
Graph-based Natural Language
Processing
Graph edit distance applied to the task of

detecting plagiarism

Håkon Drolsum Røkenes

Master of Science in Informatics

Supervisor: Bjørn Gamback, IDI
Co-supervisor: erwin marsi, IDI

Department of Computer and Information Science

Submission date: December 2012

Norwegian University of Science and Technology

Abstract

The focus of this thesis is the exploration of graph-based similarity, in the context of
natural language processing. The work is motivated by a need for richer representa-
tions of text. A graph edit distance algorithm was implemented, that calculates the
difference between graphs. Sentences were represented by means of dependency graphs,
which consist of words connected by dependencies. A dependency graph captures the
syntactic structure of a sentence.

The graph-based similarity approach was applied to the problem of detecting pla-
giarism, and was compared against state of the art systems. The key advantages of
graph-based textual representations are mainly word order indifference and the ability
to capture similarity between words, based on the sentence structure.

The approach was compared against contributions made to the PAN plagiarism
detection challenge at the CLEF 2011 conference, and would have achieved a 5th
place out of 10 contestants. The evaluation results suggest that the approach can be
applicable to the task of detecting plagiarism, but require some fine tuning on input
parameters.

The evaluation results demonstrated that dependency graphs are best represented
by directed edges. The graph edit distance algorithm scored best with a combination
of node and edge label matching. Different edit weights were applied, which increased
performance.

Keywords: Graph Edit Distance, Natural Language Processing, Depen-
dency Graphs, Plagiarism Detection

i

ii

Sammendrag

Fokuset i denne oppgaven er utforskingen av graf-basert liket, i forbindelse med naturlig
spr̊ak prosessering. Arbeidet er motivert av et behov for sterkere representasjoner av
tekst. En graf redigeringsdistanse-algoritme ble implementert, some sammenlikner
forskjellen mellom to grafer. Setninger ble representert som avhengighetsgrafer, som
best̊ar av ord koblet sammen av avhengigheter. En avhengighetsgraf fanger den syn-
taktiske strukturen til en setning.

Den graf-baserte tilnærmingen ble anvendt til problemet å avdekke plagiat, og var
sammenliknet mot toppmoderne systemer. Hovedfordelen med graf-basert represen-
tasjon av tekst er muligheten til å fange liket mellom ord basert p̊a setningsstruktur.
Avhengighetsgrafer er i tillegg likegyldige til rekkefølgen av ord.

Tilnærmingen ble sammenliknet med bidrag til PAN plagiarism detection challenge
ved konferansen CLEF 2011, og ville ha oppn̊add 5. plass av 10 deltakere. Resultatene
tyder p̊a at tilnærmingen kan brukes til å avdekke plagiat, men krever finjustering av
inputparametre.

Resultatene demonstrerte at avhengighetsgrafer er best representert med rettede
kanter. Redigeringsdistanse-algoritmen sk̊aret best med en kombinasjon av node- og
kant-matching. Forskjellige redigering-vekter ble brukt, som økte ytelsen.

iii

iv

Preface

This thesis describes the work done during the final year of my Master of Science MSc
degree in Informatics. The work was conducted from January to December 2012, at the
Department of Computer and Information Science at Norwegian University of Science
and Technology.

I wish to thank my supervisors Björn Gambäck and Erwin Marsi for their guid-
ance, support and encouragement throughout the course of this thesis. I also take the
opportunity to thank Lars Bungum for technical support on the equipment used for
this thesis.

In addition, I would like to thank the organisers of the PAN evaluation lab, for
providing the environment I needed to evaluate my results.

H̊akon Drolsum Røkenes
Trondheim, December 10, 2012

v

vi

Contents

1 Introduction 1
1.1 Context and motivation . 1
1.2 Problem description . 2
1.3 Problem solution . 3
1.4 Thesis structure . 3

2 Theory and background 5
2.1 Plagiarism detection . 5

2.1.1 N-gram matching . 5
2.1.2 Term weighting . 5
2.1.3 Term generalization . 6

2.2 Dependency graphs . 7
2.2.1 Dependencies . 8

2.3 Conference and Labs of the Evaluation Forum 9
2.3.1 Plagiarism detection challenge 9
2.3.2 Evaluation . 10

2.4 Graph edit distance . 11
2.4.1 Edit operations . 11
2.4.2 Assignment problem . 11
2.4.3 Cost matrix . 12
2.4.4 Assignment problem algorithms 13

3 Related work 15
3.1 Graph edit distance . 15
3.2 Plagiarism detection . 15

3.2.1 PAN results . 15
3.2.2 Kong et al. 16
3.2.3 Suchomel et al. 17
3.2.4 Grman & Ravas team . 18
3.2.5 N-gram based approaches . 18

4 Implementation 19
4.1 Architecture . 19
4.2 Text pre-processing . 20

4.2.1 Sentence partitioning . 20
4.2.2 POS-tagging and lemmatising 20
4.2.3 Dependency parsing . 21

vii

viii CONTENTS

4.2.4 Pre-processing output . 21
4.3 Candidate retrieval . 22

4.3.1 Sentence indexing . 22
4.3.2 Candidate sentence retrieval . 23

4.4 Detailed analysis . 23
4.4.1 Cost matrix . 24
4.4.2 Substitute costs . 25
4.4.3 Node insert and delete costs . 26
4.4.4 Assignment problem algorithm 27
4.4.5 Plagiarism threshold . 28
4.4.6 Passage merging . 28
4.4.7 Algorithm variations . 28

5 Results 29
5.1 Parameter tuning . 29
5.2 Candidate retrieval phase . 30
5.3 Detailed analysis . 31
5.4 Different graph representations and edit cost functions 31
5.5 Execution speed . 32

6 Discussion 35
6.1 PAN evaluation . 35
6.2 Standalone detailed analysis evaluation 36
6.3 Edge difference . 36
6.4 Preprocessing output size . 37

7 Conclusion & Future Work 39
7.1 Future Work . 39

7.1.1 Synonym node matching . 39
7.1.2 Edit cost weight tuning . 40
7.1.3 Cross-lingual detection . 40
7.1.4 Adjacent passage detection . 40

A 41
A.1 List of Part-of-speech tags . 41

List of Figures

1.1 Example of dependency graphs . 2

2.1 An example of edit operations for two graphs 11
2.2 Assignment problem . 12

4.1 Overview of the main modules of the system 19
4.2 Text pre-processing phase . 20
4.3 Candidate retrieval phase . 22
4.4 Overview of the detailed analysis phase 23
4.5 Dependency graph for sentence (4) and (5) 24

5.1 Plagdet values for different input parameters 30
5.2 Runtime comparison of graph edit distance computations, using both

Munkres and VolgenantJonker assignment algorithms, for graphs of size
1 to 250 nodes . 33

5.3 Runtime comparison of the Munkres and VolgenantJonker assignment
algorithms, for graphs of size 1 to 250 nodes 34

6.1 Example of sentences with similar structure, but different meaning . . . 36

7.1 Adjacent passages analysis . 40

ix

x LIST OF FIGURES

List of Tables

2.1 POS-tag colours used in figures . 7
2.2 Summary of PAN10 and PAN11 data sets 10

3.1 The overall results from the PAN10 challenge 16
3.2 The overall results from the PAN11 challenge 16
3.3 The overall results from the PAN12 challenge 17

4.1 MaltParser example output . 21
4.2 Edit operations for sentence (4) and (5) 24
4.3 The substitute region of the cost matrix 25
4.4 Deprel insert and delete weights . 27
4.5 POS insert and delete weights . 27

5.1 PAN10 results for different thresholds 29
5.2 PAN10 candidate retrieval results . 30
5.3 PAN11 candidate retrieval results . 31
5.4 PAN11 detailed analysis results . 31
5.5 PAN11 detailed analysis with different implementation details 32

6.1 PAN11 results ranked by precision and recall 35
6.2 Edit distances where structural similarity is favoured over semantic sim-

ilarity . 37

A.1 List of POS-tags . 41

xi

xii LIST OF TABLES

Terminology & abbreviations

CLEF Conference and Labs of the Evaluation Forum

Edge Edges connect nodes in a graph structure. An edge can be directed or undi-
rected, and may be labelled or weighted.

Granularity A measurement of how something is partitioned into smaller pieces.

Graph A data structure which consists of nodes connected by edges.

Hypernym A word which represents a generalisation of another word. Example blue
is a colour, where colour is the hypernym to blue.

Natural language processing A field within computer science which covers process-
ing of human language by computers.

Node A graph consists of a set of nodes. Each node usually has a label and is con-
nected by edges. Vertices is another name for nodes.

PAN Plagiarism analysis, Authorship identification and Near-duplicate detection

Plagiarism passage Plagiarism passages refers to pairs of sentences, paragraphs or
whole texts which are considered plagiarised.

Precision In an information retrieval system, precision is the fraction of retrieved
items which are relevant.

Recall In an information retrieval system, recall is the fraction of items retrieved from
all relevant items.

Semantics The study of meaning.

Synonym Words with nearly identical meaning are considered to be synonyms.

Syntax The study of how sentences are constructed.

TF-IDF Term Frequency - Inverse Document Frequency

xiii

Chapter 1

Introduction

The main objective of this thesis is to explore the usage of graph-based representations
for the field of natural language processing. The following sections present a motivation
for said approach and define a problem description. In addition, a problem solution is
proposed, which guides the practical work done in this thesis. Finally, an overview of
the rest of the thesis is presented.

1.1 Context and motivation

The problem of finding similarities between two texts is a general problem which has
many applications within the field of natural language processing. In order to measure
the similarity between two texts, each text needs a representation. One way is plain
text, a list of words which form a sentence. Plain text is often used for simplicity, but
lacks explicit information about syntactical structure.

Some aspects of language are better represented using structured representations
such as dependency graphs, which consist of words connected by dependencies.

Dependency graphs capture the syntactical structure of a sentence, and is limited
to a sentence scope. One of the main advantages of a graph based representation, is
that dependency graphs are for the most part indifferent to word order. This allows the
representation to capture similarity between sentences where the word order is shuffled
around.

A richer representation provides a better basis for determining similarity in difficult
cases. Consider the two sentences represented as dependency graphs in Figure 1.1. A
human should be able to determine that the sentences have similar meanings. However,
automatically detecting such cases can be troublesome, due to word replacement. Given
a plain text representation, the only common words are kicked, the, out and of. The
word kicked is the only word which gives a clear indication of the meaning of each
sentence. By looking at the dependency graphs, it becomes clear that there are some
structural similarities between the sentences. The edge labels, colours and construction
of dependency graphs will be described in detail in Section 2.2.

Due to increasing availability of documents available on the web, performing pla-
giarism is getting easier and easier. Large amounts of potentially plagiarised text is
submitted to educational institutions every year. As a result, there is an increasing
need for automatic plagiarism detection.

1

2 CHAPTER 1. INTRODUCTION

boy

by

pobj

kicked

prep

the

det

the

ball

det

nsubjpass

was

auxpass

out

prep

the

stadium

det

of

pobj

dep

The ball was kicked out of the stadium
by the boy

The

player

det

kicked

nsubj

object

dobj

the

det

of

out

dep

prep

field

pobj

the

det

The player kicked the object out of the
field

Figure 1.1: Example of dependency graphs

1.2 Problem description

The concrete task in this thesis is to implement a graph edit distance algorithm, which
calculates similarity between two graphs. The algorithm is based on calculating the
number of edit operations needed to transform one graph into another (Riesen and
Bunke, 2009). Each edit operation has an edit cost, which determines how costly the
given operation is.

Automatic plagiarism detection is a research field which relies primarily on text
similarity. This makes it an interesting test bed for the topic of this thesis. The
problem of applying graph-based text similarity to plagiarism detection is defined in
research question 1.

Research question 1. Is graph-based similarity, in particular graph edit distance,
applicable to plagiarism detection and computationally feasible?

State-of-the-art plagiarism detection systems mostly rely on simpler representations
of text, such as n-gram matching and the vector space model (Suchomel et al., 2012;
Kong et al., 2012; Grman and Ravas, 2011; Oberreuter et al., 2011; Grozea and Popescu,
2011). As a result, the approach can be considered relatively unique. Due to the
uniqueness of the approach, some implementation details remain undefined. Research
question 2 addresses the problem of defining the details of the algorithm.

Research question 2. What is the best way to calculate graph edit distance between
sentences, in particular with respect to edit costs and graph representation, in the con-
text of plagiarism detection?

1.3. PROBLEM SOLUTION 3

In order to evaluate the performance of the graph edit distance algorithm, its per-
formance should be compared to existing state-of-the-art systems. Research question
3 presents the problem of comparing the algorithm to existing approaches.

Research question 3. How does graph-based similarity compare to other approaches
to plagiarism detection, such as index-based retrieval and n-gram matching?

1.3 Problem solution

The following goals will serve as solutions to the corresponding research questions
formulated in Section 1.2.

Research goal 1. A prototype plagiarism detection system based on graph edit distance
will be implemented. The system should be able to handle large text corpora, and detect
plagiarism on a sentence level.

Research goal 2. Various edit cost functions and graph representations will be imple-
mented. The different approaches will be compared to each other in the same manner
as in Research goal 1.

Research goal 3. The output of the prototype system will be compared to existing state-
of-the-art plagiarism detection systems. This comparison will serve as an empirical
evaluation of the system.

In addition, the system will feature other phases than just the graph edit distance
algorithm. A standalone evaluation will be made on just the graph edit distance algo-
rithm.

1.4 Thesis structure

The thesis is structured as follows:

Chapter 2 Presents the theory needed to implement the solution described in Chap-
ter 4.

Chapter 3 Covers relevant research done in the field of plagiarism detection and graph
edit distance computation.

Chapter 4 Describes the prototype graph-based plagiarism detection system imple-
mented for this thesis.

Chapter 5 Lists the results generated from the prototype system, compared to state-
of-the-art plagiarism detection systems.

Chapter 6 Discusses the results presented in the previous chapter.

Chapter 7 Summarises the work and discusses possible future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Theory and background

This chapter covers relevant research done surrounding the main topics of the thesis.
The main goal of this chapter is to introduce relevant terminology used in the field of
plagiarism detection and graph edit distance computation.

2.1 Plagiarism detection

In order to detect plagiarism, various information retrieval techniques are applied. This
section describes techniques which are useful during text matching.

2.1.1 N-gram matching

An n-gram is a sub-sequence of n items from a text. Each item is typically represented
by the word in its original form, or any other representation available. n refers to the
size of each sub-sequence. An n-gram of size 1 is called a unigram, size 2 bigram and
size 3 trigram. n-grams of larger sizes are just referred to as fourgrams, fivegrams, etc.
n-gram items may represent other items, such as the characters in a word, which has
other applications. The focus in this thesis is sentence level matching, so only word
based n-grams will be considered.

n-gram matching is quite common approach in the field of text categorisation. The
core concept behind n-gram matching is to count the number of matching n-grams
in two texts (Papineni et al., 2002). A common approach is to combine matching of
different n-gram sizes. Different applications utilise different sizes of n-grams, and the
best size depends on the specific problem and data set.

2.1.2 Term weighting

During information retrieval, the importance of each term can be represented by a
weight. Each term is weighted according to how well it contribute to solving a particular
task. The following subsections presents some common term weighting schemes, which
are relevant for plagiarism detection.

5

6 CHAPTER 2. THEORY AND BACKGROUND

Stop-word removal

Stop-words are commonly used terms, such as a, the, but, etc. Such terms are content-
independent, and carry relatively little semantic information (Stamatatos, 2011). Stop-
word removal can be applied to better capture the semantics of a text, as stop-words
are considered less important for determining the semantics of a text (Koppel et al.,
2006).

Term Frequency - Inverse Document Frequency weighting

A more advanced term weighting technique is Term Frequency - Inverse Document
Frequency weighting (TF-IDF). The technique looks at the number of occurrences a
term has in a given document, and the amount of occurrences in all the documents
together. This way less frequent, more specific terms are of greater value than matches
on more common terms (Jones, 1972). There exist some variants of the formula, but
the most common is the following (t is the term, d is the given document and D is the
document collection):

tfidf(t, d,D) = tf(t, d)× idf(t,D) (2.1)

where tf(t, d) is the term frequency of t in document d. Usually the term frequency
is calculated using the number of term occurrences divided by the number of terms in
document. idf(t,D) is the inverse document frequency, usually calculated by taking the
logarithmic of the number of documents divided to the number of documents containing
term t.

The strength of TF-IDF weighting is the ability to weight all terms. Unique terms
are weighted highest, while more common terms, yet not classified as stop-words, will
receive a lower weight. TF-IDF weighting does not require a dictionary lookup, thus
making it language independent. However, finding the IDF values for each term does
require some calculations.

2.1.3 Term generalization

The following sub-sections describe techniques which allow us to express terms (words)
in a more general form.

Lemmatisation

Lemmatisation describes the process of representing different forms of words in a more
general representation, called lemma. For instance, the word be has seven different
forms: be, am, are, is, was, were, been. By representing the different forms with the
word be, word matching becomes more robust.

However, representing words as lemmas may cause erroneous behaviour, in cases
where two different words have the same lemma. Consider the words recording and
records, which may refer to the verb (to) record, or a (music) record. Both words have
the same lemma, and would falsely be regarded as equal if only lemmas are considered.

2.2. DEPENDENCY GRAPHS 7

Part-of-speech tagging

Part-of-speech (POS) tagging is the process of identifying words as nouns, adjectives,
etc. By identifying the POS-tag of a word, it is easier to deal with word-sense disam-
biguation. For instance, the word left may mean the opposite of right, or that a person
just left the building. By identifying the POS-tag of the two words, the difference is
clear, because the first usage is a noun whereas the second is a verb. There exists auto-
matic tools which determine the POS-tag of words in a sentence, called POS-taggers.
Since a word can have multiple POS-tags, a POS-tagger requires a full sentence as
input, in order to perform disambiguation.

The Penn Treebank is a corpus consisting of over 4.5 million words of American
English, which are annotated with part-of-speech tags. Appendix A.1 features a list of
part-of-speech tags, taken from the Penn Treebank (Marcus et al., 1993). The corpus
is used by popular POS-taggers such as the Stanford Log-linear Part-Of-Speech Tagger
(Toutanova et al., 2003). Other corpora are available for languages other than English.

2.2 Dependency graphs

A dependency graph is a structured representation of a sentence. In order to create
dependency graphs, a sentence is processed by a dependency parser, which is based
on the theoretical foundations of dependency grammar. Dependency grammar can be
described as a family of theories that share some basic assumptions about grammati-
cal structure, mainly the assumption that syntactic structure is represented by words
connected with relations called

Syntactical structure can be very complex and most dependency graph versions
are simplifications of theoretical dependency structures. Complex dependency graphs
require complex algorithms. Simple graphs express less, but are easier to work with,
especially if the goal is automatic dependency parsing.

Consider the two sentences in Figure 1.1, which is repeated for convenience. The
dependency graphs are created using MaltParser, which is one of several dependency
parser alternatives. The node colours represent the POS-tag of the node’s word. Table
2.1 lists the different colours and their respective POS-tag.

Colour POS-tag
Green Noun
Red Verb
Blue Preposition
Orange Adverb
Grey Other POS-tags

Table 2.1: POS-tag colours used in figures

The edges represent the dependencies between nodes. The edge label represents
the type of dependency relation. These attributes will be described in detail in the
following sections.

8 CHAPTER 2. THEORY AND BACKGROUND

the

kid

det

kicked

nsubj

ball

dobj

the

det

of

out

dep

prep

field

pobj

the

det

The kid kicked the ball out of the field

boy

by

pobj

kicked

prep

the

det

the

ball

det

nsubjpass

was

auxpass

out

prep

the

pitch

det

of

pobj

dep

The ball was kicked out of the pitch by
the boy

Example of dependency graphs

2.2.1 Dependencies

A dependency between two terms, using the terminology from Nivre (2005), consists
of a head and dependent.1 In other words, dependencies are directional, making de-
pendency graphs directed graphs.

Often there is a need to distinguish between different dependency relations, anno-
tated by the dependency relations in Figure 1.1. The edge labels, called deprel for
short, describe the relationship between the head and dependent. Consider the rela-
tionship between ball and kicked in Figure 1.1. The deprel dobj denotes that ball is a
direct object of a verb phrase, in this case the word kicked. In general, this dependency
involves a relation between an action (kicked) and an entity directly affected by this
action (ball). In other words, the deprel states that the ball was kicked. De Marneffe
and Manning (2008) presents a full description of the different dependency relations
used in this project.

1The literature is not consistent when it comes to drawing dependencies (arrows from head to
dependent or vice versa). The figures in this thesis will have dependency graphs with arrows pointing
from dependent to head.

2.3. CONFERENCE AND LABS OF THE EVALUATION FORUM 9

2.3 Conference and Labs of the Evaluation Forum

Conference and Labs of the Evaluation Forum, formerly known as Cross-Language
Evaluation Forum is a European conference held in various countries each year since
2010 (Braschler et al., 2010; Petras et al., 2011; Forner et al., 2012). The conference is
abbreviated CLEF for short. CLEF promotes research within the field of information
retrieval, with focus on multilingual and multi-modal information. For each CLEF
conference, workshops are held, which focus on solving a specific problem. Amongst
these is the PAN workshop,2 which is divided into three sub-tasks:

• plagiarism detection

• authorship detection

• social software misuse

2.3.1 Plagiarism detection challenge

Plagiarism detection can be defined as detecting text passages between one or several
documents and a document corpus, which are above a chosen degree (threshold) of
similarity. This makes it an interesting application for this project. The PAN workshop
allows researchers within the same field to compare results. The Plagiarism Detection
challenge consists of the following sub-tasks:

• Intrinsic detection

The task is to detect plagiarism in a document by detecting writing style
changes

• External detection

The task is to detect plagiarised passages between a source and suspicious
document collection.

Only the external detection task is of interest to this thesis, since it is based on text
similarity.

Data sets

Each PAN plagiarism challenge comes with a new data set, which is reviewed and
improved for each year. The different data sets will be referred to as PAN{year}. Each
competition uses data sets from the preceding year as training corpus, for parameter
tuning.

The reason for working with PAN11 instead of PAN12 is due to changes in the
PAN12 workshop. Unfortunately, the PAN12 data set is not freely available, as it
contains real plagiarism cases. To protect the identity of the authors, the data must
be accessed through a search API. In order to use the search API, one has to be a
contestant in the competition. The deadline for PAN12 ran out before the completion
of the system, thus making a submission impossible (Potthast et al., 2012). As a result,
the PAN10 and PAN113 are used the training and test sets used to obtain the results

2PAN website: http://pan.webis.de/
3The PAN10 and PAN11 data sets are available at http://www.webis.de/research/events/pan-11

10 CHAPTER 2. THEORY AND BACKGROUND

in Chapter 5. The data sets are summarised in Table 2.2.

Data set Suspicious documents Source documents Translated Artificial Manual

PAN10 15925, 1.7GB 11148, 3.5GB 14% 40% 6%

PAN11 11093, 1.6GB 11093, 2.5GB 11% 63% 8%

Table 2.2: Summary of PAN10 and PAN11 data sets

Each corpus is separated into source and suspicious documents. Each suspicious
document is analysed against every source documents, with the goal of detecting pla-
giarism. All suspicious documents come with a corresponding annotation file. The
annotation files offer pointers to source file, starting offset and length.

Translated, artificial and manual refer to different plagiarism approaches. Trans-
lated plagiarism refers to plagiarism cases between two documents of different lan-
guages. Artificial plagiarism is created by artificially obfuscating text. Manual plagia-
rism refers to manually obfuscated text, generated by crowd sourcing.

2.3.2 Evaluation

Each contribution is evaluated using a measure called plagdet, which is the evaluation
measure used for the PAN workshop. The following formulas are taken from Potthast
et al. (2010), which describe the evaluation process in detail.

The plagdet measure is a combination of precision, recall and granularity. granu-
larity is a measure which recognises whether or not adjacent passages are detected. In
other words, if a system detects many adjacent passages, they should be merged to
one. Formula (2.2) is used to calculate granularity, where S and R denotes the set of
plagiarism cases and detections.

gran(S,R) =
1

|SR|
∑
sεSR

|Rs| (2.2)

Precision p is defined as the fraction of correctly classified plagiarism passages. Re-
call r is the fraction of retrieved plagiarism passages, from S. Macro-averaged precision
and recall is unaffected by the length of each passage, while micro-averaged considers
each passage in detail. The harmonic mean of precision and recall is calculated with
formula (2.3).

F1 =
2

1
r

+ 1
p

(2.3)

The plagdet score is calculated with Formula (2.4), where F1 is the harmonic mean of
precision and recall.

plagdet(S,R) =
F1

log2(1 + gran(S,R))
(2.4)

A plagdet scoring script has been published through the PAN workshop website,4

The script uses macro-averaged precision and recall as default.

4http://www.webis.de/research/corpora/corpus-pan-pc-09/perfmeasures.py

2.4. GRAPH EDIT DISTANCE 11

2.4 Graph edit distance

Graph edit distance is a measure of how different two graphs are, defined as the mini-
mum amount of edit operations needed to transform one graph into another. An edit
operation can be done on either a node or edge, following definition 1 (Riesen and
Bunke, 2009; Hu et al., 2009).

Definition 1. An edit operation between two graphs g1 and g2 is either a substitute
(u → v), insert (ε → v) or delete (u → ε) operation, where u is a node in g1 and v
is a node in g2.

A substitute operation is defined in definition 2, following Riesen and Bunke (2009).

Definition 2. A substitute operation (u → v) consists of an insert (ε → v) and a
delete ((u→ ε) operation.

2.4.1 Edit operations

The edit operations needed to transform the source graph g1 into the target graph g2,
is form an edit path. Figure 2.1 illustrates the edit path required to turn the sentence
Mary was kissed by Bob into the sentence Bob kissed Mary.

Mary

kissed

was

Bob

by Mary

kissed

Bob

by

Mary

kissed

Bob
(was → ε) (by → ε)

Figure 2.1: An example of edit operations for two graphs

In this case, if only nodes are considered, the edit path of the two graphs in Figure
2.1 can be expressed as in (1).

[(was → ε), (by → ε)] (1)

Each edit operation has an associated cost defined as a cost function. A typical cost
function matches node labels, as well as edge difference. The cost function may differ
from application to application, and is a matter of implementation details. This shows
how general graph edit distance can be. The algorithm can be modified to solve a
specific problem by simply replacing a single function.

2.4.2 Assignment problem

The time complexity for matching n nodes with m nodes, where n and m are the
nodes of two graphs, is given by n!

m!
, making the problem exponential in the number of

involved nodes (Fankhauser et al., 2011; Zeng et al., 2009). As a result, there has been
a need for alternative approaches.

12 CHAPTER 2. THEORY AND BACKGROUND

A fast, but sub-optimal solution has been proposed by Riesen and Bunke (2009).
Their solution is based on the assignment problem, which is the problem of assigning n
agents to m jobs, where each agent has an individual cost for performing each job. The
task is to find the cheapest assignment of the agents. In this case, nodes are considered
agents, and the edit operation costs are the different task costs.

Mary

was

kissed

by

Bob

Bob

kissed

Mary

(u → ε)

(u → ε)

Figure 2.2: Assignment problem

Figure 2.2 illustrates the assignment problem for the two sentences from Figure 2.1.
Since the two sentences have unequal number of words, two delete operations (u→ ε)
have been included, so every node receive an assignment. The edit cost is the total cost
of assignments. In this case, if only node operations are considered, the assignment of
the three words Mary, Bob and kissed should cause zero cost, as the words are present
in both graphs. The cost of deleting by and was should be lower than the total cost of
substituting them with any of the other words.

2.4.3 Cost matrix

When calculating the graph edit distance between two graphs, a two-dimensional cost
matrix can be created, which represents the cost of each possible node edit operation.
By creating this cost matrix, the graph edit distance problem is reduced to an assign-
ment problem, which is a simpler problem to solve. The cost matrix is then used as
input to an assignment problem algorithm, which returns the minimal cost assignment
of the edit operations.

The minimum cost assignment is the approximated graph edit distance of the two
graphs. The cost assignment is approximated since each node edit operation is consid-
ered individually, only looking at local structure surrounding each node (Riesen and
Bunke, 2009). The cost matrix is constructed in the following format:

2.4. GRAPH EDIT DISTANCE 13

C =

c1,1 · · · c1,m c1,ε ∞ ∞

c2,1 · · · c2,m ∞ c2,ε ∞

c3,1 · · · c3,m ∞ ∞ c3,ε

cε,1 ∞ ∞ 0 0 0

∞ cε,2 ∞ 0 0 0

∞ ∞ cε,3 0 0 0

The matrix is of size (|N | + |M |) × (|M | + |N |), where |N | and |M | refers to the

number of nodes in each graph. Each cell represents the edit operation cost between
node ni and mj. Each node is permitted only one edit operation. The upper left region
of the matrix represents node substitution costs, the upper right region represents node
deletion costs, while the lower left region represents node insertion costs. The bottom
right consists of substitutions of the form (ε→ ε), and should not cause any cost.

In Figure 2.2, two extra delete operations had to be added, since the graphs were
of unequal size. The algorithm does not necessarily know how to do this.

By adding the additional insert and delete regions mentioned above, the algorithm
is free to assign nodes to either of the three operations. Since the cost matrix now is
twice the size of the two graphs, twice as many assignments are done. To compensate
for this, the bottom right region has been introduced. This region consists of only free
edit operations.

As can be seen in the matrix, the insert and delete sections have one cell for each
node with the cost cε,j or ci,ε, which is considered the insert or delete cost. The rest of
the cells in these sections have the cost ∞, which is an effective way to restrict each
node to only one insert or delete operation.

2.4.4 Assignment problem algorithms

There exists several algorithms which solve the assignment problem, which differ mainly
in terms of execution speed. Fankhauser et al. (2011) mention three algorithms which
solve the assignment problem: Hungarian algorithm, Munkres algorithm and Volgenant-
Jonker. The paper claims that the VolgenantJonker algorithm is the fastest of the three,
with a time complexity of O(n3).

Execution speed is not the primary focus of this thesis, so no in-depth analysis of
the different algorithms will be made. However, a simple comparison between two Java
implementations of Munkres and VolgenantJonker algorithms will be made in Section
5.5.

14 CHAPTER 2. THEORY AND BACKGROUND

Chapter 3

Related work

This chapter considers the related work done on graph edit distance algorithms and
the different contributions made to the PAN plagiarism detection task.

3.1 Graph edit distance

There are numerous approaches to the problem of calculating graph edit distance. The
different approaches can be divided into suboptimal and optimal approaches. The
optimal approaches generally have a very high time and space complexity (Riesen and
Bunke, 2009).

As a result, numerous suboptimal approaches have been proposed, that attempt to
deal with the complexity of graph edit distance calculation. The different approaches
all deal with the problem of defining edit costs, which makes it hard to come up with
a general purpose graph edit distance algorithm (Gao et al., 2010).

3.2 Plagiarism detection

Plagiarism detection systems differ in many ways, but all systems face the same problem
- large amounts of text data which need to be processed. To cope with this problem,
most systems include a candidate retrieval phase which reduces the problem space in
an efficient manner. Candidate plagiarised passages are retrieved, and sent further
to a detailed analysis phase. The following sections will give a brief summary of the
approaches from the top contestants in the PAN11 and PAN12 challenge.

3.2.1 PAN results

Tables 3.3 and 3.1 show the contributions to the PAN11 external plagiarism task. The
contributions are ranked by their plagdet score. Only the overall score is shown to save
space. Potthast et al. (2011, 2010) has a complete list of plagdet scores for the different
contributions listed in Table 2.2.

15

16 CHAPTER 3. RELATED WORK

Team plagdet precision recall granularity

Kasprzak and Brandejs (2010) 0.80 0.98 0.89 1.00
Zou et al. (2010) 0.71 0.93 0.80 1.09
Muhr et al. (2010) 0.69 0.93 0.87 1.19
Grozea and Popescu (2010) 0.62 0.93 0.58 1.02
Oberreuter et al. (2010) 0.61 0.92 0.57 1.01
Torrejón and Ramos (2010) 0.59 0.91 0.55 1.00
Pereira et al. (2010) 0.52 0.82 0.60 1.00
Palkovskii et al. (2010) 0.51 0.85 0.49 1.01
Devi et al. (2010) 0.44 0.97 0.38 1.01
Gottron (2010) 0.26 0.53 0.47 1.87
Micol et al. (2010) 0.22 0.97 0.31 2.39
Costa-Jussà et al. (2010) 0.21 0.39 0.41 1.02
Nawab et al. (2010) 0.21 0.58 0.14 1.33
Gupta et al. (2010) 0.20 0.59 0.16 1.15
Vania and Adriani (2010) 0.14 0.93 0.35 7.74
Suárez et al. (2010) 0.06 0.43 0.07 2.74
Alzahrani and Salim (2010) 0.02 0.39 0.06 19.24

Table 3.1: The overall results from the PAN10 challenge

Team plagdet precision recall granularity

Grman and Ravas (2011) 0.56 0.94 0.40 1.00

Grozea and Popescu (2011) 0.42 .0.81 0.34 1.22

Oberreuter et al. (2011) 0.35 0.91 0.23 1.06

Cooke et al. (2011) 0.25 0.71 0.15 1.01

Torrejón and Ramos (2011) 0.23 0.85 0.16 1.23

Rao et al. (2011) 0.20 0.45 0.16 1.29

Palkovskii et al. (2011) 0.19 0.44 0.14 1.17

Nawab et al. (2011) 0.08 0.28 0.09 2.18

Ghosh et al. (2011) 0.00 0.01 0.00 2.00

Table 3.2: The overall results from the PAN11 challenge

3.2.2 Kong et al.

This team scored first in the detailed comparison sub-task, and third in the candidate
retrieval subtask of PAN12. Their candidate retrieval phase consists of queries to
the search API introduced in the PAN 2012 challenge (Potthast et al., 2012). The
candidates are retrieved with a method based on TF-IDF weighting, stemming and
stop-word removal.

The detailed analysis consists of a combination of semantic and structural similarity.
Semantic similarity is calculated using a Vector Space Model and structural similarity
using an Overlapping Measure Model. The overlapping measure model calculates a
similarity score between two sentences by looking at overlapping terms.

As a third step, they introduce a Bilateral Alternating Sorting algorithm, which
is used to merge scattered passages. Unfortunately, the algorithm is not described in
detail in the notebook paper due to patent pending (Kong et al., 2012).

3.2. PLAGIARISM DETECTION 17

Team plagdet precision recall granularity

Kong et al. (2012) 0.738 0.825 0.678 1.01

Suchomel et al. (2012) 0.68 0.893 0.552 1.00

Grozea (2012) 0.678 0.775 0.635 1.04

Oberreuter et al. (2012)1 0.674 0.867 0.555 1.01

Torrejón and Ramos (2012) 0.625 0.834 0.501 1.00

Palkovskii and Belov (2012) 0.538 0.575 0.523 1.02

Küppers and Conrad (2012) 0.350 0.776 0.282 1.27

Sánchez-Vega et al. (2012) 0.310 0.538 0.349 1.577

Gillam et al. (2012) 0.309 0.898 0.0190 1.02

Jayapal (2012) 0.045 0.623 0.076 6.93

Table 3.3: The overall results from the PAN12 challenge

3.2.3 Suchomel et al.

This team scored overall second in the PAN12 challenge (Potthast et al., 2012). For
the detailed analysis, they used a combination of lexicographically sorted n-grams and
stop-word n-grams.

A sentence can be expressed in many ways by shuffling around the words, and the
lexicographically sorted n-grams approach detects shuffling of word order. They used
sorted five-grams with stop-word removal. Sorted n-grams do give a good represen-
tation of the semantics of the sentence, as the method focuses on word presence, and
disregards word order.

While the sorted n-gram approach is a good representation of semantics, it disre-
gards syntactical structure. The stop-word n-gram approach does the opposite. They
remove all non stop-words and detect eight-gram matches of stop-words only. This way
syntactical similarities between two texts are captured. Consider the two plagiarised
sentences (2) and (3), taken from Stamatatos (2011). The two sentences have the exact
same stop-word seven-gram [this, from, the, in, the, of, the].

This came into existence likely from the deviance in the time-period of
the particular billet.

(2)

This probably arose from the difference in the duration of the respective
offices.

(3)

As many words as possible have been replaced, without disrupting the syntactic
structure of the sentences. The reasoning behind this approach can be derived from the
work of Koppel et al. (2006), where a new linguistic feature called meaning-preserving
stability is introduced. It measures how easily a term is replaced by semantically
equivalent terms. In order to replace a term, without changing the meaning of the
sentence, the term can be replaced with synonyms. Stop-words usually do not have
any synonyms, which makes them hard to replace. When a plagiariser tries to modify
a text passage, the stop-words are likely to remain intact, unless the entire sentence is

18 CHAPTER 3. RELATED WORK

restructured. In other words, the syntactical structure can be represented with stop-
word n-grams. The approach detects cases where words are replaced with synonyms,
without doing synonym lookups, which can be expensive in terms of execution time.

In order to speed up retrieval, they represent each n-gram with the 32 highest-order
bits of its MD5 hash function (Suchomel et al., 2012). This is primarily a performance
optimization, but it allows the system to deal with large text corpora, which is quite
common in the field of plagiarism detection.

3.2.4 Grman & Ravas team

This team scored overall first in the PAN11 challenge (Potthast et al., 2011). Their
approach differs from the popular n-gram matching approach. Their goal was to create
a similarity detection which is invariant against changes of word order, omissions/ad-
ditions of words. Word order is crucial for n-gram matching, thus making this a bad
approach. The team’s similarity detection is based on the number of matching words
in an intersection of source and suspicious document passages.

Instead of just matching words in their original form, each word goes through a pre-
processing phase, which includes text translation, stemming, stop-word removal and
synonym normalization with WordNet. If potential plagiarised sentences are adjacent,
they are merged into a single passage. This means that plagiarism is detected at
paragraph level, instead of sentence level (Grman and Ravas, 2011).

3.2.5 N-gram based approaches

There are numerous n-gram based approaches among the PAN contestants. The fol-
lowing teams use n-gram matching as their core approach. Grozea and Popescu (2011)
match n-grams of a fixed size of 256 characters (not words), which defines their can-
didate document retrieval phase. They retrieve all documents pairs which have 64 or
more matching n-grams of 256 characters.

After retrieving the most similar document pairs, each document pair is analysed
in detail. The detailed analysis phase sorts all the n-grams in the two documents with
a radix sort specialised in sorting n-grams. The final similarity is then measured as
the intersection of the two sets of n-grams.

Oberreuter et al. (2011) utilise four-grams with stop-word removal for retrieving
candidate documents. If two documents have two four-gram matches within the same
paragraph, they are potential candidates. For the detailed analysis, they utilise word
tri-grams without stop-word removal.

Chapter 4

Implementation

This chapter describes the implementation of the prototype system made for this thesis.
The goal of the system was to find plagiarised passages within a text corpus and to
use the results to evaluate the graph edit distance approach. The text corpus used
was the dataset from PAN11, described in Section 2.3.1. In addition, the preceding
dataset from PAN10 was used to tune parameters. The system is written in Java,
and is multi-threaded. In other words, the system utilises all available processors in a
system, which is beneficial in order to process large amounts of data. The experimental
results generated from the system are presented in Chapter 5.

4.1 Architecture

Figure 4.1 gives an overview of the flow between the main components of the system.
Each phase consists of several worker threads, which receive jobs from a queue and
then send the output to the next phase.

Database

Detected
passages

Pre-
processing

Candidate
Retrieval

Detailed
Analysis

Document
corpus

Figure 4.1: Overview of the main modules of the system

The system reads all files in a document corpus, and outputs annotated XML
files with pointers to plagiarism passages. The different phases of the system will be
described in detail in the following sections.

19

20 CHAPTER 4. IMPLEMENTATION

4.2 Text pre-processing

Each document undergoes a pre-processing phase, which processes the text in various
ways. The output of the pre-processing phase is then saved to a database, to speed up
execution. Figure 4.2 gives an overview of the pre-processing phase.

Pre-processing

Dependency
Parsing

Lemmatising

Sentence
Partitioning

POS-
tagging

Document
corpus Database

Figure 4.2: Text pre-processing phase

4.2.1 Sentence partitioning

In order to find plagiarism passages, the text needs to be partitioned into smaller
pieces. Partitioning text into sentences was a natural choice, especially since depen-
dency graphs represent dependencies within a sentence scope. Text was partitioned
into sentences using the Stanford Tokenizer.1 Some of the documents in the corpus
described in Section 2.3.1 contain text not delimited by punctuation. For instance,
many documents contain a table of contents without punctuation, which caused the
tokeniser to output sentences of 500 words or more. In some cases the tokeniser output
sentences with very few words. These falsely tokenized sentences caused problems later
in the system, and had to be dealt with. A simple, yet effective solution was to filter
out sentences with less than three or more than eighty.

4.2.2 POS-tagging and lemmatising

After partitioning the text into sentences, each sentence is processed by the Stanford
Part-Of-Speech Tagger.2 During this phase, each term in a sentence is given a POS-tag
and lemma. The tagger requires pre-trained models for each language as input. The
system used the model called english-left3words-distsim.tagger, which is included in the
download package.

The lemma of each word is identified using the Morphology class from the Stanford
Part-Of-Speech Tagger library. The output is then sent further to dependency parsing.

1http://nlp.stanford.edu/software/tokenizer.shtml
2http://nlp.stanford.edu/software/tagger.shtml

4.2. TEXT PRE-PROCESSING 21

4.2.3 Dependency parsing

Dependency graphs are created using MaltParser,3 which is a data-driven dependency
parser. MaltParser requires POS-tag as well as word token as input, and outputs
labelled dependency relations. Similarly to Stanford Part-Of-Speech tagger, the Malt-
Parser also require a pre-trained model as input. The system used the model called
engmalt.linear-1.7.mco, which is available on the MaltParser website. The reason for
choosing this model over the alternative engmalt.poly-1.7.mco model was due to pars-
ing speed. The latter is significantly slower, but uses less memory (Nivre and Hall,
2010).

Table 4.1 describes the output from MaltParser. Only the last two fields are pro-
duced by MaltParser, the rest were included in the input. Dependency refers to the id
of the head token, explained in Section 2.2.1.

id word lemma POS-tag dependency deprel
1 This this DT 4 nsubj
2 is be VBZ 4 cop
3 an a DT 4 det
4 example example NN 0 null
5 of of IN 4 prep
6 dependencies dependency NNS 5 pobj
7 within within IN 6 prep
8 a a DT 9 det
9 sentence sentence NN 7 pobj
10 . . . 4 punct

Table 4.1: MaltParser example output

4.2.4 Pre-processing output

After a document has gone through the pre-processing phase, it contains the infor-
mation needed to construct dependency graphs for each sentence. Each pre-processed
sentence is then written to a database, allowing fast look up in the later stages of the
system. Each sentence contains a reference to its document name, sentence number,
character offset and length. The offset points to the character where the sentence starts.
Each sentence contains a list of tokens. Each token consists of the fields described in
Table 4.1.

The database used is a high-performance open source NoSQL database called Mon-
goDB.4 NoSQL is a class of database management systems that, contrary to popular
relational database systems such as MySQL, do not rely on structured relations be-
tween tables. This makes insertions and queries in a NoSQL database simpler, and
faster, than MySQL databases. Kennedy (2010) shows a performance comparison be-
tween MongoDB and SQL Server 2008. While the comparison might be biased, and

3http://www.maltparser.org/
4http://www.mongodb.org/

22 CHAPTER 4. IMPLEMENTATION

only covers one alternative, it still shows a significant improvement for basic insertions
and queries.

The primary use case for this system is to do simple insertions and queries. All
35 million sentences are stored in the database, indexed by an unique id, which is
a combination of file name and sentence number. The database was set to report
incidents of queries taking longer than 100 milliseconds. No incidents were reported
during test runs. The reason for doing storing the pre-processing data, instead of doing
parsing on the fly, was to speed up the latter phases of the system. This way tuning
parameters and doing test runs during development was faster.

4.3 Candidate retrieval

Due to the size of the PAN11 data set, each document has to go through a candidate
retrieval phase, which retrieves candidate sentence passages in an efficient manner. The
precision is of no concern during this phase, since the candidates are sent further to
the detailed analysis phase. The goal of this phase is to achieve a high recall, while
reducing the problem space as much as possible.

Database

Suspicious
document

Lucene index

Candidate
Sentence
Retrieval

IndexBuilder

Candidate
sentence
passages

Source
sentence

Figure 4.3: Candidate retrieval phase

4.3.1 Sentence indexing

All source sentences were sent to the IndexBuilder in Figure 4.3. The sentences were
stored in a TF-IDF weighted index, using Apache Lucene,5 which is a Java information
retrieval library. The components from Apache Lucene are thread safe, which allows
indexing and search to be parallelised by many concurrent threads.

When indexing the corpus, each sentence is identified by file name and sentence
number. Each sentence is represented by its lemmas in the index. The index is then
saved to the file system.

5http://lucene.apache.org/

4.4. DETAILED ANALYSIS 23

4.3.2 Candidate sentence retrieval

When searching for similar sentences for a given sentence, a class named MoreLikeThis
from Lucene is used. Queries to MoreLikeThis rank each sentence in the index by the
sum of matching terms, weighted by their TF-IDF values.

Each sentence can potentially be matched with approximately 20 million source
sentences. When retrieving candidate sentences, the n most similar sentences passages
are retrieved for each document. As a result, the detailed analysis needs to analyse
only a small number of (n) sentence pairs per document.

4.4 Detailed analysis

The detailed analysis analyses every candidate sentence passage in detail, and decides
whether or not the passage is plagiarised. The graph edit distance algorithm described
in this section is used as the detailed similarity measure between two graphs, and is the
main focus of this thesis. Figure 4.4 gives an overview of the detailed analysis phase.

Graph Edit Distance

Create cost
matrix

Candidate
sentence
passages

Assignment
problem

Passage Merger Plagiarised
passages

Figure 4.4: Overview of the detailed analysis phase

The output of the detailed analysis is one file for each suspicious document, with
pointers to plagiarism passages. The results are then evaluated using the plagdet scor-
ing script described in Section 2.3.2.

Most of the functionality is inspired by the work of Riesen and Bunke (2009). The
algorithm described in this section is implemented by the author, with the exception
of the assignment problem algorithm used. The implementation will be described with
a concrete example, given by sentence (4) and (5).

After years of searching, the captain found the treasure on the island. (4)

The treasure was found by captain Scott after searching several years. (5)

These sentences are relatively simple, so the details of the algorithm is easier to grasp.
Figure 4.5 represents the dependency graphs for the two sentences.

The output graph edit distance of these two sentences is 4.25 with the normalised
distance 0.327. The distance is normalised with Equation (4.1), where |N | and |M |
refer to the number of words in each sentence. The reason for performing normalisation
is to treat sentences of different sizes equally.

normdist =
dist

|N |+|M |
2

=
4.25
14+12

2

= 0.327 (4.1)

24 CHAPTER 4. IMPLEMENTATION

on

treasure

prep

found

dobj

island

pobj

the

det

.

punct

After

prep

of

years

prep

pobj

,

punct

searching

pcomp

captain

nsubj

the

det

the

det

years

searching

dobj

after

pcomp

found

prep

several

amod

.

punct

The

treasure

det

nsubjpass

was

auxpass

by

prep

Scott

pobj

captain

nn

Figure 4.5: Dependency graph for sentence (4) and (5)

Table 4.2 describes the edit operations required to turn sentence (4) into sentence
(5), with their respective cost. As can be seen in the table, some substitute operations,
such as (year → year), have the same label yet cost more than zero. This can be
explained with the addition of edge difference. Each step of the algorithm will be
described in detail in the following subsections.

Edit operation cost

(year → year) 0.50
(of → by) 0.25
(captain→ captain) 0.50
(the→ ε) 0.25
(treasure→ treasure) 0.50
(on→ several) 0.75
(the→ be) 1.25
(island→ Scott) 0.25

Table 4.2: Edit operations for sentence (4) and (5)

4.4.1 Cost matrix

The graph edit distance algorithm takes three integers S, I and D as input, which
determine the highest possible substitute, insert and delete cost. For the results in
Section 5.3 the following input parameters were used:

• S = 2

• I = 1

• D = 1

As explained in Section 2.4, a substitute operation consists of one delete and one
insert operation, which is the reasoning behind these input parameters. The cost matrix
is constructed as described in Section 2.4.3.

4.4. DETAILED ANALYSIS 25

Table 4.3 lists the substitution costs for the two sentences from Figure 4.5. This
table represents the upper left region of the cost matrix explained in Section 2.4.3.
The other three regions are omitted to save space. The edit path listed previously is
highlighted with blue text.

the treasure be find by captain Scott after search several year .

after 1.38 1.50 1.38 1.50 0.25 1.50 1.50 0.00 1.50 0.75 1.50 1.25

year 1.50 1.50 1.50 2.00 1.50 1.50 1.00 1.50 1.50 1.50 0.50 1.50

of 1.38 1.50 1.38 1.50 0.25 1.50 1.50 0.25 1.50 0.75 1.50 1.25

search 1.50 1.50 0.75 1.25 1.50 1.50 1.50 1.50 0.00 1.50 1.50 1.50

, 1.13 1.50 1.13 1.00 1.25 1.38 1.50 1.25 1.50 1.38 1.50 1.00

the 0.00 1.50 1.25 1.25 1.38 1.50 1.50 1.38 1.50 1.50 1.50 1.13

captain 1.50 0.75 1.50 2.00 1.50 0.50 0.75 1.50 1.50 1.50 1.50 1.50

find 1.25 2.00 0.50 0.00 1.50 1.75 2.00 1.50 1.25 1.75 2.00 1.00

the 0.00 1.50 1.25 1.25 1.38 1.50 1.50 1.38 1.50 1.50 1.50 1.13

treasure 1.50 0.50 1.50 2.00 1.50 0.75 0.75 1.50 1.50 1.50 1.00 1.50

on 1.38 1.50 1.38 1.50 0.25 1.50 1.50 0.25 1.50 0.75 1.50 1.25

the 0.00 1.50 1.25 1.25 1.38 1.50 1.50 1.38 1.50 1.50 1.50 1.13

island 1.50 0.75 1.50 2.00 1.50 0.75 0.25 1.50 1.50 1.50 1.50 1.50

. 1.13 1.50 1.13 1.00 1.25 1.38 1.50 1.25 1.50 1.38 1.50 0.00

Table 4.3: The substitute region of the cost matrix

As can be seen in Table 4.3, each word has been assigned a cost, except for the
word the (the first and second ones), which is deleted. The sentence on the horizontal
has two more words than the vertical sentence, thus there are no available words to
substitute with. A full cost matrix would show that the delete operation is the cheapest
assignment for these nodes.

4.4.2 Substitute costs

The substitute cost function is a combination of node relabel cost and edge difference,
as described with Equation (4.2). SC is the substitute cost between node n and m,
NLD the node label difference, ED the edge difference and S is the highest possible
substitute cost given as input parameter to the algorithm (2 in this case). The sum of
NLDn,m + EDn,m should be a number between 0 and 1.

SCn,m =
NLDn,m + EDn,m

2
× S (4.2)

Node label difference

The node relabel function between two nodes n and m matches the nodes’ lemmata.
If the two nodes have matching lemmata, the node label difference is 0.

26 CHAPTER 4. IMPLEMENTATION

Given unequal lemmata, the node label difference is given by a POS substitute
weight. The POS substitute weight represents the difference between two POS-tags.
For instance, replacing a verb with a verb should be less costly than replacing a verb
with a noun. As a result, relabel operations between words with POS-tag in the same
category receive a POS substitution weight of 0.25. Other relabel operations receive a
weight of 1. The different categories are as follows:

• adjectives

JJ, JJR, JJS,

• adverbs

RB, RBR, RBS

• nouns

NN, NNS, NNP

• verbs

VB, VBD, VBG, VBN, VBP, VBZ

These weights should be considered as heuristics, and leave room for improvement.

Edge difference function

The edge difference between two nodes n and m is calculated by matching edges by
their deprel label. Similarly to the problem of assigning node costs in Section 4.3, the
problem of calculating edge difference can also be reduced to an assignment problem.
An edge cost matrix is constructed, where each cell represents the edit cost between
each edge. This approach is similar to the approach by Riesen and Bunke (2009).

Each edge is either substituted, inserted or deleted. These operations should ideally
be weighted, similarly to node edit operations. Unfortunately, due to time constraints,
only edge insert and delete operations are weighted. Table 4.4 presents the different
edge insert and delete weights, based on their deprel. These weights are, similarly to
the POS substitute weights, considered as simple heuristics.

4.4.3 Node insert and delete costs

The node insert and delete costs is the POS insert and delete weight taken from Table
4.5. Stop-word typically receive a low POS delete and insert weight. Punctuation
and other symbols receive zero weight, and should have any cost. This way, the edit
distance is more robust, and is not as sensitive to noise from stop-words. The weights
are created the same way as in the previous sections, and are far from ideal.

4.4. DETAILED ANALYSIS 27

abbrev 0.25 cop 0.25 nsubjpass 1 purpcl 0.75

acomp 1 csubj 1 num 0.75 quantmod 0.25

advcl 0.75 dep 1 number 0.25 rcmod 0.75

advmod 0.75 det 0.25 parataxis 0.25 ref 0.25

agent 1 dobj 1 partmod 0.75 root 0

amod 0.75 expl 0.1 pcomp 1 tmod 0.75

apos 0.5 infmod 0.75 pobj 1 xcomp 1

attr 0.75 iobj 1 poss 0.25 xsubj 1

aux 0.25 mark 0.75 preconj 1 dep 1

auxpass 0.25 mwe 1 predet 0.25 aux 0.25

cc 0.25 neg 1 prep 0.5 arg 1

ccomp 1 nn 0.75 prepc 0.75 comp 1

complm 1 npadvmod 0.75 prt 0.25 obj 1

conj 0.25 nsubj 1 punct 0 subj 1

mod 0.75

Table 4.4: Deprel insert and delete weights

CC 0.5 CD 0.5 DT 0.25 EX 0.1

FW 1 IN 0.5 JJ 0.75 JJR 0.75

JJS 0.75 LS 0 MD 0.25 NN 1

NNP 1 NNPS 1 NNS 1 PDT 0.25

POS 0.1 PRP 0.25 PRP$ 0.25 RB 0.75

RBR 0.75 RBS 0.75 RP 0.25 SYM 0.5

TO 0.1 UH 0.1 VB 1 VBD 1

VBG 1 VBN 1 VBP 1 VBZ 1

WDT 0.5 WP 0.5 WP$ 0.5 WRB 0.5

, 0 “ 0 ” 0 (0

) 0 – 0 . 0 : 0

$ 0

Table 4.5: POS insert and delete weights

4.4.4 Assignment problem algorithm

The assignment problem algorithm used is an implementation of Munkres algorithm
made available by Nedas (2008). The algorithm takes the cost matrix as input, and
outputs the lowest cost assignment.

28 CHAPTER 4. IMPLEMENTATION

4.4.5 Plagiarism threshold

In order to determine whether or not a given graph edit distance is plagiarism or not, a
threshold has been introduced. If the graph edit distance score is below this threshold,
it is considered plagiarism.

The threshold was tuned by performing plagiarism search on the PAN10 corpus,
which is offered as training corpus on the PAN11 web page. It is important to tune
the threshold on a different corpus than the test corpus, as tuning on the test corpus
would give an unfair advantage.

4.4.6 Passage merging

The system has partitioned the documents into sentences, and the plagiarism detection
is done on sentence level. The output from the detailed analysis is a list of plagiarism
passages for each file. Before writing these passages to file, all adjacent passages are
merged into one passage. The main reason for doing this is to reduce granularity.

In addition to merging sentence passages which are side by side, all sentences within
a reasonable distance are merged. This distance of characters is referred to as mergedist.
By merging all the text between two passages, the intermediate text is also considered
plagiarised. This is arguably a bad approach, but is done due to the high regard of the
granularity measure in the PAN challenge.

4.4.7 Algorithm variations

This section will cover some different edit cost and graph representation variants. These
variants are considered highly experimental.

Undirected graphs

So far the edges in dependency graphs have been defined as directed. By not considering
the edge direction, the representation becomes simpler, and may be more robust to
noise. By comparing directed graphs with undirected graphs, it is possible to identify
the better graph representation.

Unweighted edit operations

The different edit operations weights described in Section 4.4.2 and 4.4.3 are relatively
simple, and are not perfectly tuned. As a result, they might actually have a negative
impact on performance. It is important to compare weighted and unweighted edit
operations to make sure the weights are worthwhile.

Edge dependent matching

The previously described graph edit distance only matches edge labels. One poten-
tial improvement is to add edge dependent matching to the edge difference function
described in Section 4.4.2.

The implemented solution considers edges equal if both deprel and dependent nodes
are equal. This solution might be too specific, and vulnerable to graph noise.

Chapter 5

Results

Experimental runs were made on the PAN10 and PAN11 external detection data sets
described in Section 2.3. The results of the detailed analysis are measured using the
plagdet measure, then compared to the results listed in Section 3.2.1 and Potthast et al.
(2010, 2011).

5.1 Parameter tuning

Before running the system on the PAN11 datasets, some parameters required tuning
on a similar data set. Different mergedist and plagiarism threshold values were given
as input, and multiple runs were made. Table 5.1 lists the different plagdet scores for
different mergedist and threshold values. Ideally more runs should have been made,
but due to time constraints there was no time to perform a thorough analysis.

Mergedist Threshold Plagdet Recall Precision Granularity

1000 0.25 0.110 0.168 0.871 4.873

1000 0.3 0.112 0.175 0.766 4.827

1000 0.325 0.112 0.178 0.683 4.794

1000 0.35 0.110 0.182 0.590 4.772

1000 0.375 0.106 0.185 0.490 4.756

1000 0.4 0.101 0.187 0.401 4.758

1000 0.45 0.089 0.192 0.276 4.803

1500 0.275 0.127 0.183 0.801 4.068

1500 0.3 0.127 0.186 0.737 4.047

1500 0.35 0.122 0.192 0.549 4.001

1500 0.375 0.117 0.195 0.448 4.000

1500 0.4 0.110 0.198 0.361 4.001

1500 0.45 0.094 0.201 0.243 4.069

Table 5.1: PAN10 results for different thresholds

29

30 CHAPTER 5. RESULTS

0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42
Threshold

0.100

0.105

0.110

0.115

0.120

0.125

0.130

Pl
ag

de
t

mergedist(1500)
mergedist(1000)

Figure 5.1: Plagdet values for different input parameters

The results are illustrated in Figure 5.1. Based on these results, the plagiarism
threshold used for the PAN11 data set was set to 0.3. The mergedist value was set to
1500. There is potential for a great performance increase by tuning parameters more
thoroughly.

5.2 Candidate retrieval phase

Getting good results in the candidate retrieval phase is not the goal of this thesis, but
is still a necessity in order to get good results in the detailed analysis phase. The goal
of the candidate retrieval phase is to achieve as high as possible recall, while reducing
the problem space to a manageable size. Table 5.2 and 5.3 list the plagdet results for
the candidate retrieval phase on the PAN10 and PAN11 data sets. The different values
of n refer to the amount of sentence passages retrieved per document.

Plagdet Recall Precision Granularity

n=150 0.05 0.21 0.09 4.63

Table 5.2: PAN10 candidate retrieval results

Unfortunately, the recall is very low compared to the PAN10 results listed in Table
3.1. An improved candidate retrieval phase would definitely increase performance.

The candidate retrieval results for PAN11 are better, when compared to the con-
tributions listed in Table 3.3. The other contributions to the PAN11 challenge achieve
significantly lower recall, compared to the PAN10 results. As a result, a recall of 0.27
is better than 7 of 9 contributions, and can be considered satisfying.

5.3. DETAILED ANALYSIS 31

Plagdet Recall Precision Granularity

n=50 0.09 0.21 0.20 3.88

n=150 0.06 0.27 0.13 5.64

Table 5.3: PAN11 candidate retrieval results

Due to time constraints, no other values of n were tested on the PAN10 corpus, so
n = 150 was used for getting the detailed analysis scores.

5.3 Detailed analysis

Table 5.4 presents the results from the detailed analysis for PAN11. Two different
mergedist values are listed, to demonstrate the difference of using the passage merging
functionality described in Section 4.4.6.

mergedist Threshold Plagdet Recall Precision Granularity

1500 0.3 0.224 0.223 0.479 1.56

0 0.3 0.146 0.204 0.646 3.38

Table 5.4: PAN11 detailed analysis results

As a summary, the plagdet score of 0.224 could have been better, but would have
been enough to achieve 5th out of 101 contestants in the PAN11 challenge. Compared
to the candidate retrieval results in Table 5.3, the recall was reduced by 0.033 and
precision increased by 0.349. The Granularity was increased by 4.08. The total
plagdet score improvement from the candidate retrieval phase was 0.164.

5.4 Different graph representations and edit cost

functions

In order to determine the best graph representation and edit cost variants, the different
variants from Section 4.4.7 were tried out on the PAN11 data set.

Ideally this experimentation should have been done on the PAN10 training set,
but due to some technical issues and time constraints, the only available comparison
was made on the PAN11 data set. As a result, the different comparisons cannot be
compared directly against the other contestants of the PAN11 challenge. However, the
comparison is just as good to compare the different implementation variations against
each other. The following variants were tried out:

1PAN11 had 9 contestants, plus one if this contribution had been made

32 CHAPTER 5. RESULTS

1. Directed edges, deprel matching and weighted edit operations

2. Undirected edges, deprel matching and weighted edit operations

3. Directed edges, deprel matching, weighted edit operations and edge dependent
matching

4. Directed edges, deprel matching and unweighted edit operations

5. Undirected edges, deprel matching and unweighted edit operations

6. Directed edges, deprel matching, unweighted edit operations and edge dependent
matching

7. Undirected edges, deprel matching, unweighted edit operations and edge depen-
dent matching

Variant Plagdet Precision Recall Granularity

1 0.224 0.479 0.223 1.56

2 0.221 0.462 0.223 1.57

3 0.184 0.59 0.140 1.34

4 0.189 0.71 0.133 1.28

5 0.181 0.703 0.126 1.26

6 0.105 0.690 0.067 1.24

7 0.101 0.681 0.065 1.24

Table 5.5: PAN11 detailed analysis with different implementation details

Variant 1 was the original version, and is the one used for the results in the Sec-
tion 5.3. The input parameters are probably slightly biased in favour of variant 1, since
the parameters from Section 5.1 were retrieved using this variant. Variant 4-7 with
unweighted edit operations achieve a significantly higher precision, but much lower
recall. The original variant with directed edges, only deprel edge matching matching
and edit cost weights received the best plagdet score.

5.5 Execution speed

Figure 5.2 illustrates a comparison between the Munkres implementation described in
Section 4.4.4, and a Java implementation of the VolgenantJonker assignment problem

5.5. EXECUTION SPEED 33

algorithm.2

0 50 100 150 200 250
Nodecount

0

5

10

15

20

25
Ru

nt
im

e(
m

s)
Munkres
VolgenantJonker

Figure 5.2: Runtime comparison of graph edit distance computations, using both
Munkres and VolgenantJonker assignment algorithms, for graphs of size 1 to 250 nodes

The Y-axis describes the runtime in milliseconds it takes to calculate3 the graph edit
distance of two graphs with n nodes, where n refers to the node count in the X-axis.
The speed (Y-axis) for each node count value (X-axis) is the median of 1000 runs. This
way the comparison is less affected by outside factors, such as other processes using
system resources.

Figure 5.3 represents the runtime of the two assignment problem algorithms only.
The assignment problem calculations are expected to have the most impact on the
graph edit distance runtime. The reason for spiky graphs is due to the low run times.
Arguably graphs of larger sizes should be compared, but considering very few sentences
are above 100 words, a 1 to 250 size scope should be representative of actual running
times.

The speed results are somewhat surprising, as Fankhauser et al. (2011) claims
that the VolgenantJonker algorithm is the fastest of the two alternatives. The results
in Figure 5.2 represent a specific implementation of the algorithm, and may not be
optimal. It is natural to question the specific VolgenantJonker implementation used,
and as a result, the Munkres implementation is used to generate the results for this
thesis.

2http://code.google.com/p/java-k-best/
3The benchmark was done on a laptop with a Intel Core i7-3517U Processor.

34 CHAPTER 5. RESULTS

0 50 100 150 200 250
Nodecount

0

2

4

6

8

10

12

14

16

18

Ru
nt

im
e(

m
s)

Munkres
VolgenantJonker

Figure 5.3: Runtime comparison of the Munkres and VolgenantJonker assignment
algorithms, for graphs of size 1 to 250 nodes

Chapter 6

Discussion

6.1 PAN evaluation

As described in Section 2.3.2, the PAN results are ranked by the plagdet measure,
which is a combination of precision, recall and granularity. Suchomel et al. (2012)
identified a problem with the granularity measure, illustrated by two methods:

1. 100% recall, 100% precision, granularity 3

2. 33.33% recall, 33.33% precision, granularity 1

Method 1 correctly detects all cases of plagiarism, with no false positives. Unfor-
tunately, method 1 has not implemented a proper adjacent passages merging function,
and receive a bad granularity score. Method 2 only detects one third of the plagiarism
cases, and only one third of the detections were correct. Based on the above examples,
it is reasonable to claim that method 1 is preferred.

Potthast et al. (2012) stresses the fact that not only the plagdet score should be
considered, and rankings based on the F1 harmonic mean of precision and recall. Table
6.1 lists the PAN11 contributions ranked by harmonic mean. The two runs named
Røkenes are the two runs from Section 5.3, with mergedist 0 and 1500, placing fourth
when only recall and precision are considered.

Team F1 precision recall granularity

Grman and Ravas (2011) 0.561 0.94 0.40 1.00
Grozea and Popescu (2011) 0.479 0.81 0.34 1.22
Oberreuter et al. (2011) 0.367 0.91 0.23 1.06
Røkenes (mergedist 0) 0.310 0.646 0.204 3.38
Røkenes (mergedist 1500) 0.304 0.479 0.223 1.56
Torrejón and Ramos (2011) 0.268 0.85 0.16 1.23
Cooke et al. (2011) 0.248 0.71 0.15 1.01
Rao et al. (2011) 0.236 0.45 0.16 1.29
Palkovskii et al. (2011) 0.212 0.44 0.14 1.17
Nawab et al. (2011) 0.136 0.28 0.09 2.18
Ghosh et al. (2011) 0.02 0.01 0.00 2.00

Table 6.1: PAN11 results ranked by precision and recall

35

36 CHAPTER 6. DISCUSSION

6.2 Standalone detailed analysis evaluation

The system described in this thesis is a full-fledged plagiarism detection system. There
are many factors beyond the detailed analysis which may have affected the overall
result in a negative or positive way.

For starters, the sentence partitioning may falsely partition sentences, which leads
to errors in the later stages of the system. The median character length of the PAN10
and PAN11 plagiarised passages are 3672 and 2688 respectively. One could also argue
that plagiarism usually is done on larger sequences of text than sentences, which is an
argument for partitioning text into larger pieces than sentences.

The candidate retrieval phase excludes many potential plagiarism passages, and is
probably the phase with the most negative impact on the total score. The recall from
the candidate retrieval phase is lower than many state-of-the-art systems, which means
that the detailed analysis phase never will be able to achieve the same recall as the top
contestants in the PAN challenge.

In order to fully evaluate the graph edit distance algorithm with unbiased results,
it should be applied to a problem of detecting similarity between sentences pairs.

6.3 Edge difference

The edge difference function described in Section 4.4.2 is based on the edge labels only.
The dependent of the edge is not considered at all, and the question is whether the
edge dependent should be added to the equation. Consider the sentences in Figure 6.1.

Bob

kissed

nsubj

Mary

dobj

1) Bob kissed Mary

Mary

kissed

nsubjpass

was

auxpass

Bob

by

pobj

prep

2) Mary was kissed by Bob

Mary

killed

nsubjpass

was

auxpass

Bob

by

pobj

prep

3) Mary was killed by Bob

Figure 6.1: Example of sentences with similar structure, but different meaning

Needless to say, sentence 1 and 2 have the same meaning, while sentence 3 is very
different. Table 6.2 shows the edit distances between the three sentences.

The edit distance between sentence 2 and 3 is the lowest. This might indicate
that the algorithm favours structural similarity over semantic content, which can be
considered a weakness.

6.4. PREPROCESSING OUTPUT SIZE 37

Sentence pair Edit distance Normalised edit distance
1 & 2 2.5 0.625
1 & 3 2.75 0.687
2 & 3 0.25 0.05

Table 6.2: Edit distances where structural similarity is favoured over semantic similarity

6.4 Preprocessing output size

When searching for plagiarism, the source documents will typically be analysed multiple
times. To avoid dependency parsing multiple times, the dependency graphs are saved
to disk. The dependency graphs contain more information for each words, which leads
to larger file sizes. As explained in Table 4.1, each token has an id, word, lemma,
POS-tag, relation and a deprel tag. In addition, each sentence has information about
sentence number, offset and length.

Needless to say, the file sizes increase with a minimum of 6 times the original file
size, and a lot more in practice. This can cause problems for large text corpora. Since
the candidate retrieval phase reduces the number of sentences, dependency parsing on
the fly might be a good idea.

The system implemented performed the dependency parsing first, and saved the
output to a database. This way the latter stages of the system ran faster, which was
useful during development. For a production system, this should not be a motivation,
so parsing on the fly is the recommended solution.

38 CHAPTER 6. DISCUSSION

Chapter 7

Conclusion & Future Work

The main focus of this thesis was to explore the usage of graph-based representations
of text. A graph edit distance algorithm was implemented and applied to the problem
of detecting plagiarism in text.

A full-fledged plagiarism detection system was built, based on comparing sentences
represented as graphs. The system included a pre-processing, candidate retrieval and
detailed analysis phase, which applied the graph edit distance algorithm. By comparing
the system against state-of-the-art systems, an empirical evaluation was made.

The algorithm achieved the highest scores with weighted edit costs. The edge cost
function was best calculated based on deprel similarity. Dependency graphs were best
represented by directed edges.

The approach would have scored 5th out of ten contestants in the PAN11 challenge,
or 4th by only considering precision and recall. The algorithm has many areas of
improvement, especially when it comes to parameter tuning. As a conclusion, it is
reasonable to claim that the graph-based approach is competitive with state-of-the-art
systems, but require some fine tuning. Especially the candidate retrieval and passage
merging phase have potential for improvement.

7.1 Future Work

The following sections describe improvements to the system which were not imple-
mented due to time constraints, and are likely to improve the plagiarism detection
performance.

7.1.1 Synonym node matching

A common way to plagiarise text is to replace words with synonyms (Stamatatos, 2011).
A plagiarism detection system should be able to determine the similarity between two
words, or at least detect closely related synonyms. Gustafson et al. (2008) use a word-
correlation factor, which determine how often two words correlate, based on 880,000
Wikipedia documents. By using a measure like word-correlation factor, each word the
algorithm would be able to determine the relative similarity between two words. As a
result, the algorithm would be better equipped to deal with cases where a plagiariser
has replaced words in a sentence.

39

40 CHAPTER 7. CONCLUSION & FUTURE WORK

7.1.2 Edit cost weight tuning

The weights used for POS and edge label edit costs described in Section 4.4 were very
simple. In order to achieve better edit cost, the weights can be tuned on a training
corpus, such as PAN10.

By inserting random values for each weight, and comparing results, the weights can
be tuned. Due to the size of the corpus, it is probably best to work with a subset of
the data set.

7.1.3 Cross-lingual detection

Currently, the system only supports English, but this is mostly due to the models
used for dependency parsing and POS-tagging. In order to apply the system to other
languages, one simply has to replace the English models, with models for the given
language.

As described in Section 2.3.1, the PAN11 corpus consists of English, German and
Spanish documents. By performing automatic translation, the documents can be com-
pared. Needless to say, this is a hard task, and outside the scope of this thesis. Due to
the added complexity by automatic translation, the task of detecting similarity cross
languages becomes difficult.

Another solution is to simply match POS-tags in the Graph Edit Distance algo-
rithm, but given different syntactic structures in different languages, this is most likely
an inaccurate solution as well.

7.1.4 Adjacent passage detection

Very few plagiarised passages in the PAN11 corpus consist of a single sentence. Most
plagiarised passages are on paragraph level. Due to this, adjacent passages to a pla-
giarised passage should also be analysed, in case they were excluded in the candidate
retrieval phase.

After detecting a plagiarised passage, the adjacent sentences can be analysed for
plagiarism. Since plagiarism usually is done on paragraph level, it increases the like-
lihood that a sentence is plagiarised if it is adjacent to a plagiarised sentence. Due to
this, the plagiarism threshold should be slightly higher for these adjacent sentences.

Passage N Passage n+1

GED<threshold

Passage n-1 Passage n+2

GED>threshold GED>threshold

Figure 7.1: Adjacent passages analysis

Figure 7.1 illustrates how the expanding process can be done. Blue passages are
added to the passage, grey passages are discarded. The search for adjacent sentences
continues until a passage with too high graph edit distance is encountered, or the
last/first sentence is reached.

Appendix A

A.1 List of Part-of-speech tags

The following is a list of part-of-speech tags from the Penn Treebank project.

CC Coordinating conjunction RB Adverb
CD Cardinal number RBR Adverb, comparative
DT Determiner RBS Adverb, superlative
EX Existential there RP Particle
FW Foreign word SYM Symbol
IN Preposition or subordinating conjunction TO to
JJ Adjective UH Interjection
JJR Adjective, comparative VB Verb, base form
JJS Adjective, superlative VBD Verb, past tense
LS List item marker VBG Verb, gerund or present participle
MD Modal VBN Verb, past participle
NN Noun, singular or mass VBP Verb, non-3rd person singular present
NNS Noun, plural VBZ Verb, 3rd person singular present
NNP Proper noun, singular WDT Wh-determiner
NNP Proper noun, plural WP Wh-pronoun
PDT Predeterminer WP$ Possessive wh-pronoun
POS Possessive ending WRB Wh-adverb
PRP Personal pronoun PRP$ Possessive pronoun

Table A.1: List of POS-tags

41

42 APPENDIX A.

Bibliography

Alzahrani, S. and N. Salim (2010). Fuzzy semantic-based string similarity for extrinsic
plagiarism detection - lab report for PAN at clef 2010. See Braschler et al. (2010).

Braschler, M., D. Harman, and E. Pianta (Eds.) (2010). CLEF 2010 LABs and Work-
shops, Notebook Papers, 22-23 September 2010, Padua, Italy.

Cooke, N., L. Gillam, P. Wrobel, H. Cooke, and F. Al-Obaidli (2011). A high-
performance plagiarism detection system - notebook for PAN at clef 2011. See
Petras et al. (2011).

Costa-Jussà, M. R., R. E. Banchs, J. Grivolla, and J. Codina (2010). Plagiarism detec-
tion using information retrieval and similarity measures based on image processing
techniques - lab report for PAN at clef 2010. See Braschler et al. (2010).

De Marneffe, M. and C. Manning (2008). Stanford typed dependencies manual. URL
http://nlp. stanford. edu/software/dependencies manual. pdf .

Devi, S. L., P. R. K. Rao, R. V. S. Ram, and A. Akilandeswari (2010). External
plagiarism detection - lab report for PAN at clef 2010. See Braschler et al. (2010).

Fankhauser, S., K. Riesen, and H. Bunke (2011). Speeding up graph edit distance com-
putation through fast bipartite matching. Graph-Based Representations in Pattern
Recognition, 102–111.

Forner, P., J. Karlgren, and C. Womser-Hacker (Eds.) (2012). CLEF 2012 Evaluation
Labs and Workshop, Online Working Notes, Rome, Italy, September 17-20, 2012.

Gao, X., B. Xiao, D. Tao, and X. Li (2010). A survey of graph edit distance. Pattern
Analysis & Applications 13 (1), 113–129.

Ghosh, A., P. Bhaskar, S. Pal, and S. Bandyopadhyay (2011). Rule based plagiarism
detection using information retrieval - notebook for PAN at clef 2011. See Petras
et al. (2011).

Gillam, L., N. Newbold, and N. Cooke (2012). Educated guesses and equality judg-
ments: Using search engines and pairwise match for external plagiarism detection.
See Forner et al. (2012).

Gottron, T. (2010). External plagiarism detection based on standard ir technology
and fast recognition of common subsequences - lab report for PAN at clef 2010. See
Braschler et al. (2010).

43

44 BIBLIOGRAPHY

Grman, J. and R. Ravas (2011). Improved implementation for finding text similarities
in large sets of data - notebook for PAN at clef 2011. See Petras et al. (2011).

Grozea, C. (2012). Brainsignals submission to plant identification task at imageclef
2012. See Forner et al. (2012).

Grozea, C. and M. Popescu (2010). Encoplot - performance in the second international
plagiarism detection challenge - lab report for PAN at clef 2010. See Braschler et al.
(2010).

Grozea, C. and M. Popescu (2011). The encoplot similarity measure for automatic
detection of plagiarism - notebook for PAN at clef 2011. See Petras et al. (2011).

Gupta, P., S. Rao, and P. Majumder (2010). External plagiarism detection: N-gram
approach using named entity recognizer - lab report for PAN at clef 2010. See
Braschler et al. (2010).

Gustafson, N., M. Pera, and Y. Ng (2008). Nowhere to hide: Finding plagiarized
documents based on sentence similarity. In Web Intelligence and Intelligent Agent
Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, Vol-
ume 1, pp. 690–696. IEEE.

Hu, X., T. Chiueh, and K. Shin (2009). Large-scale malware indexing using function-
call graphs. In Proceedings of the 16th ACM conference on Computer and commu-
nications security, pp. 611–620. ACM.

Jayapal, A. (2012). Similarity overlap metric and greedy string tiling for plagiarism
detection at pan 2012. See Forner et al. (2012).

Jones, K. (1972). A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation 28 (1), 11–21.

Kasprzak, J. and M. Brandejs (2010). Improving the reliability of the plagiarism
detection system - lab report for PAN at clef 2010. See Braschler et al. (2010).

Kennedy, M. (2010, April). Mongodb vs. sql server 2008 perfor-
mance showdown. http://blog.michaelckennedy.net/2010/04/29/

mongodb-vs-sql-server-2008-performance-showdown/. Last visited: 27th
November 2012.

Kong, L., H. Qi, S. Wang, C. Du, S. Wang, and Y. Han (2012). Approaches for
candidate document retrieval and detailed comparison of plagiarism detection. See
Forner et al. (2012).

Koppel, M., N. Akiva, and I. Dagan (2006). Feature instability as a criterion for
selecting potential style markers. Journal of the American Society for Information
Science and Technology 57 (11), 1519–1525.

Küppers, R. and S. Conrad (2012). A set-based approach to plagiarism detection. See
Forner et al. (2012).

BIBLIOGRAPHY 45

Marcus, M., M. Marcinkiewicz, and B. Santorini (1993). Building a large annotated
corpus of english: The penn treebank. Computational linguistics 19 (2), 313–330.

Micol, D., Ó. Ferrández, F. Llopis, and R. Muñoz (2010). A textual-based similarity
approach for efficient and scalable external plagiarism analysis - lab report for PAN
at clef 2010. See Braschler et al. (2010).

Muhr, M., R. Kern, M. Zechner, and M. Granitzer (2010). External and intrinsic
plagiarism detection using a cross-lingual retrieval and segmentation system - lab
report for PAN at clef 2010. See Braschler et al. (2010).

Nawab, R. M. A., M. Stevenson, and P. Clough (2010). University of sheffield - lab
report for PAN at clef 2010. See Braschler et al. (2010).

Nawab, R. M. A., M. Stevenson, and P. D. Clough (2011). External plagiarism detection
using information retrieval and sequence alignment - notebook for PAN at clef 2011.
See Petras et al. (2011).

Nedas, K. A. (2008, May). Munkres java implementation. http://

konstantinosnedas.com/dev/soft/munkres.htm. Last visited: 8th December
2012.

Nivre, J. (2005). Dependency grammar and dependency parsing. Technical report,
Technical Report MSI report 05133, Växjö University: School of Mathematics and
Systems Engineering.

Nivre, J. and J. Hall (2010). A quick guide to maltparser optimization. Technical
report, Citeseer.

Oberreuter, G., G. L’Huillier, S. A. Ŕıos, and J. D. Velásquez (2010). Fastdocode:
Finding approximated segments of n-grams for document copy detection - lab report
for PAN at clef 2010. See Braschler et al. (2010).

Oberreuter, G., G. L’Huillier, S. A. Ŕıos, and J. D. Velásquez (2011). Approaches for
intrinsic and external plagiarism detection - notebook for PAN at clef 2011. See
Petras et al. (2011).

Palkovskii, Y. and A. Belov (2012). Applying specific clusterization and fingerprint
density distribution with genetic algorithm overall tuning in external plagiarism de-
tection. See Forner et al. (2012).

Palkovskii, Y., A. Belov, and I. Muzika (2010). Exploring fingerprinting as external
plagiarism detection method - lab report for PAN at clef 2010. See Braschler et al.
(2010).

Palkovskii, Y., A. Belov, and I. Muzyka (2011). Using wordnet-based semantic similar-
ity measurement in external plagiarism detection - notebook for PAN at clef 2011.
See Petras et al. (2011).

46 BIBLIOGRAPHY

Papineni, K., S. Roukos, T. Ward, and W. Zhu (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on as-
sociation for computational linguistics, pp. 311–318. Association for Computational
Linguistics.

Pereira, R. C., V. P. Moreira, and R. Galante (2010). Ufrgs@pan2010: Detecting
external plagiarism - lab report for PAN at clef 2010. See Braschler et al. (2010).

Petras, V., P. Forner, and P. D. Clough (Eds.) (2011). CLEF 2011 Labs and Workshop,
Notebook Papers, 19-22 September 2011, Amsterdam, The Netherlands.

Potthast, M., A. Barrón-Cedeño, A. Eiselt, B. Stein, and P. Rosso (2010). Overview
of the 2nd international competition on plagiarism detection. Notebook Papers of
CLEF 10.

Potthast, M., A. Eiselt, A. Barrón-Cedeno, B. Stein, and P. Rosso (2011). Overview
of the 3rd international competition on plagiarism detection. In Notebook Papers of
CLEF 2011 LABs and Workshops.

Potthast, M., T. Gollub, M. Hagen, J. Kiesel, M. Michel, A. Oberländer, M. Tippmann,
A. Barrón-Cedeño, P. Gupta, P. Rosso, and B. Stein (2012). Overview of the 4th
international competition on plagiarism detection. See Forner et al. (2012).

Potthast, M., B. Stein, A. Barrón-Cedeño, and P. Rosso (2010). An evaluation frame-
work for plagiarism detection. In Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, pp. 997–1005. Association for Computational
Linguistics.

Rao, S., P. Gupta, K. Singhal, and P. Majumder (2011). External & intrinsic plagiarism
detection: Vsm & discourse markers based approach - notebook for PAN at clef 2011.
See Petras et al. (2011).

Riesen, K. and H. Bunke (2009). Approximate graph edit distance computation by
means of bipartite graph matching. Image and Vision Computing 27 (7), 950–959.

Sánchez-Vega, F., M. M. y Gómez, and L. V. Pineda (2012). Optimized fuzzy text
alignment for plagiarism detection. See Forner et al. (2012).

Stamatatos, E. (2011). Plagiarism detection using stopword n-grams. Journal of the
American Society for Information Science and Technology 62 (12), 2512–2527.

Suárez, P., J. C. G. Cristóbal, and J. Villena-Román (2010). A plagiarism detector for
intrinsic plagiarism - lab report for PAN at clef 2010. See Braschler et al. (2010).

Suchomel, S., J. Kasprzak, and M. Brandejs (2012). Three way search engine queries
with multi-feature document comparison for plagiarism detection. See Forner et al.
(2012).

Torrejón, D. A. R. and J. M. M. Ramos (2010). Coremo system (contextual reference
monotony) - lab report for PAN at clef 2010. See Braschler et al. (2010).

BIBLIOGRAPHY 47

Torrejón, D. A. R. and J. M. M. Ramos (2011). Crosslingual coremo system (contextual
reference monotony) - notebook for PAN at clef 2011. See Petras et al. (2011).

Torrejón, D. A. R. and J. M. M. Ramos (2012). Detailed comparison module in coremo
1.9 plagiarism detector. See Forner et al. (2012).

Toutanova, K., D. Klein, C. Manning, and Y. Singer (2003). Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1, pp. 173–180. Association for Computational
Linguistics.

Vania, C. and M. Adriani (2010). Automatic external plagiarism detection using pas-
sage similarities - lab report for PAN at clef 2010. See Braschler et al. (2010).

Zeng, Z., A. Tung, J. Wang, J. Feng, and L. Zhou (2009). Comparing stars: On
approximating graph edit distance. Proceedings of the VLDB Endowment 2 (1), 25–
36.

Zou, D., W. jiang Long, and Z. Ling (2010). A cluster-based plagiarism detection
method - lab report for PAN at clef 2010. See Braschler et al. (2010).

	Title Page
	masteroppgave.pdf

