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Abstract

Both the growth and ubiquitious character of the Internet have had a profound
effect on how we access and consume ata and information. More recently, the
Semantic Web, an extension of the current Web has come increasingly relevant due
to its widespread adoption.

The Web of Data (WoD) is an extension of the current web, where not only docu-
ments are interlinked by means of hyperlinks but also data in terms of predicates.
Specifically, it describes objects, entities or “things” in terms of their attributes
and their relationships, using RDF data (and often is used equivalently to Linked
Data). Given its growth, there is a strong need for making this wealth of knowl-
edge accessible by keyword search (the de-facto standard paradigm for accessing
information online).

The overall goal of this thesis is to provide new techniques for accessing this data,
i.e., to leverage its full potential to end users. We therefore address the following
four main issues: a) how can the Web of Data be searched by means of keyword
search?, b) what sets apart search in the WoD from traditional web search?, c) how
can these elements be used in a theoretically sound and effective way?, and d) How
can the techniques be adapted to a distributed environment?

To this end, we develop techniques for effectively searching WoD sources. We
build upon and formalise existing entity modelling approaches within a generative
language modelling framework, and compare them experimentally using standard
test collections. We show that these models outperform the current state-of-the-art
in terms of retrieval effectiveness, however, this is done at the cost of abandoning
a large part of the semantics behind the data. We propose a novel entity model
capable of preserving the semantics associated with entities, without sacrificing
retrieval effectiveness. We further show how these approaches can be applied in
the distributed context, both with low (federated search) and high numbers (Peer-
to-peer or P2P) of independent repositories, collections, or nodes.

The main contributions are as follows:

• We develop a hybrid approach to search in the Web of Data, using elements
from traditional information retrieval and structured retrieval alike.

• We formalise our approaches in a language model setting.

• Our extensions are successfully evaluated with respect to their applicability
in different distributed environments such as federated search and P2P.

• We discuss and analyse based on our empirical evaluation and provide insights
into the entity search problem.
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Part I

Introduction and
Background

In the beginning of this thesis, we outline the motivation and introduce the main
scenario for our work in Chapter 1. Here we also state our research questions and
provide an overview of the remainder of the thesis. Chapter 2 summarises the most
relevant related work and provides the foundation for the remaining parts.
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Chapter 1

Introduction

This chapter gives a motivation and introduction to the main topic of the thesis. We
give introductory examples pointing out some important limitations of the current
state of the art. Further, we outline the relevant research areas and present current
challenges therein. We continue with formulating research questions and put the
main findings of the thesis in context. Finally we list the contributions in terms of
publications and give an overview of the organisation of the rest of the thesis.

1.1 Motivation

Web search has become one of the main methods people use to find information.
In short, web search describes the search process of a user issuing a query to
satisfy her or his information need. Keyword queries transmitted via a single search
box have become the de-facto standard in this context, simply because Web users
have become used to this kind of query and are not familiar with more complex,
structured query languages. The average length of web queries has shown to be
between two and three words [108].

The multitude of possible information needs range from finding general facts about
a certain topic to requesting very specific pieces of information. Information needs
and their satisfaction strongly depend on the user, i.e., what one user finds relevant
for a given query might differ from another one, based on their actual information
need even though they might issue identical queries.

In general, web queries can be classified into the following three categories [63]:

• Informational queries describe broad topics for which there are many pages.
Usually there is no single web page which provides all the information the
user is looking for. The user expects a list of several relevant pages.
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Figure 1.1: Overview of the data sets included in the Linked Open Data project
(http://linkeddata.org/).

• Navigational queries denote searches for specific web pages or objects. The
user expects the web page of the entity of interest to be the first result he is
presented with (in fact, this is the only result she or he is interested in).

• Transactional queries are targeted at specific actions like purchasing a prod-
uct or downloading a file. The search engine should list services providing
interfaces for this action.

In this thesis our main focus—according to these definitions—lies on a subset of
navigational and informational queries. More specifically we focus on the search
for specific things or objects of interest users might search for.

In our context, such objects or things are called entities. An entity can, amongst
others, be a person, a location, a service, or a product as opposed to other sources
of information such as newspaper articles or other documents covering multiple
topics or describing multiple objects. According to recent research, a considerable
amount of all web search queries target such entities [92].

1.1.1 Entity Search in the Web of Data

The increasing interest in entity-related search coincides with the fact that there is
an increasing amount of information published as Linked Data, the foundation of
the Web of Data.

The past three years in particular have seen a significant increase in the number of
knowledge bases published as Linked Data (such as DBpedia, Freebase,1 and oth-
ers). At the same time, we observe an increase and in the availability of metadata

1http://www.freebase.com
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Figure 1.2: Example of a Wikipedia of an entity.

embedded inside web pages (RDF, RDFa, Microformats, and others) [92]. The
combination of these two facts further drives research interest in the direction of
entity search.

The Linking Open Data (LOD) initiative2 provides a platform for publishing and
linking open data sets. Currently their registry contains 326 open data sets.3

This number went up from 12 data sets in 2007,4 showing a strong increase in
availability and popularity of Linked Data. A part of the LOD diagram is shown
in Figure 1.1, including prominent WoD data sets such as DBpedia, Geonames,
DBLP, or Freebase. From the figure it also becomes apparent that some data sets
are more prominent than others, e.g., DBpedia, as it has a very high number of both
incoming and outgoing links as shown by the strength of the arrows connecting it
to others.

The growing amount of embedded semantic data such as RDFa and microdata is
documented in the Web Data Commons project. Such embedded data is all the
more important since it provides a good opportunity for user generated content to
be a part of the WoD. The goal of the project is to provide aggregated data based
on microdata embedded in a common web crawl.5 Amongst others, the authors

2http://linkeddata.org/
3http://thedatahub.org/group/lodcloud
4http://richard.cyganiak.de/2007/10/lod
5http://webdatacommons.org/
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dbpedia:Audi_A4
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parentCompany

1996 2002 2005 2007

modelYears

abstract

dbpedia:Category:Compact_executive_cars

dbpedia:Category:All_wheel_drive_vehicles

dbpedia:Category:Front_wheel_drive_vehicles
subject

http://schema.org/Product

type

dbpedia:Audi_80

dbpedia:Audi_A5

successor

predecessor

The Audi A4 is a compact executive 
car produced since late 1994 by the 

German car manufacturer Audi...

http://rdf.freebase.com/ns/m/030qmx

http://www4.wiwiss.fu-berlin.de/.../Audi_A4

sameAs

Figure 1.3: Linked Data representation of an entity.

documented a 23 percent rise in the amount of embedded RDFa data from 2010 to
2012.

In this thesis we assume an entity to be an element of the Web of Data (WoD).
6 The WoD is inherently organised around entities; each entity is identified by a
unique URI and is described using a set of subject-predicate-object RDF triples
(from which an adequate entity representation has to be created).

A prominent source of partly structured data is Wikipedia7 or its machine-readable
version DBpedia.8 Figure 1.2 shows the wikipedia page of one entity, the Audi A4
car. Wikipedia offers structured information to some extent, as can be seen in
the fact box on the right hand side of the figure. However, the most part of the
information provided is free text and the relative amount of free text and structured
info varies greatly (i.e., some pages contain lots of free text with little fact box info or
the other way around). Machine-readability is one of the main features of semantic
technologies, strongly contributing to its interestingness as a research topic: the
automatic analysis of Linked Data is highly desirable due to its size. All data is
organised by means of their URI and links in between entities. DBpedia offers all
its data in the machine-readable RDF (resource description framework) format.9

This format is a simple way of making information about resources available online.
The basic idea is that every fact can be expressed as a triple:

(subject, predicate, object)

and all three elements are URIs or literals. For example, the triple:10

(dbpedia.org/Audi_A4, dbpedia.org/ModelYears, ‘‘2006’’)

denotes that the Audi A4 was manufactured in the year 2006. Figure 1.3 shows
more elements of the DBpedia representation of the Wikipedia page shown be-

6This type of data is also referred to as Linked Data. In fact Linked Data is a publishing
mechanism and one component of realising the Web of Data. In this thesis, even though we are
aware of the slight semantic differences, we primarily use the term WoD, but in this thesis both
terms can be treated as synonyms.

7http://www.wikipedia.org
8http://dbpedia.org
9http://www.w3.org/RDF

10For reasons of easier readability we omit the “http” prefixes.
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Figure 1.4: Google search for the “Audi A4” entity.

fore. The aforementioned “modelYears” relation is a literal predicate since it as-
signs string values to the entity. The “sameAs” predicates denote identity relations
between different entities, each identified by an URI. Note that relation type pred-
icates can be both in- and outgoing.

This figure shows in particular the importance of individual predicates. The “mod-
elYears” predicate, for example, will be a good predicate to search in when looking
for dates. However, ad-hoc search on the model year will not yield any results
because it only contains dates. For this reason we stress the need for analysing
which query terms are best matched against which predicates. Another benefit
from following such a paradigm is that evolving data can be handled easier (e.g.,
when predicate names change or new predicates are added to an existing entity).
As such, it is desirable to model individual predicates, i.e., keep the structure of
the entity rather than only searching in its textual predicates.

1.1.2 Limitations of Current Web Search Engines

We show a screenshot from a traditional search engine for the “Audi A4” query in
Figure 1.4. The search engine shows the correct result with respect to Wikipedia at
rank one (the first result returned) and it shows a summary of the different models
under the representative snippets, but fails to cover the structure of the Web of
Data and does not highlight the most important predicates. Users might be most
interested in the price of the car, or a particular model might be more popular
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Figure 1.5: Google search for the “Arab states of the Persian gulf” list search query.

than others—this type of information could be covered by exploiting the entity’s
predicate structure.

Whereas this is most likely not a real problem in terms of finding what a user is
looking for (in this case maybe prices or reviews of the Audi A4 since its entity
type is “car”), it clearly shows the limitations in terms of relations between entities
which are neither displayed nor exploited. Furthermore, the “Audi A4” targets one
specific entity. However, more complex queries make the limitations of web search
engines even more evident as shown in the following.

List search denotes the task of searching for a list of entities specified by a query.
One example is the query “Arab states of the Persian gulf”. The correct result
would encompass all of the six Arab states located at the Persian gulf (that is,
Saudi Arabia, United Arab Emirates, Qatar, Kuwait, Bahrain and Oman) and
their respective URIs. However, as shown in Figure 1.5, web search engines fail
completely at this task. The result comprises good hits for pages containing the
correct answers, but fails to list the individual states.

These shortcomings in combination with the increasing availability of knowledge
bases has made search in the Web of Data an active research area, especially pro-
pelled by recent benchmarking initiatives, such as the introduction of the Semantic
Search evaluation series [20, 46], or related INEX tasks [32, 50]. Benchmarking
initiatives have further advanced research in this direction, by providing a common
evaluation platform to empirically assess methods and algorithms devised for the
task that has been termed ad-hoc entity retrieval : “answering arbitrary information
needs related to particular aspects of objects [entities], expressed in unconstrained
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natural language and resolved using a collection of structured data” [92]. Since the
WoD is inherently organised around objects or entities, having entities as the unit
of retrieval follows naturally.

1.2 Scope of the Thesis

In the following we will point out some of the problems occurring in entity search,
particularly focusing on the differences to traditional web search. We show some
of the main shortcomings of web search with respect to linked data. The Web of
Data itself has unique properties, by which it can be distinguished from traditional
search in the Web of Documents:

• Entities are described in a semi-structured way instead of the dominant full
text representation of the Web (with the exception of basic semi-structured
information in terms of HTML).

• Relations between entities have types as opposed to the limitation to hy-
perlinks in the case of the WWW (i.e., the fact that only one type of link
exists).

• The Web of Data consists of multiple collections (or sources) such as DBpedia
or geonames.11 Similarly the Web itself consists of many domains, the degree
of linkage in the Web of Data, however, makes it particularly interesting to
combine its sources.

These properties also constitute what we mean by “semantic” in the course of this
thesis, namely considering the meaningful structures that exist within the data.
These structures are the main difference to standard web search or the standard
bag-of-words approach of IR and we will try to exploit their availability as good
as we can. Whilst traditional web search engines have limited support for these
unique features, the vast potential they hold has yet to be exploited.

The traditional way of searching textual data is to search the whole document
disregarding any structural information which might be available. Structured data,
in the simple case documents with a title/content distinction, or DBpedia entries
with a possibly long list of predicates, require more advanced retrieval models.
Structured retrieval has been established as a way to search structured or semi-
structured text collections, combining retrieval scores over multiple fields (i.e., in
the context of e-mails this would mean “subject” or “body” fields). We therefore
have a strong focus on structured retrieval models in our research where we mainly
are concerned with their applicability to the entity search use case.

The WoD is an extension of the WWW and as such inherently distributed. Linked
Data sources lie on different servers, belong to different organisations, and adhere to
different schemas. However, current state-of-the-art web search engines crawl the

11http://www.geonames.org
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web and then perform search on a central index.12 The strengths of the individual
data sources or collections, though, lies in their familiarity with their own data and
their capability to provide search functionality. In distributed approaches the main
assumption is that the owners of collections know best how to search in their own
data and how to provide adequate access. Therefore we also look at scenarios where
we search several distributed collections and we present this in a separate part of
the thesis. Especially with a continuing strong growth in both the size of existing
knowledge sources and the addition of new ones, we consider the distributed aspect
important and therefore will propose solutions for different scenarios. Further,
current web search engines, do not support automated processing of results, i.e.,
their results are not machine-readable, which is one of the major hopes put in
semantic search technology. If these answers could be automatically discovered
and put in context to each other, semantic formats such as RDF can facilitate easy
distribution and reusability. This point becomes more urgent with the continuing
growth of the Web of Data.

To summarise, we will explore different aspects of the problem of entity search. We
focus on the areas of advanced retrieval models of entity search and their application
in the distributed context. In the following, we will give an overview of research
questions we explored.

1.3 Research Questions

After having specified the overall context of our research work, we introduce the
main research questions we seek to answer in the course of this thesis:

RQ1: A plethora of techniques have been developed in Information Retrieval over
decades. Most of these techniques are tailored to flat text documents. The
majority of them do not exploit the unique characteristics of WoD and entities
do not have a direct textual representation.

How can traditional ad-hoc document retrieval techniques be ap-
plied in the context of the Web of Data?

RQ2: One straightforward approach to making use of structure is to create a rep-
resentation based on multiple fields. We will provide a thorough investigation
of the strengths of structured retrieval and show how it can be applied in the
context of the WoD.

How can the structure of entities be exploited for the purpose of
ad-hoc retrieval?

RQ3: Many well-performing methods in entity search make use of the fielded struc-
ture of the data as indicated by its predicate structure. This predicate struc-
ture can be used by assigning different weights to different types of predicates.

12On a conceptual level these indices are centralised, in order to deal with computational
challenges, search engines make heavy use of parallelisation.
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How does field weighting affect search quality?

RQ4: The Web of Data is inherently distributed. As such, distributed search and
its mature retrieval models may be a viable option when deciding how to best
query its data.

Can existing, standard federated search techniques be applied to
entity search in the Web of Data?

RQ5: Federated search techniques are able to exploit local features. Subcollections
might be able to provide better rankings (i.e., local rankings) than global
models.

Can federated entity search benefit from improved entity mod-
elling?

RQ6: Federated search is usually concerned with a rather low number of disjoint
repositories (usually around 100), i.e., more large-scale approaches might be
of interest given the current growth of the Web of Data. The switch from a
federated search to a P2P scenario brings with it the change of the number
of involved nodes from up to ten to up to several thousands. This also poses
challenges in terms of scalability and dynamicity.

Is P2P search a viable alternative to broker-based (i.e., federated
search) architectures for entity retrieval?

RQ7: P2P networks are highly distributed and dynamic systems. In such a sce-
nario it is particularly difficult to provide global statistics (such as term fre-
quencies) about the involved collections. Hierarchical aggregation of frequen-
cies in P2P networks is a heuristic technique for estimating such statistics
and has the advantage of providing accurate values. However, techniques
based on gossiping might improve the results even though they provide less
accurate numbers.

How can the proposed frequency estimation technique be further
improved?

1.4 Contributions and Research Papers

The majority of the content of this thesis has been published in international con-
ferences and journals in the course of the last 4 years. In the following we show
a chronological overview and point out the relevance of the published articles, put
it in relation to the aforementioned research questions, and specify where in the
thesis they will be used.
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P1 Robert Neumayer, Christos Doulkeridis, and Kjetil Nørv̊ag. Aggregation
of document frequencies in unstructured P2P networks. In Proceedings of
10th International Conference on Web Information Systems Engineering
(WISE’09), pages 29–42, Poznan, Poland, October 5-7 2009. Springer
Relevance to this thesis: The findings of this paper will be used in
Chapter 7. It covers an initial analysis of the data sharing problem in
peer-to-peer text search (P2P). We answer research questions RQ4 and
RQ5.

P2 Robert Neumayer, Christos Doulkeridis, and Kjetil Nørv̊ag. A hybrid ap-
proach for estimating document frequencies in unstructured P2P networks.
Information Systems, 36(3):579–595, May 2011
Relevance to this thesis: The findings of this paper will be used in
Chapter 7. In this paper we presented new ideas for the P2P problem also
discussed in P1. Further, we provide an in-depth experimental evaluation.
We provide further analysis of RQ6 and answer RQ7.

P3 Krisztian Balog, Marek Ciglan, Robert Neumayer, Wei Wei, and Kjetil
Nørv̊ag. NTNU at SemSearch 2011. In Proceedings of the 4th International
Semantic Search Workshop of the 20th Int. World Wide Web Conference
WWW2011), pages –, Hyderabad, India, April 19-21 2011
Relevance to this thesis: We use the contents of this paper in Chapter 3.
We report the results of our submission to the semantic search challenge
and put our approach in context to other submissions. As we show the
applicability of IR approaches to entity search, it is an initial exploration
of RQ1.

P4 Robert Neumayer, Krisztian Balog, and Kjetil Nørv̊ag. When simple is
(more than) good enough: Effective semantic search with (almost) no se-
mantics. In Proceedings of the 34rd European Conference on Information
Retrieval (ECIR’12), pages 540–543, Barcelona, Spain, April 1 - 5 2012
Relevance to this thesis: As a part of Chapter 4, we show how a rather
straightforward model can outperform all of the state-of-the-art methods
on one given benchmark data set. Further, we describe the fielded models
which are the foundation of this work. We answer research questions RQ1,
RQ2, and RQ3.

P5 Robert Neumayer, Krisztian Balog, and Kjetil Nørv̊ag. On the modeling
of entities for ad-hoc entity search in the web of data. In Proceedings of
the 34rd European Conference on Information Retrieval (ECIR’12), pages
133–145, Barcelona, Spain, April 1 - 5 2012
Relevance to this thesis: Building on the results of P4, we show how
additional structural elements can be taken into account, which is also
included in Chapter 4. To this end we propose a novel retrieval model,
considering both individual predicates and types of thes predicates. We
answer research questions RQ2 and RQ3.
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P6 Robert Neumayer, Krisztian Balog, and Kjetil Nørv̊ag. Ranking distributed
knowledge repositories. In Proceedings of the International Conference on
Theory and Practice of Digital Libraries Research and Advanced Technology
for Digital Libraries (TPDL’12), pages 486–491, Paphos, Cyprus, Septem-
ber 23 - 27 2012. Springer
Relevance to this thesis: In Chapter 5, we formalise the task of col-
lection selection in a language modelling framework and propose baselines
methods to handle this task. For evaluation, we introduce a test collection
building on existing benchmark corpora. RQ4 is investigated and answered
in this paper.

P7 Krisztian Balog, Robert Neumayer, and Kjetil Nørv̊ag. Collection rank-
ing and selection for federated entity search. In Proceedings of 18th In-
ternational Symposium of String Processing and Information Retrieval
(SPIRE’12), Cartagena, Colombia, October 21-25 2012. Springer. Ac-
cepted for publication
Relevance to this thesis: Based on the results from P6, we continue
by proposing a new method for collection selection in the entity context in
Chapter 6. We evaluate our new method by using the benchmark collection
introduced in P6. We further investigate RQ5.

1.5 Additional Papers

The following papers were published in the course of this PhD, but are not included
in the thesis because they are concerned with areas only marginally connected to
its main topics:

P8 Rudolf Mayer, Robert Neumayer, and Andreas Rauber. Data recovery
from distributed personal repositories. In Proceedings of the European
Conference on Research and Advanced Technology for Digital Libraries
(ECDL’09), Corfu, Greece, September 27 - October 2 2009. Springer

P9 Rudolf Mayer and Robert Neumayer. Multi-modal analysis of music: A
large-scale evaluation. In Proceedings of the Workshop on Exploring Musi-
cal Information Spaces, (WEMIS’09), pages 30–35, Corfu, Greece, October
1-2 2009

P10 Rudolf Mayer, Robert Neumayer, and Andreas Rauber. Interacting with
(semi-) automatically extracted context of digital objects. In Proceedings of
the Workshop on Context, Information And Ontologies (CIAO’09), pages
1–9, Heraklion, Greece, June 1 2009. ACM

P11 Rudolf Mayer, Robert Neumayer, Doris Baum, and Andreas Rauber. An-
alytic comparison of Self-organising Maps. In Proceedings of the 7th Inter-
national Workshop on Self-Organizing Maps (WSOM’09), pages 182–190,
St. Augustine, FL, USA, 2009. Springer
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P12 Robert Neumayer, Rudolf Mayer, and Kjetil Nørv̊ag. Combination of fea-
ture selection methods for text categorisation. In Proceedings of the 33rd
European Conference on Information Retrieval (ECIR’11), pages 763–766,
Dublin, Ireland, April 19-21 2011

P13 Robert Neumayer, George Tsatsaronis, and Kjetil Nørv̊ag. TRUMIT: A
tool to support large-scale mining of text association rules. In Proceedings
of the 10th European Conference on Machine Learning and Knowledge Dis-
covery in Databases - European Conference, (ECML PKDD 2011), pages
646–649, Athens, Greece, September 5-9 2011. Springer

P14 Robert Neumayer and Kjetil Nørv̊ag. Evaluation of feature combination
approaches for text categorisation. In Proceedings of the 19th International
Symposium on Methodologies for Intelligent Systems (ISMIS’11), pages 438
– 448, Warsaw, Poland, June 28-30 2011

P15 Krisztian Balog and Robert Neumayer. Hierarchical target type iden-
tification for entity-oriented queries. In Proceedings of the 21st ACM
International Conference on Information and Knowledge Management
(CIKM’12), Maui, HI, USA, October 29 - November 2 2012. Poster, ac-
cepted for publication

1.6 Thesis Structure

This thesis is organised in four main parts. Part I gives an introduction into the
main topics of the thesis and summarises relevant background in these areas. Then,
in parts II and III, we describe the main research topics of the thesis. Finally, we
draw conclusions and give an overview of future work in part IV. A more detailed
outline of the contents is given in the following:

Part I Introduction and Background

Chapter 1 gives both motivation and introduction to the research laid out
later in the thesis. We give examples for entity search and describe some
of the main problems of the area.

Chapter 2 introduces the technical foundations for the later chapters. We
introduce the most relevant techniques and position our work within the
area of information retrieval and semantic search.

Part II Entity Search

Chapter 3 summarises our research on entity search. We outline the prob-
lem statement and propose solutions for dynamic search for entities in
the Web of Data. We address research question RQ1.

Chapter 4 investigates more advanced retrieval models based on structural
retrieval. These models are adapted for the entity search case. We also
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provide experimental evaluation to show the applicability of our models.
We answer research questions RQ2 and RQ3.

Part III Distributed Aspects

Chapter 5 builds on the techniques introduced in Part II and suggests mod-
ifications to make them applicable to a distributed context. More specif-
ically, we use a federated search architecture to show how entity search
can work in the distributed case. This chapter takes a closer look at
research question RQ4.

Chapter 6 makes use of the probabilistic federated search framework given
in Chapter 5. We introduce extensions and new models for several fed-
erated search components. In this chapter, we investigate research ques-
tions RQ5 and RQ6.

Chapter 7 further extends to the area of peer-to-peer (P2P) search and
shows how to tackle some of the problems introduced by that scenario.
We in chapter we answer research question RQ7.

Part IV Discussion and Outlook

Chapter 8 sums up the contributions of the thesis, and gives an overview
of possible follow up work. We further give a more general outlook on
the field.
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Chapter 2

Background

We gave an outline of the scenario of entity search in Chapter 1. In this chapter, we
provide an overview of the background in related areas and mention its applicability
to the entity search problem. The techniques we will introduce in this chapter
are known to be well-working when applied to search in text documents. In the
following sections we will make use of these approaches and show how they can be
applied in the main parts II and III.

2.1 Overview

First, we introduce the area of information retrieval (IR) since we build on many
basic techniques and because we face similar problems. IR research methods are
summarised in Section 2.2. There, we also give a short overview of benchmarking
initiatives in IR along with its evaluation measures and detail how they can and
will be used to evaluate our methods in Section 2.2.2. We then continue to be more
specific by introducing the task of“document retrieval”and take a closer look at the
most typical units of retrieval, documents, in Section 2.3. In this section we also
move on to presenting an overview of probabilistic retrieval models, in particular
language models, which we use in many of the publications which are part of this
thesis, in Section 2.3.1. In Section 2.3.2, we discuss structured retrieval approaches
since these models will be instruments for semantic search in later chapters. We give
an overview of distributed aspects within both IR and entity search in Section 2.4.1,
as well as peer-to-peer (P2P) search in 2.4.2. Next, we introduce some basics of
semantic search in Section 2.5. Finally, in Section 2.6, we then proceed to give an
overview of the task of entity search and how it has recently been approached.
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2.2 Information Retrieval

Information retrieval is a diverse area of computer science, which has heavily been
researched for decades. The most basic description for IR is simply that it deals
with the “search for information”, often with a strong focus on users, their queries,
and result documents, or according to the classic definition by Salton in [98]:

Information retrieval is a field concerned with the structure, analysis,
organisation, storage, searching, and retrieval of information.

In the following we give a short overview of these aspects and highlight methods
which are specifically relevant to the later chapters of this thesis. While there exist
a range of excellent books on the topic of IR, we mostly refer to one particularly
helpful and recent one when explaining basics [63].

2.2.1 Research Methods in Information Retrieval

The field of information retrieval is known for a strong focus on experimental
evaluation in terms of effectiveness. A wide range of benchmarking initiatives have
emerged in that context. TREC is undoubtedly the most well-known of those
initiatives [119].

The TREC initiative has been running since 1992 and is an ongoing series of work-
shops concerned with the evaluation of different aspects of IR. A strong focus lies
on providing standardised test collections on which participants can run their al-
gorithms. In general, TREC comprises different tracks, i.e., individual, focused
competitions. These range from the Web track to the entity search track, which is
most relevant with respects to techniques introduced later in this thesis. All of the
tracks provide a data set of some kind (web documents for the Web track, Linked
Data for the Entity track), a set of queries (also called topics or topic sets). Every
participant sends a ranked list of documents/entities their algorithm has found to
be relevant to the queries. Relevance judgements to evaluate against are created by
the organisers or participants and made available at a later stage. Then, for each
query, some judged documents are available, returned to the participants, and can
be compared to the ranked results, according to standard evaluation measures like
precision, recall, or Mean Average Precision. These results are then submitted and
discussed at the actual workshop.

More recently, TREC has explicitly been focusing entity search [12, 14]. There
exist initiatives similar in spirit but with a stronger focus on entity search, such as
the Semantic Search evaluation series [20, 46], or related INEX tasks [32, 50].

Benchmarking initiatives play a vital role in information retrieval research, guaran-
teeing sound experimental evaluation methodology; this ensures the repeatability
of experiments.
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2.2.2 Information Retrieval Evaluation

Evaluation in IR is typically based on manual assessments of relevant answers
to queries. Typically, this will include a list of documents and their relevance
judgements for each query. In the simplest case these relevance judgements will
be binary, i.e., relevant or not relevant. All IR benchmarking initiatives use such
relevance judgements (not necessarily binary though) to assess submissions. When-
ever researchers test their algorithms, they compare the rankings against the gold
standard.

Given these basics, a range of measures has been proposed to assess the effectiveness
of retrieval systems. The most basic and frequent measures are precision and recall.
Precision (P ) measures the quality of the retrieved results (i.e., how many of the
retrieved documents are relevant). Recall (R) measures the coverage of the results
(i.e., how large a fraction of all relevant documents in the collection they contain).
Precision denotes the fraction of relevant items retrieved and the retrieved items:

P =
#(relevant items retrieved)

#(retrieved items)
. (2.1)

Recall denotes the fraction of relevant items retrieved and the number of relevant
items in the collection:

R =
#(relevant items retrieved)

#(relevant items)
. (2.2)

Since it is easy to increase recall by returning more documents (e.g., returning all
documents of the collection always equals to a recall of 1), it is desirable to not
exclusively use it as a quality measure. To combine both measures into one, the F
measure has been proposed, combining both precision and recall in one number:

Fβ =
(β2 + 1)PR

(β2P ) +R
, 0 ≤ β ≤ +∞. (2.3)

When assigning equal weights to precision and recall we denote this as the F1
measure:1

F1 =
2PR

P +R
. (2.4)

All three of these measures are set-based, which means they are computed on an
unordered set of documents. When evaluating rank-based retrieval results, these
measures are insufficient. One way of looking at ranked results is to look at the
top k results. Precision and recall can be computed at each such level to give a

1Equal weights imply a β value of 1 in the general equation, leading to the name F1.
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more complete overview (this is denoted by P@k and R@k , respectively). These
measures are computed for each query in turn, and then averaged over the whole
query set. Especially average precision (AP) is used regularly.

One measure that computes precision at each recall level is (MAP)2. It is a single-
figure measure for precision at all different recall levels, giving a more holistic view;
MAP has become increasingly popular within the TREC community. The MAP
for a given set of queries Q is defined as:

MAP =
1

|Q|
|Q|∑
j=1

1

mj

mj∑
k=1

P (Rjk), (2.5)

where Q is a set of queries or information needs and mj is the number of relevant
documents for query j. Rjk is the set of ranked retrieval results and Precision(Rjk )
the precision at all of these levels. Then the value is averaged over the number of
queries. The mean average precision gives a more complete picture of the precision
of a given query searched for in a given collection.

Another measure, specifically handling the rank of the first relevant document is
mean reciprocal rank (MRR):

MRR =
1

|Q|
|Q|∑
i=1

1

ranki
, (2.6)

where Q denotes a set of queries, and ranki is the rank of the first relevant answer
to query i. This is averaged over all queries. A high reciprocal rank means that
the first relevant answer is often ranked among the top results.

Another approach that has become increasingly popular is the cumulative gain (or
more specifically the Normalised Discounted Cumulative Gain (nDCDG). This
measure is designed for non-binary relevance judgements. To begin with, we com-
pute a vector of cumulative gain, i.e., the relevance sum at each level k:

CG[k] =
k∑

i=1

G[i]. (2.7)

G[i] corresponds to the relevance given (i.e., between 0 and 3, where 0 is not
relevant, 1 slightly and so on). In the next step we apply a discount function
to reflect the relative lower importance of results at lower ranks. The discounted
version DCG using log2(1 + i) as discount function is computed as follows:

DCG[k] =
k∑

i=1

G[i]

log2(1 + i)
. (2.8)

2In other words the average precision across all recall levels.
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Table 2.1: Overview of document retrieval notation.

Variable Explanation

t Term
d Document
q Query
tft,d Term frequency of term t in document d
dft Document frequency of term t
N Number of documents in the collection
idft Inverse document frequency of term t
�d Document vector of document d
dl Document length
adl Average document length

P (A) Probability of event A
P (A|B) Conditional probability of A given B
P (d|q) Conditional probability of a document d given a query q
θd Document language model of document d

Finally, these values can be normalised by the ideal DCG vector DCG′. This
vector is computed for an ideal ranking where for example all documents with a
relevance of 4 are ranked before all documents with a relevance of 3 and so on.
This leads to an nDCG value at k of:

nDCG[k] =
DCG[k]

DCG′[k]
. (2.9)

nDCG is typically computed as the mean over a set of queries and various retrieval
depths such as nDCG@5 or nDCG@10 .

None of these measures alone is enough to evaluate a system, and which one is
more desirable depends highly on the context (web users are mostly interested in
the top 10 results, sometimes only the one highest result is of interest, and usually
are not interested in high recall). Thus, in the context of web search measures
such as precision at 1 (P@1) are more important. In the course of the experiments
performed in this thesis we will mostly use P@10 , MRR, MAP , and also list
nDCG where applicable. This is to show a more complete picture of our results
with respects to different requirements in different settings.

2.3 Document Retrieval

Ad-hoc document retrieval aims at adequately ranking documents with respect
to their relevance to a given query, e.g., how to compute the similarity between
queries and documents. The prevalent technique to do this is based on indexing
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the documents3 and terms they contain to later match these representations with
queries. Here, we do not consider the ordering or co-occurrences of terms, i.e., we
use the bag of words approach.

In the most simple case, each document has binary weights for the terms it con-
tains (i.e., 1 meaning the term does occur, 0 that it does not). This model is
called the Boolean Model of Information Retrieval. Its obvious limitations are that
the frequency of the terms in the individual documents is disregarded; whether
a term occurs once or 100 times in one document does not make any difference
with respect to similarity scoring, i.e., documents are scored based on occurrence
or not-occurrence of terms alone.

The vector space model takes into account the frequencies of terms in documents
(tft,d), the frequency of term t in document d). We provide an overview of variables
and symbols used throughout this chapter in Table 2.1. This leads to an improved
ranking mechanism. However, in the most basic case we still suffer from biased
results for very common terms (when using raw frequencies only, think of the term
“abstract” in scientific documents; almost every document will have an “abstract”
headline). The document frequency (dft), on the other hand, denotes the number
of documents a term occurs in and would assign a high value to the “abstract” term
from before. As such it is a good idea to weigh terms with their inverse document
frequency:

idft = log
N

dft
, (2.10)

where N is the total number of documents in the collection. The idf values of rare
terms will be high;4 the ones of common terms will be low. This means that a
simple combination of tf and idf values will improve document scoring:

tf -idft,d = tft,d × idft . (2.11)

This allows us to treat every document in the collection as a vector, the indices of
which correspond to the tf -idf weighting of terms. This is commonly referred to
as the vector space model. Further, we can compute the simple overlap score of a
document d given a query q as:

score(q, d) =
∑
t∈q

tf -idft,d . (2.12)

The similarity measure most commonly used is the cosine similarity between two
documents (or document vectors) �d1 and �d2 (the documents can easily be substi-
tuted with one query q and a document d):

3An index is a compact representation which helps to access documents based on the terms
they contain.

4Some terms, so-called stop words, are skipped at indexing time since they do not convey
important information. This comprises extremely common words with little or no discriminative
power such as “a”, “and”, “it” ,“he”, or “of.”
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sim( �d1, �d2) =
�d1 • �d2

| �d1| × | �d2|

=

∑n
i=1

�d1i × �d2i√∑n
i=1

�d1
2

i

√∑n
i=1

�d2
2

i

. (2.13)

The cosine similarity is then calculated between the query and each of the docu-
ments (much like between documents), resulting in a ranking of documents.

2.3.1 Probabilistic Information Retrieval

In this section we will first review basic probability theory and then give an overview
of the most influential ideas in probabilistic IR. Generally speaking, the probabilis-
tic model is theoretically sound and can therefore be a viable alternative to vector
space approaches.

Probability Theory Revisited

Many of the later chapters will rely on probabilistic models and language modelling
techniques. Therefore, we will first give a short introduction to basic probability
theory to give a foundation for the more advanced concepts to be described later
on.

In general, probability theory is concerned with events and how probable they are to
occur. An event can be represented by variable A and its likelihood or probability5

is denoted by 0 ≤ P (A) ≤ 1.

In the more interesting case of two or more events (let us say A and B), the
probability of both occurring can be explained with their joint probability P (A,B).
The conditional probability P (A|B), on the other hand, denotes the probability of
event A given that event B occurred. The relationship between both is given by
the chain rule:

P (A,B) = P (A ∩B) = P (A|B)P (B) = P (B|A)P (A). (2.14)

The probability of a joint event can be expressed as the probability of one of the
events multiplied by the conditional probability of the other. Another important
rule is the partition rule, explaining that the probability of an event B is the sum
of the probabilities of all disjoint subclasses:6

P (B) = P (A,B) + P (A,B). (2.15)

5The terms likelihood and probability are used as synonyms in this context. Likelihood usually
denotes an observed set of events on which probability calculations are based on.

6This assumes that event B can be divided into an exhaustive set of disjoint subclasses.
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These rules suffice to derive Bayes’ rule for inverting conditional probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
. (2.16)

The two most important concepts here are prior probability and posterior probabil-
ity. The prior probability P (A) provides the probability of an event having no other
information. The posterior probability of an event P (A|B) denotes its probability
after having seen the evidence B.

Probability Ranking

In the context of documents, collections and queries, we can assign a random
variable Rd,q representing the relevance of a document d given a query q. In the
binary case, R has a value of 0 if a document is not relevant and a value of 1 if
it is. The main idea behind probability is to rank documents according to their
estimated probability of relevance P (R = 1|d, q).

The Binary Independence Model (BIM) The binary independence model
introduces some assumptions making the estimation of P (R|d, q) feasible. Both
documents and queries are represented by boolean vectors, 1 indicating a term is
present in a document/query and 0 indicating it is not. This also means that a
term independence assumption is made, reflecting the fact that the model does
not recognise associations or relations in between terms. This assumption is far
from correct but simplifies the process and provides satisfactory results in other
applications such as probabilistic classification. The term independence assumption
also correlates to how documents are modelled in the vector space model. The BIM
is formalised as:

P (R = 1|�x, �q) = P (�x|R = 1, �q)P (R = 1|�q)
P (�x|�q)

P (R = 0|�x, �q) = P (�x|R = 0, �q)P (R = 0|�q)
P (�x|�q) (2.17)

where �x denotes the document vector of document x, �q denotes the query vector
of query q. P (�x|R = 1, �q) is the probability of �x being the representation of a
relevant document being retrieved (this is accordingly expressed for a non-relevant
document being retrieved as P (�x|R = 0, �q)). P (R = 1|�q) and P (R = 0|�q) denote
the prior probabilities of query q retrieving relevant and non-relevant documents,
respectively. Both of these probabilities sum up to 1.
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OKAPI BM25

The binary dependence model was initially developed to rank documents of rather
consistent length (i.e., the individual documents vary little in size). However, this
assumption can not be made in many contexts, and document lengths should be
taken into account in the retrieval model. BM25 is designed to handle varying
document lengths. A comprehensive overview of the probabilistic relevance frame-
work and BM25 methods is presented in [94]. BM25 uses the average document
length component to score documents, distinguishing it from classic tf -idf scoring.
Further, two internal parameters are needed, b and k1 .

We assume no relevance information available. As such, a close approximation of
the classical idf is commonly used, compensating for 0-values:

idft = log
N − dft + 0.5

dft + 0.5
. (2.18)

Additionally, soft document normalisation is introduced:

B :=

(
(1− b) + b

dl

avgdl

)
, 0 ≤ b ≤ 1, (2.19)

taking into account the relative length of the current document (the dl
avgdl com-

ponent, referring of the ratio between the document length dl and the average
document length avgdl). Setting b = 0 will not make use of normalisation at all;
b = 1 performs full document length normalisation.

Substituting B from Eq. (2.19), we use the sum over all query terms t to score
document d as follows:

scoreBM25(q, d) =
∑
t∈q

tft,d

k1 (1− b+ b dl
avgdl ) + tft,d

idft , (2.20)

where k1 is a tuning parameter calibrating the document term frequency scaling
(a k1 value of 0 corresponds to a binary model, large values for k1 correspond to
using raw term frequencies).

BM25 has a strong advantage over tf -idf based methods because it takes into
account the document lengths, but also comes with disadvantages in that it is
more difficult to tune the additional parameters k1 and b.

Language Models for Information Retrieval

Language models for information retrieval have become a popular and competitive
way of performing document ranking. The underlying idea is that a document is a
good match for a query if this document is likely to generate the query. The idea
of “generating a query” stems from the ability of a finite automaton to generate
language. While this is more out of tradition, similarities exist between the two
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concepts. A language model does put a probability measure over strings drawn
from some vocabulary (single terms in the case of unigram language models). The
resultant language model is a probability distribution, i.e., it adds up to 1. It should
be noted that the event space, i.e., the set of all possible outcomes or occurrences of
word sequences, is infinite since any natural language term can occur in any order.

This way, each term in a document is assigned a probability and the probabilities
of sequences of terms can be computed simply by multiplying these individual
probabilities (assuming a uniform language model ignoring the context of terms):

Puni(t1t2t3) = P (t1)P (t2)P (t3). (2.21)

The query likelihood language model is only one instance of the family of language
modelling approaches. In this model, we construct a language model θd for each
document in the collection. The main goal is to rank documents by P (d|q); the
probability of a document is interpreted as the likelihood that it is relevant to the
query. Using Bayes’ rule from (2.16), we have:

P (d|q) = P (q|d)P (d)

P (q)
. (2.22)

P (q) is the same for all documents, as such cannot influence rankings, and thus
can be dropped. The prior probability of a document P (d) is often treated as
uniform over all documents, but could be assigned on a document level reflecting the
importance of individual documents. The query likelihood can now be computed
as

P (q|θd) =
∏
t∈q

P (t|θd)tf t,q , (2.23)

where tf t,q denotes the (raw) frequency of term t in the query.7 The main open
question now is how to estimate the probability of a term given a document lan-
guage model P (t|θd). It is important to point out that this probability must never
be 0 since that would lead to 0 as the total probability (which in turn would make
partial matches impossible). This is where smoothing comes into play to guarantee
that we never encounter zero-probabilities. We employ Bayesian smoothing using
Dirichlet priors which has been shown to achieve superior performance on a variety
of tasks and collections [125]:

P (t|θd) =
tf t,d + μP (t|θc)

|d|+ μ
, (2.24)

where tft,d is the raw frequency of term t in document d and |d| is the size of a
document, i.e.,

∑
t tft,d . P (t|θc) represents the global term probability, e.g., the

7For short keyword queries this virtually always equals to 1 since they hardly ever contain the
same term more than once.
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probability of the term occurring in the collection, i.e.,
∑

d
tft,d∑ |d| . The smoothing

parameter μ is subject to optimisation, but setting it to the average document
length is usually a good starting point [59]. Practically, all terms are smoothed by
their probability in the whole collection and therefore 0 values are avoided.8

Language Models vs. Classical Approaches

The language modelling approach has gained much interest and is theoretically
sound and computationally tractable. On the other hand, the relations to tra-
ditional tf -idf models are significant [48]. The effect of smoothing by collection
frequency can be compared to idf weighting. Even though LMs provide good per-
formance, comparable or even better than other weightings such as BM25, it is not
definitive that this fact is a general one, or that proper parameter tuning can not
be used to tune traditional models to similar performance.

2.3.2 Structured Retrieval

Structured retrieval, searching when additional structural information is available,
has become an active field within Information Retrieval research. It can denote
to both structure in the document representation and the results (e.g., in XML
retrieval where the unit of retrieval is parts or passages of documents rather than
full documents [62]). In this context we use structured retrieval to refer to docu-
ment structure in terms of multiple available fields while the unit of retrieval is not
varied, i.e., we return entities. Many search scenarios can be presented as such,
encompassing, e.g., rather straight-forward applications like search in e-mails (in
the simple case where “subject,”“from,” and “body” fields are available). However,
also more complex use-cases like search in the Internet Movie Database (IMDB9)
can be approached by structured retrieval techniques. In this case it seems more in-
tuitive to use its tens of different fields such as“director”or “releasedate”within the
retrieval model to improve overall effectiveness. Other collections with structured
information available are WoD collections such as DBpedia10 where the number of
fields quickly increases to several hundred.

Usually, structured retrieval is approached by fielded extensions of the retrieval
models discussed in the previous subsection, such as BM25 and the language models
(LM); we present these extensions in the next two subsections.

BM25F

BM25F is an extension of BM25 incorporating multiple fields [95]. In this case,
both the soft normalisation B and tfd need to be adjusted. We first compute a

8This assumes that terms which are not available in the collection are not considered and
dropped while the query is parsed.

9http://www.imdb.com/
10http://dbpedia.org
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normalised term frequency:

t̃f t,d =

F∑
f=1

tff
tftdf
Bf

, (2.25)

where tftdf denotes the term frequency of term t in field f of document d. The soft
normalisation for a field f is given as:

Bf =

(
(1− bf ) + bf

dlf
avgdlf

)
, 0 ≤ bf ≤ 1. (2.26)

In many cases, one bf value is used for all fields. This is due to both the computa-
tional complexity and theoretical difficulty that a per field soft normalisation bring
along (this is in addition to the field weight, i.e., would lead to two free weighting
parameters per field). Rather than manually setting one b value per field, it is
possible to adjust the bf value based on the field’s relative average length:

bf =
avgFlf∑
i∈N avgFli

. (2.27)

The overall score for query q and document d is then given as:

scoreBM25F (q , d) =
∑
t∈q

t̃f t,d

k1 + t̃f t,d
idft . (2.28)

Mixture of Language Models (MLM)

Analogous to BM25F, language models allow for an estimation of individual lan-
guage models per field [87]. These models can then be used together by a linear

combination. A separate language model θfd is estimated for each field f (associated
with the given document):

P (t|θfd ) =
tft,f,d + μfP (t|θfc )

|f, d|+ μf
, (2.29)

where tft,f ,d is the term frequency for t in field f of document d, and |f, d| =∑
t tft,f ,d . Essentially, we apply Dirichlet smoothing using a collection-wide back-

ground model P (t|θfc ) (that is, a maximum-likelihood estimate for a field from all
documents in the collection). The smoothing parameter μf is set to the average
field length in the collection.

The document model is a linear mixture of the field type language models (P (t|θfd )),
weighted with the importance of that field type (P (f)):

P (t|θd) =
∑
f

P (t|θfd )P (f). (2.30)
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Figure 2.1: Example of a federated search setting.

Both BM25F and MLM show competitive performance in a range of settings [26,
53, 54, 87, 90, 95]. Again, a slight advantage of language models is their reasonably
good performance with the standard settings (average field length and average
document length as smoothing parameters).

2.4 Search in Distributed Environments

Search in distributed environments can broadly be categorised into broker-based
and peer-to-peer (P2P) architectures. Federated search is typically broker-based,
i.e., a central broker exists to perform the main tasks such as collection selection and
result merging. An example of a broker-based architecture is given in Figure 2.1.
P2P search, on the other hand, commonly has no central hub and each collection
(or rather peer) is a valid entry point for search operations. In the following we
continue by describing the basics of federated search and outline the foundations
and special characteristics of P2P search as examples of both architectures.

2.4.1 Broker-based Architectures: Federated Search

Distributed IR is commonly called federated search. The assumption in this area is
that—in comparison to the centralised use case—the document collection is stored
in multiple locations and it is not feasible to copy all documents to a central lo-
cation. The reasons for this might range from the sheer size of the collection to
legal regulations not allowing documents to be processed outside a company’s in-
frastructure. An excellent and up-to-date survey paper on federated search is given
in [101].

Instead of expending effort to crawl all Web of Data sources—some of which may
not be crawleable at all—federated search techniques directly pass the query to the
search interface of multiple, suitable collections that are usually distributed across
several locations [101]. For example, the query “entity retrieval” may be passed to
a related collection, such as a bibliographical database for research articles dealing
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with information retrieval topics, while for the query “San Antonio” collections
containing information about the city, such as geonames or DBpedia, might be
more appropriate. Of course, there are also queries for which multiple databases
can contain answers.

Federated search consists of three components:

1. Collection representation

2. Collection selection

3. Result merging

For each query which is sent to the system, we iterate all three steps. First, all
the collections are ranked according to how likely they will contain relevant results
to the query. Then, we need to select a small number of these collections. In
order to comply with efficiency requirements this might range from very few to
tens of collections. Once these collections are identified, the query is propagated
to the selected collections and the broker needs to decide how to merge the results
returned from each of them.

We adhere to these three steps in Chapter 5, where we provide a system for feder-
ated entity search. In the following, we discuss baseline techniques for these three
steps.

Collection representation is concerned with how collections are represented at the
central broker and as such plays a vital role in the process of collection ranking (in
our context this step is dealt with by collection/entity modelling).

Collection Ranking and Selection

When deciding which collections to search in the first step is to rank all available
collections according to some criterion. Then, some of these collections are selected
as relevant sources (most commonly in terms of a fixed cutoff). Each collection is
hereby treated as one big document (lexicon-based) or as consisting of individual
documents (document-surrogate). We outline the common techniques for both
approaches in the following.

In lexicon-based approaches, for example CORI, each collection is considered to be
one big bag of words. Collections are ranked according to the similarity between a
query and this representation.

CORI One of the best-known examples of lexicon-based collection selection is
the CORI algorithm [24]. It uses a Bayesian inference network model and an
adapted Okapi term frequency normalisation. The belief of the ith collection being
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associated with term t is calculated as:

T =
dft,i

dft,i + 50 + 150× cwj/avg cw
(2.31)

I =
log(Nc+.5

cft
)

Nc + 1
(2.32)

P (t|ci) = b+ (1− b)× T × I, (2.33)

where dft,i is the document frequency of term t in collection i, cft the number
of collections containing term t, Nc the number of collections. cwi is the size of
collection i in terms of collection length and avg cw is the average length of all
collections. The default belief b is usually set to 0.4. The resulting belief P (Q|ci)
is used to rank collections, commonly computed as the average beliefs of all query
terms.

Document-surrogate methods were designed to be used in uncooperative environ-
ments, where central statistics are not available (they are still applicable to the
cooperative use case). Document-surrogate methods also take into account a rank-
ing of sampled documents from each of the individual collections.

ReDDE ReDDE (relevant document distribution estimation) [104] has the goal
to select a small number of collections containing the most relevant documents by
estimating the number of relevant documents per collection and then using this
information for collection ranking. The number of relevant documents for query q
in collection c is estimated by:

R(c, q) =
∑
d∈c

P (R|d)P (d|c)|c|. (2.34)

In this case P (d|c) is the prior probability of a document in collection c and P (R|d)
is the estimated relevance probability for document d. Sampling can be used to
avoid computing relevance for all documents in all collections. The probability of a
document being relevant is approximated with respect to its position in the ranked
list of sampled documents. ReDDE uses a constant positive probability α for the
top-ranked documents:

P (R|d) =
{
α, if rCCI(d) < β

∑
i |ci|.

0, otherwise
(2.35)

rCCI(d) is the rank of document d in the ranking of all documents for collection i
(this can be approximated by using the ranks of the sampled documents). β is a
percentage threshold, set to 0.003 in prior research. A final goodness value is then
computed by:

Goodness(c, q) =
R(c, q)∑
i R(ci, q)

. (2.36)
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A collection is ranked according to the number of relevant documents it contains
in the sample at the broker.

Centralised-rank Collection Selection Method (CRCS) As is the case with
ReDDE, CRCS uses a centralised index of all sampled documents (CSI) to rank the
collections [100]. One main difference to ReDDE, however, is that CRCS considers
varying importance for documents according to their ranks. The contribution of a
sampled document d depends on its position in the central ranking of all sampled
documents, in the linear case, this results in:

P (R|d) =
{
γ − rCSI(d) if rCSI(d) < γ.

0, otherwise
(2.37)

The parameter γ specifies how many top-ranked documents in CSI are considered,
this was set to 50 in [100], where also an exponentially decreasing variant was
introduced. rCSI denotes the rank of document d in the CSI. The final goodness
of each collection is calculated similarly to ReDDE:

Goodness(c, q) =
|ci|

|cmax| × |Sc| ×
∑
d∈Sc

R(d), (2.38)

where the (sampled) collection sizes are normalised by the fraction of the size of each
collection (|ci|) and the maximum size of all involved collections (|cmax|) weighted
by the number of documents sampled from collection c (|SC |).

SUSHI In the spirit of ReDDE and CRCS, SUSHI first ranks the documents in
CSI [112]. Then, SUSHI extracts the document ranking for each server in turn.
After that, adjusted ranks are computed compared on the sizes of the individual
collections. Curve fitting is then used to estimate the scores of unseen documents.

Result Merging

The third component of federated search systems is concerned with merging the
results returned from the different collections. This becomes relevant after the
collection selection step when all of the selected collections return ranked lists for
the given query. There exist a range of techniques which can either be based
on the scores assigned by the individual collections or based on the rank of the
documents within these local rankings. CORI merging, for example is based on
scores and applies a straightforward min-max normalisation before using a linear
combination of collection selection scores and document scores. Other approaches
include semi-supervised learning in [105] or using statistical fit [102].
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Figure 2.2: Example of an unstructured P2P network.

2.4.2 Search in P2P Networks

All the techniques described in the federated search scenario of the last section rely
on a central broker, which has the task of coordinating search requests and to route
each query to the collection best suited. However, this assumption can not always
be made. Be it for privacy or sheer performance reasons, when a central broker
might not always be able to handle the workload created by the network. P2P
systems constitute a fundamentally different paradigm. Rather than requesting
information via a central broker, all collections (or rather nodes or peers) can act
as both client and servers in the network. The best-known example for a P2P
application can be found amongst filesharing networks such as Napster.

Federated Search and P2P Search

In P2P, we change the scenario from the few nodes in the federated search context
to hundreds or thousands. The typical federated search scenario consists of a few
collections and a broker, which performs collection selection, query routing, and
result merging. It is also the one link between all collections and as such clearly
the bottleneck in terms of network load. On the other hand, communication goes
over a maximum of two hops (e.g., between the broker and collection C1 to Cn).
An overview of this architecture is shown in Figure 2.1.

We show an overview of an unstructured P2P network in Figure 2.2. Instead of
collections the network consists of nodes or peers (these terms are equivalent to the
extent we investigate the issue here). For peer P1 to communicate with peer P8,
e.g., it is up to the self-organisation of the network to determine the communication
path. Furthermore, each peer is a possible entry point for query routing, i.e., queries
can originate from each node.

The two main types of P2P networks are structured and unstructured networks.
In the former case, a globally consistent routing protocol exists, ensuring that each
file (i.e., each document) can be found by all peers. Distributed hashtables are
an example for this. In the latter case, the network is completely unstructured,
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i.e., in principle all peers in the network need to be accessed in order to find a
particular document. The resource intensity of this so-called flooding process can
be mitigated by using various types of overlay or meta networks within. In that
case, each overlay is responsible for all peers in its network and it can suffice to
contact one of the peers of the overlay network to find a document.

P2P Document Retrieval

Content-based search in P2P networks [97] is usually related to full-text search [60,
111, 126], with most approaches relying on the use of structured P2P networks.
Some research focuses on providing P2P web search functionalities, like in [70],
where MINERVA is presented, a P2P web search engine that aims at scalability
and efficiency. In MINERVA, each peer decides what fraction of the web it will crawl
and subsequently index. In further work, the authors also presented an information
filtering approach relaxing the common hypothesis of subscribing to all information
resources and allowing users to subscribe to the most relevant sources only [128].

Previous approaches regarding P2P web search have focused on building global
inverted indices, as for example Odissea [109] and PlanetP [29]. In PlanetP, sum-
maries of the peers’ inverted indices are used to approximate TF-IDF. Inverse peer
frequency (the number of peers containing the term) is used instead of IDF. It is
questionable how this would scale in large P2P networks with dynamic contents,
as also noted in [4]. In [6], super-peers are used to maintain DF for the connected
peers. A similar approach is also used in [85]. Bender et al. study global docu-
ment frequency estimation in the context of P2P web search in [18]. The focus is
on overlapping document collections, where the problem of counting duplicates is
immense. Their system relies on the use of an underlying structured P2P network.
A similar approach is described in [88], which is quite different from our setup that
assumes an unstructured P2P architecture.

A major shortcoming of all these approaches is that their efficiency degrades with
increasing query length and thus they are inappropriate for similarity search. Re-
cently, an approach has been proposed that reduces the global indexing load by
indexing carefully selected term combinations [107].

The overview of an integrated system for P2P search is given in [96]. The authors
propose a distributed architecture for P2P information retrieval called PHIRST. In
this system the storage costs per node are reduced considerably by storing only a
limited number of terms. Subsequently, a hybrid search model of both structured
and unstructured search is employed at query time, for not all terms are stored
within the system. However, their algorithms were tested on a test collection of
moderate size and fall back to unstructured search.

P2P-based Digital Libraries (DL)

One area of research combining and applying several of the techniques introduced
here are digital libraries. Several papers propose using P2P networks in a digi-
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Table 2.2: Overview of term selection methods.

Term selection method Acronym Equation

Document frequency DF dft
Collection frequency CF

∑N
i=1 tft,di

Collection freq. inverse document freq. CFIDF CFt log
N
dft

Term frequency document frequency TFDF (n1n2 + c(n1n2 + n2n3))

tal library context [4, 37, 38, 91, 93]. In [5], a distributed indexing technique is
presented for document retrieval in digital libraries [91]. Podnar et al. use highly
discriminative keys for indexing important terms and their frequencies. In [93],
the authors present iClusterDL, for digital libraries supported by P2P technology,
where peers become members of semantic overlay networks (SONs).

Background on Term Selection

Term or feature selection denotes the process of selecting a subset of all available
terms for further processing. These methods can generally be categorised as either
supervised or non-supervised. Supervised methods use provided labels or class as-
signments for documents. The best or most discriminating terms are then selected
according to their class labels and the occurrence of the term across classes (in
the 20 newsgroups collection, for example, these labels indicate the newsgroup an
article originally was posted to). In many cases, however, class labels are not avail-
able. In the context of distributed collections, such labels are particularly rarely
available, due to reasons of missing common document types or the general ad-hoc
character of the collections themselves. To perform term selection nevertheless, un-
supervised techniques—even though there exist fewer than supervised ones—can
be used. These methods mainly rely on frequency information of a term or term
within a collection, in order to judge its usefulness.

Term Selection Methods Following the vector space model of information re-
trieval we use N as the number of documents in a collection (which can be either
global, i.e., the whole collection, or local when only a subset of the collection is
considered). Further we use dft for the number of documents a term occurs in, also
called the document frequency of term t. The number of occurrences of term t in
document d is denoted to as the term frequency tft,d . In this context, we propose
the usage of the unsupervised methods summarised in Table 2.2, as possible local
term selection methods on each peer.

Document Frequency (DF). One of the most prevalent techniques is denoted
as document frequency thresholding, i.e., the number of documents a certain term
occurs in. The main assumptions underlying document frequency thresholding are
that terms occurring in very many documents carry less discriminative information
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and that terms occurring only in very few documents will provide a strong reduction
in dimensionality (even though they might be discriminative in some cases). In
combination with an upper and lower threshold, term selection can be applied.
This generally leads to results comparable to supervised techniques.

Collection Frequency (CF). The collection frequency of a term is given by the
sum of all term frequencies for a given term (the total number of occurrences of a
term in a collection):

CFt =

N∑
i=1

tft,di
. (2.39)

Therefore, the collection frequency ranks highly terms which might occur only in
few documents of the collection but have a high frequency in these documents.

Collection Frequency Inverse Document Frequency (CFIDF). The CFIDF
is given by weighting the collection frequency values by the inverse document fre-
quency of a term:

CFIDFt = CFt log
N

dft
. (2.40)

This measure covers both aspects, the local document frequency and the total
number of occurrences for a term.

Term Frequency Document Frequency (TFDF). Another, quite recent tech-
nique to exploit both the tf and df factors is presented in [122]:

TFDFt = (n1n2 + c(n1n2 + n2n3)), (2.41)

where n1 denotes the number of documents in which t occurs, n2 the number of
documents t occurs only once, and n3 the number of documents containing t at
least twice. An increasing weight c gives more weight for multiple occurrences.
The setting the authors recommend to use because it gave the best results in their
experiments is c = 10.

In [120], the authors examine the estimation of global term weights (such as the
document frequency of a term, i.e., the number of documents a term occurs in for
a given collection) in information retrieval scenarios where a global view of the col-
lection is not available. Two alternatives are studied: either sampling documents
or using a reference corpus independent of the target retrieval collection. In ad-
dition, the possibility of pruning term lists based on frequency is evaluated. The
results show that very good retrieval performance can be reached when just the
most frequent terms of a collection (an extended stop word list) are known, and
all terms which are not in that list are treated equally. In this chapter, we do not
consider how to actually determine (collect) and distribute this information. We
will return to this particular problem in Chapter 7, when we turn our attention to
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P2P search. We want to note that this research is directly applicable to the prob-
abilistic model when document frequency estimation is substituted by collection
frequency estimation.

2.5 Semantic Search

The vision of the Semantic Web is a machine-readable and machine-understandable
version of the Web. Machine-readability can be guaranteed by common standards
such as XML on the syntax level, or RDF on the data interchange level. The
vision of the Semantic Web goes beyond mere data formats and includes layers for
taxonomies and ontologies for better understanding of that data (inference models
are an additional extension of these elements). Once this web is interconnected and
semantically annotated (as envisioned in the WoD), many of today’s tasks can be
solved better and performing complex tasks will be better supported.

In our context, we mainly target search over RDF data and semantic search usu-
ally denotes exploiting the structure of the RDF graph. This means searching
for related documents and considering the relationships between documents. One
technique suggested for this type of search is SPARQL (SPARQL Protocol and
RDF Query Language), a query language for RDF developed by the W3C consor-
tium.11 SPARQL allows for the specification of attributes and relation as part of a
query. However, this makes the query syntax much more complex (especially when
compared to straightforward keyword queries). We consider this quite a disadvan-
tage for non-technical users, similar to the complexity of SQL queries (with which
SPARQL shares common syntax elements). One of the main goals in our research
is to find a viable compromise between the power of languages like SPARQL and
the simplicity of keyword queries users expect to be able to issue. For this reason
the focus of the later parts of this chapter is on Information Retrieval, more specif-
ically ad-hoc (keyword) search. Many times, semantic search refers to search in
data which is organised by means of an ontology. This ontology describes classes
and hierarchies of objects and can additionally be used for inference (i.e., resolving
existing and discovering new relationships based on an ontology).

On a more general level, search and retrieval has been the subject of intense research
over decades. In general, we denote as search every user interaction with computer
systems with the goal of finding information. Most commonly this is done by issuing
some kind of textual query. The best-known search use case is web search, in the
context of using any one of the large commercial search engines like Google, Yahoo,
or the Microsoft equivalent Bing. The interfaces to all of these are quite similar
in their simplicity. Users enter simple keyword queries (i.e., queries consisting of
mostly only few keywords).

However, search interfaces can differ from that use case significantly. Not all sce-
narios are as unrestricted as web search. Search in libraries for example is different

11http://www.w3.org/2001/sw/DataAccess/
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in that users want a certain set of fields to search in (ISBN, author, title), e.g., [43];
the same is true for search in the biomedical domain where users target chemical
compounds rather than general information about a topic, an example of concept-
based retrieval in the biomedical domain is given in [113].

Some work has been done in the area of user interfaces for semantic full text
search. In [17], for example, a rich, interactive user interface for semantic search is
presented. Starting from keyword queries, the system incorporates facets, proposals
and breadcrumbs (location based clues). This work shows that supportive user
interfaces can help users to refine their queries starting from keyword search. We
see this line of research as complementary to improvements in ad-hoc search. In a
more recent position paper semantic full-text search is advocated in [16].

We want to stress the importance of traditional retrieval models and the potential
benefits of combining them with semantic technologies. In the context of this
thesis, semantic search covers techniques going beyond simple keyword matching
and considers contextual information and other extrinsic information. One very
common semantic technique is for example word sense disambiguation, i.e., finding
the right sense of a word in a given context (do users search for the Jaguar car
or for the animal when simply entering “jaguar”?). Another one is to take into
account synonyms and to not only present matches for the search term but also its
synonyms (when users search for “bank” documents containing “financial institute”
might be good matches too).

2.6 Entity Search

Entity search has been gaining increasing attention in the research community, as
recognised by various world-wide evaluation campaigns. The TREC Question An-
swering track focused on entities with factoid questions and list questions (asking
for entities that meet certain constraints) [119]. The TREC 2005–2008 Enterprise
track [10] featured an expert finding task: given a topic, return a ranked list of
experts on the topic. The TREC Entity search track ran from 2009 to 2011 [12],
with the goal of finding entity-related information on the web, and introduced the
related entity finding (REF) task: return a ranked list of entities (of a specified
type) that engage in a given relationship with a given source entity. Between 2007
and 2009, INEX also featured an Entity Ranking track [32]. There, entities are rep-
resented by their Wikipedia page, and queries ask for typed entities (that is, entities
that belong to certain Wikipedia categories) and may come with examples. Most
recently, the Semantic Search Challenge (SemSearch) ran a campaign in 2010 [46]
and 2011 [20] to evaluate the ad-hoc entity search task over structured data. The
main task here is ad-hoc entity retrieval : “answering arbitrary information needs
related to particular aspects of objects [entities], expressed in unconstrained natural
language and resolved using a collection of structured data” [92].

Commonly, the ad-hoc entity retrieval task is approached by adapting standard
document retrieval methods. A textual representation (“pseudo document”) is built
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for each entity, and these representations can then be ranked using conventional
IR models. The main challenge, of course, is how to obtain these textual represen-
tations from structured data. WoD conceptually forms a large, directed, labelled
graph with nodes corresponding to entities and edges denoting relationships, and
is described in the form of subject-predicate-object (SPO) triples of the RDF data
model; Figure 1.3 shows a small excerpt from an RDF graph centred around a
given entity.

A natural solution would be to represent each entity using a fielded structure, where
fields correspond to predicates (i.e., arrows on Figure 1.3) and associated nodes (or
rather, the text extracted from them) are used as field values. These representations
can then be ranked using any fielded document retrieval model, such as BM25F [95]
or the mixture of language models (MLM) [86]. However, with this approach the
number of document fields soon becomes computationally prohibitive, making the
estimation of field weights intractable. A commonly used workaround is to group
predicates together into a small set of predefined categories, and as such, create
documents comprising of only a handful of fields. This grouping (or “predicate
folding”) can be based on, for example, the type of predicates (attributes, in/out-
relations, etc.) [90] or on their (manually determined) importance [21]. This leads to
a data model where the optimisation of field weights is easily tractable, even using
exhaustive search over the parameter space. While this approach seems to work
well in practice, it seriously limits the semantic expressiveness of entity models, as
it is no longer possible to access the content of individual predicates or might be
too dependent on the data collection.
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Part II

Entity Search

Having covered the basics, we continue by introducing the main focus of this the-
sis in Chapter 3 which is the ad-hoc entity search task (i.e., search for entities in
the WoD). Therein, we give a thorough introduction to the problems we are con-
cerned with and describe the basic techniques the later chapters will build on. In
Chapter 4, we continue to describe more advanced models and incorporate seman-
tic aspects in terms of structuring predicates by their types to improve retrieval
efficiency.
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Chapter 3

Entity Search in the Web of
Data

In this chapter we give an overview of the task of entity search, and our participation
in benchmarking initiatives. Our investigations in the field of entity retrieval started
with our participation in the 2010 edition of the Semantic Search Challenge for
which we studied the entity search and list search tasks. We first introduce the
entity search task, based on an extension of [13]. This line of research was followed
further in [27]. Further, our observations gave rise to specific research questions
related to entity modelling which will be picked up in Chapter 4.

3.1 Introduction

Search for entities has become the most popular type of web search, second to
navigational queries [92]. As such, the search for entities has attracted considerable
amounts of research interest. We introduce approaches to both the classical entity
search and list search (e.g., the “Arab states of the Persian gulf”, introduced in 1.3,
is a typical list search query). entity search task. With respect to the list search
task we attempt to model human user behaviour when searching in Wikipedia.
Both methods were evaluated in the Semantic Search Challenge of the Semantic
Search 2011 Workshop. We then put our results in context with the other teams’
results for the challenge tasks. Entity search denotes searches targeting entities
instead of documents. Contrary to search in the Web of Documents, we search for
entiteis and do so in RDF (Resource Description Framework) data or other types
of structured data representation. Such structured representations, which provide
the directions and types of links between entities, are often referred to as “Semantic
Web” as envisioned by Tim Berners Lee [19].

At the same time, there is an increased amount of information published as Linked
Data that is inherently organised around entities; each entity is identified by a
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unique URI and is described using a set of subject-predicate-object RDF triples.
Querying these structured data sources by means of simple keyword search (as op-
posed to SPARQL-like languages) emerged as a genuine user need and has recently
become an active topic of research [20, 21, 26, 90, 92]. The tasks we are study-
ing in this chapter is ad-hoc entity retrieval (often referred to as semantic search)
which we introduced in Section 2.6: “answering arbitrary information needs related
to particular aspects of objects [entities], expressed in unconstrained natural lan-
guage and resolved using a collection of structured data” [92], and list search, i.e.,
find a set of relevant answers for a given query.

In the context of semantic search this means that the classical information retrieval
keyword search is extended by using RDF input data in the form of (subject, pred-
icate, object), where each component is described by a URI (Uniform Resource
Identifier). Entities are represented by subjects and occur together with predi-
cates and objects closer identifying this entity. For example the RDF triple ex-
ample.org/NTNU, example.org/hasLocation, example.org/Trondheim implies that
NTNU is located in Trondheim.

In this chapter we show our approaches to entity search and summarise our partic-
ipation in and the results of the Semantic Search Challenge of the Semantic Search
2011 Workshop providing comprehensive evaluation of our approaches, using both
the Billion Triple Challenge (BTC) and DBpedia1 data sets. Overall we achieved
the third place for entity search and the first for the list search task.

Our main emphasis for the entity search was on combining evidence from multiple
knowledge sources, where each source is queried using a retrieval method tailored
to its specific properties. With respects to list search, our goal was to mimic the
behaviour of humans searching in Wikipedia for we believe much of the answers to
list queries is available there, albeit not directly accessible. Finally, for both tasks,
we exploited “sameAs” links extracted from DBpedia.

In the remainder of this chapter we first survey related work in Section 3.2. Next,
we introduce the Semantic Search Challenge in Section 3.3. Then, in two largely
independent sections, we discuss our approaches to both entity search and list
search in Sections 3.4 and 3.5, respectively. Further, we give an overview of the
results of the challenge in Section 3.6, putting our approaches in context with other
submissions. We conclude and outline future directions in Section 3.7.

3.2 Related Work

The problem of providing natural language interfaces to semantic data, the area also
addressed by this work, is currently in the centre of research attention, with several
prototype systems already in existence. Some were built for a specific domain (e.g.,
[41]), others are domain-independent [51]. The dominant approach is to transform
a user’s keyword query to a formal semantic query by matching query segments

1http://dbpedia.org
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to triples from the knowledge base [28, 51, 110]). One of the main challenges is
the task of mapping segments of a free-text keyword query to entities of a given
knowledge base (resources or an ontology). Different strategies to this task can be
found in the literature, from pattern-matching and bag-of-words to deep linguistic
analysis [114]. Work related to the problem of keyword queries analysis also include
annotation of the free text with resources from a knowledge base [72], segmentation
of the keyword queries [45], as well as semantic query suggestion [68].

Learning from the user interaction can be employed in order to improve perfor-
mance of the semantic ad-hoc retrieval system, cf. Lopez et al. [57] and later
by Damljanovic et al. [31], who extend work from [110] by allowing user feedback,
query refinement, and query expansion. In contrast to most other systems, Power-
Aqua [58] (building on [57]) is able to work with multiple heterogeneous ontologies.
It transforms the input keyword query into the intermediate triple form, similarly
to the principle of other approaches, the intermediate format is then mapped to
the candidate entities in distinct ontologies.

The authors in [71] and [92] study real query logs of major search engines from
a semantic search point of view; their study allowed for classification of semantic
query types and for definition of ad-hoc object retrieval from semantic data. This
includes the ad-hoc semantic type retrieval that is the main focus of this chapter
and is largely uncovered by the previous work. A methodology for the evaluation
of ad-hoc retrieval is discussed in detail in [46].

The importance of the ad-hoc retrieval from the semantic data to the research
community is evident also from the growing number of research challenges targeting
this task, often from slightly different perspectives. The challenges include TREC
Entity Track,2 SemSearch challenge3 and QALD challenge.4

Finally, we also mention that an effort similar to the ad-hoc semantic search is
building natural language interfaces to databases. Here, instead of the semantic
knowledge base, data is retrieved from relational schemas (cf., e.g., [73]).

3.3 Data Collection

The data collection used is the Billion Triple Challenge 2009 corpus; it comprises
about 1.14 billion RDF statements collected by a Semantic Web crawler.5 We ad-
dress the following tasks: a) ad-hoc entity search: given a keyword query, targeting
a particular entity, provide a ranked list of relevant entities, identified by their
URIs; and b) list search: return a list of possibly all relevant results for a given
query. The data set, queries, and relevance assessments are publicly available.6

2http://ilps.science.uva.nl/trec-entity
3http://semsearch.yahoo.com
4http://www.sc.cit-ec.uni-bielefeld.de/qald-1
5http://km.aifb.kit.edu/projects/btc-2009/
6http://km.aifb.kit.edu/ws/semsearch{10|11}



46 Entity Search in the Web of Data

Table 3.1: BTC corpus statistics.

(a) Top 10 most frequent domains in
the data collection.

Domain Frequency

dbpedia.org 403,490,100
livejournal.com 177,194,000
rkbexplorer.com 155,367,100
geonames.org 131,639,700
mybloglog.com 101,977,700
sioc-project.org 82,271,100
qdos.com 35,620,700
kanzaki.com 35,259,400
hi5.com 33,224,700
dbtune.org 25,373,800

(b) Top 10 most frequent properties
in the data collection.

Property Frequency

dbpedia:wikilink 156,434,900
rdf:type 143,479,200
rdfs:seeAlso 53,852,300
foaf:knows 35,786,400
foaf:nick 32,979,500
foaf:weblog 23,239,200
dc:title 22,356,700
akt:has-author 19,541,900
sioc:links to 19,228,400
skos:subject 18,280,600

Data set. The data collection used is the Billion Triple Challenge 2009 data
set. It was mainly crawled during February/March 2009 and comprises about
1.14 billion RDF statements and describes entities from domains like dbpedia.org,
livejournal.com or geonames.org.7 In our evaluations we considered the 500 most
frequent predicates. An overview of the top frequent domains along with their
counts in terms of how many triples they occur in are shown in Table 3.1(a). We
further show the top RDF properties in Table 3.1(b).

Topics and relevance assessments.

The 2011 search challenge consisted of two separate tasks:

• Entity search

• List search

The entity search task is a continuation of the previous year’s task where partici-
pating teams are given keyword queries and the goal is to find the most relevant
entities with respect to one particular entity (e.g., “YMCA Tampa”) [46]. Two
topic sets are available, consisting of 92 and 50 keyword queries for years 2010 and
2011, respectively. The queries were sampled from web search engine logs.

The list search task, on the other hand, contains more complex queries matching
multiple entities (e.g., “Arab states of the Persian Gulf”). This is a task similar in
spirit to the List Completion problem at the INEX Entity Ranking track [35] and
to the Entity List Completion task of the TREC Entity track [14]). Each team was
allowed to submit three runs, i.e., different setups, to the challenge. The best out
of these would then be used to determine the teams’ rankings. More details on the
search challenge can be found in [20]. 50 list search queries were made available
for the 2010 benchmark.

7http://km.aifb.kit.edu/projects/btc-2009/
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Relevance judgments were obtained using Amazon’s Mechanical Turk. Human
assessors were presented with a simplified HTML summary of entities and had to
judge relevance on a 3-point scale (excellent, fair, and irrelevant).

3.4 Entity Search Task

In this section we outline our approach to the entity search track. This corresponds
to answering queries that refer to one particular entity.

We decided to incorporate both the given BTC collection and DBpedia data. There
are two reasons for this: a) we want to put a stronger focus on DBpedia data
because of its relative importance within the BTC collection, and b) a DBPedia
dump can be considered“cleaner”and includes more additional information such as
categories and template information. In general, we try to account for both short
and long representations as we consider this an important aspect of user behaviour.

3.4.1 Retrieval Model

We formulate the entity search problem as follows. We rank candidate entities (e)
according to their probability of being relevant given the query q: P (e|q). Instead
of estimating this probability directly, we use Bayes’ rule and rewrite it to:

P (e|q) = P (q|e) · P (e)

P (q)
. (3.1)

Next, we drop the denominator as it does not influence the ranking of entities. The
term P (e) could be used to express the a priori belief that an entity is relevant
(to any query); in this work, we assume this probability to be uniform. Hence, we
rank entities according to P (q|e).
In order to incorporate multiple representations, to estimate P (q|e) we consider a
linear combination of three different entity representations: based on name only
(N), based on DBpedia (D), and based on the BTC collection (B):

P (q|e) = λNPN (q|e) + λDPD(q|e) + (1− λN − λD)PB(q|e). (3.2)

We take PN (q|e) to be either 0 or 1, based on strict string matching between the
query and the name of the entity. PD(q|e), and PB(q|e) are estimated using a
(fielded) Language Modelling approach. The mixture weights λN and λD were
set to correspond with the importance of the individual sources. Intuitively, we
assigned the following weights: λN = 0.5 and λD = 0.3. We detail the computation
of these components in the next section.

3.4.2 Entity Representations

We assume the following two types of entity representation.
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Name-only Representation For each entity, we collected all its name variants
from DBpedia. Let eN denote the set of name variants that belongs to e. Based
on this representation we make a binary decision:

PN (q|e) =
{

1, ∃n ∈ eN : match(n, q)
0, otherwise,

(3.3)

where match(n, q) is a strict, case insensitive string matching function that returns
true iff n equals to q.

DBpedia Representation We rank entities in DBpedia using a fielded Lan-
guage Modelling (LM) approach. Each entity e is represented as a multinomial
probability distribution over terms: e. The likelihood of the query given this model
is then computed as a product of individual term probabilities:

P (q|θe) =
∏
t∈q

P (t|θe)n(t,q), (3.4)

where n(t, q) denotes the number of times term t occurs in the query. So far, this
approach equals to the standard LM approach. We deviate from it in the estimation
of the entity language model θe:

P (t|θe) =
∑
f∈F

P (t|θef ) · P (f), (3.5)

where F is the set of DBpedia fields considered, P (t|θef ) the term’s probability
given a specific field f , and P (f) is the importance of that field. We estimate field-
specific term probabilities as a linear combination of field-level and entity-level term
probabilities, both smoothed by Dirichlet priors:

P (t|θef ) = (1− λe) · P (t|ef ) + λe · P (t|e), (3.6)

where

P (t|ef ) =
tft,ef + μf · P (t|θcf )

|ef |+ μf
, (3.7)

and

P (t|e) =
∑

f tft,ef + μ · P (t|θc)∑
f |ef |+ μ

. (3.8)

The components of Eq. (3.7) and Eq. (3.8) are as follows: tft,ef is the number of
times term t appears in field f of entity e, |ef | is the length of field f of e (i.e.,∑

t tft,ef ), μf is a smoothing parameter for field f , μ is the entity-level smoothing
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parameter, P (t|θcf ) is a field-specific background language model, and P (t|θc) is
the general language model for the collection. The smoothing parameter μf was set
to the average field length of f , i.e.,

∑
e |ef |/|e|, where e is the number of entities.

Similarly, μ was set to the average entity representation length. The background
models P (t|θcf ) and P (t|θc) were calculated using a standard maximum-likelihood
estimate on the corresponding representation. We set the λe parameter in Eq. (3.6)
to a fixed value of 0.5.

BTC Representation We consider two representations based on the BTC col-
lection. The first approach (BTC singlefield) renders triples as single-field docu-
ments, and ranks them using a standard LM approach. Specifically, we use Eq. (3.4)
for ranking, where the entity model is estimated using Eq. (3.8). The other varia-
tion (BTC name+content) distinguishes between name and content fields. Using the
retrieval model introduced in the previous subsection, we set F = {name, content}
and consider the two fields equally important. λe (in Eq. (3.6)) was set to 0.7 based
on empirical results with last year’s queries. Smoothing parameter estimation is as
discussed before.

3.4.3 Exploiting “sameAs” Relations

Additionally, we experimented with exploiting “sameAs” relations extracted from
DBpedia. We propagate a fraction of the original query-likelihood scores along
“sameAs” links:

score(q|e) = P (q|e) + λS ·
∑
e′∈eS

|P (q|e′)− P (q|e)|, (3.9)

where eS denote the set of “sameAs” variants of entity e. We set λS to 0.75.

3.4.4 Preprocessing and Indexing

Both collections we used (DBpedia and BTC) were sorted prior to indexing to
facilitate the indexing on a per-entity basis; every subject in the collections was
treated as an entity, where the corresponding predicate-object values constitute
to the entity’s representation. For the indexing part, we used Apache Lucene.8

Preprocessing was based on Lucene’s standard analyzer, including lowercase trans-
formation and basic stop word filtering. We processed all queries with the Yahoo!
Spelling Suggestion API9 and applied the same transformations (lowercasing and
stop word removal) as to entity documents. Table 3.2 summarises the indices we
built; next, we discuss the collection-specific details.

8http://lucene.apache.org/java/docs
9http://developer.yahoo.com/search/web/V1/spellingSuggestion.html



50 Entity Search in the Web of Data

Table 3.2: Indices and sizes used.

Index #Fields #Entities #Size

DBpedia 7 7.8M 20GB
BTC singlefield 1 23.9M 42GB
BTC name+content 2 38M 35GB

DBpedia We used the most recent complete dump of DBpedia made available
on the DBpedia homepage.10 We performed additional preprocessing with respect
to URI decoding and matching in order to be compatible with the BTC collection.
Additionally, we filtered out those DBpedia URIs from the result list that do not
exist in the BTC collection as a subject. To catch all dependencies we used reversed
versions of the input files (with subject and object positions switched) for disam-
biguations, page links, and redirects. We did not perform exhaustive parameter
tuning; we tried a few different configurations and used the one that performed
best on the SemSearch 2010 queries. The list of fields used and their corresponding
weights are shown in Table 3.3.

Table 3.3: Fields in the DBpedia index.

Field Name Weight

Short abstracts 0.10
Long abstracts 0.10
Article categories 0.07
Disambiguations 0.20
Infobox properties 0.11
Labels 0.30
Wikipedia links 0.12

We also used DBpedia to find name variants for exact name matches: for each
DBpedia URI we considered the title and titles of pages redirecting to that URI as
the set of name variations.

BTC For the single field index (BTC singlefield) we ignored the predicate fields
and concatenated all object fields that were literals. We filtered out subjects that
had less than 50 characters of textual material associated with them. As to the
multi-field index (BTC name+content) we manually identified predicates that hold
names for the top 10 sources of the BTC collection. All other predicates were
considered “content.” Again, we limited ourselves to literal objects and filtered out
subjects that had less than 50 characters worth of textual data in the content field.

10http://wiki.dbpedia.org/Downloads36
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3.4.5 Submitted Runs

Table 3.4 presents an overview of the runs we submitted. For each, we used the same
approach to identifying exact name matches and to ranking entities in DBpedia.

Table 3.4: Runs submitted to the entity search track.

RunID BTC index sameAs MAP

NTNU-1 BTC singlefield N 0.2072
NTNU-2 BTC name+content N 0.2063
NTNU-3 BTC name+content Y 0.2050

As seen in the table, there is little difference in score across our runs. This implies
that none of our changes impacted ranking quality significantly, clearly leaving
room for future research in entity modelling.

3.5 List Search Task

This section describes our approach to the list search task. We begin with a brief
overview of our approach, followed by the description of the data sets we have used
in Section 3.5.1. Finally, we present the procedure we used to generate answers for
the input queries in Section 3.5.2.

Our approach to the list search task was inspired by the process that a human
user would carry on to answer list queries were he asked to do so with the help of
Wikipedia. This process would probably be to enter the query to the search field
of the Wikipedia GUI and inspect the top k results, matching Wikipedia articles,
for the correct answer. One could suspect that the items of the correct answer to
the list query would be distinct Wikipedia articles themselves and would be linked
from the top results of the full-text query issued against the index of Wikipedia
articles. In this spirit, our approach relies on retrieving information from the index
of long abstracts of Wikipedia articles; from the top k retrieved articles, we expand
by hyperlinks to obtain the list of articles, representing candidate entities for the
list query answer. We then check whether the candidate list contains Wikipedia
article sets, if so, we boost the scores of members of these sets. Under the term
Wikipedia article set, we understand a set of Wikipedia articles forming a semantic
group; we describe Wikipedia sets used in this work in Section 3.5.1. If no sets are
identified in the candidate list, we merely rely on boosting the score of the items
from the candidate list related to the principal entity of the query.

3.5.1 List Search Data Sets

This section provides a list and description of the data sets we have used for the
list search task.
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Wikipedia article index Lucene index of the long abstracts of Wikipedia arti-
cles. More specifically, this index is used to retrieve the articles most related
to the input query.

Wikipedia link graph This data set contains the network of Wikipedia arti-
cles and links between them. An article is a node in the network and links
correspond to the hyperlinks connecting articles. Each node has several
attributes—Wikipedia identifier, article title and list of identifiers of the sets
the article belongs to. The data set is used to form the candidate list from
the top k most related articles to the query.

Wikipedia sets This data set contains sets of Wikipedia articles that form a
semantically related group. We used the membership in Wikipedia categories
and the inclusion of Wikipedia templates to generate the Wikipedia sets. For
example, Wikipedia articles belonging to the category “Category:Astronauts”
form one set in Wikipedia set data set, whereas articles using the Wikipedia
template “Template:Ancient Cities of Cyprus” form another (derived from
the template inclusion in Wikipedia). We have also constructed an index of
the Wikipedia sets. For each set a document was created by concatenating
the short abstracts of articles belonging to that set. Those documents were
indexed and we use the index to check the relevance of the input query to
the sets identified as potential answers.

Annotation dictionary This data set contains a mapping between strings and
the Wikipedia articles referred to by those strings. We used the default dic-
tionary used by Wikipedia miner,11 containing the mapping between anchor
texts and articles, and extended it by adding article names and names of the
redirect pages.

3.5.2 List Search Process

Here, we describe the main components of our approach to the list search task.
It consists of the following steps (each of which will be described in more detail
below): query analysis, querying the article abstracts index, generating the list of
candidate items, boosting of scores of entities related to the main entity of the
query, and, finally, boosting of scores of items belonging to Wikipedia sets.

1. Query Analysis. Our first step is to analyse the query, which is facilitated
by using the Wikipedia miner toolkit to annotate the query with Wikipedia
topics. This gives us: a) query segmentation that we exploit in the full-text
search step, b) entities (in form of Wikipedia article titles) that the query
targets. We identify the principal entity of the query (the one with the highest
relevance score from Wikipedia miner) and use it for query reformulation. If
the query segment related to the principal entity is only slightly different
from the entity article’s title (the Levenshtein distance equals to 1), we try to

11http://wikipedia-miner.sourceforge.net
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update the query by replacing the given query segment with the title of the
entity article. We run both the original and the reformulated query against
the index of Wikipedia abstracts. If the sum of the scores of top 10 items of
the reformulated query is significantly higher (at least 2 times) than the sum
of scores of the top 10 items from the original query, we use the reformulated
query in the following steps. In the SemSearch Challenge data set, the query
reformulation was used instead of the original for two queries.

2. Querying the article abstracts index. We run two queries against the ar-
ticle abstracts index. The first one is evaluated by the Language Modelling
approach described in 3.4.2. The second query is a boolean query with the
following constraint: the terms from the text query segment related to the
principal entity (identified in step 1) must be present in the target document.
As the two result sets use different scoring functions, we merge the results by
normalisation; from each result set, we take the first 100 items, and normalise
their scores (so that their sum is equal to 1), we then merge the results. Let
Tk be the set of top k results of the merged ranks, and members of the set are
Wikipedia articles. Let r(i); i ∈ Tk be the rank of the item i in the merged
result ranking.

3. Generating the list of candidate items. In this step, we take the top k (in
the submitted runs k = 10) items from the previous step (Tk). We generate
the list of candidate entities by taking those top k results and expanding from
related articles by Wikipedia links. Every item added to the candidate list
is assigned a score proportional to the rank of the item from Tk. If the item
already exists in the candidate list the score is added to its existing score.
In this way, the items referred by multiple links from the result set from the
previous step will receive a higher score. More formally, let G = V,E be the
link graph of Wikipedia. Let e(i, j) = 1 ⇔ ei,j ∈ E and e(i, j) = 0 ⇔ ei,j /∈
E. We hence denote a candidate set C as:

C = {j; j ∈ V ∧ ∃i ∈ Tk : e(i, j) = 1}. (3.10)

We set the score of item c ∈ C to be:

w(c) =
∑

i inTk

e(i, c)× (1− ((r(i)− 1)× (1/k))). (3.11)

4. Boosting of items related to principal entity. We take the principal en-
tity P identified in the query analysis (Step 1) and boost the scores of the
entities in the candidate list that both are: a) linked to by the principal
entity and b) link to the principal entity (in the link graph of Wikipedia).
We boost the score of such an item I by computing the cosine similarity of
the principal entity and the given item. In this case we represent Wikipedia
articles as vectors constructed from their adjacency lists in the link graph. If
w(I) is the original score of the item, the boosted score wb1(I) is defined as
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follows: wb1(I) = w(I) × sim(P, I) × b1, where b1 is the boost constant (in
our experiments we used b1 = 100) and sim(P, I) is the cosine similarity of
the adjacency vectors.

5. Boosting of scores of Wikipedia set items. In this step, we identify Wiki-
pedia sets that have more than p fraction of their members in the candidate
list. For each such set S we compute the similarity score of the query and
the set document D(S) (see Section 3.5.1), using the standard Lucene scoring
function. We boost scores for the items from the candidate list according to:

wb2(I) = w(I)× b2 ×
∑

I∈S:|S∩C|≥p×|S|
sim(q,D(S)). (3.12)

Here, b2 is the boost constant for sets, and sim(q,D(S)) is the similarity of
the set document D(S) and query q; in our runs we have used p = 0.7.

6. Postprocessing In the postprocessing step, we sort the items in the candidate
list in descending order according to their scores and we map results back to
subjects in the BTC collection.

3.5.3 Submitted Runs

We submitted three runs for the list search task. The first one followed the process
as described in Section 3.5.2, only omitting Step 5.—boosting of the Wikipedia sets
items. The second run exactly followed the approach presented in Section 3.5.2.
The third run differed in the postprocessing step. For the items with a score higher
than a defined threshold, have also added entities linked by “sameAs” relations.

3.5.4 Discussion

For the list search task, we limited our approach to the Wikipedia data set. The
reason for this was purely pragmatic—while a part of the team was processing
the BTC data set to a usable form, the rest of the team was experimenting with
the list search task on the Wikipedia data set (which, in the form of DBpedia, is
also covered in the BTC collection). Due to time constraints and the quality of
pre-submission results we achieved, we decided to keep using only the Wikipedia
data set. However, our approach is fully transferable to the BTC collection or any
other to RDF data set in general, as we exploit textual descriptions of entities,
links between them, and type information (in the form of categories/templates).
One important observation from the results is that by exploiting Wikipedia sets
and boosting sets’ members we can achieve substantial improvements compared to
our baseline. Considering “sameAs” variants of high scoring entities led to further
performance improvements; see Table 3.5.
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Table 3.5: Runs submitted to the list search track.

RunID Wikipedia set boosts sameAs MAP

NTNU-1 N N 0.1625
NTNU-2 Y N 0.2594
NTNU-3 Y Y 0.2790

3.6 Results of the Challenge

A total of four teams participated in the entity search track. An overview of the
results is given in Table 3.6. Sindice’s submission achieved the highest scores in
terms of MAP, second to the university of Delaware (Udel) [56]. Sindice makes use
of multi-valued field normalisation in an extension to BM25F [33]. This is achieved
by introducing additional parameters to the retrieval model. All three of NTNU’s
setups were competitive and got the respective third, fourth, and fifth rank.

Table 3.6: Competition results for the entity search track.

Rank Participant Run MAP

1 9-Sindice 2 0.2346
2 13-UDel 2 0.2167
3 3-NTNU 1 0.2072
4 3-NTNU 2 0.2063
5 3-NTNU 3 0.2050
6 13-UDel 1 0.1858
7 9-Sindice 1 0.1835
8 9-Sindice 3 0.1635
9 5-IIIT Hyd 1 0.0876
10 5-IIIT Hyd 2 0.0870

For the list search track, a total of five teams submitted (all teams participating
in the entity search track plus an additonal team, the Ambani Institute of Infor-
mation and Communication Technology (DAA-IICT). NTNU’s approach clearly
outperformed the other submissions as shown in Table 3.7. Sindice and Delaware
came second and third, however, with a substantially lower MAP score. We at-
tribute the clear win to our strategy of dividing our resources between both tasks
early in the process and targeting strong submissions in both categories. The other
teams used only slight modifications with respect to query processing over their
submissions to the entity search track. Also all other teams used the BTC data
whereas we used mainly Wikipedia.
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Table 3.7: Competition results for the list search track.

Rank Participant Run MAP

1 3-NTNU 3 0.2790
2 3-NTNU 2 0.2594
3 3-NTNU 1 0.1625
4 9-Sindice 1 0.1591
5 9-Sindice 3 0.1526
6 9-Sindice 2 0.1505
7 13-UDel 1 0.1079
8 13-UDel 2 0.0999
9 5-IIIT Hyd 1 0.0328
10 5-IIIT Hyd 2 0.0328
11 15-Daiict 1 0.0050

3.7 Conclusions

In our participation we focused on integrating evidence from multiple sources for
the entity search task: we employed a fielded Language Modelling approach to
rank entities in the BTC collection and in DBpedia. Additionally, we considered
strict name matches based on a dictionary of entity name variants extracted from
DBpedia. As to the list search task we attempted to model human user behaviour
when searching in Wikipedia. Our approach includes a query analysis step to
identify the principal entity in the query. In the ranking phase we utilise the
Wikipedia link graph and semantically related article sets, defined by Wikipedia
categories and templates.

With our best entity search run ranked third among all submissions and our list
search runs were placed first, second, and third, of all runs, we consider our ap-
proaches competitive and intend to further improve on them.

Possible directions for future research include an exhaustive success and failure
analysis based on the full system evaluations. As our approaches employ a number
of parameters, most of which were set intuitively in the lack of time and—in case of
the list search task—in the lack of training data, we believe that there is much to
gain by adjusting these settings. Inspired by the relatively small difference between
our runs, we see further potential in improving the entity modelling component.
We omitted the list search task from future work, mostly due to the relatively
good results we achieved on it. Besides, all list search approaches will benefit from
improvements on the entity search task to a certain degree.
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Chapter 4

Semantic Entity Search

In this chapter we continue to investigate fielded or structured retrieval models for
entity search based on our observations in Chapter 3. Starting from the simple
fielded model introduced in the previous chapter and the experimental results we
obtained so far, we propose a generalised framework for fielded entity retrieval in
the WoD. We first introduce a strong baseline based on a straight-forward model,
building on the findings in [81]. Further, we introduce extensions based on both
attributes and types of the entities in the data set.

4.1 Introduction

In this chapter, we follow up on the general entity search task described in Sec-
tion 2.6. The overall research question we address is how to represent entities in
the Web of Data for the purpose of text-based retrieval. We put our work in a
broader context and survey related work in Section 4.2.

We then start from a standard document retrieval approach and consider simple
extensions: (1) extended preprocessing, a heuristic for extracting textual content
from URI descriptors, (2) a two-field representation, distinguishing between title
and content, and (3) entity importance, assigning more weight to entities from
trusted, high-quality sources. This is presented in Section 4.3.

We show that these extensions lead to improvements and that they add up. In
fact, our approach outperforms all previously reported results on both query sets,
despite that those were generated by far more complex systems. We observe that
the extended URI preprocessing accounts for the majority of the improvements.

Based on the observation that preserving structure can improve retrieval, we pro-
pose models taking this structure into consideration to a stronger degree in Sec-
tion 4.4. First, in Section 4.4.1 we formalise two entity modelling strategies within
a generative language modelling framework. One approach (Unstructured Entity
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Model) collapses all text associated with the entity into a single flat-text represen-
tation. The other approach (Structured Entity Model) groups predicates together
into a small number of categories and considers their weighted combination. We
perform an experimental evaluation of the two models using the 2010 and 2011 test
sets of the Semantic Search Challenge evaluation campaign in Section 4.4.2. We
find that these models outperform the current state-of-the-art in terms of retrieval
effectiveness on these collections. However, this is done at the cost of abandoning
a large part of the semantics behind the data. Subsequently, in Section 4.4.3, we
propose a novel entity model (Hierarchical Entity Model) capable of preserving the
semantics associated with entities. It uses the idea of having a two-level hierar-
chy for entity representation, one based on the predicate types, another based on
the individual predicates. We report on experiments using our hierarchical model
in Section 4.4.4 and show that modelling individual predicates of a given type is
more effective than folding their contents into a flat representation. Finally, we
conclude with a discussion of our findings and outline our plans for future research
in Section 4.5.

4.2 Related Work

It has been shown that that over 40% of web search queries target entities [92].
Following up on this trend, a range of commercial providers now support entity-
oriented search, dealing with a broad range of entity types such as people, compa-
nies, services, or locations. This shows that the problem studied in this chapter,
searching entities in structured semantic data, “has direct relevance to the opera-
tion of web search engines, which increasingly incorporate structured data in their
search results pages” [21]. A range of evaluation benchmarks have been organised,
for details of this we refer back to the overview given in Section 2.6.

The ad-hoc entity retrieval task over RDF data we studied in this chapter was
proposed and formalised in [92]. This task bears some resemblance to keyword
search in relational databases [89] and to XML retrieval [50]. The former has no
direct relevance as methods developed for structured databases are not directly
applicable to RDF data. As for the latter, Kim et al. [54] presented a probabilis-
tic retrieval model for semi-structured data (PRM-S) that allows for a weighted
mapping of query terms to (entity) attributes. Dalton and Huston [30] tested this
model on the SemSearch 2010 data set and found that a key limitation of the
PRM-S approach is that “it assumes a collection with a single or very few clearly
defined entity types”. Unlike the IMDB and Monster collections used in [54], the
BTC-2009 corpus is very heterogeneous. Additionally, two specific problems were
identified: (1) computing the query term to attribute mapping probabilities suf-
fers from attribute sparsity, and (2) mapping probabilities are estimated for each
query term independently. Finally, Ogilvie and Callan [87] considered modelling
documents with a hierarchical structure for XML retrieval. Our Hierarchical En-
tity Model has been developed in a similar spirit, but hierarchy in [87] is defined
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by document structure (markup), while in our case it is organised around seman-
tic relationships. Both works estimate language models on the component levels
and incorporate evidence from multiple levels within the hierarchy, but the task
addressed in [87] (XML component retrieval), and hence the actual models, are
different from ours.

4.3 Fielded Models for Entity Search

We start with a baseline retrieval system that constructs pseudo documents from
RDF triples and introduce three extensions: preprocessing of URIs, using two-
fielded retrieval models, and boosting popular domains. Using the query sets of
the 2010 and 2011 Semantic Search Challenge, we show that our straightforward
approach outperforms all previously reported results, some of which were generated
by far more complex systems.

We address the ad-hoc entity search task in RDF data: given a keyword query,
targeting a particular entity, return a ranked list of relevant entities identified by
their URIs. Each entity is described by a set of subject-predicate-object RDF
triples. For each entity, we build a textual representation by considering all triples
where it stands as the subject; we use only the object’s (string) value from the
triple and refer to it as object value.

Baseline Retrieval. All object values are concatenated together into a flat text
representation. We perform standard tokenisation and stopword removal; no
stemming is applied. We use standard retrieval models: BM25 from Eq. 2.20
and Language Models (LM) from Eq. 2.24.

Fielded Representation. We use a simple heuristic to identify predicates that
hold title values: these end with “name”, “label”, or “title”. Object values be-
longing to title-type predicates are concatenated into an additional title field.
This is the only part where we have some (limited) semantics captured in our
approach. Given this title+content representation, we use fielded versions
of BM25 and LM, specifically, BM25F [95], as shown in Eq. (2.28), and the
Mixture of Language Models [86], referred to as LMF, as given in Eq. (2.29)
and Eq. (2.30).

Entity Importance. Entities from trusted, high-quality sources are considered
more important and receive an extra query-independent weight in their re-
trieval score. In case of BM25, this is incorporated as a multiplication factor;
for LM, we use the document (entity) priors for this is purpose. In our ex-
periments, we illustrate the effects of this component by boosting DBpedia,
which is a central hub in the Linked Data cloud.

Extended Preprocessing. For all settings we introduced before, we apply a
heuristic to extract (additional) textual content from URIs. We do so by
using the string part of the URI after the last slash as the object value. Ad-
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ditionally, we make sure that characters like underscores, dashes, brackets,
etc. are all treated as whitespaces.

All data is stored in a Lucene index.1 We further try to improve the baseline
results obtained when using standard Lucene ranking by using advanced retrieval
models. More specifically, we apply BM25 and a language modelling approach to
the single-fielded and multi-fielded data.

4.3.1 Experiments

In this section we first introduce our experimental setup, then perform an evaluation
of our entity models.

Experimental Setup

We use the test suites of the 2010 and 2011 editions of the Semantic Search (Sem-
Search) Challenge [20, 46]. For a more thorough introduction of the data set, we
refer to Section 3.3.

Evaluation metrics. We use standard IR evaluation metrics: Mean Average
Precision (MAP), Precision at rank 10 (P@10), and Normalised Discounted Cumu-
lative Gain (NDCG).2 To check for significant differences between runs, we use a
two-tailed paired t-test and write †/‡ to denote significance at the 0.05/0.01 levels,
respectively.

Resource resolution. If a relation (predicate targeted at a URI rather than a
literal value) points to an entity within the collection, we replace the URI with that
entity’s name. Otherwise, we extract terms from the relative part of the URI.

We report on Mean Average Precision (MAP), the main metric used at SemSearch,
a more in-depth explanation can be found in Section 2.2.2. Significance testing is
performed using a two-tailed paired t-test.

Table 4.1 reports on a series of experiments we performed using two different re-
trieval models (LM and BM25) and two different parameter settings. For the
default setting, shown in columns 4 and 5, no training material is used; we take
values suggested in the literature or values that intuitively seem reasonable. For
LM, we use the average document/field length (avgdl) as the smoothing parameter
μ [86]. For BM25, we use k1=1.2 and b=0.25; we use the same b value for all
fields in the fielded variant BM25F, analogous to [86] and [26]. We use a weighting
of 0.2/0.8 for the title/content fields. The optimised parameter setting, displayed
in column 6, is only for the 2011 query set. We use relevance assessments from
the previous year as training material; these were also available to SemSearch 2011

1http://lucene.apache.org
2Note that the two editions used different gain values for computing NDCG scores: 3 and 2

(2010) vs. 2 and 1 (2011) for excellent and fair, respectively. We use these values unchanged.
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Table 4.1: Retrieval results. (Rows 1-12): results obtained in our work; (Rows
13-14): best results taken from the literature. Best scores for each column are in
boldface.

URI Retrieval 2010 2011 2011 (opt)
Run Preproc. Model MAP MAP MAP

Baseline (content) - LM 0.1832 0.1840 0.1840
- BM25 0.1888 0.1970 0.2154

+ LM 0.2388‡ 0.2445‡ 0.2445‡

+ BM25 0.2464‡ 0.2502‡ 0.2702‡

title+content - LMF 0.1832 0.1840 0.1840
- BM25F 0.1888 0.1970 0.2154

+ LMF 0.2900‡ 0.2618‡ 0.2765‡

+ BM25F 0.2621‡ 0.2625‡ 0.2937‡

title+content - LMF 0.1836‡ 0.1846‡ 0.1846‡

+ dbpedia.org boosting - BM25F 0.1909‡ 0.2031‡ 0.2166‡

+ LMF 0.2914‡ 0.2651‡ 0.2756‡

+ BM25F 0.2631‡ 0.2642‡ 0.2991‡

Best at SemSearch [20, 46] 0.1919 0.2346
Best reported since [26] 0.2805

participants. The best found parameter settings are: μ=avgdl for LM, μ=2 · avgdl
for LMF, and k1=0.4 and b=0.4 for BM25/BM25F.

First, in rows 1-4, we use standard retrieval models with flat text representation.
we see large differences depending on the URI preprocessing; all results using the
advanced preprocessing in rows 3-4 for URIs are significantly different from the
baselines without preprocessing in rows 1-2. Next, in rows 5-8, we use fielded
variants of these models, with two fields: title and content. The results in rows
5-6 equal rows 1-2; this is because the title field cannot contribute to the entity
representation without URI preprocessing. The results in rows 7 and 8, however,
outperform their counterparts in rows 3 and 4; assigning higher weight to the title
field clearly benefits retrieval when title values are extracted correctly. Finally, in
rows 9-12, we boost entities coming from high-quality trusted sources, in our case
DBpedia. In columns 4 and 5 we use the boosting value of 1.5, indicating that
all scores of DBpedia entities are multiplied by that value. In column 6, we show
results for the boosting factor that showed the best results on the 2010 queries (a
value of 2.2). However, this leads to a performance decrease in row 11 compared
to row 7; we attribute this to the fact that there are more relevant answers from
DBpedia for 2010 than for 2011.

We chose to use both BM25 and LM to investigate if both retrieval models display
the same behaviour with respect to the techniques we applied. We find that this is
indeed the case, but we also discovered two interesting differences. First, with de-
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fault parameter settings, LM performs better on the 2010 queries while BM25 does
slightly better on 2011. Second, BM25 benefits more from parameter optimisation.

We achieve the highest MAP value for the 2010 queries using the fielded language
models and using BM25F for the 2011 queries (row 11 and 12). We explain this by
the nature of the queries and the fact that BM25 is able to better fit these differences
using parameter optimisation. LMF, on the other hand, performs reasonably well
with the standard settings in many cases.

We want to point out a correlation between query sets and retrieval models used.
We consistently obtained better results for the 2010 queries with the language
modelling approach, whereas BM25 performed best on the 2011 queries. The 2010
query set comprises 92 queries with an average query length of 2.6 terms and an
average number of unique terms per query of 2.25). In the 2011 query set 50 queries
were used with an average query length of 2.7 terms and 2.62 unique terms per
query. In other words the 2010 query set overall contains more duplicate terms,
a fact which is best handled by the language modelling approach. Furthermore
the fraction of relevant documents in the relevance judgements stemming from
dbpedia.org is more than double in the 2010 query set.

In comparison to other approaches, we outperform all published results for both
years’ queries as shown in the last two rows of Table 4.1. Campinas et al. [26] report
improved results for the 2010 query set and achieve an MAP of 0.2805; a large
fraction of their improvements can be attributed to additional query, attribute,
and entity weighting. Blanco et al. [21] report a MAP score of 0.2705 on the
2010 queries using a manual grouping and weighting of predicates. Both works use
BM25F.

4.4 Advanced and Adaptive Entity Modelling in
the Web of Data

In previous section, we showed that simple fielded models outperform the current
state-of-the-art in terms of retrieval effectiveness, however, this is done at the cost
of abandoning a large part of the semantics behind the data. In this section, we
propose a novel entity model capable of preserving the semantics associated with
entities, without sacrificing retrieval effectiveness.

4.4.1 Baseline Entity Models

In this section we formalise and draw upon two existing entity modelling approaches
within a generative language modelling framework.
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Retrieval Framework

We study the entity retrieval problem in a generative language modelling setting.
Language models (LMs) are attractive because of their solid theoretical foundations
that couples with good empirical performance [124]. LMs have been successfully
applied to a wide range of entity-related search tasks; see, e.g., [9, 30, 39, 54].
This is in line with our observations in Section 4.3. A general overview is given in
Sections 2.3.1 and 2.3.2 for the fielded variants. The following notation deviates
from the background section in that it regards entities instead of documents.

We rank candidate entities (e) according to their probability of being relevant given
query q: P (e|q). Instead of estimating this probability directly, we apply Bayes’
rule and drop the denominator as it does not influence the ranking (for a given

query): P (e|q) = P (q|e)P (e)
P (q)

rank
= P (q|e)P (e). Here, P (e) is the prior probability of

choosing a particular entity e, that we subsequently attempt to draw the query q
from, with probability P (q|e). Here, we assume that P (e) is uniform, thus, does not
affect the ranking. Entity priors could be used to incorporate query-independent
features into the ranking, for example, based on the RDF graph structure [26, 33].

Each entity e is represented by a multinomial probability distribution over the
vocabulary of terms. The entity model θe is used to predict how likely the entity
would produce a given term t, that is, P (t|θe). Assuming that query terms are
sampled identically and independently, the query likelihood is obtained by taking
the product across all the terms in the query, such that:

P (q|θe) =
∏
t∈q

P (t|θe)tft,q , (4.1)

where tft,q is the (raw) frequency of term t in the query. Note that P (t|θe) > 0
must be ensured for all vocabulary terms, otherwise the product might end up
being zero.

The main question we will be concerned with for the remainder of this chapter is
the estimation of the entity model, i.e., the probability distribution, P (t|θe).

Unstructured Entity Model

The simplest approach to constructing entity models is to fold all text associated
with the entity into one “bag-of-words”; see Table 4.2(a) for an illustration. Follow-
ing the standard language modelling approach to document retrieval, we implement
the entity model as a Dirichlet-smoothed multinomial distribution:

P (t|θe) = tft,e + μP (t|θc)
|e|+ μ

, (4.2)

where tft,e is the raw frequency of term t in the representation of e and |e| is the
size of this representation, i.e.,

∑
t tft,e. The smoothing parameter μ is set to the
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Table 4.2: Examples of baseline entity models corresponding to Figure 1.3. URIs
are resolved (i.e., replaced with the name of the corresponding entity).

(a) Unstructured Entity Model.

Text

Audi A4
1996 2002 2005 2007
The Audi A4 is a
compact executive car...
Volkswagen Group
Compact executive cars
All wheel drive vehicles
Front wheel drive vehicles
Product
Audi A4
Audi 80
Audi A5
Audi A4

(b) Structured Entity Model.

Pred. type Value

Name Audi A4

Attributes 1996 2002 2005 2007
The Audi A4 is a
compact executive car...

OutRelations Volkswagen Group
Compact executive cars
All wheel drive vehicles
Front wheel drive vehicles
Product
Audi A4

InRelations Audi 80
Audi A5
Audi A4

average entity representation size in the collection. The term generation process is
shown in Figure 4.1 (Left).

Several SemSearch participants employed variations of this approach: consider-
ing only triples where the entity stands as a subjects (thereby ignoring incoming
relations) [13, 30, 56] or extracting text only from the subject itself [36].

Structured Entity Model using Predicate-folding

Instead of folding all predicates together, they might be grouped into multiple
categories in order to preserve some of the original structure. Prior work presents
examples of such grouping based on the type of the predicates [13, 30, 47, 90] or
based on their manually determined importance [21]. We group RDF triples into
four main predicate types pt for a given entity e as follows:

• Name: the subject is e, the object is a literal, and the predicate comes from
a predefined list (e.g., foaf:name or rdfs:label) or ends with “name”, “label”,
or “title”.

• Attributes: the subject is e, the object is a literal, and the predicate is not of
type name.

• OutRelations: the subject is e and the object is a URI. We resolve the URI
by replacing it with the name of the corresponding entity; see Section 4.3.1
for details.
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• InRelations: e stands as the object; the subject entity URI is resolved.

Figure 4.2(b) presents an example. A separate language model θpt
e is estimated

for each predicate type from all predicates of that type (associated with the given
entity):

P (t|θpt
e ) =

tft,pt,e + μpt
P (t|θpt

c )

|pt, e|+ μpt

, (4.3)

where tft,pt,e is the sum of the term frequencies for t for all predicates of type pt
associated with e, and |pt, e| =

∑
t tft,pt,e. Essentially, we concatenate all text from

the predicates of type pt and then apply Dirichlet smoothing using a collection-
wide background model P (t|θpt

c ) (that is, a maximum-likelihood estimate from all
predicates of that type in the collection). The smoothing parameter μpt is set to
the average predicate type representation length in the collection.

Subsequently, the entity model is a linear mixture of the predicate type language
models (P (t|θpt

e )). This is additionally weighted with the importance of that pred-
icate type (P (pt)):

P (t|θe) =
∑
pt

P (t|θpt
e )P (pt). (4.4)

Figure 4.1 (Middle) illustrates the term generation process. Viewing entities as
documents and predicate types as document fields, this model is equivalent with
the Mixture of Language Models approach by Ogilvie and Callan [86].

4.4.2 Evaluation of Baseline Entity Models

In this section, we provide an evaluation of both our baseline entity models in turn.

Unstructured Entity Model

Recall that this model creates an unstructured entity representation by collapsing
text associated with the entity into one bag-of-words. In order to show the impact
of the different predicate types on retrieval effectiveness we perform three sets of
experiments, and report the results in Table 4.3. First, identified by the ‘ALL’ row,
we consider all four predicate types (Name, Attributes, OutRelations, and InRela-
tions). Next, shown in the ‘field type-only’ rows, we use only a single predicate
type at a time. Finally, in the rows named ‘ALL-but-field type,’ we present results
by omitting one of the types in turn.

Our findings are as follows. The absolute performance of the ALL model (that
simply uses all text associated with the entity) is remarkable; on the 2010 topic set
it outperforms the best SemSearch 2010 submission (MAP=0.1919) [46], while on
the 2011 set it would have ranked third (best was MAP=0.2346) [20]. As for the
individual predicate types, Name and Attributes perform best, with only minor
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Table 4.3: Retrieval results using the Unstructured Entity Model. Significance is
tested against the ALL setting (first line). Best scores for each topic set are typeset
boldface.

2010 2011
Predicate types MAP P@10 NDCG MAP P@10 NDCG

ALL 0.207 0.314 0.383 0.207 0.188 0.295

Name-only 0.205† 0.304 0.397 0.200 0.190 0.310

Attributes-only 0.206‡ 0.339† 0.392 0.220† 0.190 0.333†

OutRelations-only 0.087‡ 0.176‡ 0.216‡ 0.094‡ 0.102‡ 0.167‡

InRelations-only 0.096‡ 0.197‡ 0.226‡ 0.069‡ 0.098‡ 0.154‡

ALL-but-Name 0.157‡ 0.262‡ 0.321‡ 0.156‡ 0.144‡ 0.247‡

ALL-but-Attributes 0.182‡ 0.286‡ 0.342‡ 0.164‡ 0.160‡ 0.242‡

ALL-but-OutRel. 0.203‡ 0.311 0.369‡ 0.200‡ 0.180 0.283

ALL-but-InRel. 0.213 0.320 0.385 0.204‡ 0.190 0.283

differences between the two; in fact, either of these predicates types alone is on
a par with the ALL model. The scores for incoming and outgoing relations are
much lower. Looking at the combinations of all but one predicate types, Name
contributes the most and Attributes comes second; without either, the scores drop
substantially. Removing either incoming or outgoing relations has hardly any over-
all impact; in the ‘ALL-but-InRelations,’ 2010 case the scores marginally improve,
but the difference is not statistically significant. Note that—with the aforemen-
tioned exception—all results in the bottom block of Table 4.3 are significantly
different from the ALL combination in terms of MAP.

Structured Entity Model

Our second baseline model employs a weighted combination of four language mod-
els, corresponding to predicate types. We consider three different configurations in
Table 4.4: (1) equal weights on all types, (2) all weights allocated to Name and
Attributes, in equal proportion, and (3) most of the weights assigned to Name and
Attributes, again, but this time taking relations too into account. In the lack of
training data or any background knowledge about the collection or queries, (1) is a
natural choice. (2) and (3) are motivated by the results from the previous subsec-
tion; however, knowing from the task definition that each query targets a particular
entity, one could intuitively argue for such weight distributions. Note that when
a single predicate type is used, the Structured Entity Model is equivalent to the
unstructured case (Table 4.3, middle block).

All settings improve significantly and substantially over the unstructured baseline.
We find, somewhat surprisingly, that the uniform weighting performs best of all;
these numbers are the highest that were ever reported for either topic sets (which
are: MAP= 0.2705 for 2010 [21] and MAP=0.2346 for 2011 [20]). Even though
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Table 4.4: Retrieval results using Structured Entity Models. Significance is tested
against the ALL setting of the Unstructured Entity Model (Table 4.3, first line).
Best scores are typeset boldface. OutR stands for outgoing, InR for ingoing rela-
tions.

Pred. type weights 2010 2011
Name Att OutR. InR. MAP P@10 NDCG MAP P@10 NDCG

0.25 0.25 0.25 0.25 0.282‡ 0.399‡ 0.494‡ 0.260‡ 0.242‡ 0.397‡

0.50 0.50 0.249‡ 0.366‡ 0.461‡ 0.251‡ 0.230‡ 0.385‡

0.35 0.35 0.15 0.15 0.280‡ 0.404‡ 0.493‡ 0.261‡ 0.230‡ 0.397‡

Name and Attributes were shown to be the two most ‘useful’ predicate types,
using them without relational information is clearly suboptimal (row 2 vs. rows
1 and 3). The third setting (row 3) suggests that as long as all predicate types
are considered, the model is robust with respect to the actual weight distribution
used. We experimented with other configurations too, but none of them improved
significantly over the uniform weighting.

4.4.3 Hierarchical Entity Model

In this section we introduce a novel entity modelling approach. Before presenting
our proposal, we briefly review the considerations leading to the choice of this par-
ticular model. (1) In a heterogeneous environment the number of distinct predicates
is huge. It is not feasible to optimise their weights directly (because of the compu-
tational complexity and because of the enormous amounts of training material it
would require). (2) Entities are sparse with respect to the different predicates, i.e.,
most entities have only a handful of distinct predicates associated with them. (3)
As we have shown with the Structured Entity Model, folding predicates based on
their type is a viable alternative that works well in practice. Nevertheless, we need
a different solution if we wish to preserve the semantics in the entity model, i.e.,
keep individual predicates and their contents accessible (and possibly exploit this
information in the retrieval model). Users can only be offered to make use of single
predicates if they are preserved individually, such kind of faceted search may not
improve effectiveness in the context of the Semantic Search Challenge, but might
be a requirement given from the user side.

The main idea behind our model is to organise information belonging to a given
entity into a hierarchy of two levels, with predicate types (i.e., name, attributes,
incoming and outgoing relations) on the first level and individual predicates of that
type on the second level. This preserves the original structure associated with the
given entity, and allows for setting the importance individual predicates conditioned
on their type and on the entity. Formally, this is expressed as follows:
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Figure 4.1: Graphical representations of entity models: (Left) Unstructured Entity
Model, (Middle) Structured Entity Model using Predicate-folding, (Right) Hierar-
chical Entity Model.

P (t|θe) =
∑
pt

P (t|pt, e)P (pt|e) (4.5)

=
∑
pt

( ∑
p∈pt

P (t|p, pt)P (p|pt, e)
)
P (pt|e). (4.6)

The term generation process under this model is shown in Figure 4.1 (Right).
Next, we discuss the three components from Eq. (4.6): term generation (P (t|p, pt)),
predicate generation (P (p|pt, e)), and predicate type generation (P (pt|e)).

Term generation. The importance of a term is jointly determined by the pred-
icate in which it occurs as well as all other predicates of that type associated with
the entity:

P (t|p, pt) = (1− λ)P (t|p) + λP (t|θpt
e ), (4.7)

where P (t|p) is a maximum-likelihood estimate (i.e., the relative frequency of term
t in predicate p) and P (t|θpt

e ) is the Dirichlet-smoothed LM for predicate type pt,
estimated using Eq. (4.3). The parameter λ ∈ [0..1] controls the influence of the
predicate type model. For the sake of simplicity, we set λ to 0.5 in our experiments.

Predicate generation. The importance of a given predicate p is conditioned on
the type of the predicate pt and the entity e: P (p|pt, e). We consider four natural
options:3

• Uniform All the predicates of the same type are treated as being equally
important: P (p|pt, e) = 1/n(e, pt), where n(e, pt) is the number of predicates
of type pt assigned to e.4

3It is by design that predicate importance is independent of the query; this way other, possibly
computationally heavy, alternatives for setting this probability could be estimated offline.

4Since predicates encoding the entity name are all equally important, we do not vary their
importance, hence we always use the uniform distribution for pt = name.
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• Length The probability mass is allocated to predicates proportional to their
length: P (p|pt, e) = |p, e|/|pt, e|, where |p, e| and |pt, e| are the lengths of p
and pt, respectively, measured in the number of terms they contain.

• Average length We use the average length of the predicate p in the collection
relative to the average length of all predicates of type pt.

• Popularity We regard popular predicates more important, where popularity
is measured in terms of the number of triples that have the given predicate:
P (p|pt, e) = n(p)/n(pt), where n(p) and n(pt) are the total number of triples
in the collection with predicate p and predicate type pt, respectively. This is
independent of the entity e

Predicate type generation. The model in Eq. (4.6) allows us to set predicate
type importance on a per-entity basis. To simplify matters, however, we make the
conditional independence assumption between predicate types and entities, hence
P (pt|e) = P (pt). This allows us to use estimation methods (or the actual values)
from the Structured Entity Model, as this component is identical in the two models
(cf. Eq. (4.4)).

4.4.4 Evaluation of the Hierarchical Entity Model

In order to evaluate the hierarchical entity model, we first show the results ob-
tained for each of the predicate types in turn, analogous to the second block in
Table 4.3. This is also the baseline we test against. Table 4.5 presents the results
for each of the predicate types and different weighting models for individual pred-
icates. As indicated, improvements are significant in the majority of cases. We
show improvements over the results reported for the unstructured model in every
category, illustrating that the additional level of normalisation can cover the struc-
ture of the entities. The “uniform” weighting strategy performs best for all types
with “popularity” coming second. Therefore we omit the results for the remaining
predicate weighting strategies in Table 4.6, where we show the effect of using mul-
tiple field types and combine them. We can not improve results here, which we
attribute to both the unexpectedly strong baseline and a certain inability of the
model to exploit the semantic information. This is somewhat surprising since we
showed we can cover for individual predicate types and as such can contribute to
better predicate modelling (as shown in Table 4.5).

4.5 Conclusions

We have addressed the task of ad-hoc entity retrieval in the Web of Data: returning
a ranked list of RDF resources that represent an entity described in the keyword
query.
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Table 4.5: Retrieval results using Hierarchical Entity Models using a single predi-
cate type.

Predicate Predicate 2010 2011
type weighting MAP P@10 NDCG MAP P@10 NDCG

Attributes Uniform 0.235‡ 0.326 0.440‡ 0.242‡ 0.214 0.347

Length 0.212‡ 0.287‡ 0.415 0.229‡ 0.206 0.348

AvgLength 0.213‡ 0.286‡ 0.414 0.229‡ 0.206 0.351

Popularity 0.232‡ 0.310† 0.439‡ 0.251‡ 0.214 0.379

OutRelations Uniform 0.119‡ 0.178 0.261 0.122‡ 0.122† 0.205‡

Length 0.092‡ 0.166 0.212 0.098‡ 0.092 0.165

AvgLength 0.091‡ 0.153† 0.213 0.096‡ 0.094 0.168

Popularity 0.107‡ 0.167 0.244 0.123‡ 0.126† 0.207‡

InRelations Uniform 0.107‡ 0.205† 0.239 0.080‡ 0.116† 0.175‡

Length 0.094‡ 0.179† 0.219 0.070 0.094 0.159

AvgLength 0.092‡ 0.170‡ 0.221 0.078‡ 0.098 0.175‡

Popularity 0.112‡ 0.202 0.245† 0.089‡ 0.124† 0.190‡

Table 4.6: Retrieval results using Hierarchical Entity Models and uniform term
weighting. Significance is tested against the Structured Entity Model (correspond-
ing row in Table 4.4). Best scores for each year are typeset boldface. OutR stands
for outgoing, InR for ingoing relations.

Pred. type 2010 2011
Name Att OutR InR MAP P@10 NDCG MAP P@10 NDCG

0.25 0.25 0.25 0.25 0.235‡ 0.326‡ 0.439‡ 0.242‡ 0.214‡ 0.374†

0.50 0.50 0.224‡ 0.336‡ 0.413‡ 0.204‡ 0.200‡ 0.320‡

.35 .35 .15 .15 0.256‡ 0.364‡ 0.461‡ 0.244‡ 0.224 0.372†

Starting from a baseline using standard document retrieval techniques, we intro-
duced three expansions: (1) a heuristic for extracting textual content from URI de-
scriptors, (2) a two-field representation, based on title and content, and (3) boosting
entities from trusted domains. We showed that our approach is highly competitive
and—to the best of our knowledge—outperforms all previously reported results on
these data sets. The extent of our improvements is somewhat surprising because
our approach is straightforward in terms of transforming RDF triples into a flat
structure and applying known IR techniques. We observe that the extended URI
preprocessing component accounts for the majority of the improvements.

The main research question we have been concerned with is the modelling of en-
tities, described in the form of subject-predicate-object triples, for text-based re-
trieval. Prior work suggested two main directions: (1) collapsing all text associated
with the entity into a single flat-text representation and then using standard IR



4.5. Conclusions 71

models for document retrieval, and (2) grouping predicates together into a small
number of categories, representing them as document fields, and applying fielded
extensions of document retrieval methods. We formalised both strategies using gen-
erative language models and termed them Unstructured Entity Model and Struc-
tured Entity Model. Experimental evaluation was performed using the 2010 and
2011 test sets of the Semantic Search Challenge evaluation campaign. The struc-
tured approach was shown to outperform a very strong baseline provided by the
unstructured model.

Specifically, we grouped predicates based on their types into four categories: name,
attributes, outgoing, and incoming relations. Out of these, name and attributes
proved to be the most useful ones for our task. The combination of multiple
predicate types failed in the unstructured case; incorporating relations did not
bring in any improvements over using names or attributes alone. The reason for
this behaviour is that there is more textual content for relation type predicates
(35.5 and 13.3 terms on average for in- and out-relations, respectively) than for
name (3.95) or attributes (26.6), and this way the entity language model may lose
the focus from the entity itself. The structured model represents predicate types
as language models and considers their weighted linear combination. Taking all
types with equal weights delivers very strong results and outperforms the existing
state-of-the-art. Importantly, we showed that relations can contribute to overall
performance under this approach.

While the above two models perform well empirically, they suffer from a severe
limitation: they abandon a large part of the semantics behind the data. We pro-
pose a novel approach, referred to as Hierarchical Entity Model, that is capable
of preserving the semantics associated with entities. It organises predicates into
a two-level structure with predicate types on the top level and individual predi-
cates on the bottom level. The weight of predicate types can be set similarly to
the Structured Entity Model model, while the importance of individual predicates
can be estimated in an unsupervised way. Our experiments showed that modelling
individual predicates of a given type is more effective than folding their contents
into a flat representation. When multiple predicate types are combined for the
entity, the Hierarchical Entity Mpdel delivers substantially higher results than the
Unstructured EntityModel baseline, but fails to outperform the Structured Entity
Model. One issue for future investigation is to find out why the combination does
not benefit from the improved component models. It may be the case that the
entity model is now more semantically informed but the query representation and
retrieval model are yet unable to exploit this fact. Future work will mainly be con-
cerned with extending the current approach by segmenting the query and mapping
its components to individual predicates within the hierarchical entity model.





4.5. Conclusions 73

Recap: Part II

In the Entity Search part of the thesis we introduced entity search in the Web
of Data. More specifically, we described two tasks, entity search (ad-hoc keyword
search in the WoD) and list search (search for a set of results answering a given
query).

We started our investigations in this context of the Semantic Search Challenge
and described our submissions in Chapter 3. Our main focus there was to use
both BTC and DBpedia and achieve competitive results based on probabilistic
structured retrieval models using a simple fielded representation. Motivated by our
experimental results, we then focused on the entity modelling component, which
we identified as promising direction.

In particular we investigated fielded models. To this end, we proposed new models
based on structured search in Chaper 4. First, we provided strong baselines based
on advanced structured retrieval models. In the course of that chapter we pro-
posed a new model, the Hierarchical Entity Model. This model takes into account
both the strong full-text background model and the structured nature of the WoD.
Experimental results showed the competitiveness of our proposed solutions.
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Part III

Distributed Aspects

After having looked at entity search in a centralised setting in Part II; that is, we
assumed all entities to be located on on central server. We now proceed to inves-
tigate distributed aspects motivated by the inherently distributed characteristics
of the Web of Data (i.e., the WoD sources are located on different servers as in-
dicated by the domain names of the individual entities). Distributed information
retrieval is commonly denoted as federated search, which we will use as a basis
for our investigations. We first introduce the federated search use case in Chap-
ter 5 and describe a framework for entity search in this context. We then continue
with describing advanced techniques in Chapter 6. There, we exploit the semantic
structure of the WoD to improve entity retrieval in a federated search environment.
Finally, we go one step further by adapting the entity search use case to a P2P
environment in Chapter 7.
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Chapter 5

Federated Entity Search

In this chapter we extend the techniques of Chapter 3 and Chapter 4 to a dis-
tributed scenario. To this end, we formalise the federated search problem in a
language model setting and investigate the fundamentals of entity search in feder-
ated settings. The main questions we ask in this context is: How can we apply the
entity search techniques developed for the centralised case to a distributed one?
Further, we provide baseline results for all components of federated search.

5.1 Introduction

In this chapter we continue to focus on the ad-hoc entity retrieval we defined in
Section 2.6. There is a growing body of work on the subject, including indexing
structures [34], retrieval models [21, 39, 80], and evaluation methodology [46, 92].

All existing work on entity search, however, assumes that a centralised index, en-
compassing the contents of all individual data sources, is available. Instead of
expending effort to crawl all Web of Data sources—some of which may not be
crawleable at all—federated search or distributed information retrieval (DIR) tech-
niques1 route the query to the search interfaces of suitable collections that are
usually distributed across several locations [101]. For example, the query “entity
retrieval” may be passed to a bibliographical database of research articles (e.g.,
DBLP2), while for the query “San Antonio” collections containing information
about the city, such as GeoNames3 or DBpedia,4 might be more appropriate.

Federated search is a well studied subject in the context of document retrieval.
Three major challenges are distinguished in this area: (i) collection representation,

1In the course of this chapter, we will use federated search and distributed IR as synonyms.
2http://dblp.org/
3http://www.geonames.org/
4http://dbpedia.org/
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i.e., how to represent the contents of each collection, (ii) collection selection, i.e.,
how to select a subset of collections that are most likely to contain relevant doc-
uments, and (iii) result merging, i.e., how to merge the results returned from the
selected collections into a single ranked list. Each of these questions have been
researched extensively and we base our approach on insights gained from these
developments. The main distinctive element, however, that sets our efforts apart
from prior work is that our unit of retrieval is entities, not documents. To be able
to apply existing DIR methods, we need to create textual representations of enti-
ties that are described in terms of RDF triples. The simples solution is to create
a flat-text representation from the entities; this corresponds to the Unstructured
Entity Model from Section 4.4.2.

In this chapter, we seek to answer the following research questions: How does
distributed information retrieval perform compared to centralised retrieval on the
ad-hoc entity search task in the Web of Data? How can federated search be for-
malised in language modelling framework?

We chose a generative language modelling setting to study the entity retrieval prob-
lem, i.e., we base our work in this Chapter on the Unstructured Entity Model in-
troduced in Section 4.4.2. Our motivation for using language models is twofold: (i)
their solid theoretical foundations coupled with good empirical performance [124],
and (ii) the availability of a great deal of prior work on both distributed informa-
tion retrieval [40, 99, 106] and entity retrieval [8, 11, 22] that we can build upon.
LMs have also been successfully applied to a wide range of entity-related search
tasks; see, e.g., [9, 30, 39, 54, 80, 81]. Further, this way we open up for integrating
the techniques introduced in Chapters 3 and 4.

The remainder of the chapter is organised as follows. We shortly survey related
work in the area in Section 5.2 and show an overview of the federated entity search
architecture we work with in Section 5.3. We formalise methods for the main
components of federated search systems in a language modelling framework in
Section 5.4. We continue by outlining our experimental setup for federated search
in Section 5.5. In Section 5.6, we present the results of our experimental evaluation
and finally draw conclusions in Section 5.7.

5.2 Related Work

In the following we will provide an overview of related research before we continue
by introducing the typical federated search setting in Section 5.3.

Federated search has advanced to a mature research area dealing with querying
multiple, geographically distributed information repositories; we outlined the fed-
erated search scenario in Section 2.4.1. Both term weighting and normalisation
are identified as major problems when participating collections change more fre-
quently [117], for both require global document frequency information. Viles and
French study the impact of document allocation and collection-wide information
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in distributed archives [118]. They observe that even for a modest number of sites,
dissemination of collection-wide information is necessary to maintain retrieval ef-
fectiveness, but that the amount of disseminated information can be relatively low.
In a smaller scale distributed system, it is possible to use a dedicated server for col-
lecting accurate term-level global statistics [69]. However, this approach is clearly
not appropriate for large-scale systems.

Query-based sampling is applied to the resource selection problem in [2, 3]. Predic-
tive Likelihood is used to assess the adequacy of an acquired resource description,
as opposed to other approaches, where a fixed number of samples is drawn from
each collection. The authors show that their technique minimised overheads while
maintaining selection performance. A critical setting in this context is how to set
the sample size to find the balance between good sample levels and effectiveness
of the sampling process as well as to consider the size of the collection at hand.
We will return to these issues later on in Section 5.5.3 when we investigate the
underlying setting (cooperative/uncooperative) and put the sampling problem in
context with our work.

Collection A

Collection B

Collection C

Summary A
Summary B
Summary C

Central broker

A

C

Q

B
2

3

Q 1

Q

Figure 5.1: Schematic overview of a typical broker-based distributed information
retrieval system.

5.3 An Architecture for Federated Entity Search

We now present a high-level overview of the typical broker based architecture in
which the retrieval process is coordinated by a central server in Figure 5.1. Its
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Table 5.1: Variable naming conventions for probabilistic approaches in the dis-
tributed entity search scenario.

Variable Gloss

Q, E, C Query, entity, collection
DE Document representing entity E
t ∈ Q Query term
CE Collection that entity E belongs to
tft,Q Number of times term t occurs in Q
P (t|DE) Maximum-likelihood entity model
C Set of all collections
P (t|θE) Smoothed entity model
|C| Number of entities in collection C
P (t|G) Global background language model

main components are a central broker and individual collections, named A, B,
and C. For now we assume the broker can send queries to all involved collections
and store the resultant documents. However, different access levels are possible
ranging to full access via the broker in a cooperative environment. A user query
(Q) is first issued to the broker, which is responsible for forwarding it to the right
collections and collecting the individual ranked results, as shown on the left side of
the figure. To the end of deciding which collections are the best ones to answer a
certain query, the broker has the task of modelling the individual collections via an
adequate collection representation (1). Based on this representation, a ranking of
collections is created first at the broker, then some of these collections are selected
(2); this step is called collection selection. The query is then forwarded to all of
these collections and the broker requests them to generate results for the input
query. In our example, collections A and C process the query and return ranked
lists of results. In a final step, these are combined in the result merging step (3)
in order to return a single result set to the user. All three steps are depicted as
numbers in circles in Figure 5.1.

We continue with introducing baseline versions for each of these components (i.e.,
the three steps depicted as numbers in circles) in Section 5.4. Note that we will
put a special focus on how cooperative and uncooperative environments can be
supported, a topic which we will further investigate in Section 5.5.3.

5.4 Baseline Models

In this section, we introduce the baseline models we use throughout the remainder
of the this chapter and Chapter 6. We further refer to Table 5.1 for the notation
which will be used.
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5.4.1 Entity Modelling

The baseline entity model we apply is rather straight-forward: every unique subject
found in the collection is an entity. We assign the text value of the object of every
outgoing predicate as an entity’s content field. Further, we employ the Unstruc-
tured Entity Model from Section4.4.2. To make sure this chapter is self-contained,
we briefly introduce this model here.

Candidate entities (E) are ranked according to their probability of being relevant
given query Q: P (E|Q). Instead of estimating this probability directly, we apply
Bayes’ rule and drop the denominator as it does not influence the ranking (for a
given query):

P (E|Q) =
P (Q|E)P (E)

P (Q)

rank
= P (Q|E)P (E). (5.1)

P (E) is the prior probability of choosing a particular entity E, that we subsequently
attempt to draw the query Q from, with probability P (Q|E). Here, we assume that
P (E) is uniform, thus, does not affect the ranking. Entity priors could be used
to incorporate query-independent features into the ranking, for example, based on
the RDF graph structure [26, 33].

Each entity E is represented by a multinomial probability distribution over the
vocabulary of terms. The entity model θE is used to predict how likely the entity
would produce a given term T , that is, P (T |θE). Assuming that query terms are
sampled identically and independently, the query likelihood is obtained by taking
the product across all the terms in the query, such that:

P (q|θE) =
∏
t∈Q

P (t|θE)tft,Q , (5.2)

where tft,Q is the (raw) frequency of term t in the query. Note that P (t|θE) > 0
must be ensured for all vocabulary terms, otherwise the product might end up
being zero.

The simplest approach to constructing entity models is to fold all text associated
with the entity into one“bag-of-words”. Following the standard language modelling
approach to document retrieval, we implement the entity model as a Dirichlet-
smoothed multinomial distribution:

P (t|θE) = tft,E + μP (t|θc)
|E|+ μ

, (5.3)

where tft,E is the raw frequency of term t in the representation of E and |E| is the
size of this representation, i.e.,

∑
t tft,E . The smoothing parameter μ is set to the

average entity representation size in the collection, which, based on our experience,
is a sensible setting.
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5.4.2 Collection Representation

In this section we present our approach for representing and ranking collections (i.e.,
Step 1 in Figure 5.1. We formulate this task in a generative probabilistic framework
and rank collections based on their likelihood of containing entities relevant to an
input query. That is, given a query Q, we estimate P (C|Q) for each collection C.
Instead of estimating this probability directly, we apply Bayes’ rule and rewrite it
to:

P (C|Q) ∝ P (Q|C)P (C). (5.4)

Note that P (Q) has been dropped as it is the same for all collections, thus does
not affect their ranking. According to Eq. 5.4 the score assigned to each collection
has two components:

• Query generator (P (Q|C)): the probability of a query being generated by
collection C; this can be interpreted as the collection’s relevance to the query.

• Collection prior (P (C)): the a priori probability of selecting collection C;
this is a query-independent component that tells us how likely the collection
is to contain the answer to any arbitrary query.

We propose two models for estimating the query generator by drawing upon exist-
ing strategies to collection ranking and formalise them within a language modelling
framework. According to our first approach (Collection-centric model) a separate
representation is built for each collection from its contents, then these represen-
tations are ranked using a standard language modelling approach. In our second
approach (Entity-centric model) we compute the relevance of each individual en-
tity within the collection, then aggregate these scores to determine the collection’s
relevance. Our choices for the collection prior are discussed in §5.4.2. Also keep
in mind that our focus throughout this chapter is on modelling collections (as op-
posed to modelling entities). Therefore, we assume here that for each entity E, a
document representing that entity, DE , has already been created.

Collection-centric Model

One of the simplest approaches to resource selection is to treat each collection as
a single, large document [24]. Once such a pseudo-document is generated for each
collection, we can rank collections much like documents. In a language modelling
setting this ranking is based on the probability of the collection generating the
query. Assuming independence between query terms, we put:

P (Q|C) =
∏
t∈Q

P (t|θC)tft,Q , (5.5)

where tft,Q is the number of times term t is present in the query Q and P (t|θC)
is the probability of term t in the collection’s language model, computed using a
mixture model:

P (t|θC) = (1− λG)P (t|C) + λGP (t|G), (5.6)
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where P (t|C) and P (t|G) are the probabilities of term t given the collection and the
a global (cross-collection) language models, respectively, and λG is the smoothing
parameter (to ensure that P (t|θC) is always greater than zero). To estimate P (t|C)
we aggregate the term probabilities from all entities in the collection using the
following equation:

P (t|C) =
∑
E∈C

P (t|DE)P (E|C). (5.7)

Here, P (t|DE) is the maximum likelihood estimate (i.e., the relative frequency) of
term t in the document representation of entity E. Note that individual entities do
not necessarily have to contribute evenly to the probability mass representing the
collection; their relative importance (with respect to the collection) is controlled
by P (E|C), which we will come back to at a later stage. The global background
language model is also a maximum likelihood estimate; P (t|G) is set to the relative
frequency of term t across all collections.

Putting our choices together, the final formula for ranking collections under the
Collection-centric approach is:

P (Q|C) =
∏
t∈Q

{
(1− λG)

( ∑
E∈C

P (t|DE)P (E|C)
)
+ λGP (t|G)

}tft,Q
. (5.8)

In comparison with previous work on resource ranking in DIR, this model is similar
in spirit to the CORI algorithm, which creates pseudo-documents for each collection
using corpus term frequency statistics [23]. Our approach is also similar to the
language model based resource selection approach in [106]; in fact, they are identical
up until Eq. 5.6. The difference is in how the collection representation P (t|C) is
obtained; Si et al. [106] employ query-based sampling, while we take a weighted
average of (entity) document term probabilities. Our model also bears resemblance
to the large document model proposed by Elsas et al. [40] for blog feed search. The
main difference lies in the actual estimation of the collection model; [40] use a term
dependence model, while we assume full term independence (motivated by the need
for computational efficiency). Moreover, in [40] all documents are weighted equally,
while our model can incorporate document (in our case: entity) importance.

Entity-centric Model

Instead of creating a direct term-based representation of collections, our second
approach models and queries individual entities, then aggregates their relevance
estimates as follows:

P (Q|C) =
∑
E∈C

P (Q|E,C)P (E|C). (5.9)

This generative model has two components: (1) the probability of the query being
generated by the entity and the collection, P (Q|E,C), simply put, the entity’s
relevance to the query, and (2) the probability of the entity given the collection,
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P (E|C), that can be interpreted as the entity’s importance within the collection.
We estimate the query generation probability using the following mixture model (in
which we assume conditional independence between the query and the collection
given the entity):

P (Q|E,C) =
∏
t∈Q

(
(1− λG)P (t|θE) + λGP (t|G)

)tft,Q
, (5.10)

where P (t|G) is the global background language model and P (t|θE) is the proba-
bility of term t in the entity’s language model.

It is worth noting that Eq. 5.10 employs smoothing on two levels: (1) on the
entity’s level, by smoothing the entity document with the collection , and (2) on
the collection level, by mixing with the global background model using coefficient
λG. Therefore, this query-likelihood component enables us to combine evidence
from the entity, from the collection, and from the global background model. By
substituting Eq. 5.10 back into Eq. 5.9, the final estimation for the Entity-centric
model is as follows:

P (Q|C) =
∑
E∈C

P (E|C)
∏
t∈Q

(
(1− λG)P (t|θE) + λGP (t|G)

)tft,Q
. (5.11)

This model resembles the relevant document distribution estimation (ReDDE) col-
lection selection algorithm [104]. While algebraically being very similar, the funda-
mental difference is that ReDDE assumes an uncooperative environment and relies
on a sampling mechanism to estimate document relevance scores. Also, ReDDE
directly incorporates the collection size into the scoring formula as a multiplication
factor, while we can accommodate it (alone or in combination with other query-
independent factors) in the form of a collection prior. Our high-level approach
(Eq. 5.9) is equivalent to the small document blog feed search model of Elsas et al.
[40], but we differ in the estimation of its components. Specifically, [40] employ a
full dependence query model for P (Q|E,C) and use P (E|C) to measure the “cen-
trality” of a document (this concept is specific to the blog feed search task they are
solving).

Common Components

To complete our collection ranking models, two probabilities remain two be defined;
these are common to both the Collection-centric and Entity-centric approaches.

Entity importance. The probability P (E|C) expresses the importance of a
given entity E within the collection C (cf. Eqs. 5.8 and 5.11). It can be used
to incorporate query-independent features (for example, based on link structure
or popularity) to favour certain entities over others. To remain focused, we as-
sume here that all entities within a collection are equally important, i.e., we set
P (E|C) = 1/|C|.
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Collection priors. To estimate the a priori probability of a collection, P (C), we
consider two alternatives. The simplest choice is to assume that all collections are
equally important: P (C) ∝ 1. We refer to this as the uniform prior. Intuitively,
larger collections are more likely to contain relevant entities to any information
need. According to the collection size prior, we set the P (C) ∝ |C|. In the interest
of readability, we do not include the normalisation factors in the above equations;
we normalised P (C) so that

∑
C∈C P (C) = 1.

Practical Considerations

The Collection-centric method represents each collection by a single term distri-
bution, P (t|C). This probability can be pre-computed and possibly stored in the
index. If we put smoothing with the global collection aside, computing the query
likelihood amounts to a single lookup for each query term, and then multiplying
these probabilities. This makes this approach extremely efficient. On the flip side,
since the collection is modelled as a whole, changes concerning the representation
of entities (e.g., considering a fielded representation instead of flat-text) cannot
necessarily be integrated easily, as these would need to be lifted to the collection
level.

The Entity-centric model, on the other hand, can directly benefit from any im-
provements on the entity level, as it aggregates entity relevance scores. Therefore,
a better ranking of entities should in principle lead to a better ranking of collec-
tions. A serious disadvantage of this approach, however, is that is has to iterate
through all entities matching the query, to be able to determine the collection’s
score. Applying this model in practice, especially when low latency is required,
would involve additional investments in engineering effort; one possible solution
for improving efficiency is to apply heuristic cut-offs and to look only at the top k
relevant entities within each collection.

5.4.3 Collection Selection

In the previous subsection we established mechanisms for ranking collections in
order of relevance to a query. Next, we need to identify a set of collections that are
likely to contain most relevant entities; this corresponds to Step 2 in Figure 5.1.
The problem is generally addressed by choosing a fixed cutoff ahead of time; for
example, Si and Callan [104] use 5 to 20. We refer to this method as top-K collection
selection. (SUSHI [112] offers an alternative selection strategy; it is briefly discussed
in Section 2.4.1.)

Formally, let r(c, q) be the rank of collection c for query q according to the collection
ranking component (where the highest ranked collection has rank value 0). The set
of selected collections, Sc(q), is then defined as follows: Sc(q) = {c|r(c, q) < K},
where K is a fixed cutoff value.
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5.4.4 Result Merging

Language Model Result Merging

A major difficulty imposed by the distributed nature of the environment is that
the entity query-likelihood scores (P (Q|E)), computed in Eq. 5.2) are not compa-
rable across collections, as the P (t|C) component is based on local corpus statistics.
There can be several magnitudes of difference in the absolute values of this proba-
bility between collections, depending on their size. The problem of merging results
with incomparable scores from individual data collections has been studied exten-
sively in the literature.

Si et al. [106] introduced an elegant and theoretically sound solution for result
merging as part of their language modelling framework for DIR. While we differ
in the actual estimation of the underlying components, we can still adopt their
approach unchanged. To remove the bias within the original entity scores caused
by the different collection statistics, the final ranking of entities is computed using
the following expression:

logP (Q|E) ∝ logP (Q|E,CE)− log(
α

1− α
P (CE |Q) + 1), (5.12)

where CE denotes the collection to which entity E belongs, and α ∈ [0..1] is a
parameter that controls the relative importance of Q and E. The component
P (Q|E,CE) is estimated using Eq. 5.10. As to the term P (CE |Q), we rewrite it
using Bayes’ rule:

P (CE |Q) =
P (Q|CE)P (CE)∑
C′ P (Q|C ′)P (C ′)

, (5.13)

and use the P (Q|C) and P (C) values computed in the collection ranking step in
Section 5.4.2. For more details and for the derivation of Eq. 5.12, we refer the
reader to [106]. It is worth noting that in our Web of Data setting the same
entity (identifier) might be present in multiple sources. Therefore, we need to deal
with the issue of duplicate detection in this merging phase. If the same entity has
multiple occurrences, we only return the one with the highest log-likelihood score.

5.5 Experimental Setup

In this section we detail our experimental setup. As no standard test collection
exists for the scenario we are targeting, we describe the distributed testbed we
have developed for evaluation purposes in Section 5.5.1.

5.5.1 Distributed Environment

Our setup is based on the test suites of the 2010 and 2011 editions of the Semantic
Search (SemSearch) Challenge [20, 46]. The data collection used there is the Billion
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Triple Challenge 2009 (BTC-2009) data set. It comprises about 1.14 billion RDF
statements and describes entities from domains like dbpedia.org, livejournal.com,
or geonames.org.5 The task addressed at SemSearch is ad-hoc entity search: given
a keyword query, targeting a particular entity, provide a ranked list of relevant
entities, identified by their URIs. There are two topic sets, consisting of 92 and 50
keyword queries for years 2010 and 2011, respectively. The queries were sampled
from web search engine logs. Relevance judgments are provided on a 3-point scale
(excellent, fair, and irrelevant) and were collected using crowdsourcing.

By relations we mean RDF triples that have the entity as the subject and another
URI (i.e., entity) as their object. So far, these objects were treated (and parsed) as
regular terms. Our intuition is that it is more meaningful to replace these entity
identifiers with the name of the entity. One way of doing that would be to look up
the object URI in the corresponding resource and use the name attribute from the
entity description obtained (if available). With this solution, two difficulties arise,
specifically, when the URI points to an external collection: (i) it requires commu-
nication between collections, and (ii) it requires the knowledge of the schema of
the target collection (i.e., the label of the predicate that holds the name attribute).
A simple heuristic we settled for is to use the string part of the URI after the last
slash as the entity name. Additionally, we make sure characters like underscores,
dashes, brackets, etc. are treated as whitespaces.

To create a distributed environment, we have chosen the top 100 largest second-
level domains from BTC-2009, in terms of the number of entities they contain, and
indexed them as 100 separate collections. As with typical federated search testbeds,
the collections are disjoint, they do not overlap [101]. The number of partitions
we use follows standard practice, see, e.g., [100, 121], and is considered sufficiently
large. We use all SemSearch queries (that is, from both 2010 and 2011) that contain
at least one relevant result from one of the top 100 domains; this amounts to a total
of 136 queries. We restricted the corresponding relevance judgments to our set of
selected collections, but apart from the filtering we use the SemSearch assessments
unchanged. We will refer to this test set throughout the paper as BTC.

The distribution of collection sizes for the top 100 domains, shown in Figure 5.2,
resembles a Zipfian distribution, where the three largest domains account for almost
30% of the collection. While this is not at all unexpected or unusual, a somewhat
unique property of this test set is that relevant documents do not follow the same
distribution, but are very highly biased towards the biggest collection, DBpedia.
In fact, 73% of all relevant results originate from DBpedia (note that this is not
due to our selection of top 100 collections, as DBpedia holds 59% of all known
relevant results, without any domain restrictions). To ensure that our findings are
not misguided because of this anomaly, we created two more test sets, representing
distributed environments with different characteristics.

BTC\DBpedia is the same as the BTC test set, but the DBpedia collection is
excluded. This set, therefore, contains 99 separate collections. Consequently, DB-
pedia results have also been removed. There are 20 queries for which all relevant

5http://km.aifb.kit.edu/projects/btc-2009/
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Figure 5.2: Distribution of collection sizes in BTC-2009.

results come from DBpedia; these have been omitted from the query set, leav-
ing 116 queries in total. Here, the distribution of relevant results is more evenly
distributed—this collection represents a typical linked data collection.

We also look at the DBpedia subset, on its own. Instead of using the version that
is part of BTC, we considered the full version. Specifically, we used its most recent
dump in version 3.7 and indexed all infobox predicates as well as labels and short
abstracts of its 8.8M entities. The reason for doing so is that the BTC collection is
based on a Web crawl, including some degree of noise. DBpedia, on the other hand,
can be considered a more “clean” and uniform collection. We randomly distributed
the DBpedia data set into 100 individual collections of equal size. The resulting
collections are by no means organised (like topically or temporally) which implies
that also the relevant documents are randomly distributed across all collections.
Due to its random distribution, we expect it to be the most difficult setup in this
context with respect to collection selection (all sub-collections are very similar to
each other).

Table 5.2 presents descriptive statistics of the three test collections we developed
and which will be used in the Chapters 5 and 6 alike.6

5.5.2 Ground Truth and Evaluation Metrics

To evaluate collection ranking, we use standard IR evaluation metrics: Mean Aver-
age Precision (MAP), Mean Reciprocal Rank (MRR), and Normalised Discounted
Cumulative Gain (NDCG). We obtained ground truth from the original SemSearch
relevance assessments as follows. For the metrics that work with binary judgments,
a domain is considered relevant if it contains at least one entity that was judged

6The queries and relevance judgments we derived from the SemSearch data set, as well as the
DBpedia splits are available at http://krisztianbalog.com/resources/spire-2012/



5.5. Experimental Setup 89

Table 5.2: Overview of test collections.

BTC
BTC \DBpedia DBpedia

#Entities 68.8M 60.5M 8.8M
#Collections 100 99 100
#Queries 136 116 130
Avg. #rel. entities /query 14.9 4.8 10.1
Avg. #rel. collections /query 3.4 2.8 9.4

relevant for the query. When computing NDCG, we set the gain for each collection
to the number of relevant documents the collection contains.

For evaluating collection selection, we introduce two metrics, PK and RK , which
are rough analogues of the classical precision and recall measures and consider the
effectiveness of the collection selection method alone. We base our definitions on
the metrics proposed in [42], and use the variant by Thomas and Shokouhi [112]
for RK . If K collections are selected, PK is the fraction of collections that contain
(any) relevant entities, while RK is the ratio of (all) relevant entities held by these
collections. Both metrics range from 0 to 1, where higher values are desired. We
also measure the average number of collections selected; this serves as our metric
of efficiency.

5.5.3 Cooperative and Uncooperative Environments

In uncooperative environments collections do not publish their term statistics;
their contents can only be accessed via their (public) query interfaces. The bro-
ker then must gather information by sending probe queries to the collection and
analysing the returned documents (entities), a technique called query-based sam-
pling (QBS) [25]. QBS has been widely used in federated search (see, e.g., [83, 84,
104, 112]). The general process is as follows:

(1) Select an initial probe query. In the simplest case the query is only a single
term, one that is likely to generate many results.

(2) Run the query against the collection and download the top n returned doc-
uments.

(3) Update the collection’s representation with the downloaded (and previously
unseen) documents.

(4) Repeat the process, i.e., select another probe query and go to Step (2), until
the stopping criterion is met. The stopping criterion is usually defined in
terms of the total number of unique documents sampled. The probe query
can be chosen from a reference dictionary or from the documents already
sampled.
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Figure 5.3: Impact of sample size on the quality of resource descriptions. (Left) ctf
ratio, (Right) KL divergence.

We use a widely-accepted method by Callan and Connell [25]; the probe queries are
single terms. The initial query term is drawn randomly from a reference collection
(i.e., the background language model) and subsequent probe queries are chosen
randomly from the documents already sampled. Callan and Connell [25] suggest
to use n = 4 and continue the sampling until 300 − 500 unique documents have
been downloaded from the collection. While this setting is widely used (e.g., [83,
84, 104, 112]), it has been shown that 300 unique documents are insufficient for
larger collections [103]. We wish to revisit the setting of this parameter under the
WoD environment. We perform two sets of experiments: (1) in intrinsic evaluation,
we directly measure the quality of collection representations, and (2) in extrinsic
evaluation, we measure how sample sizes impact the performance of collection
ranking.

To measure the extent to which resource descriptions are representative of their
original collections, we employ two separate metrics. The first metric, ctf ratio,
proposed by Callan and Connell [25], measures the vocabulary correspondence,
that is, the proportion of terms in the collection (C) that are covered in the sample
(SC):

ctfSC ,C =

∑
t∈SC

tft,C∑
t∈C tft,C

, (5.14)

where tft,C is the frequency of term t in the collection. It can be seen from Eq. (5.14)
that ctf values are between 0 and 1, and that frequent terms contribute more than
infrequent (albeit maybe more representative) ones.

The second metric compares the language models of representation sets with that
of the original collections. One commonly used method for comparing term distri-
butions is the Kullback-Leibler divergence (KL):

KL(θSC
||θC) =

∑
t∈C

P (t|θSC
) log

P (t|θSC
)

P (t|θC) . (5.15)
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Here, θSC
and θC are language models of the sampled and the original collections,

respectively. KL values range from 0 to∞, where 0 means that the two distributions
are identical.

The results are shown in Figure 5.3; the numbers reported here are averages over
10 runs. The shapes of these curves are similar to those reported in [25], but
substantially more documents need to be examined in our case. Specifically, Callan
and Connell [25] report a ctf ratio of over 80% achieved with a sample of 300
documents on the TREC-123 collection, comprising of one million documents. In
our case, we cannot reach 80% ctf even with a sample of 5000 documents. The
impact of the sample size on the coverage was also investigated in [103]. The authors
state that larger sample sizes may be necessary, particularly when other evaluation
criteria are used. Our results indicate that our setting requires more extensive
sampling of data than “traditional” text collections do. In the next chapter, we
propose an alternative collection representation strategy that can help to overcome
this concern (see Section 6). Besides, the results show that a varying sample size
has a profound impact on the individual language models. This in turn shows that
methods working well in cooperative settings can be adapted to the uncooperative
setting to a very large degree by increasing the sample size alone. For this reason
we chose to report results for cooperative settings in the course of this chapter and
the next, and leave the issue of sample size estimation to future work.

5.6 Experimental Evaluation: Baseline Models

In this section, to evaluate our entity modelling approaches, and to provide an upper
bound for retrieval performance on the end-to-end task, we first report results using
a single centralised index (5.6.1). We further perform and evaluate each step of the
DIR process, i.e., collection representation (5.6.2), collection selection (5.6.3), and
result merging (5.6.4).

5.6.1 Centralised Retrieval

The top three rows of Table 5.3 correspond to centralised counterparts of the three
distributed settings we employ throughout the paper. These results constitute
numbers comparable to SemSearch submissions, to guarantee comparability even
further, we present the numbers for the single years in the following rows; these can
be directly compared to SemSearch results and show that we operate with strong
baselines. The last two rows represent the numbers when only the most frequent
domains are considered for evaluation (i.e., non-frequent domains are discarded
for our evaluation). Essentially, these results represent an upper bound retrieval
performance limit for our distributed approaches, i.e., an optimal output that can
be produced from a centralised index when the same domains are considered that
we use for distributed experiments.
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Table 5.3: Entity retrieval results on a centralised index.

Test set Queries MAP MRR P@10 NDCG

All domains/splits

BTC ALL 0.1940 0.5046 0.2599 0.3675
BTC\DBpedia ALL 0.1310 0.2468 0.0880 0.2450
DBpedia ALL 0.2156 0.4730 0.1900 0.3910

Disregarding non-frequent domains

Test set Queries MAP MRR P@10 NDCG

BTC 2010 0.1860 0.5265 0.2848 0.3860
BTC 2011 0.2088 0.4642 0.2140 0.3418

Disregarding non-frequent domains

Test set Queries MAP MRR P@10 NDCG

BTC ALL 0.1698 0.4107 0.2141 0.3291
BTC\DBpedia ALL 0.1943 0.3419 0.1197 0.2997

Recall that our approach to modeling entities is a rather simple one; yet we achieve
comparable results to the submissions to the SemSearch challenge (when our results
are broken down to individual years; the results of the challenge are provided in
Table 3.6).

5.6.2 Collection Representation and Collection Ranking

A key issue in collection selection is how to acquire summaries of the contents of
collections (also referred to as representation sets or resource descriptions). In the
cooperative case it is assumed that collections provide the broker with comprehen-
sive information about their contents. In the uncooperative case, collections do
not publish such information and representation sets have to be obtained based
on a sample of documents downloaded from the collection. In our experiments we
assume that for the cooperative case the broker has complete knowledge about the
contents of each collection; while this is arguably an over-idealised setting, it allows
us to uncover the full potential of the two collection representation strategies and
to make a fair comparison between them, using these results as an upper bound.
These results can be put in context in light of our results on the impact of sample
sizes in 5.5.3.

We present the results for our baseline methods and the collection ranking task
in Table 5.4. The results reported are for both methods (collection-centric and
entity-centric), all three test collections (BTC, BTC\DBpedia, DBpedia) and with
and without Collection priors. For reference, we also included retrieval results for
well-known representatives of the two families of methods: CORI [23] for a lexicon-
based approach, and ReDDE [104] and two variants of CRCS [100] for document-
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Table 5.4: Collection ranking results in a cooperative environment. The second
column indicates the collection representation method used. The third column
shows whether collection priors (set proportional to the collection size) were used.

Test set Meth. Priors MAP MRR P@10 NDCG

BTC CC N 0.3018 0.5170 0.1699 0.5327
EC N 0.5007 0.7013 0.2213 0.6370

CORI N/Y 0.3416 0.4751 0.1824 0.4993
ReDDE N 0.6442 0.9198 0.2412 0.8782
CRCS(l) N 0.6512 0.9240 0.2434 0.8818

CC Y 0.5450 0.9001 0.1978 0.8475
EC Y 0.6339 0.9079 0.2360 0.8718

ReDDE Y 0.6738 0.9590 0.2434 0.9092
CRCS(l) Y 0.6800 0.9648 0.2441 0.9144

BTC\DBpedia CC N 0.2277 0.3582 0.1111 0.4173
EC N 0.3826 0.5401 0.1684 0.5568

CORI N/Y 0.2828 0.4123 0.1239 0.4690
ReDDE N 0.4244 0.5935 0.1718 0.5856
CRCS(l) N 0.4399 0.5859 0.1735 0.5848

CC Y 0.2005 0.2774 0.1188 0.4025
EC Y 0.2990 0.3759 0.1632 0.4867

ReDDE Y 0.4473 0.6139 0.1735 0.5811
CRCS(l) Y 0.4535 0.6189 0.1726 0.5846

DBpedia CC N/Y 0.1391 0.2259 0.1069 0.4003
EC N/Y 0.1349 0.2071 0.1031 0.3929

CORI N/Y 0.1429 0.2486 0.1023 0.4060
ReDDE N/Y 0.1406 0.2590 0.0977 0.4032
CRCS(l) N/Y 0.1317 0.2090 0.0908 0.3901

surrogate methods. For these, we use default parameter settings as suggested in
the corresponding publications, most importantly the cutoff value of 50, e.g., [100].
These methods are presented in greater detail in Section 2.4.1.

The first observation is that our language modelling based baselines (CC and EC)
are as good as with existing methods from the literature. The most important
finding is that both methods perform well in all settings, with an MAP value of
over 0.20 for the first two collections. The results for the DBpedia collection alone
are arguably much lower across all methods because of its subcollections being
chosen randomly.7 Nevertheless, both methods provide results with an MAP of
more than 0.13, i.e., making it much better than the random baselines. Our next
observation is that collection priors boost our results significantly for both BTC
collections.

7The fact that they are of equal size also explains why collection priors can not be used in this
setting.
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5.6.3 Collection Selection

We show experimental results for the collection selection step in Table 5.5. To
evaluate our results we refer to the evaluation criteria outlined in Section 5.5.2. We
provide results for varying cutoff values (ranging from 1 to 15), i.e., the number of
top collections selected for each method and report PK as the fraction of collections
that contain (any) relevant entities andRK as the ratio of (all) relevant entities held
by these collections. The first three blocks report results without using collection
priors, i.e., all collections have an equal apriori weight. Results using collection
priors are reported in the remaining two blocks (note that collection priors are not
available for the DBpedia collection due to its random distribution). Our results
show that collection priors have a very large positive impact on the results for the
BTC collection. This can be attributed to the fact that DBpedia is the single most
important collection there having an relatively big impact. Further, increasing the
cutoff values almost always has a negative impact on the results (with the exception
of the DBpedia collection without priors and the BTC\DBpedia collections when
priors are used). We observe these results due to the fact that we already achieve a
very high reciprocal rank in the collection ranking, i.e., correct collections are very
often returned early.

5.6.4 Result Merging

We show our experimental results for the result merging step in Tables 5.6 and 5.7,
for the BTC collections and DBpedia, respectively. We show results for both col-
lection ranking methods and a varying number of k, i.e., the number of collections
selected. For the BTC and BTC\DBpedia collections we show the results for very
low thresholds, i.e., 1, 3, and 5, whereas we report for thresholds of 50, 75, and
100 for the DBpedia collection. We chose rather low numbers for k in the BTC
case because the fact that each split represents a domain and its implication that
the collections are very distinct. The higher settings for DBpedia are motivated
by the increased difficulty of the task due to the random distribution of entities to
collections, i.e., we need to select more collections to achieve performance that is
comparable to that of the centralised case.

As shown in Table 5.6, the result merging results follow the same pattern as the col-
lection ranking shown previously, namely that collection priors give a large boost to
the collection-centric ranking. Without collection priors, the entity-centric method
provides vastly superior results.

Considering the different thresholds, we observe that the best results are achieved
by a k value as low as 2 without using collection priors, and a cutoff at 2 or 3 when
using priors (depending on whether DBpedia is included or not). This implies
that both collection ranking methods are competitive and manage to rank relevant
collections early on in their rankings.

The results for the settings based on DBpedia only are shown in Table 5.7. These
results clearly reflect the increased complexity of finding the correct collection due
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to the random distribution model we chose. MAP values, e.g., stay under the 0.1
mark until a k value of 50 for the collection-centric method. However, this scenario
is the most difficult one, where no assumptions about the document distribution
can be made whatsoever, yet, we achieve reasonable results around the cutoff of 50,
which is a large improvement over considering all 100 collections. For the entity-
centric case we observe similar behaviour. However, the results are higher even
for lower values of k, e.g., at a k value of 5, we already achieve an MAP value of
0.1049. This is in line with our other observations.

5.7 Conclusions

In this chapter we introduced the federated search setting and formalised the entity
search task within a probabilistic retrieval model. We discussed all components of
federated search and provided baseline models for them. Another important aspect
of our analysis is the investigation of sample size and quality for federated entity
search.

Our findings suggest that the amount of sampling needed for collections of this size
is prohibitive. Additionally, our experiments show that sufficient coverage of the
collection is much more difficult to achieve than for other collections which have
been worked with in the past. There are several reasons for this behaviour: the
mere size of the collection, the structure of entity data, and the nature of entity
queries. We specifically want to point out the fact that entity queries typically
contain (or exclusively consist of) an entity’s name. This fact can be exploited in
terms of collection representation as will be shown in the next chapter.
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Chapter 6

Advanced Models for
Federated Entity Search

Having introduced the main building blocks of federated search systems in Chap-
ter 5, we proceed to presenting advanced models exploiting the unique features of
entity data and how they can help improving effectiveness in the entity search use
case. Based on our findings when experimenting with baseline methods in the pre-
vious chapter, we propose propose a new collection ranking and selection method
for entity search, called AENN. The key underlying idea is that a lean, name-based
representation of entities can efficiently be stored at the central broker in a cooper-
ative environment, which, therefore, does not have to rely on sampling. This takes
into account the unique property of entities being well-described by their name.

6.1 Introduction

We focus on queries that target specific entities, mentioned by their name. While
this is a rather specific scenario, Pound et al. [92] estimate that over 40% of web
search queries are like this. Therefore, we study a significant problem with practical
utility.

In this chapter, we consider a cooperative distributed environment and focus on
two sub-problems: collection ranking and collection selection. We discuss state-of-
the-art distributed document retrieval techniques that can be applied to the case
of entities in a straightforward manner. For collection ranking, we build on two
main families of approaches (lexicon-based and document-surrogate methods) in a
unified language modelling framework. This allows for a fair comparison between
approaches. For collection selection, we use top-K selection, where K is a fixed
rank-based cutoff.
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We introduce our novel approach, AENN, in Section 6.4. The key underlying idea
is that instead of relying on sampling, the central broker maintains a complete
dictionary of entity names and identifiers. Based on this lean, name-based repre-
sentation, we generate not only a ranking of collections but also an expected ranked
list of entities (that is, an approximation of the final results). This can then aid
us in the collection selection step to dynamically adjust the number of collections
selected, moreover, it allows for orientating the selection towards high precision,
high recall, or a balanced setting.

Our experimental evaluation, reported in Section 6.5, demonstrates that AENN has
merit and provides a viable alternative. On collections where names are available
for entities—a reasonable precondition for our approach—AENN’s effectiveness
(measured in terms of precision and recall) is comparable to that of an idealised
centralised approach that has full knowledge of the contents of all collections, while
achieving gains in efficiency (i.e., selecting fewer collections).

6.2 Related Work

The present work lies in the intersection of entity retrieval and distributed infor-
mation retrieval. Most basic techniques have been introduced in Chapter 5. In
the following we will briefly reiterate the most prevalent techniques for collection
selection, and put them in context with the main ideas guiding our own approach.

Several collection selection techniques rely on a central sample of all collections.
This so called centralised index of all sampled documents (CSI) is then used to
rank individual collections. ReDDE (Relevant Document Distribution Estimation)
[104] aims at selecting a small number of collections containing the most relevant
documents by estimating the number of relevant documents per collection and then
using this information for collection ranking. The Centralised-rank Collection Se-
lection Method (CRCS), similarly to ReDDE, uses a CSI [100]. One main difference
to ReDDE, however, is that CRCS considers varying importance for documents ac-
cording to their ranks. The contribution of a sampled document d depends on
its position in the central ranking of all sampled documents. Another similar col-
lection selection method is SUSHI, which first ranks the documents in CSI [112].
Then, SUSHI extracts the document ranking for each server in turn. After that,
adjusted ranks are computed compared on the sizes of the individual collections.
Curve fitting is then used to estimate the scores of unseen documents.

Similar to these mentioned approaches, we will rely on a central index, the main
difference between these and our own approach, which we will present in the follow-
ing, lies in the representation of entities. Instead of indexing full documents, we will
rely on an index constructed purely from entity names. This is partly motivated
by our findings in [81] and [80].
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6.3 Baseline Methods

We refer back to the high-level overview of the distributed approach given in Chap-
ter 5. In this chapter, we assume a cooperative environment, in which the retrieval
process is coordinated by a central broker. As such, we focus on improving the first
two steps of this pipeline (as shown in Figure 5.1), as these are the components
where our contributions take place. Result merging is a research topic on its own;
to stay focused (and also due to space considerations) we do not specifically focus
on that step in this chapter. We note, however, that—assuming a reasonable re-
sults merging mechanism—improved collection selection also leads to better overall
results on the end-to-end task. For matters of convenience, we sum up our baseline
methods, which are explained in detail in Chapter 5, formalised in a probabilistic
language modelling context.

6.3.1 Collection Ranking

In the collection ranking phase (Step 2 in Figure 5.1), we need to score collections
based on their likelihood of containing entities relevant to the input query. We
present two main families of approaches for this task. Lexicon-based methods treat
and score each collection as if it was a single, large document [23, 106]. Document-
surrogate methods, on the other hand, model and query individual documents (in
our case: entities), then aggregate (estimates) of their relevance scores to determine
the collection’s relevance [100, 104]. As pointed out earlier, we assume a “perfect”
central broker; for lexicon-based methods it means complete term statistics from all
collections; for document-surrogate methods it essentially amounts to a centralised
index of all entities.

We formalise both strategies in a language modelling framework and rank col-
lections (C) according to their probability of being relevant given a query (Q),
P (C|Q).

Collection-centric collection ranking (CC). Following Si et al. [106], the
collection query-likelihood is estimated by taking a product of the collection prior,
P (C), and the individual term probabilities:

P (C|Q) ∝ P (C) ·
∏
t∈q

P (t|θC). (6.1)

We set priors proportional to the collection size: P (C) ∝ |C|. A language model
θC is built for each collection, by collapsing all entities of C into a single large
document and then smoothing it with the global language model. Here, we use
Dirichlet smoothing, as we found it to perform better empirically than Jelinek-
Mercer smoothing used in [106]; we set the smoothing parameter to the average
collection length.
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Entity-centric collection ranking (EC). Under this approach, entities are
ranked by the central broker, according to their probability of relevance, and the
top relevant entities contribute to the collection’s query-likelihood score:

P (C|Q) ∝
∑

E∈C,r(E,Q)<γ

P (E|Q), (6.2)

where P (E|Q) is the query likelihood of the entity, computed using a standard
language modelling approach and Dirichlet smoothing (with the average entity
representation length used as the smoothing parameter). Further, r(E,Q) denotes
the rank position of entity E (the top ranked result has rank 0, the second in
line has 1, and so on). Finally, γ is a rank threshold, set to 50 based on prelim-
inary experiments; this value has also been commonly used in the literature, see,
e.g. [100, 112]. It is worth mentioning that although collection priors are not ex-
plicitly included in Eq. (6.2), larger collections are implicitly favoured, as they are
more likely to have more relevant results among the top γ.

6.3.2 Collection Selection

In the previous subsection we established mechanisms for ranking collections in
order of relevance to a query. Next, we need to identify a set of collections that are
likely to contain most relevant entities; this corresponds to Step 2 in Figure 5.1.

The problem is generally addressed by choosing a fixed cutoff ahead of time; for
example, Si and Callan [104] use 5 to 20. We refer to this method as top-K collection
selection. SUSHI [112] offers an alternative selection strategy; we discuss it in
Section 2.4.1.

Formally, let r(C,Q) be the rank of collection C for query Q according to the
collection ranking component (where the highest ranked collection has rank value
0). The set of selected collections, SC(Q), is then defined as follows: SC(Q) =
{C|r(C,Q) < K}, where K is a fixed cutoff value.

Before proceeding further, it is important to point out that in this chapter we
consider an idealised scenario with a “perfect” central broker. This means that the
broker has full knowledge about the contents of each collection. We are aware that
this is an unrealistic assumption in practice, but do this for a twofold reason. One,
our main research interest is in comparing the effectiveness of collection ranking
and selection methods; when doing so, we wish to rule out all other influencing
factors, such as the quality of sampling (a technique, typically used for building
collection summaries [101, 104]). Two, we want to compare our proposed solution,
to be presented in Section 6.4, against this idealised setting; as we shall show
later, our novel approach can deliver competitive performance without making
such unrealistic assumptions.
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6.4 AENN for Federated Entity Search

In this section we introduce a novel approach to collection ranking and collection
selection for federated entity search. To this end, we build on the models introduced
in Section 6.3. We focus on queries that target a particular entity, mentioned by its
name. A significant portion of queries in web search are formulated that way [92].
Blanco et al. [20] explain this phenomenon as follows: “users have learned that
search engine relevance decreases with longer queries and have grown accustomed
to reducing their query (at least initially) to the name of an entity” [20]. Therefore,
the problem we study is a significant one, with practical utility. While traditional
collection ranking and selection techniques can immediately be applied, the ques-
tion arises, whether we can do better by tailoring representations and models to
entities.

The central idea of our approach is aptly captured in the acronym AENN:“All that
an Entity Needs is a Name.” Instead of building traditional collection summaries
based on (full) textual representations of entities, as was done in the previous
chapter, we only use their names and maintain a complete dictionary of entity
names and identifiers at the central broker. This is a viable alternative as it requires
only limited cooperation from the distributed collections (i.e., we need to be able
to request a list of entities, with name and ID, they contain) and features minimal
network traffic. Based on this lean, name-based representation, we can generate not
only a ranking of collections but also an “expected” ranked list of entities (that is,
a prediction of the final result list, that we would see after the merging step). This
expected ranking serves as a basis of an entity-centric collection ranking, which, in
turn, we utilise to aid us in the collection selection step by dynamically adjusting
the number of collections selected. It is important to note that AENN is only used
for collection ranking and selection; the next step in the processing pipeline (that
we do not perform here) is to request the selected collections to generate a ranked
list of entities given the input query. The collections may use the retrieval method
of their choosing to perform this local ranking.

6.4.1 Collection Ranking

Our initial experiments with collection-centric (CC) and entity-centric (EC) collec-
tion ranking strategies suggest the two different approaches work best with different
queries. Therefore, we expect to maximise performance, by taking a linear combi-
nation of the two methods:

AENN(C,Q) = (1− λ) · CC(C,Q) + λ · EC(C,Q), (6.3)

where CC(C,Q) and EC(C,Q) are normalised collection scores generated by the
corresponding models from Section 6.3.1. In the lack of training material, we
combine the two with equal weights, i.e., set λ = 0.5. Note that under the AENN
approach the central broker only contains the names of entities.
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6.4.2 Collection Selection

A good collection selection method balances between effectiveness and efficiency.
That is, select as few servers as possible, to minimise communication costs and
latency. On the other hand, it avoids being too restrictive, since only the selected
collections can contribute to the final result set. The central ranking of entities
(ER) plays a vital role in our collection selection mechanism; it may be viewed as a
prediction of the final ranked list of results that we expect to see at the end of the
merging step. However, it is to be decided how much confidence we wish to assign
to this prediction. Next, we define three different selection strategies; one favours
precision, another prefers recall, and the final one attempts to balance between the
two.

Precision-oriented selection (AENN(p)) We rely on the entity-centric (EC)
collection ranking and believe that it would yield the highest precision. Subse-
quently, we only select collections that EC contains. Unlike the following two
methods, this selection strategy may decide to “skip” certain collections that
otherwise have a high AENN score, but did not contribute any results to the
top γ of the ER ranking. This strategy shares similarities with SUSHI [112]
in the sense that it only selects collections that are expected to contribute
results to the final merged list.

Recall-oriented selection (AENN(r)) The most conservative strategy is to fall
back to the collection-centric (CC) collection ranking, as that has a higher
recall than EC. We start at the top of the CC ranking and include collections
for selection until we have all from the EC ranking covered. Formally, this
method selects the top ρ collections from the AENN ranking, where

ρ = argmin
x

∀C ∈ EC : rCC(C,Q) < x. (6.4)

Balanced selection (AENN(b)) This strategy aims at balancing between pre-
cision and recall, by selecting the top collections based on the AENN ranking
until all collections from EC are covered. Formally, we select the top ρ from
AENN such that

ρ = argmin
x

∀C ∈ EC : rAENN (C,Q) < x. (6.5)

Figure 6.1 illustrates the three strategies on a toy-sized example.

6.4.3 Entity Representation

We apply a rather straight-forward entity model: every unique subject found in
the collection is an entity. From all subject-predicate-object triples with the entity
as subject, we concatenate the object text values into a content field. An entity’s
name is given by the object values of a predefined list of predicates (e.g., foaf:name
or rdfs:label). This is similar in spirit to the Unstructured Entity Model introduced
in Section 4.4.2.
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Figure 6.1: Illustration of collection selection strategies. The squared letters A,..,F
represent collections, the numbers next to them are the collection ranking scores.

6.5 Experimental Evaluation

The main research question guiding us is as follows: How does the AENN method
compare to traditional document-based methods on the collection ranking and
collection selection tasks? We refer back to Section 5.5.2 for evaluation criteria we
used, and present our results in the two subsequent sections.

6.5.1 Collection Ranking

Table 6.2 reports an overview of collection ranking results when disregarding prior
information. The top two blocks show our baseline methods (CC and EC). All
baseline methods are tested with two types of entity representations at the central
broker (second column): name-only (N) and content (C). The last block presents
our proposed method; recall that it always uses a name-only representation as the
central broker in the AENN case maintains only the names of entities.

The first important observation from Table 6.2 is, that, as expected, the content-
based representation provides better results than the name-only one. Apart from
a few exceptions, this holds for all methods and collections, however, the difference
is rather small for the DBpedia collection; this is because a name is available there
for each entity. Third, our AENN method successfully combines the two collection
ranking strategies. It outperforms all name-only representations for the BTC and
BTC\DBpedia collections by 12% and 18% in terms of MAP, respectively. On
the DBpedia collection the results are virtually the same as that of the EC run.
The differences in MAP are significant for all collections. In sum, the overall
performance of the AENN method makes it a viable alternative to other approaches
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(a) BTC.

(b) BTC\DBpedia.

(c) DBpedia.

Figure 6.2: Comparison of AENN collection selection strategies.

that use a full content-based representation. Moreover, it has additional benefits
for collection selection, as we shall see next.

We observer similar results when collection priors are used, as shown in Table 6.1
(results for the DBpedia setting are omitted in this case). The numbers for BTC
are arguably much higher; again, this is caused by the strong impact of entities
from DBpedia.

6.5.2 Collection Selection

First, we compare the three AENN collection selection strategies we devised against
each other.
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We show results for the BTC collection shown in Figure 6.2(a). We find that the
three methods indeed work as they were originally intended: AENN(p) results
in the highest precision and on average it never selects more than 11 collections.
AENN(r), on the other hand, can select up to 44 collections; this leads to a high
recall, especially for high K values. AENN(b) seems to be able to find the golden
middle between the two; it performs well both in terms of precision and recall,
while it keeps the number of selected collections reasonably low (28 at most). Both
precision and recall are at high levels here, which can be attributed to the high frac-
tion of DBpedia documents in the collection. This leads to DBpEDIA being both
the is that our most important collection in terms of relevant entities it contains
and the easiest to select.

The plots for BTC\DBpedia are depicted in Figure 6.2(b). Overall, the results are
very similar, albeit at lower levels due to the fact that the DBpedia collection is
missing now.

The DBpedia set, for which we show results in 6.2(c), selects a higher number of
collections than we do on the other sets (up to 90 in the case of AENN(r). This is
expected though because of the random distribution of document over collections.
Precision and recall, on the other hand show similar behaviour as in BTC and
BTC\DBpedia.

Next, we compare the AENN against two baselines, both using top-K selection
with a fixed K value: (1) collection-centric using a name-only representation (CC-
N), and (2) entity-centric using a content-based representation (EC-C). The latter
serves as an upper limit that could be achieved if the broker had a local copy of
the full contents of all collections. These results are shown in Figure 6.3.

Overall, we note that we observe similar behaviour for all three collections. The
number of collections selected is very low on both BTC and BTC\DBpedia, as
shown in 6.3(a) and 6.3(b). On BTC\DBpedia, where names are missing for many
entities, AENN(b) is closer to CC-N than to EC-C, but it always outperforms the
former, enonetheless.

Figure 6.3(c) reports the results on the DBpedia collection. Again, this collection
arguably provides the most difficult setting. We find that the balanced variant of
the AENN method comes very close to the “oracle” run of EC-C, both on precision
and on recall. It can also reduce the average number of selected collections, but only
for high K values. This is due to the random distribution of relevant documents,
a special characteristic of this setup.

6.6 Conclusions

In this chapter, we investigated the feasibility of a federated search architecture
for entity retrieval and studied two sub-problems in detail: collection ranking and
collection selection. We made an argument that for queries that target a particular
entity, which is very frequent in Web search, traditional document-based distributed
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(a) BTC.

(b) BTC\DBpedia.

(c) DBpedia.

Figure 6.3: Comparison of baseline and the AENN(b) collection selection strategies.
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retrieval techniques might not be the best choice. We proposed a novel method,
AENN, that builds on the observation that for such queries the central broker
could maintain a complete dictionary of entity names, instead of sampling full
representations from each collection. This lean representation can then be utilised
for collection selection and can also be used to gear results towards high precision or
high recall. Further, we created three test collections based on WoD collections and
performed an experimental evaluation using these. Our method has shown great
promise as it performed just as good as the idealised setting for some collections,
in terms of precision and recall, while selecting fewer collections.

As for future work, we believe there is further mileage to be gained by improving
the name-based ranking of the central broker. We also wish to cover other aspects
of distributed entity search such as efficiency aspects and various practical con-
siderations (e.g., caching). Another open question is in how far sampling of entity
names can help the collection ranking process, i.e., how applicable is sampling when
only a very straightforward entity representation (its name) is used.
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Chapter 7

Peer-to-peer (P2P) Networks

After having investigated broker-based architectures in Chapters 5 and 6, we now
make the transition to a peer-to-peer (P2P) environment. This is motivated by
the increasing growth of the WoD. Further, research in federated search considers
typically around 100 collections. This is quite a low number when thinking of
the constant growth both in size and number of the Web of Data. We therefore
investigate the applicability of P2P technologies for search in the WoD, anticipating
its continuing growth.

7.1 Introduction

Modern applications are increasingly deployed over widely distributed data sources
and each of them stores vast amounts of data, a development partly driven by the
growth of the web itself. Web information retrieval settings are a good example for
such architectures, as they contain large document collections stored at disparate
locations. Central assembly of the total information is neither feasible, as digital
rights do not allow replication of documents, nor effective, since the cost of storing
and maintaining this information is excessive.

It is crucial to aggregate information throughout the network in an efficient manner,
i.e., compute global statistics based on local information shared by the individual
peers. We provide a thorough investigation of this problem in this chapter. The
techniques introduced are targeted at document frequency estimation in P2P net-
works and in the course of this chapter, we present an efficient hybrid approach
for aggregation of document frequencies using a hierarchical overlay network for
a carefully selected set of the most important terms, together with gossip-based
aggregation for the remaining terms in the collections. We conduct experiments on
three document collections, in order to evaluate the quality of the proposed hybrid
aggregation.
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One of the main problems in distributed retrieval lies in the difficulty of providing
a qualitative ranking of documents with respect to user queries. In this context,
the baseline or reference is the centralised case. At the same time, performance
and scalability considerations play a vital role in the development and applicability
of such a widely distributed system. Thus, the important problem in the con-
text of unstructured P2P networks is to provide a comprehensive ranking of terms
(and documents). Information about how many documents a term appears in (the
so called document frequency of a given term) is vital for the task of searching
documents and ranking the results of these searches according to popular infor-
mation retrieval ranking models. As such, document frequency estimation is one
of the main components of a search system and it is particularly difficult in the
distributed context. Clearly, exchanging all terms and their respective document
frequencies would be a solution, however the cost is prohibitive, even for modest
network sizes and medium-sized document collections, and even more so for dy-
namically evolving collections. Therefore, we need a pre-selection of terms at the
peer level to evaluate the usefulness of terms locally. The more flexible an approach
is in handling held back terms, the more stable it is with respect to cheating or
withholding of information by single peers. This aggregation process must work
well without consuming excessive bandwidth, regardless of the size of the network
topology.

In general, two alternatives exist for performing aggregation in unstructured P2P
networks: 1) building a hierarchical overlay network that enables hierarchical ag-
gregation, and 2) adopting a gossip-based aggregation protocol. Each approach has
its own merits and shortcomings. Hierarchical aggregation is efficient, fast and re-
sults in accurate values. Gossip-based aggregation is simple, scalable and robust to
peer failures. However, it only provides probabilistic guarantees for the accuracy of
aggregation and induces higher communication cost. Motivated by this discussion,
we propose a hybrid approach for aggregation of term frequencies that combines
hierarchical and gossip-based aggregation, thus sharing their advantages.

The hierarchical overlay network is formed in a self-organising manner, which en-
ables efficient aggregation of information. Then, carefully selected terms and their
corresponding frequencies from each peer are pushed upwards in the hierarchy. A
gossip-based aggregation protocol is employed to estimate the document frequency
of less frequent terms by local periodic communication. In order to obtain the final
results, the estimates resulting from the two approaches are merged and can be
used for ranking documents or other information retrieval tasks.

For the hierarchical aggregation only a relatively small number of terms from a
prohibitively large overall set of terms are selected. The remaining low-frequency
terms are aggregated using gossiping. An interesting related issue is how to perform
this term selection at individual peer level independently of other peers’ contents,
and we investigate the impact of term selection techniques in this context. Hence,
the main contributions of this work are:

1. We present an approach for hierarchical aggregation that can be used to
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estimate with high accuracy the document frequencies of carefully selected
terms, without assembling all information at a central location.

2. We complement the hierarchical aggregation approach with gossip-based ag-
gregation, in order to estimate the document frequency of the remaining
terms.

3. We conduct an experimental evaluation on three document collections demon-
strating the applicability and scalability of the approach, and we investigate
the accuracy of the aggregated information.

4. We show how this aggregated information can improve results obtained by
using language models.

The work presented in this chapter is based on techniques and experiments in-
troduced in [76]. In this chapter we also present additional techniques to handle
low-frequency terms as well as the hybrid method for frequency estimation. Fur-
ther, we initially estimated information important for TFIDF weighting. However,
this approach can easily be adopted to estimate the average document length and
collection frequencies necessary for the language modelling approach. As such, this
chapter is a possible extension of our entity search approach to P2P networks.
The main differences between the P2P and federated search scenarios are outlined
in Section 2.4.2. We further perform new experiments including a new quality
measure and retrieval experiments with an additional large-scale collection.

The remainder of this chapter is structured as follows: in Section 7.2, we provide
an overview of relevant work done in related areas. We then introduce prelimi-
naries such as basic term selection approaches and aggregation in P2P networks
in Section 7.3. The details of the hybrid estimation approach and the underlying
hierarchical aggregation together with gossip-based elements are described in Sec-
tion 7.4. We briefly talk about a cost model for assessing the communication cost
in Section 7.5. The experimental setup as well as evaluation in terms of document
retrieval and ranking are presented in Section 7.6. We show how our estimation
techniques can be applied in the context of entity search in Sectin 7.7. Finally, in
Section 7.8, we draw conclusions and give an outlook on future work.

7.2 Related Work

In this section, we provide an overview of research efforts that are deemed relevant
to this chapter. First, we refer to the basics of federated search which are introduced
in Sections 2.4.1 where we also provide a brief overview of related work in federated
search. We then present the most prominent approaches on aggregation in large-
scale distributed systems.

In this chapter, we implicitly study the effects of different term pre-selection meth-
ods on distributed document collections over an unstructured P2P network, even
though its dynamic aspects are not the main concern in DIR research. Also, our
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experiments are specifically designed to show the effects of unequally distributed
collections, which is a common case in DIR settings.

Aggregation of information in distributed systems is a challenging issue, thus it
has attracted the attention of several research initiatives. One obvious method is
to employ a hierarchy of nodes to perform hierarchical aggregation at intermediate
levels. SDIMS [123] uses tree-based aggregation over a Distributed Hash Table
(DHT) infrastructure, in order to provide a generic aggregation mechanism for
large-scale systems. For other tree-based aggregation efforts we refer to Willow [115]
and SOMO [127].

Gossip-based aggregation [49, 52] aims to provide a protocol for network-based
aggregation in a completely decentralised manner. The actual process of aggrega-
tion is achieved through periodic interactions (also known as cycles) among nodes,
which exchange aggregated values. Gossiping protocols for information aggregation
also provide theoretical properties for convergence within a logarithmic number of
steps with respect to the network size.

There also exist other systems that combine gossip-based aggregation with hier-
archical aggregation. Probably the most well-known framework in this category
is Astrolabe [116], which provides a continuously running aggregation mechanism.
The purpose of aggregation is to compute aggregate values of a particular resource
of interest (such as number of copies of a specific file) in a network-wide context.
While Astrolabe focuses on maintaining aggregate values at any time, in [44], hier-
archical gossiping is proposed to handle one-shot evaluation of aggregate queries.

To the best of our knowledge, none of the existing systems for aggregation has been
applied in the context of information retrieval, where the underlying information
that needs to be aggregated refers to terms and their respective frequency values
in autonomous document repositories. As a result, an open issue that remains is to
what extent a distributed and scalable aggregation mechanism for term frequency
values can produce retrieval results of good quality. This is one of the topics covered
in this chapter.

7.3 Preliminaries

Due to the resultant high number of terms found in text documents and the subse-
quent high dimensionality of the term vectors, the selection of a subset of terms to
use for analysis and search is essential. Especially in the areas of machine learning
and data mining it is a vital task to find a set of terms that both adequately rep-
resents the collection in question and filters out enough terms so that processing
is computationally possible. We propose to use some of the existing techniques
of filtering out less important terms on the peer level as a first filtering step be-
fore the estimation process. To this end, we refer back to Section 2.4.2 where we
briefly provided the necessary background on the most prominent term selection
techniques which can be integrated in our framework. Subsequently, we present an
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Table 7.1: Overview of variables.

Variable Description

dft Document frequency of term t
CFt Collection frequency of term t
h Height of DESENT hierarchy
tj Term
tsize Size of term/frequency tuple
tft,d Frequency of term t in document d
NP Number of peers
Nl,i Number of documents at peer Pi

P Peer
SZ Number of peers in DESENT zone
T Number of terms contributed from peer in aggregation process
TVi Term vector of document i

overview of aggregation in P2P networks, focusing mainly on a) hierarchical and b)
gossip-based aggregation. An overview of variables and symbols used throughout
the remainder of this chapter is given in Table 7.1.

Challenges and Objective

The high degree of distribution of documents in a P2P system with autonomous
peers makes effective term selection particularly challenging. The reason is that
when term selection is applied on a subset of the complete document collection,
which resides on a peer, the terms that are deemed important may be less im-
portant when the entire collection is considered. Therefore, identifying globally
important terms necessitates aggregation of local term frequency values, so that
the aggregated result reflects the contents of the entire document collection. In our
distributed context, it is not straightforward to choose an effective term selection
method, as this is highly dependent on the degree of distribution and the represen-
tativeness of local document collections with respect to the global collection.

The main objective of this work is to identify appropriate term selection and ag-
gregation techniques for application in large-scale P2P networks. We seek methods
that produce aggregated results of comparable quality to the centralised case, where
all documents would be available on a single peer.

7.3.1 Aggregation in P2P Networks

Aggregation is an important task for deploying useful applications in large-scale
distributed systems. In the context of unstructured P2P networks, there exist
two main approaches for aggregation of information: hierarchical aggregation and
gossip-based aggregation.
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Table 7.2: Comparison of aggregation methods.

Criterion Hierarchical Gossip-based

Correctness of aggregation High Probabilistic
Error recovery mechanism Complex protocol Simple protocol
Stability under stress Unstable/prone to failure Stable
Load balancing Imposed on few peers Fair load assignment
Computation cost Reduced Relatively high
Maintenance cost Hierarchy maintenance None
Communication costs Low High
Scalability Aggregation at all levels Local interactions only

In hierarchical aggregation, an often dynamic hierarchy is formed and information
is aggregated at intermediate levels, before being propagated upwards. As a result,
the aggregation process: a) is efficient due to the reduction of the communication
cost, b) scalable, as the aggregation load is distributed to several peers, and c) is
accurate, since the information that reaches the root accurately reflects the real
aggregated value (in accordance with term ranking as shown in later experiments).
On the other hand, the hierarchy induces additional maintenance cost, usually
requires a complicated protocol that ensures fault-tolerance, and is unstable when
the churn rate is high.

In gossip-based aggregation, peers constantly exchange information in cycles, by
selecting a small random subset of other peers at each cycle. There exist theoretical
guarantees that show that aggregated values converge exponentially fast to the true
aggregates [49]. Gossiping is based on a simple and scalable protocol that is stable
under stress because only local interactions between peers take place. Moreover,
the assignment of load to all peers is fair, without any additional maintenance
cost. On the downside, the guarantees for the aggregated values are probabilistic
in nature and the cost for computing the aggregates is higher than in the case of
hierarchical aggregation.

For comparative purposes, we provide a summary of the benefits and drawbacks of
each approach in Table 7.2.

7.4 Hybrid Aggregation of Document Frequencies

In this section, we describe our approach for aggregating terms and their document
frequencies without central assembly of all data. We employ an unstructured P2P
architecture and the overall aim is to provide estimates of frequency values that
are as similar as possible to the centralised case.

As described in the previous section, both hierarchical and gossip-based aggrega-
tion have their advantages and disadvantages. A natural question that arises is
to what extent the former aggregation approaches can be combined, in order to
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overcome their limitations on an individual basis. This is the motivation to in-
troduce a hybrid approach for aggregation of document frequency values in widely
distributed unstructured P2P networks. For terms with high local frequency val-
ues, we employ hierarchical aggregation, thus computing more accurate aggregate
values. Intuitively, terms with high frequency of occurrence are considered more
important and have a larger impact on similarity ranking, therefore the aim is to
compute their aggregate value with higher accuracy and in shorter time. The focus
is then put on the remaining terms only after the dissemination of the hierarchical
aggregation information. Subsequently, terms with low frequency value on local
basis are aggregated using gossip-based aggregation. The aggregate frequencies of
such terms will not be completely accurate, but they are approximated closely with
probabilistic guarantees.

We first provide an overview of the DESENT architecture, which is used as the un-
derlying hierarchical overlay network, and we describe how hierarchical aggregation
is realised in this framework (Section 7.4.1). Then, we describe the second part
of our hybrid aggregation, namely the gossip-based aggregation protocol employed
(Section 7.4.2).

7.4.1 Hierarchical Aggregation

To the ends of creating a hierarchical overlay network over a purely unstructured
(Gnutella-like) P2P network, no matter its network distance, we employ a variant
of DESENT [38]. The reasons for this choice are the completely distributed and
decentralised creation of the hierarchy, its low creation cost and robustness. The
most important details of the basic algorithm are described in the following; for
more in-depth explanations we refer to [38]. The DESENT hierarchy can be used
for building overlays for searching, but also for other purposes like aggregation of
data or statistics about contents from participating peers—which is the way in
which DESENT is utilised in this chapter.

DESENT

For an illustrative example of the DESENT hierarchy, see Figure 7.1. The bottom
level consists of the individual peers (PA1 . . . PAn and PB1 . . . PBn). Then neigh-
boring peers (network-wise) create zones of approximate size SZ peers (i.e., groups
of peers) around an initiator peer (PA and PB), which acts as a zone controller.
Notice that the height (h) of the hierarchy equals to: logSZ

NP . These level 1 ini-
tiators (PA and PB) are mostly uniformly distributed over the network, and are
selected independently of each other in a pseudo-random way. The initiators form
the next level of the hierarchy, they are responsible for the peers in their zones,
and they aggregate the information collected from their peers.

In the subsequent phases, super-zones are created, which consist of a number of
neighboring zones from the previous level. Each super-zone is represented by a
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PA1 PAn

PA

PA

PA

Level-1
initiators

Level-2
initiators

Level-3
initiators

NP Peers PB1 PBn

PB

Zone

Level-2 zone

Height: log SzNP

Zone

Average zone size: Sz

Figure 7.1: Example of a P2P hierarchy of height h=3 with peers and zones.

super-zone initiator that is responsible for the initiators in its zone and aggregates
the information of these initiators. The zone initiators essentially form a P2P
network similar to the original P2P network, and the aforementioned process is
repeated recursively, using the zone initiators as peers. In the example of Figure 7.1,
PA is initiator both at level 2 and level 3. In this way, a hierarchy of initiators
is created, with each initiator collecting aggregate information that refers to the
contents of all peers in the tree rooted at that initiator. Finally, at the top-level
initiator, aggregate information that spans the contents of the entire network is
available.

Aggregation Process

The process of estimating the frequency of selected terms based on DESENT can
be summarised as follows:

1. A tree-based P2P structure is created using the DESENT protocol [37, 38].

2. All peers select up to T terms from their local document collection using one
of the techniques described in Section 2.4.2, and send these terms together
with the total number of documents to the parent peer in the tree.

3. Each parent peer receives up to SZT terms with respective document frequen-
cies, where SZ denotes the average number of peers in a zone. The parent
peer selects up to T terms, these terms are propagated upwards together with
the aggregated document frequencies and the total number of documents in
the subtree rooted at the peer.

4. The process continues up to the level of the children of the root (i.e., peers
at level h− 1), where h denotes the height of the tree. Level 0 is the bottom
level and level h is the level of the root peer. Instead of performing the last
aggregation at the root peer, it is performed by the children of the root. This
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is achieved by first distributing their aggregated values by hashing to the
other root-children peers.

5. The estimated document frequency values and the total number of documents
are disseminated to the participating peers.

6. The whole process is repeated at regular intervals, in order to capture changes
in document contents, as well as improving the estimated values. An alter-
native to fixed-time intervals would be to employ heuristics to assess the
fluctuation in the network, i.e., initiate the process once a given number of
peers joins or leaves the network.

We will now describe in more detail the local term selection, document frequency
calculation, aggregation, and the final dissemination of information to the peers.

Local Term Selection and Document Frequency Calculation

Each peer Pi selects up to T terms from the Nl,i locally stored documents, using
one of the unsupervised term selection techniques described in Section 2.4.2. Term
selection at a peer is based on the peer’s local knowledge only. Thus, the result of
the term selection is a term vector TVi, which is the number Nl,i and vector of
term tuples. Each term tuple in TVi contains a term tj and the local document
frequency dftj : TVi = [Nl,i, [(t1, dft1 ), ..., (tT , dftT )]].

Level-wise Aggregation

After the SZT selected terms from the previous phase have been received, a new
term vector is created of the received terms and their frequencies, this vector looks
as follows, TVj = [Ns, [(t1, dft1 ), ..., (tSZT , dftSZ T

)]]. Ns is the sum of the received

local frequencies, i.e., Ns =
∑SZ

i=1 Nl,i. Furthermore, duplicate terms and their
frequencies (i.e., the same term originating from several peers) are aggregated into
one tuple. Subsequently the number of terms in the new term vector is less than
SZT . Finally, the term vector is reduced to only contain T terms. Term selection
is performed based on the frequency of appearance, therefore terms that have high
frequency are favored. The intuition, which is also confirmed by related work
in [120], is that it is important to identify terms that are globally frequent and
forward such terms to the top of the hierarchy. The generated term vector after
aggregation and term selection, again consisting of T terms, is sent to the next
level in the tree and this process continues iteratively up to level h − 1, i.e., the
children of the root.

Hash-based Distribution and Aggregation

Performing the final aggregation at the root peer is a straightforward process,
however it makes the system vulnerable, as it induces a single point of failure.
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Instead, the final aggregation is performed by the children of the root, at level
h− 1. Notice that in this phase, our approach trades efficiency for robustness. We
employ a more costly way to aggregate information, however the overall system
becomes fault-tolerant. The actual aggregation is achieved by having the level
h− 1 peers first distributing their aggregated values, by hashing, to the other level
h − 1 peers. A recipient peer becomes responsible for a different subset of terms
and aggregates their frequencies, thus performing (part of) the task that the root
peer would perform. After the aggregation of the received term vectors, the peers
send all their aggregated results to the rest of the P2P network. In the end, all
level h− 1 peers have the complete aggregated values locally available.

The reason for hashing is two-fold. First, it is important that all statistics for one
particular term end up at the same node, in order to provide aggregated values
per term. Second, the workload of the final aggregation is distributed and shared
among the level h− 1 peers, thus achieving load-balancing.

Dissemination of Information

In the final phase, the aggregated term vectors are distributed to all participating
peers. This is performed by using the hierarchy as a broadcast tree. The term
vectors are sent downwards, until they reach the level-0 peers. The size of the dis-
seminated information is equal to the number of term vectors (SZT ) multiplied by
the number of level h − 1 peers. The aggregated terms and document frequencies
are now available at all peers locally. As a consequence, any peer can use this infor-
mation, in order to provide rankings of terms and documents taking into account
the global document collection. In the experimental section, we study the accuracy
of relevant ranking between pairs of terms to demonstrate the effectiveness of our
approach.

7.4.2 Gossip-based Aggregation

After having elaborated in detail how hierarchical aggregation is performed, we
proceed to describe the gossip-based aggregation mechanism. Local low-frequency
terms are selected for gossip-based aggregation. In practice, this selection is done
by selecting the terms for which no estimation is available from the hierarchical
aggregation. The rationale is twofold. First, it suffices that such aggregates are
computed with probabilistic guarantees only, without the strict requirement of ac-
curate computation. Second, aggregates of low-frequency terms can be computed
with some delay, therefore gossiping can be employed leading to eventual consis-
tency of aggregate values. In contrast, high frequency terms need to be aggregated
in a more timely fashion. Thus hierarchical aggregation is a more appropriate
method because they have more significant impact on search results.
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Figure 7.2: Gossip-based exchange of information between peers.

Algorithm 1 Gossip-based aggregation at peer Pi.

1: while (true) do
2: Pj ← GetRandomPeer()
3: Send(TVi, Pj)
4: TVj ← Receive(Pj)
5: aggregate(TVi,TVj)
6: end while

Algorithm

The basic underlying gossiping protocol works in the following way. Any peer peri-
odically exchanges information with another randomly selected peer. In principle,
more than one peers can be selected for information exchange, however, for simplic-
ity we assume that only one peer is selected. Each round of communication is also
known as cycle. During a cycle, a peer exchanges its locally maintained state with
that of another peer. The local state of a peer can be any value of interest that
needs to be aggregated, and in the simplest case it is a plain number representing,
e.g., the load of each peer.

In our setup, gossiping is used to aggregate term frequency values. Therefore, the
basic intuition of gossip-based aggregation remains, only the amount of information
that is exchanged between any two peers changes. Whenever two peers Pi and Pj

engage in communication, their term vectors TVi and TVj are exchanged to perform
aggregation of term frequency values. The term vectors contain information about
the terms occurring on the respective peers and in how many documents they occur
in following the definition given in Section 7.4. This is illustrated graphically in
Figure 7.2, where the peer interactions at one random gossiping cycle are shown.

Algorithm 1 provides the pseudocode for gossip-based aggregation on peer Pi. In
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each gossiping cycle, Pi chooses a random peer Pj (line 2) and establishes a direct
link through the P2P overlay network. Then, Pi sends its term vector TVi to Pj

(line 3), and receives from Pj its term vector TVj respectively (line 4). Then, Pi

aggregates the values of the term vectors (line 5). The aggregate function can
be for example the average function, so for each pair of identical terms ti = tj ,

their average frequency value is computed (
di+dj

2 ) and it replaces the current state
(frequency) of ti in TVi. In the case of terms that exist on only one of the peers
(e.g., Pi), they are appended to the term vector of the other peer (e.g., TVj) and
the frequency value is divided by two (e.g., di+0

2 ). Notice that at any point during
the gossiping protocol, the sum of frequency values can be easily computed by
multiplying the average frequency values computed thus far with the number of
peers NP in the network. An interesting aspect of the gossip-based aggregation
protocol is that it can be also used to estimate the value of NP , in case this
knowledge is not available to the peers. For details on computing this type of
aggregates (counting the number of peers) we refer to [49].

7.4.3 Combination of Hierarchical Estimation and Gossiping

The results of the hierarchical estimation is used for document frequency estima-
tions. Terms for which there exist no hierarchical estimates (low-frequency terms)
are straight-forwardly assumed to have a document frequency of one. These will
subsequently be combined with the results from the gossip-based aggregation in
that the document frequencies of these terms are updated to the estimated values.

7.5 Cost Analysis

The cost for the creation of the DESENT hierarchy is described in [38]. Further, we
employed a straightforward cost analysis model to assess the bandwith consumption
of our aggregation approach. Details are not included in this thesis, but can—
together with experimental results—be obtained from [77].

7.6 Experimental Evaluation

We conducted experiments using three different document collections. Since we put
a special focus on large-scale P2P settings, we tried to use corpora of sufficient size.
In fact, two out of these three corpora contain nearly 500,000 documents, and one is
smaller with about 20,000 documents. Table 7.3 gives an overview of the sizes of the
collections used. We list the number of documents, the disk space the collections
use in uncompressed form, as well as the vocabulary size of the collection, i.e., the
total number of unique terms in the collections, and the average number of terms
per document, i.e., the average document length. All of this information is given
for the preprocessed and indexed collection.
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Table 7.3: Benchmark collections used in our experiments. We list the collections’
names, the number of documents, the amount of disk space they use in uncom-
pressed form, the vocabulary size of the collection, i.e., the number of distinct
terms, and the average document length.

Name #Docs Disk Voc. size Avg. doc length

20 newsgroups 18.828 85M 94.753 97
DMOZ 484.113 2,9G 1.732.228 340
TREC8 528.155 2,8G 842.682 247

Data collections. We worked with the 20 newsgroups data set1 which has become
very popular for text experiments in the field of machine learning and has been
used for example in [74]. The data set consists of newsgroup postings from 20
newsgroups. From each newsgroup, 1,000 articles posted in the year 1993 have
been selected; after removing duplicate articles (mostly cross-postings to several
newsgroups), 18.828 unique messages remain.

The DMOZ collection is a collection of 483,000 web pages, which are classified by
the DMOZ taxonomy.2 The collection has been created by retrieving the web pages
that are linked from the leaf-classes of the DMOZ taxonomy. The fact that the
collection has been automatically retrieved from the web leads to a high number of
terms in this collection. Generally, the data used here is more noisy and less focused
than in the other collections, which surely has disadvantages, but definitely shows
the applicability of our techniques to a general real-life web setting. The taxonomy
path to a page is considered to be the class/category of the page. It is the only
test collection used in this chapter which is not publicly available.

Further, we used one of the collections included in the TREC information retrieval
benchmarking initiative.3 More specifically, we used the collections used in the
TREC8 ad hoc evaluation. The ad hoc task is one of the traditional tasks in TREC
evaluations and comprises both a collection of 500,000 to 700,000 text documents
such as news messages and queries for that collection. The TREC8 collection con-
sists of about 530,000 documents and 50 queries plus relevance judgments for them.
The TREC8 collection comprises material from the Foreign Broadcast Information
Service, the Los Angeles Times (randomly selected articles from 1989 & 1990), the
Federal Register (1994), and Financial Times articles (1992-1994).4

All three test collections were preprocessed in terms of tokenisation, stop word
removal and stemming for the English language.

1http://people.csail.mit.edu/jrennie/20Newsgroups
2http://www.dmoz.org
3http://trec.nist.gov
4The TREC8 ad hoc collection consists of documents from four different collections. In this

context we used the information about which document belongs to which collection only in the
distribution based on similarity. There we assume documents coming from the same sub-corpus
to be similar.
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Table 7.4: Varying distribution skew and similarity values used in experimental
setups.

Id Distribution Skew Document Similarity within Peers

1 low high
2 low low
3 high high
4 high low

7.6.1 Experimental Setup

We identify the following basic parameters for our experiments and study their
effect. First, the number of partitions or peers, as it affects the scalability of our
approach. Then, the distribution skew, defined as the size distribution across the
local partitions. A low distribution skew denotes equal amounts of documents
per partition. Last, we consider the document similarity, defined as the degree to
which documents in one partition are similar to each other. This simulates cases
such as topically homogeneous collections (with a high degree of similarity) or cases
of randomly distributed collections. To this end, we use class labels of documents
and distribute documents to partitions already containing similar documents with a
higher or lower probability according to the setting. In the case where no labels are
available, document clustering is used instead to determine a measure of similarity.

In our experimental evaluation we use varying setups, in order to simulate different
use cases. We vary the number of peers to study the scalability of our approach.
For each given number of peers, we apply four settings: 1) low similarity, high
distribution, 2) low similarity, low distribution, 3) high similarity, high distribution,
and 4) high similarity, low distribution. To be able to show the impact of all
extreme values of both parameters, we also included mixed setups and also the
case of documents which are distributed in equal sized partitions and have no
similarity relation to each other at the other end of the spectrum. We apply the
aforementioned term selection methods at the local peer level to study their effect
on the hybrid aggregation we propose. An overview of these four setups is given in
Table 7.4.

7.6.2 Evaluation of Term Ranking Quality

Our first aim is to study the quality of the aggregated document frequencies in
terms of ranking. For this purpose, we use the 20 newsgroups and the DMOZ
document collections.

Evaluation metrics. We define as success ratio the percentage of pairs of terms
that have the same relative ranking in our approach and in the centralised case.
In other words, for any two terms ti and tj the success ratio is the fraction of
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(b) Spearman coefficient.

Figure 7.3: Scalability with network size for the 20 newsgroups collection.

the number of such pairs with the same ranking with respect to the centralised
ranking, over all possible combinations of pairs of terms. We chose this performance
measure for existing standard approaches such as the Spearman or Kendall tau rank
order correlation coefficients lack the support for rankings of different lengths, our
approach, however, is closely related and basically extends these methods in its
ability to handle different lengths of involved rankings.

We additionally provide results for measuring the Spearman coefficient between the
two rankings. To this end, we first need to remove elements not available in both
rankings. This means that all terms for which no estimated value is available are
filtered out. The resultant equally sized rankings can then be compared using the
Spearman coefficient, a measure for correlation between two rankings, operating on
the rank on their elements rather than their numeric values.

Results for the 20 newsgroups Collection

Figure 7.3 shows the result of our scalability study with respect to the network
size. For this purpose, we increase the size of the network from 100 to 300 peers.
The following values are used for the experimental parameters: number of terms
for hierarchical aggregation T=2,000, number of gossiping cycles NC=20, and zone
size SZ=10 (for NP=100) and SZ=20 (for NP={200,300}). We use as basic setup
the one with id=1, and we evaluate the following term selection methods: DF, CF,
CFIDF, and TFDF.

In Figure 7.3(a), we depict the values of success ratio. Regardless of term selection
method, our hybrid aggregation works effectively, achieving values higher than
80% and often close to 90%. This indicates that hybrid aggregation results in
high quality term rankings that are similar to the centralised case. This is verified
in Figure 7.3(b), when the Spearman coefficient is employed. In fact, the values
of Spearman coefficient are higher than those of success ratio, again indicating
the high quality aggregation of the proposed hybrid method. Another important
observation is that the quality of term rankings does not deteriorate with increased
network size, even when the number of peers is increased by a factor of three.
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Figure 7.4: Effect of increasing values of T for the 20 newsgroups collection.
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Figure 7.5: Experimentally derived cost for the 20 newsgroups collection and dif-
ferent numbers of aggregated terms.

We also study the effect of increasing values of terms T that are aggregated using
hierarchical aggregation in Figure 7.4. Intuitively, as T increases, we expect that the
quality of term ranking will improve, since more terms are aggregated hierarchically,
thus resulting in more terms having accurate estimates of frequency values. Indeed,
in Figure 7.4(a), we see that the values of success ratio metric increase with T
irrespective of the setup. The same conclusions are drawn from Figure 7.4(b),
where the values of the Spearman coefficient are shown.

Results for the DMOZ Collection

We also performed a series of experiments using the DMOZ collection, in order to
study the effect of larger corpora on our hybrid aggregation method. Document
collections such as DMOZ are quite challenging, because of the increased vocabulary
size and the noise present in the contents.

In Figure 7.6, we show the term ranking quality using the DF term selection
technique. Our experimental parameters are SZ=10, NC=10, NP={100,200,300},
T={1,000;10,000}. In order to limit the effect of noise, we additionally use a thresh-
old on each peer that eliminates single-occurring terms on a peer from aggregation.
We observe that high quality results (always higher than 90% and often close to
100%) are obtained for both our metrics: Spearman coefficient and success ratio.
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Figure 7.6: Term ranking quality for DF for the DMOZ collection.
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Figure 7.7: Term ranking quality for DF and NP=1,000 for the DMOZ collection.

When the network size increases, we observe a small decrease in the values of our
quality metrics. However, the absolute values are still higher than 90%.

Another interesting observation is that increasing values of T cause a small reduc-
tion in the values of Spearman coefficient and success ratio. We believe that this
is because in the DMOZ collection the increased values of T lead to many low-
frequency (noisy) terms being aggregated. Even a small value of T , such as 1,000,
is sufficient to aggregate the important terms. In addition, the randomness of the
hierarchical aggregation makes the selection of terms (that are finally aggregated
hierarchically) random as well. This is the reason that increased values of T reduce
the quality of ranking.

We also performed an experiment with a large network of NP=1,000 peers to study
the scalability of hybrid aggregation. The results are depicted in Figure 7.7. Again,
the same conclusions are drawn verifying the performance of hybrid aggregation,
even in the case of large-scale P2P networks.
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Results for the TREC8 Collection

The fact that queries plus relevance judgments are available leads to several ques-
tions that can be answered in the context of P2P document frequency aggregation:

• Does the DESENT aggregation negatively influence retrieval results com-
pared to the full information about document frequencies?

• What exactly is the tradeoff between the number of terms aggregated and
efficiency in computation with regards to relevance evaluation?

We tested the retrieval performance achieved for the 50 provided queries together
with the given relevance information used in the TREC evaluations. The basic
question here is ‘How many of the relevant documents will be retrieved?’. Each of
the 50 queries is sent to the search system in order to answer this question. In the
search system, we used three different settings for term weighting:

1. No document frequency information (i.e., df = 1 for all terms)

2. Real document frequency information obtained from the full index

3. Document frequency estimations computed by the P2P hybrid aggregation
method

Evaluation Measures

Since there exist measures to incorporate both indicators in one value, we make
use of such a measure called ‘mean average precision (MAP )’. It is a single-figure
measure for precision at all different recall levels, and has become increasingly
popular within the TREC community. See Section 2.2.2 for details.

Experimental Settings

An illustrative overview of the retrieval experiments is given in Figure 7.8. We first
partition the collection according to the different similarity and skew distribution
setups. The input for the experiments is an unstructured P2P network topology,
as shown on the top of the figure. Then, we employ DESENT and gossiping for
estimating the global document frequencies. Both can be applied simultaneously,
since gossiping is only used for the terms not covered and aggregated upwards by
DESENT. The output of this phase is the estimated document frequency values
for all terms, both high-frequency and low-frequency terms. Finally, both lists
are merged to provide a comprehensive estimate for as many terms as possible.
We further perform retrieval experiments based on these estimated frequencies and
compare to both the case of centralised (real) document ones and missing document
frequency information (i.e., all document frequencies are set to one).
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Figure 7.8: Overview of the architecture used in the experiments. The full system
consists of DESENT, gossiping, frequency merging, and the retrieval component.

Experimental Results

The TREC8 collection has been used in many cases for relevance retrieval experi-
ments. The reported results vary according to the additional techniques the authors
used. A mean average precision of 0.3272 is, for example, reported in [55], where
the authors use a combination of the probabilistic model and the language model
approach. Theme-based document retrieval using an extensive lexical knowledge
base is applied to the same problem in [61], and the best result reported there is a
mean average precision of 0.413. Again, the authors use techniques additional to
basic ranking and retrieval.

In our case, we employ a basic ranking model based on tfidf weighting used in Java
open source search engine Lucene.5 All techniques we employ aim at improving
document frequency estimation, which in turn could be used to improve retrieval
results for different weightings. Hence, we do not compete with other groups work-
ing on this collection, basically all other ranking techniques could be used on top
of our approach to improve the final results.

Tables 7.5, 7.6, and 7.7 show an overview of the obtained results; we list both MAP,

5http://lucene.apache.org
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Table 7.5: Baseline retrieval results on the TREC8 ad hoc collection. We show
the retrieval results in terms of MAP and Recall on a centralised index as well as
results obtained without document frequency information available.

Setup MAP R

Full centralised index (baseline) 0.228 0.651
Full centralised index without df info 0.197 0.553

Table 7.6: Retrieval results on the TREC8 ad hoc collection. We show the retrieval
results based document frequency estimation in terms of MAP and Recall using
hierarchical aggregation. Results are averaged over 10 runs.

#Peers Setup MAP R

100 1 0.214 0.628
100 2 0.213 0.626
100 3 0.217 0.635
100 4 0.216 0.633

200 1 0.214 0.629
200 2 0.215 0.629
200 3 0.217 0.634
200 4 0.215 0.633

300 1 0.215 0.628
300 2 0.215 0.630
300 3 0.217 0.633
300 4 0.216 0.634

and recall. We list the results on a centralised index as well as results obtained
without document frequency information, available in Table 7.5. The experiment
without df weighting builds the absolute baseline for further experiments. In a
distributed setting it is always easily possible to assume 1 for all document fre-
quencies.

Table 7.6 shows the results obtained when applying hierarchical aggregation only.
It is interesting to note that the results are quite close to the centralised case.
For instance, the average precision is around 0.215 and recall 0.631, when the
corresponding values of the centralised case are 0.228 and 0.651. Moreover, the
results are stable across experimental setups and the different numbers of peers
apart from small fluctuations.

Furthermore, we show the results obtained when using the hybrid approach in Ta-
ble 7.7. In this scenario, we rely on both the values obtained by hierarchical and
the gossip-based aggregation. The results are always better than the hierarchical
aggregation values alone consistently across all settings. For 100 peers and exper-
imental setup id=1, the results exceed the results obtained from the centralised
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Table 7.7: Retrieval results on the TREC8 ad hoc collection. We show the retrieval
results based on document frequency estimation using hybrid aggregation. Results
are averaged over 10 runs of hybrid aggregation.

#Peers Setup MAP R

100 1 0.229 0.648
100 2 0.227 0.648
100 3 0.226 0.641
100 4 0.226 0.640

200 1 0.228 0.646
200 2 0.224 0.644
200 3 0.225 0.641
200 4 0.224 0.633

300 1 0.228 0.646
300 2 0.224 0.640
300 3 0.225 0.642
300 4 0.225 0.639

index. However, this is due to the limited number of queries. This approach yields
better results only for 7 out of the 50 queries. Across all setups, we never get far
below the results from the centralised index. In fact, for experimental setup id=1
(equal distribution and high similarity within peers), we are consistently equal to
the centralised case.

We also provide an overview of estimation accuracy for document frequency values
in Table 7.8. The results are drawn from 10 runs of retrieval evaluation and given
for the four different experimental settings (see Table 7.4). We list the percentage
of frequencies which are correctly estimated, i.e., equal to the real frequencies in the
centralised case, as well as the average, minimum and maximum difference between
estimated and real frequency. Further, we list the median, i.e., the difference that
devides the deviations into two equal parts. A median of 11 for example means
that half of the estimated frequencies differ by less than 11 from the real value. One
finding is that some frequencies differ by large numbers—as seen in the maximum
and mean columns. On the other hand, we see that in most of the cases the median
is quite small, showing that a large part of the estimates are quite close to the real
values.

Even though the estimation quality decreases with a higher number of peers, the
respective retrieval experiments deliver high precision as outlined in the previous
section. We therefore showed that in most cases the estimations are satisfactory, if
not in the absolute value, in the form they are used in the ranking function.
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Table 7.8: Estimation of document frequencies on TREC8 corpus. Results are
averaged over 10 aggregation runs. We show the different numbers of peers, exper-
imental setups as well as the percentage of correctly estimated document frequencies
used in TREC8 queries. We also list the maximum, mean, and median differences
to the correct frequencies.

#Peers Setup Equal DF Max. Mean Median

100 1 0.14 16784.0 955.40 2.0
100 2 0.09 15516.0 1010.85 14.0
100 3 0.06 21789.0 3096.63 14.0
100 4 0.06 21882.0 2848.52 14.5

200 1 0.13 16086.0 1063.73 3.0
200 2 0.08 14977.0 1441.72 14.0
200 3 0.06 29587.0 4189.28 41.0
200 4 0.04 30887.0 4680.36 36.5

300 1 0.0 18320.0 1833.65 70.0
300 2 0.013 18806.0 1986.70 25.0
300 3 0.008 26704.0 3502.5 54.0
300 4 0.006 29450.0 4802.41 70.5

7.7 Entity Search in P2P Networks

Contrary to tf -idf based approaches, language models rely on the collection fre-
quency of terms, i.e., how often a term in total occurs in the collection, as opposed
to the number of documents it occurs in. The research results described in this
chapter, however, can directly be applied to the language modelling use case. We
described a general approach for information aggretation in P2P networks, which
is not specific for document frequency estimation. In fact, switching to collection
frequencies is straightforward. Each collection has information about the collection
frequencies (i.e., the number of occurrences of a term in the collection), and can
easily aggregate this value instead of the document frequencies we aggregated so
far.

Once this information is aggregated throughout the P2P network it can be used
for estimating the probabilities in the collection-wide background model and as
such be integrated in the models described in Chapters 3 and 4. This happens in
the smoothing process, where missing probabilities are substituted by a weighted
mixture of the global probabilities. To evaluate our approaches we present three
settings for background collection frequencies:

• Central Language Models: all collection frequencies are computed from the
central collection.

• Baseline Lucene: we disregard collection-wide statistics to present an absolute
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Table 7.9: Entity search baselines.

Retrieval Model MAP MRR P@10 NDCG

LM centralised 0.1940 0.5046 0.2599 0.3675
Full centralised index without df info 0.0932 0.3038 0.1289 0.1994
LM aggregated 100 peers 50 terms 0.1488 0.5079 0.2539 0.2991

baseline. In this setting, all document frequencies are set to one (compare to
the results for the TREC8 collection presented in Table 7.5).

• Estimates: we use the results of the P2P estimation for retrieval. They are
used as a drop-in replacement for the global, collection-wide statistics.

Table 7.9 shows the baselines for our entity experiments. The scenario we present
for evaluation now is taken from the setting introduced in Chapter 5. In the
following we present how P2P estimation techniques can be applied to this setting.
First, we show a central language model baseline. This will be the ideal result to
compare to, e.g., the upper bounds for our estimations. This baseline incorporates
Dirichlet smoothing with the smoothing parameter μ set to the collection-wide
average document length. This result is presented in the first line of Table 7.9.
It maybe noted that with a MAP of 0.1940, this is competitive. Next, we present
results achieved with Lucene scoring without background information in the second
line of the same table (in this case without document frequency information). This
baseline is similar to the ones used on the non-entity collections and we achieve a
rather low MAP of 0.0932, which points out the possible improvements that can
be achieved with collection-wide estimates. In further experiments, we will try to
improve over this deadline.

We show that a number of 50 terms per peer already is enough to achieve satisfac-
tory performance, elevating the MAP to 0.1488, a substantial improvement from
the 0.0932 that we consider as absolute baseline, and well in reach of the 0.1940
that we consider the optimal case. We want to note that further improvements
are well possible with adjusting some of the parameters like the number of terms
aggregated per peer and the amount of gossiping. Overall, these results show the
competitiveness of our aggregation techniques for entity search, in fact, the results
across the diverse data collections show that the estimation technique generalises
and is not specific to a certain type of data.

7.8 Conclusions

In this chapter, an efficient hybrid method for aggregating document frequency
values was presented, suitable for application in loosely-coupled unstructured P2P
networks. The hybrid method combines hierarchical aggregation of carefully se-
lected local terms with high frequency values, with gossip-based aggregation of
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the remaining low-frequency terms. We also provided an extensive experimental
evaluation on three document collections, assessing both term ranking quality and
retrieval results, having as reference point the results obtained by a centralised
system that has the complete document collection available. The results show that
our hybrid aggregation performs very well for variable setups. We further showed
the direct applicability of our approaches to the distributed entity search use case
by showing experimental results on an entity benchmark collection.

In our future work, we intend to deploy a widely distributed information retrieval
system that uses hybrid aggregation as building block for estimating document
frequency values.
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Recap: Part III

In the Distributed Aspects part of this thesis, we described how to apply entity
search methods in the distributed context—this was largely motivated by scalability
issues which we deem realistic with the current growth of the WoD. First, we
formalised the federated entity search problem in a language modelling setting
in Chapter 5. To this end, we introduced all components of federated search:
collection representation, collection selection, and results merging. We introduced a
distributed testbed for entity search based on existing benchmark corpora. Further,
we provided baseline results for all thee steps on that collection. We also provided
some discussion of cooperative and uncooperative settings.

Having found the collection selection component to be particularly interesting and
helpful in the retrieval pipeline, we focused on it in Chapter 6. Based on the
observations made in the previous chapter, we proposed a new method for collection
ranking and selection based on the characteristics of entity search requirements. We
showed the applicability of our method on the testbed introduced in Chapter 5 and
showed its competitiveness.

Driven by the ever-increasing size of the WoD, we applied P2P techniques to the
distributed entity search problem in Chapter 7. We first introduced the specifics
of the P2P setting, namely its increased level of dynamicity. We then described
some of the basic components of P2P systems, specifically targeting the estimation
of global statistics, in our case collection frequency information of terms. In an
additional set of experiments, we showed the direct applicability to the entity search
use case.
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Part IV

Discussion and Outlook

In the last part of the thesis, we summarise our work and draw conclusions. To
that end, we restate our initial research questions and answer them with respect
to the research conducted in the course of the previous parts. Additionally, we
provide an outlook on future work.
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Chapter 8

Conclusions and Future
Work

In this chapter, we will first summarise our main findings. We then draw conclusions
in terms of putting the initial research questions in context with these findings.
Finally, we give an outlook on future work pointing out the most interesting areas
to continue the research ideas this thesis is evolving around and give a more general
outlook on future research concerned with the Web of Data.

8.1 Contributions

We explained the main approaches to entity search and introduced extensions and
modifications in Chapter 3. We provided a thorough overview of the area of entity
search, putting a special focus on distributed aspects. We introduced the main
use case of entity search, i.e., “answering arbitrary information needs related to
particular aspects of objects [entities], expressed in unconstrained natural language
and resolved using a collection of structured data” [92]. The structured data in our
case consists of billions of subject-predicate-object triples which represent entities
and their relations. We also described the list search task. We described our initial
interest in entity search as motivated by our contribution to the Semantic Search
Challenge. We showed the applicability of standard IR approaches to the problem
and introduced a retrieval model taking into account both plain text and some
(limited) structure of the data in terms of predicates. We found these models
to perform well, but expected more mileage to be gained by incorporating more
structure Based on these findings, we proposed an extended model, taking into
account both plain text and entity structure based on structured retrieval models
in Chapter 4.

We further introduced the use case of distributed entity search in the later chapters.
To that end, we applied the models developed for the central case and applied them
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in a federated search environment. First, we formalised the entity search problem
in a federated environment and provided baseline results in Chapter 5. There, we
also found that the collection ranking component of federated search can specifically
benefit from improved entity representations. We then developed new models based
on this finding to improve collection ranking and, in our experiments, showed their
effectiveness in Chapter 6. Further motivated by the ever-increasing size of the
WoD, we investigated the underlying foundations needed for text search in the P2P
context. We opened for entity search and other types of search across a high number
of independent peers in Chapter 7. First we gave an introduction to the P2P
setting, first and foremost by explaining its increased level of dynamicity. Further,
we described some of the basic components of P2P systems, specifically targeting
the estimation of global statistics, in our case collection frequency information of
terms. Also, we showed the direct applicability to the entity search use case in an
additional set of experiments.

The main contributions of this thesis are:

• The submission to the Semantic Search Challenge, showing the competitive-
ness of our approaches in an international forum.

• Analysis of the feasibility of current document retrieval models to the entity
search task.

• The application of structured (semantic) retrieval models in the context of
entity search.

• A hierarchical model for entity search in the Web of Data where we treat
predicates differently based on their type.

• The formalisation of the federated entity search task in a generative language
modelling framework.

• The development of benchmark data sets for federated entity search.

• Both a thorough analysis of entity search in federated search environments
and the formulation of advanced techniques.

• A scalable model for term statistic aggregation in P2P networks and its ap-
plication to the entity search scenario.

In the following, we reiterate the research questions laid out in the beginning of
the thesis in Chapter 1 and present our answers that we found in the course of the
thesis.

RQ1: How can traditional ad-hoc document retrieval techniques be ap-
plied in the context of the Web of Data?

In Chapter 3 we state the limited direct applicability, yet, we find that they
are strong baselines when entities are represented as plain text.

RQ2: How can the structure of entities be exploited for the purpose of
ad-hoc retrieval?
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We showed the very competitive nature of structured retrieval models in
Chapter 4. Our experiments clearly indicated that they can outperform the
single-field case.

RQ3: How does field weighting affect search quality?

The structured retrieval models we applied work well in many cases even
without field weighting in Chapter 4. Our experiments showed that the esti-
mation of field weights is an open research area, particularly in the context
of the WoD– due to its potentially large number of predicates or fields.

RQ4: Can existing, standard federated search techniques be applied to
entity search in the Web of Data?

Federated search techniques are applicable in the WoD, however, entity mod-
elling plays an important role here. All components of federated search
strongly depend on collection representation, which is strongly connected
to entity modelling.

RQ5: Can federated entity search benefit from improved entity mod-
elling?

We presented research results showing that proper entity modelling makes
federated search techniques a feasible option for entity search in Chapter 6.

RQ6: Is P2P search a viable alternative to broker-based (i.e., federated
search) architectures for entity retrieval?

We provide a thorough investigation of P2P document retrieval in Chapter 7.
We showed that broker-based architectures are not directly feasible for P2P
document retrieval and its dynamic requirements. We also described how P2P
can be a viable alternative if aggregation of global information is accounted
for.

RQ7: How can the proposed frequency estimation technique be further
improved?

In Chapter 7, we showed that improvements in frequency estimation ben-
efit both document and entity retrieval. We described the combination of
hierarchical aggregation and gossiping and how it improves the results. Our
experiments are indicative of a general strong influence of estimation tech-
niques and retrieval performance.

To sum up, we answered all research questions stated in Chapter 1, albeit some of
them (e.g., RQ5 and RQ3) are subject to more research, as we will take up in our
description of future work.

8.2 Future Work

Future work in entity search is going into multiple directions. First and foremost we
see much work to be done in the area of query analysis or query understanding. This
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is also reflected by the analysis of the participants of the second strategic workshop
on IR [1], where much focus is put on designing and realising holistic systems
based on language understanding and question answering. Entity search can play
a vital role in multiple components of such systems such as query understanding
and results presentation.

The mapping of query terms and phrases to fields of the model and the estimation of
weights to be assigned to these fields is a promising direction in which we already
performed initial experiments (see RQ3). This work will seamlessly fit into the
overall topic of combining structured retrieval and semantic search. This means
also that a wider range of query types should be considered and the ability of future
models to accommodate for these different queries will be of vital importance to
further improvements (i.e., a long, free text query will be easier to map to fields than
a simple, short keyword query where mapping might actually hurt performance
instead of improving it). This requires a fundamental ability of the retrieval models
to incorporate weights on a field- and query component basis (i.e., the mapping
of query components to fields instead of mapping the query as a whole or only its
individual terms).

A related area is query type detection; we introduced a new line of research in
this direction in the area of query type identification in [7]. In that paper, a
dynamic, semantic query analysis component incorporating both segmentation of
queries, both entity and type detection, and partial query-to-property mapping is
proposed.

Even though some of our models were used in a large-scale setup (collections of
up to 80 million entities), a larger focus on scalability is desirable. This becomes
more interesting in the context of federated search, as investigated earlier in the
thesis. The amount of Linked Data is expected to grow with new actors publishing
their data on the Web. The inclusion of these new data sources, i.e., the ability of
systems to update their indices will be of crucial interest.

The combination of full text and structured data is another challenging area for
future work. Many data sets combine both elements and therefore require ade-
quate retrieval models. The Linked Data Track of the 2012 edition of INEX, e.g.,
featured such a collection 1, which we participated in. This benchmark aims at
helping to close the gap between keyword search and Semantic Web techniques.
The techniques introduced in this thesis are not directly applicable, but they are a
good foundation for further research in this direction since we are able to handle
predicates of different size. However, our solutions have not come far enough, we
believe dynamic field weighting to play an important role in solving this problem.

The integration of query annotation in retrieval models is another large open ques-
tion. Query annotation can comprise techniques such as query expansion or phrase
detection. Both can undoubtedly influence retrieval effectiveness, however, it is
not entirely clear how they can be incorporated in probabilistic retrieval models in

1https://inex.mmci.uni-saarland.de/tracks/lod/
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the best way. One major challenge in this respect is the consideration of term or
phrase priors as well as their estimation.

Last but not least, entity search should be seen in the context of users, their
information needs, and eventually the queries users formulate in order to search
for the information they want to find. The integration of entity search in existing
systems is therefore another interesting field for future research. Parts of this
research will be concerned with query analysis and intent discovery, whereas others
will target query logs and the analysis of user behaviour on the Web, i.e., how does
entity search fit into the more general use case of web search.

8.3 Outlook

The Semantic Web was introduced with confidence and high hopes. Some of these
hopes were not quite fulfilled in the beginning. However, we have come to a point
where many of its technologies have reached a certain level of maturity and are in
widespread use; the same goes for its standards for publishing semantic data. This
includes not only data repositories published as linked data but is also driven by
the increasing use of RDFa and microdata, allowing users to “semantify” their own
data with rather low technical requirements. The better availability of semantic
data on the web is without a doubt a main contributor to its acceptance. Search
in the Web of Data is one of them, combining both advanced query processing and
search in RDF data—one of the foundations of the Semantic Web. At the same
time commercial search engines have begun to pick up on these trends (see Google
knowledge graph).

While these definitely are positive points, much work remains to be done. Semantic
collections are still scattered across the Web and only in a few cases truly link
to each other. The Linked Open Data initiative is a first step in this direction,
but definitely needs support by intelligent tools in combining data from different
sources. Once we are closer to that goal, ensuring quality levels that guarantee a
satisfactory search experience for users will become vital. This will help facilitate
both increased amounts of data available and their high quality.
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