
Intra-Query Concurrent Pipelined Processing
For Distributed Full-Text Retrieval

Simon Jonassen and Svein Erik Bratsberg

Norwegian University of Science and Technology, Trondheim, Norway
{simonj,sveinbra}@idi.ntnu.no

Abstract. Pipelined query processing over a term-wise distributed in-
verted index has superior throughput at high query multiprogramming
levels. However, due to long query latencies this approach is inefficient
at lower levels. In this paper we explore two types of intra-query par-
allelism within the pipelined approach, parallel execution of a query on
different nodes and concurrent execution on the same node. According
to the experimental results, our approach reaches the throughput of the
state-of-the-art method at about half of the latency. On the single query
case the observed latency improvement is up to 2.6 times.

1 Introduction
With a rapid growth of document collections and availability of cheap commod-
ity workstations, distributed indexing and query processing became the most
important approach to large-scale, high-performance information retrieval. Two
underlying, fundamentally different methods are term-wise and document-wise
partitioning. With a large number of controversial comparisons and several hy-
brid methods presented throughout the last 20 years, both methods have their
advantages and challenges. Term-wise partitioning, which we address in this
paper, reduces the number of disk seeks [13] and improves inter-query concur-
rency [1].

The traditional query processing approach to a term-wise distributed index
is to use one of the nodes as a ranker node and the remaining nodes as fetchers.
With document-ordered inverted files this leads to a high network load and a
large ranker overhead. In order to overcome these problems, pipelined query
processing [12] suggests to create a query bundle, which includes the query itself
and a set of partially scored documents, accumulators, and route it through
the nodes hosting the posting lists associated with the query. At each node the
accumulator structure is modified with more posting data, and at the last node
the k top-scored accumulators are selected, sorted and returned as a final result.
Fig. 1(b) illustrates the execution of a single query.

With several optimizations [11, 17] to load balancing and replication of the
most load consuming posting lists, pipelined approach has been shown to out-
perform document-wise partitioning in terms of query throughput. However,
this comes at a cost of long query latency. Fig. 1(a) reconstructs the results
presented by Webber [17], one of the authors of pipelined approach, who pro-
vided a detailed description of the methods and experiments done in their work.

0 500 1,000 1,500
40

60

80

100

120

ms

q
p
s

Document
Pipeline

(a) (b) (c)

Fig. 1. (a) Reconstruction of the latency/throughput with varied multiprogramming
levels presented by Webber [17]. (b) Pipelined and (c) semi-pipelined query processing.

The figure shows that the method has a high maximum throughput, but it is
less efficient at lower query multiprogramming levels (i.e. when the number of
queries processed concurrently is small). For a user-oriented search application
it is important to keep the latency low and be efficient at both high and low
query loads. In this paper we look at the intra-query parallelism possible with a
modification to pipelined approach. Our objective is to reduce query latency at
lower multiprogramming levels, while keeping the performance degradation at
higher levels minimal. As the main goal we want to achieve the same throughput
at a significantly lower latency.

Our contribution is as follows. We address the intra-query concurrency prob-
lem of pipelined query processing. We present a novel technique that exploits
intra-query parallelism between and within each node. We evaluate our experi-
ments on a real distributed system, using a relatively large document collection
and a real query set. Finally, we suggest several directions for the future work.

2 Related work
Performance comparison studies of the document- and term-wise partitioning
methods have been presented in a large number of publications. In this pa-
per we refer only to a few of them [1, 4, 9, 11–13, 18]. Several works [4, 18] have
also presented and evaluated hybrid partitioning and query processing strate-
gies. Early optimizations of distributed query processing considered conjunc-
tive (AND) queries and using the shortest term to eliminate unnecessary post-
ings [15]. Several other studies, such as the work done by Marin et al. [9, 10],
have used impact- or frequency-ordered lists. In our work, we look at disjunctive
(OR) queries and document-ordered indexes. While impact-ordered indexes offer
highly-efficient query processing [14], document-ordered indexes combined with
careful document ID ordering [19], skipping and MaxScore [6, 16] or WAND [3]
style processing are highly-efficient as well. At the same time, document-ordered
indexes are easier to maintain and process.

Pipelined query processing (P) was presented by Moffat et al. [11, 12] and
Webber [17]. According to the original paper [12] this method significantly im-
proves throughput, but struggles with load imbalance and high network load.
Several query-log-based term-assignment methods have been suggested in order
to improve load-balancing [11, 17], reduce communication cost [20], or both [8].
The results presented by Webber [17] show that, due to inter-query parallelism,
P succeeds to achieve higher throughput than document-wise partitioning once

the load balancing issues are resolved. However, the author admits lacking intra-
query parallelism, resulting in a poor performance under light-to-moderate work-
loads, and suggested that preloading of inverted lists would enable disk paral-
lelism and therefore improve the performance.

According to Büttcher et al. [2], two other problems of P lie in Term-at-
a-Time (TAAT) processing and a poor scalability with collection growth. The
original implementation of P uses the space-limited pruning method by Lester
et al. [7], which allows to restrict the number of transferred accumulators (thus
reducing the network and processing load), but requires a complete, TAAT pro-
cessing of posting data.

In our recent work [5] we have presented a combination of parallel posting
list prefetching and decompression and pipelined query processing, called semi-
pipelined query processing. We illustrate this approach in Fig. 1(c). Additionally,
our previous work included execution of some of the queries in a traditional, non-
pipelined way, and a different query-routing strategy. The results reported 32%
latency improvement, but the underlying model assumed that each posting list
is read and decompressed completely and at once.

As the baseline for the current work we use a modification of P applying
inverted index skipping, MaxScore pruning and Document-at-a-Time (DAAT)
processing within each sub-query, which we briefly describe in the next section.
The intention behind this is to tackle the issues addressed by Büttcher et al..
The underlying query processing on each node and the index structure itself are
similar to those presented in the recent work on inverted index skipping [6]. While
our baseline processes different posting lists in parallel (DAAT), the bundle itself
is processed by one node at a time, which is the main reason for long query
latencies and a poor performance at the low query multiprogramming levels. As
inverted index skipping makes semi-pipelined processing impossible, we suggest
that intra-query parallelism between different nodes and within each posting list
is the best way to improve the query processing performance. Finally, as we
substitute space-limited pruning [7] with MaxScore, the quality of query results
is equivalent to a full, disjunctive query evaluation.

3 Preliminaries
For a given document collection D and a query q, we look at the problem of
finding the k top-ranked documents according to a similarity score sim(d, q) =∑

t∈q sim(fd,t, D, q). Here, sim(fd,t, D, q) or simply sd,t is a term-similarity func-
tion, such as Okapi BM-25 or TF×IDF, and fd,t is the number of occurrences
of the term t in the document d.
Skipping. For any term t in the inverted index, the posting list It contains
a sequence of document IDs and corresponding frequencies. Within each list
postings are ordered by document ID, divided into groups of 128 entries (chunks)
and compressed with NewPFor [19] using gap-coded document IDs. A hierarchy
of skipping pointers, which are also gap-coded and compressed in chunks, is built
on top. The logical tree is then written to disk as a prefix-traverse. A posting list
iterator accessing the resulting index reads the data block-wise and keeps one

chunk from each level (decompressed) in the main memory. The combination of
bulk-compression, reuse of the decompressed data, index layout and buffering
results in highly efficient query processing.

Distributed index. In order to create a distributed, term-wise partitioned in-
dex we sort posting lists by their decreasing maximum scores ŝt = maxd∈It(st,d).
Then we assign them to n different worker nodes in a such way that the node i
receives the posting lists with ŝt higher than those received by the node i + 1,
but lower than i − 1, and the partitions have nearly the same size. Additional
data structures such as a small local lexicon and a replica of a short document
dictionary are stored on each node. An additional node n+ 1, which serves as a
query broker, stores a full document dictionary and a global lexicon. During the
query processing, the only structure accessed from disk is the inverted index, all
the other structures are kept in the main memory as sorted arrays and accessed
by binary search.

Query processing. At query time, each query is received, tokenized, stop-word
processed and stemmed by the query broker. The resulting terms are checked
in the global lexicon and the collection-based ŝt values are adjusted with the
normalized number of occurrences in the query. Further, the query is divided
into a number of sub-queries, each containing only the terms assigned to the
particular node, and a route is chosen by decreasing maximum ŝt in each sub-
query. Finally, the broker generates a bundle message and sends it to the first
node in the route.

The bundle is processed by one node at a time. Each node in the route receives
the bundle, decompresses the received accumulator set, matches it against its
own posting data, generates a new accumulator set, compresses and transfers it
to the next node. Query processing on each node is similar to the traditional
DAAT MaxScore [16], except that it is limited only to the received accumulator
set and the query-related posting lists stored on this node. Therefore, it operates
with a pruning score threshold v = minHeap.min−r. Here, r is the accumulated
maximum score of the terms in the remaining sub-queries and minHeap.min is
the smallest score within the k top-scored results seen so far (monitored with
a heap). Any partially scored accumulator can be pruned at any time if its
estimated full score falls below the current value of v. Additionally, some of the
posting lists cannot create new accumulators and therefore can be processed
in a skip-mode. Accumulators that cannot be pruned have to be transferred
to the next node. As v increases during processing, more posting data can be
skipped and more existing accumulators can be eliminated. The last node in the
route does not have to create a new accumulator set. Instead, it uses only the
candidate heap and when processing is done, it extracts, sorts and returns the
final candidates to the broker as the result set.

Accumulators that pass the threshold are placed into a new accumulator set.
Since v increases within each sub-query, the accumulators in the beginning of
the set may have scores below the final value of v, vfinal. We call these false
positives. In order to eliminate them, when vstart < vfinal, an additional pass
through the accumulator set is done in order to preserve only those having

scores s ≥ vfinal. vfinal is transferred along with the query bundle and used as
vstart on the next node in order to facilitate pruning. Next, v is updated with
a new value only when a new accumulator has been inserted into the candidate
heap and v < minHeap.min + r. Finally, prior to a transfer the accumulator
IDs are gap-coded and compressed with NewPFor and the partial scores are
converted from double to single precision.

4 Intra-query parallel processing

In this section we introduce our new query processing approach, divided in two
parts. In the first part we address intra-query parallelism on different nodes, and
in the second part - on the same node. The experimental results and comparison
to the baseline approach follow in the next section.

4.1 Query parallelism on different nodes

Fragment pipeline. In order to overlap the execution of the same query on
two consecutive nodes, we divide the document ID range into several sub-ranges,
fragments. For a query q we define a fragment size Fq, which splits the ID range

[0, |D|) into Nq = d |D|
Fq
e sub-ranges or fragments. Fragment i covers document

IDs [iFq, (i + 1)Fq).
As we illustrate in Fig. 2(a), each sub-query can now be divided into several

tasks, each processing the sub-query over a single fragment. For simplicity, we
explain the execution of a single query. With the state-of-the-art approach each
sub-query is processed as a single task, which includes three steps: (a) decom-
pression of the incoming accumulator set, (b) processing/merging of the posting
and accumulator data, and (c) elimination of false-positives and compression of
the new accumulator set or extraction of final results. With a fragment-pipeline,
all three steps are scaled down to a single fragment. For example, the node pro-
cessing the first sub-query post-processes, compresses and transfers its partial
accumulator set as soon as the first fragment is finished. Then it starts straight
on the second fragment. The next node in the route starts processing as soon as
the accumulator set corresponding to the first fragment has arrived.

As an alternative to this method we could process each sub-query until the
number of non-pruned accumulators would be above a minimum number, then
transfer these and resume processing. However, this could lead to one-to-many
and many-to-one correspondences between processing tasks on different nodes,
and therefore require a complex implementation with many special cases. Our
solution simplifies the implementation, as each node has only one-to-one cor-
respondence between incoming and outgoing fragments. Additionally, we avoid
delaying the accumulator transfer in order to wait for the next incoming frag-
ment.

So far we look at the processing model where all tasks corresponding to a
single sub-query are done by a single thread, the executor. In order to be effi-
cient, these tasks have to reuse the candidate heap, the pruning threshold and
the state of the posting list iterators, called sub-query state. The state contains

(a)
D

F

F

Iq

q

(b) (c) (d)

Fig. 2. (a) Fragment pipelined query processing. (b) Mapping between F and Fq. (c)-
(d) Data structures used by (c) non-concurrent and (d) concurrent fragment processing.

information on the number of non-finished iterators, including the current posi-
tion within the posting list, recently decompressed and fetched data (which can
be reused by future tasks), and which of the posting lists can be processed in the
skip-mode. Further, as posting list iterators support only next() and skipTo(d)
operations, fragments have to be processed in-order. As Fig. 2(c) shows, a pri-
ority queue and a counter are associated with each sub-query to enforce the
order. As fragments arrive, they are inserted into the priority queue and the
corresponding executor is notified. If the next fragment in the priority queue has
the sequence ID corresponding to the counter value, the fragment is processed
by the executor and forwarded to the next node, and the counter is increased.
If not, the executor suspends processing in order to wait for more data.

Additionally, as the pruning threshold for each sub-query increases gradually,
at some point the current pruning threshold of a sub-query i, vi, can exceed the
current threshold value in the next sub-query i + 1. Therefore, v′i seen right after
finishing a fragment is packed and transferred along with the accumulators. On
the next node, it replaces the current threshold vi+1 if v′i > vi+1.

Fragment size estimation. As different queries have different processing cost,
those more expensive queries are desired to consist of a larger number of frag-
ments than the shorter ones. We assume that the total processing cost of each
query is proportional to the total number of candidates produced by a full non-
pruned disjunction of query terms, Iq =

⋃
t∈q It. Next, we introduce a system-

dependent (smallest) fragment size F , which corresponds to the fragment size
used by some hypothetical query that has to consider all of the documents in
the collection as potential accumulators. F has to be chosen dependent on the
systems settings. In practice it can be tuned during the warm-up or in the
run-time. For a particular query q, the fragment size Fq can be chosen so that
|Iq|/F = |D|/Fq holds. As Fig. 2(b) shows, this equality reflects the correspon-
dence between the document ID space D and the results set Iq.

Assuming non-correlated terms, |Iq| can be approximated by Eq. (1). The
equation uses the probability that a document does not contain a given term t,

(1 − |It|
|D|), to find the probability that a document contains at least one of the

query terms, and finally multiplies it by the total number of indexed documents
D. Then, Fq can be calculated with Eq. (2). As Fq cannot be smaller than F or
larger than |D|, we further apply Eq. (3).

|Iq| ≈ |D| · (1−
∏
t∈q

(1− |It||D|)) (1)

F ′
q =
|D|
|Iq|
· F ≈ F/(1−

∏
t∈q

(1− |It||D|)) (2)

Fq =

{
F if F ′

q < F
|D| if F ′

q > |D|
F ′
q otherwise

(3)

4.2 Sub-query parallelism on a single node

Concurrent fragment processing. At lower query rates processing nodes
cannot fully utilize all of their resources, therefore it can be useful to process
the tasks corresponding to the same query concurrently. Processing each frag-
ment completely independent from the others would require a separate sub-query
state, candidate heap and pruning threshold, and therefore significantly degrade
the performance. Instead, we suggest to use a small number of executors associ-
ated with each sub-query and distribute the tasks between them.

When a query q is first received by the node i, it initiates Tq,i task execu-
tors. Each executor initiates its own sub-query state. Similar to the previous
description, a priority queue is used to order incoming fragments. In order to
ensure that each executor processes fragments by increasing sequence ID and no
fragments are left behind, the priority queue and fragment sequence counter are
shared between the executors. We illustrate this in Fig. 2(d).

The executors associated with the same query may share the pruning thresh-
old variable and/or the candidate heap. Apart from the experiments presented
in the next section, we have evaluated no-share policy against threshold-only
and heap-and-threshold. No-share results in a lower performance as pruning ef-
ficiency goes down. With a shared candidate heap, synchronized inserts into
the heap slow down processing. Our method of choice, threshold-only, is rela-
tively cheap, since v can be marked as volatile and updated by a synchronized
setIfGreater(v′) only when v′ > v.

Since the candidate heaps are not shared, for the last sub-query, they have
to be combined in order to extract the top-k results. This is done by processing
the sub-query as long as there are more fragments. The first executor to finish
is then chosen as a heap-merger and a heap-queue is associated with the query.
Each of the remaining executors, prior to finishing, inserts its candidate heap
into the queue. Heaps are then taken by the merger-executor and combined with
its own candidate heap. When all of the executor heaps are merged, the final k
results are sorted and sent back to the broker.
Estimation of executor number. Tq,i can be calculated using Eq. (4). First,
we introduce a system defined maximum number of executors per query Tmax

and divide it by the number of queries currently running on this node Qnow,i

plus one. Additionally, if Nq is too small, the corresponding number of executors
should also be smaller. Therefore, we introduce a tunable minimum number of

fragments per task, Nminpt. The number of executors assigned to a query is
therefore the smallest of the two estimates, but not smaller than 1.

Tq,i = max(min(b Tmax

Qnow,i + 1
c, b Nq

Nminpt
c), 1) (4)

Multi-stage fragment processing. As mentioned previously, each task con-
sists of three stages (decompression, processing and compression), but the de-
pendency in fragment execution lies only in the second stage. As an architecture
design choice we decode and decompress incoming packages by small executor
tasks outside of the query processing executors. Therefore, as incoming fragments
enter the priority queue, they are already decompressed and ready for execution.
This simplifies the implementation of the methods and reduces the amount of
work done by the query executor. Separate post-processing and compression of
outgoing data could be done by an additional executor or as a number of small
executor tasks. However, the improvement is achieved only when there are many
idle CPU cores. Otherwise, it only increases the overhead. For this reason, the
results presented in the next section exclude separate fragment post-processing.
Finally, we separate the query itself from accumulator transfer. Instead of send-
ing a query bundle to the first node in the route, the broker multi-casts it to
all of the query nodes. Therefore, each node can parse the query itself, access
the lexicon and initiate the query executor(s) prior to receiving any accumulator
data.

5 Experiments
In this section we evaluate the performance of three query processing methods:
the baseline method (P) described in Section 3, the non-concurrent fragment
pipeline (FP) described in Section 4.1 and concurrent fragment pipeline (CFP)
described in Section 4.2. Further, both FP and CFP apply the ideas described
in the multi-stage fragment processing part of the last section.

For the experiments we use the 426GB TREC GOV2 corpus. With both
stemming and stop-word removal applied, the 9.4GB distributed index contains
15.4 mil. unique terms, 25.2 mil. documents, 4.7 bil. pointers and 16.3 bil. to-
kens. For query processing we use the Okapi BM-25 model. The performance is
evaluated using the first 10 000 queries from the Terabyte Track 05 Efficiency
Topics that match at least one indexed term, where the first 2 000 queries are
used for warm-up and the next 8 000 (evaluation set) to measure the perfor-
mance. Among the 8 000 test queries, the average query has 2.9 terms and 2.44
sub-queries. For the experiments we use a 9 node cluster interconnected with a
Gigabit network. Each node has two 2.0GHz Quad-Core CPUs, 8GB memory
and a SATA disk. Our framework is implemented in Java and uses Java NIO
and Netty 3.2.3 for fast disk access and network transfer. For disk access we use
16KB blocks. Finally, we use the default Linux disk-cache policy, but drop the
cache before each run. Every experiment is repeated twice and the average value
is reported.
Baseline. Fig. 3(a) illustrates the average throughput and query latency of the
baseline method. Marks on each plot correspond to query multiprogramming

100 200 300

0

100

200

ms

q
p
s

k = 1000
k = 100

(a) Baseline (P)

100 101 102 103

100

102

104

Nq

fr
e
q
.

Fa Fb
Fc Fd
Fe Ff

(b) Distribution of Nq

100 200 300

0

50

100

150

ms

q
p
s

FPa FPb
FPc FPd
FPe FPf

(c) FP, k = 1000

100 200 300

0

100

200

ms

q
p
s

FPa FPb
FPc FPd
FPe FPf

(d) FP, k = 100

Fig. 3. (a) Baseline performance. (b)-(c) Distribution of Nq values in the evaluation
set. (c)-(d) Performance of FP. In (b)-(d), different plots correspond to different values
of F : a - 32 768, b - 131 072, c - 524 288, d - 2 097 152, e - 8 388 608, f - 33 554 432.

levels {1, 8, 16, 24, 32, 40, 56, 64}, which are the maximum number of queries
concurrently executing in the cluster. We stop at 64 concurrent queries (cq),
which corresponds to the total number of processor cores held by the processing
nodes. As the figure shows, for k = 1000 (i.e. when the result set is restricted to
top-1000) the shortest average latency (1cq) is about 170ms, which corresponds
to 5.85 queries per second (qps). As we increase the query load, both throughput
and latency increase. Over the time, due to to a limited amount of resources and
increasing load, the increase in latency dominates over the increase in through-
put. The highest throughput is reached at 64cq, 162qps corresponding to 370ms.
k = 100 has similar results. However, as the k-th best candidate score is used to
calculate v, smaller k decreases the amount of data to be read, processed and
transferred, and therefore improves the performance. For k = 100, the shortest
average latency is about 114ms (8.75qps) and the highest throughput is 203qps,
reached at 304ms (64cq).
Fragment pipeline. Fig. 3(b) illustrates the distribution of Nq values in the
evaluation set. Different plots correspond to different values of F . Here we use
Fa = 1282 × 2 = 32768 as a baseline and increment the value by 4 to calculated
Fb..f . As the figure shows, with Fa, the Nq lies within [1, 654]. With Fb, Fc

and Fd the ranges correspond to [1, 164], [1, 41] and [1, 11]. The of frequency
of values changes also towards the smaller values. With Fa, Nq = 1 occurs 514
times. This corresponds to 1243 times with Fb, 2499 times with Fc, 4871 with
Fd. With Fe, the only value of Nq is 1.

Fig. 3(c)-3(d) demonstrate the performance of FP. Both figures show that the
shortest query latency decreases with F . However, with Fa the method reaches
a starvation point at 24cq, caused by a too large number of network messages
and a significantly large processing overhead due to fragmentation. Further, the
results show that the difference between Fb and Fc, and between Fe and Ff is
less significant. At the same time, e.g., Fb has a slightly shorter latency at 1cq
than Fc, but it reaches a slightly smaller maximum throughput at 64cq. For k =
1000 Fb reaches the maximum throughput at 56cq. At 64cq it is outperformed
by the other methods. These results show that FP can significantly improve
the performance at lower multiprogramming levels. For higher levels (64cq and
above), the overhead from fragmentation degrades the performance.

0 1 2 3 4
·100

CFPb3@64cq
CFPb3@32cq
CFPb3@16cq
CFPb3@8cq
CFPb3@1cq
CFPb4@1cq
CFPc3@1cq

FPb@1cq
FPc@1cq

P@1cq

Blocks

K = 1000 K = 100

0 1 2
·104

Chunks

0 2 4 6 8 10
·105

Accs.

0 1 2 3
·105

Trans.Accs

0 20 40

Msgs.

0 2 4

TpS.

Fig. 4. Average number of processed entities per query and tasks per sub-query (TpS)
observed at the given multiprogramming level.

50 60 70

1

2

3

4

5

6

7

8

ms

N
m

in
p
t

K = 1000 K = 100

(a) CFPb @1

100 200 300

0

50

100

150

ms

q
p
s

CFPb3 CFPc3
CFPd3

(b) CFP, k = 1000

100 200 300

0

100

200

ms
q
p
s

CFPb3 CFPc3
CFPd3

(c) CFP, k = 100

100 200 300

0

50

100

150

ms

q
p
s

FPb CFPb3

(d) CFPb3, k = 1000

100 200 300

0

50

100

150

ms

q
p
s

FPc CFPc3

(e) CFPc3, k = 1000

200 300

0

50

100

150

ms

q
p
s

FPd CFPd3

(f) CFPd3, k = 1000

0 100 200 300 400

0

50

100

150

ms

q
p
s

P CFPb3

(g) CFPb3/P, k = 1000

0 100 200 300

0

100

200

ms

q
p
s

P CFPb3

(h) CFPb3/P, k = 100

Fig. 5. Throughput and latency with the concurrent fragment pipeline (CFP).

Fig. 4 shows the average number of read data blocks, decompressed chunks,
created and transferred accumulators and sent messages for queries in the evalu-
ation set. As pruning efficiency degrades with smaller fragments, the figure shows
a small increase in the measured numbers for blocks, chunks and accumulators
for FP with Fb (FPb) and Fc (FPc). At the same time, the number of network
messages per query (except the result message) increases from 2.44 with P to 49
with FPc.

Concurrent fragment pipeline. Fig. 5(a) illustrates the performance of CFP
with one query at a time (1cq), Fb and varied Nminpt. We use Tmax = 8, since
each node has 8 CPU cores. For both k = 100 and k = 1000, the shortest latency
is observed at Nminpt = 2 or 3. For Nminpt = 1 the improvement is limited due
to decreased pruning efficiency and increased synchronization overhead. Fig. 4
shows that the amount of read, decompressed and transferred data increases
with smaller F . In the figure, Nminpt is indicated by the second subscript. At
the same time, the amount of work that can be done concurrently increases along
with Nminpt. For Nminpt = 2 and 3, the trade-off ratio between parallelism and
overhead is therefore optimal. Similar results were observed for Fc and Fd.

Fig. 5(b)-5(c) demonstrate the performance of CFP with varied fragment
size. At low multiprogramming levels the difference between Fb and Fc is quite
significant and it is clear that smaller fragment sizes speed-up query process-
ing. However, Fig. 4 shows a significant increase in the processed data (1cq),
which decreases with increasing multiprogramming. Despite this, at higher lev-
els intra-query concurrency starts to degrade the performance. Fig. 5(d)-5(f)
show a comparison between CFP and the corresponding FP runs. The figure
shows that the maximum throughput decreases for both Fa, Fb and Fc, however
while CFPb3 significantly reduces the latency compared to FP3, CFPd3 only
degrades the performance of FPd. The last observation can be explained by a
small number of fragments per-query (Fd gives Nq ∈ [1, 11]) and a relative high
overhead cost.

The final comparison between CFPb3 and the baseline method is illustrated
in Fig. 5(g)-5(h). As the results show, at 1cq the query latency is 43.9ms for
k = 100 and 64.4ms for k = 1000. This corresponds to a latency decrease by
2.6 times. At the same time, the maximum throughput has increased by 6.6%
(CFPb3, k = 100, 56cq, 216.2 qps at 249.0ms) to 7.4% (k = 1000, 64cq, 174.9qps
at 349.3ms). The most important, CFP allows to reach the same throughput as
the baseline method at a half of the latency and using a lower multiprogramming
level, which satisfies our main objective. For example, for k = 100 we reach
190qps at 159ms (32cq) compared to 275ms (56cq) with the baseline method.
At higher levels (�64cq) CFP might be outperformed by P. Therefore, in order
to optimize the total performance, a practical search engine could switch between
P, FP and CFP depending on the query load.

6 Conclusion and further work
In this work we have presented an efficient extension of the pipelined query pro-
cessing that exploits intra-query concurrency and significantly improves query
latency. Our results indicate more than 2.6 times latency improvement on the
single-query case. For a general case, we are able to achieve similar throughput
with almost half of the latency. Further work can be done in several directions.
First, due to the assignment strategy, posting lists stored at the first few nodes
are relatively short. Therefore, a hybrid combination between pipelined and non-
pipelined execution, where the first nodes perform only fetching and transfer of
the posting data to a node later in the query route, can significantly improve
the performance. However, this technique requires careful load-balancing. A dy-
namic load balancing strategy can be explored as the second direction of the
future work. Third, the index size and the number of nodes used in our exper-
iments are relatively small. In the future, we plan to evaluate our method on a
larger document collection and/or a larger cluster. Finally, we can also think of
an efficient combination of the pipelined query execution with impact-ordered
lists and bulk-synchronous processing similar to the methods presented by Marin
et al. [9, 10].
Acknowledgements. This work was supported by the Information Access Dis-
ruptions Centre (http://iad-centre.no) funded by the Research Council of Nor-

way and the Norwegian University of Science and Technology. The authors thank
João B. Rocha-Junior for the useful advices and comments on the paper.

References

1. C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani. Distributed query
processing using partitioned inverted files. In SPIRE, 2001.

2. S. Büttcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval: Imple-
menting and Evaluating Search Engines. The MIT Press, 2010.

3. S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes. In
SIGIR, 2011.

4. E. Feuerstein, M. Marin, M. Mizrahi, V. Gil-Costa, and R. Baeza-Yates. Two-
dimensional distributed inverted files. In SPIRE, 2009.

5. S. Jonassen and S. E. Bratsberg. A combined semi-pipelined query processing
architecture for distributed full-text retrieval. In WISE, 2010.

6. S. Jonassen and S. E. Bratsberg. Efficient compressed inverted index skipping for
disjunctive text-queries. In ECIR, 2011.

7. N. Lester, A. Moffat, W. Webber, and J. Zobel. Space-limited ranked query eval-
uation using adaptive pruning. In WISE, 2005.

8. C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. Mining query logs to optimize
index partitioning in parallel web search engines. In InfoScale, 2007.

9. M. Marin and V. Gil-Costa. High-performance distributed inverted files. In CIKM,
2007.

10. M. Marin, V. Gil-Costa, C. Bonacic, R. Baeza-Yates, and I. Scherson. Sync/async
parallel search for the efficient design and construction of web search engines.
Parallel Computing, 2010.

11. A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed parallel
retrieval. In SIGIR, 2006.

12. A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architecture for
distributed text query evaluation. Inf. Retr., 2007.

13. B. Ribeiro-Neto and R. Barbosa. Query performance for tightly coupled distributed
digital libraries. In DL, 1998.

14. T. Strohman and W. Croft. Efficient document retrieval in main memory. In
SIGIR, 2007.

15. A. Tomasic and H. Garcia-Molina. Query processing and inverted indices in shared
nothing text document information retrieval systems. The VLDB Journal, 1993.

16. H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Inf.
Process. Manage., 1995.

17. W. Webber. Design and evaluation of a pipelined distributed information retrieval
architecture. Master’s thesis, 2007.

18. W. Xi, O. Sornil, M. Luo, and E. Fox. Hybrid partition inverted files: Experimental
validation. In ECDL, 2002.

19. H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing
with optimized document ordering. In WWW, 2009.

20. J. Zhang and T. Suel. Optimized inverted list assignment in distributed search
engine architectures. Paral. and Dist. Proc. Symp., Int., 2007.

