
tegration points are needed at each interface. It also violates the well-balanced
property, but Kurganov suggested an improved correction procedure [2] which
preserves well-balancedness even near dry areas.

Dry states support has not been the focus in this thesis, but a plausible
workaround is to swap to the above mentioned second-order positive-preserving
scheme near dry zones. That is, if we can accept the reduced order of conver-
gence .

6. Implementation on the GPU

The starting point for the implementations done for this thesis is a stripped
down version of the shallow water simulator by Bordtkorb et al. [7], which is a
GPU implementation of the second-order scheme of Kurganov and Petrova [14].
That scheme is well-balanced, supports dry states and discontinuous bottom
topography and is also equipped with an early-exit optimization, to avoid un-
necessary computations on dry cells or cells in stationary state. Furthermore,
it supports a bed friction term with spatially varying Manning coefficient and
reflective, fixed, outflow and inflow boundary conditions. Not all of these prop-
erties are easily transferable to schemes of higher order. The focus here will
therefore mainly be to ensure that the scheme is well-balanced. Dry states
are treated naively, by simply setting h = 0 whenever h < 0. A more proper
treatment is difficult in high-order schemes.

Two schemes have been implemented, one using the fourth-order source
term quadrature (5.6)-(5.7), the hydrostatic reconstruction of h from section
5.2, and one using the second-order well-balanced source term quadrature (5.5)
and a bilinear interpolation of B (3.3). Using the notation from section 3.5,
we denote these schemes (·,5,4,4) and (·,5,4,2), respectively, where the dots
indicate that several Runge-Kutta methods are supported. The (·,5,4,2) scheme
is build directly into the framework of Brodtkorb’s scheme, the only changes
being in the flux-source kernel and the global ghost cells. The (·,5,4,4) scheme
involves slightly more fundamental changes, as a consequence of going from
reconstructing B to reconstructing h. We will therefore focus mostly on the
(·,5,4,4) scheme, and comment on the (·,5,4,2) scheme when appropriate. Both
schemes are implemented using single precision, which is the preferred choice
on GPUs due to the suboptimal support for double precision.

45

46 6.1. Outline of the scheme

6.1. Outline of the scheme

The central part of the simulator in [7], and also the ones presented here, is
the REA algorithm, shown in Algorithm 1. One time step of the simulator is
illustrated in Figure 6.1. From cell averages of Q, and point values of B, they
first reconstruct the values at the integration points, using linear reconstruction
supplied with the minmod limiter. The reconstructed point values are used to
calculate the flux and source integrals, and the maximum and minimum eigen-
values. The latter is used to decide the maximal allowed time step, according
to the CFL condition (2.11). For the flux integral, the central-upwind flux (3.6)
is used for the two-sided flux and the midpoint quadrature rule (3.7) for the
one-sided fluxes. The bed slope source term is calculated by the second-order
well-balanced source term using the midpoint rule, which is equivalent to in-
serting α = 0 into (5.5).

The flux and source values are evolved in time, and boundary conditions
are added using global ghost cells, as explained in section 4.2.1, to obtain the
cell averages at the next time step. Each of these tasks is performed on the
GPU by its own dedicated kernel.

The main changes from Brodtkorb’s scheme are in the flux and source
calculations, referred to as the flux-source kernel, and we will dig into that
algorithm in more detail. The changes made in the Runge-Kutta kernel are more
straight-forward, we simply add one sub step and apply (3.11) instead of (3.10).
Also the initial data generation had to be adjusted. The input data is typically
described by a function given at points. For a second-order scheme, evaluating
the initial functions at the cell midpoints yields a second-order approximation
of the cell averages. To ensure that no initial error would effect the simulation,
the initial cell averages were instead computed using a standard fourth-order
Gaussian quadrature. Boundary conditions have not been the main area of
attention, and will only be discussed briefly later on.

Before we state the algorithm of the flux-source kernel, we will use the
theory of the WENO reconstruction and well-balanced source quadratures to get
an overview over the needed data. By that, we will determine the appropriate
halo size. The change in the halo also needs to be implemented in the boundary
conditions kernel.

47

Figure 6.1: Shows the general outline of the scheme using a second-order Runge-
Kutta method. Add one more line for third-order Runge-Kutta. The focus
here will be the Flux calculation kernel 1 and the Time integration kernel 3 .
Illustration taken from [7].

6.2. Reconstruction of the conserved variables

For each cell, Ii,j , we need to apply a WENO reconstruction procedure, as
described in Section 3.6. Since the WENO computations are rather costly,
we would like to avoid computing any values more than once for each block.
Naturally, in all cells used as ghost cells, the same WENO reconstructions will
be carried out also in adjacent blocks, in order to minimize the use of global
memory. If we store the line averages in shared memory and reconstruct the
point values where they are needed in the flux and source computation, we do not
calculate any values more than once per block. Furthermore, the points needed
in the Hx flux computation and the second source term, S(2), are all situated
along different lines than the points used in Hy and S(3), see Figure 3.1. By
realizing this, we need only compute and store half of the needed line averages
at a time, which truly underscores the dimension-by-dimension approach. This
saves shared memory a great deal.

The bottom topography, B, is known and does not vary in time and could
ideally be computed only once and later re-used. To save global memory, how-
ever, Brodtkorb et al. chose to re-compute B at each time substep, a procedure
we will adopt. In the works of Kurganov and Brodtkorb [7, 12, 14], amongst
others, the strategy has been to reconstruct w and B, and then compute h for
use in the flux and source integrals. This approach has been used in the (·,5,4,2)
scheme, where the water elevation, w, is reconstructed by the fifth-order WENO
reconstruction from cell averages, whereas B is reconstructed by the means of
regular bilinear interpolation from the point values at the four cell corners (3.3).
This procedure could probably be extended to higher order reconstructions, but
is not easy to find in the literature, if mentioned at all. In [1] it is concluded that
reconstructing w and h, actually is the preferable choice, even for linear recon-

48 6.2. Reconstruction of the conserved variables

struction. The application to linear reconstruction will not be investigated here,
but for higher order reconstructions this choice seems more suitable. We will
therefore apply the hydrostatic reconstruction from Section 5.2. By this we are
evolving both w and h in time, computing B at each integration point at each
time step. In the current implementation, to run the hydrostatic reconstruction
on homogeneous problems, B = const, we simply set water height no = 0 as a
runtime parameter, which will cause h to be reconstructed using the values of w.
This implementation is of course not optimal, as we do not need to reconstruct
h if the problem is homogeneous, but it yields correct results. For further optim-
ization for homogeneous problems, the reconstruction of h and the computation
of the source term should be omitted, possibly by calling a different flux kernel,
without these computations, based on the parameter water height no.

(a) Stencil (b) Block and halo

Figure 6.2: Illustration of the WENO stencil and the needed halo.

To compute the fourth-order source term quadrature (5.6)-(5.7), we need
interior cell points for both h and w. As previously described, we can choose to
either reconstruct the line averages at the interfaces and the two lines through
the cell midpoint, in total six line averages, or reconstruct the four lines located
along x = xi±α and y = yj±α, see Figure 3.1. The latter is the method of
choice. The reasoning behind, is that we wish to store the line averages in
shared memory and compute the point values whenever they are needed. Fewer
line averages means less load on shared memory. This reconstruction process

49

is illustrated in Figure 6.2, exemplified with the points needed for Hx and
S(2), where we show the need for a 25-point, non-compact, stencil in order to
determine a point value in a given cell, (i, j). To obtain one of the six points,
we perform a sweep in the x direction (yellow), using the line averages in the
stencil

Sxi,j =
{

(i− 2, j), (i− 1, j), (i, j), (i+ 1, j), (i+ 2, j)
}
.

These line averages are in turn computed by a sweep in the y direction (shown
in grey for cell (i+ 2, j)), using the cell averages in the stencils

Syi+2,j =
{

(·, j − 2), (·, j − 1), (·, j), (·, j + 1), (·, j + 2)
}
,

hence we need a 25-point stencil. Again, we obtain the points used for S(3) and
Hy, by performing the sweeps in reversed order.

When the flux kernel is called, which is responsible for the reconstruc-
tions, we divide the domain into blocks. We will come back to the block size
shortly, but for now, consider the 8 × 8 example in Figure 6.2b, which clearly
illustrates how we need two ghost cells to compute all the point values in the
block. However, in order to compute the fluxes on the block boundary, we also
need point values and fluxes from adjacent cells, which forces us to increase the
halo radius to 3, see Figure 6.3. Note here that the stencil in Figure 6.2a would
be the same if we were to reconstruct interface averages instead, but the line
average sweep (grey) and point value sweep (yellow) would have been in the
opposite directions.

6.3. The flux-source kernel

The most central part of the simulator, is the kernel responsible for computing
the net flux and source terms for each cell, as well as the maximum and min-
imum eigenvalue. Here, both the WENO reconstruction, the Gauss integral, the
central-upwind flux computation and the source term integral are performed.
Each thread is responsible for its designated cell, and will return the net change
in the conserved variables in that cell, i.e. the right-hand side of (2.10). The
algorithm is outlined in Algorithm 2. First we compute all the interface fluxes
and source terms, before we sum them up to one value, to save global memory,
as done in [7]. These values are stored in an array, R = (R1, R2, R3), which is
sent to the timestep kernel.

50 6.3. The flux-source kernel

(a) y-x sweep for F flux (b) x-y sweep for G flux

Figure 6.3: Ghost cells needed (green, yellow, red) for flux computation, exem-
plified on a 8 × 8 block. In red cells, we calculate fluxes, the yellow ones are
needed in the reconstruction of both point values and line averages, whereas the
green ones are needed only in the reconstruction of line averages.

Ghost cells

The main issue in the flux-source kernel is the handling of ghost cells, which
is illustrated in Figure 6.3. We will compute the western and southern fluxes
in each cell, as done in [7], and thus, to get the fluxes on the northern and
eastern block boundary, we compute the fluxes also in the innermost row and
column of ghost cells (marked as red). This is done by one warp after finishing
the flux computations in the actual computational domain, the output domain.
Furthermore, in the computation at the southern and western block boundary,
we need point values from the adjacent ghost cells, which explains the need
for increasing the halo radius by one cell in each direction. In the current
implementation, the one-sided ’minus’ point values used for the western and
southern boundary of the block, are precomputed, and stored in shared memory,
before the actual flux computation starts.

In each block, the output domain is positioned at local indices i =
3, ...bw+2, and j = 3, ..., bh+2, if we define bw = ’block width’ and bh = ’block

51

height’. Thus we compute the south fluxes for cells (i = 3, ..., bw+2, j = bh+3)
and the west fluxes for cells (i = bw + 3, j = 3, ..., bh + 2) in order to get the
fluxes at the block boundaries.

From Figure 6.3, we see how the halo is different for the two fluxes, Hx

and Hy. To be able to compute all the necessary point values in the second
WENO sweep, line averages needs to be computed in the yellow and red area,
in addition to the output domain. The reconstruction of these line averages, in
turn needs cell averages also from the green area. In total, only two rows or two
columns are unused in each of the flux computations.

Note that this is only valid for the reconstruction procedure using interior
line averages, see Figure 3.1a. When using the line averages on the cell interfaces,
Figure 3.1b, the halo looks slightly different.

Maximum time step

In the flux and source computations in each cell (i, j), the maximal allowed time
step of that particular cell interface is computed by inserting the eigenvalues of
the shallow water equations into (2.11). We have

rx = Ccfl∆x/max |u±
√
gh|, u = u±

i− 1
2 ,j±α

, h = h±
i− 1

2 ,j±α
, (6.1)

for the four integration points involved in the two-sided F flux on the western
cell interface, and

ry = Ccfl∆y/max |v ±
√
gh|, v = v±

i±α,j− 1
2

, h = h±
i±α,j− 1

2

, (6.2)

for the four integration points involved in the two-sided G flux on the southern
cell interface, and the maximum time step for that particular cell, (i, j), is set
to

∆t ≤ min
{
rx , ry

}
. (6.3)

The CFL coefficient, Ccfl, is taken as a input parameter to the flux-source
kernel, and is decided runtime based on the chosen Runge-Kutta method. This
was not needed in the scheme of Brodtkorb et. al, since the Ccfl = 0.25 both
for the first-order and second-order TVD Runge-Kutta method.

Each thread writes its maximal allowed time step to global memory. The
max time step kernel then collects these values and finds the maximum time
step for the entire grid, which is the one to be used by the time step kernel.

52 6.3. The flux-source kernel

Algorithm 2 Implementation of the flux-source kernel in the (·,5,4,4) scheme

Current cell has index (x, y) = (i, j)
Shared memory arrays: S,Qs, QM , QP
Local variables: R1, R2, R3, for storing flux and source
Load h,Q1, Q2, Q3

Reconstruct lines (x, yj±α) for cell (i, j), one warp takes care of ghost cells,
store in QM (i, j), QP (i, j).
Reconstruct point values in block column 2.
calcFluxSourceWest(S,QM , QP , i, j);
if i = bw + 2 then

calcFluxSourceWest(S,QM , QP , bw + 3, j);
end if
R1 = F

(1)
i−1/2−F

(1)
i+1/2; R2 = F

(2)
i−1/2−F

(2)
i+1/2 +S(2); R3 = F

(3)
i−1/2−F

(3)
i+1/2;

Reconstruct lines (xi±α, y) for cell (i, j), one warp takes care of ghost cells,
store in QM (i, j), QP (i, j).
Reconstruct point values in block row 2.
calcFluxSourceSouth(S,QM , QP , p, q);
if j = bh+ 2 then

calcFluxSourceSouth(S,QM , QP , i, bh+ 3);
end if
R1 = R1 + G

(1)
j−1/2 − G

(1)
j+1/2; R2 = R2 + G

(2)
j−1/2 − G

(2)
j+1/2; R3 = R3 +

G
(3)
j−1/2 −G

(3)
j+1/2 + S(2);

Calculate minimum eigenvalue for the current block

The flux and source integrals

In a second-order scheme, it could be instructive and clean to put the source
and flux computations in separate functions. In high-order schemes, however,
if we want to avoid multiple computations of smoothness indicators and point
values, it is better to keep the two computations in the same functions, so that
the reconstructed point values can be used for all its purposes right away.

When all needed line averages in the current flux direction are computed,
we initiate the flux-source function, calcFluxSourceWest and calcFluxSource-
South in Algorithm 2. The calcFluxSourceWest function is outlined in Al-
gorithm 3. Each thread first computes all six integration points in its designated
cell and the bed slope source term using (5.6)-(5.7). All the needed points are
computed by the same thread, so this implementation is rather straight forward.

53

Algorithm 3 Implementation of the ’calcFluxSourceWest(S,QM , QP , i, j)’
function in the (·,5,4,4) scheme

Current cell has index (x, y) = (i, j)
Input: Line averages, ±α, empty source term array, S.
Reconstruct Q+

i−1/2,j±α, Qi,j±α, Q−i+1/2,j±α
S(i, j) = S

(2)
i,j

Add hydrostatic correction from h+
i−1/2,j±α, h

−
i+1/2,j±α to S(i, j)

QM (i− 2, j)← Qi+1/2,j−α, QP (i− 2, j)← Qi+1/2,j+α

syncthreads();
Compute h∗i−1/2,j±α by using QM (i− 2, j), QP (i− 2, j)
Compute two-sided flux Fi−1/2,j and eigenvalues.
QM (i− 3, j)← h∗i−1/2,j−α, QP (i− 3, j)← h∗i−1/2,j−α
syncthreads();
S(i, j) = S(i, j) + hydrostatic correction form h∗

QP (i− 3, j) = Fi−1/2,j

Return max eigenvalue

At this point, also the contribution to the hydrostatic flux correction (5.9) com-
ing from hi±1/2,j , are ready to be computed. This correction is simply added
to the source term. The contribution from h∗ is added later on.

In the flux computation, however, we need reconstructions from adjacent
cells to get the ’plus’ and ’minus’ points used in the central-upwind flux (3.6).
The ’plus’ points are already available, seeing as we have chosen to compute the
west and south fluxes. Thus we have the choice of doing the reconstructions of
the ’minus’ points yet again, or we can use shared memory to read from adja-
cent threads. The latter approach leads to frequently use of the syncthreads()
command, but no significant effects on runtime from this extra syncing, has
been detected, which makes it the preferable strategy.

As soon as Q and h have been computed at the integration points, we are
done with the arrays storing the line averages. This space can now be exploited
by letting each thread write the points needed by adjacent cells, to the free
shared memory arrays. These values are then used, first in the hydrostatic
reconstruction, h∗, (5.8), then to the hydrostatic correction in the current cell
(5.9), before h∗ is written back to shared memory, to be used by the adjacent
cell in the hydrostatic correction.

To exemplify for the F flux computation: A cell (i, j) sends its eastern

54 6.3. The flux-source kernel

reconstructed values of w and h to shared memory, to be read by cell (i +
1, j). Then cell (i, j) uses information from cell (i − 1, j) in the hydrostatic
reconstruction on the western interface. The values of h∗ are then sent back to
shared memory to be used in the hydrostatic correction of the eastern interface
of cell (i− 1, j). Again, all the hydrostatic corrections are simply added to the
source term.

Finally, since we are computing the flux on the eastern and northern
border of the output domain in a second call to the calcFluxSource function, we
must make sure that all writing to shared memory during the calcFluxSource
function is made with an offset of 2. The line averages in cells i = [bw+1 , bw+2]
and j = [bh + 1 , bh + 2], are needed in the fluxes in cells i = bw + 3 and
j = bh + 3, and cannot be overwritten during the first call to ’calcFluxWest’
and ’calcFluxSouth’.

6.3.1. Implementation of second-order source term

The implementation of the (·,5,4,2) is slightly less intricate. The fifth-order
WENO reconstruction was carried out for Q, and the flux integrals were com-
puted using Gaussian quadrature, but the bilinear interpolation of B from the
Kurganov-Petrova scheme was kept, alongside with the second-order bed slope
source term (5.5). Although using a fifth-order WENO method, technically the
reconstruction of Q1 = h + B is of only second-order since we use bilinear in-
terpolation on B, but since the reconstruction of B is only relevant when the
source term is non-constant, that is when the total order of the scheme is 2
anyway, we use the notation (·, 5, 4, 2) to indicate that we are in fact using a
WENO reconstruction of Q.

For this scheme, the reconstruction procedure using interface averages
was used, see Figure 3.1b. Since the source term integration was only second-
order accurate, there was no need for the interior quadrature points, hence only
two line averages were needed and thus the shared memory load was tolerable.
Also, there was room in shared memory for storing the interpolated values of
B at the two integration points on the current flux interface, i.e. the western
interface of each cell while computing the F flux and the southern interface of
each cell while computing the G flux.

In this variant, the flux computation is simpler, since the calcFluxSource
function starts by reconstructing the four points needed in the central-upwind
flux. However, to avoid recomputing the same values in the adjacent cell, shared
memory was used for the source term. If we consider the two source term
components (5.5), we are able to nicely split the source terms into one term for

55

the reconstructed ’plus’ values of h at the western boundary of the current cell,
(i, j), and one term for the reconstructed ’minus’ values on the western interface
of the adjacent cell, i.e. (i+ 1, j) for S(2) and (i, j+ 1) for S(3). Exemplified for
the F flux, we get

S
(2)
i,j =

g

2

(
BEα −BWα

2∆x
· hWα +

BE−α −BW−α
2∆x

· hW−α
)

+
g

2

(
BEα −BWα

2∆x
· hEα +

BE−α −BW−α
2∆x

· hE−α
)

= Ŝ
(2)
i,j (Fi− 1

2 ,j
) + Ŝ

(2)
i,j (Fi+ 1

2 ,j
),

(6.4)

meaning that the term Ŝ
(2)
i,j (Fi− 1

2 ,j
) can be computed using the B values known

to the entire block, and the reconstructed values of h at the western cell interface,

which is computed by thread (i, j). The term Ŝ
(2)
i,j (Fi+ 1

2 ,j
) is computed by thread

(i + 1, j). This way we avoid reconstructing hE±α = h−i+1/2,j±α twice. For this

to work, it is important that B is known to the entire block, which is possible
using the bilinear interpolation.

On homogeneous problems, this scheme actually is of spatial order 4,
and it is computationally lighter than the (·, 5, 4, 4) scheme, both because of
the lack of interior points and because this scheme does not perform WENO
reconstruction on h in addition to Q.

6.3.2. Shared memory usage

Using the fourth-order source term quadrature, we need to store four cell aver-
ages, of h,Q1, Q2, Q3. For each of these four variables we also need to store two
lines averages at a time. First for the lines (x, yj±α) for computing the F flux,
then for the lines (xi±α, y) for the G flux. The complete list of shared memory
arrays for the WENO method of order (3,5,4,4) is given in Table 6.1. One array
could also be used for the source term since the hydrostatic correction of the
fluxes is computed by more than one thread, which sums up to in total 13 arrays
of size (bw + 6) × (bh + 6). The source term could also be computed using a
variable stored in the temporary registers, which frees up some shared memory
space. It has, however, no huge impact on performance.

The actual size of the shared memory arrays needs to take into account
the ghost cells, which explains the added 6 cells in each direction. We refer to
bw × bh as the block size and (bw + 6) × (bh + 6) as the shared memory size.

56 6.3. The flux-source kernel

Shared memory arrays for method (·, 5, 4, 4)

Array Size Description

S (bw + 6)× (bh+ 6) Save values of S.
Q 4× (bw + 6)× (bh+ 6) Store cell averages of Q and h.
RU1 4× (bw + 6)× (bh+ 6) Store line averages on ’plus alpha’ points
RU2 4× (bw + 6)× (bh+ 6) Store line averages on ’minus alpha’ points.

Table 6.1: List of the shared memory arrays used in the WENO method of order
(·,5,4,4), which has a fourth-order source term.

The size of the source term array, S, need not be more than bw × bh, but as
just stated, this shared memory array can be skipped altogether.

The shared memory arrangement for the (·, 5, 4, 2) scheme is slightly dif-
ferent. We use one shared memory array for the source term, since two adjacent
cells are cooperating on the source term. Again, this is most likely possible to
omit, but this was not investigated further. Since we are reconstructing B, we
need to store both the cell corner values of B, and also the two interpolated
values at the current flux interface. These values will be overwritten when we
are done with the F flux and ready to start on the G flux. The final shared
memory usages is summarized in Table 6.2. Also here we need in total 13 arrays
of size (bw + 6)× (bh+ 6).

Shared memory arrays for method (·, 5, 4, 2))

Array Size Description

B (bw + 6)× (bh+ 6) Store B at cell corners.
RB1 (bw + 6)× (bh+ 6) Value of B at −α integration point
RB2 (bw + 6)× (bh+ 6) Value of B at +α integration point
S (bw + 6)× (bh+ 6) Save values of S.
Q 3× (bw + 6)× (bh+ 6) Store cell averages of Q.
RU1 3× (bw + 6)× (bh+ 6) Store west/south interface averages, QR

RU2 3× (bw + 6)× (bh+ 6) Store east/north interface averages of QL

Table 6.2: List of the shared memory arrays used in the WENO method of order
(·,5,4,2), which only has a second-order source term quadrature.

57

6.3.3. Block size

The optimal block size depends on several parameters, and is not easy to find
mathematically. Below, the optimal choices for the implemented schemes are
discussed in light of the most crucial parameters. The final block sizes, to be
used in experiments, were found by the means of trial and error.

Shared memory limit

Based on Table 6.1 and 6.2 it is straight forward to compute the total shared
memory load. Given the block size we know the number of elements in shared
memory. Each element is a number with single precision, which occupy 4 bytes.
The shared memory capacity is 16 KB, which dictates an upper bound for the
block size. With respect to this limit, the maximum number of elements per
shared memory array in a block would be 315, or 341, depending on whether we
use a shared memory array for S or not. This corresponds to a maximum block
size of 15× 9 or 14× 11, respectively. 13 arrays and a 15× 9 block size results
in 15.996 KB shared memory usage, while 12 arrays and block size of 14 × 11
equals 15.938 KB. Using 12 arrays, blocks of size 16× 9 and 15× 10 also gives
close to optimal shared memory usage.

Number of threads vs. warp size

Typically we want the number of threads in a block to be a multiple of the warp
size, 32, since the streaming multiprocessors are launching threads one warp at
a time. A block size of 16 × 8 gives us 128 threads which is exactly 4 warps,
which is the largest possible block size without exceeding the shared memory
limit.

Avoiding bank conflicts

To avoid bank conflicts when reading and writing to shared memory, the width
of each shared memory array should be a multiple of 33, i.e. a block width of 27.
This parameter was violated in the implementation in [7], and will be violated
also here. In the shared memory configuration using 12 arrays, we would need
a block size of 27 × 4 in order to avoid bank conflicts, which is an awkwardly
sized rectangle, and did not yield good results either.

58 6.3. The flux-source kernel

Square blocks

While the three above mentioned parameters are hardware specific, this one is
more logical. Ideally we want blocks that are as square as possible, because
we want the ratio of output cells to halo cells in both spatial directions to
be such that the number of computations done in ghost cells is as small as
possible compared to the number of computations made in the actual output
cells. With the given halo, we need to perform computations in 6 ghost cells in
each direction. The squarest possible block size, without exceeding the shared
memory limit, would be 12 × 12, which also proved to perform well compared
to most other block sizes, despite not being an integer multiple of 32.

6.3.3.1. Optimal block size

The feasible block sizes based on the parameters above, were all tested and
the 14 × 11 blocks were in fact found to yield the best runtime, although not
significantly better than the sizes 16× 8, 16× 9, 15× 10 and 12× 12. If using
13 shared memory arrays, the optimal sizes were 16 × 8, 15 × 9 and 12 × 11.
Surprisingly, having block sizes of an integer multiple of the warp size, did not
turn out to be as crucial as expected.

In experiments, we have settled for a block size of 14×11 for the (·,5,4,4)
schemes, which are then using only 12 shared memory arrays, and a block size
of 16× 8 for the (·,5,4,2) schemes, which do rely on 13 shared memory arrays.

Developing code on the Quadro FX 380 GPU

On the GPU used for initial development, the Quadro FX 380 with only 16
CUDA cores and 256 MB GDDR3 memory, the compiler would not accept the
maximal block sizes determined by the shared memory limit using 13 arrays,
which made 16 × 8 or 12 × 11 more preferable sizes with that configuration.
Although slightly smaller in terms of total size, the 12×11 blocks yielded runtime
errors, resulting in 16×8 being the optimal block size on that GPU. with respect
to shared memory usage, which for 13 arrays results in a shared memory usage
of 15.64 KB. As it turns out, the Quadro FX 380 GPU gave runtime errors if the
block size exceeded 16× 8, regardless of how much shared memory was in use.
It is apparent that this hardware is not capable of handling all the arithmetic
involved in the WENO reconstructions. No hardware restrictions other than
shared memory size, was discovered on the Quadro 5000, used for final testing.

59

6.3.4. Note on the intrinsic powf() function

Initially, the code was implemented using the intrinsic C++ function powf(),
which obviously was called quite often in the WENO reconstruction to raise the
expressions in the smoothness indicators to the power of 2, powf(x, 2) = x2. As
it turns out, this is an extremely slow process, perhaps not all that surprising
seeing as squaring numbers, is one of the simplest variants of xn. Substituting
the powf() function with the direct multiplication x2 = x · x sped up the code
as much as about 6-8 times. Using the powf() function, we were in fact able to
run larger block sizes than 16 × 8 on the Quadro FX 380 GPU, but still at an
incredibly slow speed.

6.4. The time step kernel

The timestep kernel starts by reading cell averages of Q and h at t = tn, cell
averages of Q and h at the last time substep, and the net change in each cell,
R, from shared memory. For this kernel, there is no need for ghost cells, which
makes the implementation much more straight forward than for the flux-source
kernel. It simply consists of reading the data, compute the timestep and store
in global GPU memory.

Since we are reconstructing h, and not B, we also need to evolve h in time,
using the same net cell change as for w. For each substep in time, i → i + 1,
tn = t0 ≤ ti ≤ tn+1 = tm, i = 0, ...,m, the timestep kernel then compute

hn, Ri1 7−→ hi+1

wn, Ri1 7−→ wi+1

(hu)n, Ri2 7−→ (hu)i+1

(hv)n, Ri3 7−→ (hv)i+1,

using a, preferably TVD, Runge-Kutta method. In the implementation in [7],
both the classic Euler’s method and the second-order TVD Runge-Kutta (3.10)
are supported. In the current high-order scheme, also the third-order Runge-
Kutta (3.11) is available.

The time step kernel is also responsible for computing the bed friction
source term, leading to a semi-implicit approximation of SF (Q). This part of
the implementation was left unchanged from [7].

Also, in SINTEF’s simulator the time step kernel was set to use the same
block size as the flux-source kernel, a configuration we will leave unchanged.

60 6.5. Boundary conditions

6.5. Boundary conditions

So far, we have avoided the treatment of boundary conditions. The (2,2,2,2)
scheme by Brodtkorb has support for wall, outflow and inflow conditions. The
implementation of the former is the same also in a high-order setting, the cell
averages in the ghost cells are set to the same value as its counterpart in the
interior domain, except for the velocity component normal to the boundary
interface, which changes sign.

Outflow and inflow conditions turns out to be more difficult if we want
the flux kernel to remain oblivious of boundaries. In the second-order recon-
struction, the approach is to simply set the two ghost cells equal to the interior
cell at the boundary. That way, all the derivatives in the ghost cells closest to
the boundary will be zero. In the high-order scheme, however, if x3 and xN+2

are the cells at the domain boundaries on a one-dimensional domain, we need to
specify values in the ghost cells, x0, x1, x2 and xN+3, xN+4, xN+5, such that
there is no ingoing flow at the boundary, i.e. the derivatives in cells x2 and xN+3

should be zero. But simply setting all the ghost cells equal to the cell at the
boarder, is not sufficient, since the stencils for the cells xN+3 and x2, depend
on the cells xN+1 and x1, which generally are not equal to the cells x3, xN+2.
Consequently, four out of five points in the WENO stencils are equal, while the
fifth differs from the rest. When applying this naive implementation, a wave
front leaving the domain will create a small reflecting wave, which possibly could
destroy the computations in the interior cells.

7. Numerical results

To highlight the properties of the high-order schemes on the shallow-water equa-
tions (2.9), we consider a variety of problems, from discontinuous and homogen-
ous ones to smooth and non-homogeneous. We will measure the code perform-
ance, numerically verify the order of convergence, investigate the well-balanced
properties and, perhaps most importantly, compare the accuracy of the high-
order schemes with that of the second-order scheme, in light of the runtime
differences.

7.1. Code performance

We start off by comparing the performance of the (2,2,2,2) and the higher order
schemes, seeing as that sets a premiss for the rest of the discussion. The hard-
ware used for the benchmarks was an Intel Core i7-3939K CPU with 3.20GHz
and 64 GB RAM. The GPU was a NVIDIA Quadro 5000 with 2.5 GB GDDR5
frame buffer memory in a PCI-express 2.0 x16 slot.

The runtimes were measured in simulated time per wall clock second.
The simulation time unit was taken to be one time step using the second-order
Runge-Kutta method on a 100× 100 grid, which we will denote

∆tn=100.

Since the eigenvalues computed by the different methods are approximately the
same, this time unit will also be approximately the same, regardless of the
numerical scheme, which makes it suitable as a reference unit.

The reference unit is essentially a modification of the quantity iterations
per second, which is an already in-build feature of the simulator created by
Brodtkorb. We recall that the time step, ∆t, is computed by the CFL condition
(6.3). Provided that the eigenvalues obtained for the different schemes and

61

62 7.1. Code performance

grids, are about equal, the time step is scaled according to the scaling of ∆x
and ∆y. Halving the cell size in either direction, results in a halving of the
time step, which means that twice as many iterations need to be carried out to
simulate the same time interval, t ∈ [0, T].

To convince ourselves that a difference in the maximum eigenvalues would
not have dramatic consequences for the runtime measurements, have in mind
that the quantity ’simulated time per wall clock second’, typically is in the range
101 ∆tn=100 - 103 ∆tn=100 in our experiments, and an error in the maximum
eigenvalue caused by the flux computations, probably would be about 103−106

times as small in absolute value. In the experiments performed for this thesis,
no significant differences in the maximum eigenvalues have been discovered.

The third-order Runge-Kutta obviously spends more time on each itera-
tion, seeing as it consists of one more sub step, but we are also able to increase
the CFL condition to Ccfl = 0.5, which results in a computational gain, seeing
as we are increasing the workload by 50 % and the time step length by 100
%. To ensure stability, we have used Cclf = 0.45 in the computations, as done
in [28]. One time step performed by the third-order Runge-Kutta on a 100×100
grid, then amounts to

∆tRK3
n=100 =

0.45

0.25
∆tRK2

n=100.

The runtimes using the third-order Runge-Kutta method are not included here,
as they follow directly from this relation.

The runtimes of the implemented schemes scaled to the reference time
unit, are compared to the second-order Kurganov-Petrova scheme in Table 7.1.
We see how the high-order WENO methods are somewhere between 3 and 5
times slower than the second-order scheme on a given grid size. The difference
between the (2,5,4,2) and the (2,5,4,4) schemes is mostly due to the difference
in block size in the flux-source kernel. The 14 × 11 blocks makes the (2,5,4,4)
scheme slightly faster. Running the (2,5,4,4) scheme on 16 × 8 blocks, as used
by the (2,5,4,2) scheme, yields close to identical runtimes. The (2,2,2,2) scheme
has the advantage of using 16×12 blocks, but it is still way faster when reducing
the block size to 16× 8 or 14× 11.

From these results it is clear that in order to achieve a speed-up, we
need the high-order schemes to, at least, match the accuracy of the second-
order scheme, but by halving the number of grid cells in each direction. The
high-order schemes on a n × n grid are about 1.3-1.7 times faster than the
second-order scheme on a (2n) × (2n) grid. If we manage to further increase
accuracy, so that the high-order schemes on a n×n grid match the second-order

63

Grid size Runtime [∆tn=100
RK2 /s]

(2,2,2,2) (2,5,4,2) (2,5,4,4)

2200× 2200 0.8 - -
1100× 1100 6.5 - 1.3
550× 550 - - 9.8
400× 400 112.1 23.5 25.0
300× 300 244.3 55.4 56.8
200× 200 698.1 163.9 172.3
150× 150 1336.6 362.1 381.1
100× 100 2854.5 904.9 890.2
50× 50 - 3872.6 3939.6

Table 7.1: Comparison of runtimes measured in simulated time steps of length
∆tn=100 per wall clock second, for the second-order Kurganov-Petrova method
and the high-order WENO methods with second- and fourth-order source term
quadrature.

scheme on a (3n) × (3n) grid, we get speed-ups by a factor around 3.0-3.5. In
the extreme case, when the high-order scheme on a n × n grid is comparable
to the second-order scheme on a (4n) × (4n) grid, we can get a speed-up by a
factor 5 for the lower grids and up to a factor 12 for the largest grids.

Note that since we have used the time unit ∆tn=100, the results in Table
7.1 are problem independent. Thus, the discussion above is rather general.

The smallest grid sizes included in Table 7.1 are the ones suited for solv-
ing the test problems done for this thesis. The largest grids are included due
to the conclusion in [7] that the best utilization of the GPU capacity is reached
for larger grids, in the sense that it can process more cells per second. It is
comforting to see that the possible speed-ups from using the high-order meth-
ods, actually increase slightly on the largest grids. During testing, the largest
successfully executed domain size was 7236 × 7236, which equals over 52 mil-
lion grid cells, about 60 % more than benchmarked for the second-order scheme
in [7], which fits well considering the Quadro 5000 GPU has about 67 % more
memory available. For these large grids, the second-order scheme runs at al-
most 100 megacells/s, about 5-6 times as fast as the high-order schemes. These
benchmarks should perhaps also be done on a state-of-the-art GPU, but the
runtime ratios were similar both on the old Quadro FX 380 and the Quadro
5000, and would be expected to be so also on faster hardware.

64 7.2. The idealised circular dam break problem

7.2. The idealised circular dam break problem

First we consider the idealised circular dam break problem on the domain Ω =
[−40, 40]× [−40, 40], with the initial data

Q1(x, y, 0) =

{
2.5, x2 + y2 < 2.5

0.5 else

Q2(x, y, 0) = 0,

Q3(x, y, 0) = 0,

(7.1)

and with flat bottom topography, B(x, y) = 0. The problem is taken from [29],
where an extensive numerical analysis is found, and variants of this problem
appear frequently in the literature. The initial data (7.1) creates a shock wave
moving away from the origin, while a rarefaction wave moves towards the origin.
Around t = 4.0 the water elevation at the origin has ’bored’ almost all the way
down to the bottom, h = Q1 = 0. The created ’hole’ is rapidly filled which
causes the surrounding water to pile up at the origin, creating a second outgoing
wave.

With these initial data, wall boundary conditions and for sufficiently low
times, t, we avoid the potential problem of dry states, h = 0. As no analytical
solution exists, we compare the results with a reference solution, obtained by
the scheme of order (2,2,2,2) on a 1600× 1600 grid.

The full solution after t = 4.7s is shown in Figure 7.1. At this point
the water front is approaching the boundary and a second wave is coming from
the origin. The high peaks are somewhat smeared out in the coarse solution
and note also that the Q1 range is smaller, meaning that the high peaks are
underestimated.

The dam break problem is a homogeneous problem, and thus it is more
than sufficient to use the (·, 5, 4, 2) schemes, with a second-order source term
quadrature and bilinear interpolation of B. To illustrate the properties of the
(2,5,4,2) scheme compared to the (2,2,2,2) scheme, we will investigate the solu-
tion at two times, t = 0.7s and t = 4.7s. The times might seem somewhat
arbitrarily chosen, but they coincide with solution plots in [29], which serves as
an extra reference.

As seen in Figure 7.2, at t = 0.7 we avoid spurious oscillations, the discon-
tinuities and the general height and shape of the middle peak are approximated
well, but we lose the fine structure of the ’mountain top’ around the origin, and
even on a 400 × 400 grid we struggle to capture this correctly. The noticeable

65

(a) Reference (b) (2,5,4,2) 100

Figure 7.1: The complete solution of Q1 after t = 4.7s for the fine grid reference
solution and the (2,5,4,2) scheme on a 100× 100 grid.

−10 −5 0 5 10

0.5

0.6

0.7

0.8

0.9

1

1.1

x

Reference

(3,5,4,4) 200
KP 200

(a) 200 × 200

−10 −5 0 5 10

0.5

0.6

0.7

0.8

0.9

1

1.1

x

Reference

(3,5,4,4) 400
KP 400

(b) 400 × 400

Figure 7.2: Cross-section at y = 0, at time t = 0.7s, of the (2,5,4,2) and the
(2,2,2,2) on two grid sizes, compared to the reference solution.

differences between the 200× 200 and 400× 400 grids are restricted to this fine
structure around the origin. On the 200 × 200 grid, we see that the (2,2,2,2)
scheme and (2,5,4,2) scheme are under-estimating and averaging it, respect-
ively. On the 400 × 400 grid, the (2,5,4,2) scheme is able to capture the two

66 7.2. The idealised circular dam break problem

small peaks, while failing on the valley in between. Here, the (2,2,2,2) scheme
is the one averaging. The plots are also indicating that the (2,5,4,2) scheme,
perhaps surprisingly, is slightly better at approximating the discontinuities of
the first derivative around x = ±3 and x = ±5.

−20 −15 −10 −5 0 5 10 15 20

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

x

Reference

(3,5,4,4) 200
KP 200

(a) (2,5,4,2) vs (2,2,2,2)

−20 −15 −10 −5 0 5 10 15 20

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

x

Reference

(3,5,4,4) 200

(b) (3,5,4,4)

Figure 7.3: Cross-section around y = 0, at time t = 4.7s, The (2,5,4,2) and
the (2,2,2,2) schemes against the reference solution on a 200 × 200 grid. The
(2,5,4,4) scheme fails.

Slightly different results are found for t = 4.7s. Now some disturbing
oscillations in the neighbourhood of the middle peak are present in the (2,5,4,2)
scheme, although with rather small amplitudes. On the other hand, the thin,
high peak around the origin is approximated slightly better by the high-order
scheme. It takes a 400× 400 grid to capture the height accurately.

So far, all the solutions obtained by the (·,5,4,4) schemes, using the hy-
drostatic reconstruction, have been close to identical to the ones by the (2,5,4,2)
scheme. At t = 4.7, however, we are experiencing some extremely troubling res-
ults. Close to the origin the method is failing miserably to capture both the
high peak itself and the area around it. These problems seem to occur as h
approaches zero, which indeed is the case around the origin for t around 4.0,
i.e. right before the creation of the high, thin peak seen in Figure 7.3. That
a high-order scheme, with no particular method for handling dry states, fails
as h → 0 is not at all remarkable. In that regard, it is more correct to say
that the (2,5,4,2) scheme is surprisingly well-behaved. Unfortunately, no proper
explanation of this difference between the WENO schemes has been found.

The comparison of the (2,5,4,2) and the Kurganov-Petrova scheme of
order (2,2,2,2) on the dam break problem, clearly shows how we are not getting

67

more accurate results by using a high-order scheme. As expected, higher level
of smoothness in the reconstruction procedure, does not help on a highly non-
smooth problem, but the dam break problem shows how WENO-based high-
resolution methods are, for the most part, handling discontinuities well.

7.3. Accuracy and verification of order

To measure the errors and order of converge of the methods, it is common to
fix the time step, ∆t, to a value low enough to ensure stability for all grid sizes
with respect to the CFL condition, and also to ensure that the spatial error is
dominating the problem. This is a good way of verifying the spatial order of
the method after a relatively short simulation time. A different approach would
be to use the maximal time steps dictated by the CFL condition, meaning that
the time step length would be smaller on finer grids. This approach is used
in [28], and is arguably better for testing the performance in a more realistic
setting, since the methods are run as they would be in practical experiments.
Here, both approaches are used, and we will clearly state which one in each case.
While the to approaches yield close to identical results after short simulation
time, the former actually failed to yield more than order 2 for longer simulations
times. Naturally, the total error is smaller when fixing ∆t to a small value, but
the convergence rates are the same. For the second-order Runge-Kutta method
we choose the CFL coefficient, Ccfl = 0.25 in all examples, whereas, for the
third-order Runge-Kutta, Ccfl = 0.45 is used.

For most of the results presented here, the (3,5,4,4) method on a 1600×
1600 was taken to be the reference solution, but we would like to remark that
using reference solutions produced by any other method, including the (2,2,2,2)
method, does not lead to significantly different results. The error is measured
against the reference solution in the induced L1 matrix norm,

‖A‖1 = max
1≤j≤n

m∑
i=1

|Aij |, A ∈ Rm×n,

which is the norm of choice in most articles on the topic of conservation laws,
quite logically because in conservation laws, the integrals of the functions in-
volved, are of particular interest. To compute the order of convergence, we first
measure the error of a solution obtained on a grid with cell size ∆x0. We then
compute the error on grids with cell sizes ∆xi = ∆x0/2

i, i = 1, Since we
are dealing with finite-volume methods, we need to compare the errors on the

68 7.3. Accuracy and verification of order

same volume in the physical domain, which means that we are comparing the
errors, measured against the reference solution, on a volume corresponding to
one cell in the coarsest domain, ∆x0, thus all the fine grid solutions must be
locally averaged to fit the coarsest grid. The order of convergence obtained at
grid i is computed by

ri = log2

(
E(∆xi−1)

E(∆xi)

)
,

where E(∆xi) is the L1 error of the solution on a grid of size ∆x = ∆xi.
Alternatively we could compute the order without the use of a reference solution,
by the formula

ri = log2

(
|E(∆xi−1)− E(∆xi−2)|
|E(∆xi)− E(∆xi−1)|

)
.

The results using this approach were satisfying, but will not be included here.

Most of the examples used to verify order of convergence in the literat-
ure, involves periodic boundary conditions. We will, on the other hand, use
exponential functions in the initial data which tend to zero at the boundaries,
which means that these tests are valid for various types of boundary conditions,
including periodic, outflow and wall conditions. The most important thing is
to avoid creation of shock waves at the boundaries, which happens when the
water waves hit a wall. Ensuring that all components of Q are zero close to the
boundaries for low times, wall boundaries will not be a problem.

Circular dam break problem

To properly test the convergence order of a method, test problems must be
chosen with special care. For example, when applied to the dam break problem
(7.1), in which the initial data are discontinuous for Q1 and non-smooth (only
C0) for Q2 and Q3, a high-order method does not produce convergence rates of
more than 1, in the L1 norm, which is also verified for a high-order method on
a discontinuous problem in [28]. Table 7.2 shows convergence results for Q1 at
two different times, using

∆t = 0.0001,

and clearly confirms convergence of order 1.

69

Grid size t = 0.1s t = 4.7s

Error Order Error Order

50× 50 2.94 · 10−2 - 2.59 · 10−2 -
100× 100 1.39 · 10−2 1.12 1.17 · 10−2 0.57
200× 200 7.95 · 10−3 0.80 9.35 · 10−3 0.89
400× 400 2.42 · 10−3 1.71 1.53 · 10−3 2.61

Table 7.2: Verification of the order of the implemented (2,5,4,2) scheme on the
dam break problem (7.1). Here only Q1 = w = h−B, is considered, but similar
results are found for Q2 and Q3. The errors were measured in the L1 norm.

Homogeneous problem with smooth data in one
component

Next, we consider a smooth version of the dam break, where we assume the
initial water pile to be shaped as a Gaussian function,

Q1(x, y, 0) = 1 + e
−x2−y2

3

Q2(x, y, 0) = Q3(x, y, 0) = 0.
(7.2)

This problem still models the dam break setting, since the initial moments,
Q2, Q3 are zero. We now have continuous initial data in all components, but
only Q1(x, y, 0) is properly smooth, and as seen in Table 7.3, we are only able
to achieve second-order convergence. Again, we have used ∆t = 0.0001.

t = 0.1, (3,5,4,4)th order scheme

Grid size Q1

Error Order

50× 50 4.23 · 10−3 -
100× 100 1.02 · 10−3 2.05
200× 200 2.85 · 10−4 1.84
400× 400 7.10 · 10−5 2.01

Table 7.3: Verification of the order of the implemented (3,5,4,4) scheme on the
smooth dam break problem (7.2), for component Q1. The errors were measured
in the L1 norm.

70 7.3. Accuracy and verification of order

Homogeneous problem with smooth data in all
components

In order to achieve maximal possible order of convergence, the schemes were
tested on a problem with smooth initial data in all components,

Q1(x, y, 0) = 1 + e
−x2−y2

4

Q2(x, y, 0) = Q3(x, y, 0) = e
−x2−y2

4

(7.3)

We still use B(x, y) = 0, but since Q1 = h+B, Q1 is smooth even for constant
bottom topography. With this setup we expect to utilize the maximum order of
the spatial components. Hence, as long as the error of the reconstruction and
numerical flux dominate the total error, we will essentially have a fourth-order
method. The formal order however, is restricted by the lowest order component,
which in this case is the order of the Runge-Kutta method. Over time the total
error will be dominated by the least accurate component of the method.

First we set the time steps to

∆t = 0.0001,

which is low enough for simulations to fulfill the CFL condition for all grid sizes,
and tested the methods after t = 0.1. The results for the (2,5,4,·) schemes are
found in Table 7.4, where the errors and convergence analysis for the second-
order Kurganov-Petrova scheme is included, for comparison.

We notice right away that for small times, the order is close to, or even
above, the theoretical spatial order of 4. The convergence rates using the third-
order Runge-Kutta are not shown, seeing as they do not differ noticeably from
the results obtained by the (2,5,4,·) method.

To benchmark the methods after t = 1.0, we let the time steps be con-
trolled by the CFL condition (6.1), (6.2), (6.3). The results for the two high-
order methods using hydrostatic reconstruction, are found in Table 7.5. At
t = 1.0, the total order drops to around 2.5-3.0, and thus we conclude that,
at this time, the error caused by the Runge-Kutta method, is more prominent
in the total error. By using the third-order Runge-Kutta method we are able
to increase the order slightly. Particularly noteworthy is the drastic drop in
convergence rate from 2002 to 4002 cells for the water elevation component, Q1.
It seems as a further decrease of error below ∼10−4 is difficult, in the L1 norm.
It is, however, not surprising that the L1 error increases for larger grids, and we
see in Table 7.6 that in the max, or L∞, norm, defined by

71

Convergence rates at t = 0.1, problem (7.3)

Grid size Q1 Q2 Q3

Error Order Error Order Error Order

(2,5,4,2) scheme

25× 25 1.28 · 10−1 - 5.32 · 10−1 - 5.88 · 10−1 -
50× 50 1.28 · 10−2 3.32 7.16 · 10−2 2.89 9.63 · 10−2 2.61

100× 100 9.92 · 10−4 3.69 3.19 · 10−3 4.49 5.55 · 10−3 4.12
200× 200 3.04 · 10−5 5.03 7.56 · 10−5 5.40 1.29 · 10−4 5.43
400× 400 1.56 · 10−6 4.29 2.72 · 10−6 4.80 3.68 · 10−6 5.13

(2,2,2,2) scheme

25× 25 2.48 · 10−1 - 4.44 · 10−1 - 5.54 · 10−1 -
50× 50 8.27 · 10−2 1.59 6.43 · 10−2 2.79 3.31 · 10−2 3.13

100× 100 1.57 · 10−2 2.40 2.83 · 10−2 1.18 2.43 · 10−2 1.37
200× 200 3.11 · 10−3 2.33 5.50 · 10−3 2.36 6.75 · 10−3 1.85
400× 400 6.07 · 10−4 2.36 1.42 · 10−3 1.95 1.89 · 10−3 1.84

Table 7.4: Comparison of the implemented (2,5,4,2) scheme and the (2,2,2,2)
scheme against the reference solution on a 1600× 1600 grid, on the smooth test
problem (7.3) after t = 0.1. The errors were measured in the L1 norm.

‖A‖max = max
ij
|Aij |, A ∈ Rm×n,

we obtain an order of convergence closer to expectations.

Based on these results, it is clear that, for low times, on this construc-
ted smooth problem, the high-order schemes clearly outperforms the (2,2,2,2)
scheme with respect to the total L1 error. Using the (2,5,4,4) scheme on a
200× 200 grid is sufficient to ensure higher level of accuracy in all components
compared to the (2,2,2,2) scheme on a 400 × 400 grid, and we can even argue
that a 100 × 100 grid might be enough for most practical purposes. For larger
times, the convergence rate drops for the high-order schemes, but as long as we
maintain around order 3, we can still produce equally accurate results on half
the grid size as with the (2,2,2,2) scheme.

72 7.3. Accuracy and verification of order

Convergence rates at t = 1.0, problem (7.3)

Grid size Q1 Q2 Q3

Error Order Error Order Error Order

(2,5,4,4) scheme

25× 25 1.90 · 10−1 - 7.09 · 10−1 - 5.34 · 10−1 -
50× 50 2.91 · 10−2 2.70 1.16 · 10−1 2.61 7.89 · 10−2 2.76

100× 100 3.93 · 10−3 2.89 1.53 · 10−2 2.92 1.26 · 10−2 2.65
200× 200 8.14 · 10−4 2.27 2.92 · 10−3 2.39 2.61 · 10−3 2.27
400× 400 2.09 · 10−4 1.96 7.28 · 10−4 2.01 6.42 · 10−4 2.02

(3,5,4,4) scheme

25× 25 2.03 · 10−1 - 7.20 · 10−1 - 5.48 · 10−1 -
50× 50 2.28 · 10−2 2.83 1.13 · 10−1 2.68 8.03 · 10−2 2.77

100× 100 2.54 · 10−3 3.49 9.33 · 10−3 3.59 7.69 · 10−3 3.38
200× 200 3.25 · 10−4 2.97 5.84 · 10−4 4.00 5.70 · 10−4 3.76
400× 400 1.95 · 10−4 0.74 1.18 · 10−4 2.31 1.14 · 10−4 2.32

Table 7.5: Comparison of the implemented (·,5,4,4) schemes against the refer-
ence solution on a 1600 × 1600 grid, on the smooth test problem (7.3) after
t = 1.0. The errors were measured in the L1 norm.

t = 1.0, (3,5,4,4)th order scheme

Grid size Q1

Error Order

25× 25 4.29 · 10−2 -
50× 50 8.39 · 10−3 2.35

100× 100 8.54 · 10−4 3.30
200× 200 7.02 · 10−5 3.60
400× 400 1.60 · 10−5 2.13

Table 7.6: Verification of the order of the implemented (3,5,4,4) scheme on the
smooth test problem (7.3) after t = 1.0. Errors are measured in the the max
norm.

73

Non-homogeneous problem with smooth data in all
components

In all the test problems so far, the bottom topography has been constant, which
results in a homogeneous system, S ≡ 0. Thus, the source term quadrature
is irrelevant to the accuracy of the method, and the results obtained by the
(·,5,4,4) schemes are all identical to the ones obtained by the (·,5,4,2) schemes.
To test the fourth-order source term quadrature, we need to consider a problem
involving a smoothly varying bottom topography, such as

Q1(x, y, 0) = 1 + 2 e
−x2−y2

10

Q2(x, y, 0) = Q3(x, y, 0) = e
−x2−y2

4

B(x, y) = e
−x2−y2

15 .

(7.4)

Again we use Gaussian functions, to avoid problems close to the boundaries. We
let ∆t be controlled by the CFL condition, either Ccfl = 0.25 or Ccfl = 0.45,
depending on the Runge-Kutta method. Problems involving varying bottom
topography are arguably more relevant in a real-world setting, and we will
therefore provide a slightly better comparison of the second-order and high-
order schemes than we did in the homogeneous case.

Results after t = 0.1 for problem (7.4), using the (3,5,4,4) method, are
found in Table 7.7, where a convergence rate close to 4 is verified. Also the
results using the (2,2,2,2) scheme are included, for comparison. Once again, we
experience a drop of convergence rate for Q1 on the 400× 400 grid, and partly
also on the 200× 200 grid, but, as before, the expected order of convergence is
obtained in the L∞ norm. The results using the second-order Runge-Kutta for
t = 0.1 are omitted, as they were almost identical. For the coarsest test grid,
252 cells, only 1 time step was needed to reach t = 0.1, whereas on the reference
grid, 16002 cells, we needed 37 time steps to complete the simulation.

The order verification computations rely on the number of grid cells being
doubled. In addition, to properly measure the errors, we need all grid sizes,
including the reference solution, to be an integer multiple of the coarsest grid
size. For evaluating the accuracy of the methods, we would also like some
intermediate grid sizes. We get that by using a reference solution computed
by the (3,5,4,4) scheme on a 1500× 1500 grid, and measuring the error on the
grids 150× 150 and 300× 300, see Table 7.8. This change of reference solution
has close to no effect on the errors on the grid sizes used in the convergence
analysis, and we conclude that it makes sense to compare errors based on these

74 7.3. Accuracy and verification of order

Convergence rates at t = 0.1, problem (7.4)

Grid size Q1 Q2 Q3

Error Order Error Order Error Order

(3,5,4,4) scheme

25× 25 3.48 · 10−2 - 8.59 · 10−2 - 1.55 · 10−1 -
50× 50 3.70 · 10−3 3.23 6.69 · 10−3 3.68 1.36 · 10−2 3.52

100× 100 1.33 · 10−4 4.79 4.78 · 10−4 3.81 7.91 · 10−4 4.10
200× 200 1.86 · 10−5 2.84 2.99 · 10−5 4.00 4.80 · 10−5 4.04
400× 400 1.33 · 10−5 0.49 3.23 · 10−6 3.21 5.75 · 10−6 3.06

(2,2,2,2) scheme

25× 25 6.06 · 10−2 - 1.36 · 10−1 - 1.71 · 10−1 -
50× 50 1.63 · 10−2 1.90 2.94 · 10−2 2.26 4.16 · 10−2 2.04

100× 100 3.57 · 10−3 2.19 1.38 · 10−2 1.04 1.42 · 10−2 1.55
200× 200 9.01 · 10−4 2.45 3.18 · 10−3 2.12 3.55 · 10−3 2.00
400× 400 1.66 · 10−4 2.35 5.82 · 10−4 2.45 6.76 · 10−4 2.39

Table 7.7: Comparison of the implemented (3,5,4,4) scheme and the (2,2,2,2)
scheme against the reference solution on a 1600× 1600 grid, on the smooth test
problem (7.4) after t = 0.1. The errors were measured in the L1 norm.

two reference grids.

By comparing the (3,5,4,4) scheme to the (2,2,2,2) scheme on grids 50×50,
100× 100, 150× 150, 200× 200, or on the grids 100× 100, 200× 200, 300× 300,
400 × 400, we can see the effect of increasing the number of grid cells from n2

to (2n)2, (3n)2 and (4n)2.

For t = 0.1, on problem (7.4), running the (3,5,4,4) scheme on a 100×100
grid gives more accuracy in all three components, than running the (2,2,2,2)
scheme on a 300× 300 grid, and the accuracy is not far behind what we would
get by running the (2,2,2,2) scheme on a 400 × 400 grid. Taken runtimes from
Table 7.1 into account, this shows that given some tolerance in the L1 norm,
we can, by using the (2,5,4,4) scheme instead of the (2,2,2,2) scheme, achieve
a speed-up somewhere between 3 and 5, for these small grids. For problems of
larger scale, where a 1600× 1600 grid would be no way near enough to produce
a proper reference solution, the speed-up would be slightly higher.

In this discussion, it is probably not fair to consider runtimes using the

75

Errors at t = 0.1, problem (7.4)

Grid size Q1 Q2 Q3

(3,5,4,4) scheme

50× 50 3.70 · 10−3 6.67 · 10−3 9.59 · 10−3

100× 100 1.33 · 10−4 4.78 · 10−4 5.86 · 10−4

150× 150 3.02 · 10−5 9.18 · 10−5 1.01 · 10−4

300× 300 1.41 · 10−5 6.90 · 10−6 8.29 · 10−6

(2,2,2,2) scheme

50× 50 1.63 · 10−2 2.84 · 10−2 4.16 · 10−2

100× 100 3.57 · 10−3 1.38 · 10−2 1.42 · 10−2

150× 150 1.59 · 10−3 5.99 · 10−3 6.48 · 10−3

300× 300 3.55 · 10−4 1.21 · 10−3 1.40 · 10−3

Table 7.8: Comparison of the implemented (3,5,4,4) scheme and the (2,2,2,2)
scheme against the reference solution on a 1500× 1500 grid, on the smooth test
problem (7.4) after t = 0.1. The errors were measured in the L1 norm.

third-order Runge-Kutta, since it is not effecting accuracy, meaning that the
gain would be only with respect to runtime, and could very well also be imple-
mented in the second-order scheme.

To illustrate the differences in accuracy between the (3,5,4,4) scheme and
the (2,2,2,2) scheme, we consider a cross section at t ∈ [0.00, 0.04] at t = 0.01.
We have compared the two methods in the first two variables in Figure 7.4 and
7.5. In most of the domain, the (2,2,2,2) scheme is accurate enough, except
for around the function maximum, which is underestimated by the low-order
scheme. Note that errors below 10−3 are close to invisible with the current axis
scaling. The solution of Q3 is identical to the one of Q2 in shape and size, just
aligned along the y axis instead of the x axis. All results are transferred to the
coarsest grid, so that we are comparing the same volume.

In problem (7.4), the conserved variables, Q, evolve smoothly in time
up until around t = 2.0, where the first dry states appear. As t → 2.0, the
behaviour is not as nice as for the Kurganov-Petrova scheme, which supports
dry states, so to avoid that problematic region, we evaluate the methods at
t = 1.0. The convergence rates and errors of the (·,5,4,4) schemes compared to
the (2,2,2,2) scheme are found in Table 7.9, Again, ∆t is determined according
to the CFL condition.

76 7.3. Accuracy and verification of order

−10 −5 0 5 10

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

Reference

(3,5,4,4) 50
KP 50

(a) WENO 50 vs KP 50, Q1

−10 −5 0 5 10

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

Reference

(3,5,4,4) 50
KP 100

(b) WENO 50 vs KP 100, Q1

Figure 7.4: Comparison of the (3,5,4,4) scheme on a 50×50 grid and the (2,2,2,2)
scheme on 50 × 50 and 100 × 100 grids on problem (7.4) after t = 0.1, for the
cross section y ∈ [0.00, 0.04].

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

x

Reference

(3,5,4,4) 50
KP 50

(a) WENO 50 vs KP 50, Q2

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

x

Reference

(3,5,4,4) 50
KP 100

(b) WENO 50 vs KP 100, Q2

Figure 7.5: Comparison of the (3,5,4,4) scheme on a 50×50 grid and the (2,2,2,2)
scheme on 50 × 50 and 100 × 100 grids on problem (7.4) after t = 0.1, for the
cross section y ∈ [0.00, 0.04].

We see that we obtain a convergence rate of about 3 for the high-order
schemes. The error is slightly smaller for the finest grids, using a third-order
Runge-Kutta method, although nothing spectacular, due to the (2,5,4,4) scheme
performing better than the expected second-order accuracy. Clearly the high-
order schemes produce better results than the Kurganov-Petrova scheme, des-
pite only using Runge-Kutta methods of order 2 and 3.

77

Convergence rates at t = 1.0, problem (7.4)

Grid size Q1 Q2 Q3

Error Order Error Order Error Order

(3,5,4,4) scheme

25× 25 2.13 · 10−1 - 7.94 · 10−1 - 4.95 · 10−1 -
50× 50 3.53 · 10−2 2.59 1.47 · 10−1 2.44 9.28 · 10−2 2.41

100× 100 3.88 · 10−3 3.19 1.35 · 10−2 3.44 1.25 · 10−2 2.90
200× 200 4.53 · 10−4 3.10 9.67 · 10−4 3.81 8.24 · 10−4 3.92
400× 400 2.29 · 10−4 0.98 1.11 · 10−4 3.12 1.23 · 10−4 2.75

(2,5,4,4) scheme

25× 25 1.97 · 10−1 - 7.53 · 10−1 - 4.59 · 10−1 -
50× 50 2.98 · 10−2 2.73 1.24 · 10−1 2.60 8.58 · 10−2 2.42

100× 100 3.71 · 10−3 3.01 1.35 · 10−2 3.21 1.23 · 10−2 2.80
200× 200 8.20 · 10−4 2.18 2.38 · 10−3 2.50 2.29 · 10−3 2.43
400× 400 2.10 · 10−4 1.97 5.94 · 10−4 2.00 5.78 · 10−4 1.99

(2,2,2,2) scheme

25× 25 3.39 · 10−1 - 1.22 · 10−0 - 9.83 · 10−1 -
50× 50 1.33 · 10−1 1.36 0.48 · 10−1 1.34 3.29 · 10−1 1.58

100× 100 3.32 · 10−2 1.99 1.23 · 10−1 1.96 1.02 · 10−1 1.69
200× 200 6.07 · 10−3 2.45 2.19 · 10−2 2.49 1.95 · 10−2 2.38
400× 400 1.18 · 10−3 2.35 3.80 · 10−3 2.53 3.59 · 10−3 2.44

Table 7.9: Comparison of the implemented (·,5,4,4) schemes and the (2,2,2,2)
scheme against the reference solution on a 1600× 1600 grid, on the smooth test
problem (7.4) after t = 1.0. The errors were measured in the L1 norm.

Once again, the convergence rates for the finest grid drops significantly
for Q1 in the L1 norm, but are maintained in the L∞ norm.

Figure 7.6 and 7.7 show the solution at t = 1.0 for Q1 and Q2. We also
plot the errors, which simply is the difference Qnum − Qref in each cell, i.e.
positive error means that the method is over-estimating the solution, whereas
negative error means that the method is under-estimating. Clearly the largest
errors are situated at the rightmost wave front. In figure 7.8 and 7.9, we consider
a cross section through these areas, where we compare the (3,5,4,4) scheme to

78 7.3. Accuracy and verification of order

Errors at t = 1.0, problem (7.4)

Grid size Q1 Q2 Q3

(3,5,4,4) scheme

50× 50 3.53 · 10−2 1.47 · 10−1 3.53 · 10−2

100× 100 4.01 · 10−3 1.52 · 10−2 4.01 · 10−3

150× 150 9.52 · 10−4 3.03 · 10−3 9.52 · 10−4

300× 300 2.50 · 10−4 2.33 · 10−4 2.50 · 10−4

(2,2,2,2) scheme

50× 50 1.33 · 10−1 4.84 · 10−1 3.29 · 10−1

100× 100 3.32 · 10−2 1.23 · 10−1 1.02 · 10−1

150× 150 1.24 · 10−2 4.64 · 10−2 3.96 · 10−2

300× 300 2.31 · 10−3 7.51 · 10−3 7.26 · 10−3

Table 7.10: Comparison of the implemented (3,5,4,4) scheme and the (2,2,2,2)
scheme against the reference solution on a 1500× 1500 grid, on the smooth test
problem (7.4) after t = 1.0. The errors were measured in the L1 norm.

the (2,2,2,2) scheme and the fine grid reference solution.
Just as seen at t = 0.1, in most of the domain, the (2,2,2,2) scheme is

accurate enough, except for around the function maximum, which is underes-
timated by the second-order scheme. To obtain about the same level of accuracy
with the (2,2,2,2) scheme we need to increase the grid points in each direction
by a factor somewhere between 2 and 3, as seen in Table 7.9 and 7.10. Hence,
the (2,2,2,2) scheme does slightly better compared to the (3,5,4,4) scheme at
t = 1.0, than it did at t = 0.1. Considering the runtimes in Table 7.1, we are
able to speed up the computations by a factor somewhere between 1.3 and 3.5,
by using the (2,5,4,4) scheme.

Note that the results using the (2,5,4,4) scheme, with Cclf = 0.25, are
about the same as the ones by the (3,5,4,4) scheme. Even using the (3,5,4,4)
scheme with Ccfl = 0.25 does not effect the solution noticeably.

79

(a) WENO 100 solution, Q1 (b) WENO 100 error, Q1

Figure 7.6: The solution for Q1 on the problem (7.4) after t = 1.0, obtained by
the (3,5,4,4) scheme on a 100 × 100 grid, and the error plot measured against
the fine grid reference solution.

(a) WENO 100 solution, Q2 (b) WENO 100 error, Q2

Figure 7.7: The solution for Q2 on the problem (7.4) after t = 1.0, obtained by
the (3,5,4,4) scheme on a 100 × 100 grid, and the error plot measured against
the fine grid reference solution.

80 7.3. Accuracy and verification of order

−10 −5 0 5 10

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x

Reference

(3,5,4,4) 100
KP 100

(a) WENO 100 vs KP 100, Q1

−10 −5 0 5 10

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x

Reference

(3,5,4,4) 100
KP 200

(b) WENO 100 vs KP 200, Q1

Figure 7.8: Comparison of the (3,5,4,4) scheme on a 100 × 100 grid and the
(2,2,2,2) scheme on 100×100 and 200×200 grids on problem (7.4) after t = 1.0,
for the cross section y ∈ [0.00, 0.04].

81

−10 −5 0 5 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Reference

(3,5,4,4) 100
KP 100

(a) WENO 100 vs KP 100, Q2

−10 −5 0 5 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

Reference

(3,5,4,4) 100
KP 200

(b) WENO 100 vs KP 200, Q2

Figure 7.9: Comparison of the (3,5,4,4) scheme on a 100 × 100 grid and the
(2,2,2,2) scheme on 100×100 and 200×200 grids on problem (7.4) after t = 1.0,
for the cross section y ∈ [1.96, 2.00].

82 7.4. Test of well-balanced property

7.4. Test of well-balanced property

In this section we aim to test the well-balanced property of the schemes. Test
problems were taken from [18], but are commonplace in the literature, and also
found in e.g. [12, 16,30].

Stationary state

First we set up a lake at rest, with non-flat bottom topography, to test whether
the scheme indeed is well-balanced. The problem is given by

B(x, y) = 0.8e−50((x−0.5)2+(y−0.5)2),

Q(x, y, 0) = (1, 0, 0).
(7.5)

on the domain Ω = [0, 1] × [0, 1]. Various boundary conditions could be used
without effecting the problem in this case, since B goes to zero at the boundary.
Here, wall conditions are used and we expect the water to remain at rest, i.e.
Q(x, y, t) = (1, 0, 0), for all t.

Stationary test t = 0.1, (2,5,4,4)th order scheme

Grid size Norm Q1 Q2 Q3

50× 50 L1 3.60 · 10−7 1.12 · 10−5 1.15 · 10−5

100× 100 L1 4.80 · 10−7 3.23 · 10−5 2.41 · 10−5

200× 200 L1 3.60 · 10−7 7.77 · 10−5 6.39 · 10−5

50× 50 L∞ 2.40 · 10−7 8.50 · 10−7 1.18 · 10−6

100× 100 L∞ 2.40 · 10−7 1.23 · 10−6 1.27 · 10−6

200× 200 L∞ 2.40 · 10−7 1.61 · 10−6 1.70 · 10−6

Table 7.11: Stationary state test. Here we use the L∞ matrix norm defined by
‖A‖max = maxi,j{|Ai,j |}.

The L1 norm and max cell error of the three components, using the
(2,5,4,4) scheme on three different grid sizes at t = 0.1, are found in Table
7.11. For the water elevation, Q1, we see that we get an error close to machine
precision (keep in mind we are using single precision), and the small difference
in L1 error and the maximal cell error indicates that only a few cells are affected.
For the two other components, however, the max errors are slightly bigger, and
a vast number of cells have non-zero moments, shown by the relatively high

83

L1 error. Although L1 errors in the magnitude of 10−7 are reported in all
components for single precision in [16, 30], we conclude that L1 errors around
10−5 and L∞ errors close to 1.0 · 10−6 is sufficient to regard the scheme with
the hydrostatic reconstruction as well-balanced. The (2,2,2,2) scheme is even
more perfectly well-balanced in the Q2 and Q3 components, while the (2,5,4,2)
scheme, without the hydrostatic reconstruction, achieve about the same results
as the (2,5,4,4) scheme. The results also show that grid size does not appear to
be of significance in the max norm.

As t increases, the errors accumulate, but not dramatically. At t = 10.0,
for example, the errors in Table 7.11 are roughly ten times bigger, in both norms.

For the (3,5,4,4) scheme, using the third-order Runge-Kutta method,
however, the stationary state test does not give satisfactory results. While the
errors in Q2 and Q3 are only slightly bigger for the (3,5,4,4) scheme compared
to the (2,5,4,4) scheme, the L∞ errors in the Q1 component are both bigger and,
more disturbingly, the cell averages are systematically bigger than 1, causing
huge L1 errors. At t = 10.0 we have Q1 = 1.01, which is 104 times as much as
for the (2,5,4,4) scheme.

Stationary state with small perturbation

The next problem involves a slightly different bottom topography and a small
perturbation of the lake-at-rest. It is given as

B(x, y) = 0.8e−5(x−0.9)2−50(y−0.5)2 ,

Q1(x, y, 0) =

{
1.01, x ∈ [0.05, 0.15]

1.00, else,

Q2(x, y, 0) = 0,

Q3(x, y, 0) = 0,

(7.6)

on the domain Ω = [0, 2]× [0, 1], equipped with outflow boundaries. This initial
perturbation causes waves to propagate to the left and right. The left-going
wave quickly leaves the domain, and the right-going wave is deformed due to
the bottom topography. The water falls back to rest when the wave fronts have
passed. Snapshots of the right-going wave up to time t = 0.6 are shown in
Figure 7.10. The results match the results obtained in [12,16,18,30], but due to
the lack of a proper implementation of outflow boundary conditions, the domain
was extended to Ω′ = [−1, 2] × [0.1], so that the left-going wave would not hit
the left boundary right away. This would have caused a small, non-physical,

84 7.4. Test of well-balanced property

reflection traveling to the right, chasing the initial right-going wave. Problem
(7.6) is commonly solved on a 200× 100 grid, thus, to get an equivalent setting,
we solve it here on a 300× 100 grid on the domain Ω′.

(a) t = 0.00 (b) t = 0.12

(c) t = 0.24 (d) t = 0.36

(e) t = 0.48 (f) t = 0.60

Figure 7.10: Snapshots of the Q1 solution of the problem (7.6), using a 200×100
grid on Ω.

85

The small perturbation problem has non-smooth initial data, and even
a small discontinuity in Q1(x, y, 0), but the bed slope source term, caused by
the smooth bottom topography, is dominating the solution, and we are in fact
clearly obtaining better results using the (2,5,4,4) scheme instead of the (2,2,2,2)
scheme, as seen in Figures 7.11 and 7.12. Again we are observing that the peaks
are approximated a lot better by the high-order scheme. The relative error of
the KP scheme is huge on a 400× 200 grid, and we need at least 800 · 400 cells
to come close to the solution by the (2,5,4,4) scheme. There are, however, some
spurious oscillations around x = 1.2, 1.5, 1.6, which are not appreciated. Here,
we have not taken into account that a 400×200 grid for the (2,5,4,4) scheme, in
fact is a 600× 200 grid on the extended domain, Ω′. This naturally favours the
KP scheme for time being. Implementing outflow boundary conditions would
make speed-ups possible even on this problem, but probably not more than by
30-50 % due to the spurious oscillations.

Please note that the solutions obtained by the (3,5,4,4) scheme, match the
(2,5,4,4) solutions around the wave fronts, while some disturbance is introduced
in the part of the domain where Q1 = 1, just as seen in the stationary state
test.

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

x

Reference

(2,5,4,4) 200x400

KP 200x400

Figure 7.11: Comparison of the (2,5,4,4) and (2,2,2,2) scheme on the cross
section at y = [0.500, 0.505] of U1 in problem (7.6). Here t = 0.48.

86 7.5. Unwanted oscillations

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

x

Reference

(2,5,4,4) 200x400

KP 400x800

Figure 7.12: Comparison of the (2,5,4,4) and (2,2,2,2) scheme on the cross
section at y = [0.500, 0.505] of U1 in problem (7.6). Here t = 0.48.

7.5. Unwanted oscillations

Consider the problem

Q1(x, y, 0) = 1 + 2 e
−x2−y2

10

Q2(x, y, 0) = Q3(x, y, 0) = e
−x2−y2

4

B(x, y) = 0.5 e
−x2−y2

15 ,

(7.7)

with wall boundary conditions, which is more or less the same as problem (7.4),
but with the bottom topography multiplied by 0.5. This is done to avoid the
presence of dry states. This problem exemplifies how hyperbolic problems might
have discontinuous solutions, despite having smooth initial data.

Let us now evolve the solution up to t = 4.0, at which point the first
water wavefront is close to hitting the walls. The solution of Q1 is shown in
Figure 7.13. Now, we have a smooth region to the left, in which the high-order

87

−20 −15 −10 −5 0 5 10 15 20

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

x

Reference

(3,5,4,4) 200
KP 200

Figure 7.13: Comparison of the (3,5,4,4) and the KP scheme on a 200 × 200
grid (7.7) after t = 4.0, for Q1 at the cross section y ∈ [1.96, 2.00].

scheme is still approximating the local extrema slightly better, and two discon-
tinuities, at approximately x = 0 and x = 17. Around the former discontinuity,
the high-order schemes develop spurious oscillations. At this point, the choice
of parameter ε, used to avoid division by zero in the non-linear WENO weights
(3.24), turned out to have an impact on the solution. For example, the dis-
continuity at x = 17 caused oscillations in the solution for ε = 10−5, but for
ε = 10−3, which was used in the shown plots, the rightmost discontinuity was
actually approximated rather well compared to the (2,2,2,2) scheme. We were,
however, not able to find a remedy for the oscillations around the origin. These
oscillations are seen in all the high-order schemes, regardless of source term
quadrature, Runge-Kutta method and reconstruction approach. Since the solu-
tion contains discontinuities, it comes as no surprise that the high-order schemes
are not better at this point, but we would have wanted the high-order scheme to
remain essentially non-oscillating. At earlier times, say t = 2.0, the high-order
schemes performed as expected. The same phenomena occur in the other two
variables, as seen for Q2 in Figure 7.14. Again, for ε = 10−3, the smooth area

88 7.5. Unwanted oscillations

and the rightmost discontinuity are captured better by the high-order scheme,
while the oscillations around the origin, remain more or less unaffected by the
choice of ε.

−20 −15 −10 −5 0 5 10 15 20

−0.4

−0.2

0

0.2

0.4

0.6

x

Reference

(3,5,4,4) 200
KP 200

(a) Full domain

−8 −6 −4 −2 0 2 4 6 8 10

−0.2

−0.1

0

0.1

0.2

0.3

x

Reference

(3,5,4,4) 200
KP 200

(b) Zoomed in

Figure 7.14: Comparison of the (3,5,4,4) and the KP scheme on a 200 × 200
grid (7.7) after t = 4.0, for Q2 at the cross section y ∈ [1.96, 2.00].

8. Concluding remarks

The main purpose of this work, was to develop high-order high-resolution meth-
ods for the shallow water equations on the GPU, and thereby investigate the pos-
sible gains in runtime compared to the already existing second-order scheme [7].
Two schemes were implemented, one using only a second-order quadrature for
the bed slope source term and bilinear interpolation of the bottom topography,
the other using a fourth-order source term quadrature, as well as a fifth-order
WENO reconstruction of the water height. Both schemes use a fifth-order
WENO reconstruction for the water elevation, fourth-order Gaussian quadrat-
ures for the one-sided flux integrals and the central-upwind flux for the interface
fluxes. The schemes have been denoted (·, 5, 4, 2) and (·, 5, 4, 4) according to the
order of the ODE solver, WENO reconstruction, one-sided flux integral and
source term, respectively, with the ’dot’, representing the ODE solver, indicat-
ing that several Runge-Kutta methods are supported.

The (·,5,4,2) scheme was implemented first, simply because it builds dir-
ectly on the second-order scheme. It is, however, mainly suited for homogen-
eous problems, due to the low-order source term. For implementing the (·,5,4,4)
scheme, more substantial changes of the second-order scheme were needed. This
scheme can now be extended to WENO reconstructions and quadratures of even
higher order without too much complications. Because the (·,5,4,2) should be
regarded more as a step towards the (·,5,4,4) scheme, it lacks some features
present in the (·,5,4,4) scheme, such as the removal of the shared memory array
responsible for storing the source term. Due to this, the (·,5,4,4) can use slightly
larger block sizes in the flux-source kernel.

The results from chapter 7 show that the (·,5,4,4) schemes has been suc-
cessfully implemented and is of approximately order four in space, that it indeed
is well-balanced and essentially non-oscillating around discontinuities, although
occasionally some slightly disturbing oscillations were found, and the third-order
Runge-Kutta method seems to be slightly increasing the water elevation in sta-

89

90 8.2. Accuracy and speed-ups

tionary state. The third-order Runge-Kutta method is, however, not causing
any trouble in other test cases. It should also be mentioned that the (·,5,4,2)
scheme, in these tests, is surprisingly good near dry states.

In our tests, no significant differences between the Runge-Kutta methods
are seen with respect to accuracy, mostly because the second-order method
performed surprisingly well. The third-order method is, however, slightly faster,
since it allows for twice as long time steps. This result was slightly disappointing,
but we have also seen that in these problems, complications such as dry states
or discontinuities occur relatively early, possibly before the second-order Runge-
Kutta has ruined the accuracy.

8.1. Hardware impact

Before commenting on the results, let us first consider the implementation and
its effects on the GPU hardware. In the second-order scheme, the block sizes in
the CUDA kernels were bounded entirely by the shared memory size and most of
the GPU resources were spent on the flux-source kernel. The increased need for
ghost cells in the WENO reconstruction obviously puts an even stricter memory
bound to the high-order schemes, as well as severely increasing the amount of
arithmetic in the flux-source kernel, making the maximum performance of the
(·,5,4,4) scheme, in terms of computed cells per second, about 5-6 times slower.
The performance ratio is, fortunately, about the same both for large and small
grids.

On the GPU used for the final testing, the Quadro 5000 with 352 CUDA
cores, no significant difference in runtime between the (·,5,4,2) and the (·,5,4,4)
schemes was present, apart from that caused by the (·,5,4,4) scheme supporting
larger blocks in the flux-source kernel.

8.2. Accuracy and speed-ups

As far as accuracy and runtime is concerned, we have seen that on smooth
problems far away from dry states and after a low number of time steps, given a
tolerance in the L1 norm, the high-order schemes on n2 grid cells will produce the
same result as the second-order Kurganov-Petrova scheme on a grid consisting
of somewhere between (3n)2 and (4n)2 cells. In light of the runtimes in Table
7.1, for low times, we are able to get a speed-up by a factor somewhere between
3 and 8, depending on the level of tolerance. These results are obtained both

91

on homogeneous and non-homogeneous problems for the (·,5,4,4) scheme and
on homogeneous problems for the (·,5,4,2) scheme.

After a larger number of time steps, we are not able to maintain the same
speed-up. On smooth problems, the (2,2,2,2) scheme would typically need an
increase in grid cells by a factor between 2 and 3, which in our experiments at
best gives a speed-up by a factor 3.5, and a factor 1.3 in the worst case.

Based on the results, it is safe to say that for higher simulation times,
the high-order scheme will at least not be inferior to the second-order scheme,
provided the problem is smooth enough. By smooth enough, it is not necessarily
essential that the initial data is smooth, as long as the dominant part of the
problem is smooth, as seen in the small perturbation of stationary state (7.6),
where the initial data is non-smooth and slightly discontinuous, but the bed
slope term caused by the smooth bottom topography dominates the solution,
and the fourth-order source term quadrature clearly produces results superior
to the second-order scheme, at least on coarse grids.

We conclude that the crucial part for having success with high-order
methods for the shallow water equations in two dimensions, is to maintain the
high order of convergence for sufficiently long time. On the hardware used for
testing, we need an order of convergence such that if the second-order scheme is
run on a grid with ∆x = ∆x0 and ∆y = ∆y0, we are able to achieve the same
accuracy with the high-order scheme on a grid with approximately ∆x > 2∆x0,
∆y > 2∆y0. The increased accuracy from using the high-order schemes, is
mostly restricted to the areas around function extrema, as seen in the plots
in Chapter 7. Hence, it would not make sense using a high-order scheme on
problems in which we are not interested in a highly accurate approximations of
the extreme values.

8.3. Further research

While the results using high-order schemes on smooth problems are promising,
there are some issues that need to be addressed in order to make the high-order
schemes a valid choice, possibly even on real-world problems.

In particular, boundary conditions is an important research field. As
briefly mentioned, the naive implementation of outflow boundary conditions
leads to a reflecting wave, although of small amplitude, potentially destroying
the solution in the interior of the domain. By using exponential functions in our
tests, we have avoided the potential problems at the boundaries. This, however,
reduces our results to nothing more than a proof of concept. A good starting-

92 8.3. Further research

point for further research would probably be [24], where both inflow and outflow
boundary conditions are treated in a high-order setting, and their high-order
scheme is applied to the problem of eddy formation in shelf slope jets along the
Ormen Lange section of the Norwegian shelf. The runtime tests here indicates
that the possible speed-ups on smooth problems would in fact be slightly bigger
on large domains.

Also the ODE solver should be investigated more, as we experience a drop
of convergence with time, convergence of order 3 leads only to small speed-ups.
The development of fourth-order TVD Runge-Kutta methods is not as easy as
for low-order methods. An alternative could be the SSP Runge-Kutta method
[27], although the classical fourth-order Runge-Kutta has been used with success
in [24] and [18]. As remarked by Titarev and Toro [28], the fourth-order SSP
Runge-Kutta does not yield significantly better results than the third-order
TVD Runge-Kutta, but requires more memory storage and the CFL coefficient
should ideally not be increased enough to make the extra computations pay off
with respect to runtime. If the aim is to get runtime speed-ups compared to
the second-order scheme, a fourth-order Runge-Kutta method will have to be
implemented with caution.

The fourth-order source term requires 8 more WENO reconstructions per
cell, and 4 bilinear interpolations less of course, but it is still just as fast as the
(·, 5, 4, 2) scheme, making it tempting to try a higher order quadrature both
for the source term and the one-sided fluxes. However, this would put an even
harder restriction to the block sizes in the flux-source kernel, seeing as we would
need to store three line averages in each spatial direction per cell for using a
three-point Gaussian quadrature, which with the current implementation would
restrict the block size in the flux-source kernel to about 12× 8. Increasing the
order of the WENO reconstruction, would be even more costly, as we in a
seventh-order WENO reconstruction would need 8 ghost cells in each direction,
reducing the maxium block size to 12 × 9, with a two-point flux quadrature,
and 8 × 8 in combination with a three-point quadrature. The ratio of ghost
cells to interior cells in the y direction would go from 6/11 to 8/8, which is
an increase of more than 80 %. The reason why the fourth-order source term
is not effecting the runtime is because we can still get away with storing only
two line averages in each direction per cell, meaning that adding a few more
computations does not destroy the runtime, but running smaller blocks might
do. Whether the accuracy of a scheme of even higher order would be sufficiently
good to compensate for the smaller block sizes and more ghost cells, was not
investigated, but it is perhaps not all that likely.

Bibliography

[1] Emmanuel Audusse, François Bouchut, Marie-Odile Bristeau, Rupert
Klein, and Benôıt Perthame. A fast and stable well-balanced scheme with
hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput.,
25(6):2050–2065, June 2004.

[2] Andreas Bollermann, Alexander Kurganov, and Sebastian Noelle. A well-
balanced reconstruction for wetting/drying fronts. Communications in
Mathematical Sciences, 2010.

[3] André R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmer-
vik, and Olaf O. Storaasli. State-of-the-art in heterogeneous computing.
Scientific Programming, 2010.

[4] André R. Brodtkorb, Trond R. Hagen, Knut-Andreas Lie, and Jostein R.
Natvig. Simulation and visualization of the saint-venant system using gpus.
Comput. Visual. Sci. (Special issue on Hot Topics in Computational En-
gineering), 13, 2010.

[5] André R. Brodtkorb, Trond R. Hagen, and Martin L. Sætra. Gpu pro-
gramming strategies and trends in gpu computing. Journal of Parallel and
Distributed Computing, 2012.

[6] André R. Brodtkorb and Martin L. Sætra. Explicit shallow water simula-
tions on gpus: Guidelines and best practices. 2012.

[7] André R. Brodtkorb, Martin L. Sætra, and Mustafa Altinakar. Efficient
shallow water simulations on gpus: Implementation, visualization, verific-
ation, and validation. 2012.

[8] Sigal Gottlieb and Chi wang Shu. Total variation diminishing runge-kutta
schemes. Math. Comp, 67:73–85, 1998.

93

94 8.3. Further research

[9] T. R. Hagen, M. O. Henriksen, J. M Hjelmervik, and K.-A. Lie. How to
solve systems of conservation laws numerically using the graphics processor
as a high-performance computational engine. In Geometrical Modeling, Nu-
merical Simulation, and Optimization: Industrial Mathematics at SINTEF.

[10] Ami Harten. High resolution schemes for hyperbolic conservation laws.
Journal of Computational Physics, 49(3):357 – 393, 1983.

[11] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R. Chakrav-
arthy. Uniformly high order accurate essentially non-oscillatory schemes,
111. J. Comput. Phys., 71(2):231–303, August 1987.

[12] Alexander Kurganov and Doron Levy. Central-upwind schemes for the
saint-venant system. 2002.

[13] Alexander Kurganov, Sebastian Noelle, and Guergana Petrova. Semi-
discrete central-upwind schemes for hyperbolic conservation laws and
hamilton–jacobi equations. SIAM J. Sci. Comput., 23(3):707–740, March
2001.

[14] Alexander Kurganov and Guergana Petrova. A second-order well-balanced
positivity preserving central-upwind scheme for the saint-venant system.
2007.

[15] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differ-
ential Equations: Steady-State and Time-dependent Problems. Society for
Industrial and Applied Mathematics, 2007.

[16] Randall J. LeVeque. Balancing source terms and flux gradients in
high-resolution godunov methods: The quasi-steady wave-propagation al-
gorithm. Journal of Computational Physics, 146(1):346 – 365, 1998.

[17] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics. Cambridge University Press, 2002.

[18] Sebastian Noelle, Normann Pankratz, Gabriella Puppo, and Jostein R.
Natvig. Well-balanced finite volume schemes of arbitrary order of accuracy
for shallow water flows. Journal of Computational Physics, 213(2):474 –
499, 2006.

[19] NVIDIA Corporation. CUDA C Best Practices Guide, 5.0 edition, 2012.

[20] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, 2012.

95

[21] NVIDIA Corporation, Paulius Micikevicius. Analysis-Driven Optimization,
2010.

[22] NVIDIA Corporation, Paulius Micikevicius. Fundamental Optimizations,
2010.

[23] NVIDIA Corporation, Victor Podlozhnyuk. Image Convolution with
CUDA, 2007.

[24] Normann Pankratz, Jostein R. Natvig, Bjrn Gjevik, and Sebastian Noelle.
High-order well-balanced finite-volume schemes for barotropic flows: De-
velopment and numerical comparisons. Ocean Modelling, 18(1):53 – 79,
2007.

[25] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws. In Advanced numerical
approximations of nonlinear hyperbolic equations.

[26] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially
non-oscillatory shock-capturing schemes. Journal of Computational Phys-
ics, 77(2):439 – 471, 1988.

[27] Raymond J. Spiteri and Steven J. Ruuth. A new class of optimal high-order
strong-stability-preserving time discretization methods. SIAM Journal on
Numerical Analysis, 40(2):pp. 469–491, 2003.

[28] V.A. Titarev and E.F. Toro. Finite-volume weno schemes for three-
dimensional conservation laws. 2003.

[29] E.F. Toro. Shock-capturing methods for free-surface shallow flows. John
Wiley, 2001.

[30] Yulong Xing and Chi-Wang Shu. High order finite difference weno schemes
with the exact conservation property for the shallow water equations. J.
Comput. Phys., 208(1):206–227, September 2005.

	Title Page
	masteroppgave.pdf

